We prove that every primary basic semialgebraic set is homotopy equivalent to
the set of inscribed realizations (up to M\"obius transformation) of a
polytope. If the semialgebraic set is moreover open, then, in addition, we
prove that (up to homotopy) it is a retract of the realization space of some
inscribed neighborly (and simplicial) polytope. We also show that all algebraic
extensions of Q are needed to coordinatize inscribed polytopes.
These statements show that inscribed polytopes exhibit the Mn\"ev universality
phenomenon.
Via stereographic projections, these theorems have a direct translation to
universality theorems for Delaunay subdivisions. In particular, our results
imply that the realizability problem for Delaunay triangulations is
polynomially equivalent to the existential theory of the reals.Comment: 15 pages, 2 figure