352 research outputs found

    Lexicographic shellability, matroids and pure order ideals

    Full text link
    In 1977 Stanley conjectured that the hh-vector of a matroid independence complex is a pure OO-sequence. In this paper we use lexicographic shellability for matroids to motivate a combinatorial strengthening of Stanley's conjecture. This suggests that a pure OO-sequence can be constructed from combinatorial data arising from the shelling. We then prove that our conjecture holds for matroids of rank at most four, settling the rank four case of Stanley's conjecture. In general, we prove that if our conjecture holds for all rank dd matroids on at most 2d2d elements, then it holds for all matroids

    Universality theorems for inscribed polytopes and Delaunay triangulations

    Full text link
    We prove that every primary basic semialgebraic set is homotopy equivalent to the set of inscribed realizations (up to M\"obius transformation) of a polytope. If the semialgebraic set is moreover open, then, in addition, we prove that (up to homotopy) it is a retract of the realization space of some inscribed neighborly (and simplicial) polytope. We also show that all algebraic extensions of Q\mathbb{Q} are needed to coordinatize inscribed polytopes. These statements show that inscribed polytopes exhibit the Mn\"ev universality phenomenon. Via stereographic projections, these theorems have a direct translation to universality theorems for Delaunay subdivisions. In particular, our results imply that the realizability problem for Delaunay triangulations is polynomially equivalent to the existential theory of the reals.Comment: 15 pages, 2 figure

    Robust randomized matchings

    Full text link
    The following game is played on a weighted graph: Alice selects a matching MM and Bob selects a number kk. Alice's payoff is the ratio of the weight of the kk heaviest edges of MM to the maximum weight of a matching of size at most kk. If MM guarantees a payoff of at least α\alpha then it is called α\alpha-robust. In 2002, Hassin and Rubinstein gave an algorithm that returns a 1/21/\sqrt{2}-robust matching, which is best possible. We show that Alice can improve her payoff to 1/ln⁥(4)1/\ln(4) by playing a randomized strategy. This result extends to a very general class of independence systems that includes matroid intersection, b-matchings, and strong 2-exchange systems. It also implies an improved approximation factor for a stochastic optimization variant known as the maximum priority matching problem and translates to an asymptotic robustness guarantee for deterministic matchings, in which Bob can only select numbers larger than a given constant. Moreover, we give a new LP-based proof of Hassin and Rubinstein's bound

    The Hilbert Zonotope and a Polynomial Time Algorithm for Universal Grobner Bases

    Full text link
    We provide a polynomial time algorithm for computing the universal Gr\"obner basis of any polynomial ideal having a finite set of common zeros in fixed number of variables. One ingredient of our algorithm is an effective construction of the state polyhedron of any member of the Hilbert scheme Hilb^d_n of n-long d-variate ideals, enabled by introducing the Hilbert zonotope H^d_n and showing that it simultaneously refines all state polyhedra of ideals on Hilb^d_n

    Solving the Maximum Popular Matching Problem with Matroid Constraints

    Full text link
    We consider the problem of finding a maximum popular matching in a many-to-many matching setting with two-sided preferences and matroid constraints. This problem was proposed by Kamiyama (2020) and solved in the special case where matroids are base orderable. Utilizing a newly shown matroid exchange property, we show that the problem is tractable for arbitrary matroids. We further investigate a different notion of popularity, where the agents vote with respect to lexicographic preferences, and show that both existence and verification problems become NP-hard, even in the bb-matching case.Comment: 16 pages, 2 figure

    Enumeration of PLCP-orientations of the 4-cube

    Full text link
    The linear complementarity problem (LCP) provides a unified approach to many problems such as linear programs, convex quadratic programs, and bimatrix games. The general LCP is known to be NP-hard, but there are some promising results that suggest the possibility that the LCP with a P-matrix (PLCP) may be polynomial-time solvable. However, no polynomial-time algorithm for the PLCP has been found yet and the computational complexity of the PLCP remains open. Simple principal pivoting (SPP) algorithms, also known as Bard-type algorithms, are candidates for polynomial-time algorithms for the PLCP. In 1978, Stickney and Watson interpreted SPP algorithms as a family of algorithms that seek the sink of unique-sink orientations of nn-cubes. They performed the enumeration of the arising orientations of the 33-cube, hereafter called PLCP-orientations. In this paper, we present the enumeration of PLCP-orientations of the 44-cube.The enumeration is done via construction of oriented matroids generalizing P-matrices and realizability classification of oriented matroids.Some insights obtained in the computational experiments are presented as well

    Primitive Zonotopes

    Full text link
    We introduce and study a family of polytopes which can be seen as a generalization of the permutahedron of type BdB_d. We highlight connections with the largest possible diameter of the convex hull of a set of points in dimension dd whose coordinates are integers between 00 and kk, and with the computational complexity of multicriteria matroid optimization.Comment: The title was slightly modified, and the determination of the computational complexity of multicriteria matroid optimization was adde
    • 

    corecore