1,144 research outputs found

    Cryptographic Key Management in Delay Tolerant Networks (DTNs): A survey

    Get PDF
    Since their appearance at the dawn of the second millennium, Delay or Disruption Tolerant Networks (DTNs) have gradually evolved, spurring the development of a variety of methods and protocols for making them more secure and resilient. In this context, perhaps, the most challenging problem to deal with is that of cryptographic key management. To the best of our knowledge, the work at hand is the first to survey the relevant literature and classify the various so far proposed key management approaches in such a restricted and harsh environment. Towards this goal, we have grouped the surveyed key management methods into three major categories depending on whether the particular method copes with a) security initialization, b) key establishment, and c) key revocation. We have attempted to provide a concise but fairly complete evaluation of the proposed up-to-date methods in a generalized way with the aim of offering a central reference point for future research

    Cryptographic Key Management in Delay Tolerant Networks (DTNs): A survey

    Get PDF
    Since their appearance at the dawn of the second millennium, Delay or Disruption Tolerant Networks (DTNs) have gradually evolved, spurring the development of a variety of methods and protocols for making them more secure and resilient. In this context, perhaps, the most challenging problem to deal with is that of cryptographic key management. To the best of our knowledge, the work at hand is the first to survey the relevant literature and classify the various so far proposed key management approaches in such a restricted and harsh environment. Towards this goal, we have grouped the surveyed key management methods into three major categories depending on whether the particular method copes with a) security initialization, b) key establishment, and c) key revocation. We have attempted to provide a concise but fairly complete evaluation of the proposed up-to-date methods in a generalized way with the aim of offering a central reference point for future research

    Social-context based routing and security in delay tolerant networks

    Get PDF
    Delay Tolerant Networks (DTNs) were originally intended for interplanetary communications and have been applied to a series of difficult environments: wireless sensor networks, unmanned aerial vehicles, and short-range personal communications. There is a class of such environments in which nodes follow semi-predictable social patterns, such as wildlife tracking or personal devices. This work introduces a series of algorithms designed to identify the social patterns present in these environments and apply this data to difficult problems, such as efficient message routing and content distribution. Security is also difficult in a mobile environment. This is especially the case in the event that a large portion of the network is unreliable, or simply unknown. As the network size increases nodes have difficulty in securely distributing keys, especially using low powered nodes with limited keyspace. A series of multi-party security algorithms were designed to securely transmit a message in the event that the sender does not have access to the destinations public key. Messages are routed through a series of nodes, each of which partially decrypts the message. By encrypting for several proxies, the message can only be intercepted if all those nodes have been compromised. Even a highly compromised network has increased security using this algorithm, with a trade-off of reduced delivery ratio and increased delivery time -- Abstract, page iv

    User-Centric Networking : Privacy- and Resource-Awareness in User-to-User Communication

    Get PDF

    WARP: A ICN architecture for social data

    Full text link
    Social network companies maintain complete visibility and ownership of the data they store. However users should be able to maintain full control over their content. For this purpose, we propose WARP, an architecture based upon Information-Centric Networking (ICN) designs, which expands the scope of the ICN architecture beyond media distribution, to provide data control in social networks. The benefit of our solution lies in the lightweight nature of the protocol and in its layered design. With WARP, data distribution and access policies are enforced on the user side. Data can still be replicated in an ICN fashion but we introduce control channels, named \textit{thread updates}, which ensures that the access to the data is always updated to the latest control policy. WARP decentralizes the social network but still offers APIs so that social network providers can build products and business models on top of WARP. Social applications run directly on the user's device and store their data on the user's \textit{butler} that takes care of encryption and distribution. Moreover, users can still rely on third parties to have high-availability without renouncing their privacy

    Enabling Social Applications via Decentralized Social Data Management

    Full text link
    An unprecedented information wealth produced by online social networks, further augmented by location/collocation data, is currently fragmented across different proprietary services. Combined, it can accurately represent the social world and enable novel socially-aware applications. We present Prometheus, a socially-aware peer-to-peer service that collects social information from multiple sources into a multigraph managed in a decentralized fashion on user-contributed nodes, and exposes it through an interface implementing non-trivial social inferences while complying with user-defined access policies. Simulations and experiments on PlanetLab with emulated application workloads show the system exhibits good end-to-end response time, low communication overhead and resilience to malicious attacks.Comment: 27 pages, single ACM column, 9 figures, accepted in Special Issue of Foundations of Social Computing, ACM Transactions on Internet Technolog

    Connectivity and Data Transmission over Wireless Mobile Systems

    Get PDF
    We live in a world where wireless connectivity is pervasive and becomes ubiquitous. Numerous devices with varying capabilities and multiple interfaces are surrounding us. Most home users use Wi-Fi routers, whereas a large portion of human inhabited land is covered by cellular networks. As the number of these devices, and the services they provide, increase, our needs in bandwidth and interoperability are also augmented. Although deploying additional infrastructure and future protocols may alleviate these problems, efficient use of the available resources is important. We are interested in the problem of identifying the properties of a system able to operate using multiple interfaces, take advantage of user locations, identify the users that should be involved in the routing, and setup a mechanism for information dissemination. The challenges we need to overcome arise from network complexity and heterogeneousness, as well as the fact that they have no single owner or manager. In this thesis I focus on two cases, namely that of utilizing "in-situ" WiFi Access Points to enhance the connections of mobile users, and that of establishing "Virtual Access Points" in locations where there is no fixed roadside equipment available. Both environments have attracted interest for numerous related works. In the first case the main effort is to take advantage of the available bandwidth, while in the second to provide delay tolerant connectivity, possibly in the face of disasters. Our main contribution is to utilize a database to store user locations in the system, and to provide ways to use that information to improve system effectiveness. This feature allows our system to remain effective in specific scenarios and tests, where other approaches fail
    • …
    corecore