
User-Centric Networking:
Privacy- and Resource-Awareness
in User-to-User Communication

zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften

von der KIT-Fakultät für Informatik
des Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation
von

Dipl.-Inform. Fabian Hartmann
aus Salzgitter

Tag der mündlichen Prüfung: 15. Juli 2016

Erste Gutachterin: Prof. Dr. Martina Zitterbart

Karlsruher Institut für Technologie (KIT)

Zweiter Gutachter: Prof. Dr. Thorsten Strufe

Technische Universität Dresden

Zusammenfassung

Nutzer-zu-Nutzer-Kommunikation innerhalb einer geschlossenen Gruppe von Endnutzern ist einer
der wichtigsten Anwendungsfälle des Internets: Sowohl private, als auch geschäftliche Kom-
munikationskanäle verwenden Dienste wie Instant Messaging, VoIP-Telefonie und File-Sharing-
Angebote, über die Inhalte jeglicher Art ausgetauscht werden. Üblicherweise werden diese Dienste
heutzutage über zentralisierte, schnell und zuverlässig verfügbare Cloud-Server von Drittanbietern
verfügbar gemacht. Dass Dritte somit am Kommunikationsprozess beteiligt werden, wirft aus
Sicht der Nutzer privatsphärenseitige Fragen auf, wird jedoch häufig akzeptiert in Hinblick auf
die zuverlässige Bereitstellung dieser Dienste: Die Anbieter erleichtern die Datenspeicherung,
wie -übertragung über die persönlichen Geräte der Mitglieder einer geschlossenen Gruppe und
tragen so zu einer hohen Datenverfügbarkeit jedes veröffentlichten Datenobjekts bei.

Sofern diese Datenobjekte allerdings lediglich den Mitgliedern der geschlossenen Gruppe
zugänglich sein sollen, müssen die Drittanbieter Zugangskontrollen durchführen. Dazu benöti-
gen sie explizite Anwendungsmetadaten, um die entsprechenden Nutzer zu identifizieren und
zu adressieren. Üblicherweise ist ein eindeutiger Identifikator eines Nutzers auch Teil der ex-
pliziten Metadaten. Beispiele hierfür sind E-Mail-Adressen oder Online-Profile auf Social-Media-
Plattformen. Sobald Drittanbieter Nutzer über einen eindeutigen Identifikator adressieren, kann
die Privatsphäre der Nutzer angegriffen werden, da die Drittanbieter das Nutzungsverhalten der
Nutzer somit nachverfolgen können. Durch zusätzliche implizite Anwendungsmetadaten erfahren
die Drittanbieter beispielsweise durch die Anzahl an Interaktionen, wer einen engen sozialen
Kontakt zu dem entsprechenden Nutzer hält, oder über das Datenkonsumverhalten des Nutzers,
welche Interessen er oder sie hat. Abhängig von den Merkmalen des Identifikators können sogar
Rückschlüsse auf die Identität des Nutzers im realen Leben gezogen werden. Zwar existieren einige
Verfahren zum besseren Schutz der Privatsphäre, die die Anonymität der Nutzer gewährleisten,
jedoch werden diese üblicherweise dazu genutzt, Verbindungsmetadaten innerhalb des Netzwerks
zu verschleiern.

Aus diesem Grund untersucht diese Dissertation User-Centric-Networking als eine Alternative
zu Drittanbietern in der Nutzer-zu-Nutzer-Kommunikation. User-Centric-Networking basiert auf
dem Prinzip der Selbstversorgung, d.h. die Übertragung von Datenobjekten geschieht auss-
chließlich mit Hilfe der persönlichen Geräte der Mitglieder einer geschlossenen Gruppe. Der
Vorteil dieses Systems besteht darin, dass die Privatsphäre der Gruppenmitglieder wesentlich
besser geschützt werden kann, da keine Anwendungsmetadaten an Dritte übermittelt wer-
den. Bisherige Untersuchungen widmeten sich bereits der Frage, wie Datenobjekte auf auss-
chließlich vertrauenswürdigen Geräten gespeichert werden können. Dabei nahmen diese jedoch
stets ein grundlegendes Vertrauen in einzelne Nutzer an, wie z.B. Freunde oder Familie. Ver-
trauenswürdigkeit innerhalb von geschlossenen Gruppen, die auf einer Pro-Datenobjekt-Basis
stets anders zusammen gesetzt sind, wurde bislang nicht berücksichtigt. User-Centric-Networking
stellt somit eine neue Lösung für dieses Problem dar.

Die exklusive Nutzung persönlicher Geräte birgt Nachteile, da diese gemeinhin heterogen
im Hinblick auf Verfügbarkeit und Leistungsfähigkeit sind. User-Centric-Networking begegnet

iii

iv Zusammenfassung

der Geräteheterogenität mit Hilfe zweier Eigenschaften: erstens, Partitionstoleranz zur Über-
windung von zwischenzeitlichen Gerät-Nichtverfügbarkeiten, um Datenobjektübertragungen
nachträglich durchzuführen, und zweitens, Ressourcenbewusstsein, um die Datenübertragung
im Kontext der individuellen Verfügbarkeit und Leistungsfähigkeit der Geräte zu steuern. In
diesem Zusammenhang wurden drei sich gegenseitig ausschließende Ziele identifiziert: niedrige
Übertragungsverzögerungen, niedrige Kosten und hoher Schutz der Privatsphäre. Abhängig von
der Verteilung von Geräten und der individuellen Privatsphäreanliegen innerhalb der geschlosse-
nen Gruppe, kann eine Vorgehensweise zur Datenübertragung vorteilhafter sein, als eine andere.
Die technische Lösung dieses Problems bedarf hoher Flexibilität.

Zentrale Beiträge dieser Dissertation sind daher zum einen der Konzeptentwurf des neuartigen
User-Centric Networking und seiner drei Entwurfsziele (Selbstversorgung, Partitionstoleranz und
Ressourcenbewusstsein), sowie die technische Realisierung dessen. Die technische Realisierung
besteht aus drei Teilen, die ineinander greifen: SODESSON, SocioPath und den sogenannten
Decision Engines.

SODESSON ist eine Middleware für Anwendungen der Nutzer-zu-Nutzer-Kommunikation.
Diese Middleware läuft auf den persönlichen Geräten der Nutzer. Die Anwendungen adressieren
über eine Schnittstelle lediglich die Topics, deren Zugriffsrechte von einem speziellen Mitglied
der geschlossenen Gruppen – dem Topic Owner – zuvor definiert wurden. Diese Zugriffsrechte
werden über eine einheitliche Kontaktliste gesetzt. Zusätzlich unterstützt die Schnittstelle die
Trennung von Benachrichtigungen über neue Datenobjekte und den Datenobjekten selbst. Die
Kommunikation zwischen Geräten wird von SODESSON selbst nicht organisiert. Stattdessen
wird SODESSON durch ein Datenverteilungsprotokoll (Data Distribution Protocol, DDP) ergänzt,
welches diese Aufgabe übernimmt.

SocioPath ist ein DDP für SODESSON, welches das Konzept des User-Centric Networking tech-
nisch realisiert. Die Kerneigenschaften von SocioPath sind die Umsetzung der drei Entwurfsziele
des User-Centric Networking: Selbstversorgung, Partitionstoleranz und Ressourcenbewusstsein.
Als Basis für die Selbstversorgung unterhält jedes Gerät eine Liste aller Geräte aller Nutzerkon-
takte und kann somit direkt mit ihnen kommunizieren. Jeder Nutzer kann die Rolle eines Topic
Owners einnehmen und seinen Kontakten Zugriffsrechte für das jeweilige Topic zuweisen. Be-
nachrichtigungen über Datenobjekte werden dann über die Geräte des Topic Owners geleitet
und von diesen an die Empfänger weitergeleitet. SocioPath setzt Partitionstoleranz über soge-
nannte Zustandsreparaturen um. Eine Zustandsreparatur ist ein Prozess, bei dem zwei Geräte
Informationen zu existierenden Datenobjekten austauschen und somit fehlende Datenobjekte
erkannt werden. Dies geschieht üblicherweise nachdem mindestens ein Gerät zeitweise nicht
für andere Geräte verfügbar war. Zur Erkennung der fehlenden Benachrichtigungen werden
diese in eine speichereffiziente Bloom Filter-Datenstruktur eingefügt. Zur weiteren Reduzierung
des Speicheraufwands merken sich Geräte paarweise den Zeitpunkt der letzten erfolgreichen
Zustandsreparatur.

SocioPath wurde entworfen, um verschiedene Weiterleitungsstrategien für Datenobjekte zu
unterstützen, da abhängig von den verfügbaren Ressourcen eine Strategie besser sein kann als
eine andere. Dadurch ist es SocioPath möglich, Ressourcenbewusstsein zu schaffen. Umgesetzt
wird jeweils eine Strategie als Decision Engine, welche das Verhalten von SocioPath an zuvor offen
gehaltenen Punkten im Protokollablauf fest definiert. Um dieses Konzept zu belegen, wurden die

v

drei verschiedenen Decision Engines Instant-to-All, Offload-First und Helping-Friends entworfen,
die sich auf jeweils unterschiedliche Ziele fokussieren: niedrige Verzögerungen, Kostensparsamkeit
oder hohe Privatsphäre innerhalb der geschlossenen Gruppe.

Das technische Konzept – bestehend aus SODESSON, SocioPath und Decision Engines – wurde
als Prototyp für den Overlay-Netzwerk-Simulator OverSim implementiert. In einer umfangreichen
Evaluierung von zwei Anwendungsszenarien und verschiedenen Geräteverteilungen hinsichtlich
Zustellverzögerungen und Kosten wurde belegt, dass durch die Kombination von direkten Zustel-
lungen und Zustandsreparaturen Datenobjekte mit Verzögerungen zugestellt wurden, die nahe
(< 1% Differenz) an einer theoretischen Untergrenze lagen. Durch die Verwendung von Offload-
First statt Instant-to-All konnten die Maximalkosten für ein Gerät bis zu 79,6% gesenkt werden.
Gleichzeitig wurde jedoch die Problematik der zentralen Aufgabe des Topic Owners sowohl durch
hohe Kosten als auch Verfügbarkeitsflaschenhals belegt.

Während also die grundlegende Funktionsweise der Idee des User-Centric Networking durch
simulative Modelle belegt wurde, stellt die Entlastung des Topic Owners ein wichtiges Thema für
zukünftige Forschungsarbeiten dar.

Contents

Zusammenfassung iii

List of Figures xiii

1 Introduction 1
1.1 Overview . 3

1.1.1 Basic Scenario . 3
1.1.2 Privacy Considerations . 6

1.2 Problem Statement . 7
1.3 User-Centric Networking . 8
1.4 Building Blocks for User-Centric Networking . 9

1.4.1 SODESSON Middleware . 9
1.4.2 SocioPath . 10
1.4.3 Trade-Offs in Designing Decision Engines 11

1.5 Outline . 14

2 Basics of User-to-User Communication 17
2.1 Model for User-to-User Communication . 18

2.1.1 Data Objects . 18
2.1.2 Closed Groups . 19
2.1.3 User Identifiers . 20
2.1.4 Personal Devices . 20
2.1.5 Network Communication . 21
2.1.6 Summary . 22

2.2 Third-Party Provider Schemes . 22
2.2.1 Data Object Delivery . 22
2.2.2 User Identifiers . 23
2.2.3 Advantages of Third-Party Providers . 25
2.2.4 Centralized Service Providers . 25
2.2.5 Federated Service Providers . 26
2.2.6 Structured P2P Overlay Networks . 28

2.3 Security and Privacy in U2U Communication . 31
2.3.1 Content Data Security . 31
2.3.2 Application Metadata Privacy . 32
2.3.3 Trust . 34

2.4 Comparison of Third-Party Provider Schemes . 38
2.4.1 Criteria for Comparison . 38
2.4.2 Centralized Service Provider . 41
2.4.3 Federated Service Providers . 42

vii

viii Contents

2.4.4 Structured P2P Overlay Networks . 43
2.4.5 Summary . 46

2.5 Related Work . 47
2.5.1 Metadata and Privacy . 47
2.5.2 Privacy-Aware Online Social Networks . 48
2.5.3 Friend-to-Friend Networks . 52

2.6 Conclusion . 52

3 User-Centric Networking 55
3.1 Self-sufficient U2U communication . 57

3.1.1 User-Centric Network (UCN) . 57
3.1.2 Data object delivery . 60

3.2 Available Resources in a UCN . 63
3.2.1 Device availability . 63
3.2.2 Device capability . 63
3.2.3 Example Device Classes . 64

3.3 Partition tolerance . 64
3.3.1 Example . 65

3.4 Resource Awareness . 65
3.4.1 Examples for resource-aware forwarding 66

3.5 Trust Dependencies . 68
3.5.1 Review from Chapter 2 . 68
3.5.2 Additional trust dependencies . 69
3.5.3 Helping subscribers . 69

3.6 Privacy Model . 70
3.6.1 Adversary Types . 71
3.6.2 Privacy Levels . 71

3.7 Related Work . 73
3.7.1 Other approaches to metadata privacy . 73
3.7.2 User-to-user communication via trusted devices 75
3.7.3 Other definitions of User-Centric Networking 76

3.8 Conclusion . 78

4 SODESSON Middleware 79
4.1 Introduction . 79
4.2 Basic Concept and Architecture . 80

4.2.1 Tasks of the DDP . 81
4.3 Publish/Subscribe Service . 82

4.3.1 Representing U2U Entities in SODESSON 82
4.3.2 Users vs. Applications . 83
4.3.3 Publishing a Data Object: Step by Step . 84

4.3.3.1 Step one: Binding an application to SODESSON 84
4.3.3.2 Step two: Creating a new topic 84

Contents ix

4.3.3.3 Step three: Subscribing to a topic 86
4.3.3.4 Step four: Publishing a new data object and delivering it to the

subscribers . 88
4.3.3.5 Summary . 92

4.3.4 Module: App Manager . 92
4.3.5 Module: Local Data Storage . 92
4.3.6 Retrieving a Data Object . 94
4.3.7 Updating and deleting a data object . 96

4.4 Contact management . 98
4.4.1 Data structure: Contact List . 98
4.4.2 Initial Setup . 99
4.4.3 Adding contacts . 99
4.4.4 Editing contacts . 100

4.5 Conclusion . 100

5 SocioPath: Protocol Overview 101
5.1 Overview . 101

5.1.1 Outline of the upcoming sections and chapters 103
5.2 Internal Data Structures . 104

5.2.1 Devices List . 104
5.2.2 Own Topics List . 105
5.2.3 Subscriptions List . 105

5.3 Fundamentals of Data Object Delivery . 106
5.3.1 Basic delivery process . 106
5.3.2 Maintenance Topics . 108
5.3.3 Encryption . 109

5.4 Protocol Flow Details . 109
5.4.1 General properties of messages . 109
5.4.2 Messages for Data Object Delivery . 110
5.4.3 Maintenance Topics . 112
5.4.4 CCV and Forward Flag . 115

5.5 Example Workflow of Data Object Delivery . 116
5.5.1 Creating a new topic . 116
5.5.2 Subscription . 118
5.5.3 Publishing a new data object . 119

5.6 Additional Maintenance . 120
5.6.1 Initial Setup . 120
5.6.2 Adding new devices . 120
5.6.3 Adding contacts . 121

5.7 Decoupling notifications and data object retrievals 123
5.7.1 Decoupling example . 125
5.7.2 Notifications . 127
5.7.3 Data object retrievals . 128

x Contents

5.7.4 Source management . 128
5.8 Conclusion . 130

6 Partition Tolerance in SocioPath 133
6.1 Consistency Demands for SocioPath . 134

6.1.1 Relevant Topics . 135
6.1.2 Positioning SocioPath in the CAP Model . 137

6.2 Set Reconciliation . 138
6.2.1 General Problem Definition . 138
6.2.2 Data Structures for Set Reconciliation . 138

6.2.2.1 Identifier List . 139
6.2.2.2 Bloom Filters . 140
6.2.2.3 Size comparison . 141

6.3 State Repairs . 141
6.3.1 Reactive vs. Periodic State Repairs . 142
6.3.2 Message Exchange . 143
6.3.3 Successful vs. Unsuccessful State Repairs 144
6.3.4 Improving space efficiency . 145
6.3.5 Example . 145

6.4 Conclusion . 148

7 SocioPath: Decision Engines 149
7.1 Overview on the Three Presented Decision Engines 150

7.1.1 Instant-to-All . 150
7.1.2 Offload-First . 151
7.1.3 Helping-Friends . 152

7.2 Device Roles, DE Events and DE Actions . 152
7.3 Notification Workflow . 153

7.3.1 Overview on DE events and DE actions . 153
7.3.2 Instant-to-All . 154
7.3.3 Offload-First . 155
7.3.4 Helping-Friends . 156

7.4 Data Object Retrieval Workflow . 159
7.4.1 Overview on DE events and DE actions . 161
7.4.2 Instant-to-All . 161
7.4.3 Offload-First and Helping-Friends . 161

7.5 State Repair Workflow . 162
7.5.1 Instant-to-All . 162
7.5.2 Offload-First . 163
7.5.3 Helping-Friends . 163

7.6 Overall Process . 164
7.7 Conclusion . 166

Contents xi

8 Evaluation 167
8.1 The Overlay Simulation Framework OverSim . 167

8.1.1 Own Contributions to OverSim . 168
8.1.2 Simplifications . 170

8.2 Simulation of User-Centric Networks . 170
8.2.1 Social Graph . 171
8.2.2 Device Classes . 172
8.2.3 Device Ownerships . 175
8.2.4 Applications . 175

8.3 Performance Metrics . 177
8.3.1 Delays . 177
8.3.2 Sending Costs . 179

8.4 Comparison of Results . 179
8.4.1 Delays . 179
8.4.2 Sending Costs . 180
8.4.3 Privacy . 180

8.5 Simulation Runs . 180
8.6 Private Instant Messaging . 180

8.6.1 Delays: Instant-to-All . 181
8.6.2 Delays: Offload-First . 184
8.6.3 Delays: Scalability . 186
8.6.4 Delays: Periodic State Repairs . 186
8.6.5 Costs: Instant-to-All . 187
8.6.6 Costs: Offload-First . 192
8.6.7 Storage Footprint . 193
8.6.8 Key results . 195

8.7 Group Instant Messaging . 196
8.7.1 Delays: Instant-to-All . 196
8.7.2 Delays: Offload-First . 199
8.7.3 Delays with Periodic State Repairs . 201
8.7.4 Costs: Instant-to-All . 201
8.7.5 Costs: Offload-First . 204
8.7.6 Storage Footprint . 205
8.7.7 Key Results . 206

8.8 Summary . 207

9 Conclusion and Perspectives 209
9.1 Results of This Thesis . 210
9.2 Perspectives . 213

A SODESSON Application Interface: Publish/Subscribe 215

B SODESSON Application Interface: Contact Management 221

xii Contents

C SocioPath – Additional Evaluation Results 223

Bibliography 227

List of Figures

1.1 Basic scenario of user-to-user communication . 5
1.2 Overview on the upcoming chapters . 15

2.1 Placement of Chapter 2 in the big picture . 17
2.2 Venn diagram: closed group for a data object δt . The red subsets belong to the

closed group, i.e topic owner of topic t, publisher of δt and subscribers of t . . 20
2.3 Overview: U2U communication scenario . 22
2.4 Overview: user devices and provider scheme . 24
2.5 CSP case study: Sharing a photo on Facebook . 27
2.6 FSP case study: Instant messaging via XMPP/Jabber 28
2.7 Basic Distributed Hash Table workflow . 30
2.8 Trust dependencies between group members and third-party provider 39

3.1 Placement of Chapter 3 in the big picture . 55
3.2 Example of two UCNs: Nδt

and Nεt
for data objects δt and εt respectively. . . 60

3.3 Self-sufficient U2U communication . 62
3.4 Partition tolerance in User-Centric Networking . 66
3.5 Three examples for forwarding policies . 67
3.6 Trust dependencies between group members in User-Centric Networking 69
3.7 Trust dependencies between group members in User-Centric Networking, with

helping subscribers . 70
3.8 Privacy levels . 73
3.9 Reducing metadata visibility by mix networks (left) and broadcast schemes (right) 75

4.1 Placement of Chapter 4 in the big picture . 79
4.2 SODESSON overview . 81
4.3 Publish/subscribe, step two: creating a topic and defining the closed group . . 86
4.4 Publish/subscribe, step three: subscription . 88
4.5 Publish/subscribe, step four: publishing a new data object 90
4.6 Notification about and retrieval of a data object 97

5.1 Placement of Chapter 5 in the big picture . 101
5.2 Integration of SocioPath into SODESSON . 104
5.3 Two possibilities for delivering a data object . 108
5.4 Two possibilities for the publishing device to notify the topic owner devices . . 116
5.5 Creating a new topic: Two possibilities for updating the topic owner devices . 117
5.6 Creating a new topic: a1 updates the other topic owner device a2 (blog example) 118
5.7 Subscribing: b1 sends a subscription request for "App1_Blog @ A" to the topic

owner devices, i.e. all of A’s devices . 120
5.8 Adding contact procedure . 123

xiii

xiv List of Figures

5.9 Sequence diagram for NOTIFY and RETRIEVE. Decision Engine events are denoted
in blue. 126

5.10 Topic owner announces new sources . 131

6.1 Placement of Chapter 6 in the big picture . 133
6.2 Set reconciliation between two generic instances 139
6.3 Example message exchanges for state repair . 146

7.1 Placement of Chapter 7 in the big picture . 149
7.2 Notification workflow . 154
7.3 Instant-to-All: Notifications after publishing a new data item 155
7.4 Offload-First: Notifications after publishing a new data item 157
7.5 Helping Friends . 158
7.6 Data object retrieval workflow . 160
7.7 Decision Engine workflow . 165

8.1 Placement of Chapter 8 in the big picture . 167
8.2 Implementation of SODESSON and SocioPath in OverSim. Grey modules were

provided by OverSim, colored modules are own contributions. 169
8.3 Social graph generation for nUsers = 5 . 172
8.4 Cumulative distribution functions for pareto-distributed lifetime and deadtime

phase lengths with the expected values from Table 8.2 (shape parameter α= 3) 174
8.5 Private and group instant messaging scenario for anchor user / topic owner A and

three contacts. 176
8.6 A publishing and a subscriber device with alternating lifetime (green) and deadtime

(red) phases. The important durations here are the baseline delay (grey, between
Á and Â) and the delivery delay (black, between Á and Ã) 177

8.7 Private instant messaging / Instant-to-All: delay CDFs with reactive state repairs 182
8.8 Private instant messaging / Offload-First: delay CDFs with reactive state repairs 185
8.9 Private instant messaging / Instant-to-All: delay CDFs with different user numbers 187
8.10 Private instant messaging / Offload-First: delay CDFs with periodic state repairs 188
8.11 Private Instant Messaging: Costs . 189
8.12 Private instant messaging: Local Data Storage size at the end of simulation . . 194
8.13 Group Instant Messaging: Delay CDFs (Instant-to-All, reactive states) 197
8.14 Group Instant Messaging: Delay CDFs (Offload-First, reactive states) 200
8.15 Group Instant Messaging: Delay CDFs (Offload-First, periodic state repairs) . . 202
8.16 Group Instant Messaging: Costs . 203
8.17 Group instant messaging: final Local Data Storage size 206

C.1 Private Instant Messaging: Delay CDFs (detail view for the first 5 seconds) . . 224
C.2 Group Instant Messaging: Delay CDFs (detail view for the first 5 seconds) . . . 225

Chapter 1

Introduction

The rise of everyday Internet usage has addressed different major human needs. One of these is
private user-to-user communication in a closed group (U2U communication): both personal and
business communication processes make use of services such as instant messaging, VoIP telephony
and sharing files with content types of all kinds from a spreadsheet to high definition videos.
Due to the strong demand for such services, companies have started to offer specific services,
such as Online Social Networks [33], live collaboration [44], telephony [103] or file exchange
and synchronization platforms [29]. Typically, providers for such services are Centralized Service
Providers (CSPs). A CSP is a third party that hosts its service(s) on highly available cloud web
servers which are completely under the CSP’s own administration. This approach enables a
CSP to bring convenient advantages to its customers, i.e. the users: ubiquitous access for and
synchronization across different personal devices as long as Internet access is available to the
personal devices. Additionally, this design has a lower complexity compared to other approaches:
for example, user data is addressed, storage and retrieved within a logically single storage, which
simplifies data management for the CSP.

Involvement of a third party in private communication may be undesirable by the users,
especially if the communication process is confidential. However, a third party is a necessary
means to service provision in a centralized networking paradigm. A common solution for the
customer to ensure content data confidentiality is end-to-end encryption. It prevents a third
party to read the content data two users exchange. Furthermore, connection metadata such as
IP addresses can be obfuscated by using proxies or an onion routing service such as Tor [25].
However, the users still have to give away metadata on the application layer to the CSP, i.e.
application metadata.

Application metadata includes two types of information: firstly, explicit metadata is required for
the service and to correctly establish communication processes. To this end, users have typically a
unique identifier so that they can be addressed by other users and by the CSP. These identifiers are
used to enable access control and deliver data objects to the correct users. Examples for explicit
metadata are email addresses, online social network profiles or entries in an address book that is
synchronized with a CSP. Trivially, if the CSP requires this metadata to establish a communication
process between user A and B, the CSP learns that user A and user B have some type of social

1

2 1 Introduction

connection. The fact that the CSP has this knowledge already affects both A’s and B’s privacy –
even if the data objects are encrypted and anonymization is ensured on a lower layer (e.g. via
Tor). As a remedy, A and B could pursue unlinkability by using multiple, short-lived identities.
However, this results in additional effort for the users and creating additional identities is often
not feasible, depending on the service: for example, WhatsApp [116] uses each user’s cellphone
number for identifying and addressing him. It is not possible for a user to generate an arbitrary
valid cellphone number. Another alternative is the use of broadcast schemes, making identities
not required anymore. This approach raises scalability issues for increasing numbers of users in
the service.

Secondly, implicit metadata accumulates at the CSP, given that each user has a unique, long-
lived identity. Examples are the date and time of a sent email or the frequency of visiting a
social network profile. Over time, the CSP can at least create profiles about inter-contact times
and contact durations between specific users. With further research via side channels (such as
performing a web search on an email address), the CSP might infer even more information about
a user.

Decentralization is one approach to alleviate these implications. Here, a service’s users’ content
data and metadata is not accumulated at one provider, but distributed across different providers
under different authoritative administrations. Therefore, it is not possible for a single provider to
gain complete information with regard to a given service. However, depending on the architecture
of the decentralized network, content data and application metadata might still accumulate on
one specific provider’s end, e.g. due to high popularity. Two common provider schemes for
decentralized U2U communication are the following.

• Federated service providers (FSPs): This approach is similar to classic email exchange.
Users are free to select their own FSP to store data on a highly available server. A user’s
identifier consists of an FSP-widely unique username and a globally unique FSP identifier.
Since two providers interoperate via a server-to-server protocol, it is possible for a user
at FSP X to address a user at FSP Y and vice-versa. Other FSPs, such as provider Z , do
not have to be involved in this process. The amount of user data visible to a specific FSP
depends on the distribution of users to FSPs. Possible influences for skewed distributions
are different FSPs’ popularities, usage charges or geographic locations. If the majority of
the overall data amount accumulates at one provider, a situation similar to a CSP arises. At
any rate, an FSP has a complete view on all its own users.

• Structured P2P overlay networks: This approach is based on Distributed Hash Tables (DHT)
and is a common solution for a distributed data storage without a centralized organizer
instance. All devices that access the storage, i.e. are able to read from and write to it,
share the overall load of stored data. Hence, each participating device is a small server
in regard to a specific subset of data. The participating devices form an overlay network
together. An overlay network is a virtual network which uses an underlay network – such
as the Internet – as a substrate for communication between two devices. While not users
per se are identified here, each user device in the overlay network has a unique NodeID.
Read / write requests regarding a specific data object are delegated to a responsible device.

1.1 Overview 3

To determine responsibility, a key is created for each data object. The key is mapped to
the same number space as the NodeIDs by a hash function, rendering the closest device
responsible in terms of a well-defined metric. Given that both NodeIDs and key hashes are
evenly distributed, the number of responsibilities is fairly balanced between the participating
devices. In order to tackle device unavailability, data objects also get replicated to devices
with the next-to-closest NodeIDs. This means that a user has neither influence nor clear
insight which devices store his data and who controls the responsible devices. If the DHT
protocol offers no protection against Sybil attacks [28], it is even possible for an attacker to
control complete parts of the key/NodeID number space.

Therefore, both types of decentralized provider schemes expose application metadata to third
parties. This affects the privacy of a closed group negatively, although the global view of a CSP is
prevented here.

This thesis presents and evaluates User-Centric Networking as a possibility to increase the
privacy of the members in a closed group. User-Centric Networking features so-called self-
sufficient U2U communication, where third party application providers are not involved in the
communication of a closed group. Hence, application metadata does not get exposed to third
parties and the closed group members’ privacy is improved.

1.1 Overview

The involvement of third-party providers in U2U communication is an inherent privacy problem.
This section discusses this problem on an overview level. First, a basic scenario for U2U com-
munication – including a closed group and one or multiple third-party providers – is described.
The assumptions made in this scenario are the basis for all considerations throughout this thesis.
Second, privacy considerations based on this scenario are made.

1.1.1 Basic Scenario

While different cases of U2U communication are conceivable (identifiable / anonymous sender,
well-known / unknown recipient group, etc.), this thesis assumes the following scenario: a U2U
communication process equals the sharing of a data object among the members of a closed group.
A data object conveys confidential information (only meant for the eyes of the group members)
and can be passed from one actor to another – be it a group member or a third party provider. The
creator of the data object is assumed to be not anonymous to the recipients. Instead, a linkability
from the data object to the creator exists: the creator’s identity is inherently tied to the data
object, which gives the data object additional information. For example, a message with the
content "Let’s meet for dinner!" is only useful to the reader when the creator is known to him.
Other conceivable cases for U2U communication, e.g. with an anonymous sender, shall not be
further regarded here.

The scenario follows the notions of topic-based publish/subscribe communication. Here, each
data object is associated to a topic. A topic is a specific semantic context, which is used for
grouping data objects with the same audience. For example, a number of photos are different

4 1 Introduction

data objects. These photos can be grouped into a single photo album which is to be shared with
the same users. In this case, the different data objects have the same topic.

Each topic has exactly one topic owner. The topic owner is one specific user that controls access
rights for the topic: He defines for the given topic which other users are allowed publishers and
which users are allowed subscribers. Allowed publishers are allowed to publish data objects,
i.e. to become a publisher of a data object with the given topic. Only allowed subscribers
have the option to indicate their interest in the given topic and become actual subscribers.
Furthermore, the topic owner is able to add new and remove existing allowed publishers and
allowed subscribers.

The sharing of a data object δt with topic t is framed by a first and a final step: First, one
allowed publisher for topic t creates and publishes δt – this allowed publisher for topic t becomes
the publisher of δt . Finally, δt gets delivered to the subscribers of topic t. The subscriber can
now consume δt . All data objects with the same topic t are meant to be delivered to the same set
of users, i.e. the subscribers of t.

Delivering a data object from the publisher to the subscribers requires additional steps in-
between. During these steps, third party provider(s) are involved as additional actors. Depending
on whether a centralized or decentralized provider scheme is used, there are one or multiple third
party providers involved. Furthermore, the user devices may be in separate physical networks
under different administrations.

Therefore, in this basic U2U communication scenario, two types of actors can be identified,
which will be discussed in the following:

• Members of the closed group for a data object δt

• Third party provider(s)

This basic scenario is also depicted in Figure 1.1.

Members of the closed group

A closed group is associated to one specific data object δt with topic t. The members of the closed
group assume one or multiple of the following roles:

• Topic owner of t

• Publisher of δt

• Subscribers of t

Note that this closed group is defined on a per-data-object basis, not a per-topic basis. A closed
group only includes those users that are actually meant to access the respective data object – here:
δt . The group does not include any other allowed publishers or allowed subscribers. Therefore,
another data object εt from another (allowed) publisher for topic t is associated to another closed
group, consisting of the topic owner of t, the publisher of εt and the subscribers of t.

The closed group for a data object δt is displayed in the blue background of Figure 1.1.

1.1 Overview 5

Topic Owner of topic t

Defining allowed publishers and
allowed subscribers

for topic t

δt

Publishing δt

Subscriber of
topic t

Third party
provider(s)

... ...optionaloptional

Subscribing to t

Delivering δt

δt

Closed group

for δt

Data object
δt with topic

t

Publisher of

data object δt

Figure 1.1: Basic scenario of user-to-user communication

Third party provider(s)

For the sake of simplicity, a single CSP is assumed here. The following considerations also apply
if multiple third-party providers are involved, i.e. a decentralized provider scheme is chosen.

The CSP has two tasks with regard to a data object δt . First, it has to adhere to the access rights
as defined by the topic owner, i.e. it must verify that δt was created by an allowed publisher and
it must deliver δt to no other user than the subscribers (access control). Second, it has to deliver
δt to all subscribers of t (data delivery).

Generally, access control can be defined in two ways: first, each user can have his unique user
identifier and his associated rights can be defined by a tuple {user identifier, rights}. Second,
both the users and the data object may have one or multiple attributes assigned. Only if a user’s
attributes and the data object’s attributes overlap, the user has the access rights that is bound to
a common attributes. One example for attribute-based access control is given [56]: "all Nurse
Practitioners in the Cardiology Department can View the Medical Records of Heart Patients".

While attribute-based access control is suitable for a potentially unlimited user group that is not
further specified (besides their attributes), the regarded U2U communication scenario is different.
The topic owner selects the allowed publishers and allowed subscribers from a limited pool of
users known to him, i.e. his contacts. He makes his selection made via user identifiers. Thus, in
order to enforce access only for the closed group, the user identifiers are revealed to the CSP. First,
when the topic owner of topic t defines the access rights, he passes a list of allowed publishers
and allowed subscribers to the CSP. This list must consist of unique user IDs. Whenever a user
interacts with the CSP in order to publish a data object δt , this user has to pass his user ID to the
CSP. In turn, the CSP refers to the list of allowed publishers and checks if this user is on it. The
same concept applies to a user that tries to subscribe to t at the CSP: the CSP checks whether this

6 1 Introduction

user is an allowed subscriber. Second, in order to deliver δt to all subscribers, the CSP needs to
refer to the list of actual subscribers of t and deliver δt to these and only these.

Therefore, the CSP requires the users’ identification to fully comply to the group members’
expectations: to deliver δt inside the closed group after δt was published by an allowed publisher.

1.1.2 Privacy Considerations

By gaining knowledge about the involved users’ identities, a third-party provider gains information
that goes beyond the access control and data delivery tasks: the provider learns that there is a
social relationship between the publisher and the topic owner, as well as the subscribers and the
topic owner. This is an obvious conclusion, since the topic owner defined access rights for the
corresponding users with regard to data objects that are not public, but meant to be shared inside
the closed group only.

The provider might also infer relationships between the publisher and the subscribers, depending
on the inter-publishing times and publishers of data objects with the same topic. For example, if
two allowed publishers publish alternately, this might indicate a dialog where messages are sent
back and forth.

Note that the provider does not even need to be able to read the content data of the data
object (e.g. due to encryption) to draw these conclusions. Furthermore, it is also possible to draw
conclusions on the content data by regarding metadata – here: the identities of the communicating
parties – only. The Electronic Frontier Foundation (EFF) presents some graphic examples in [32]:

• "They know you called the suicide prevention hotline from the Golden Gate
Bridge. But the topic of the call remains a secret."

• "They know you got an email from an HIV testing service, then called your doctor,
then visited an HIV support group website in the same hour. But they don’t know
what was in the email or what you talked about on the phone."

• "They know you called a gynecologist, spoke for a half hour, and then searched
online for the local abortion clinic’s number later that day. But nobody knows
what you spoke about."

Therefore, each identifiable member of a closed group needs to trust each involved third-
party provider to respect the member’s privacy, since their privacy cannot be secured in the U2U
communication scenario.

There exist privacy enhancing techniques (PETs) that can achieve third-party anonymity, i.e.
keep the identity of publisher or subscriber hidden from a given third-party and thus hide their
connection. Usually, these are used for obfuscating connection metadata. For example, Tor [25]
inserts intermediary hops between source and destination. The route via these hops is defined
by the source, which chooses intermediary nodes by its own from a large pool of candidate
nodes. To enable such a system for application metadata, however, a large number of application
providers must be willing to participate in such a system, offer themselves as intermediary hops
and make themselves available to the publisher for choice. Participating in and maintaining such

1.2 Problem Statement 7

an extra system results in a larger effort for the third-party providers, as well as the publisher.
Generally, the motivation for a third-party provider in enabling application metadata anonymity
is questionable, especially if its business model is built on analyzing user behavior, user interests,
etc.

As an alternative to these considerations, third-party providers could be removed altogether,
which is the idea pursued in User-Centric Networking.

1.2 Problem Statement

Based on the considerations above, the following problem statement is made:

U2U communication is about sharing a data object within a closed group. This data object is only
meant for the eyes of the group members. Unlike other scenarios, e.g. file sharing, the publisher
is not anonymous to the subscribers. Instead, there is an inherent association between the data
object’s content and its publisher’s identity. Additionally, due to the data object’s confidentiality,
the subscribers must be identifiable in order to discern them from users that must not access the
data object.

Due to the identifiability of publisher and subscribers, the closed group members’ privacy is
threatened as soon as third-party providers are involved in access control and data object delivery:
the closed group member’s identities and their communication patterns get exposed to these
providers via application metadata.

While there exist privacy enhancing techniques (PETs) which aim for third-party anonymity,
these are hardly applicable for application metadata. For example, there exist browser plugins that
end-to-end encrypt data objects before uploading them to Facebook (e.g. [50], [70]). However,
the users still except that the data objects get delivered to the correct users. Thus, Facebook still
needs to make a connection between users, regardless of the encrypted data content. A system
which enable application metadata privacy would require the cooperation of application metadata
providers and result in larger effort for both the users and the third-party providers. It is unlikely
that a third-party provider has an interest in implementing PETs for application metadata.

Since third-party providers present themselves as obstacles for the users in these consideration,
the idea is to simply remove third-party providers altogether. This thesis investigates User-
Centric Networking as an approach to increase the privacy of closed group members in U2U
communication. User-Centric Networking removes third-party providers from the tasks of access
control and data object delivery and gives these tasks to the group members themselves.

The scope of User-Centric Networking is to enable the sharing of data objects of all kinds in
relatively small groups (up to 100 users). Such data objects may range from an instant message
to a file of multiple gigabytes. User-Centric Networking is application-agnostic: both private data
objects (photos, videos, . . .) as well as enterprise data objects (presentation slides, spread sheets,
. . .) are possible.

8 1 Introduction

1.3 User-Centric Networking

User-Centric Networking (first presented and refined in publications [6] [38] [51] [52])1 is a
provider scheme for U2U communication which aims at increasing the group members’ privacy.
Here, third-party providers are not involved in the communication of a closed group at all. Instead,
access control and data object delivery are performed by the group members themselves. As a
result, application metadata does not get exposed to third parties and the closed group members’
privacy is improved.

The group members still have to trust each other here: each group member must keep the
data object confidential. Also, each group member must not expose any known group members’
identities and therefore respect their privacy. It is argued that if one group member has access to
the data object’s confidential contents or the identitity of other group members is revealed to him
in the first place, he could give it away regardless of any provider scheme. Detection of such a
behavior is outside of this thesis’ scope.

Each closed group is associated to a specific data object – general trust in other users outside of
the closed group, such as friends, family or work colleagues, is not required here.

User-Centric Networking assumes that modern personal devices controlled by the closed group
members, are powerful enough to be provider devices, i.e. deliver data objects and handle access
control by themselves. Therefore, the devices of a closed group’s members are not only used
to publish / consume a data object, but also act as provider devices for storing and delivering
data objects to subscriber devices. All types of devices that are at a user’s disposal can be
leveraged here – ranging from embedded systems over smartphones up to PCs and small personal
servers, e.g. network-attached storages. However, personal devices are heterogenous in terms of
resourcefulness and availability. User-Centric Networking aims to take this heterogeneity into
account.

User-Centric Networking has the following three main targets:

• Increased application metadata privacy by self-sufficiency: All storage of data objects
for a closed group is performed by the group members’ personal devices. Access control
and data delivery between publisher and subscribers are performed by devices controlled
by users of the respective closed group only. Third-party providers are completely excluded
from this approach.

Only users that are meant to access a specific data object are involved in the delivery of
said data object from publisher to subscribers – no third parties, even if they are otherwise
known and trusted friends of any group member.

This type of U2U communication is called self-sufficient U2U communication or self-sufficiency.
By completely removing third-party providers from U2U communication, neither content
data nor application metadata is visible to third parties anymore.

• Partition tolerance: Data delivery in User-Centric Networking relies on personal devices.
Personal devices can lack Internet connectivity at times, be moved from one local network

1Besides the definition used here, the term "User-Centric Networking" is overloaded by different definitions throughout
the literature. See Section 3.7.3 for details.

1.4 Building Blocks for User-Centric Networking 9

to the other or perform opportunistic networking via ad-hoc or delay-tolerant networks
with other devices. Such diverse connectivity situations can result in disjunct partitions,
where some devices are able to communicate with each other while other devices are not
available.

Devices within the same partition should be able to exchange data objects, regardless of any
devices of the same or other users outside that partition. For example, this would enable
U2U communication for two users on an airplane, without any Internet connectivity, but
with their local devices communicating directly via Bluetooth or WiFi Direct. This local
ad-hoc network forms a partition on its own.

Data objects should also be transferable from one partition to the other. If two partitions
merge (e.g. a disrupted link between two network becomes functional again), the previously
published data objects can now be delivered to the remaining subscriber devices. Another
possibility is a mobile topic owner device which carries a data object from network A to
network B, comparable to a delay-tolerant pocket switched network.

• Resource-aware leverage of personal devices: As mentioned above, personal devices are
heterogenous in terms of resourcefulness and availability. User-Centric Networking takes
these differences into account when coordinating access control and data delivery across
the devices. As a result, the combined resources of all group members’ devices can and
should be used as provider devices. If possible, provider tasks shall mainly be performed by
devices with higher availability and capabilities, such as storage, fast and cheap network
connectivity, etc.

The sum of all devices controlled by the members of a closed group is the closed group’s
device pool. The combined resources of the device pool can and should be used for provider
tasks, regardless on which specific device each user publishes data objects or consumes
data objects of subscribed topics.

1.4 Building Blocks for User-Centric Networking

The core of this thesis are two major building blocks for enabling User-Centric Networking on
personal devices: First, SODESSON – a generic service for U2U communication which runs
as a middleware on each personal device and accepts data objects from applications. Second,
SocioPath – a self-sufficient Data Distribution Protocol (DDP) which complements SODESSON
by handling the communication. SocioPath is both partition-tolerant and resource-aware and
therefore fulfills the targets of User-Centric Networking.

1.4.1 SODESSON Middleware

SODESSON provides a topic-based publish/subscribe service to applications running on the same
personal device. With a small set of methods, an application can publish data objects for topics or
subscribe to topics that were previously set up by a topic owner. SODESSON makes a best effort
to deliver that data object to the devices running the subscribed applications.

10 1 Introduction

SODESSON is not only suitable for User-Centric Networking, but is instead a generic middle-
ware for U2U communication. It handles applications, data objects and contacts on a topic/user-
addressed level and is agnostic of any devices. It needs to be complemented with a Data Distribu-
tion Protocol (DDP) which handles all inter-device communication.

SODESSON fulfills the following requirements:

• Application interface: The publish/subscribe service needs to offer a unified interface for
the applications to send their data objects to and receive data objects from the network.
Multiple applications may run at the same time on one device, which also requires a
multiplexing mechanism. Additionally, the interface shall allow a topic owner to maintain
the allowed publishers/allowed subscribers for each topic he owns. Likewise, users shall be
able to subscribe to topics via this interface.

• Abstraction from devices: One aspect of User-Centric Networking is the assumption that
each user can have multiple devices. An application should not have to care about addressing
the "correct" device (i.e. the one which a user controls to generate and consume application
data), but instead have an abstraction on the user level. In SODESSON, an application only
addresses topics. Devices are never addressed by applications.

• Contact management: A topic owner selects the allowed publishers and allowed sub-
scribers for a topic from a specific set of users. In SODESSON, this specific set of users is the
topic owner’s contact list. This contact list should be independent from the applications and
consistent across all devices of the same user. Adding other users to the contact list requires
a procedure where two users can agree on being mutual contacts, including exchanging
required information for addressing each other.

1.4.2 SocioPath

SocioPath is a self-sufficient Data Distribution Protocol (DDP) which complements SODESSON. It
handles all inter-device communication, i.e. accepting data objects from a publishing device and
delivering data objects to subscriber devices. Additionally, SocioPath verifies the respective access
rights, i.e. ensures that only data objects from allowed publishers get delivered and that only
subscription requests from allowed subscribers are accepted.

SocioPath tackles the three main targets of User-Centric Networking – self-sufficiency, partition
tolerance and resource awareness – as follows:

Self-sufficiency

In SocioPath, only the closed group’s device pool are provider devices for a given data object
– there are no third-party providers. The lists of allowed publishers, allowed subscribers and
subscribers for a given topic are stored on the topic owner’s devices only. Each published data
object has to pass a device of the topic owner’s device first, since only the topic owner’s devices
know which devices are subscriber devices. Therefore, the topic owner has full control over
defining the allowed publishers and allowed subscribers of the respective topic.

1.4 Building Blocks for User-Centric Networking 11

Partition tolerance

SocioPath deals with intermittent unavailabilities of personal devices. As long as two devices are
available for each other, they exchange their state at certain times and repair possible inconsisten-
cies. Until the repair, each device works on its own local view and fully participates in SocioPath
communication: state inconsistencies are not seen as fatal, but accepted as a regular aspect.

This makes SocioPath tolerant to partitions. For example, if two devices a and b only communi-
cate in a local network (Partition 1), but only a later gains Internet access and can communicate
with another device c (Partition 2), c can gain the same state as a and b, even with b not being
part of Partition 2.

Resource-awareness

SocioPath has two different approaches to deal with device heterogeneity in User-Centric Net-
working.

• Decoupling notifications and data object retrievals: If SocioPath would select provider
devices with low resources and would forward a high number of large data objects to these
provider devices in an unsolicited way, this might result in high costs for the user who
controls that device. The same applies to a subscriber, if a provider device delivers data
objects to a subscriber’s device with low resources. In order to prevent such situations and
still enable SODESSON’s publish/subscribe service, SocioPath decouples into two steps:
published data objects which exceed a certain size are at first indicated by a small notification
with metadata about the object (topic, size, etc.). Such a notification is delivered to each
subscriber device. Based on the metadata in this notification, either the user or the device
itself (see below: Decision Engines) can decide whether to retrieve the actual data object.

• Exchangeable Decision Engines: There are multiple possibilities how notifications and
data objects are forwarded inside a given device pool. Depending on the device distribution
in regard to resources, availability and the number of devices per publisher, topic owner and
subscribers, one strategy might be more preferable than the other. Therefore, the SocioPath
is not a "hardwired" protocol, but instead defines a set of specific events – from publishing
a data object via access control by the topic owner devices to notifying subscriber devices
about / letting subscriber devices retrieve a data object. SocioPath is then complemented
by a Decision Engine which implements a strategy for handling these events. Different
Decision Engines handle events differently and therefore influence SocioPath’s behavior.

1.4.3 Trade-Offs in Designing Decision Engines

When the event handling strategy for a Decision Engine in SocioPath is defined, there can be
different preferable goals, which unfortunately are mutually exclusive.

For example, greedy automatic retrieval of even large data objects results in short access time
for the subscriber, if it is already downloaded to the device by the time the subscriber wishes to
consume the data object on that device. However, such a strategy may result in high resource
costs, e.g. when downloading gigabytes of data objects via a metered connection. On the other

12 1 Introduction

hand, lazy retrieval which always has to be user-demanded gives the user full control over the
costs, but may result in higher access delays for him.

Therefore, each Decision Engine must find a trade-off between the following three goals:

• Resource conservation

• Low delays

• Group members’ privacy

Goal: Resource conservation

User-controlled devices are very heterogenous in terms of computing power and availability.
According to [41], "8 in 10 internet users now have a smartphone and almost half own a tablet." A
smartphone has at least limited Internet access most of the time, but bandwidths provided by
cellular networks fluctuate with user mobility. Additionally, mobile connectivity is often metered,
i.e. paid by consumed megabytes. Finally, battery power is limited for mobile devices. Being
provider devices – i.e. storing large data objects and delivering them to other devices – can be
unacceptable for the users of limited devices, which is why resource conservation is an important
aspect in User-Centric Networking.

Goal: Low delivery delays

In contrast to highly-available cloud servers, user-controlled devices also suffer from frequent
temporary unavailability (churn) [73]: Smartphones get switched off at night, laptops get sent
into sleep mode and mobile reception breaks away when driving through a tunnel. If a data object
is only stored on such a device, it is not accessible from other devices during offline times. Having
to wait for the storing device to return online, leads to a high delay, i.e. the time a receiver’s device
spends online until the data object reaches it. High delays can result in an unacceptable user
experience and therefore render User-Centric Networking an unhelpful alternative to third-party
providers. Hence, low delays are an important goal in User-Centric Networking.

Goal: Group members’ privacy

Application metadata privacy is not only relevant when third-party providers are involved. It is
still an issue in User-Centric Networking, even though on a smaller scale, i.e. within a closed
group.

Given a closed group of three users – A, B and C . Only A publishes data objects, B and C
are subscribers. Assume that B has a very resourceful device which is suitable for storing the
published data objects and delivering them to C ’s device. In this case, B learns that C is also a
recipient of A’s data objects. Depending on the application use-case, this might not be wanted by
A or B2.

This translates to the following real life analogy: If a confidential piece of information is to be
given from a sender to a closed recipient group, there is a difference if the sender speaks to the

2Detailed considerations about trust dependencies and possible adversary types here will be made in Chapter 3.

1.4 Building Blocks for User-Centric Networking 13

whole group at the same time in a single room or to each recipient one-by-one, urging them to
keep the conversation confidential. In the former case, every recipient also knows who the other
recipients are. In the latter case, they do not. Depending on the use case, this distinction can be
important. Translated to self-sufficiency, the subset of devices that is provider device for other
subscribers is key to different levels of privacy.

Therefore, the subset of provider devices within the device pool, i.e. devices that store a data
object and deliver it to the subscribers is key to different levels of group members’ privacy in
User-Centric Networking.

Mutual exclusiveness of the three goals

• Privacy vs. resource conservation: A higher level of privacy is reached if the topic owner
sends a given data object it to all subscribers via his own devices only instead of letting
subscribers’ devices help others with the delivery. This way, the topic owner prevents that
these subscribers gain knowledge about which other users are also subscribers. However,
some subscribers might have more resourceful devices than the topic owner. In this case,
help with the distribution would be desirable for the topic owner in terms of resource
conservation. If the topic owner wants to prevent this for privacy reasons, he has to rely on
his own device resources.

• High privacy vs. low delays: A lower delay means to deliver a data object to as many
subscriber devices within the User-Centric Network as soon as possible: if one of these
devices becomes unavailable, others can still be provider devices. As in the first case,
subscribers may help other subscribers here. However, the user who controls a provider
device can learn which other users are subscribers.

• Low delays vs. resource conservation: As described in the introductory example of Section
1.4.3, a lower delay can be reached by delivering a data object to as many subscriber devices
as soon as possible – regardless of any resource constraints. This includes limited devices
for which storing, delivering or receiving large objects can be unacceptable.

Therefore, the provider device selection needs to be carefully weighed with regard to these
three mutually exclusive goals, depending on the application use-case – a trade-off needs to be
found. For example, for small instant messages, application metadata privacy might be more
important than resource conservation.

Decision Engines

This thesis offers three different strategies to deal with the presented trade-off requirements:
Instant to All, Offload First and Helping Friends. Each Decision Engine focuses on two of the
three goals, as displayed in Table 1.1.

14 1 Introduction

Table 1.1: Overview on the Decision Engines

High privacy Low delays Resource conservation

Instant-to-All 3 3 7

Offload-First 3 7 3

Helping-Friends 7 3 3

1.5 Outline

This thesis will be structured as displayed in Figure 1.2: Chapters 2 and 3 will discuss the scenario
of U2U communication. As such, Chapter 2 will cover the basics for U2U communication that
includes third-party providers. To this end, it will present a model for U2U communication and
three common third-party provider schemes. For these provider schemes, a trust dependency
analysis will be made. Also, in anticipation of Chapter 3, the existing provider schemes will be
compared with regard to design goals in User-Centric Networking.

Chapter 3 presents User-Centric Networking as a new provider scheme concept. It presents a
formal definition for a User-Centric Network and discusses the three design goals self-sufficiency,
partition tolerance and resource awareness. The trust dependency analysis from Chapter 2 is
also done for User-Centric Networking here. Finally, a privacy model based on the previous
considerations is presented.

Chapters 4 to 7 will present a concept to technically realize User-Centric Networking. This
concept consists of two major parts: first, SODESSON (Chapter 4), a middleware for U2U
communication which offers a topic-based publish/subscribe service for U2U applications will
be presented. The main component is its application interface which will be explained in detail,
including an step-by-step example. The second part is SocioPath, a self-sufficient Data Distribution
Protocol for SODESSON. The discussion of SocioPath is split across three chapters, each of them
discussing one specific aspect: overview on the self-sufficient protocol (Chapter 5), partition
tolerance with the help of state repairs (Chapter 6) and Decision Engines (Chapter 7).

In Chapter 8, this realization of User-Centric Networking is evaluated as an implementation of
SODESSON/SocioPath for the overlay simulation framework OverSim [7]. Here, two communica-
tion scenarios with regard to delivery delays and costs will be evaluated. Two decision engines –
Instant-to-All and Offload-First – are compared.

Finally, a conclusion with perspectives on possible future work will close this thesis.

1.5 Outline 15

Figure 1.2: Overview on the upcoming chapters

Chapter 2

Basics of User-to-User Communication

Figure 2.1: Placement of Chapter 2 in the big picture

This chapter covers the state-of-the-art in U2U communication, where third-party providers are
involved. The scope of this chapter is two-fold: on the one hand, it discusses the background and
related work, specifically with regard to three third-party provider schemes: Centralized Service
Provider (CSP), Federated Service Providers (FSPs) and providers that are peers in structured P2P
overlay networks. On the other hand, it presents the scenario of U2U communication and presents

17

18 2 Basics of User-to-User Communication

an analysis of trust dependencies between the members of a closed group and the third-party
provider(s). Also, the three schemes are compared with regard to criteria derived from the
identified trust dependencies.

2.1 Model for User-to-User Communication

As introduced in Section 1.1.1, a U2U communication process equals the sharing of a data object
among the members of a closed group. These two terms shall be discussed in more detail first.
Afterwards it shall be discussed how the members use their device and how third partys are
involved in sharing a data object. All aspects put together result in a novel, topic owner-based
model to U2U communication which is used throughout this thesis.

2.1.1 Data Objects

A data object – as it will be understood throughout this thesis – is broadly defined as a generic
container for human-readable information. This container can be interpreted by a specific
application, running on a human user’s personal device, in a way that the application can
extract data object’s content as the information and present it to the user for consumption. For
example, a data object can be a self-contained file – ranging in size from a few bytes to multiple
gigabytes – or be a part of an information stream, together with many other data objects. An
example for the latter would be a chat session which consists of many single instant messages,
with each instant message being a single data object to be interpreted by an instant messaging
application and displayed to the user.

For the U2U communication scenario that will be regarded in this thesis, three central properties
can be identified for each data object:

The first property is confidentiality: each data object conveys information that is not meant
for public consumption, but only meant "for the eyes" of the members of an a-priori defined group
of users, i.e. the closed group, which will be discussed below. Exposing a data object’s content to
anyone outside of the closed group is undesirable.

The second property is linkability: it is assumed that the identity of each data object’s creator
is inherently tied to the data object itself, thus giving the information inside the data object
additional semantic. One example in Section 1.1.1 was a message with the content "Let’s meet
for dinner!", which is only useful to the reader when the original creator of the message is known
to him. This is a contrast to the classic information retrieval scenario, where only the content of
the data object is relevant but not its creator (e.g. a Wikipedia article).

The third property is delay-tolerance: it is assumed that a data object has no real time demands,
in the sense that it is obsolete after a few milliseconds or seconds. One example for such a out-
of-scope data object would be a voice-over-IP telephony packet. This is a necessary restriction
for the scenario due to the way how User-Centric Networking reaches partition tolerance: here,
consistency between devices is a secondary aspect and a delivery of data objects at a later time is
acceptable. This issue will be discussed in Detail in Chapter 3.

2.1 Model for User-to-User Communication 19

2.1.2 Closed Groups

Each data object is associated to a topic. A topic is a specific semantic context, which is used for
grouping data objects with the same audience. For example, a number of photos are different
data objects. These photos can be grouped into a single photo album which is to be shared with
the same users. In this case, the different data objects have the same topic.

Each topic has exactly one topic owner. The topic owner is one specific user that controls
access rights for the topic: He selects for the given topic which other users are allowed publishers
and which users are allowed subscribers. This selection is made from a universe of users – the
topic owner’s contacts. Two contacts are two users that have agreed to be potential partners for
U2U communication. They are assumed to have mutually verified their identity earlier.

Allowed publishers are allowed to publish data objects, i.e. to become a publisher of a data
object with the given topic. Only allowed subscribers have the option to indicate their interest in
the given topic and become actual subscribers.

A closed group is associated to one specific data object δt with topic t. The members of the
closed group assume one or multiple of the following roles:

• Topic owner of t

• Publisher of δt

• Subscribers of t

Figure 2.2 displays the relationships of these roles as a Venn diagram [88].
A closed group includes only those users that are actually meant to access the respective data

object. Given that an allowed publisher publishes the data object δt with topic t, δt is meant to
be distributed to all subscribers of t. Additionally, the topic owner of t may access δt . The group
does not include any other allowed publishers or allowed subscribers. Another data object εt

from another (allowed) publisher for topic t is associated to another closed group, consisting of
the topic owner of t, the publisher of εt and the subscribers of t. Therefore, each closed group is
defined on a per-data-object basis, not a per-topic basis.

Generally, there is no limit of how many users can be in a closed group. However, each closed
group only consists of contacts of one single user (namely the topic owner) and mutual identity
verification is an assumed prerequisite for being contacts, therefore a social relationship between
the topic owner and each of his contacts is assumed. Examples here are friends, family, co-workers,
etc. of the topic owner. Additionally, each closed group is associated to one specific data object – a
user may share other data objects with his friends than he shares with his co-workers. Therefore,
it is assumed that closed groups are very limited in size. A possible orientation value for an upper
value is the median for Facebook friends of 99, as measured by [113].

Note the central role of the topic owner in a closed group, since all members are contacts of
the topic owner. The publisher and a subscriber are not necessarily contacts. They may not even
know each other. Also, the publisher is not necessarily aware which users are subscribers. A
subscriber is not necessarily aware which other users are also subscribers. However, the identity
of the publisher is exposed to the subscribers, due to each data object’s property of linkability1.

1A typical scenario in U2U communication where this situation occurs are comment sections. For example, a Facebook
user A can comment on a post by user B. Both the post and the comment are visible to B and B’s contacts (C , D,

20 2 Basics of User-to-User Communication

Figure 2.2: Venn diagram: closed group for a data object δt . The red subsets belong to the closed
group, i.e topic owner of topic t, publisher of δt and subscribers of t

2.1.3 User Identifiers

For a topic owner and a topic’s subscribers, there needs to be a way to identify and select specific
users:

• Topic owner: must be able to select a subset of users from his contacts to define allowed
publishers and allowed subscribers for a topic he owns.

• Subscriber: link a received data object to its publisher

This can be solved with unique user identifiers. For example, two users that have agreed to
be contacts can exchange their identifiers during the contact making procedure. The process for a
topic owner to e.g. defining allowed publishers is then making a selection from the known user
identifiers.

2.1.4 Personal Devices

Earlier, a data object was defined as a container that "can be interpreted by a specific application,
running on a human user’s personal device". These personal devices shall now be discussed in
more detail.

. . .). However, if B’s contact list is not necessarily visible to B’s contacts, A does not know who else besides B can
read his comment. Neither knows C that also D can read the comment, etc. Still, at least all these users can see
that some user "A" has created the comment – whether they know A or not.

2.1 Model for User-to-User Communication 21

Each user has at least one device. Each device has exactly one user. Personal devices can be
heterogeneous in terms of their resources (availability and capability, as will be discussed later in
Section 3.2). They can range from smartwatches over smartphones up to PCs and small home
servers (e.g. network-attached storages).

Different devices can have different applications running which are used for publishing data
objects and consuming data objects, if the user is a subscriber.

With regard to later security and privacy considerations, each device is assumed to be fully
trusted and controlled by its user. This means, that there are no backdoors, malware or any
operating system features that might compromise the users’ security or privacy. While this is an
optimistic assumption for e.g. modern smartphone operating systems, such considerations are
out of scope for this thesis and pose an orthogonal problem that remains to be solved.

Shared devices

For the sake of simplicity, it is assumed that each device is controlled by exactly one user. However,
all considerations would be applicable for devices shared between users A, B, C , . . . as well. Such
a device would require the possibility to create different user profiles, letting one user log in at
a time. While user A is logged in at that device, it is unavailable for the remaining users. This
matches the situation where each remaining user would have a dedicated device which is currently
switched off. As soon as user B logs in, A would "switch his device off". Such a multiplexing
mechanism requires additional effort on the device’s operation system layer which is not regarded
here. Instead, multiple devices would be assumed.

2.1.5 Network Communication

In order to deliver a data object from a publishing device to a subscriber device, these devices
need means to communicate with each other.

Two types of third parties can be involved here: application providers and infrastructure
providers.

Third-party application providers are the relevant providers for this thesis. They operate on a
"data object-aware" level, i.e. accept data objects from publishing devices and can store them
intermittently or permanently and deliver them to subscriber devices. Additionally, they provide
access control, i.e. let the topic owner define which user may be allowed publishers/allowed
subscribers for a given topic.

Third-party infrastructure providers have the task to transport opaque bitstreams from one
device to another, e.g. from publishing device to a server of the third-party application provider.
They operate on a "data object-agnostic" level. Infrastructure providers can be local network
administrators, consumer-level internet access providers up to tier 1 providers.

In the scope of this thesis – and specifically this chapter – are third-party application providers,
not infrastructure providers. When third-party providers are mentioned, application providers
are meant unless explicitly stated otherwise.

22 2 Basics of User-to-User Communication

2.1.6 Summary

Figure 2.3 summarizes the scenario that was described in this section, by putting closed groups,
data object, device, application provider and infrastructure providers together.

Delivering δt

Topic Owner of topic t

Defining allowed publishers and
allowed subscribers

for topic t

Publishing δt

Subscriber of
topic t

Subscribing to t

Closed group

for δt

Publisher of

data object δt

Third party
application

provider

Third party
infrastructure

provider(s)

Consuming δt

δt

δt

Figure 2.3: Overview: U2U communication scenario

2.2 Third-Party Provider Schemes

A major problem in U2U communication deals with the question how data objects are delivered
from the publishing device to the devices of the subscribers. In the state of the art, this problem
is solved with the help of third-party providers. This section presents different provider schemes
which involve one or multiple third-party providers. Each of them handles data delivery from the
publishing device to the subscriber devices.

2.2.1 Data Object Delivery

Section 1.1.1 described the basic scenario in U2U communication: here, each data object gets
created for a specific topic by a specific user – the publisher. The data object shall now be delivered
to a specific set of target users – the subscribers.

2.2 Third-Party Provider Schemes 23

The creation of the data object is carried out by an application which runs on one device of
the publisher – the publishing device. It finally gets delivered to one or multiple devices of each
subscriber, i.e. the subscriber devices.

Although publishing device and subscriber device could communicate directly, involving third-
party providers constitutes the state of the art in U2U communication. For this process – getting a
data object from the publishing device to a subscriber device, including at least one third-party
provider – the following workflow is regarded:

(1) The publishing device forwards the data object to a specific provider device a of a third-party
provider A.

(2) (Only for decentralized provider schemes; optional) If a decentralized provider scheme is
used, multiple third-party providers can be involved. In this case, the provider device a
forwards the data object to one or multiple provider device(s) b, c, . . . of other third-party
providers B, C , . . . This step might be repeated by B, C , . . . forwarding the data object to
other providers. How this step is executed, depends on the decentralized provider scheme.

(3) A provider device which holds the data object (i.e. by forwarding from the publishing
device or another provider device) subscriber device delivers the data object.

Note that publishing device and subscriber device do not communicate directly with each other.
Furthermore, a copy of the data object is stored on the provider device outside of the control of
any personal device.

Figure 2.4 depicts the process of data object delivery.

2.2.2 User Identifiers

In order to perform the described tasks, third-party providers need an understanding of the
respective access rights, as defined by the topic owner. Since the topic owner operates on limited
pool of users known to him, i.e. his contacts, he makes his selection of allowed publishers and
allowed subscribers via user identifiers.

Given that the topic owner passes user identifiers directly to the third-party provider (possible
alternatives will be discussed in Section 2.3.2), the following checks have to take place by the
third-party provider:

• Allowed publishers: When a publishing device forwards the data object to a third-party
provider, the corresponding publisher must have the rights to do so as given by the topic
owner. The provider scheme must provide a mechanism for the topic owner to define allowed
publishers. Additionally, the provider scheme must provide a mechanism where at least
one provider is responsible for checking the rights of the publisher before data objects get
delivered to the subscribers.

• Allowed subscribers: In order for a user to successfully subscribe to a specific topic, he
must have the rights to do so as given by the topic owner. The provider scheme must provide
a mechanism for the topic owner to define allowed publishers. Additionally, the provider

24 2 Basics of User-to-User Communication

Figure 2.4: Overview: user devices and provider scheme

scheme must provide a mechanism where at least one provider is responsible for checking
the rights of the user that placed the subscription request.

• Subscriptions: In order to deliver a data object to the correct target users (i.e. the sub-
scribers) and only these, the third-party provider needs to know the mapping between topic
and subscribers. The provider scheme must provide a mechanism for the users to subscribe.
The provider scheme must ensure that data objects get delivered to subscribers only.

Thus, third-party providers have two central tasks: access control and delivering data objects to
the correct subscribers. They need to be able to distinguish users from each other, e.g. to identify

2.2 Third-Party Provider Schemes 25

a subscriber from a non-subscriber. Typically, this problem is also done by unique user identifiers
– similar to the situation inside the closed group (see Section 2.1.3).

Examples for user identifiers in U2U communication with third-party providers are as follows:

• An SMTP server accepts an email and forwards it to the target SMTP server based on the
target (recipient) email address. Here the email address is an identifier which lets the email
reach the correct destination.

• A user publishes a private photo album with restricted access by using a popular centralized
online social network (OSN). Each user in the OSN has his own profile and user ID. Here the
user IDs are identifiers to define access to the photo album.

• An instant messaging service for mobile phones identifies its users by their mobile phone
number. A user can upload his full address book to the service to determine which of his
phone book entries are also users of the service. Here, the phone numbers are identifiers
which not only let an instant message reach the correct destination (similar to the email
example), but also let the user discover new contacts on the service.

2.2.3 Advantages of Third-Party Providers

The reason for using a third-party provider in the first place is data availability: first, the published
data object from the publisher’s personal device is forwarded to and stored at the third party.
Second, the data object gets delivered from the third party to the subscriber’s personal device.
This way, the two personal devices do not have to communicate directly with each other. This
eliminates the requirement that the two personal devices are available for each other at the same
time. Besides delivering the data object, the third-party provider can also permanently persist the
data object in case it gets deleted from both personal devices, but is still needed at a later time.

In the following, three common third-party provider schemes for U2U communication are
presented. Specifically the role of user identifiers will be discussed with the help of an use-case
example, since these are relevant for later considerations about application metadata privacy.

• Centralized Service Provider (Section 2.2.4)

• Federated Service Providers (Section 2.2.5)

• Structured P2P Overlay Networks (Section 2.2.6)

2.2.4 Centralized Service Providers

Nowadays, Centralized Service Providers (CSP) are the most common provider scheme for U2U
communication: in September 2015, Facebook had on average 1.01 billion daily active users [34].
Snapchat [104] is an ephemeral instant messaging app which lets publishers set a time limit for
how long subscribers can view published photos and videos (Snaps). Snapchat claims that 6
billion Snaps were published in November 2015, three times the number of Snaps from May 2015
[37].

As the name indicates, a CSP is both centralized and a service provider:

26 2 Basics of User-to-User Communication

• Centralized: the CSP stores all relevant data of all users of a given application. For this
reason, the CSP is seen as centralized here. This does not necessarily apply to the network
topology: depending on the CSP’s size, the server platform does not consist of a single
machine, but of large data centers that may even be distributed across different countries.
Therefore, a distinction has to be made between authorial centralization and technical
centralization. Authorial centralization means "that one single entity (e.g. company) has
the omnipotent power to decide about what is allowed on their [. . .] platform" [79]. For the
considerations in this thesis, only authorial centralization is relevant.

• Service Provider: A CSP does not provide an application-agnostic platform to its customers,
but a specific U2U communication application or a specific set of applications. Examples for a
CSP are as mentioned aboved Facebook [33] and Google Plus [43] (online social networking,
photo storage and sharing), WhatsApp and Snapchat [116] (messaging), Google Docs [44]
(collaborative work) or Dropbox [29] (online data storage and file-sharing).

A CSP is often a company with a high interest in profit and providing a satisfying customer
experience. To achieve this, CSPs need to invest in data centers with powerful, redundant
hardware.

Usually, a CSP does not bind a user to a device, but instead allows its users to use any device to
make use of the service. Before using the service however, the user has to login at the service
with a unique user identity and private credentials.

Case study: Sharing a photo on Facebook

Figure 2.5 shows a communication process, where Alice publishes a data object (photo) on
Facebook with Bob and Charlie being subscribers. Earlier, she created an photo album "Alice’s
photos" and gave Bob and Charlie – contacts of Alice – read access via their user identifiers in
the respective Facebook privacy settings. In the model for U2U communication (Section 2.1),
this album has an according topic and Alice is the topic owner. Bob and Charlie are allowed
subscribers.

For publishing the photo, she uses her device a1, whereas she did the album creation with
device a2. However, Facebook recognizes her as the same user due to a mandatory login with
private user credentials tied to a unique user identity.

By default, allowed subscribers are automatically subscribers on Facebook, unless they have
proactively chosen to hide or block specific content. Hence, Bob and Charlie are subscribers
and when they browse their Facebook the next time with one of their devices, Alice’s photos is
delivered to the respective devices.

2.2.5 Federated Service Providers

Like CSPs, FSPs are service providers, i.e. they provide a specific U2U communication application
or a specific set of applications. In contrast to CSPs, Federated Service Providers (FSPs) are
authorially decentralized: instead of only one provider for a given application, there are multiple,

2.2 Third-Party Provider Schemes 27

Alice’s
devices

Charlie’s
devices

Bob’s
devices

Bob

Alice
Topic owner of „Alice’s photos“

Charlie

is Facebook contact of

1b

2b

2a

is Facebook contact of

3b

1a

1c

Facebook
server

Publishing a
new photo

Defining allowed
subscribers

via Facebook
privacy settings:

Allowing Bob
and Charlie

to view Alice’s

photos

Delivering the
photo

Figure 2.5: CSP case study: Sharing a photo on Facebook

independently controlled service providers. Each user can choose his own service provider and
can migrate to another one without affecting his access to the given application nor other users.

All FSPs for the same application agree on a federation protocol [79] for inter-provider commu-
nication. New FSPs can emerge and seamlessly communicate with already existing FSPs.

A suitable addressing scheme is required which identifies the user and his service provider.
When a data object is published, it can be forwarded to the correct provider first, who then –
analog to a CSP – can identify the correct subscriber and deliver it to the subscriber’s personal
device.

Popular application examples that use FSPs are e-mail [64], XMPP (messaging) [90] [91] and
Diaspora (social network profiles) [11].

Case study: instant messaging via XMPP/Jabber

Figure 2.6 shows Bob using his personal device b1 to send an instant message to Alice. He uses
XMPP [90] to do so, which is an FSP-based protocol/application.

Bob is a customer of the service provider "beta.com" and his address "bob@beta.com", which
contains Bob’s provider-wide unique user identity and the provider. The same applies to Alice
with "alice@alpha.org".

First, Bob authenticates at "beta.com" with his unique identity and private credentials. The
server (provider device) of "beta.com" ensures therefore that not any user can publish a message
in Bob’s name. Bob’s device can now forward the message. Bob needs to address Alice and her

28 2 Basics of User-to-User Communication

FSP via "alice@alpha.org" which can be interpreted as the message’s topic. This server identifies
Alice as a subscriber (since she is the addressed target of the message). Optionally, the server can
again identify Bob as an allowed publisher, e.g. if Alice maintains a whitelist of allowed senders
on "alpha.org". Finally, the server of "alpha.org" delivers the instant message to Alice’s devices.

Alice’s
devices

Bob’s
devices

Alice
Topic owner and only subscriber of

„alice@alpha.org“

is contact of

1b

2
b

2a

3b

1a

beta.com

Forwarding

alpha.org

Publishing a new instant
message

(data object with topic
alice@alice.org)

Bob
Topic owner and
only subscriber of
„bob@beta.com“ Accepting Bob’s

private credentials,
identifying him as

an allowed
publisher

 Accepting
Alice’s private
credentials,
identifying her
as an allowed
subscriber

 Finding Bob on
a whitelist,
identifying him
as allowed
publisher

Pushing the instant
message (data object) to

all of Alice’s devices

Delivering the instant
message (data object) to

Alice’s devices

Figure 2.6: FSP case study: Instant messaging via XMPP/Jabber

2.2.6 Structured P2P Overlay Networks

Structured P2P overlay networks are a well-researched type of decentralized network storage
and communication [39] [54] [71] [82] [84] [87] [106] [119] . Contrary to CSP/FSPs, the data
objects are not stored on one or a few highly-available servers, but are evenly distributed on all
participating personal devices (peers).
[69] defines a structured P2P overlay network as follows:

"[A structured P2P] overlay network assigns keys to data items and organizes its peers
into a graph that maps each data key to a peer. This structured graph enables efficient
discovery of data items using the given keys."

[. . .]

"Structured P2P systems use the Distributed Hash Table (DHT) as a substrate, in which
data object (or value) location information is placed deterministically, at the peers
with identifiers corresponding to the data object’s unique key. DHT-based systems

2.2 Third-Party Provider Schemes 29

have a property that consistently assigned uniform random NodeIDs to the set of peers
into a large space of identifiers. Data objects are assigned unique identifiers called
keys, chosen from the same identifier space. Keys are mapped by the overlay network
protocol to a unique live peer in the overlay network. Given a key, a store operation
(put(key,value)) [or a] lookup retrieval operation (value=get(key)) can be invoked
to store and retrieve the data object corresponding to the key, which involves routing
requests to the peer corresponding to the key.

Each peer maintains a small routing table consisting of its neighboring peers’ NodeIDs
and IP addresses. Lookup queries or message routing are forwarded across overlay
paths to peers in a progressive manner, with the NodeIDs that are closer to the key in
the identifier space."

Therefore, each peer is responsible for storing a fraction of the data objects in the system.
All stored data objects get evenly distributed over the participating peers. Consequently, if a
structured P2P overlay network is used as the provider scheme in U2U communication, personal
devices have to act as provider devices. This is a strong difference to the previously described
CSP and FSP approaches where provider devices are dedicated, highly available servers. Since
responsibilities are defined by closeness between a key and a random NodeID, a personal device
does not necessarily store data objects where the user is publisher or subscriber.

In contrast to highly available servers, personal devices might become unavailable to other
peers. If a data object is only stored on one peer, it cannot be retrieved if the storing peer is
unavailable. As a consequence, data objects do not only get stored on one peer, but are replicated
to the k peers with the k next closest NodeIDs. If one of these peers becomes unavailable for the
other peers, the data object gets replicated to the next available node chosen by a protocol-specific
metric. Similarly, if a node with a NodeID becomes available (again) with a closer NodeID than
the replication node with least closest NodeID, the new node replaces the old one in the set of
the k nodes. This way, it is ensured that each data object is replicated on k nodes as long as at
least k nodes are available for other peers.

This replication comes at a cost: The load on the overlay network and therefore single peers
increases with higher k and larger data objects. When a responsible peer becomes unavailable,
available, unavailable again, etc. (i.e. it suffers from churn), replicas may be shifted back and
forth between the k closest peers. The higher the churn is, the more often this maintenance can
happen.

Unlike a CSP or FSP which provides a dedicated U2U communication service, a DHT as a
distributed data storage does not have a notion of a user identifier. However, if it is used for
storing data of U2U communication applications, the device’s NodeIDs are inherently tied to
processes like store and lookup operations. A node which is responsible for storing a specific data
object can track which NodeIDs access said data object. Additionally, in systems like S/Kademlia
[9], the NodeID is the hash of a public key, which is an approach to prevent eclipse attacks [102],
i.e. the free choice of a NodeID to enforce a specific placement in the overlay network or claim a
specific responsibility. Depending on the key management, a public key can also be used for user
identification.

30 2 Basics of User-to-User Communication

General workflow

Figure 2.7 shows a U2U communication example with a structured P2P overlay network as the
provider scheme. The given overlay network consists of 12 devices. Alice’s, Bob’s and Charlie’s
personal devices participate in the network and hence belong to the 12 devices.

Alice decides to publish a photo (data object δ). She generates a key kδ for the value δ. When
forwarding δ under the associated key kδ, the DHT protocol determines node r as responsible for
kδ and hence storing δ. δ gets routed via multiple hops (the dotted arrows in Figure 2.7) to r.

Given that Bob and Charlie know kδ, they can use their devices b1 and c1 to get(kδ) and retrieve
it from r.

Figure 2.7: Basic Distributed Hash Table workflow

Case study: BitTorrent Sync

BitTorrent Sync is similar to cloud-based data storage / file-sharing application similar such as
Dropbox or Google Drive. Such CSP-based applications "allow users to store their data in a virtual
extension of their local machine with no direct user interaction required after installation. It is

2.3 Security and Privacy in U2U Communication 31

also backed up by a full distributed data-centre architecture2 that would be completely outside the
financial reach of the average consumer. Their data is available anywhere with Internet access [. . .]
Some services such as Dropbox, also have offline client applications that allow for synchronisation of
data to a local folder for offline access." [36]

BitTorrent Sync implements this type of application in a decentralized way which also involves
a DHT. Instead of storing a data object at a CSP, it is replicated and kept synchronized on a set of
personal devices which are subscribed to the same ShareID. BitTorrent Sync is a closed-source
protocol and has been researched in [36].

Each ShareID has to be explicitely subscribed by each device that shall receive the associated data
objects, i.e. files or folders. Between different users, the ShareID must be communicated a-priori
via an additional channel such as email or instant messaging. All involved devices need to find
each other for delivering data objects, i.e. know each other’s IP address and port. BitTorrent Sync
provides several options to solve this problem (see [36] for details), one of them is a structured
overlay P2P network/DHT. Each peer stores its peer details <SHA1(ShareID):IP:Port>as a data
object on its own in the DHT. These peer details can be retrieved by other peers that know the
ShareID. On the other hand, the responsible node for a ShareID can track which NodeIDs access
the information about a ShareID.

For performance reasons, the file replication itself is performed with the BitTorrent protocol
[19] directly from one device of the synchronization group to another. BitTorrent is designed
with large files in mind, putting these into the DHT would result in high maintenance effort for
replications. Peer details on the other hand are small in size and can be replicated with low effort.

2.3 Security and Privacy in U2U Communication

In the following, four security and privacy goals are explained that are relevant for U2U commu-
nication. While there are other goals, these four are deemed the most central goals for the scope
of this thesis and are therefore discussed in detail.

• Content data confidentiality (Section 2.3.1)

• Content data integrity (Section 2.3.1)

• Content data availability (Section 2.3.1)

• Application metadata privacy (Section 2.3.2)

With regard to these goals, trust dependencies can be identified. Trust is discussed in Section
2.3.3.

2.3.1 Content Data Security

Content data is the payload of a data object, i.e. the actual information to be given from a
publisher to the subscribers. The information conveyed in content data is the reason why the
data object was created in the first place.

2Note that the authors refer to technical decentralization here, not authorial decentralization – see Section 2.2.4 about
this difference in CSPs.

32 2 Basics of User-to-User Communication

In Section 2.1.1, it was defined that one property of a data object is confidentiality: a data
object is meant to be shared between the members of a closed group only. The content data
conveyed within the data object is not meant for the eyes of third parties. Therefore, content
data confidentiality is a security key concept which plays an important role here.

Additionally, content data is supposed to be eventually accessed by all subscribers. Access for
one specific, multiple or all subscribers must not be maliciously prevented. This requirement
is especially relevant for the provider devices, as these hold data objects meant to be delivered
to subscriber devices. Therefore, content data availability is another important security key
concept.

Lastly, a data object is meant to be accessed by all subscribers in the way the publisher created
and published it. It must not be maliciously modified by any group member or third party:
content data integrity is the third security key concept which is has to be taken into account. At
least weak integrity is desirable here, where manipulation can be detected in hindsight. Strong
integrity (preventing manipulation in the first place) is not regarded here.

2.3.2 Application Metadata Privacy

In the context of this thesis, metadata is data that is not content data, but is required within the
context of any communication process (explicit) or is an incidental by-product thereof (implicit).
Explicit metadata is required to establish a communication process in the first place. Most notable
examples for explicit metadata are all types of addresses: cellular network caller IDs, MAC
addresses, IP addresses, NodeIDs, email addresses, URLs, etc.

With regard to U2U communication, user identifiers are an important type of explicit metadata,
as discussed in Section 2.1.3. For example, user identifiers are used by the topic owner to define
allowed subscribers for a topic he owns. This definition must be done before data objects with
regard to this topic can be published.

There are now two possibilities: either the topic owner directly passes the respective target
user identifiers to the providers or some kind of attribute-based access control is used. In the
latter case, the relevant attributes also need to be applied by the topic owner to the target users
first, before the U2U communication can take place. Thus, in both cases a communication process
needs to be performed, which links the topic owner to the target users.

Another alternative would be to perform no access control at all: each data object is accessible
to everyone, but is encrypted in a way that only subscribers can read it. In that case, a key
exchange between topic owner and subscriber needs to be performed first. Also, the topic owner
needs an out-of-band mechanism to announce new data objects to the subscribers. Given that they
also rely on providers here, at least an initial linkage between the users (e.g. by user identifiers)
is required to enable the U2U communication and is therefore explicit metadata.

By repeated service usage, implicit metadata incidentally accumulates at a service provider.
Examples for implicit metadata with regard to the cases above are:

• Contact frequency and inter-contact times between two email users A and B, measured by
the number and timestamps when A sends an email to B or vice-versa

2.3 Security and Privacy in U2U Communication 33

• Number and frequency of accesses on the photo album by different contacts, indicating the
popularity of the publisher and his photos.

• Reconstructing social networks by matching address book entries of different users.

Explicit and implicit metadata needs to be taken into account for privacy considerations if it lets
an attacker draw conclusions about the identity, preferences, social connections or behavioural
patterns of a given user.

The most critical type of metadata gives away personal identifiable information (PII), which
is "information which can be used to distinguish or trace an individual’s identity, such as their name,
social security number, biometric records, etc. alone, or when combined with other personal or
identifying information which is linked or linkable to a specific individual, such as date and place of
birth, mother’s maiden name, etc." [63]. User identifiers can easily leak PII: for example, email
addresses are often not random aliases, but are deliberately tied to a user’s identity in order to
be memorable (e.g. "fabian.hartmann@kit.edu"). An OSN’s terms of service often demand from
the users to provide their real name. A mobile phone number is closely linked to a single natural
person.

Even if a user’s identity is not given away directly by PII, both explicit and implicit metadata in
U2U communication can lead to assumptions about the users and thus be a privacy threat. Random
user identifiers, inter-/intra-contact times, upload and download timestamps, the frequency of
data object exchanges inside the closed group, the size of data object δt etc. can be used to draw
conclusions about the closed group even if the content data of δt is unknown. Such conclusions
can be assumptions about the social closeness of two users, the interest in one specific data object,
etc.

Section 2.5.1 presents related work that discusses the impact of metadata on privacy in more
detail.

Metadata on Different ISO/OSI Layers

So far, the focus was put on U2U communication and third-party providers for application
services. Mapped to the ISO/OSI layer model, the previous considerations are leveled on layer 7
– the application layer. Thus, the regarded types of metadata are called application metadata.
However, similar considerations about explicit and implicit metadata can be made for the network
layer.

This metadata on the network layer (relevant for infrastructure providers) is called communica-
tion metadata. Communication metadata is relevant on the routes between the communicating
parties through intermediate networks, i.e. the routes between publisher and third-party provider
and between third-party provider and subscriber.

Assume two devices a and b which communicate using the Internet Protocol (IP). An IP router
forwards an IP packet based on the destination IP address in the packet’s header. Additionally,
the packet header contains the source IP address. By analyzing these addresses, an IP router
which forwards packets between a and b can analyze communication frequency, traffic size and
inter-contact times between a and b, measured by the number and timestamps when an IP packet
from a to b passes this router.

34 2 Basics of User-to-User Communication

Similarly, a telephone company infers which person calls which number for how long, can log
these information and e.g. provide it to governmental authorities.

Therefore, similar privacy considerations apply to connection metadata as to application
metadata. However, connection metadata is not in the focus of this thesis.

2.3.3 Trust

A central aspect in every privacy-aware system is trust between the involved entities. In the
following, a definition for trust is given. Afterwards, the trust dependencies between a closed
group and a third-party provider, as well as between the group members themselves are discussed.

Trust definition

[100] gives a standard definition for trust in computer science as "a subjective expectation an entity
has about another’s future behavior".

Based on this generic definition, the following definition is derived for the U2U communication
scenario: Closed group member X ’s trust in another party Y (Y being another closed group member
or third-party provider) is X ’s subjective expectation that Y does not take advantage of data affecting
X beyond Y ’s task in the communication process – in terms of content data confidentiality, content
data availability, content data integrity and application metadata privacy.
[22] differentiates between three types of trust:

• Blind trust: [...] The strongest form of trust; from a technical point of view it
could lead to the weakest solutions, the ones most vulnerable to misplaced trust

• Verifiable trust: [...] Trust is granted by default but verifications can be carried
out a posteriori (for example using commitments and spot checks) to check that
the trusted party has not cheated.

• Verified trust: [...] a “no trust” option; it relies on cryptographic algorithms
and protocols (such as zero knowledge proofs, secure multiparty computation
or homomorphic encryption) to guarantee, by construction, the desired prop-
erty. Furthermore the amount of trust necessary can be reduced by the use of
cryptographic techniques or distribution of data.

It will now be discussed for the four security and privacy goals whether blind trust is required
or a weaker form suffices. This discussion will be made with regard to third-party providers and
group members respectively. If party A trusts in party B, it has the following meanings:

• Content data confidentiality: A trusts B that B does not pass the content of a confidential
data object to a party outside the closed group, i.e. a party which is not meant to access
said data object.

• Content data integrity: A trusts B that B delivers a specific data object to A correctly, i.e.
identical to when it was originally published.

2.3 Security and Privacy in U2U Communication 35

• Content data availability: A trusts B that B delivers a specific data object to A.

• Application metadata privacy: A trusts B that B does not disclose information about A to
a party which is not meant to learn about A’s involvement in a specific U2U communication
process.

Trust dependencies

For the following, assume a closed group Gδt
for data object δt . The members of Gδt

are: the
topic owner (TO) T of topic t, the publisher P of δt , and one subscriber S of topic t. For a
clearer separation of roles, assume here that T is not a subscriber of t. A third-party provider
scheme is used, i.e. at least one third-party provider Z is involved.

In the following, it is first discussed whether the members of Gδt
have to trust Z in the four

security and privacy goals. Afterwards, it is discussed whether the members of Gδt
have to trust

each other in this regard.

Trust in third-party providers

In the following, it is discussed for the four security and privacy goals if the members of Gδt
need

to trust Z .

• Content data confidentiality: Z controls a provider device which accepts δt from P
and delivers it to S. Given that sufficiently strong end-to-end encryption is used, P can
encrypt δt in a way that only S can read it.3 Z or any other party cannot decipher δt

and confidentiality is ensured. In this case, Gδt
does not have to trust Z with regard to

confidentiality.

If P did not encrypt δt in a way that only S can read it, δt is readable by Z . In this case,
Gδt

needs to blindly trust Z that Z does not exploit the information conveyed in δt .

• Content data integrity: Gδt
relies on Z to deliver δt from P to S with exactly the same

content P created. Z must not modify δ. While encryption can be used to ensure content
data confidentiality, cryptographical signatures or Message Authentication Codes (MAC) can
be used to detect modifications and therefore ensure weak content data integrity. When
e.g. using signatures, P cryptographically signs δt , making modifications to δ detectable to
S as long as S has the possibility to check the signature. If no such mechanism is used, Gδt

must blindly trust Z to maintain integrity.

• Content data availability: The closed group Gδt
relies on Z to deliver δt from P to S.

Instead of delivering δt to S, Z might delete δt or deny access to it. Reasons for such
a behaviour on the provider’s end can be of accidental nature (e.g. due to data loss) or
intentional (e.g. censorship). Therefore, the members of Gδt

have to trust Z in regard
to content data availability. Depending on the application, this trust can be verifiable – if
missing data objects are detectable by the application or attract the users’ attention. As

3A good introduction to cryptography is for example [93]

36 2 Basics of User-to-User Communication

soon as Z appears unreliable in terms of availability, Gδt
would probably try to change the

service or provider.

• Application metadata privacy: As discussed in Section 2.3.2, a third-party provider is
given a mapping between topic and users in order to enforce access control. Therefore,
application metadata is made visible by Gδt

to Z in order to use the service. Explicit and
implicit application metadata lets Z identify the members of Gδt

or at least learn about
their communication patterns. Z can use and further process this information without Gδt

noticing it. Therefore, Gδt
needs to blindly trust Z not to exploit their application metadata.

Trust in group members

In the following, it is discussed for the four security and privacy goals if the members of Gδt
need

to trust each other.

• Content data confidentiality: Since δt is confidential, each member of Gδt
has to blindly

trust other members to not disclose δt to non-members:

– P and S have to trust each other. Both P and S have access to δt . P created δt in the
first place and S is a subscriber of t and therefore supposed to read δt . Considerations
about DRM are made further below.

– Both P and S have to trust T . Topic owner T can define himself as a subscriber anytime,
therefore access to δt is possible for T . Note that P might not know which other users
are subscribers and thus receive δt . P ’s trust in S is therefore transitive from P ’s trust
in T – P assumes that T will make a good selection of allowed subscribers.

– T has to blindly trust both P and S. T has to blindly trust P and S: even if T does
not subscribe to t, but only defines allowed publishers and allowed subscribers, T has
probably an interest that confidential data objects that get published under his topic t
stay confidential.

Keeping content data confidential inside the closed group is more of a social than a techno-
logical problem. If the members of Gδt

cannot blindly trust each other in this regard, the
idea of sharing a confidential data object is flawed to begin with. Digital Rights Management
(DRM) is a technical attempt to control this issue by "[managing] the usage of content once it
has been traded" [112]. This means that "DRM enables, for example, to restrict the consump-
tion of digital content to a predefined timespace, to limit the number of times digital content
can be consumed, or to specify the allowed actions (e.g. view, but not print)" [74]. However,
these are technical limitations regarding the data object, not the conveyed information
between humans. Once information has been disclosed to a user, it is by intuition very hard
to prevent him from (ab)using this knowledge – at least by technical means.

• Content data integrity: The members of Gδt
do not have to trust each other when a third-

party provider is used. In the given case, only Z is responsible for storing and delivering δ
correctly to the subscribers.

2.3 Security and Privacy in U2U Communication 37

• Content data availability: The members of Gδt
do not have to trust each other when

a third-party provider is used. In the given case, only Z is responsible for storing and
delivering δ to the subscribers.

• Application metadata privacy: Metadata privacy becomes interesting if not only the
content data of δt may be kept confidential inside the closed group Gδt

, but also the
communication process itself. If one group member X can identify another group member
Y as a member of Gδt

, Y has to blindly trust X that X does not disclose Y ’s memebership.
Knowledge about other members is as follows:

– T knows about (P, S): T knows that P and S are potential members of the group. As
the topic owner, T allowed P (S) to be an allowed publisher (subscriber) in the first
place. Allowed subscribers are not necessarily actual subscribers and it depends on Z
to provide actual subscriber information to T .

– (P, S) know about T : Both P and S know that T is the topic owner and therefore T is
member of the group. P knows that he publishes a data object to a topic owned by T .
S knows that he subscribed to a topic owned by T .

– S knows about P: In Section 2.1, it was assumed that each data object is linkable to
the publisher. The publisher is identifyable for each subscriber. Therefore, P is known
to S.

Due to the pub/sub model, the following two restrictions apply:

– P does not know about S: Note that the set of allowed subscribers is defined by T ,
not P. P publishes δt for a topic t where P knows that T owns t. On publishing, P
passes δt to Z . Z is responsible to deliver δt to S, but P is not necessarily aware which
user is S or if there are any other subscribers. This restriction does not apply in cases
where publisher and topic owner are the same user. Additionally, for applications
where it is important for P to learn about all subscribers (e.g. a group chat), this
information can be shared by the application itself.

– S1 does not know about S2: Z is responsible to deliver δt to S1 and S2, but S1 is not
necessarily aware that S2 is another subscriber and vice-versa. For applications where
it is important for subscribers to learn about all other subscribers (e.g. a group chat),
this information can be shared by the application itself.

Thus, due to the linkability of the data object to its publisher, subscribers can identify the
publisher by his user identifier. Thus, there is no sender anonymity in the given U2U
communication scenario.

Since the allowed subscribers are defined by the T only, neither P nor S1 necessarily knows
that S2 is a subscriber. Thus, receiver anonymity for S2 towards P and S1 is generally
possible unless T decides to share that information.

38 2 Basics of User-to-User Communication

Summary

This section analyzed trust dependencies in regard to four the different security and privacy goals
(Section 2.3.1 and 2.3.2):

• Content data confidentiality: Each group member has access to the shared data object,
therefore all group members have to blindly trust each other to keep it confidential. When
using end-to-end encryption, the group members do not have to trust the third-party
provider here. Otherwise, blind trust by the group members in the third-party provider is
required.

• Content data integrity: If signatures or MACs are used, the group members do not have
to trust the third-party provider here. Otherwise, blind trust by the group members in the
third-party provider is required. Since the group members themselves are not responsible
for delivering the data object, they do not have to trust each other here.

• Content data availability: The group members need to trust the third-party provider
to deliver the data object. Since the group members themselves are not responsible for
delivering the data object, they do not have to trust each other here.

• Application metadata privacy: The group members need to blindly trust the third-party
provider here. The group members also need to trust each other, with one exception: the
subscriber does not have to trust the publisher, since the publisher does not know which
users are subscribers. On the other hand, the publisher is known to the subscribers. Thus,
the publisher needs to transitively trust all subscribers – the subscribers are unknown to the
publisher and yet he has to trust them, therefore the publisher trusts that the topic owner
has made a "good selection" of allowed subscribers.

Figure 2.8 summarizes these considerations.

2.4 Comparison of Third-Party Provider Schemes

In this section, the three third-party provider schemes presented in Section 2.2 are compared. For
comparison, four different criteria are regarded. These criteria are based on the trust dependencies
between closed group members and third-party providers which were identified as critical in
Section 2.3.3: application metadata privacy and content data availability. In Chapter 3, User-
Centric Networking will be discussed. User-Centric Networking aims at removing third-party
providers from U2U communication. For the sake of comparability with the three third-party
provider schemes, it will be discussed with regard to these criteria as well.

2.4.1 Criteria for Comparison

The following five criteria are regarded: application metadata privacy, vendor lock-in, connectivity
constraints, required infrastructure and resource strain on personal devices. The first three criteria
are based on the trust dependencies privacy and availability which were identified as critical in
Section 2.3.3, since the group members need to trust third-party providers here. The latter two

2.4 Comparison of Third-Party Provider Schemes 39

Topic Owner of topic t

Subscriber of
topic t

Third-party
provider

Closed group for δt

Publisher of

data object δt

(Confidentiality)
(Integrity)
Availability

Metadata privacy

(Confidentiality)
(Integrity)
Availability

Metadata privacy

Metadata privacy

Metadata privacy

Confidentiality security / privacy goal

Confidentiality

Metadata privacy

(Confidentiality)
(Integrity)
Availability

Privacy

trusts

transitively trusts

Figure 2.8: Trust dependencies between group members and third-party provider

40 2 Basics of User-to-User Communication

criteria regard the required resources in order to establish a provider scheme. All five criteria will
be revisited for User-Centric Networking in Chapter 3 and allow User-Centric Networking to be
compared to the three third-party provider schemes.

Application Metadata Privacy

This criterion deals with the different privacy implications for each provider scheme. In Section
2.3.2, it was established that application metadata of closed group members gets exposed to
third-party providers. Therefore, Section 2.3.3 presented a blind trust dependency with regard to
application metadata privacy from closed group members to third-party providers. This applies
to all three provider schemes, which is a negative aspect of all three and the inspiration of
User-Centric Networking. Nevertheless, the different privacy threats shall be discussed for each
provider scheme.

Vendor Lock-In

This criterion deals with the question how strongly a provider scheme is tied to an application.
How easy it is for a user to change the provider without giving up the application altogether?
What happens to the application if a provider shuts down permanently? Assuming that providers
may come and go, a group of users can ideally use a specific U2U application as long as they want
without being dependent on the existence of a specific provider. Changing to another application
results in overhead for the users such as agreeing on an alternative application (if any exists) or
re-importing data (if the previous application allowed an export).

Partition Tolerance

This criterion deals with the following question: assume that a publishing device p and a subscriber
device s are in network A and a specific third-party provider device is in network B. There is no
connection between A and B, e.g. due to a disrupted link. Does the provider scheme still maintain
its functionality, i.e. does a data object get successfully delivered from p from s?

Required Infrastructure

The main reason why third-party providers are used for U2U communication in the first place, is
data availability. A third-party provider device accepts data objects from publishing device and
tries to deliver it to subscriber device. By doing so, publishing and subscriber device never have
to communicate directly, i.e. they do not need to be on the same network simultaneously and still
can trust in reliable data object delivery. For example, they can be connected to the Internet at
disjunct times – the provider device persists the data object in between and acts as a relay.

CSP/FSP schemes typically achieve high data availability by high device availability4 of the
involved devices. Both provider schemes are based on one or multiple servers, i.e. managed

4The term "device availability" is to be distinguished from "content data availability". In this thesis, the shorter term
"availability" is used if the context allows it. In case of possible ambiguity, the full terms are used.

2.4 Comparison of Third-Party Provider Schemes 41

devices with the aim of being available for other devices most of the time.5 Structured P2P
overlay networks achieve high data availability by replication of the data objects. Personal devices
participate as peers in the overlay network and split the load of data object equally.

This criterion deals with the question whether one or multiple providers need to place infra-
structure in form of managed devices, in order for the provider scheme to provide high data
availability. If such infrastructure is required, this results in both acquisition and maintenance
costs for the providers.

Resource strain on personal devices

This criterion complements previous criterion. It deals with the question how much resource strain
on personal devices depending on the provider scheme – if personal devices are also provider
devices (as is the case in structured P2P overlay networks), they have to store and deliver data
objects by themselves and cannot shift this task to highly-available servers.

2.4.2 Centralized Service Provider

• Application Metadata Privacy: A CSP has the full view on all users of the same application.
This omnipotence allows a CSP to exploit the users’ PII in a more powerful way than it
is possible for decentralized providers that only have a partial view on an application’s
users. For example, large scale data mining on the users’ behaviour as a whole is easier
with a full view. Additionally, a CSP is a more attractive for a governmental attacker [79]
due to full access on an application’s complete user data set. An infamous example for
mass-collecting application metadata is XKeyscore, a formerly secret program of the U.S.
National Security Agency (NSA) leaked by whistleblower Edward Snowden [27]. XKeyscore
"provides analysts with the capacity to mine content and metadata generated by e-mail, chat,
and browsing activities through a global network of servers and internet access points" [46].

• Vendor Lock-In: With a CSP, the application is inherently tied to its provider. If a user
is for some reason unhappy with the provider, he cannot change without giving up the
application altogether. This results in user groups having to find new consensus about
applications. Messaging applications for mobile devices are one prominent example for this
inflexibility: after Facebook had acquired the WhatsApp messenger [78], privacy concerns
drove users looking for alternatives [110]. However, applications like Telegram [108],
TextSecure [109] or Threema [111] are incompatible to each other and have non-congruent
user bases. In order to reach as many contacts as possible, a user would have to install all
these applications or stick to the most popular client, whereas this might change over time.

Another drawback in centralization is the CSP being a single point of failure: In spite of all
efforts towards high availability, the CSP can still be temporarily unavailable for some or
all users, preventing access to the application. If the CSP decides to shut down its service
(e.g. due to bankruptcy), the application becomes permanently unavailable for all users. In

5For comparison, [47] defines managed devices to be available at least 99% of the time. Google claims that their email
service Gmail was available 99.978% of the time in 2013, which equals a downtime of less than two hours for the
entire year. [67]

42 2 Basics of User-to-User Communication

order to save his existing data, the user needs to be able to export his data set. Since data
export is a feature that may or may not be provided by the CSP or by a third-party tool, this
option is not always guaranteed.

• Partition Tolerance: Despite the high availability of a CSP’s managed devices, accessing the
CSP requires Internet connectivity for the users’ devices. Therefore, if a publishing device
p and a subscriber device s are inside the same network partition, but have no Internet
connectivity, they cannot exchange any data objects via the application provided by the CSP.
Therefore, the CSP provider scheme is not partition tolerant. A classic example for such a
case is as follows: two co-workers are sitting next to each other on public transportation
(e.g. train or airplane) and wish to exchange data, but have no Internet access due to a
mobile connectivity dead zone. In this case, data exchange via a CSP is not possible.

• Required Infrastructure: For the application the CSP provides, the CSP needs to store all
data of all users and is fully responsible for providing high data availability. A CSP achieves
this by highly available managed device(s): depending on the number of users, a CSP needs
to invest in large data centers with powerful, redundant hardware in order to provide a
reliable application.

• Resource strain on personal devices: Due to a CSP’s high availability, provider devices are
reachable at arbitrary times for forwarding and delivering data objects. After successfully
forwarding, a publisher can safely assume that the data object gets delivered to subscriber
devices as soon as the CSP server and subscriber device are available for each other, i.e.
the subscriber device has Internet connectivity. The publishing device does not maintain a
list of subscriber devices, try to reach each subscriber device, etc. This keeps the resource
strain on both types of personal devices low. Depending on the application, a server can
also downsample application data (e.g. image quality) and decrease necessary data rates.

2.4.3 Federated Service Providers

• Application Metadata Privacy: Similar to a CSP, an FSP has the full view on all its customers
with the same implication for their privacy. Unlike a CSP scheme, however, the users of
the same application are scattered across different FSPs of their own choice. The number
of users bound to a FSP (and therefore the ratio of the overall users) depends on the
overall popularity of this specific FSP. In cases of extremely high popularity, an FSP can gain
quasi-CSP status6.

Additionally, each user does not only have to trust his own FSP, but also the respective
FSP of each contact. To see this, assume that user A uses FSP X and user B uses FSP Y . If
A publishes a data object for B, this data object travels from A over X over Y to B. Even
though there is no direct relationship between A and Y , Y learns that the data object it has
to deliver to B comes from A.

On the other hand, if the federation protocol is open (e.g. because it is free software
or based on open standards), everybody can run their own FSP. FSPs administrated by

6In May 2015, Google claimed that its email service Gmail had over 900 million users [42].

2.4 Comparison of Third-Party Provider Schemes 43

non-profit organizations or even running on home servers, administrated by friends and
family, are feasible. Users may trust such FSPs more than commercial providers and choose
their provider accordingly.

• Vendor Lock-In: In contrast to a CSP, the application is not bound to a single provider. In
order to use the application, each user can choose his own FSP and is free to switch to
another one at any time. Exporting content data from the old FSP and importing content
data to the new FSP may be a challenge.

If only one FSPs becomes temporarily unavailable, only its customers are affected. Costumers
of other service providers can still access the application and communicate with each other.
If a service provider decides to shut down its service (e.g. due to bankruptcy), its customers
can migrate to another service provider.

• Partition Tolerance: All publishing and subscriber devices require connectivity to their
respective FSP server, they cannot transfer data objects directly. Therefore, the FSP provider
scheme is not partition tolerant. Still, an FSP allows for more flexibility here than a CSP: for
example, a company could setup an FSP on a local network and all the employees’ devices
can communicate with each other via this FSP without requiring Internet connectivity.
However, as soon as these devices leave the local network or the FSP becomes otherwise
unavailable for them, data object exchange is not possible anymore.

Furthermore, if multiple FSP servers are involved in the delivery of a data object, these FSP
servers need to be able to communicate with each other as well.

• Required Infrastructure: Similar to a CSP, an FSP needs to store all data of all its customers
and is fully responsible for providing high data availability for the data objects it stores.
An FSP achieves this by highly-available managed device(s): depending on the number of
users, an FSP needs to invest in large data centers with powerful, redundant hardware in
order to provide a reliable application.

• Resource strain on personal devices: Assuming all involved FSPs have high availability
and reliable forwarding between different FSPs, provider devices are reachable at arbitrary
times for forwarding and delivering data objects. After successfully forwarding, a publisher
can safely assume that the data object gets delivered to subscriber devices as soon as the
subscriber device and its respective FSP server are available for each other The publishing
device does not maintain a list of subscriber devices, try to reach each subscriber device,
etc. This keeps the resource strain on both types of personal devices low.

2.4.4 Structured P2P Overlay Networks

• Application Metadata Privacy: Even if a DHT does not require user identifiers in the sense
that CSP/FSP do, all devices have NodeIDs which can be used for tracking implicit metadata.
The responsible node for a specific data object can track store and lookup behaviour. Apart
from peers that are responsible for storage, lookup behaviour may also be visible to peers
on the lookup path. This strongly depends on the implementation of the DHT with regard

44 2 Basics of User-to-User Communication

to routing (iterative vs. recursive) and may also be obscured in a darknet style by source
address rewriting [80].

This is the most notable property of structured P2P overlay networks with regard to privacy.

• Vendor Lock-In: In contrast to a CSP, the application is decoupled from specific providers.
Once a user group has agreed on a specific application, they can keep using it as long as
the overall P2P network is healthy enough: the application does not inevitably become
unavailable, once one specific peer becomes unavailable. A structured P2P overlay network
evenly distributes all data objects over the participating peers. If a peer leaves the overlay
network, the remaining peers undertake its part for sharing data objects. Therefore, a
structured P2P overlay network scales dynamically and exists as long as there are peers in
the overlay network.

• Partition Tolerance: Typically, a Distributed Hash Table assumes that only one DHT instance
needs to be maintained and that partitions do not exist. Assume that the peers in a DHT are
located in two physical networks A and B and these networks A and B lose their connectivity
due to a disrupted link. In this case, the peers in A (B) would regard the peers in B (A) as
unavailable, which is a common and expected case in DHTs. Peers on the same network are
still available, therefore two DHT partitions continue to work autonomously. As [96] puts it,
"a network partition, as seen from the perspective a single [peer], is identical to massive [peer]
failures. Since [structured overlay networks] have been designed to cope with churn, they
can self-manage in the presence of such partitions." In this sense, a DHT is indeed partition
tolerant.

However, such a split has strong implications: all data objects need to be replicated (shifted)
to the new k closest peers, which results in a high effort and requires that the data objects
are still locally available. Some data objects may be lost now for a partition, while others
are not. The basic problem here is that DHT only takes one global instance into account
and is inherently unaware of any other partitions. In order make a data object from one
partition available to the other, there are two possibilities: Merging the two partitions or
moving a peer which holds the data object to the other partition.

Merging DHT partitions after a temporary network split is a non-trivial problem, as discussed
in [55] and [96]: merging results again in a high effort for shifting data objects between
the peers, with a trade-off between maintenance messages and time. Also, this procedures
requires the two networks A and B to regain connectivity in the first place.

The scenario of two DHT partitions working autonomously with mobile peers switching
back and forth between networks A and B is even more difficult. Since all data objects
are evenly distributed among all peers, with responsibility being randomly chosen by the
NodeID, there is no DHT-based possibility for a specific mobile peer to carry a specific data
object over to the other partition, unless it is by chance a responsible peer for said data
object. Therefore, merging is the only feasible option for coordinating two partitions, which
– as mentioned above – requires regained connectivity between A and B.

2.4 Comparison of Third-Party Provider Schemes 45

In summary, DHTs are not an ideal choice for scenarios where partition tolerance is important
and two autonomous partitions have to be coordinated. All peers should have either Internet
connectivity or be permanently on the same local network, analogous to the FSPs scheme.

• Required Infrastructure: A central aspect of structured P2P networks is the lack of necessity
for a central server or other infrastructure. Instead via a dedicated server, the participating
devices communicate in a self-organized way. Yet, for the overall performance of the P2P
network, peers with high availability and fast connections are helpful.

• Resource strain on personal devices: By leveraging personal devices as peers, the need
for CSPs and FSPs is eliminated. Instead of one provider storing all data objects for all its
customers, each peer performs a fraction of the overall effort to keep the system running.
DHTs are designed with fault tolerance and scalability in mind. Peer unavailabilities are
expected and dealt with by replication. Each node only needs to maintain connections to
a small subset of other nodes, but can reach any other node in the system by multi-hop
routing. Lookups can be performed in logarithmic time, i.e. with O(log n) hops for n overall
nodes in the system.

However, for a given number of data objects, the responsibility load for each peer is inversely
proportional to the overall number of active peers in the overlay network. With a large
number of temporarily or permanently unavailable peers, the load for a single device can
exhaust its resources.

Replications can be expensive: depending on the size of a data object and the number
of replicates k, replications can demand a high effort. Additionally, each replication has
a certain latency depending on data object size and peers’ network connectivity. If the
peer availability fluctuates strongly, keeping all k replications on the k devices with the
next-closest NodeIDs may be even unfeasible.

Other aspects

• Sybil attacks: By a sybil attack [28], an attacker creates a large number of virtual nodes in
order to gain responsibility for large parts of the key number space – and thus data objects –
or even a specific key. As a result, the attacker controls a specific value, i.e. can deny access
to the respective data objects or learn about publisher and subscribers. Furthermore, he
can disrupt signalling required for maintaining the DHT’s functionality. With a sybil attack,
a targeted attack on content data availability for a specific data object and application
metadata privacy for specific IDs is possible.

• Bootstrapping problem: Unlike CSP and FSPs, there is no distinct and well-known provider
to be contacted. Instead, each participating device needs to be integrated as a peer in the
DHT. For doing so, it needs to contact an already existing peer and complete a bootstrapping
procedure with the help of existing node. Finding an existing peer is a non-trivial problem
and requires either probabilistic mechanisms (e.g. random address probing) or additional
knowledge (external list of bootstrapping peers).

46 2 Basics of User-to-User Communication

2.4.5 Summary

Table 2.1 summarizes the criteria comparison for the three third-party provider schemes Central
Service Provider (CSP), Federated Service Providers (FSPs) and structured P2P overlay networks
(DHT). The related work listed in Table 2.1 is presented in Section 2.5.

• Application metadata not visible to third party: Since all three provider schemes involve
third-party providers, group members’ application metadata is visible to them. However,
there are qualitative and quantitative differences between the three: FSPs can be classified
most privacy-friendly, since users can choose their providers and can consider whom they
trust most. A DHT is less flexible in this regard since the users have no control which
provider device stores their data. Still, each peer in a DHT has only a view on the PII for a
part of the users. A CSP is the least privacy-friendly approach because it stores all data for
every user of a given application – each user has to accept the CSP if they want to use the
application.

• No vendor lock-in: Unlike for a CSP, there exist no vendor lock-ins for FSPs and structured
P2P overlay networks: a customer of a specific FSP can switch to another FSP without
having to give up the provided application. In structured P2P overlay networks, data objects
are evenly distributed among the participating, therefore a concept such as vendors does
not exist.

• Partition tolerance: CSPs and FSPs are not partition tolerant: all publishing and subscriber
devices require connectivity to the CSP server/their respective FSP server. Even if publishing
device p and subscriber device s are on the same network partition, the data object is always
relayed via the third-party provider.

A DHT only takes one global instance into account and is unaware of any unreachable
partitions. DHT partitions maintain autonomous functionality after a network split. In
this sense, a DHT is partition tolerant. However, the peers’ responsibilities for data objects
get re-distributed which results in high effort for shifting data objects between the peers.
Merging two DHT partitions is associated with high maintenance costs as well. Transferring
a specific data object via a specific mobile peer from one partition to another is not possible
with the means of a DHT. Therefore, a DHT is partition tolerant, but coordinating two
partitions is hard.

• No infrastructure required: Both a CSP and FSP require infrastructure in the form of
managed devices, while a structured P2P overlay network does not require it once a peer
has joined. Yet, for the overall performance of the P2P network, peers with high availability
and fast connections are helpful. Additionally, the bootstrapping problem needs to be solved
for new / re-joining peers.

• Low resource strain on personal devices: CSP/FSPs are highly-available server and take
the storage and delivery load off personal devices. In a DHT, personal devices need to be
provider devices themselves. This results in high resource strain on these devices, due to
replications and routing etc.

2.5 Related Work 47

Table 2.1: Comparison of provider schemes

Centralized Service

Provider (CSP)

Federated Service

Providers (FSPs)

Structured P2P Over

lay Networks (DHT)

Application metadata not visible to a third party 7 7 7

No vendor lock-in 7 3 3

Partition tolerance 7 7 (3)1

No infrastructure required 7 7 3

Low resource strain on personal devices 3 3 7

Related work Persona [4] Diaspora [11] PeerSoN [16]

NOYB [50] SoNet [95] LifeSocial.KOM [45]

FlyByNight [70] PrPl [62] Safebook [21]

Friendica LotusNet [1]

DECENT [60] / Cachet [77]
1 Eventual merging required, takes high effort.

2.5 Related Work

This section discusses related work about U2U communication with third-party providers. Most
relevant works focus on online social networks (OSNs). OSNs are not clearly defined throughout
the literature. Depending on the authors, OSNs are either equivalent to generic U2U commu-
nication as defined in this thesis, i.e. application-agnostic exchange of data objects within a
closed group, or they follow a fix set of applications as offered by Facebook: profile pages, status
updates, shared photo albums that can be commented, etc. In both cases, these are typical U2U
communication use-cases and thus relevant.

2.5.1 Metadata and Privacy

Section 2.3.2 sketched how explicit and implicit metadata can affect user privacy. In this section,
related work is presented which discusses the impact of metadata on privacy in more detail.
Specifically, the aspects of application metadata shall be highlighted here.

The authors of [65] focus on the leakage of personally identifiable information (PII) in online
social networks (OSNs), i.e. information that lets uniquely identify a specifc user. They present at
the example of real-world OSNs how unique user identifiers, as well as user information like age
and gender are exposed to ad networks. These types of information get exposed either by HTTP
referer headers or external third-party apps which integrate into the OSN but run on external
servers not affiliated with the OSN.
[49] gives an overview about privacy threats via application metadata and communication

metadata in OSNs. The authors assume that each data object is encrypted and illegible to
attackers. For application metadata, they discuss inferences from three categories: stored content,
access control mechanisms and communication flows. For stored content, size of the encrypted
data object, data structures such as the number of entries of linked data object in a list and
modification histories (number of overwrites) are regarded. This information can be used to

48 2 Basics of User-to-User Communication

learn about content types (text vs. image) or the frequencies of status updates or comments.
Access control mechanisms can give away the number of recipients or contacts or even identities.
Finally, communication flows deal with access patterns, such as the number of content requests
or publishing behaviour. In order to gain information about the users from these categories,
knowledge about access patterns, ciphertext, background knowledge or a combination thereof is
required. However, the present countermeasures require mostly additional effort, e.g. by creating
dummy entries and or generating noise traffic.

2.5.2 Privacy-Aware Online Social Networks

This section presents works about OSNs that target to improve the users’ privacy over classic
CSP-OSNs such as Facebook. With regard to privacy, the works mostly do not distinguish between
application metadata privacy and content data security. Their common aim is to prevent an
omnipotent CSP that can exploit either type of trust.

To this end, they introduce a decentralized component: either they leverage an existing CSP-
OSN, but the client device does additional, decentralized work such as local encryption and
decryption. Or the system of third-party providers is decentralized. Systems that either leverage
CSP, are FSP-based or DHT-based are also listed in Table 2.1.

Two surveys papers give a good overview on privacy-aware OSNs: Schwittmann et al. [94]
and Paul et. al [79].

Leveraging CSP-OSNs

These approaches build upon existing centralized OSNs such as Facebook and its advantages,
such as leverage of the network’s popularity and re-use of existing data. They add a decentralized
component which increases the strain on personal devices. All presented approaches focus on
encrypting or obfuscating content data. Implicit metadata such as the social graph are however
still accessible for the CSP.

• Persona [4] uses attribute-based encryption (ABE) for end-to-end encryption. ABE allows
for access control on the level of user attributes: first, each user defines different attributes
and assigns an individual subset of these attributes to each of his contacts. This way,
attribute-based groups of contacts emerge. Second, the user encrypts his data objects with
regard to one or multiple attributes, logically linked. For example, by performing the "AND"
operation on a set of attributes, only contacts that have all these attributes assigned can
decrypt the data object. Persona was implemented by the authors as a Facebook application,
i.e. leverages the users’ existing social network. A Firefox extension performs encryption,
signing and decryption decentrally in each user’s local browser. Thus, Facebook does not
have to be trusted with regard to content data confidentiality and content data integrity. On
the other hand, Facebook has to be blindly trusted with regard to content data availability
and application metadata privacy.

• NOYB [50] follows a similar idea as Persona by encrypting and decypting user data of regular
Facebook accounts locally. However, NOYB does not encrypt user data in the classic sense

2.5 Related Work 49

of rendering it illegible. Instead, user data gets transformed into another seemingly legit
value by exchanging user data pseudo-randomly with other NOYB users. The motivation
here is to make the obfuscation process harder to detect for any attackers, specifically the
CSP itself. Exchanges are stores in a public dictionary which must be made available by a
trusted third party to all NOYB users.

• FlyByNight [70] is another approach to user data encryption in existing CSP-OSNs at the
example of Facebook. Here, AES/El Gamal cryptography is used to encrypt messages and
user data. The private keys are stored on a key repository. FlyByNight was implemented as
a Facebook application. All cryptography was done in JavaScript, which resulted in poor
performance according to the authors.

Federated Servers

These approaches are FSP-based with all the advantages and disadvantages discussed in Section
2.4.3.

• Diaspora7 [11] is a DOSN based on federated servers. As a non-academic project, it gained
major public attention in 2010 [31]. The founders explicitly marketed Diaspora as an
alternative to centralized providers [101]. However, in 2014, over 70% of the approximately
380.000 users [94] used a server operated by the founders8 as their provider. Diaspora’s
source code is freely available, thus everybody can run their own Diaspora server. While
server-to-server communication is encrypted, all user data objects are stored unencrypted
on the respective server and thus visible to the administrator. Besides the drawback of
an FSP approach, each user additionally must blindly trust the server provider has to be
blindly trusted with regard to content data confidentiality, content data integrity, content
data availability and application metadata privacy.

• SoNet [95] is a DOSN also based on federated servers. Unlike Diaspora however, all data
objects are stored encrypted on the FSPs: "data objects exchanged between users are end-
to-end secured by cryptographic operations. Servers therefore are not able to interpret them
but merely forward them as opaque binary blobs." The result is a two-layered system: a
federation protocol for forwarding the encrypted data objects between the servers and the
encryption/decryption on clients. SoNet offers social graph obfuscation by adding a random
identifier to each contact relationship. This identifier is stored on both involved FSPs and is
used to forward messages to the correct recipient without exposing cleartext usernames to
the other FSP. This approach only works as long as both users use different FSPs and the
two FSPs do not cooperate with each other.

• PrPl [62] (short for private-public) is also based on federated servers, but introduces an
abstraction layer (the Personal-Cloud Butler) which lets the users store their data using
different storage vendors. Client applications also communicate via an abstraction layer
(the Pocket Butler) which handles unified authentication, authorization and lookup requests.

7https://diasporafoundation.org
8http://joindiaspora.com

50 2 Basics of User-to-User Communication

• Friendica9 is another open-source project for FSP-based DOSNs that is very similar to
Diaspora.

Structured P2P Overlay Networks

These approaches leverage a DHT with all the advantages and disadvantages discussed in Section
2.4.4.

• PeerSoN [16] is a DOSN with a two-step approach. First, a DHT is used as a lookup service
which is used to find the devices which hold a specific data object, as well as locator
information (e.g. IP addresses) of these devices. Second, the data object can be directly
requested from the found devices with this information. This two-step approach eliminates
the replication of large data objects in the DHT. This results in less resource strain on
personal devices at the cost of worse data availability. However, the first step still exposes
application metadata privacy to third parties: requests for a data object expose users’ interest
in that data object to the same peer which holds the mapping between said data object and
the devices that store it.

• LifeSocial.KOM [45] is a DOSN which offers a set of applications similar to Facebook. It
follows a similar approach to PeerSoN. Unlike PeerSoN however, all data objects are fully
stored in a DHT. Before a data object gets stored in the DHT, each data object is encrypted
symmetrically, whereas the symmetric key gets encrypted with each read-enabled user’s
public key. The list of symmetric keys, as well as the encrypted data object gets signed with
the creator’s public key, thus each data object is linkable to its creator if the matching public
key is identified. New applications can be realized within LifeSocial.KOM in form of plugins.
LifeSocial.KOM is agnostic of the used DHT and proposes to leverage one of the existing
off-the-shelf DHT implementations such as FreePastry [87] or OpenDHT [85]. This impacts
application metadata privacy as discussed in Section 2.4.4. Since all data objects are fully
stored in the DHT, regardless of their number and size, replications can be expensive. This
can result in a high strain on personal devices.

• Safebook [21] is a DHT-based DOSN with additional privacy features. The device of user A
connects directly to the devices of A’s trusted contacts. These contact devices form an "inner
shell" around user A. A stores his personal data only on devices of that inner shell. The
devices of the inner shell in turn connect with the devices of their trusted contacts, which
results in another (friend-of-a-friend) shell around A’s inner shell, and so on. The sum of
all shells around A is called A’s matryoshka. All devices on the outermost shell register
themselves as entrypoints for A in the DHT. If any other device wants to send a message
to A, it first looks up the list of entrypoints in the DHT and sends the message to one of
A’s entrypoint. From the entrypoint, the message is routed through A’s matryoshka, where
each hop is a trusted link. This approach has two notable advantages over a regular DHT:
first, it prevents that A’s personal data is stored in the DHT, since it is only stored on A’s
inner shell, which is more trusted than a random third party. Second, requests for data

9http://friendica.com

2.5 Related Work 51

retrievals by A and towards A are anonymized, similar to friend-to-friend networks. Still,
Safebook has to deal with a DHT’s problems: The DHT peer which is responsible for A’s
list of entrypoints could deny access to that list. The same peer also learns about interest
of other peers in A. However, Sybil attacks are prevented by a trusted identification service
(TIS) that Safebook provides. The TIS is another third party that needs to be trusted.

• LotusNet [1] is a DOSN which is based on the DHT Likir [2], a previous work of the authors.
Likir is an identity-based extension of Kademlia [71] which prevents peers from giving
themselves a large number of arbitrary NodeIDs. This way, Likir prevents Sybil and other
DHT-specific attacks. NodeIDs are tracked by a certification service, similar to Safebook’s
trusted identification service.

• DECENT [60] is a DOSN where all data objects are fully stored in a DHT. Similar to Persona,
DECENT uses attributed-based encryption (ABE) for ensuring content data confidentiality
and content data integrity. Additionally, it supports efficient access rights revocation based
on the EASiER mechanism [59], a previous work of the authors. Still, application metadata
privacy and possibly high resource strain on personal devices is a problem due to the
leverage of off-the-shelf DHT implementations like FreePastry [87] and Kademlia [71]. In
order to reduce high computational efforts for encryption and decryption, the successor
Cachet [77] was designed. Here, data objects are additionally stored unencrypted on trusted
contact devices besides the DHT. The DECENT approach is used as a fallback in case of
contact devices being unavailable.

Other approaches

Mantle [35] follows a straightforward approach here where each user runs the Mantle application
on a client device. Additionally, each user maintains his own storage server. Each storage server
holds a public profile of the respective user, including a profile picture, status and public key. Two
contacts need to exchange the address to each other’s storage service out-of-band. The Mantle
application on the client device of user A can then download the public key of user B from B’s
storage server. Data objects from A for B get encrypted with B’s public key and uploaded to A’s
storage server. B in turn downloads the data object from A’s storage server and decrypts the
message locally on his client device with the Mantle application which holds the private key.
Application metadata is thus visible to the publisher’s (here: A) storage server provider.

Vegas [30] focuses on keeping the social graph secret not only from providers, but also from
contacts. Unlike other OSNs, it is not possible to crawl a user’s contact list to search for common
contacts. Vegas stores all data objects encrypted with random file names on public storage servers
that each user can freely choose. It is also possible to storage data objects for different contacts
refer on different servers. The location and file names of the data objects must be propagated
via a so-called exchanger to the subscribers. An exchanger is a side channel which allows for
asynchronous, mailbox-like communication (e.g. email or SMS). Thus, application metadata
visibility depends on the used data storage providers and exchangers. Assuming that classic
communication like email is used, most of the application metadata privacy problem is merely
shifted to the exchanger level.

52 2 Basics of User-to-User Communication

There are other approaches for DOSNs where all data user is stored on devices that the respective
user generally trusts. These are more similar to User-Centric Networking. Thus they will be
discussed in the next chapter, namely Section 3.7.

2.5.3 Friend-to-Friend Networks

Friend-to-friend networks or darknets are another approach to protect their users’ privacy during
communication. Here, each peer only communicates with trusted peers. The approach is based
on the assumption for each peer that his trusted peers never give away information about the
network and forward every message unmodified and correctly according to the network protocol.
Typically, a darknet targets at anonymity for senders and recipients, as well as unlinkability of
messages to senders and recipients.

Examples here are multi-hop darknets which focus on anonymous file sharing and circumventing
censorship, such as Turtle [81], GNUNet [10] or Freenet [18]. More recent work deals with
efficient routing in darknets [86].

Darknets cover a different scenario than U2U communication. In U2U communication, not only
the content of each data object, but also the identity of the publisher is relevant. Thus, sender
anonymity is not an aspect of U2U communication. Instead, linkability is an explicit property of
a data object (see Section 2.1). A darknet can still be used to implement U2U communication,
but since a darknet’s feature of sender anonymity is not required in the U2U scenario, any extra
overhead (and thus e.g. possible performance impacts) to achieve this central feature is unneeded
extra work for enabling U2U communication.

2.6 Conclusion

This chapter presented the basics for user-to-user (U2U) communication. In Section 2.1, a model
for U2U communication scenario was presented, which is the foundation for all considerations in
this thesis: a data object shall be shared between the members of a closed group. The data object
is both confidential and linkable to its publisher. Each closed group is defined on per-data-object
basis.

For U2U communication, typically third-party providers are used for storing data objects and
making them permanently available to the closed group. Section 2.2 presented three third-party
provider schemes that are typically used: Centralized Service Provider, Federated Service Providers
and structured P2P overlay networks.

In Section 2.3, four security and privacy goals for data objects were discussed. For each goal,
trust dependencies were identified from the closed group members to third-party providers in
general as well as between the members themselves.

As one result of the trust dependency identifications, all closed group members must blindly
trust a third-party provider with regard to application metadata privacy. In Section 2.4, the three
presented third-party provider schemes were each analyzed in this regard. Additionally, the
schemes were analyzed with regard to four other aspects: vendor lock-in, partition tolererance,
required infrastructure and resource strain on personal device. These aspects will be revisited in
Chapter 3 for comparing User-Centric Networking.

2.6 Conclusion 53

Finally, Section 2.5 discussed related work. First, publications that focus on the impact of
application metadata on user privacy were presented. Second, approaches to privacy-aware U2U
communication with focus on online social networks were presented. Each approach leverages one
of the three presented third-party provider schemes, and thus have their inherent disadvantages.

Chapter 3

User-Centric Networking

Figure 3.1: Placement of Chapter 3 in the big picture

In Section 2.4, the drawbacks of U2U communication via common third-party provider schemes
were evaluated: first, it was discussed that the members of a closed group have a blind trust
dependency to third-party providers with regard to application metadata privacy and content
data availability.

Second, neither of the three compared third-party provider schemes can properly handle
partitions: CSP/FSP schemes are not partition tolerant at all, DHTs are designed with one global
instance, not the coordination of autonomous partitions in mind.

55

56 3 User-Centric Networking

Third, in order to provide high data availability, a third-party provider scheme either requires
highly-available infrastructure (CSP/FSP) or high resource strain on personal devices due to
multi-hop routing and – if needed – replications (DHT).

This chapter discusses User-Centric Networking as an alternative to user-to-user communication
via third-party providers. User-Centric Networking aims at overcoming the three mentioned
drawbacks of third-party providers:

• Increased application metadata privacy by self-sufficiency: All U2U communication is
performed without any third-party providers. Instead, the personal devices of a closed
group’s members are not only used to publish / consume a data object via an application,
but also act as provider devices for storing and delivering data objects to subscriber devices.
Access rights, i.e. allowed publishers and allowed subscribers, are controlled by the topic
owner. Each published data object has to travel via a topic owner’s device first which decides
whether the data object comes from an allowed publisher and to which subscribers the data
object may be delivered.

Thus, the topic owner – who has defined the allowed publishers and allowed in the first place
– plays a central role: he maintains the access rights and is responsible how a published
data object gets distributed inside the closed group. In any case, non-members of the closed
group or any other third partys are excluded – which ensures the privacy of the closed
group with regard to third parties. Additionally, there are also some freedoms of degree in
what manner data objects get distributed in the closed group with different effects on the
intra-group privacy. For example, the topic owner may or may not ask subscriber A to deliver
a data object to subscriber B and thus may or may not expose A’s and B’s subscribership to
each other.

This type of U2U communication is called self-sufficient U2U communication or self-sufficiency.
By completely removing third-party providers from U2U communication, neither content
data nor application metadata is visible to third parties anymore. Adversaries can only
participate if the topic owner made them allowed publishers and/or allowed subscribers.
In that case, they are technically not a third party anymore, but valid members of closed
groups. Self-sufficiency is discussed in detail in Section 3.1.

• Partition tolerance: Data delivery in a UCN relies on personal devices. Personal devices
can lack Internet connectivity at times, be moved from one local network to the other or
perform opportunistic networking via ad-hoc or delay-tolerant networks with other devices.
Such diverse device availability situations can result in disjunct partitions, where some
devices are able to communicate with each other while other devices are not available.

Devices within the same partition should be able to exchange data objects, regardless of any
devices of the same or other users outside that partition. For example, this would enable
U2U communication for two users on an airplane, without Internet connectivity, but with
their local devices communicating directly via Bluetooth or WiFi Direct. This local ad-hoc
network forms an autonomous partition.

Data objects should also be transferable from one partition to the other. If two partitions
merge (e.g. a disrupted link between two networks becomes functional again), the pre-

3.1 Self-sufficient U2U communication 57

viously published data objects can now be delivered to the remaining subscriber devices.
Another possibility is a mobile topic owner device which carries a data object from net-
work A to network B, comparable to a delay-tolerant pocket switched network. Partition
tolerance in User-Centric Networking is discussed in more detail in Section 3.3.

• Resource-aware leverage of personal devices: As discussed in Chapter 2, third-party
provider schemes achieve high data availability either by highly-available infrastructure
(CSP/FSP) or by leveraging personal devices and cope churn with replication on multiple
devices (DHT). User-Centric Networking aims at a middle road: self-sufficiency requires
personal devices as provider devices, but a distinction between weaker devices (less re-
sources) and stronger devices (more resources) is made. Many users have multiple devices
at their disposal from smartwatches over smartphones up to PCs and small home servers
(e.g. network-attached storages). These device types are heterogenous in terms of resource-
fulness and availability. User-Centric Networking takes these differences into account when
coordinating access control and data delivery across the devices. As a result, the combined
resources of all group members’ devices can and should be used as provider devices. If
possible, provider tasks shall be mainly performed by stronger devices. Resource-awareness
is discussed in more detail in Section 3.2.3.

Table 3.1: Comparison of User-Centric Networking with third-party provider schemes

CSP FSPs DHT User-Centric Networking

Application metadata not visible to a third party 7 7 7 3

No vendor lock-in 7 3 3 3

Partition tolerance 7 7 (3)1 (3)2

No infrastructure required 7 7 3 3

Low resource strain on personal devices 3 3 7 (7)3

1 Eventual merging required, takes high effort.
2 Partition must contain topic owner device to be fully functional.
3 Resource awareness aims to reduce strain on weak devices.

3.1 Self-sufficient U2U communication

Self-sufficient U2U communication (self-sufficiency) is a novel provider scheme for U2U commu-
nication, firstly introduced in the SocioPath publication [51]. As one of the three design goals
for User-Centric Networking, it is based on User-Centric Networks (UCNs), which are defined as
follows. Subsequently, general data object delivery in UCNs is explained.

3.1.1 User-Centric Network (UCN)

In self-sufficiency, each published data object is associated to a data-object-specific User-Centric
Network (UCN). A UCN contains only devices of those users that are actually allowed to access
the published data object: the publisher, the topic owner and the allowed subscribers. Thus, a

58 3 User-Centric Networking

UCN is a direct mapping of the data object’s closed group. The associated data object is to be
delivered to the subscriber devices with help of the devices in UCN only. Since each UCN is bound
to a specific data object, the existence of a UCN is ephemeral for the time when the data object is
to be distributed. For different data objects, a user or device can be part of multiple UCNs at the
same time, each for one specific data object.

Formal definition

A User-Centric Network (UCN) is a 6-tuple Nδt
:= {t, δt , TOt , Pδt

, St , Dδt
} comprising of:

(1) t: topic

(2) δt : data object with topic t

(3) TOt : topic owner (TO) of t (single user)

(4) Pδt
: publisher of data object δt (single user)

(5) St : subscribers of topic t (set of users)

(6) Dδt
: device pool for data object δt (set of devices)

Let the set of all users in Nδt
be Uδt

:= {TOt , Pδt
, St} Let user X ∈ Uδt

and all devices under
user X ’s control be DX . Then, Dδt

:=
⋃

X∈Uδt
DX . Every device is assumed to be under exactly

one user’s control, i.e. DA∩DB = ; | ∀A, B ∈ Ut , A 6= B.
The discussed entities of a UCN are summarized in Table 3.2.

Purpose of a UCN

As given by the tuple, each UCN Nδt
is associated to one specific data object δt with topic t.

δt shall be delivered to Dδt
, i.e. all devices of the publisher, all devices of the topic owner and

all devices of all subscribers of t. Since only the topic owner knows all subscribers, the data
object has to travel across his devices first. On each device d ∈ Dδt

, δt can be consumed by the
respective user via an application associated to t, running on that device.

Only devices in Dδt
act as provider devices, i.e. are leveraged to deliver δt to {DSt

∪DPδt
}.

Third partys are not involved.

Role of the topic owner and topic owner devices

Independent from a specific UCN, each user A has a set of contacts CA. Contacts are bidirectional,
i.e. A∈ CB ⇔ B ∈ CA. Let A∈ CA.

For each topic t, the associated TOt defines the set of allowed publishers Pt ⊆ CTOt
from his

contacts. Likewise, TOt defines the set of allowed subscribers At ⊆ CTOt
from his contacts. Thus,

the audience of a published data object is limited by the topic owner only – a publisher himself
cannot individually constrain which users shall receive the published data object.

For each UCN associated to a data object with topic t, i.e. Nδt
,Nεt

,Nζt
, . . ., it is P ∈ Pt and St

⊆ At (with P being Pδt
, Pεt

, Pζt
, . . . respectively).

3.1 Self-sufficient U2U communication 59

DTOt
, i.e. the devices of TOt , are the only devices which store the sets of Pt , At and St .

Therefore, TO devices are the only devices that can perform access control – each published data
object with topic t needs to be forwarded to a TO device first, since only the TO devices know
which users are subscribers. Before delivering a data object δt to the subscriber devices, the TO
device verifies that δt was published by an allowed publisher, i.e. Pδt

∈ Pt .
There are several reasons for this design decision:

• Centrality: Each member of a closed group is a contact of the topic owner. Therefore, the
topic owner plays a central role in each UCN. Assume that each device of user A knows
all devices of all of A’s contacts. For every UCN where A can participate (since A and the
respective TO are contacts), a can be a publishing device, as it knows how to reach each TO
device. In analogous way, each TO device knows how to reach every subscriber device, since
subscribers are again contacts of the TO. Therefore, this TO centrality achieves that the
effort in device maintenance grows with the number of contacts, but not with the number
of UCNs a user participates in. As a downside, the topic owner is a single point of failure in
each UCN.

• Privacy: If only topic owner devices deliver data objects to subscriber devices, no group
member other than the TO can learn which other users are also subscribers. Even inside a
UCN, a higher privacy level is therefore possible. A privacy model is discussed in Section
3.6.

• Security: The topic owner defines the sets of allowed publishers and allowed subscribers.
If only his devices hold this information, no other group member can manipulate the access
rights, add third parties to the closed group etc.

The disadvantage of the TO’s centrality is that data object delivery completely depends on the
TO’s devices. A data object δt cannot be delivered to DSt

, if no device in DTOt
is available. The

delivery process is stalled until at least one of the TO’s devices becomes available again. In that
case, TO devices need to synchronize with the devices of allowed publishers and learn whether
new data objects with the respective topic have been published.

Example

For topic t, user A is the TO, i.e. TOt = A. A’s contacts are CA = {A, B, C , D}. A has defined the
allowed publishers Pt = {A, B, D} and the allowed subscribers At = {A, C , D}, each are subsets
from CA. Of the allowed subscribers, only C has subscribed to t: St = {C}.

Allowed publisher B publishes δt , thus the UCN Nδt
= {t, δt , A, B, St , Dδt

} emerges. Note
that user D is neither publisher of δt nor subscriber for t and therefore not a member of Nδt

,
despite D being both an allowed publisher and allowed subscriber. Data object δt will never be
forwarded to D’s device d1.

Allowed publisher D publishes εt , thus the UCN Nεt
= {t, εt , A, D, At , St , Dεt

} is defined.
Here, user B is excluded from Nεt

, because B is neither the publisher of εt nor an allowed
subscriber of t. Data object εt will never be forwarded to B’s devices b1 and b2.

60 3 User-Centric Networking

Figure 3.2: Example of two UCNs: Nδt
and Nεt

for data objects δt and εt respectively.

As can be seen from these examples, an allowed publisher is only part of a UCN if he is the
publisher of the respective data object. An allowed subscriber is only part of a UCN is a subscriber.
The latter is only the case, if the allowed subscriber has previously decided that he is interested in
the given topic and thus decided to actually subscribe.

Both example UCNs Nδt
and Nεt

for data objects δt and εt respectively are displayed in Figure
3.2.

3.1.2 Data object delivery

Figure 3.3 displays the basic workflow of self-sufficiency. The basic steps for delivering a data
object δt from its publisher to a subscriber are as follows. For now, assume that there is only one
device per user. Additional devices are discussed afterwards.

(1) The TO defines Pt and At on his TO device.

(2) An allowed subscriber S uses his device to subscribe to t.

(3) This subscription request is sent from the subscriber device to the TO device.

(4) The TO device verifies that S ∈ At and updates St accordingly.

3.1 Self-sufficient U2U communication 61

Table 3.2: Overview on the entities in a UCN

Symbol Entity Comment

Nδt
UCN for data object δt with topic t

TOt Topic owner of topic t

At Allowed subscribers for topic t

St Subscribers of topic t St ⊆ At

Pt Allowed publishers for topic t

Pδt
Publisher of data topic δt Pδt

∈ Pt

Uδt
All users in UCN Nδt

Uδt
:= {TOt , Pδt

,St}
DX Devices of User X

DSt
Devices of subscribers of topic t DSt

=
⋃

X∈St
DX

Dδt
Device pool of UCN Nδt

Dδt
= {DTOt

∪DPδt
∪DSt

}

(5) Allowed publisher P uses his device to publish a new data object δt .

(6) This data object is forwarded from the publishing device to the TO device.

(7) The TO device verifies that P ∈ Pt before δt gets delivered to any subscriber device, i.e. it
is ensured that the data object comes from an allowed publisher.

(8) The TO device knows that S ∈ St and therefore the TO device delivers the δt to the
subscriber device of S.

(9) Subscriber S can now consume δt on his subscriber device.

Thus, any published data object δt has to pass the TO device first, since the TO device is the only
device which performs access control for the publisher (i.e. it can decide whether the publisher is
actually allowed to publish data objects for topic t) and knows the subscribers.

Note that in cases where the publisher is also the TO, the publishing device is also a TO device.
Here, the steps (6) and (7) are omitted. Analogously, a subscriber device is a TO device if the TO
is a subscriber. Here, step (8) is omitted.

Additional devices

If additional devices exist in the device pool for topic t, the described basic steps need to be
extended by additional steps. Each respective device mentioned above shall be named first device
here. This does not indicate any hierarchy, but merely specify the device which is taken for user
interaction here.

• Additional topic owner devices: The first TO device needs to propagate the TO’s defini-
tions for Pt and At to all other TO devices. Likewise, new subscriptions, i.e. changes in St

need to be propagated to all other TO devices.

62 3 User-Centric Networking

Figure 3.3: Self-sufficient U2U communication

• Additional devices of publisher P: The data object δt published on P ’s first device shall
also be delivered to all other devices of P (but no other allowed publishers, unless they are
subscribers).

• Additional devices of subscribers: The data object δt delivered to the first subscriber
device of S shall also be delivered to all other subscriber devices – devices of S and each
other subscribers X ∈ St .

So far it is unspecified which forwarding policy is used, i.e. which device(s) forward / deliver
δt to any additional devices. The only constraint in self-sufficiency is that this problem must be
solved with devices from the device pool Dt only. Examples for different forwarding policies are
shown in Section 3.4.1.

3.2 Available Resources in a UCN 63

3.2 Available Resources in a UCN

Self-sufficient U2U communication fully relies on the device pool in a given UCN, i.e. on the
personal devices of the respective users. Personal devices are heterogeneous with regard to their
resources. A device’s resources have the following two characteristics: device availability and
device capability.

3.2.1 Device availability

Device availability describes the fundamental ability of a device to communicate with another
device at a given time. This aspect is relevant for devices that have a central role in forwarding
data objects. For example, if the only device of TOt is unavailable most of the time, published data
objects with topic t cannot be delivered to the subscriber devices, as they have to be forwarded to
the TO device first.

The device availability α(d1, d2, t0) is defined between two devices d1 and d2 for a specific
time t0. d1 is available for d2 (and vice-versa) if d1 and d2 can communicate over an underlying
network at t0.

Examples for an underlying network are:

• both devices have Internet connectivity

• both devices are on the same local network

• both devices have formed an ad-hoc network

If two devices d1 and d2 are not on same network at the same time, they are in different
partitions and are unavailable for each other during that time.

3.2.2 Device capability

Device capability defines the effort a device can and must make, based on the number and size
of data objects. Effort means here

• storing data objects

• forwarding data objects to TO devices

• delivering data objects to subscriber devices

• receiving data objects from other devices

These efforts are bound to resource costs for the affected devices. Example resources are
CPU load, memory, battery power, storage space, monetary connectivity costs and connectivity
bandwidth.

64 3 User-Centric Networking

3.2.3 Example Device Classes

Based on the resources types, three different device classes are now defined in order to demonstrate
device heterogeneity. These classes are also blueprints for simulated devices in later chapters.
They are described as follows and summarized in Table 3.3.

• Smartphone: assumed to have high availability. It is switched on most of the time and
has at least a very slow data connection which can be used for U2U communication over
the Internet. However, it is also assumed to be a mobile device with a metered cellular
connection where every byte counts against the data volume of the user’s mobile contract,
i.e. costs money. Since this poses a critical bottleneck for uploading and downloading data
objects, a smartphone is assumed to have low capability.

• Laptop: assumed to have low availability. When it is not actively used by the user, it gets
snapped shut, falling into sleep mode. Even if it is a mobile device, it is assumed to use
WiFi connectivity only which is not available everywhere. However, if the laptop has WiFi
connectivity, this WiFi is assumed to be fast and cheap or even free for the user. A laptop also
has a strong CPU and today’s hard drives provider ample storage. Therefore it is assumed
to have high capability.

• Home server: assumed to have high availability. As a server-type device, it almost always
switched on to be available for requests. It can be connected 24/7 to the Internet via a
landline DSL connection and thus provide connectivity almost without a break. It is also
connected to a power socket, has a large harddisk attached to it and the DSL connection
is fast and not metered, but provided by a flatrate contract. Therefore, a home server is
assumed to have high capability.

Table 3.3: Device classes in User-Centric Networking

Device class High availability High capability

Smartphone 3 7

Laptop 7 3

Home Server 3 3

3.3 Partition tolerance

As mentioned earlier, personal devices can undergo changes in their availability: they can lack
Internet connectivity at times, be moved from one local network to the other or perform op-
portunistic networking via ad-hoc or delay-tolerant networks with other devices. Such diverse
device availability situations can result in disjunct partitions, where some devices are able to
communicate with each other while others are not.

If the device pool Dt of UCN Nt is split among different partitions, each partition should work
autonomously as long as the workflow described in Section 3.1.2 is still possible, i.e. the required
devices are within the same partition.

3.4 Resource Awareness 65

Assume two disjunct networks (partitions) A and B and a topic t. Partition A contains three
devices: one of an allowed publisher P ∈ Pt , one of TOt and one of a subscriber S ∈ St . Partition
B contains three devices, each one of the very same users. Within either partition, data objects
can be published by the allowed publisher and get delivered to the subscriber device via the topic
owner device. Each partition works autonomously, as long as it contains a topic owner device.

As discussed in Section 3.1.1, each data object δt shall be delivered DSt
∪DP , i.e. to all devices

of all subscribers and to all devices of the respective publisher. Therefore, if δt was published
in partition A, it shall eventually be delivered to the devices in partition B. There are different
possibilities to achieve this: Two partitions can merge (e.g. a disrupted link between two partitions
becomes functional again), therefore bringing the formerly separated devices together into a
common partition. Another possibility is a mobile topic owner device which carries a data object
from partition A to partition B, comparable to a delay-tolerant network [61].

The trade-off for partition tolerance is the lack of guaranteed delivery: it is a-priori unknown
if and when a data object can be transferred into another partition to the remaining device or
if two partitions will merge. Therefore, no guarantees about delivery deadlines or delivery in
general can be made. User-Centric Networking is only an option if intermittent inconsistency
between devices is acceptable. The alternative would be to disable functionality altogether as
soon as partitions are detected. These considerations are related to the CAP theorem [14] and
are discussed in more detail in Chapter 6.

3.3.1 Example

Assume one topic t and two users A and B. User A is TOt and allowed publisher, B is subscriber.
Each user has two devices: DA := {a1, a2} and DB := {b1, b2}.

Figure 3.4 gives a simple example for partition tolerance and how autonomous partitions keep
their functionality. In the figure, there two different networks containing {a1, b1} and {a2, b2}
respectively, i.e. one device of each user. Both networks are connected regularly, e.g. via the
Internet (step À). Here, a1 publishes a new data object. Since the networks are connected, this
data object can therefore be delivered from a1 to the remaining three devices (step Á).

If the connections between the two networks breaks away (step Â), the two devices in the
respective partition can still communicate with each other. a1 now publishes another data object,
which gets delivered to b1, despite the missing connectivity to the other network (step Ã).

As soon as connectivity returns between the two partitions, a1 can deliver the new data object
to the devices in the other network (step Ä). Now, both data objects were successfully delivered
to all four devices (step Å).

3.4 Resource Awareness

As discussed in Section 3.1.2, a published data object is delivered from the publishing device via
TO device to subscriber device. If the device pool contains additional devices, there are multiple
possibilities how the data object gets forwarded. Thus, a suitable forwarding policy must be
defined (see Section 3.1.2).

66 3 User-Centric Networking

Figure 3.4: Partition tolerance in User-Centric Networking

A forwarding policy is resource-aware if it takes the devices’ available resources into account
and bases to the process of data object forwarding and delivery on them. Both device availability
and device capability can be input parameters here.

3.4.1 Examples for resource-aware forwarding

The following example shall illustrate resource-aware forwarding. Figure 3.5 displays the following
scenario: publisher P has one device p1 and uses it to publish δt . There is one TO device t1 and
a total of three subscriber devices: u1 and u2 of subscriber U , and v1 of subscriber V .

Assume that device u2 has a higher capability than all the other devices. Figures 3.5(a) to
3.5(c) display how data delivery can be more efficient, if the TO device t1 is aware of this higher
capability and a different forwarding policy is chosen.

3.4 Resource Awareness 67

(a) (b) (c)

Figure 3.5: Three examples for forwarding policies

Forwarding policy (a)

In Figure 3.5, t1 is not aware of u2’s higher capability. t1 delivers δt to each device by itself,
i.e. performs three deliveries. With this forwarding policy, t1 has to perform as many deliveries
as there are subscriber devices. Given that t1 is a smartphone with low capability, this is an
unnecessary effort for t1, as will be discussed for Figures 3.5(b) and Figure 3.5(c).

Forwarding policy (b)

In Figure 3.5(b), t1 is aware of u2’s higher capability. t1 delivers δt to u2 and u2 delivers δt to u1.
Since only t1 knows that V is also a subscriber, t1 has to deliver δt to v1 as well. Therefore, t1

only performs two deliveries and one delivery is performed by u2. With this forwarding policy, t1

has to perform as many deliveries as there are subscribers.

Forwarding policy (c)

In Figure 3.5(c), t1 is aware of u2’s higher capability. t1 delivers δt to u2 and while doing so,
passes the information to u2 that V is also a subscriber. With this information u2 delivers δt

not only to u1, but also to v1. Therefore, t1 only performs one delivery and two deliveries are
performed u2. With this forwarding policy, t1 has performed the minimum number of deliveries,
while v1 with the high capabilities has performed the rest. When regarding the overall resources
of the device pool, this is the most efficient solution.

68 3 User-Centric Networking

However, this efficiency comes with a trade-off: subscriber U learns that V is also a subscriber.
Therefore, t1 gives away application metadata which results in lesser privacy for V . This aspect is
discussed in the next section.

3.5 Trust Dependencies

This section revisits the considerations from Section 2.3.3. There, the trust dependencies between
group members were discussed, with third-party providers being involved. The trust dependencies
were discussed with regard to four protection goals: content data confidentiality, content data
integrity, content data availability and application metadata privacy. Some of these trust depen-
dencies were between the group members, but also between group members and the third-party
provider.

In User-Centric Networking, third-party providers are non-existent. Instead, the devices of
group members become provider devices. This results in additional trust dependencies between
the group members, which are discussed here.

3.5.1 Review from Chapter 2

First, the trust dependencies between group members are reviewed when third-party providers
are involved.

As can be seen in Figure 2.8 on page 39, the only trust dependencies between group members
are with regard to content data confidentiality and application metadata privacy:

• Content data confidentiality: It was argued that each member can access a data object
which is shared within the closed group. Therefore each group member has to trust each
other group member to keep this data object confidential.

• Application metadata privacy: Here, the group members also need to trust each other,
since every group member can learn which other group member is involved in the commu-
nication process – with one exception: the subscriber does not have to trust the publisher,
since the publisher does not know which users are subscribers. On the other hand, the
publisher is known to the subscribers. Thus, the publisher needs to transitively trust all
subscribers – the subscribers are unknown to the publisher and yet he has to trust them,
therefore the publisher trusts that the TO has made a "good selection" of allowed subscribers.

For the other two protection goals – content data integrity and content data availability – no
trust dependency between the group exists, since no group member device is a provider device.
Therefore, no group member device delivers data objects to subscriber devices. Instead, these trust
dependencies are between group members and third-party providers. This changes in User-Centric
Networking – since no third-party providers exist here, these remaining two protection goals
become dependencies between the group member as well.

3.5 Trust Dependencies 69

3.5.2 Additional trust dependencies

Figure 3.6 shows an adaption for User-Centric Networking of Figure 2.8.
Here, the third-party provider was removed. Instead, the TO assumes the central role for

data delivery, as was discussed in Section 3.1.2: the TO accepts a published data object from
the publisher and delivers it to the subscriber. Therefore the following two additional trust
dependencies arise:

• Content data integrity: If using cryptographical signatures or Message Authentication
Codes (MAC), the publisher and subscribers in a UCN do not have to trust the TO, since
weak integrity is secured. Otherwise, blind trust by the publisher and subscriber in the TO
is required.

• Content data availability: Publisher and subscribers need to blindly trust the TO to deliver
the data object.

Topic Owner of topic t
Subscriber of

topic t

Publisher of

data object δt

Metadata privacy

(Integrity)
Availability

Metadata privacy

Closed group for δt

Confidentiality

Metadata privacy

(Integrity)
Availability

Metadata privacy

Metadata privacy

Confidentiality security / privacy goal

trusts

transitively trusts

Figure 3.6: Trust dependencies between group members in User-Centric Networking

3.5.3 Helping subscribers

Figure 3.6 assumes that all data objects get delivered by the TO herself. In the context of resource-
aware forwarding policies it was discussed, that once a published data object was approved by
the TO, subscribers can help the TO to deliver the data object to other subscribers. See Section
3.4.1 and Figure 3.5(c) for an example.

70 3 User-Centric Networking

In such a case, not only TO devices, but also subscriber devices become provider devices.
Therefore, additional trust dependencies between subscribers exist. See Figure 3.7. Without loss
of generality, subscriber 1 helps the TO in delivering data objects to subscriber 2. Therefore, the
same trust dependencies from subscriber 2 to subscriber 1 exist as from subscriber 2 to the TO.

Topic Owner of topic t

Subscriber 1
of topic t

Publisher of

data object δt

Metadata privacy

(Integrity)
Availability

Metadata privacy

Subscriber 2
of topic t

Metadata privacy

(Integrity)
Availability

Metadata privacy

Closed group for δt

Confidentiality

Metadata privacy
(Integrity)
Availability

Metadata privacy
Metadata

privacy

Confidentiality security / privacy goal

trusts

transitively trusts

Metadata privacy

Figure 3.7: Trust dependencies between group members in User-Centric Networking, with helping
subscribers

In Section 2.3.3, it was discussed that in U2U communication, receiver anonymity between
two subscriber is generally possible. With helping subscribers, receiver anonymity between the
two given subscribers is not possible anymore.

3.6 Privacy Model

This section covers the different motivations in exploiting information about users via application
metadata. To this end, four different adversary types are presented – both for third partys as well
as for group members. Based on these adversary types and different provider schemes, a privacy
model is created. The model introduces an order from "low" to "high" privacy, by displaying which
provider scheme allows for / excludes which types of adversary.

3.6 Privacy Model 71

3.6.1 Adversary Types

There are different motivations for either a third-party provider or a group member to gain
information about one specific or all members of a closed group. Let A be an adversary – a third-
party provider or group member that infers and exploits PII of the (remaining) group members
against their will or knowledge. Let T be the TO of a closed group. Let U be a member of this
closed group (U and T may be identical). Let U be the target of an adversary A. A can be one of
the following four types.

• Large-scale data miner: A is a CSP or a FSP with many customers. A is not interested in U
specifically, but regards all customers. A exploits the customers’ PII to learn more about
them and their behaviour. Such a behaviour might be economically motivated (e.g. for
presenting personalized advertisments or for adjusting the service to the customers) or for
reporting generally suspicious behaviour to governmental authorities.

• Personal attacker (unknown to T): A is a third-party provider. A does not know T personally,
but is interested in U and U ’s communication patterns specifically. This adversary type can
appear for CSP, FSPs and DHT.

• Personal attacker (contact of T): A is a third-party provider that T specifically chose for
trust reasons, given that the chosen provider scheme enables such a specific choice. A
knows T personally. A is interested in U and U ’s communication patterns specifically. This
adversary type can appear for different third-party provider schemes, such as FSPs (if the
FSP is controlled by A), DHTs (if they have additional social mechanisms, e.g. that friend
nodes are preferred) or schemes that rely on general (not per-data-object) trust towards a
contact. Examples for the latter will be presented in Section 3.7.2.

• Group member adversary: This adversary A is a member of the same closed group as U . A
and U both know T and may or may not know each other. A can be an allowed publisher
or subscriber that wants to learn about the (other) subscribers in general. Alternatively,
A is interested in U and U ’s communication patterns specifically. This adversary type can
appear whenever group members can infer which other users are group members, for
example by a self-sufficient provider scheme with helping subscribers (see Section 3.4.1) or
by application.

3.6.2 Privacy Levels

Section 3.6.1 presented different adversary types for third-party providers, as well as one group
member adversary type.

Based on this groundwork, four different privacy levels are presented in this section. The
idea is here that a specific TO owns the topic for a specific closed group and selects a service for
exchanging data objects for this topic. This service is bound to a specific provider scheme – either
a third-party provider is involved or a self-sufficient provider scheme is chosen. Depending on the
provider scheme, different adversary types are possible. Based on this dependency, four different
privacy levels are derived.

72 3 User-Centric Networking

The derivation of the privacy levels stems from the considerations that were made in Section
2.3 for third-party providers and in Section 3.5 for UCNs.

The higher the privacy level, the more a respective provider scheme relies on users that are
actually known to the topic owner or that are even meant to receive a published data object.
Assuming that such users are more trustworthy than unknown providers to respect the privacy of
the closed group, an increase in the privacy level results in a better privacy for the closed group.
Even if users known to the topic owner cannot be trusted with this regard, different adversary
types can be identified for different privacy levels and certain adversary types can be neglected.

• I - Unknown to TO: The provider scheme involves a CSP or third-party providers (FSP,
DHT) that do not know the TO personally and vice-versa. The possible adversary types on
this level are large-scale data miners and personal attackers (unknown to TO). This privacy
level is classified as lowest due to the involvement of generally unknown parties.

• II - Contact of TO: The provider scheme involves only decentralized third-party providers
(FSP, DHT) which the TO knows and generally trusts about not being malicious. Due to
the TO’s knowledge and trust about the third-party providers, this privacy level is classified
higher than Level I. However, note that other adversary types are now possible: personal
attackers (contact of TO) and group member adversaries. The latter type is possible when
the provider is at the same time a group member. These adversary types differ from the
adversary types on Level I and the TO might have reason not to trust specific contacts
with regard to these adversary types. In this case, the TO must either select privacy level I
(and merely exchange adversary types) or aim for a higher privacy level of III or IV, which
excludes adversary types altogether.

• III - Closed group members: The provider scheme involves no third-party providers, but
is self-sufficient. Therefore, only group member adversaries are possible. This privacy
level allows for subscribers that help the TO to deliver data objects to other subscriber
devices (see Section 3.4.1). In such a case, subscribers can learn about other subscribers
and therefore can exploit that information.

• IV - Topic owner and single group member: The provider scheme involves no third-
party providers, but is self-sufficient. Additionally, the TO first accepts a data object from
the publisher and then passes it to each subscriber. The TO is the only user who keeps
knowledge about allowed publishers and (allowed) subscribers. No helping subscribers
are involved, i.e. a forwarding policy as in Figure 3.5(c) is excluded. This way, no group
member other than the TO can learn which other users are also subscribers. All adversary
types as discussed in Section 3.6.1 are now excluded altogether.

Privacy levels I and II include third parties, while privacy levels III and IV exclude third parties.
Therefore, privacy levels III and IV require self-sufficiency as the provider scheme. In turn, a
self-sufficient provider scheme reaches at least privacy level III. It depends on the exact design of
a self-sufficient DDP, whether privacy level IV can be achieved.

In the examples for forwarding polices (Section 3.4.1), forwarding policy (a) and (b) have
privacy level IV, while forwarding policy (c) has privacy level III.

3.7 Related Work 73

The difference between privacy level III and IV can also be illustrated by the following analogy:
assume a secret person A wants to tell multiple persons B, C , D There is a difference if a) A
gathers B, C , D . . . in one room and tells the secret to all of them at the same time or b) A tells the
secret first to B, then to C , then to D, . . . one after another with the others being absent. In case
a), all recipients learn which other persons are recipients. In case b), each recipient is unaware of
any other recipients. In this analogy, person A is the the TO and B, C , D, . . . are subscribers. Case
a) matches to privacy level III, case b) matches to privacy level IV.

Figure 3.8 presents an overview. On the left, the four privacy levels are presented as concentric
circles, depicting the reduced set of possible storage devices. On the right, it shows how reducing
the possible storage devices also increases the level of privacy / decreases the types of possible
adversaries.

Figure 3.8: Privacy levels

3.7 Related Work

This section presents three types of related work. First, other approaches to metadata privacy
besides self-sufficiency are presented. Second, U2U communication approaches where data is
stored on generally trusted devices are presented. These involve third-party providers, but they
are more similar to User-Centric Networking than the approaches that were presented in the last
chapter (see Section 2.5.2). Third, different usages of the term "User-Centric Networking" are
highlighted.

3.7.1 Other approaches to metadata privacy

Throughout Chapter 2, there was the central assumption that a) each user has an identifier which
is used for topic owners to set access rights and b) if third-party providers are involved, this
identifier is used as explicit application metadata to enforce access rights and to deliver data

74 3 User-Centric Networking

objects to the correct subscribers. Since application metadata that gets exposed to third-party
providers poses a privacy risk to the users, there are different considerations how metadata can
be hidden from third-party providers.

One possibility is third-party reduction: here, a data object δt is passed through less third parties
on its way from publisher to subscriber, i.e. less third parties get in touch with the metadata.
Self-sufficiency as a provider scheme achieves exactly this - it not only reduces, but excludes third
parties altogether.

This section describes two privacy enhancing techniques (PETs) that aim third-party anonymity
[22]: metadata is not revealed to third parties, while publisher and subscribers know with high
certainty each other’s identities. Thus, third parties are not excluded, but publisher and subscribers
identifiers are hidden from them. The two presented approaches towards third-party anonymity
are mix networks and broadcast schemes.

Mix networks

With the help of mix networks, each message gets forwarded through multiple third-party relays,
which obfuscates the connection between publisher and subscriber from the eyes of a single
third-party provider, i.e. achieves unlinkability.

Figure 3.9a displays onion routing as one popular use-case for mix networks. Here, A is the
publisher and B the only subscriber. A encrypts the data object δ with B’s public key kB, so that
only B can read δ. The results is kB(δ). Additionally, A selects a route via C ’s device c1 and D’s
device d1. Going backwards from the destination (B’s device b1), A tells each hop the next device
hop and encrypts this information with the hop’s public key.

This way, C only learns that it shall forward the data object to d1, but does not know the actual
destination, since it cannot decrypt the information that was encrypted with kD. Similarly, D only
learns that it shall forward the data object to b1, but does not learn that the data object’s origin is
A. Neither C nor D can read δ since it is encrypted with kB.

Disadvantages of mix networks is the additional required infrastructure and effort. Additionally,
effective unlinkability requires a high number of participants ("anonymity loves company" [24]).

Note that a mix network can also help to achieve sender anonymity and receiver anonymity.
Sender anonymity is out of scope for U2U communication, since each data object is linkable to its
publisher. Receiver anonymity can also be achieved with self-sufficiency.

Broadcast schemes

Figure 3.9(b) shows a form of third-party anonymity via a DDP which uses a broadcast scheme.
Let D be a third-party provider that is responsible for delivering data objects. Here, A does not
have to disclose the subscriber B to D for successful delivery of δ, since d1 simply broadcasts
δ to all known devices. Given that δ is encrypted with B’s public key kB, only b1 and b2 can
successfully decrypt δ. All other receiving non-subscriber devices (e.g. DC) fail at deciphering δ
and discard δ. Since D does not know which devices succeed at decryption, D cannot learn that
A is communicating with B. This approach achieves at least receiver anonymity.

Disadvantages of broadcast schemes are lack of scalability, specifically since it profits from a
high number of participants, similar to mix networks. For example, if A and B have a private

3.7 Related Work 75

message communication and their devices alternate in sending data objects to d1, D can assume
a communication process merely based on the timing how data objects arrive.

(a) Mix network (b) Broadcast scheme

Figure 3.9: Reducing metadata visibility by mix networks (left) and broadcast schemes (right)

3.7.2 User-to-user communication via trusted devices

Besides the approaches for user-to-user-communication that were discussed in Section 2.5.2,
there are other approaches where all data for a specific is stored on devices that the respective
user generally trusts. These approaches do not fit into the CSP / FSP / DHT schema from Chapter
2. Instead they are more similar to User-Centric Networking and are thus discussed here.

• Haggle [107] is a generic framework which decouples mobile applications from the un-
derlying network infrastructure. To this end, Haggle offers so-called name graphs, which
maps a user’s identity to multiple protocols and connectivity methods, such as an email
address, phone number or Bluetooth MAC address. Application-specific data objects from
applications are converted to generic data containers which can be transported via any
connectivity opportunity that arises first. Thus for example, one user can send an email
directly from his personal device to another while having ad-hoc network connectivity only.
While this offers an elegant form of partition tolerance, Haggle lacks the resource-awareness
and privacy-awareness of User-Centric Networking. According to the authors, "security and
privacy have not been addressed as key concerns". Instead, Haggle’s focuses on the usage
of heterogenous network interfaces – if a third-party provider can be leveraged, it is used.
Thus, only privacy level I is reached.

• Mega et al. [72] propose a decentralized online social network (DOSN) where each device
only communicates with devices of contacts and contact’s contacts. This approach is more
relaxed than User-Centric Networking: based on the classic idea of a OSN, all data objects
bound to a given user shall be delivered to all his contacts. There is no notion of per-
user-object closed groups. While additional encryption-based access control schemes could

76 3 User-Centric Networking

be added on top, each user’s contacts can communicate directly with other contacts for
exchanging the encrypted data objects. Thus only privacy level II is reached. Furthermore,
multiple devices per user are not regarded by the authors.

• Confidant [68] is a DOSN where each user stores his data on his own personal devices such
as PCs, so-called storage servers. For better availability, his data is replicated on the storage
servers of some of his contacts, so-called replicas. Similar to Mega et. al [72], Confidant
does not have the notion of closed groups on a per-data-object basis: "Each Confidant user
runs a storage server that contains plaintext copies of all of her objects and access policies.
[. . .] A storage server may also act as a replica for another user if the other user trusts the
server’s owner to 1) read all of her [unencrypted] objects [and] 2) enforce access policies [. . .]"
Thus, replicas are hand-picked by the user from the contacts the user generally trusts most.
If a user would want to split his data, e.g. to distinguish between work data and personal
data, he would have to run two separate storage servers, each with his own replica set.
These restrictions do not apply to User-Centric Networking where self-sufficiency on a
per-data-object basis is achieved. Confidant reaches only privacy level II.

• SuperNova [99] is another DOSN where a user’s data is preferably stored on the devices
of trusted contacts. Furthermore, SuperNova aims at handling device heterogeneity by
relieving from device strain and instead offloading data objects to unknown third-party
super-peers. Thus, SuperNova reaches only privacy level I.

• Vis-à-Vis [97] is a location-based DOSN where each user operates a highly-available cloud
server under the user’s control, which stores only the user’s own personal data (Virtual
Individual Server, VIS). Vis-à-Vis allows to search for other users in the same region. To this
end, VIS of the same region are grouped hierarchically in tree structures from city blocks to
countries. Search queries over a region are sent down the respective tree to the VIS. The
main disadvantage of this approach are the operational costs for each user’s mandatory VIS.
Unlike in User-Centric Networking, users’ personal devices cannot be leveraged and there
is no partition tolerance.

• Safebook [21] is a DOSN where a user’s data is only stored on his own device and those
of his trusted contacts. Assuming that the user in the center of a matryoshka (see Section
2.5.2) is the topic owner, all his contact’s devices act as provider devices. Thus, privacy
level II is reached. Note that Safebook also leverages a DHT to allow non-contacts reach
matryoshka entrypoints, in order to access public data. However, this feature is out of scope
for U2U communication.

3.7.3 Other definitions of User-Centric Networking

The term User-Centric Networking is occupied in multiple ways, partly with vague definitions. This
section highlights other definitions and contexts of this term and how these differ and concur
with the usage in this thesis.

3.7 Related Work 77

[105] defines UCNs and the central role of the users in them as follows. The authors specifically
mention privacy in form of trust and resources in form of connectivity as issues which are inherently
tied to UCN:

User-centric networks (UCNs) are a recent architectural trend of self-organizing
autonomic networks where the Internet end user cooperates by sharing network
services and resources. UCNs are spontaneous and grassroots deployments of wire-
less architectures, ad hoc or infrastructured, often involving low-cost equipment.
[. . .]

The new role of an empowered end user is disruptive in several aspects:

• In the end-to-end Internet paradigm, an end-user device will actively partici-
pate as a network element in addition to being an endpoint host.

• In network boundaries of trust, these will need to be extended in a way that
should mimic social behavior.

• In service continuity, end-user devices devices should be capable of handling
intermittent Internet connectivity as well as fast and transparent roaming
between micro-operators.

The authors emphasizes spontaneous wireless communication and infrastructure service provi-
sion, such as providing a shared internet access to other people in the neighborhood (also called
user-provided networking). Other scenarios are network performance measurements and software-
defined networking. These scenarios are vastly different from the sharing of data objects: while
user-provided networking regards OSI layers 2 and 3, this thesis focuses on layer 7 applications
that are controlled via a user interface. Furthermore, this thesis assumes that data exchange
from one device to another can be realized by connectivity of all kinds, as long as two device
are available for each other: wired, wireless, infrastructured, ad-hoc, via the Internet or by local
networking only. Privacy and lack of device availability are central considerations of this thesis,
which are also taken into account by [105].
[117] defines a User-Centric Network differently and very closely to delay-tolerant networks:

"an intermediately connected mobile social network, a typical delay-tolerant network that employs
human beings’ social characteristics for information dissemination"

The notion of user-provided networking, and its implications such as trust and incentives, is
also the basis for a Dagstuhl seminar on User-Centric Networking [89]. However, further areas
where user’s personal devices can be leveraged were explored, such as analyzing user behaviour
and mobility models.

One discussed aspect of the seminar – further elaborated in [20] – was today’s Internet reality
with its stark separation of centralized hosted services and smart personal devices simply as "the
Cloud". The authors compare this situation to the 1970s where dumb terminals were used to
merely display data that was stored and processed on mainframes. Since personal devices are
vastly more powerful nowadays, the authors deem the current situation as an unnecessary waste

78 3 User-Centric Networking

of resources at the users’ fingertips. They emphasize the active research in “ultra-distributed
systems, such as peer-to-peer file sharing, swarms, ad-hoc mesh networks, mobile decentralized social
networks" as an alternative to the Cloud, summarizing such systems as "the Mist". The authors
assume privacy by default since the users hold their data on their own devices only and have full
control on what they share. However, this assumption is a strong restriction on how data is stored
and replicated in the Mist and may have a negative impact on data availability.

The authors’ vision of "the Mist" is arguably closest to the definition of User-Centric Networking
in this thesis: leverage of personal devices in order to circumvent the need for third parties.
However, the term of "User-Centric Networking" is significantly more specific – including the three
design goals of self-sufficiency, partition tolerance and resource-awareness, as well as a formal
definition for a UCN.

3.8 Conclusion

This chapter presented User-Centric Networking for U2U communication as an alternative to
third-party provider schemes that were earlier presented in Chapter 2. User-Centric Networking
is based on self-sufficiency, which is the idea that delivering data objects from the publisher to
the subscriber shall be handled by the personal devices of the closed group members only. The
main advantage of this approach is an improvement of the closed group members’ privacy, since
application metadata is not visible to a third party. The main disadvantage is that all efforts for
data object delivery cannot be outsourced to a third party, but need to be handled by the personal
devices of the closed group members.

Section 3.1 introduced to User-Centric Networking and self-sufficiency. It presented a formal
definition for a User-Centric Network (UCN) and discussed the central role of the topic owner per
closed group.

Personal devices are heterogenous with regard to device availability and device capability. To
illustrate this, three example device classes that differ in this regard were presented (Section 3.2).
User-Centric Networking follows two design goals that take such heterogeneity into account: first,
partition tolerance shall handle intermittent lack of availability between devices and let them
recover from missed data object deliveries (Section 3.3). Second, resource awareness shall take
devices’ availabilities and devices’ capabilities into account for the forwarding policy (Section
3.4).

In Section 3.5, trust dependencies between the closed group members in User-Centric Network-
ing were analyzed, similar to the analysis in Chapter 2 for third-party provider schemes. Based on
these two analyses, a privacy model with four distinct privacy levels was derived (Section 3.6).

Finally, Section 3.7 discussed related work for privacy-aware U2U communication with ap-
proaches similar to User-Centric Networking. However, none of these approaches follow the
notion of closed groups on a per-data-object basis. Instead, they rely on a general trust in friends
and friends’ devices, regardless whether these friends are actually subscribers for a given data
object.

Chapter 4

SODESSON Middleware

Figure 4.1: Placement of Chapter 4 in the big picture

4.1 Introduction

This chapter describes SODESSON – a middleware which provides a generic service to U2U com-
munication. This service is the first building block for a User-Centric Networking implementation,
as presented in Chapter 1. Figure 4.1 places the SODESSON middleware into the overall concept
of User-Centric Networking.

79

80 4 SODESSON Middleware

As a middleware, SODESSON runs on each device which is meant to participate in U2U
communication, i.e. where the device used for running U2U applications and be an addition
to the respective closed groups’ device pools. It is positioned as a middle layer between U2U
applications and the OS network stack.

SODESSON provides a generic topic-based publish/subscribe service for all U2U applications.
SODESSON fulfills the following three requirements:

• Application interface: SODESSON’s service features an application interface which under-
stands and handles U2U entities as defined in Chapter 2.1. The purpose of the interface is
two-fold: first, it accepts data objects published by applications for a given topic. Multiple
applications may run at the same time on one device, which requires a multiplexing mecha-
nism via the interface. Second, the interface is used for defining access rights: each topic is
bound to a specific user, the topic owner. Via the application interface, he defines the set of
allowed publishers and allowed subscribers per topic he owns. The interface also allows
users to subscribe to a given topic.

• Abstraction from devices: In user-to-user communication, an application should not have
to care about addressing the "correct" device (i.e. the one which a user controls to generate
and consume application data). This is especially the case in User-Centric Networking,
where it is assumed that each user can have multiple devices. The level of abstraction
on which SODESSON and thus the application interface operate, is topics and user: data
objects get published for a specific topic and topics get subscribed. A topic is uniquely
identified by the combination of an arbitrary string and a topic owner, i.e. a user. On this
level of abstraction, no devices are involved.

• Contact management: SODESSON features an application- and device-independent Con-
tact List (see Section 4.4.1) for each user. This contact list is replicated on each of the
respective user’s devices. A contact list holds entries of other users that mutually agreed
with the given user to be entries of each other’s contact list. A topic owner selects the
allowed publishers and allowed subscribers for a topic as subsets from his contact list.

With these components, SODESSON merely provides a generic, device-independent U2U com-
munication service for applications running on a single device. The middleware is complemented
by a Data Distribution Protocol (DDP) which handles inter-device communication and is re-
sponsible for delivering data objects from a publisher’s device to the subscriber devices. For
SODESSON, this DDP is exchangable and can be freely defined – any provider scheme is possible,
even a centralized approach would be conceivable.

In User-Centric Networking, data delivery is self-sufficient, therefore SODESSON needs to be
complemented with a self-sufficient DDP. As Figure 4.1 indicates, this requirement is addressed by
SocioPath – a self-sufficient DDP for SODESSON, which is to be presented in the Chapters 5 to 7.

4.2 Basic Concept and Architecture

SODESSON enables a U2U application on device a to publish a data object δt with topic t. The
application passes δt together with t to the middleware via the application interface. Here, δt is

4.2 Basic Concept and Architecture 81

Figure 4.2: SODESSON overview

either passed directly as a binary value or indirectly as a reference to a file on the local filesystem.
Together with the DDP, SODESSON makes a best effort to deliver δt from a to DSt

with St being
the subscribers of t and DSt

being the sum of their devices (see Table 3.2 for a list of the used
symbols).

Figure 4.2 depicts two devices a and b, each running a different set of applications and the
SODESSON middleware. a runs App1 1, App 2 and App 3, while device b runs App 1, App 3, App
4. Still, all applications communicate with SODESSON via the same application interface. It is
used to publish and receive data objects via SODESSON. Published and received data objects on
a device are persisted by the Local Data Storage: here, a data object is either stored directly in
this data structure or a reference to a file on the local file system is made.

The App Manager handles the local mapping between application and subscribed topics: If
a user subscribes to a specific topic t with an application a on a device d, the App Manager
running on d stores the connection betweeen a and t. As soon as a published data object δt

with topic t arrives at d, the App Manager passes δt to the correct application(s). Multiple apps
can be mapped to one topic and vice-versa. Thus, the App Manager is a multiplexer between
application(s) and topic(s).

4.2.1 Tasks of the DDP

The Data Distribution Protocol (DDP) is responsible for two tasks: first, enforcing the access rights,
i.e. making sure that only data objects that were published by allowed publishers get delivered to
the subscribers (and only these). Second, delivering the data object itself. Both tasks are to be

1Both the terms "app" and "application" are used in this thesis. "Application" is mostly used in generic contexts, while
an "app" is an application from the point of view of the SODESSON middleware.

82 4 SODESSON Middleware

performed by specific provider devices, depending on the DDP’s provider scheme. In SODESSON’s
design, it is assumed that each of the two tasks can be performed by different devices.

4.3 Publish/Subscribe Service

This section covers the topic-based publish/subscribe service SODESSON provides to applications.
It is divided into the following subsections:

Section 4.3.1 describes how the entities in U2U communication are represented in SODESSON.
In Section 4.3.3, the publish/subscribe workflow is described in detail with the help of a

concrete example (blog post as a data object). It is described how the different components of
SODESSON are used in order to deliver a data object from the publisher device to a subscriber
device.

Afterwards, in Sections 4.3.4 and 4.3.5, the structure of the two modules App Manager and the
Local Data Storage are described. With the help of these modules, additional publish/subscribe
specifics are described: Retrieving (Section 4.3.6), updating and deleting (Section 4.3.7) a
published data object.

See Appendix A for a full reference on the publish/subscribe methods of the application
interface.

4.3.1 Representing U2U Entities in SODESSON

Section 2.1 presented the main U2U entities users, topics and data objects in an abstract manner.
This section describes how these entities are uniquely identified and addressed in SODESSON. A
summary overview is shown in Table 4.1.

• User: Each user A generates his own public/private keypair (pubkeyA/privkeyA) for signed
and encrypted communication. A is globally uniquely identified by other users via pubkeyA.
In addition, a shorter user ID UIDA := hash(pubkeyA) can be generated by all users who
know pubkeyA via a system-wide fixed hash function. The hash function is assumed to be
adequately collision resistant, hence UIDA is assumed to be as unique as pubkeyA. UIDA is a
more space-efficient method to identify A.

If A must generate a new keypair (e.g. because the old privkeyA was compromised), his
unique identification changes and needs to be updated in all relevant places.

• Topic: Each topic t consists of two parts, which are mandatory for addressing t: An arbitrary
title string titlet and the topic owner’s UID=: TOt . The title can be freely defined (e.g. by
an application), whereas the TOt part is used to identify the topic owner. Therefore, two
topic owners can each own a unique topic with the same title. Each topic is assumed to be
globally unique. Due to TOt being a U I D, this is an extension of the assumption pubkeys
and UIDs being globally unique.

• Data object: Each data object δt is uniquely identified by a 3-tuple:

– Topic t

4.3 Publish/Subscribe Service 83

– Object ID OIDδt

– Creation / update timestamp timeδt

OIDδt
is an integer value. It can be set by the application to a specific value in order to give

δt a specific, application-internal, semantic meaning. If a specific value is not given by the
application, SODESSON generates a random value. Here, the integer size is assumed to be
large enough to avoid collisions (e.g. 64 bit)2.

timeδt
is initially the timestamp (e.g. Unixtime) of the creation of δt . If δt gets updated,

timeδt
gets updated with a current timestamp. The timestamp is determined by the current

system time. All devices are assumed to have synchronous clocks which are regularly
refreshed, e.g. via NTP [75].

Table 4.1: U2U entities in SODESSON

U2U Entity Identifier Explanation

User A {pubkeyA, [UIDA]}

pubkeyA A’s unique public key.

UIDA := hash(pubkeyA) A’s unique UID. Shorter alternative to pubkeyA where space
efficiency is required.

Topic t {titlet , TOt}

titlet Topic title. Arbitrary string

TOt Topic owner’s UID, i.e. if A is topic owner⇒ TOt = UIDA

Data object δt {t, OIDδt
, timeδt

}

t Topic (as defined above)

OIDδt
Unique object ID of δt (integer)

timeδt
Timestamp of creation or last update of δt .

4.3.2 Users vs. Applications

Note that a publisher (i.e. a human user) uses an application on one of his devices to publish a
data object. Technically, the data object gets created and afterwards published by an application
by demand of the user. Therefore, there is a congruency between the user and application. For
the sake of simplicity, an instance of the respective application which is used by a publisher is
called a publisher as well. The same applies to a subscriber (user) who uses an application to
consume data objects in regard to the subscribed context. Here, the respective instance of the
application is called a subscriber as well. For the terms publishers and subscribers, the distinction
between user and application will be emphasized where required.

2Estimating the collision probability here is equivalent to the birthday problem [92]. To put the collision problem
into scope for the 64 bit example: In a number space of 264, the probability, that any two in 1.9 · 108 data objects
with the same topic have the same OI D, is 0.1%.

84 4 SODESSON Middleware

4.3.3 Publishing a Data Object: Step by Step

This section covers a typical U2U application workflow. It describes how the users interact with
their applications and how an application communicates with SODESSON and vice-versa via the
application interface. The workflow consists of four steps:

(1) Binding an application to SODESSON

(2) Creating a new topic

(3) Subscribing to a topic

(4) Publishing a new data object and delivering it to the subscribers

By the end of these steps, one user (publisher and topic owner) has shared a data object with
another user (subscriber) by using the SODESSON middleware. The steps present the most
important methods of the application interface inside a closed group of users.

4.3.3.1 Step one: Binding an application to SODESSON

First, an application for U2U communication running on a device needs to be bound to the
SODESSON middleware running on the same device.

The application calls the registerApp method of SODESSON’s application interface (no argu-
ments are passed). SODESSON creates a handle, a device-wide unique numeric identifier, for the
application and returns it to the application.

The application uses the handle to identify itself in subsequent application interface method
calls. The mapping of the handle to the application is stored by SODESSON in the module App
Manager.

Example workflow

Assume that User A on device a has installed the application "App 1", which is an application for
creating and reading private blogs. These private blogs have closed groups as an audience, i.e.
the application is an example for U2U communication.

After "App 1" has called the registerApp method of SODESSON’s application interface, SODES-
SON returns the numeric value 123 as the handle and stores the mapping "App 1" and 123 in the
App Manager.

4.3.3.2 Step two: Creating a new topic

Prior to the next steps (i.e. subscribing to a topic or publishing a data object with a specific topic),
a topic needs to be created in the first place. The topic’s creator is always the topic owner. First,
the topic requires a title. Additionally, the topic owner must define the sets of allowed publishers
Pt and allowed subscribers At for the given topic t.

Optionally, the topic owner can define a privacy level (see Section 3.6.2) for a topic. This
argument only has an effect if the DDP supports the demanded privacy level and can adapt to

4.3 Publish/Subscribe Service 85

different demands. Note that the topic owner defines the privacy level for his topic, any other
publisher or subscriber cannot influence this decision. The application calls updateTopic with the
arguments as given in Table 4.2.

Table 4.2: Arguments for updateTopic

Data type Argument Description

String title Topic title titlet

Array<UID> allowedPubs UID list of allowed publishers P

Array<UID> allowedSubs UID list of allowed subscribers A

Enum privacyLevel (Optional) Demanded privacy level (1-4) as defined in Section 3.6.2.

As can be seen in Table 4.2, allowed publishers and allowed subscribers are passed as arrays
of UIDs. Thus, before an application can call updateTopic, it requires the respective UIDs first.
Since the sets Pt and At are subsets of the topic owner’s contacts, the application needs to get the
Contact List. Similar to the publish/subscribe interface, SODESSON provides methods for contact
management to applications (see Section 4.4). One of these methods is getContacts, which returns
the full Contact List, including UIDs. Therefore, before the application calls updateTopic, it calls
getContacts first. Afterwards, the application must make its selection of the allowed publishers
and allowed subscribers subsets or implement a possibility for the user to make this selection,
e.g. via a graphical user interface (GUI). Finally, the application calls updateTopic and passes the
selection as described above.

Next, the topic creation including the access rights needs to be indicated at a provider device, as
these are responsible for enforcing the access rights of this topic. This inter-device communication
is the task of the DDP. The addressed provider device updates its Access Control component
accordingly.

Example workflow

Figure 4.3 depicts the workflow of this step using the private blog example. Assume that all blog
posts will be published with the same topic. The application arbitrarily selects a topic title, in this
case it is "App1_Blog".

User A wants to define the access rights for his private blog: he should be the only user who
may publish blog posts, while his contact B should be able to read the blog posts. App 1 accesses
the Contact List via the method getContacts À and shows the list of contacts to A and lets him set
the rights accordingly via a GUI.

A defines himself as an allowed publisher, A, B and C become allowed subscribers. For the
privacy level, A selects 3. In order to fulfill this demand, a self-sufficient DDP is required (see
Section 3.6.2), otherwise this argument is ignored by SODESSON. Since the privacy level is not 4,
subscribers may learn about other subscribers. This way, B and C can help each other to distribute
new blog posts, which A deems more relevant than a higher group members’ privacy.

Therefore, App 1 calls the application interface method updateTopic with the arguments as
shown in Table 4.3 Á.

86 4 SODESSON Middleware

Table 4.3: Arguments for updateTopic (Blog example)

Data type Argument Value in this example

String title "App1_Blog"

Array<UID> allowedPubs {UIDA}

Array<UID> allowedSubs {UIDA,UIDB}

Enum privacyLevel 3

Figure 4.3: Publish/subscribe, step two: creating a topic and defining the closed group

Next, device a indicates the topic creation including the access rights at a provider device Â.
The user who controls the provider device depends on the DDP’s provider scheme – here the user
is X . The provider device updates its DDP’s Access Control component accordingly Ã.

4.3.3.3 Step three: Subscribing to a topic

An application which requests to subscribe to a given topic t = {titlet , TOt} (see Section 4.3.1)
must pass to SODESSON both titlet and TOt , as well as its handle.

The handle is the device-wide unique numeric identifier the application received from SODES-
SON by the registerApp call (see step one). The handle is required for the App Manager to identify
the subscribing application and store the respective mapping of application and subscribed topic.
This way, multiple applications can subscribe to the same topic.

Therefore, the application calls the method subscribe with the arguments as given in Table 4.4.
The App Manager contains a data structure used for mapping applications to subscribed topics

(see Section 4.3.4) via the application’s handle. With this information, data objects can be delivered
to the correct applications. After a call of the subscribe method, the App Manager prematurely

4.3 Publish/Subscribe Service 87

Table 4.4: Arguments for subscribe

Data type Argument Description

String topicTitle Topic title titlet

UID topicOwner UID of the topic owner TOt

Integer handle Application’s handle

(i.e. without the subscription being confirmed by a provider device yet) stores the application via
the passed handle and the requested, to-be subscribed topic in its data structure. This is done, so
that a subscription success response can be later passed to the respective application.

Next, the subscribe request needs to be indicated at a provider device, as these are responsible
for enforcing the access rights of this topic. Therefore, SODESSON passes the subscription request
to the DDP, which in turn forwards the subscription request to the responsible provider device(s).
Each provider device checks if the requesting user is an allowed subscriber. If this is the case,
the provider device updates its Access Control component and enters the requesting user as a
subscriber.

The provider device now returns a response to the requesting device whether the subscribe
request was a success or a failure. A successful response is handled by the App Manager which
forwards it to all applications that have subscribed to the topic. If no successful response arrives
at the application, it can retry to subscribe anytime.

Note: SODESSON does not provide a mechanism to notify users about being allowed subscribers.
This needs to be handled by the application itself. For example, the application could define a
dedicated topic for indicating permissions and the topic owner can publish a data object here to
inform users about their publishing / subscription rights. As a simpler alternative, each user could
simply try to subscribe without having any prior knowledge if he is an allowed subscriber at all.

Example workflow

Figure 4.4 depicts the workflow of this step by continuing the private blog example. Assume that
user B has also installed "App 1" on his device b and has bound "App 1" to SODESSON, analogous
to user A on device a in step one. The handle returned by SODESSON is 456. In step two, user A
defined user B as an allowed subscriber for topic {App1_Blog, A}. Now B decides that he wants
to read A’s blog and thus subscribe to said topic.

For subscribing, B uses App 1 on his device b, which in turn calls the application interface
method subscribe À with the arguments as shown in Table 4.5.

Table 4.5: Arguments for subscribe (blog example)

Data type Argument Value in this example

String topicTitle "App1_Blog"

UID topicOwner UIDA

Integer handle 456

88 4 SODESSON Middleware

Figure 4.4: Publish/subscribe, step three: subscription

The App Manager prematurely stores the application’s subscription. Next, the subscription
request needs to be indicated at a provider device, as these are responsible for enforcing the
access rights of this topic. Therefore, SODESSON passes the subscription request the DDP Á.
The DDP forwards the subscription request to the correct provider device Â. The provider device
checks if B is an allowed subscriber Ã. This is the case (see Step two), hence the provider device
updates its Access Control component and enters B as a subscriber.

The provider device now returns a response to device b to indicate that the subscription request
was a success Ä. This response is passed to the App Manager Å which forwards it to App 1 Æ.

4.3.3.4 Step four: Publishing a new data object and delivering it to the subscribers

An application which requests to publish a data object δt with topic t calls the method publish
with the arguments as given in Table 4.6. The arguments are as follows:

Table 4.6: Arguments for publish for publishing data object δt

Data type Argument Description

String topicTitle Topic title titlet

UID topicOwner UID of the topic owner TOt

Integer objId (Optional:) Object ID OIDδt

BinaryData content Content of data object

Boolean inline Data object is passed as inline value?

Integer ttl Time-to-live for δt

4.3 Publish/Subscribe Service 89

First, the topic t = {titlet , TOt} is passed via the arguments topicTitle and topicOwner.
The objId is an integer value for OIDδt

to uniquely identify the data object. It is an optional
argument: it can be passed by the application as a specific value in order to give δt a specific,
application-internal, semantic meaning. For example, in order to update a data object that was
earlier published, it must be addressed by the application via the same OID. Here, the application
should generate OIDs on its own, pass them as an argument and keep track of them and the
mapped data objects. See Section 4.3.7 about updating an existing data object. If the OID does
not get passed by the application, the SODESSON middleware automatically creates a random
value for it.

The content of the published data object is application-specific binary data. If the boolean
argument inline is set to true, this indicates that the content is directly passed as the content
argument itself. As an alternative (with inline set to false), an application can pass a local filepath
as the content argument.

The argument TTL indicates a time-to-live in seconds for the data object δt , counting from the
time where publish was called. Afterwards the TTL has been exceeded, the data object is seen as
obsolete and must deleted from the Local Data Storages. A value 0 means a data object is never
obsolete.

On receiving the publish method call, the SODESSON middleware stores the data object (either
the inline content or the filepath reference, depending on the inline argument) in the Local Data
Storage. The publish timestamp timeδt

and the publisher’s UID – both are parts of the data object’s
identifier as defined in Section 4.3.1 – get automatically set by SODESSON when it stores δt in
the Local Data Storage.

The data object δt is then passed to the DDP: the identifier (topic title titlet , topic owner TOt ,
Object ID OIDδt

, publish timestamp timeδt
), as well as the publisher UID and the content / filepath

reference.
The DDP now has the task to deliver δt (identifier and actual content) to all subscriber devices.

To this end, two steps must be filfilled: first, a provider device must check its Access Rights Control
whether the publishing user is an allowed publisher. Second, if the publisher is indeed allowed,
the provider device stores δt in its Local Data Storage and deliver δt it to the subscriber devices.
To this end, the provider device needs the required information which users are subscribers in its
Access Rights Control module.

After the data object has been delivered to a subscriber device, SODESSON stores the data
object in the Local Data Storage. During subscription, a mapping between the application’s handle
and the subscribed topic was stored in the App Manager module. Therefore, the application
gets notified that a new data object has arrived for it. SODESSON calls the application interface
method notifyApp with the arguments as displayed in Table 4.7.

During publish (see above), the arguments topicTitle, topicOwner, (optionally) objId, content and
inline were set by the application. During notifyApp on the subscriber device, these arguments
have an identical meaning and have identical values3. The value of publishTime timeδt

was
automatically set by SODESSON on the publishing device, as well as the objId if it was not passed

3The only exception here is the content if inline is false. In this case, the local filepath can differ from the one on the
publishing device.

90 4 SODESSON Middleware

Table 4.7: Arguments for notifyApp

Data type Argument Description

String topicTitle Topic title titlet

UID topicOwner UID of the topic owner TOt

Integer objId Object ID OIDδt
, as set either by the publishing application or SODESSON

on the publishing device

Integer publishTime Publish timestamp timeδt
, as set by the publishing device

UID publisher UID of the publisher Pδt

BinaryData content Content of data object δt

Boolean inline Data object is passed as inline value?

Integer size Inline content bytesize / filesize of data object δt

by the application. The field size holds the bytesize of either the inline content or the referenced
file.

Example workflow

Figure 4.5 depicts the workflow of this step by continuing the private blog example.
Remember that in step one, user A bound the application "App 1" to SODESSON on device a.

In step two, user A created the topic t = {App1_Blog, A} for his private blog and defined himself
as an allowed publisher and B as an additional allowed subscriber. In step three, B subscribed to
that topic. Now, a data object (blog post) created by A on device a shall be delivered to device b
of subscriber B.

A creates a new blog post using App 1. App 1 publishes the blog post as a new data object, i.e.
it calls the application interface method publish with the following arguments as given in Table
4.8.

Even though it is optional, the objId = 42 is set and memorized by the application to uniquely
identify the blogpost. This way, existing blogposts can be updated later by publishing a new data

Figure 4.5: Publish/subscribe, step four: publishing a new data object

4.3 Publish/Subscribe Service 91

Table 4.8: Arguments for publish (blog example)

Data type Description Value in this example

String topicTitle App1_Blog

UID topicOwner UIDA

Integer objId 42

BinaryData content <blogpost><title>We have a new dog!</ti. . .

Boolean inline true

Integer ttl 0

object with the same objId. The blog application encodes a blog posts as an XML document (the
content), which is here passed inline. The ttl is set to 0 because the blog post shall never expire.

On the publish method call, the SODESSON middleware stores the data object in the Local
Data Storage of device a À.

The blog post is then passed to the DDP Á: the passed identifier is {App1_Blog, A, 42,
143656251}, i.e. topic title, topic owner, objId and publish timestamp. The passed content
is the blog post XML document.

After that, the blog post is forwarded to a provider device Â which verifies A’s publishing rights
Ã. The provider device stores the data object in its own Local Data Storage Ä and delivers the
blog post to B’s device b Å.

After the data object has been delivered at subscriber B’s device b, SODESSON on b stores it in
the Local Data Storage Æ. Due to the mapping between App 1’s handle and the subscribed topic
in the App Manager module Ç, App 1 now gets gets internally notified that a new data object has
arrived for it. SODESSON calls the application interface method notifyApp È with the arguments
as shown in Table 4.9.

Table 4.9: Arguments for notifyApp (blog example)

Data type Argument Value in this example

String topicTitle "App1_Blog"

UID topicOwner UIDA

Integer objId 42

Integer publishTime 143656251

UID publisher UIDA

BinaryData content <blogpost><title>We have a new dog!</ti. . .

Boolean inline true

Integer size 39765

92 4 SODESSON Middleware

4.3.3.5 Summary

These four steps have shown with the help of an example how a data object gets delivered from a
publisher (user A) to a subscriber (user B). It was shown how A has defined the allowed publishers
and allowed subscribers for a specific topic. Afterwards, B subscribed to said topic. Finally, A
published a data object to said topic.

All steps relied on communication between A’s device a, B’s device b and one to be defined
provider device. This inter-device communication is the task of the Data Distribution Protocol
(DDP), which is undefined so far. With SocioPath, this thesis presents a DDP for SODESSON in
Chapters 5 to 7.

4.3.4 Module: App Manager

During the four steps above, the App Manager module was used during two occasions. First,
when an application registers and binds to SODESSON (step one). Second, when an application
subscribes to a topic (step three).

The result of both processes – registration and subscription – are held locally in the App
Manager’s data structure. Each application is device-wide uniquely identified by a handle. With
a mapping of handle and topic, SODESSON tracks which applications have to be notified by a
notifyApp call when a data object associated to a subscribed topic is delivered to the device. Since
multiple handles can be mapped to a given topic, the App Manger acts as a multiplexer: each
data object with topic t is passed to every application subscribed to topic t.

The structure of App Manager is quite simple – each entry consists of three fields only (see
Table 4.10):

Table 4.10: Fields of an App Manager entry

Data type Field name Description

String topicTitle Topic title titlet

UID topicOwner UID of the topic owner TOt

Array<Integer> handles List of handles

A handle for an application is generated dynamically during the registerApp method and
returned to the application. As soon as the application subscribes to a topic, it passes the topic
title, topic owner and its handle to SODESSON via the subscribe method, as described in Section
4.3.3, step three. Subsequently, the entry for that topic gets created or updated, depending if
there is already an entry for that topic and other handles.

4.3.5 Module: Local Data Storage

During the four steps for publishing, the Local Data Storage was mentioned multiple times. This
section describes this module and its data structure in detail.

The Local Data Storage on a device holds all known information about a data object. A data
object can either be stored as inline content within the data structure itself, i.e. by the binary data

4.3 Publish/Subscribe Service 93

being filled into a specific entry’s field, or it can be referenced as a file on the local filesystem. Both
ways are available to an application during the publish call and the application can freely choose
the method which suits the current use-case better. For example, for a filesharing application it
would be inefficient to fully load an existing file and pass it inline to the Local Data Storage. On
the other hand, for an instant messaging application it would result in unnecessary overhead to
create a file for each small message and reference it during publish.

SODESSON supports the decoupling of notifications about a data object and retrieval of the
actual data object content. This means that a subscriber device can be informed about the
existence of a specific data object first before the actual content is delivered to that device. As a
result, the Local Data Storage can hold an entry about a data object, but neither inline content nor
a filepath reference exists. Notifications and delivery decoupling is further discussed in Section
4.3.6.

For each published data object, a Local Data Storage entry can exist for three different device
roles:

(1) Publishing device: On publish by an application, the publishing device stores or references
the data object in the Local Data Storage.

(2) Provider device: A provider device which shall deliver a data object to subscriber devices
stores or references this data object in its Local Data Storage.

(3) Subscriber device: After a successful delivery of the data object to a subscriber device,
the subscriber device’s Local Data Storage holds or references the data object and makes it
available for the applications.

Table 4.11 shows the fields of a Local Data Storage entry for a data object δt .

Table 4.11: Fields of a Local Data Storage entry for data object δt

Data type Field name Description Optional?

String topicTitle Topic title titlet

UID topicOwner Topic owner TOt

Integer objId Object ID OIDδt

Integer publishTime Publish timestamp timeδt

UID publisher UID of the publisher Pδt

Integer gotNotifyTime Timestamp of notification delivery yes

Integer ttl Time-to-live TTLδt

BinaryData content Inline content of δt yes

String filepath Local filepath reference to δt yes

Integer size Inline content bytesize / filesize of δt

Array<DID> sources Known devices that hold δt

94 4 SODESSON Middleware

The fields topicTitle and topicOwner define the data object’s topic. Together with the topic, objId
and publishTime uniquely identify the data object, as defined in Section 4.3.1. Additionally, the
publisher UID is stored, so the data object’s publisher can be identified.

The field gotNotifyTime indicates the time when a device has learned for the first time about
a specific data object, i.e. received a notification or the full data object. This field is optional.
Its information is not mandatory for the publish/subscribe service to work, but could contain
helpful additional information for the DDP, for example SocioPath makes use of this timestamp for
synchronizing notifications between devices. This timestamp is set automatically by SODESSON
on notification or data object delivery.

The time-to-live TTLδt
is passed during the SODESSON method call publish. It is counted in

seconds from timeδt
onwards. After exceeding the time-to-live, the entry is pruned from the Local

Data Storage by a periodically executed cleanup task. If the application sets TTLδt
to 0 during

publish, δt is never obsolete.
Depending on whether a data object is stored inline or referenced as a file, either the field

content or filepath is set with the according value. At most one of the two value can be set, i.e.
both fields are mutually exclusive. If a device holds only a notification, but not the data object’s
content yet, both fields are empty.

The field size holds the bytesize of δt ’s content, i.e. either the size of the inline content or the
size of the referenced file.

The fields sources holds a list of other devices which are known to hold δt . Each device is
identified by its globally unique Device ID (DID) as defined by the DDP. Since SODESSON is device-
agnostic, this field can be freely filled by the DDP in order to keep any provider device information
for the respective data object entry. It is up to the DDP to fill it with relevant information and
keep it up-to-date. This list is used to retrieve δt at a later time if the Local Data Storage entry is
only a notification (see Section 4.3.6).

An example Local Data Storage entry for the given blog post example is displayed in the next
section, in table 4.13.

4.3.6 Retrieving a Data Object

SODESSON supports the decoupling of notifications about and retrieval of the actual data object.
This means that a subscriber device can be informed about the existence of a specific data object
first before the actual content is delivered to that device.

The reason for this possibility is SODESSON’s support of resource awareness. A data object
can have an arbitrary bytesize and therefore be multiple mega- or gigabytes large. Delivering
such a data object unsolicitedly to a subscriber device that has limited data storage or a metered
network connectivity is not preferrable (see Section 3.2.3). Instead, it is more flexible to send a
small piece of information, i.e. a notification, to the subscriber device first to inform it about the
data object. The notification contains the data object’s metadata, i.e. the identifier (topic, objId,
publish timestamp) and the content’s bytesize. The subscriber device can now decide if and when
it wants to retrieve the full data object, i.e. the data object’s metadata plus content.

The notification is basically a data object without the content. When the notification arrives
at a subscriber device, the same workflow as on data object delivery is executed (see Section

4.3 Publish/Subscribe Service 95

4.3.3.4): the application receives a notifyApp call where the content field is empty and the inline
field is set to false.

As soon as the application decides to retrieve the data object’s content, it calls the retrieve
method with the arguments as given in Table 4.12.

Table 4.12: Arguments for retrieve

Data type Argument Description

String topicTitle Topic title titlet

UID topicOwner UID of the topic owner TOt

Integer objId Object ID OIDδt
, as set either by the publishing application or SODESSON

on the publishing device

Integer publishTime Publish timestamp timeδt
, as set by the publishing device

The application fills these arguments with the values it has learned earlier from the middleware’s
notifyApp call. SODESSON now makes a best effort to retrieve the data object’s content from
provider devices via the DDP.

As soon as the data object’s content has been delivered to the device, i.e. the full data object is
stored in the Local Data Storage, SODESSON calls the notifyApp method again, this time with a
non-empty content argument.

Whenever an application calls the retrieve message, it is transparent to the application if the
full data object content is already available on the same device or if it has to be delivered by a
provider device first. The middleware sends a notifyApp with an non-empty "content" argument
as soon as the full data object is stored in the Local Data Storage.

Deciding when to retrieve

The decision can be made either on application or DDP level. When the retrieval is triggered by
an application, e.g. by user interaction, it shall immediately call retrieve, as described above.
Note that the notifyApp call contains the size of the data object, thus the decision can be made
based on the size.

The DDP could implement a resource-aware intelligence based on the device’s connectivity,
storage etc. and autonomously decide to retrieve the data object’s content – independent from
any retrieve calls by the application. In that case, the data object the middleware sends a notifyApp
with an non-empty content argument before the application decides to call retrieve.

As a prerequisite, this decoupling needs to be supported by the DDP, i.e. the DDP needs to
provide the possibility to create a notification from the data object in the Local Data Storage of a
provider device, deliver the notification to the subscriber device, return a the retrieval request to
a provider device and only then deliver the data object’s to the subscriber device. SocioPath is a
DDP which supports the decoupling of notifications and data object retrievals. This is explained
in Section 5.7.

96 4 SODESSON Middleware

Workflow

Figure 4.6 displays the workflow based on an example. It revisits the example from Section 4.3.3
where a blog post was published.

Assume that a new blog post εt with Object ID OIDεt
= 73 is filled with high resolution photos

and about 100 megabytes in bytesize, therefore it is reasonable to decouple notification and the
data object content. Hence, a provider device delivers a notification to subscriber device b first
À– Ã (this is analogous to the Å– È in Section 4.3.3.4). This notification is stored as an entry in
the Local Data Storage Á with the values shown in Table 4.13.

Table 4.13: Local Data Storage entry for the example blog post

topicTitle topicOwner objId publishTime publisher GotNotify
Timestamp

App1_Blog UIDA 73 143680191 UIDA 143690111

TTL Inline Data Filepath Bytesize Sources

0 NULL NULL 100123814 DIDx

Note that both inline data and filepath fields are empty (NULL).
The application now decides to retrieve the blog post, possibly by user interaction Ä. This

request is passed via the Local Data Storage, where the known sources are gathered, to the DDP
Å. As soon, as the retrieve request reaches a provider device Æ, the to-be-retrieved data object is
extracted from the Local Data Storage Ç and passed to the requesting device È.

Not depicted in Figure 4.6 are the final steps on the subscriber device where the notifyApp
method is eventually called by the App Manager. These steps are identical to the steps Æ to È in
Section 4.3.3.4.

4.3.7 Updating and deleting a data object

SODESSON gives applications the ability to update (overwrite) and delete data objects that have
been published before. Both actions are essentially published data objects, therefore the workflow
for delivering an updated data object or indicating a deletion to the subscriber device is identical
to a new publish, as described in Section 4.3.3, step four. Furthermore, the same access control
rules apply: only allowed publishers may update or delete an existing data object for a given
topic.

Updating

Let δt be an existing data object which is uniquely identified by the following 3-tuple (see Section
4.3.1):

• Topic t

• Object ID OIDδt

• Creation timestamp timeδt

4.3 Publish/Subscribe Service 97

Figure 4.6: Notification about and retrieval of a data object

In order to update δt to δ′t , an allowed publisher has to publish a new data object δ′t with the
following identifier values:

• Topic t

• Object ID OI Dδt

• Creation timestamp t imeδ′t > t imeδt

Thus, the updated data object δ′t has the same topic and OID as the original data object δt , but
a newer creation timestamp. On delivery to a subscriber device, SODESSON checks if information
about an existing data object topic with t and OI Dδt

is stored in the Local Data Storage. If true
and if the creation timestamp is newer than the timestamp of the formerly stored data object, the
entry is overwritten by the new data object. If false, the "new" data object simply is stored.

In order for this mechanism to work, the clocks of the participating devices for measuring
timestamps have to be synchronized, as assumed earlier in Section 4.3.1.

Deleting

Deletion of an existing data object is basically an update with empty inline content. Let δt be an
existing data object which is uniquely identified by the following 3-tuple (see Section 4.3.1):

• Topic t

• Object ID OI Dδt

• Creation timestamp t imeδt

98 4 SODESSON Middleware

In order to delete δt , an allowed publisher has to publish a new data object δ′t with the following
identifier values:

• Topic t

• Object ID OI Dδt

• Creation timestamp t imeδ′t > t imeδt

• content: NULL

• inline: true

On subscriber devices, SODESSON checks if an entry for an existing data object with topic t
and OI Dδt

is stored in the Local Data Storage. If true, SODESSON deletes said entry.
On provider devices, the entry must not be deleted from the Local Data Storage since the

provider device must deliver the information about the deletion to the subscriber devices. Still,
the provider device can at least delete the content of the data object and keep the remaining
metadata.

4.4 Contact management

On each device, SODESSON holds a common Contact List which is available to all applications
via the getContacts method. This eliminates the need for each U2U application to implement their
own handling of contacts. A topic owner uses his devices’ Contact List entries to define the sets
of allowed publisher and allowed subscribers for each topic t he owns, as discussed in Section
4.3.3.2. Each user has exactly one contact list, which the DDP must replicate to all devices of this
user.

4.4.1 Data structure: Contact List

The Contact List on a device of user A contains CA and A himself. An entry for user X in this
Contact List has the fields as shown in Table 4.14.

Table 4.14: Fields of a Contact List entry

Data type Field name Description

UID userId User ID UIDX as defined in Section 4.3.1

String alias Human readable alias, nickname, etc. Arbitrary string.

String publicKey Public key pubkeyX , as as defined in Section 4.3.1

String privateKey Private key privkeyX . This value is only set for X = A.

4.4 Contact management 99

4.4.2 Initial Setup

For each user, the SODESSON middleware gets initialized on a first device. Here, an application,
e.g. a setup wizard, leads the user through the setup and calls the registerUser method to create
a public/private keypair and initialize an empty App Manager and a Contact List which only holds
the newly registered user himself: his public / private key and his UID as a hash of the public key.
An alias can be set via the method editContactAlias (see Section 4.4.4).

For each additional device of the same user, the keypair needs to be imported on the new device
via the importUser method. Here, the keypair has to be transferred to the new device’s filesystem
first. The SODESSON middleware does not cover a method in its interface, so it has to be done
manually, e.g. by copying the files into a pre-defined directory.

The two methods registerUser and importUser are explained in detail in Appendix B.

4.4.3 Adding contacts

A new contact can be added to the Contact List via an contact management application which
calls the addContact method with the arguments as shown in Table 4.15.

Table 4.15: Fields of a Contact List entry

Data type Argument Description

String publicKeyFilepath This path to a file tells SODESSON where to find the contact’s public
key file.

String alias (Optional:) User alias for better human readability.

With these arguments, an entry in the Contact List is created, with the UID being the hash of
the public key, as defined in Section 4.3.1. After a new contact has been added to SODESSON’s
Contact List, the DDP is notified about this event via an internal hook, so it can perform any
device-level maintenance that may be required due to the new contact.

Public key exchange

Before user A with device a can call the addContact method for user B, the public key of B has to
be stored on a first.

To this end, it is assumed that the two users have exchanged their public keys and verified
their identity earlier over a secure channel. This procedure happens out-of-band, independently
from SODESSON. One example for such a procedure is described in [26]: here two devices a
and b of two users A and B first locally broadcast discovery messages. The message from device
a contains a user alias for A and a’s IP address, the message from device b contains analogous
values. Then A and B mutually agree to an introduction phase where their public keys are sent to
the other device, using the IP addresses learned from the discovery message. Finally, A and B
enter a verification phase, where they verify each other’s connection of the public key to the user’s
identity, e.g. by reading aloud the public keys fingerprint. After these three phases, the users A
and B have the other’s public key on their device and verified its owner’s identity. The procedure

100 4 SODESSON Middleware

on either device can now instantly call SODESSON’s addContact method with the alias from the
discovery message and the verified public key. This finalizes the key exchange for SODESSON.

4.4.4 Editing contacts

A user can remove a contact from his contact list. This is done by the method removeContact.
In this case, similar to updateTopic, the responsible provider devices gets notified to remove the
deleted contact as allowed publisher, allowed subscriber and subscriber from all topics the calling
user is owner of.

A user can also edit a contact’s alias via the method editContactAlias.
The two methods removeContact and editContactAlias are defined in Appendix B.

4.5 Conclusion

This chapter presented SODESSON, a middleware for enabling U2U communication applications.
SODESSON handles U2U communication as defined in Section 2.1, i.e. it enables publishing data
objects and subscribing to topics. Besides topics, SODESSON complies with the U2U concepts of
topic owners, allowed publishers and allowed subscribers.

Section 4.2 described SODESSON’s basic architecture, including how the U2U entities user,
topic and data object are addressed.

Section 4.3 described SODESSON’s topic-based publish/subscribe service for applications, i.e.
the service’s interface methods and modules. This service allows to define allowed publishers
and allowed subscribers, to subscribe to topics and publish data objects for a given topic. Four
steps for publishing a data object and the respective interface methods were explained with the
help of the example of publishing a blog post. Besides publishing new data objects, updating and
deleting existing data objects was explained. Additionally, SODESSON’s support decoupling of
notifications and data object retrieval was introduced. This decoupling plays an important role
for establishing resource awareness later.

Section 4.4 described SODESSON’s contact management, i.e. the addition and editing of
contacts. A topic owner selects allowed publishers and allowed subscribers from his contacts.

Devices are the only U2U entities that were not covered so far. SODESSON by itself is agnostic
of any device handling and provider schemes. It can leverage third-party provider schemes as
well as User-Centric Networking. To this end, SODESSON needs to be complemented with a
Data Distribution Protocol (DDP) which handles the inter-device communication. In order to
realize User-Centric Networking, this thesis presents SocioPath in the upcoming chapters – a
self-sufficient, partition-tolerant and resource-aware DDP for SODESSON.

Chapter 5

SocioPath: Protocol Overview

Figure 5.1: Placement of Chapter 5 in the big picture

5.1 Overview

In Chapter 3, User-Centric Networking was presented as a self-sufficient, partition tolerant and
resource-aware approach for U2U communication. The presented advantages in User-Centric
Networking are better privacy (through self-sufficiency) and considering the demands of user
device’s compared to other decentralized provider schemes: partition tolerance enables U2U

101

102 5 SocioPath: Protocol Overview

communication in spite of failing and changing network connectivities, while resource awareness
takes each device’s availability and capability into account.

However, the concept of User-Centric Networking still needs to be realized. Chapter 4 presented
the SODESSON middleware which is a topic-based publish/subscribe service for U2U commu-
nication that provides a generic application interface, abstraction from devices and application-
independent contact list. SODESSON must be complemented by an exchangable Data Distribution
Protocol (DDP), which handles inter-device communication to fulfill two tasks: first, enforcing the
access rights, i.e. making sure that only data objects that were published by allowed publishers
get delivered to the subscribers (and only these). Second, delivering the data object itself. To
this end, two tasks are relevant for a DDP and responsible provider devices must be defined by
it. First: controlling and enforcing access rights, second: storing and delivering data objects to
subscriber devices. Based on the roles of publishing-, provider- and subscriber devices, the DDP
must define its protocol for data delivery.

SocioPath is a self-sufficient DDP for SODESSON to enable User-Centric Networking as the
basis for U2U communication. In the following, an overview is given how the three aspects
of User-Centric Networking get realized. The details are discussed throughout the upcoming
chapters.

• Self-sufficiency: As described in Section 3.1, self-sufficiency means that only devices of the
closed group’s members ever get in touch with a published data object: publishing device,
topic owner’s devices and subscriber devices. This increases the members’ privacy at least
to privacy level III (cf. the privacy model introduced in Section 3.6).

Since SocioPath is a self-sufficient DDP, privacy level III is already an improvement in user
privacy compared to storage schemes which involve third parties. Depending on the used
Decision Engine (see below), even privacy level IV can be achieved.

In SocioPath, only the topic owner’s devices perform access control, since in User-Centric
Networking only the topic owner’s devices hold the information about allowed publishers,
allowed subscribers and subscribers (see Section 3.1.1). Therefore, published data objects
cannot get delivered to the subscriber’s devices unless the topic owner forwards the required
information (i.e. the data object itself or a notification with a sources list) to other users.

• Partition tolerance through state repairs: Sometimes user devices are switched off or
lack availability for other devices due to missing network connectivity. During these times,
a device misses notifications about new or updated data objects. SocioPath deals with this
problem with state repairs: At certain times, two devices exchange their states and repair
possible inconsistencies. Until the repair, each device works on its own local view and fully
participates in SocioPath communication: state inconsistencies are not seen as fatal, but
accepted as a regular aspect.

This makes SocioPath especially resilient to partitions which are possible in a UCN. For
example, if two devices a and b only communicate in a local network (Partition 1), but
only a later gains Internet access and can communicate with another device c (Partition 2),
c can gain the same state as a and b, even with b not being part of Partition 2.

5.1 Overview 103

• Resource awareness through exchangable Decision Engines: Section 1.4.3 described
the trade-offs in resource awareness. Three preferable goals were identified that are mutually
exclusive: resource conservation, low delays and group members’ privacy. This trade-off
offers different preferable policies, depending on the available devices and application
use-case.

Greedy automatic retrieval of a very large data object results in low access delays for the
user, if it is already downloaded to the device by the time the user wishes to access the data
object. However, such a policy may come at high communication costs for the user, for
example if the policy does not take into account whether the device currently has mobile or
WiFi reception. On the other hand, lazy retrieval which always has to be user-demanded
gives the user full control over the costs, but may result in higher access delays for him.

Likewise, resourceful devices of a subscriber can be preferable storage devices for other
subscribers. However, if privacy level IV shall be reached, this is not an option, since
information about other subscribers is passed from the topic owner to another user. This
results in privacy level III.

Depending on the device distribution, and with regard to resources and the overall average
number of devices per user, one policy might be more preferable than the other.

Therefore, instead of fix protocol behaviour, SocioPath specifies a set of events and actions
with demanded outcomes (e.g. "notify all subscriber devices"). An exchangeable and
expandable Decision Engine (DE) freely defines how these events are handled and how
flexible actions are performed in order to achieve the demanded outcomes.

5.1.1 Outline of the upcoming sections and chapters

The description of the SocioPath protocol is split across next three chapters as follows:

The remainder of this chapter deals with SocioPath’s protocol design. First, SocioPath’s internal
data structures are explained, which are required for communication between two devices and
access rights enforcement. Afterwards, the fundamentals of data object delivery are explained.
Next, the details of the protocol flow are described, including with the help of the SODESSON blog
post example, which will be revisited. Section 5.6 explains additional maintenance mechanisms.
Section 5.7 deals with the decoupling of notifications and data object retrievals and and explains
how large data objects can be distributed between devices efficiently.

Chapter 6 explains how partition tolerance – one central aspect of User-Centric Networking – is
achieved. Here, consistency between device is reached by state repairs.

Chapter 7 discusses the tasks of a Decision Engine. Here, a workflow is presented with well-
defined events and actions. Each Decision Engine takes this workflow as a template, and specifies
its behaviour on these well-defined events and action. As an example, the three DEs Instant-to-All,
Offload-First and Helping-Friends are presented, where each aims at a trade-off and cover two of
the three mutually exclusive goals of resource awareness.

104 5 SocioPath: Protocol Overview

Figure 5.2: Integration of SocioPath into SODESSON

5.2 Internal Data Structures

Before the exchange of data objects in SocioPath is explained, the data structures maintained
locally on each SocioPath device have to be introduced first. This section describes these data
structures. Note that all symbols in the descriptions were defined in Section 4.3.1.

5.2.1 Devices List

The Devices List of user A holds information about all of A’s and A’s contacts’ devices. This Devices
List gets replicated on all of A’s devices. As a consequence, only devices of the same user or
mutual contacts can communicate directly with each other.

Each device a has a unique identificator DIDa which is a UUID [66]. DIDa is generated during
initial setup. It is used to address a device in SocioPath in a location-independent way, since a
locator such as a IP address and port might change over time.

Additionally, each device’s last known Communication Costs Value (CCV) is stored. The CCV is
an abstract value for indicating a device’s capability and can be interpreted by resource-aware
Decision Engines. Each device sends its current CCV to other devices in every SocioPath message,
as will be discussed in Section 5.4.

Hence, an entry for device b of user B in the Devices List on one of A’s devices has the fields
shown in Table 5.1.

5.2 Internal Data Structures 105

Table 5.1: Fields of an Devices List entry

Data type Field name Description

UID userId UIDB, as defined in Section 4.3.1, who controls device b

DID deviceId DIDb of the device b

Locator deviceLocator Underlay network locator, e.g. IPv6 address and UDP port

Integer ccv Last known Communication Costs Value (CCV)

5.2.2 Own Topics List

The Own Topics List on a device of user X holds information about all topics X is owner of. Each
topic t in this list is identified by its title titlet only, since the topic owner TOt is trivially X himself.

The access rights per topic t are defined by three lists which hold the UIDs of Pt , At and St

respectively.
X can change Pt and At on any device he controls and changes get synchronized with his other

devices by publishing the respective data. When the corresponding data object arrives at the
other topic owner devices, these check if the data object’s timestamp is newer to the lastUpdate
timestamp. This ensures sure that obsolete changes that arrive at the device delayed do not
overwrite newer entries. The lastUpdate timestamp is updated accordingly.

As discussed in Section 4.3.3.2, the application can optionally pass a targeted privacy level,
according to the privacy model in Section 3.6.2.

Hence, an entry for topic t has the fields displayed in Table 5.2.

Table 5.2: Fields of an Own Topics List entry

Data type Field name Description

String topicTitle Topic title titlet

Array<UID> allowedPubs UID list of allowed publishers P

Array<UID> allowedSubs UID list of allowed subscribers A

Array<UID> subscribers UID list of subscribers S

Enum privacyLevel (Optional:) Privacy level as defined by the application

Integer lastUpdate Last update timestamp

The Own Topics List is replicated on each device of user X .

5.2.3 Subscriptions List

The Subscriptions List on a device of user A holds information about all topics A is subscribed
to. This list includes all topics A is topic owner of, as well as topics that other users own. The
Subscriptions List acts as a filter for incoming data objects to decide whether the data object
is relevant for the user and gets entered into the Local Data Storage. More importantly, this

106 5 SocioPath: Protocol Overview

information is required for STATE exchanges which is a building block to partition tolerance (see
Chapter 7).

An entry for topic t in the Subscriptions List has the following fields:

Table 5.3: Fields of a Subscriptions List entry

Data type Field name Description

String topicTitle Topic title titlet

UID topicOwner UIDTOt

Note that the Subscriptions List is different from the App Manager in SODESSON. The Subscrip-
tions List is synchronized across all devices of the same user and is independent from running
applications on the device. The App Manager on the other hand holds a mapping between
applications and topics via the application handles. Such a mapping is created / deleted via the
application interface methods registerApp / unregisterApp.

5.3 Fundamentals of Data Object Delivery

In this section, the fundamentals for data object delivery in SocioPath are described. These consist
of the following points:

• Basic delivery process: a short overview on how a data object is delivered. This will be
further elaborated in the sections about implementation (Section 5.4) and an example
workflow (Section 5.5).

• Maintenance topics: maintenance communication between devices in SocioPath, such as
requesting a new subscription or introducing a new device into the UCN, is handled in the
same way as a data objects published by an application. The maintenance information is also
a data object and the users of the devices which require that information, are subscribers of
a specific maintenance topic.

• Encryption: a sketch about how the information that SocioPath devices hold can be used
for encrypted transmission via unsecure networks.

5.3.1 Basic delivery process

Initially, a data object gets created by an application on publishing device a1 and passed down to
the SODESSON middleware via the application interface (see Section 4.3). In SocioPath, each
published data object δt shall be delivered to the full device pool Dδt

(see Section 3.1 for the
notation), i.e. the following devices:

• all devices of the publisher

• all devices of the topic owner

5.3 Fundamentals of Data Object Delivery 107

• all devices of all subscribers

The list of subscribers is held in the Own Topics List of the topic owner’s devices. Thus, a
published data object first needs to be delivered to at least one topic owner device before it can
be delivered to the subscribers, i.e. a topic owner device needs to forward (and thus deliver) the
data objects to subscriber devices.

As soon as a device b of user B receives a data object, it checks for the following requirements:

• Publishing rights: (only if B is topic owner) The data object’s publisher must be an allowed
publisher, according to the Own Topics List on b

• Relevance: B must be either a subscriber of the data object’s topic (according to the
Subscriptions List on b) or a topic owner.

• Non-Obsoleteness: if the notification already exists in the Local Data Storage (according
to topic and object ID), the publish timestamp of the incoming data object gets checked.
If that timestamp is older than the timestamp of the notification that already exists in the
Local Data Storage, the incoming notification gets discarded.

If all three requirements are fulfilled, the data object is entered into Local Data Storage if
no entry with the respective topic and object ID exists yet. If it already exists and the publish
timestamp of the data object is newer than the existing one’s, the existing entry gets updated with
the new data.

Note that the data object does not only get delivered to subscribers, but to all devices of all
closed group members: publisher, topic owner and subscribers. All of these store the data object
into their Local Data Storage. This is a straightforward approach to achieve redundancy, since
only these devices are eligible as provider devices for self-sufficient U2U communication. By
doing so, all these devices can deliver missed data objects to other formerly unavailable devices
during STATE exchanges (see Chapter 6).

Since a data object shall be delivered to all of a user’s devices, it has to be decided which device
sends the NOTIFYReq message to which device. Solving this resource-driven problem is the task of
the resource-aware Decision Engine. Similarly, if multiple devices already hold a data object, they
are a potential source for delivering the data object to another device.

Figure 5.3 shows an example how data object delivery can be solved in two different ways.
Assume that A is the topic owner, B is an allowed publisher and C is a subscriber. b1 now publishes
a new data object. In Figure 5.3a, b1 sends the NOTIFYReq message to a1, a2 and b2 by itself. b1

cannot send the NOTIFYReq message to c1 since B is not the topic owner and thus does not know
that C is a subscriber. Instead, both a1 and a2 as topic owner devices each send the NOTIFYReq

message to c1. This is a unnecessarily redundant, but simple approach, since no coordination
between a1 and a2 is done here.

In Figure 5.3b, a more resource-aware policy is used. Assume that a1 has more resources than
b1. b1 offloads the NOTIFYReq message to a1, whereas a1 sends the NOTIFYReq message to the
remaining devices.

108 5 SocioPath: Protocol Overview

(a) Device b1 sends NOTIFYReq messages to all pub-
lisher and topic owner devices by itself

(b) Device b1 sends NOTIFYReq message to a1 only, a1

sends NOTIFYReq message to the remaining devices

Figure 5.3: Two possibilities for delivering a data object

Data transportation

SocioPath is an overlay protocol on ISO/OSI Layer 7. Due to the request-response communication
pattern, it offers an acknowledged service: if the sending device of the request receives a response,
it knows that the request message arrived. The sending device of the response does not directly
know if it arrived.

There are no direct retransmissions. Instead, lost messages are handled by state repairs (see
Chapter 6).

In its current design, SocioPath is agnostic of the underlying transport protocol. It merely
assumes that there is a generic device locator, e.g. IPv6 address and TCP port. There is no defined
upper limit for message sizes.

5.3.2 Maintenance Topics

Maintenance topics are used to keep the data structures Contact Lists, Device Lists, Own Topics
Lists, and Subscriptions Lists up-to-date, since these have to adapt to constant changes: For
example, if a user subscribes to a topic, all of his devices have to update the Subscriptions List
and all the topic owner’s devices have to update their Own Topics Lists. If two users add each
other as a new contact, the devices of both users have to update their Contact Lists, and so on.

Maintenance topics are a result of re-using SODESSON’s publish/subscribe mechanism for
distributing maintenance updates via the DDP. The only difference is that data objects are not
created by an application but internally by SocioPath itself. It is a straightforward solution to use
the very same mechanisms as for new data objects from applications. Therefore, maintenance
data objects also get stored in the Local Data Storage.

For each use-case that affects maintenance data structures, suitable maintenance topics are
defined on a per user-basis (e.g. t1 = {"OwnTopics", A}, t2 = {"OwnTopics", B}, . . .) and the
access rights are set accordingly: For example, changes in the Own Topics List are only meant for
the topic owner himself. Adding a new device is also relevant information for all his contacts, so
a new data object published by one of these contacts reaches the new device as well.

5.4 Protocol Flow Details 109

Depending on the maintenance topic, updates are only for the topic owner himself or for the
topic owner and his contacts. In the latter case, these contacts are subscribers for the respective
maintenance topic. The topic owner’s Own Topics List gets filled accordingly.

5.3.3 Encryption

Due to self-sufficiency, each data object only touches provider devices that are controlled by users
that are allowed to read that data object. However, transmission of the data object may still take
place via unsecure networks. On the networking layer, end-to-end encryption is still required to
keep the data object confidential from third parties.

By the combination of channel encryption and self-sufficiency, content data confidentiality
(see Section 2.3.1) for the closed group can be established: channel encryption achieves that
infrastructure providers cannot read any data objects during delivery. Self-sufficiency achieves that
third-party application providers cannot read any data objects, because third-party application
providers are not involved in the delivery process.

In SocioPath, only devices of contacts are held in the Devices List, hence only devices of contacts
communicate with each other. Furthermore, every device holds the private and public key of
the owner and the contacts’ public keys in the Contact List. This makes all encryption processes
straightforward and besides content data confidentiality, content data integrity can be achieved.
Given that the following prerequisites are fulfilled for two devices a and b of two contacts A and
B:

• a and b can communicate with each other (via SocioPath’s Device List)

• a (b) holds B’s (A’s) public key (via SODESSON’s Contact List)

• a (b) holds A’s (B’s) private key (via SODESSON’s Contact List)

Then a and b are able to perform asymmetrically encrypted communication on behalf of A and
B. For performance reasons, a and b could also use their public key infrastructure to negotiate a
symmetric key. Establishing the actual encryption process under these prerequisites is a solved
problem by proven state-of-the-art security protocols. This issue is not further discussed here.
For example, in order to secure a communication channel between two devices, Transport Layer
Security (TLS) [23] or Datagram Transport Layer Security (DTLS) [83] can be used.

5.4 Protocol Flow Details

This section covers technical details about the protocol flow and most important message types in
SocioPath that are required for successful data object delivery. These details are the basis for a
later implementation.

5.4.1 General properties of messages

All messages in SocioPath are exchanged in a request-response pattern between two devices that
hold each other in their Devices Lists. This means that each unsolicited message (request) from

110 5 SocioPath: Protocol Overview

one device a to another device b shall be answered by b with a corresponding response. Each
request message contains a nonce field which is filled by the sender with a random integer value.
This nonce is read by the receiving device and copied into the nonce field of the corresponding
response. When a device that has previously sent a request, gets this response, it can associate it
to the formerly sent request. Until the response arrives, the requesting device saves the request
and keeps its field contents. This way, no fields need to be redundantly repeated by the response,
except for the nonce. The response acts at least as an acknowledgment from the device for having
received the request.

Each message has one field to identify the sender user and one field to identify the sender
device respectively. With these fields, the receiver can first identify the sending device by its DID.
If the sending device’s DID is unknown to the receiver (e.g. because the sender user has a new
device), it still can associate the message to the correct contact by the UID field.

Additionally, each message has one field for the receiver device id which is filled by the sender.
If a device receives a message that does not match its own DID, it discards the message, since it is
not the intended receiver. This can happen e.g. due to changing IP addresses. In this case, no
response is sent to the sender. This way, the sender device notices that the device it wanted to
reach is not available.

Lastly, each device communicates its own capability in form of an abstract Communication
Costs Value (CCV). The interpretation of this value is left to resource-aware Decision Engines.

Table 5.4 displays all general fields that are set in every message, whether request or response.
Table 5.5 shows an overview on all message types in SocioPath, including the section in this

chapter with detailed explanations.

Table 5.4: General fields inside every SocioPath request and response message

Data type Field name Description

8 bit Unsigned Integer messageType Message Type ID (see Table 5.5)

UID senderUserId UID of the user who owns the device that sends the
message

DID senderDeviceId DID of the device that sends the message

DID receiverDeviceId DID of the device that receives the message

Integer msgNonce Nonce for identifying according response to a request

Integer senderDeviceCCV Sending device’s Communication Costs Value (CCV)
for usage by resource-aware Decision Engines

Integer stateNonce Required to distinguish new notifications from re-
sends of old ones during a state repair. State repairs
are discussed in Chapter 6.

5.4.2 Messages for Data Object Delivery

This messages presented in this section offer a basic form of data object transport without
decoupling notifications and data objects yet. Decoupling was already discussed for SODESSON

5.4 Protocol Flow Details 111

Table 5.5: Overview on message type IDs

Message Type ID Name Section

1 NOTIFYReq 5.4.2 / 5.7.2

2 NOTIFYRsp 5.4.2 /5.7.2

11 RETRIEVEReq 5.7.3

12 RETRIEVERsp 5.7.3

21 NEWCONTACTReq 5.6.3

22 NEWCONTACTRsp 5.6.3

31 STATEReq 6.3

32 STATERsp 6.3

(Section 4.3.6) and will be later discussed for SocioPath (Section 5.7). The basic form of delivery
which is described here gets extended there.

NOTIFYReq and NOTIFYRsp messages types: If decoupling is not used, these message types are
used for data object forwarding and delivery, i.e. the data content is piggybacked in the message.
When decoupling, these message types are used for notifications about a published data object
without the content.

In SocioPath, data objects can be transported via NOTIFYReq messages. For the sake of simplicity,
the general concept of delivering data objects is now explained by NOTIFYReq messages only, i.e.
it is assumed that all data objects are piggybacked. Additionally, only basic fields of a NOTIFYReq

message are explained for now.

The fields of a NOTIFYReq for a data object δt and corresponding NOTIFYRsp message (in addition
to the general message fields in Table 5.4) are displayed in Tables 5.6 and 5.7.

The NOTIFYRsp contains a general purpose "ok" boolean flag which can be used differently e.g.
depending on the topic. As an example, the maintenance topic SubscribeMe makes use of the flag
(see Section 5.3.2).

112 5 SocioPath: Protocol Overview

Table 5.6: Basic fields inside a NOTIFYReq message

Data type Field name Description

String topicTitle Topic title of t (titlet)

UID topicOwner UID of the topic owner of t (UIDTOt
)

Integer objId Object ID of δt (OIDδt
)

Integer publishTime Timestamp when data object was published. Used together with objId
to uniquely identify the data object (see Section 4.3.1) and recognize
obsolete notifications (see Section 4.3.7).

BinaryData dataContent Holds the data object’s content.

Integer ttl Time-to-live for δt in seconds since the publish timestamp, see Section
4.3.5 about the Local Data Storage for details.

UID publisherUserId User ID of the data object’s publisher. Used to identify the original
publisher, since this field can differ from senderUserId.

Boolean forward This flag indicates to the Decision Engine whether the receiving device
is asked to forward the NOTIFYReq message to other devices.

Table 5.7: Fields inside a NOTIFYRsp message

Data type Field name Description

Boolean ok General purpose for ACK / NACK

5.4.3 Maintenance Topics

A maintenance data structure is updated via NOTIFYReq messages with the according data in the
dataContent field. Table 5.8 gives an overview on the different maintenance topics.

The case for updating the Own Topics List as well as the Subscription Lists is discussed in this
section. Updating Contact List and Devices List will be discussed separately in Section 5.6.

Creating a New Topic

Section 4.3.3.2 described how the SODESSON middleware handles the creation of a new topic.
Specifically, the definition of allowed publishers and allowed subscribers had to be sent from the
topic owner’s device to a provider device which is responsible for access rights control. They hold
the information about allowed publishers, allowed subscribers and subscribers.

In SocioPath, these devices are the topic owner’s devices themselves. This is the result that
in User-Centric Networking only the topic owner’s devices hold the information about allowed
publishers, allowed subscribers and subscribers and therefore must be responsible for access
control.

Therefore, the topic owner device a1 where the topic owner A has created and defined the sets
of allowed publishers and allowed subscribers must publish this information as a data object with

5.4 Protocol Flow Details 113

Table 5.8: Maintenance Topics

Topic Title Allowed Publishers Subscribers Description

OwnTopics Topic Owner Topic Owner For updates in the topic
owner’s Contact List. See
Sections 5.5.1 and 5.5.2)
for details.

OwnSubscriptions Topic Owner Topic Owner For updates in the topic
owner’s Subscriptions
List. See Section 5.5.2
for details

SubscribeMe Topic Owner
Contacts

Topic Owner For subscribing to a topic:
Contacts publish to this
topic, topic owner as the
only subscriber gets noti-
fied. See Section 5.5.2 for
details for details

UnsubscribeMe Topic Owner
Contacts

Topic Owner For unsubscribing from
a topic: Contacts pub-
lish to this topic, topic
owner as the only sub-
scriber gets notified. See
Section 5.5.2 for details
for details

OwnContacts Topic Owner Topic Owner For updates in the topic
owner’s Contact List. See
Section 5.6.3 for details.

Devices Topic Owner Topic Owner
Contacts

For changes in the topic
owner’s device pool, up-
dates the topic owner’s
and his contacts’ Devices
Lists. See Section 5.6.2
for details.

114 5 SocioPath: Protocol Overview

the maintenance topic {"OwnTopics", A}. As discussed in Section 5.3.2, A is the only subscriber
and allowed publisher for this maintenance topic.

The content of the data object is a serialization of the new topic’s title, the set of allowed
publishers, the set of allowed subscribers and the optional privacy level.

The objId of the data object is a hash over the new topic’s title. If the access rights of the new
topic need to be updated later (e.g. a new allowed subscriber shall be added), then an update,
i.e. a new data object with the same objId and a newer timestamp must be published. By using
the hash, the objId can be easily reproduced, as long as the topic title stays the same. The objId
does not have to be stored in a separate data structure.

Since A is a subscriber, this data object must be delivered to all devices of A. If a1 is the only
device of A, nothing else has to be done and the topic creation is finished.

Subscribing

Subscribers in SocioPath are maintained in the Own Topics List of the respective topic owner’s
devices. If a contact B of the topic owner A wants to subscribe to A’s topic t, B needs to publish a
data object with A’s maintenance topic {"SubscribeMe", A}. If B is an allowed subscriber, A’s topic
owner devices enter B as a subscriber into their Own Topics List and the requesting device gets a
positive (otherwise negative) response.

The content of the data object is the topic title that B requests to subscribe to.
The objId of the data object is a hash over the new topic’s title and the requesting subscriber

(here: B). By hashing this combination, subscriptions of two differents users for the same topic
yield different objIds. Likewise, subscriptions of the same user for two different topics yield
different objIds. Note that all subscription requests for topics where A is topic owner result in
data objects for the topic {"SubscribeMe", A}, therefore it has to be ensured that two parallel
subscriptions do not overwrite each other. Hashing over topic and user is a simple way to achieve
this.

Since A is subscriber of {"SubscribeMe", A}, this data object must be delivered to all devices of
A.

For each NOTIFYReq message the requesting device b sends to a topic owner device a, b receives
a NOTIFYRsp message from a. If B belongs to the allowed subscribers according to a’s Own Topics
List, the ok flag in the NOTIFYRsp message is set to true, otherwise to false. If b receives at least
one true ok, b enters the subscribed topic into its Subscriptions List.

Finally, if b at least one true ok, it is passed to the App Manager, which notifies the subscribed
application about the successful subscription.

A special case can occur where A set B as an allowed subscriber (e.g. on a1), but the information
has not propagated to a2 yet. In this case, the subscription request would be falsely denied by
a2. Here, a1 and a2 need to synchronize first by state repairs (see Chapter 6). It is up to the
application to retry subscription requests.

After successfully subscribing, the Subscriptions Lists of user B (the subscriber) needs to be
updated on all of his devices. This update is done by a data object with the maintenance topic
{"OwnSubscriptions", B}. Here, B is the topic owner and the only subscriber and allowed publisher.
The NOTIFYReq message has the following field values.

5.4 Protocol Flow Details 115

The content of the data object is a serialization of the formerly subscribed topic title and its topic
owner’s UID. The objId of the data object is a hash of said serialization. Note that all Subscription
List updates results in data objects for the topic {"OwnSubscriptions", B}, therefore it has to be
ensured that two different entries for the Subscriptions List do not overwrite each other. This is
achieved by the hash.

After each device of B has received the NOTIFYReq message, it updates its Subscriptions List
accordingly.

Unsubscribing

Unsubscribing works analogously to subscribing. The main difference is the topic being used by
b1 for the unsubscription, which is "UnsubscribeMe". Also, a topic owner device always responds
with a NOTIFYRsp message with ok set to true, regardless whether B is actually subscribed to the
topic in question or whether the topic even exists. The rest of the process is similar to subscription:
the topic owner devices have to update their Own Topics Lists and the devices of the unsubscribing
user have to update their Subscriptions Lists.

5.4.4 CCV and Forward Flag

This section discusses the two properties CCV and forward flag, that each SocioPath message
offers to Decision Engines. These properties can be used to reduce NOTIFYReq and NOTIFYRsp

strain on a single device.
Figure 5.4 shows a situation with topic owner A and an allowed publisher B that publishes a

data object on his device b1. The three devices of topic owner A must receive that data object.
Two possibilities are shown: in Figure 5.4a, b1 sends the NOTIFYReq messages to all three topic

owner devices by itself and receives in turn three NOTIFYRsp messages. In Figure 5.4b, b1 sends
the NOTIFYReq message to a2 only, while a2 sends the NOTIFYReq message to the remaining devices
of A. Here, b1 receives only one NOTIFYRsp message.

In the second case, b1 only has to deal with two messages instead of six in total. Instead, the
majority of the work is offloaded to a2 which has earlier announced its CCV to all devices it knows,
including b1. Due to a2’s low CCV, b1 has chosen a2 as the only target device and set the forward
flag in the NOTIFYReq message to ask a2 to deliver the message to the other devices of A.

The same issue can also arise if there is only one user involved. Assume that topic owner A
uses her device a1 to create a new topic. If there are other topic owner devices (a2, a3, . . .), the
maintenance data object must be delivered to all these devices of A. a1 selects at least one other
device from its Device List and sends a NOTIFYReq message holding the data object to this device
selection. This selection is trivial if there is only one other device a2.

However, if there are three or more topic owner devices, there are multiple possibilities. Figure
5.5 shows two possibilities in an example: in Figure 5.5a, a1 sends the NOTIFYReq messages all by
itself to {a2, . . . , a5}. In Figure 5.5b, a1 offloads the NOTIFYReq message to a2, with the forward
flag set to true. This makes a2 send the NOTIFYReq message to the remaining devices. A reason
for this offloading might be the communication costs according to the device’s CCV. If a1 has
higher communication costs than a2, it is cheaper for A to let a1 send only one NOTIFYReq message
instead of four NOTIFYReq messages and leave the rest to a2.

116 5 SocioPath: Protocol Overview

(a) Device a1 sends NOTIFYReq messages to all
other devices by itself

(b) Device a1 offloads NOTIFYReq message to a2

first, a2 sends NOTIFYReq message to the re-
maining devices

Figure 5.4: Two possibilities for the publishing device to notify the topic owner devices

Clearly, resource-awareness is required for solving this problem, therefore the task of interpreting
CCVs and reacting accordingly is left to the Decision Engine. Solutions to this problem are discussed
in Chapter 7.

5.5 Example Workflow of Data Object Delivery

In Section 4.3.3, the publishing of a data object was described with the help of an example. That
example contained four steps:

(1) Binding an application to SODESSON

(2) Creating a new topic

(3) Subscription

(4) Publishing a new data object

The first step can be ignored in the scope of a DDP, since that step is solely executed between
application and middleware on the same device and does not involve inter-device communication.
The steps for topic creation, subscription and publishing / delivering a data object shall here be
discussed for SocioPath. The steps will be explained with the help of the blog post example that
was already used for explaining data object delivery between applications and the SODESSON
middleware on the same device.

5.5.1 Creating a new topic

Section 4.3.3.2 described how the SODESSON middleware handles the creation of a new topic.
Here, user A created a new topic "App1_Blog" and defined A as an allowed publisher and {A, B, C}

5.5 Example Workflow of Data Object Delivery 117

(a) Device a1 sends NOTIFYReq messages to all
other topic owner devices by itself

(b) Device a1 offloads NOTIFYReq message to a2

first, a2 sends NOTIFYReq message to the re-
maining topic owner devices

Figure 5.5: Creating a new topic: Two possibilities for updating the topic owner devices

as allowed subscribers. Figure 5.6 is an extended version of Figure 4.3. It depicts this procedure
again and adds how SocioPath handles the steps Â to Ä with the DDP’s inter-device communication,
which was not discussed earlier.

Topic owner A uses a1 to create the topic "App1_Blog". After the application has called SODES-
SON’s updateTopic method, an entry in the Own Topics list on a1 is created with the values shown
in Table 5.9.

Step Â: Since the topic creation information is a data object with the maintenance topic
{"OwnTopics", A"}, the data object gets stored in the Local Data Storage.

Step Ã: Device a1 looks up a2 in a1’s Device List and sends a NOTIFYReq message to a2
1. The

NOTIFYReq message has the fields set as shown in Table 5.10.

Step Ä: On arrival of the NOTIFYReq message, SocioPath on a2 recognizes the maintenance
topic "OwnTopics". It deserializes the dataContent field, and creates an entry in its Own Topics list
with the same value as a1 did, as shown in Table 5.9. Additionally, the data object gets stored in
the Local Data Storage of a2.

1For the sake of simplicity, only two devices a1 and a2 are assumed. Any additional topic owner devices would receive
analogous NOTIFYReq messages.

118 5 SocioPath: Protocol Overview

Table 5.9: Creating a new topic: Own Topics List entry for "App1_Blog" (blog example)

Data type Field name Description

String topicTitle "App1_Blog"

Array<UID> allowedPubs {UIDA}

Array<UID> allowedSubs {UIDA, UIDB, UIDC}

Array<UID> subscribers {}

Enum privacyLevel 3

Integer lastUpdate 142571829

Figure 5.6: Creating a new topic: a1 updates the other topic owner device a2 (blog example)

5.5.2 Subscription

Section 4.3.3.3 described how another user subscribed to A’s topic "App1_Blog" and how this was
handled by the SODESSON middleware. Figure 5.7 depicts this procedure and adds how SocioPath
handles the sub-steps Â to Æ on the DDP layer. In Section 4.3.3.3 the DDP was abstracted and
not discussed.

Step Â: Since the topic creation information is a data object with the maintenance topic
{"SubscribeMe", A"}, the data object gets stored in the Local Data Storage of b1.

Step Ã: Device b1 looks up a1 and a2 in b1’s Device List and sends a NOTIFYReq message to each
of these. The NOTIFYReq message for a1 has the fields set as shown in Table 5.11, the NOTIFYReq

message for a2 has analogous values.

5.5 Example Workflow of Data Object Delivery 119

Table 5.10: Fields of the NOTIFYReq message on topic creation (blog example)

Data type Field name Value

8 bit Unsigned Integer messageType 1

UID senderUserId UIDA

DID senderDeviceId DIDa1

DID receiverDeviceId DIDa2

Integer msgNonce 789

String topicTitle "OwnTopics"

UID topicOwner UIDA

Integer objId hash("App1_Blog")

Integer publishTime 142571829

BinaryData dataContent "App1_Blog, {UIDA}, {UIDA, UIDB, UIDC}, 3"

Integer ttl 0

UID publisherUserId UIDA

Boolean forward false

Step Ä: The topic owner devices, i.e. A’s devices a1 and a2, now infer the following pieces of
information: B (publisherUserId) wants to subscribe (topicTitle) to a topic that A (topicOwnerUserId)
owns. The topic is called "App1_Blog" (dataContent). The topic owner device now checks in its
Own Topics List whether A is an allowed subscriber for "App1_Blog".

Step Å: Both a1 and a2 infer from their Own Topic List that B is an allowed subscriber. They send
a NOTIFYRsp message with ok = true to b1. a1 now enters "{App1_Blog, B}" into its Subscriptions
List.

Step Æ: Since b1 has received at least one NOTIFYRsp message with ok= true, a success indication
is sent to the App Manager which in turn notifies App 1 about the subscription success Ç.

Now, b1 notifies B’s other devices (here: b2) about the successful subscription, so they update
their Subscriptions List. The respective NOTIFYReq message is shown in Table 5.12.

5.5.3 Publishing a new data object

After the previous maintenance, finally the blog post is published. Similarly to the previous steps,
that data object is sent via a NOTIFYReq message to the subscribers.

Assume that user B is not only subscriber of the topic "App1_Blog @ A", but also an allowed
publisher. Non-topic owner, but allowed publisher, B publishes a new data object via his device
b1. Since only the topic owner A knows the subscribers, the data object has to be sent to the topic
owner devices first. Table 5.13 shows an example for such a NOTIFYReq message.

120 5 SocioPath: Protocol Overview

Figure 5.7: Subscribing: b1 sends a subscription request for "App1_Blog @ A" to the topic owner
devices, i.e. all of A’s devices

5.6 Additional Maintenance

This section covers additional maintenance tasks that have not been discussed so far: adding new
devices and adding new contacts. These also require publishing data objects with maintenance
topics.

5.6.1 Initial Setup

For the initial setup on the very first device a1 in DA in SODESSON, i.e. Contact List and App
Manager, see Section 4.4.2. For SocioPath, a1 is the only entry in the Devices List. The Own
Topics List contains only the maintenance topics with full access rights given to A as the topic
owner, the Subscriptions List is filled accordingly. The Local Data Storage is empty.

5.6.2 Adding new devices

If user A wants add a new device and wants to add it into his device pool DA, he has to call
the importUser method in SODESSON and import his public/private keypair first. Afterwards,
all of his other devices and those of his contacts must learn that there is a new device. This
way, NOTIFYReq messages can be sent to the new device as well. The new device a j has be to
paired with an existing device ai of A. Pairing requires that ai and a j are available for each other,

5.6 Additional Maintenance 121

Table 5.11: Fields of the NOTIFYReq message on subscribing (blog example)

Data type Field name Value

8 bit Unsigned Integer messageType 1

UID senderUserId UIDB

DID senderDeviceId DIDb1

DID receiverDeviceId DIDa1

Integer msgNonce 5678

String topicTitle "SubscribeMe"

UID topicOwner UIDA

Integer objId hash("App1_Blog", UIDB)

Integer publishTime 142573456

BinaryData dataContent "App1_Blog"

Integer ttl 0

UID publisherUserId UIDB

Boolean forward false

can locate each other and exchange data. During this pairing process, the following types of
information gets copied from ai to a j:

• Contact List

• Devices List

• Own Topics List

• Subscriptions List

The exchange is performed with BOOTSTRAPReq and BOOTSTRAPRsp messages. The BOOT-
STRAPReq has no additional fields besides the general SocioPath message fields (see Section 5.4).
The BOOTSTRAPRsp message holds arrays of serialized entries of the Contact List, Devices List,
Own Topics List and Subscriptions List respectively, as shown in Table 5.14.

Data objects in the Local Data Storage of ai are not part of the BOOTSTRAPRsp message. Instead,
they get transferred to a j via the regular STATE repair mechanism, as will be described in Chapter
6.

After receiving the BOOTSTRAPRsp message, a j introduces itself to any other devices of A and all
of A’s contacts. a j publishes its own Device List entry as a data object with maintenance topic
{Devices, A}. Both A and all of A’s contacts are subscribers to this topic, hence all of user A’s
devices and all A’s contacts’ devices receive the data object and update their Devices List.

5.6.3 Adding contacts

After two contacts have successfully added to each other’s SODESSON Contact List (see Section
4.4.3), their devices need to exchange information in SocioPath as well. One device ai of user

122 5 SocioPath: Protocol Overview

Table 5.12: Fields of the NOTIFYReq message for updating OwnSubscriptions list between b1 and b2
(blog example)

Data type Field name Value

8 bit Unsigned Integer messageType 1

UID senderUserId UIDB

DID senderDeviceId DIDb1

DID receiverDeviceId DIDb2

Integer msgNonce 9876

String topicTitle "OwnSubscriptions"

UID topicOwner UIDB

Integer objId hash("App1_Blog", UIDA)

Integer publishTime 142574963

BinaryData dataContent "App1_Blog, UIDA"

Integer ttl 0

UID publisherUserId UIDB

Boolean forward false

A has to pair with a device b j of user B. Pairing requires that ai and b j are available for each
other, can locate each other and exchange data. During this pairing process, each device sends
information about other devices of the user:

• ai → b j: Devices of A (DA)

• b j → ai: Devices of B (DB)

The exchange is performed with NEWCONTACTReq and NEWCONTACTRsp messages. Since both
messages transport the same type of information, their fields are identical. Their fields are
described in Table 5.15.

After the pairing, ai enters the devices in DB into its Devices List. Subsequently, ai publishes
this information (new contact B information and his devices) as a data object to the maintenance
topic {"OwnContacts", A}.

The content of the data object is a serialization of B’s UID, B’s alias and B’s public key, as well
as serializations of the respective Devices Lists entries.

The objId of the data object is a hash of the new contact’s UIDB. By using this hash as the objId,
two different new contacts yield two different objIds. Note that all newly added contacts result
in data objects for the topic {"OwnContacts", A}, therefore it has to be ensured that two parallel
subscriptions do not overwrite each other.

Device b j proceeds in an analogous way. Figure 5.8 sketches an example protocol flow.

5.7 Decoupling notifications and data object retrievals 123

Table 5.13: Fields of the NOTIFYReq message on topic creation (blog example)

Data type Field name Value

8 bit Unsigned Integer messageType 1

UID senderUserId UIDB

DID senderDeviceId DIDb1

DID receiverDeviceId DIDa1

Integer msgNonce 1243

String topicTitle "App1_Blog"

UID topicOwner UIDA

Integer objId 42

Integer publishTime 143656251

BinaryData dataContent "<title>We have a new dog!</ti. . . "

Integer ttl 0

UID publisherUserId UIDB

Boolean forward false

5.7 Decoupling notifications and data object retrievals

In Section 4.3.6, it was described how SODESSON supports the decoupling of a data object’s
metadata and its actual content. By doing so, a resource-aware device can in a first step learn
about the existence of a new object (indicated by a small notification including topic, size, etc.)
and then decide on its own whether to retrieve the data object’s content. The reason for this
decoupling is resource awareness. For example, a user would not want to download a video file
on his smartphone if it is restricted in storage space and has a volume-based mobile connection,
especially if he never consumes videos on his smartphone.

SocioPath supports this decoupling. Published data objects which exceed a certain size are at
first indicated by a notification which is pushed to each subscriber device. The respective size

Figure 5.8: Adding contact procedure

124 5 SocioPath: Protocol Overview

Table 5.14: Fields inside a BOOTSTRAPRsp message. Message is sent from device ai by user A.

Data type Field name Description

8 bit Unsigned Integer messageType Message Type ID (see Table 5.5)

Array<ContactListEntry> contacts Full Contact List as stored on ai , including their UIDs,
public keys and aliases

Array<DeviceListEntry> devices Full Devices List as stored on ai , with A’s and A’s
contacts devices. Each entry includes the device’s
owner’s UID, the device’s DID and the device’s locator

Array<OwnTopicsEntry> ownTopics Full Own Topics List of A as stored on ai . Each entry
includes the topic title, allowed publishers, allowed
subscribers and subscribers.

Array<Topic> subscribedTopics Full Subscribed Topics List of A as stored on ai . Each
entry includes the topic title, allowed publishers,
allowed subscribers and subscribers.

Table 5.15: Fields inside a NEWCONTACTReq/ NEWCONTACTRsp message. Message is sent from device
ai by user A.

Data type Field name Description

Array<DeviceListEntry> devices Devices List entries of the user of the sending device. Each
entry includes the device’s owner’s UID, the device’s DID
and the device’s locator

limit is to be configured in SocioPath’s Decision Engine (DE). Based on the metadata in this
notification, either the user / application or the DE can decide whether to retrieve the actual data
object.

The decoupling in SocioPath is established by four different message types: NOTIFYReq / NO-
TIFYRsp and RETRIEVEReq / RETRIEVERsp. For small data objects the overhead of an additional
RETRIEVE message exchange might be higher than the size of the data object itself. In such a
case, the data content can be piggybacked inside the dataContent field of the NOTIFYReq. This
is exactly what happened when the steps of publishing a data object were revisited in Section
5.5. Again, it is up to the Decision Engine on the device sending the NOTIFYReq message to decide
whether to piggyback the data content.

In Section 5.3, it was established that each published data object δt shall be delivered to the
full device pool Dδt

.

Decoupling relaxes this requirement: only notifications shall be delivered to these devices. If
the data object content is not piggybacked, each device can autonomously decide whether to
retrieve the content.

The decoupled process for delivering data objects will be discussed with an introductory
example (Section) and afterwards for notifications (Section 5.7.2) and retrievals (Section 5.7.3)
respectively.

5.7 Decoupling notifications and data object retrievals 125

One challenge lies in the selection of source devices that should be disclosed to subscribers by
the topic owner. This selection has to comply with the demanded privacy level. This problem is
discussed in Section 5.7.4.

5.7.1 Decoupling example

In this section, an introductory example for decoupling is shown. The example shows how devices
can act differently in the same situation, based on their DE’s behaviour. In the following, all
names in blue are Decision Engine events. This indicates a situation where the Decision Engine
has to decide how its device should proceed. Decision Engine events are discussed in detail in
Chapter 7.

Figure 5.9 outlines two typical sequences of NOTIFYReq / NOTIFYRsp and RETRIEVEReq / RE-
TRIEVERsp, respectively. Topic owner and allowed publisher A has published a new data object
on device a1. B and C are subscribers. The Decision Engine gets informed about this Publish-
FromApp event and enforces the sending of NOTIFYReq messages toDA = {(a1), a2},DB = {b1} and
DC = {c1}. Upon arrival, each device instantly sends a NOTIFYRsp message as an acknowledgment.

In Figure 5.9 (a) the data object content is piggybacked in the NOTIFYReq messages and no
further action is needed on a1 or a receiving device (a2, b1, c1). This is analogous to the previous
discussion of publishing a data object in Section 4.3.3.4.

In Figure 5.9 (b) the data content is not piggybacked and the NOTIFYReq indicates that the
notified devices have to retrieve the data content. The Decision Engine on device c1 is informed
about this by the RetrieveRequired event and deems it acceptable to instantly retrieve the data
content and enforces sending a RETRIEVEReq to a1. The Decision Engine on a1 in turn decides to
accepts this request and denotes this with a positive RETRIEVERsp.

Due the positive RETRIEVERsp, a1 initiates the file transfer with c1. The actual data transfer is
not performed by the SocioPath protocol, but instead by a state-of-the-art file exchange protocol
such as PPSPP , a peer-to-peer streaming protocol which can also be used for static files. The
RETRIEVEReq/ RETRIEVERsp is thus only a resource-aware negotation whether file exchange is
currently acceptable.

Some time later, the Decision Engine on b1 decides to enforce sending RETRIEVEReq to a1. A
possible reason for this could be the change from a mobile connection to free WiFi. a1 however
declines via a RETRIEVERsp (e.g. because it exceeded its data volume by providing the data content
to c1) and no data object content is delivered to b1 at that time. This can be dealt with in several
ways: The Decision Engine on b1 can periodically send a RETRIEVEReq to a1, but if a1 declines
every time, b1 will never retrieve the data content. Instead, a1 could notify b1 that c1 is another
potential source.

The example shows that large parts of the protocol behaviour are tied to the DE. Hence, the
design of the Decision Engine has a strong impact on how SocioPath behaves and performs in
certain situations. The main protocol invariants of SocioPath are the different message types as
well as the specification of fix events every Decision Engine has to react to.

126 5 SocioPath: Protocol Overview

(a) Example sequence diagram for NOTIFY message flows

(b) Example sequence diagram for NOTIFY and RETRIEVE message flows

Figure 5.9: Sequence diagram for NOTIFY and RETRIEVE. Decision Engine events are denoted in
blue.

5.7 Decoupling notifications and data object retrievals 127

5.7.2 Notifications

In Section 5.4.2 and Table 5.6, a basic version of the NOTIFYReq message was introduced. In that
basic version all data content was piggybacked inside the NOTIFYReq message itself.

For notifications decoupled from the data object content, these have to be extended with
additional fields.

Extended notification messages

The extended version of a NOTIFYReq message (in addition to the general message fields in Table
5.4) is displayed in Table 5.16. The fields printed in bold are new compared to the basic version.
The field dataContent is not new, but now has one of two different functions, depending on
whether the retrieveRequired boolean flag is set to true or false.

Table 5.16: Additional fields inside a NOTIFYReq message.

Data type Field name Description

String topicTitle Topic title of t (titlet)

UID topicOwner UID of the topic owner of t (UIDTOt
)

Integer objId Object ID of δt (OIDδt
)

Integer publishTime Timestamp when data object was published. Used together with
objId to uniquely identify the data object (see Section 4.3.1) and
recognize obsolete notifications (see Section 4.3.7).

Integer contentSize Data object content size in bytes. This information helps the
Decision Engine of b1 to decide if and when to retrieve the data
object – unless it is already piggybacked by the sender.

Boolean retrieveRequired Flag that indicates whether the data object must be retrieved
(true) or was piggybacked (false).

BinaryData dataContent If retrieveRequired = false: holds the data object’s content (pig-
gybacked). If retrieveRequired = true: holds additional infor-
mation about the data object for the file exchange protocol.

Integer ttl Time-to-live for δt in seconds since the publish timestamp, see
Section 4.3.5 about the Local Data Storage for details.

UID publisherUserId User ID of the data object’s publisher. Used to identify the original
publisher, since this field can differ from senderUserId.

Boolean forward This flag indicates to the Decision Engine whether the receiving
device is asked to forward the NOTIFYReq message to other devices.

Array<DID> sources List of devices that are known to the device which sends the
NOTIFYReq message to hold the data object’s content. At least
the device on which the data object was originally published,
is entered here.

128 5 SocioPath: Protocol Overview

Sending and handling notifications

Each device that sends a NOTIFYReq message and holds the data object’s content can decide
whether to piggyback the data object. This decision is the task of the sending device’s DE. The
fields retrieveRequired and dataContent are set accordingly:

• If piggybacked: retrieveRequired = false and dataContent holds the data object’s content

• If not piggybacked: retrieveRequired = true and dataContent holds additional information
about the data object for the file exchange protocol which handles the actual file transfer,
e.g. a data identifier.

The second point needs some explanation: the actual data transfer not executed by SocioPath
itself. Instead, the transfer needs to performed by a state-of-the-art file exchange protocol. That
protocol should support downloads from multiple sources and can handle intermittent device
unavailabilities. One example protocol that solves this problem is PPSPP . Here, the publishing
device would initially seed the data object as a file. PPSPP would return a Merkle root hash as a
unique file identifier which the publishing device can store in its Local Data Storage as a reference
and send to other devices via the dataContent field in the NOTIFYReq message.

A device which receives the NOTIFYReq message, evaluates the value of retrieveRequired. If true,
the Decision Engine is triggered accordingly with the RetrieveRequired event. The Decision
Engine can now decide if, when and from what source(s) to retrieve the data object’s content.
Alternatively, if there are subscribed applications running on the device, the SODESSONretrieve
method can be called by the application (see Section 4.3.6).

5.7.3 Data object retrievals

After a device a1 has notified another device b1 about a data object δt and δt was not piggybacked
inside the NOTIFYReq message, b1 can decide to retrieve it – either by an application request via
SODESSON’s retrieve method or due to an according Decision Engine’s decision.

As soon as the Decision Engine decides to retrieve δt , it has to select one or more source
devices. Source devices were inferred from previously received NOTIFYReq messages and stored
in the sources field of the Local Data Storage entry.

The retrieval is requested by an RETRIEVEReq message which the requesting device sends to any
known source device. This fields of this message are used to uniquely identify the requested data
object.

The source device sends a RETRIEVERsp message with a boolean requestAccepted field. If true, the
requesting device may initiate the data transfer with the responding device via the file exchange
protocol. To this end, SocioPath passes the locator of the sources to that protocol plus any required
information it has learned earlier from the dataContent field of a NOTIFYReq message.

5.7.4 Source management

The challenge that SocioPath has to solve is the selection of source devices – depending on the
given privacy level, not all sources may be disclosed to subscribers. If privacy level IV (see Section

5.7 Decoupling notifications and data object retrievals 129

Table 5.17: Additional fields inside a RETRIEVEReq message.

Data Type Field name Description

String topicTitle Topic title of t (titlet)

UID topicOwner UID of the topic owner of t (UIDTOt
)

Integer objId Object ID of δt (OIDδt
)

Integer publishTime Timestamp when data object was published. Used together with objId to
uniquely identify the data object (see Section 4.3.1) and recognize obsolete
notifications (see Section 4.3.7).

Table 5.18: Additional fields inside a RETRIEVERsp message.

Data Type Field name Description

Boolean requestAccepted if true: data transfer may be initiated

3.6) is targeted, i.e. topic owner A does not want subscriber B to know that C is also a member
of the closed group and vice-versa. Thus, a topic owner device must pre-select the sources it
announces to another device.

Source pre-selection by the topic owner

When a topic owner device needs to send a notification to a subscriber device, it pre-selects
the sources it adds to each individual NOTIFYReq messages. It only announces devices that the
subscriber device may learn about, depending on the privacy level:

• Privacy level III:

– devices of the topic owner

– devices of the publisher

– devices of the all subscribers

• Privacy level IV:

– devices of the topic owner

– devices of the publisher

– devices of the same subscriber

Announcing additional sources

The topic owner can only add devices it knows to be sources. At least the publishing device is one
source.

As soon as a subscriber device has successfully retrieved the data content (or parts thereof, if
the file exchange protocol supports it), it can be used as source for other devices. The topic owner
must be informed about this.

130 5 SocioPath: Protocol Overview

Hence, after a successful retrieval the device simply has to send a notification about said data
object to the topic owner devices and add itself to the sources field of the NOTIFYReq message. The
topic owner handles this notification like every other notification and sends new notifications
to all other subscriber devices, each with pre-selected source as described above. Each device
merges the new source with the existing sources with the entry in their Local Data Storage.

There are two optimizations possible here. First, a notification only needs to be sent to a
subscriber device if the subscriber device may learn about the new source. Second, a notification
only to needs to be sent to devices that are not sources yet, since new sources are irrelevant for
devices that have already retrieved the data object.

An example is displayed in Figure 5.10 (a). Here, a1 of topic owner A publishes a new data
object and sends a NOTIFYReq with a1 (itself) as the only source to all subscriber devices (b1,
c1, c2). Then, c2 sends a RETRIEVEReq to a1 and the data transfer via PPSPP is initiated. c2 now
announces itself to the topic owner devices (here: a1) as a new source. a1 sends a new NOTIFYReq

to c1, announcing (a1, c2) as the new sources.
In this case, A does not want B to learn that C is also a subscriber. When c2 now announces

itself as new source, a1 announces this new source only to c1, but not to b1.

Unknown sources for the subscriber

At least the publishing device is one source the topic owner can always announce. However, if
publisher and subscriber are not contacts, the subscriber’s device does not have an entry for the
publishing device in its Device List. In this case, the subscriber requires at least one other source
to retrieve the data object.

An example for this situation is also displayed in Figure 5.10 (b). Assume that B and C are
not contacts. Note that A is unaware of this, since A does not know the Contact Lists of B and C .
A accepts that B learns that C is also a member of the closed group and vice-versa. Therefore,
topic owner device a1 announces c1 as a source to b1. Since in SocioPath only devices of contacts
can communicate with each other, the DID of c1 is unknown to b1, i.e. the announced source is
useless for b1. The same applies when a1 announces c2 to b1. Only when a1 has started the data
content retrieval by itself and announces itself to b1, b1 has a valid source now.

5.8 Conclusion

This chapter introduced SocioPath, a Data Dissemination Protocol (DDP) for the SODESSON
middleware. Section 5.1 gave an overview on SocioPath’s main features. These are realization of
the central aspects in User-Centric Networking: self-sufficiency, partition tolerance and resource
awareness. This chapter focused on the first of these three aspects and described how self-sufficient
data exchange is generally enabled by SocioPath.

First, SocioPath’s data structures were described in Section 5.2. As a basis for self-sufficiency,
each device holds a list of all devices of all contacts and can thus communicate directly with
them. Based on these data structures, the fundamentals of data object delivery in SocioPath
was explained in Section 5.3. Afterwards, technical details about the protocol flow and message
properties were discussed (Section 5.4) and further explained by revisiting the example of a

5.8 Conclusion 131

(a) Topic owner publishes a data object where retrieve is required

(b) Non-topic owner publishes a data object where retrieve is required

Figure 5.10: Topic owner announces new sources

132 5 SocioPath: Protocol Overview

published blog post in SODESSON. With SocioPath, the device level which was not discussed and
abstracted in Chapter 4), was complemented.

Section 5.6 described additional maintenance procedures for SocioPath, such as adding new
devices and the message exchange for adding new contacts.

Section 5.7 explained the decoupling of notifications and data content retrievals, with the help
of RETRIEVE messages in addition to NOTIFY messages. This complies with the decoupling of
notifications and retrievals, which SODESSON already offers by its application interface. This
decoupling is one of the building blocks for resource awareness in SocioPath and will be further
discussed in Chapter 7 for Decision Engines.

Chapter 6

Partition Tolerance in SocioPath

Figure 6.1: Placement of Chapter 6 in the big picture

The basis for User-Centric Networking is the usage of the users’ personal devices. These devices
are heterogenous in terms of availability: a work PC might be switched off at night, network
connectivity for a smartphone on a cell network could cut off if its owner drives through a tunnel,
a network attached storage at home can be permanently connected to the Internet and rarely
switched off. Hence, it is a basic task of a DDP to handle device unavailabilities. Self-sufficiency in
SocioPath makes these conditions even more challenging, as there are no devices of third parties
that can be leveraged.

133

134 6 Partition Tolerance in SocioPath

As discussed in Chapter 5, a notification is sent to every device of a subscriber of the respective
topic. If a device a has missed such a notification, it subsequently asks another device b about
any missed notifications. b detects and resends notifications that b holds in its Local Data Storage
and for which b knows that a is also supposed to receive, but a hasn’t received these notifications
so far. This procedure is called state repair.

The state repair procedure is based on the concept of set reconciliation [76]. Here, device a
fills a data structure with the elements known to a. a sends this data structure to b. b infers the
difference to a based on this data structure.

The challenge here lies in filling the data structure accordingly: depending on which user
controls device a and b respectively, there are associated relevant topics and only the notifications
for data objects with these relevant topics should be added to the respective data structure. Also,
since the number of notifications in the Local Data Storage can grow over time, a space-efficient
data structure is preferable.

Possible reasons for missed notifications are intermittent unavailability of the publishing device,
a subscriber device or all topic owner devices at the time when an application on the publishing
device published a new data object:

• Publishing device unavailable: Publishing device could not send the respective notification(s)
to the topic owner device(s).

• Subscriber device unavailable: Subscriber device could not receive the respective notification
when a topic owner device sent it to the subscriber devices

• Topic owner devices unavailable: Depending on the Decision Engine, the publishing device
sends the respective notification(s) to either one or multiple topic owner devices. If these
topic owner devices are unavailable, neither topic owner nor subscriber devices can receive
the notification.

Until a state repair is performed, each device keeps working based on its current state, which is
possibly out-of-date due to missed notifications. A specific case here is a topic owner device which
performs access control based on its current Own Topics List. Updates are assumed to propagate
eventually to formerly unavailable devices via state repairs, similar to the concept of eventual
consistency [115].

Set reconciliation is described in Section 6.2. The actual state repair procedure, including the
required message exchanges, is described in Section 6.3.

6.1 Consistency Demands for SocioPath

The section discusses the consistency demands for SocioPath. It deals with the question what
kind of synchronization between two devices must be achieved by a state repair.

First, a distinction between notifications and data content needs to be made. Given are one
device a of user A and one device b of user B:

• Notifications: a and b are consistent with regard to notifications if: for each data object
that is relevant to A and B, both a and b hold notifications in their Local Data Storage.

6.1 Consistency Demands for SocioPath 135

Notifications for data objects that are not relevant to both A and B do not count towards
consistency between a and b.

• Maintenance data objects: a and b are consistent in regard to maintenance data objects
if: for each maintenance data object relevant to A and B, both a and b hold the same
maintenance data object in their Local Data Storage. Maintenance data objects that are not
relevant to both A and B do not count towards consistency between a and b.

• Application data content: Application data content does not count towards consistency.
Each device decides for itself whether to retrieve application data content, which might
never happen. Therefore, if device a has retrieved a data object δt and b has not, they
are inconsistent from the application’s point of view, but they might still be consistent in
SocioPath.

As discussed in Section 4.3.1, in SODESSON each data object δt is uniquely identified by a
3-tuple (topic t, object ID OIDδt

, creation/update timestamp timeδt
). This 3-tuple defines whether

two devices hold the same notifications.

6.1.1 Relevant Topics

The notifications and maintenance data objects which device a of user A and device b of user B
must hold to be consistent, differ with each combination of A and B. All of these notifications and
maintenance data objects are associated to topics which are relevant to A and B.

A topic t which is relevant to A and B fulfills one of the following conditions:

• A is topic owner of t and B is subscriber of t

• A is topic owner of t and B is allowed publisher for t

• A= B

Analogously, a relevant notification is a notification in regard to a relevant topic. A relevant
maintenance data object is a maintenance data object in regard to a relevant topic.

The first condition covers the case where a is a device of topic owner A and b is a device
of subscriber B. Topic owner device a holds notifications about data objects with topic t and
subscriber device b should receive notifications about topic t. a and b aim to be consistent here.
Therefore these notifications have to be synchronized from a to b. For maintenance data objects,
the condition holds in an analogous way: Here, maintenance data objects where A is the topic
owner and B is subscriber (e.g. {"Devices", A}) have to be synchronized from a to b.

The second condition covers the opposite direction: If a is a device of topic owner A and b is a
device of allowed publisher B, b might have published new data objects that topic owner device
a should know about. Therefore these notifications have to be synchronized from b to a. For
maintenance data objects, the condition holds in an analogous way: Here, maintenance data
objects where A is topic owner and B is an allowed publisher (e.g. {"SubscribeMe", A}) have to be
synchronized from b to a.

136 6 Partition Tolerance in SocioPath

A special case here is consistency between two devices of the same user, i.e. A= B. Here, all
topics are relevant that A is subscriber, topic owner or allowed publisher of. The aim here is that
all devices hold exactly the same notifications and maintenance data objects to be fully consistent.

Example

Two examples shall illustrate the previous discussion. Assume topic owner A has two topics t1

and t2. For t1, the users B and C are both subscribers and allowed publishes. For t2, only B is
subscriber and an allowed publisher, C is neither. Each user has one device, i.e. there are a, b
and c respectively.

In Table 6.1, all three devices start with empty Local Data Storages and are thus consistent
(line 1).

In line 2, b publishes a new data object t1 with objId 42 at time 100, i.e. the 3-tuple (t1, 42,
100) identifies the data object. At this time, b is not consistent with topic owner device a anymore,
since b has not yet sent a notification to a. However, a and c are still consistent since their Local
Data Storages are still empty.

In line 3, topic owner device a was notified about the new data object, thus b and a are
consistent, but a and c are not consistent anymore.

In line 4, topic owner device a has notified subscriber device c about the new data object, thus
a and c are now also consistent.

In line 5, c overwrites the data object by publishing a new data object at time 150 with the
same topic t1 and objId 42, i.e. the 3-tuple (t1, 42, 100) identifies the new data object. Now a
and c are not consistent anymore, since a still holds the notification about the data object that
was overwritten. However, b and a are still consistent from their point of view.

In line 6, topic owner device a was notified about the new data object, thus c and a are
consistent, but a and b are not consistent anymore.

Finally, in line 7 topic owner device a has notified subscriber device b about the new data
object.

Table 6.1: Consistency between devices: first example

Device b Topic owner device a Device c (b, a)
cons.

(a, c)
cons.

topic objId time topic objId time topic objId time

3 3

t1 42 100 7 3

t1 42 100 t1 42 100 3 7

t1 42 100 t1 42 100 t1 42 t1 3 3

t1 42 100 t1 42 100 t1 42 150 3 7

t1 42 100 t1 42 150 t1 42 150 7 3

t1 42 150 t1 42 150 t1 42 150 3 3

6.1 Consistency Demands for SocioPath 137

Table 6.2 shows a similar situation, however this time a publishes a data object with topic t2

where C is no subscriber. Thus, the data object is not relevant to A and C . Thus, a and c are still
consistent.

Table 6.2: Consistency between devices: second example

Device b Topic owner device a Device c (b, a)
cons.

(a, c)
cons.

topic objId time topic objId time topic objId time

3 3

t2 23 180 7 3

t2 23 180 t2 23 180 3 3

6.1.2 Positioning SocioPath in the CAP Model

In order to motivate state repairs as suitable for missed notifications, SocioPath shall now be
positioned into the CAP model. For the CAP model, Brewer [14] named three system requirements
that are inherent to each service provided by a distributed system: consistency, availability and
partition tolerance (or short: CAP).

• Consistency: the service ensures that all instances share the same view at all times. Gilbert
and Lynch compared a consistent service to one atomic data object. For this data object,
"there must exist a single order of operations such that each operation looks as if it were [...]
executing on a single node, one operation at a time." [40]

• Availability: for each service request, a service response is given

• Partition tolerance: the service allows for the situation where two instances are unable to
communicate with each other

Brewer stated that it is impossible for a distributed system to provide all three, i.e. there are
only CA, AP or CP systems. This conjecture was later formally proven by Gilbert and Lynch [40]
and is known as the CAP theorem.

Here, the service in the CAP model is the publish/subscribe service for data objects that SODES-
SON offers to applications for U2U communication. Since SocioPath is a DDP for SODESSON and
responsible for all inter-device communication, SocioPath’s system properties also hold for the
publish/subscribe service.

In Section 2.1, U2U communication was defined to be delay-tolerant, i.e. to have no real-time
constraints. In terms of the CAP theorem, this means that the aspect of consistency (C) can be
neglected. To see this, assume that device a of user A publishes a new data object δt and device b
of user B is a subscriber device. If consistency (C) was essential here, b would have to retrieve δt

instantly, so both devices share a consistent view. According the to the CAP theorem, this would
mean that SocioPath is either a CP system (where availability is disregarded) or a CA system

138 6 Partition Tolerance in SocioPath

(where partition tolerance is neglected). For a pub/sub service for U2U communication, enabled
by user-controlled devices, both variants are not acceptable:

• CP (disregarding availability): Due to the partition tolerance, the case where devices a
and b are unable to communicate may occur. However, in that case a is not allowed to
publish δt , i.e. the pub/sub service itself as provided by SODESSON is not available. More
generally, the pub/sub service is only available if all devices of all subscribers are available
at the same time. This could be acceptable if B was the only subscriber and b the only
subscriber device, but in case of multiple subscriber devices, one unavailable subscriber
device disrupts the pub/sub service for all other subscriber devices.

• CA (disregarding partition tolerance): The pub/sub service should be available at all
times, so both devices a and b need to be highly available and able to communicate at
any time in order to maintain consistency between them. This cannot be applied to users’
personal devices where intermittent unavailability is expected.

Instead, SocioPath gets classified as an AP system, where consistency (C) is neglected. This
means that inconsistencies between device a and b are expected: If devices a and b are in different
partitions and therefore a cannot notify b about δt yet, this is acceptable due to delay-tolerance of
U2U communication. This temporary inconsistency is accepted in favor of an application running
on a being able to publish at any time and to deliver δt to other subscriber devices if possible.

State repairs shall eventually remove inconsistencies between any two devices, however no
time guarantees are made.

6.2 Set Reconciliation

State repairs are based on the idea of set reconciliation, which is defined and explained in this
section.

6.2.1 General Problem Definition

Assume two generic instances A and B. Each instance is holding a set of items SA and SB respectively
(see Figure 6.2a). The problem to be solved now is B recognizing the difference of the sets SB−SA

and providing A with that difference, i.e. A should hold S′A = SA ∪ (SB − SA) = SA ∪ SB. In order
that B can infer the difference SB − SA, A has to send a data structure which holds SA to B first
(see Figure 6.2b). B then sends the difference based on this information (see Figure 6.2c). If this
procedure is repeated vice-versa, i.e. by A sending the difference SA−SB to B (see Figures 6.2d to
6.2f)), both A and B hold the same set of items S′A = S′B = SA ∪ SB (see Figure 6.2g).

6.2.2 Data Structures for Set Reconciliation

This section discusses two possibilities for the data structures holding notifications for set reconcil-
iation in SocioPath. Given this data structure has to hold an arbitrary number of notifications, this
data structure is preferably space-efficient. Two different data structures are discussed as follows.

6.2 Set Reconciliation 139

(a) (b) (c)

(d) (e) (f)

(g)

Figure 6.2: Set reconciliation between two generic instances

6.2.2.1 Identifier List

The first regarded possible data structure is a simple identifier list. As discussed in Section 4.3.1,
each data object δt is uniquely identified by a 3-tuple:

• Topic t

• Object ID OIDδt

• Creation / update timestamp timeδt

The most simple data structure for sending known notifications is a list of such 3-tuples.
However, this is not space-efficient: As defined in Section 4.3.1, a topic consists of a title titlet (a
string of arbitrary length) plus the User ID TOt of the topic owner. Assuming the following sizes,
this results in 32 bytes plus the bytesize for titlet per notification:

• TOt : 160 bits (e.g. SHA-1 hash)

140 6 Partition Tolerance in SocioPath

• OIDδt
: 64 bits

• timeδt
: 32 bits (e.g. Unixtime)

Since the title string titlet can be freely defined by the application, it is difficult to make an
estimation here. Real world applications would probably follow hierarchical naming conventions,
similar to Java package names (i.e. "com.mycompany.department.application") where 40-50
characters are easily reached. Assuming an UTF-8 encoding with 1-2 bytes per character, this
would result in up to 100 bytes per titlet , plus the 32 bytes as suggested above, resulting in a total
132 bytes per notification.

6.2.2.2 Bloom Filters

Broder and Mitzenmacher [15] have formulated the Bloom filter principle: "Wherever a list or set
is used, and space is at a premium, consider using a Bloom filter if the effect of false positives can be
mitigated."

Bloom filters [13] are a probabilistic, space-efficient data structure which represents a set
S := {x1, x2, . . . , xn} of n elements. Each element x ∈ S is hashed with k independent hash
functions hi(x) : x → {1 . . . m} to an array of bits with length m. The bits hi(x) are set from 0 to
1 for 1≤ i ≤ k.

This allows queries if a specific element y is member of S, given that the k hash functions are
known to the enquirer: If hi(y) = 1 for all 1 ≤ i ≤ k, then it is assumed that y ∈ S. However,
false positives may occur with a certain false positive rate p which depends on k, m and n. An
approximation for the false positive rate p is:

p = (1− e−
k∗n
m)k (6.1)

Note: False negatives cannot occur, i.e. the result y /∈ S is always reliable.

Impact of false positives

In [15], approximate set reconciliation is named as one application for Bloom filters in P2P networks.
It is only approximate due to the effect of false positives. In the context of set reconciliation, a
false positive means that with a certain probability p, A falsely detects an element x ∈ SA, x /∈ SB

to be x ∈ SA∩ SB. Therefore, A does not add x to the difference set which A returns to B and B
never learns about the existence of x .

The usefulness of such an approximate set reconciliation depends on the chosen false positive
rate. Given that the false positive rate is small enough, it can be neglected. For comparison, hard
disk vendor specificiations predict an uncorrectable bit read error probability of 10−16 to 10−13

[48].

Size estimation

The false positive rate depends on three parameters: the number of hashes k, the number of
elements n and the field size of the Bloom filter, i.e. the number of bits, m.

6.3 State Repairs 141

The k hashes need to be agreed upon between the two instances. In a real-world implementation,
this can be realized by A sending k seed values in addition to the bloom filter data structure,
which results in an overhead o(k) whose size depends on k. bloom [12], a Bloom filter C++
library, represents each seed value as a 32 bit integer, i.e. o(k) = k ∗ 4 bytes can be used as a rule
of thumb here.

Therefore, if a specific false positive rate p̄ is targeted and the number of elements n is known a
priori and a number k is chosen, the required bloom filter size m can be inferred by transforming
Equation 6.1:

m= −
k ∗ n

ln(1− k
p

p̄)
[bits] (6.2)

In summary, instance A has to send z = m+o(k) bits to instance B. Since both k and m influence
the false positive rate for a given n, z can be minimized as an optimization problem, i.e. by finding
optimal values for k and m.

6.2.2.3 Size comparison

The two regarded data structures are now compared in their sizes for a different number of
elements, based on the previous size estimations. For the Bloom filters, a fix value for k = 32 is
assumed, therefore o(k) = 4 ∗ 32= 128 bytes has to be added as a fix overhead.

The results are displayed in Table 6.3. As can be seen there, the Bloom filter outperforms the
identifier list by about factor 10 in term of space-efficiency, with a negligible false positive rate of
10−16. For a small number of elements, the gain is smaller, due to the fix o(k) = 128 bytes. This
can be further reduced by solving the optimization problem and finding optimal values for k and
m.

Table 6.3: Size comparision: Identifier list vs Bloom filter

Data structure Number of elements False positive rate Estimated space

Identifier List 10 0.0 1320 Bytes

100 0.0 13.200 Bytes

1000 0.0 132.000 Bytes

10.000 0.0 1.320.000 Bytes

Bloom Filter (k = 32) 10 10−16 234 Bytes

100 10−16 1181 Bytes

1000 10−16 10.651 Bytes

10.000 10−16 105.356 Bytes

6.3 State Repairs

State repairs can be performed between two devices a and b as soon as they are in the same
network partition and are thus available for each other.

142 6 Partition Tolerance in SocioPath

A state repair of device a by device b is performed by three steps:

(1) Device a sends a STATEReq message to device b. This message contains a Bloom filter which
holds notifications known to a and relevant to the devices’ users.

(2) Device b matches the relevant notifications b knows from its own Local Data Storage against
the Bloom filter. It detects the set of missed relevant notifications M and returns a STATERsp

message to device a. This message contains the size of M, i.e. the number of missed
relevant notifications that b has detected.

(3) Device b sends the |M| missed notifications as NOTIFYReq messages to a.

Note that this an unidirectional state repair, i.e. a initiates the state repair by sending the
STATEReq message to b in order to have a’s state repaired by b (as much as possible for b). In
order for b to be repaired by a, b must analogously send a STATEReq message to a.

Application and maintenance data content from the Local Data Storage gets only transferred
during this procedure if the DE on b decides to piggyback them in the notifications. Since relevant
maintenance data content also count towards consistency between two devices, they either have
to be piggybacked in the notifications from b or completely retrieved by a until full consistency
between a and b is achieved.

A special case of former device unavailability is adding a new device to a user’s device pool. In
order to transfer notifications from an existing device to a new device, the state repair mechanism
can be used: The situation where a new device appears is essentially identical to the device being
unavailable forever and now the complete Local Data Storage needs to be repaired.

In order to reduce redundancy in the exchanged information, each device keeps track of the
time when its last successful state repair was performed with another specific device. Inside
the next STATEReq message, a sends an according timestamp to b and both devices only regard
notifications they have received since that time. For a proper functioning, all devices are assumed
to be synchronized to a global wallclock, for example via the NTP protocol [75].

6.3.1 Reactive vs. Periodic State Repairs

Sending a STATEReq message from device a is triggered by the Decision Engine event SendState.
The event can occur for different reasons, two of them are regarded here and will be important
for the evaluation (Chapter 8).

In the most simple case, the Decision Engine on each device sets a periodic timer, so each
device sends its own STATEReq messages regularly and periodically. The period is a system-wide
parameter called the State Sending Interval (SSI).

As alternative, state repairs can be triggered reactively: if a device gets switched on or regains
formerly missing availability, it initiates state repairs. This would require a callback from the
device’s operating system to SocioPath in order to signal such a low-level event. In the reactive
case, the device also demands a returned STATEReq from the contacted devices. The latter is
required for the case that the device has published new data objects during its unavailability and
now needs to send the relevant notifications. This demand is not required for periodic state repair,
since each device sends its own STATEReq messages regularly. However, reactive state repairs

6.3 State Repairs 143

strongly depend on each device’s individual availability and no assumptions about other devices
are made here.

6.3.2 Message Exchange

On the Decision Engine event SendState, a’s Decision Engine has to decide which users (i.e.
a subset of the Contact List) are to be targeted. For each state target user, the content of the
STATEReq message is different, since the relevant topics differ from target user to target user. Then,
for each target user, the Decision Engine has to decide which state target devices the STATEReq

message has to be sent to and in what order: it might be a good idea to target a device with a
track record of high availability and low communication costs first, since this device can probably
already cover most of the missed notifications and thus take the load off other target devices
of the same target user. According to this decision, a sends STATEReq message(s) with the fields
displayed in Table 6.4 to target devices.

For the remainder of this section, it is always assumed that device a owned by user A sends a
STATEReq message to device b owned by user B. First of all, a iterates over its Local Data Storage
and collects all notifications tied to relevant topics RA,B. For each collected notification, the 3-tuple
<topic, objectId, publishTime> is hashed into a Bloom filter data structure, which is later the field
bloomFilter in the STATEReq message. The pseudocode for building a Bloom filter in regard to
users A and B is displayed in Algorithm 1.

Table 6.4: Additional fields inside a STATEReq message.

Data Type Name Explanation

bloom bloomFilter Efficient data structure for holding notifications from the request-
ing device’s Data Storage

unsigned int lastOkStateTime Timestamp when last state repair by target device was successful.
0 if target device has never performed a successful state repair.

bool demandTargetState Ask target device to send STATEReq message as well – used for
reactive state repairs

Table 6.5: Additional fields inside a STATERsp message.

Data Type Name Explanation

unsigned int numMissed number of missed notifications (|M|)

A device that has received a STATEReq message shall always directly respond. Thus, as soon as
b receives the STATEReq message, it collects all notifications N from its Local Data Storage that
are relevant for a and have arrived at b since lastOkStateTime. For each collected notification
in N , b checks if the tuple <topic, objectId, publishTime> was hashed by a into the bloomFilter
data structure. If b cannot match the tuple to the Bloom filter, b assumes that the respective
notification was missed by a. Hence, b collects a subset M ⊆N of assumably missed notifications
which are to be resent.

144 6 Partition Tolerance in SocioPath

Algorithm 1 Building Bloom filters STATEReq message to target user B

1: procedure BUILDSTATEFORUSER(X ∈ U)
2: BloomFilter bloomFilter←⊥
3: Topic[] relevantTopics←⊥
4: A← getOwnUserId()
5: for each t ∈ SubscriptionList do
6: if t.getTopicOwner() = B then . relevant topics, 1st condition
7: relevantTopics.add(t)
8: for each t ∈ OwnTopicsList do
9: if B ∈ Pt then . relevant topics, 2nd condition

10: relevantTopics.add(t)
11: if A= B then . special case: A = B
12: for each t ∈ LocalDataStorage do
13: relevantTopics.add(t)
14: for each t ∈ relevantTopics do
15: for each γ ∈ d.LocalDataStorage.get(t) do
16: bloomFilter.insert(objIdγ,timeγ)

17: return bloomFilter

Subsequently, b replies with a STATERsp message which contains |M| in the numMisses field,
so a knows how many NOTIFYReq resends it has to expect for the state repair to be successful.
Finally, b resends the NOTIFYReq messages to a. The resent notifications’ contents are identical to
an original notification, as described in Section 5.7.2 and are processed by a accordingly, with one
difference: the field stateNonce contains the msgNonce from the original STATEReq message. This
is information needed for a to identify the incoming NOTIFYReq messages as resendings triggered
by the STATEReq and count them towards the |M| expected NOTIFYReq messages as announced by
the STATERsp message.

Since a Bloom filter is based on hashes, it only allows to check whether it contains a specific
notification, but the previously inserted notification cannot be extracted afterwards. This is the
reason why each state repair is unidirectional: b cannot infer from a’s STATEReq message whether
a knows any notifications that are relevant for b. To learn this, b has to send its own STATEReq

message to a. However, a can ask b to do so by setting the in demandTargetState flag to true its
own STATEReq message.

6.3.3 Successful vs. Unsuccessful State Repairs

A state repair of device a by device b was successful if and only if

(1) Device a received as many resent notifications from b as b has announced in its STATERsp

message

(2) These resent notifications have the same stateNonce as the msgNonce of a’s STATEReq message.

Device a can check both conditions and therefore infer if its latest state repair by b was successful
or not.

6.3 State Repairs 145

Reasons for unsuccessful state repairs are:

• b did not receive a’s STATEReq message

• a did not receive b’s STATERsp message

• a did not receive all notifications that were announced in the STATERsp message

The timeout by which time a needs to have received all the notifications announced in the
STATERsp message is the next state repair: If by the next time when a initiates a state repair by
device b, the previous state repair was not closed as successful, then it is assumed as unsuccessful.

The knowledge whether a state repair was successful or unsuccessful, is used for improving
space effienciency, as discussed in the next section.

6.3.4 Improving space efficiency

Local Data Storages can grow large over time. This results in larger Bloom filters and therefore
larger STATEReq messages that the devices which are possibly resource-constrained have to send
and receive. In order to improve space efficiency, state repair has an additional mechanism.

The mechanism is based on the idea that successful state repairs in the past have established
consistency between the two devices. Therefore, all notifications that were received by either
device before the last successful state repair can be ignored. In other words, only notifications
that were received by either device since the last successful state repair need to be taken into
account. This narrows the time window in question from "all relevant notifications ever" to
"relevant notifications since the last successful state repair until now".

For each device x in its Devices List, a saves the timestamp lastOkStateTime when the last
successful state repair by x was performed. This value for b is also entered into STATEReq message
sent from a to b. The value equals 0 if the target device has never performed a successful state
repair.

Additionally, a only hashes the relevant notifications it has received since lastOkStateTime into
the Bloom Filter, as described above, i.e. where gotNotifyTime from the Local Data Storage entry
is newer than lastOkStateTime. b on the other hand, only compares the relevant notifications it
has received since the lastOkStateTime passed by a in the STATEReq message.

6.3.5 Example

Figure 6.3 displays an example sequence where device a1 owned by user A sends STATEReq

messages to device b1 owned by user B. The figure covers three different outcomes of the state
repair which are described as follows.

No state repair required

Wallclock time 10: a1 sends a STATEReq message to b1. This STATEReq message has its lastOk-
StateTime field set to T = 0, since b1 has never successfully repaired a’s state before. Hence,
b1 collects N , i.e. all notifications with a relevant topic and GotNotify timestamp greater or
equal than T = 0 from its Local Data Storage. b1 checks if the received Bloom filter contains

146 6 Partition Tolerance in SocioPath

10
(n=12, r=0)

(n=12, T=0)

0

50 (n=23, T=10)

(Topic=Y,objId=5)

(n=23, r=2)

(Topic=X,objId=42)

(Topic=Y,objId=5,n=23)

(Topic=X,objId=42,n=23)

100 (n=34, T=50)

(n=34, r=1)

(Topic=X,objId=99)

(Topic=X,objId=99,n=34)

SendState

130 (n=45, T=50)

11

(n=45, r=1)

(Topic=X,objId=99,n=45)

Figure 6.3: Example message exchanges for state repair

6.3 State Repairs 147

all notifications in N . This is the case here, so b1 sets the numMisses field r = 0 in the STATERsp

message.

Wallclock time 11: On receiving the STATERsp response, a1 learns that no state repair is required
by b1 and sets the lastOkStateTime for b1 in the Devices List to T = 10. Note that the new
lastOkStateTime value T = 10 equals the time where a sent the STATEReq message, not T = 11,
where it received the STATERsp message.

Figure 6.3 shows the reason for this: After sending the STATERsp response, b1 receives a new
NOTIFYReq from b2 which is also relevant for a. This happens before wallclock time 11. However, a
becomes unavailable directly after the state message exchange with b1, thus b1 cannot successfully
send the NOTIFYReq to a1. If a1 would set T = 11 in its next STATEReq message, b1 would not take
this notification into account and a1 would never learn about it.

Successful state repair

Wallclock time 50: After a becomes available again, the DE decides to initiate state repair with
b1. a1 sends a new STATEReq message to b1, this time with T = 10 (as discussed above). b1 sees
that there it received two new notifications since T = 10 that the Bloom filter does not contain.
Hence, b1 sets the numMisses field |M| = 2 in the STATERsp message and resends both notifications
to a1. Both NOTIFYReq messages have their stateNonce field n set to the nonce value of the original
STATEReq message. This way, a1 can differentiate the resends from new notifications and hence
expects two different notifications with n= 23. After receiving the two notifications, the state
repair is successful. a1 sets the lastOkStateTime for b1 in the Devices List to T = 50. a1 again
becomes unavailable directly afterwards.

Unsuccessful or partial state repair

Wallclock time 100: Once again, a1 becomes available. At first, a1 and b2 act in an analog way
as before at wallclock time 50, except for a new STATEReq nonce n = 34 and T = 50. After wallclock
time 50, b1 has received one notification relevant for a1. Hence, b1 sets the numMisses field
|M| = 1 in the STATERsp message and resends the notification to a1. However, before receiving the
resent notification, a becomes unavailable again. Since a did not receive |M|= 1 notifications
with n = 34 in the stateNonce field, it does not regard the state repair as successful and thus does
not increase T .

Wallclock time 130: When a comes back online and the DE initiates a new state repair, it is
still T = 50. Hence, b resends the notification that was not successfully received by a during the
last state repair.

148 6 Partition Tolerance in SocioPath

6.4 Conclusion

This chapter presented partition tolerance for a discussion on partition tolerance in User-Centric
Networking in SocioPath, i.e. how SocioPath copes with intermittent unavailabilites of personal
devices.

SocioPath achieves partition tolerance by the process of set reconciliation (Section 6.2) of
relevant notifications and maintenance data objects. In order to make set reconciliation more
space-efficient, Bloom filters are regarded as one possible data structure. Bloom filter outperforms
a simple identifier list by about factor 10 in term of space-efficiency, with a negligible false positive
rate of 10−16.

Section 6.3 presented the state repair mechanism, which is the set reconciliation of notifications
in two devices’ respective Local Data Storage. This way, two devices resynchronize on their state
after a previous unavailability. Depending on the users of the regarded devices and their roles
(publisher, subscriber, topic owner), different notifications need to be exchanged. These relevant
notifications are identified by their topic, i.e. there are different relevant topics depending on the
constellation of the affected users’ roles. The respective notifications are hashed into a Bloom
Filter, which is sent via a STATEReq message. For additional space efficiency, each device remembers
the timestamp of each last successful state repair for all other known devices. Any notifications
older than that timestamp can be disregarded for the next state repair and do not need to be
hashed into the Bloom Filter of the next STATEReq message.

Chapter 7

SocioPath: Decision Engines

Figure 7.1: Placement of Chapter 7 in the big picture

Chapter 5 described how data objects are generally delivered in SocioPath. Specifically, the
possibility to decouple notifications and data content retrievals was described. Chapter 6 described
partition tolerance in SocioPath and achieving consistency between two devices by state repairs.
While the required messages and their fields for these procedures were described, so far it is
mostly undefined which device sends which message when to which other device. Different examples
for this problem were discussed in Section 3.4.1 for User-Centric Networking in general and in
Section 5.3 specifically for SocioPath.

149

150 7 SocioPath: Decision Engines

In SocioPath, these decisions are delegated to the Decision Engine (DE). A DE complements
SocioPath to a fully functional protocol while different DEs alter SocioPath’s protocol behaviour
in different ways.

In this chapter, three different DEs will be presented:

• Instant-to-All

• Offload-First

• Helping-Friends

An overview on these DEs will be given in Section 7.1, before they are defined in detail in the
remaining chapter.

Each DE must define its behaviour in three different workflows:

• Notification workflow

• Data objects retrieval workflow

• State repair workflow

Each workflow holds different DE events and DE actions for transferring a data object from
a publishing device to the remaining devices of the closed group. Basically, a DE is defined by
how it reacts on DE events and how it performs DE actions. The definitions for DE events and DE
actions will be given in Section 7.2.

Since a DE is defined by its DE event reactions and DE actions, each workflow is a template for
defining a DE. The three workflows are described in Sections 7.3, 7.4 and 7.5. The differences
between Instant-to-All, Offload-First and Helping-Friends will be discussed for each respective
workflow.

These three workflows taken together are responsible for transferring a data object from a
publishing device to the remaining devices of the closed group. The overall process is shown in
Section 7.6.

7.1 Overview on the Three Presented Decision Engines

This section gives an overview on the three DEs Instant-to-All, Offload-First and Helping-Friends.

7.1.1 Instant-to-All

Instant-to-All is a greedy approach for a DE, neglecting any resource conservation. After publish-
ing a data object, the publishing device sends the notifications to as many topic owner devices as
possible, as soon as possible. Each topic owner device sends a notification as soon as possible,
to as many subscriber devices as possible. However, if a subscriber device is unavailable for any
topic owner device, it receives the notification after the next state exchange with any topic owner
device. The redundant forwarding to all topic owner devices shall achieve notification delivery as
fast as possible: if topic owner devices are also often unavailable, only one topic owner device
that can send the notification needs to be available for the subscriber devices.

7.1 Overview on the Three Presented Decision Engines 151

Data objects can be piggybacked in notifications. The decision whether to piggyback is made
by regarding one system-wide parameter: sizeMax which is the maximum allowed bytesize of a
piggybacked data object. Each device which receives a notification, instantly sends a RETRIEVEReq

message to all known sources unless the data object was piggybacked.
With Instant-to-All, privacy level IV is achieved, which is the highest privacy level according

to the privacy model in Section 3.6: only topic owner devices deliver data objects to subscriber
devices, neither the publisher nor the subscribers learn about the set of (other) subscribers.

In this chapter, the DE event decisions, as well as the DE actions are described for Instant-to-All.

Table 7.1: Trade-offs in Instant-to-All

High privacy Low delays Resource conservation

Instant-to-All 3 3 7

7.1.2 Offload-First

Offload-First is a first approach towards resource-awareness in a DE. This DE considers Commu-
nication Cost Values (CCVs) (see Chapter 5) of devices. A CCV is an abstract penalty for each byte
the device has to send or receive – thus: the lower a device’s CCV, the better. For each member of
the closed group, Offload-First aims at offloading notifications to the device with the lowest CCV
value first. This device becomes a forwarding device and has the task to deliver the notification to
the remaining devices of the same user.

In contrast to Instant-to-All, the idea here is to distinguish between stronger devices (i.e. lower
CCV) and weaker devices (i.e. higher CCV), to move the major traffic to the forwarding device
and hence alleviate weaker devices. In addition, since the forwarding device is the only device
per user which is responsible for sending notifications to the user’s other devices, redundant
notifications are eliminated. The lack of redundancy comes at the price of possibly high delays – if
a user’s strongest device is unavailable, the notifying process towards this user is stalled until the
strongest device becomes available again. This applies to publisher, subscribers and topic owner.

Unlike Instant-to-All, non-piggybacked data objects do not get instantly retrieved. Instead,
a system-wide CCV threshold ccvMax decides whether the device’s communication costs are
currently low enough to automatically retrieve the data object. If the current CCV exceeds the
threshold, the retrieval must be triggered by an application.

Just as Instant-to-All, Offload-First achieves privacy level IV, which is the highest privacy level
according to the privacy model in Section 3.6: only topic owner devices deliver data objects
to subscriber devices, neither the publisher nor the subscribers learn about the set of (other)
subscribers.

In this chapter, the DE event decisions as well as the DE actions are described for Offload-First.

Table 7.2: Trade-offs in Offload-First

High privacy Low delays Resource conservation

Offload-First 3 7 3

152 7 SocioPath: Decision Engines

7.1.3 Helping-Friends

Helping-Friends aims at leveraging social connections between the members in a closed group.
In Instant-to-All and Offload-First, devices of different users never communicate with each other,
unless one of the users is the topic owner. However, the members of a closed group might not only
be contacts with the topic owner, but a partly- or even fully-linked clique and hence be interested
that all subscribers receive a given data object. Therefore, a subscriber device can also act as a
source device for other subscribers. If at least one user has one or multiple devices with high
availability and/or capability, this could compensate the weaker devices of other users.

This DE is in large parts similar to Offload-First. The main difference is that the forwarding
device for notifications (i.e. the strongest device) is not determined between topic owner and one
subscriber, but per clique between topic owner and subscribers that all are contacts of each other.
Here, the strongest device of the clique becomes the forwarding device and notifies all other
devices of the clique. Either the CCV (as for Offload-First) or the device’s long time availability
can be the main criterion here, pushing focus either towards the goal resource conservation or the
goal low delays.

The cost for this approach are parts of the group members’ privacy. The subscribers with strong
devices learn about other subscribers, this knowledge is not exclusive to the topic owner anymore.
In terms of the privacy model in Section 3.6, the privacy level is reduced from IV to III.

Note that inside a clique of contacts, all their devices can communicate which each other, since
each device holds the other devices in its Devices List. Furthermore, each device can encrypt all
traffic, since each device holds the necessary public key for each contact in its Contact List. A
design which allows non-contacts would be more complex and is not covered here.

In this chapter, the DE event decisions as well as the DE actions are described for Helping-
Friends.

Table 7.3: Trade-offs in Helping-Friends

High privacy Low delays Resource conservation

Helping-Friends 7 3 3

7.2 Device Roles, DE Events and DE Actions

Central parts of each DE workflow are the device roles, DE events and DE actions. Before
each workflow is discussed, these parts shall be explained first, since they are substantial to all
workflows.

There are four device roles:

• Publishing device: A device that publishes a data object

• Topic owner device: A device that belongs to the topic owner. This device can decide if the
data object was published by an allowed publisher and knows which users are the topic’s
subscribers.

7.3 Notification Workflow 153

• Remaining device: A device that shall receive a notification about the data object and
may retrieve the data object. These devices are all topic owner devices, all devices of the
publisher and all devices of all subscribers

• Source device: A device which already holds the data object or at least parts of it (see
Section 5.7.3). At least the publishing device is a source device.

During each workflow in Figure 7.7, two types of events occur: DE events and fix events. On
DE events, the DE has to decide how to react to that event. It can decide whether to execute or
postpone the next action. Since an action usually involves sending one or multiple messages to
other devices, the respective parameters get set here (e.g. deciding whether to piggyback the
data object in a notification or not). Fix events also result in actions, but the DE has no flexibility
in reacting to that event. The message for the next action is always identical for every DE.

Also, during the workflow, two types of actions are required by each device: DE actions and
fix actions. During a DE action, the DE has to decide to which devices a message shall be sent.
For example, the DE action "notify topic owner devices" leaves it to the DE whether to notify one
specific, multiple or all topic owner devices. A DE action can follow either a DE event or a fix
event. A fix action must be executed by the device, but the DE cannot choose any target devices –
analogous to fix events. For example, notifying an application on the same device is a fix action,
no other devices are involved here.

7.3 Notification Workflow

Figure 7.2 displays the workflow for sending notifications. In the figure, DE events are blue boxes
and fix events are white boxes. DE actions are blue ellipses and fix actions are white ellipses.

The notification workflow starts with the DE event PublishFromApp on the publishing device
after a new data object is published. During this DE event, the DE has to decide whether to
piggyback the data object or not.

If the publisher is not the topic owner, the publishing device has to notify one or multiple topic
owner devices (DE action), since only topic owner devices hold the subscribers in their Own
Topics lists.

On a topic owner device, this results in the DE event TopicOwnerNotified. For one or multiple
topic owner devices, each of them must now decide whether to piggyback the data object (DE
event) and then notify one or multiple remaining devices (DE action).

On a remaining device, this results in the fix event GotNotify. If the data object is piggybacked,
no further steps must be taken except for the remaining device’s final action to notify the application
via a SODESSON notifyApp method call (see Section 4.3.3.4 for details).

7.3.1 Overview on DE events and DE actions

The DE event which requires a DE decision is as follows:

• DE event decision I (D-I): Piggyback published data object in notification?

154 7 SocioPath: Decision Engines

Figure 7.2: Notification workflow

The DE actions where the DE must decide to which devices a notification shall be sent, are as
follows:

• DE action I (A-I): Notify remaining devices

• DE action II (A-II): Notify topic owner devices

Thus, for a functional notification workflow, each DE must specify its behaviour for D-I, A-I and
A-II. This is now explained for the three DEs Instant-to-All, Offload-First and Helping-Friends.

7.3.2 Instant-to-All

In this section, the DE event D-I and the DE actions A-I and A-II are discussed for Instant-to-All.

D-I: Piggyback published data object in notification?

This decision is made by regarding one system-wide parameter: sizeMax which is the maximum
allowed bytesize of the data object.

If the data object’s size objectSize exceeds sizeMax, the data object is not piggybacked. Otherwise
it gets piggybacked.

Since sizeMax is a system-wide parameter, this policy applies to the publishing device, as well
as all subsequent devices that send NOTIFYReq messages at some point.

7.3 Notification Workflow 155

A-I: Notifying remaining devices

Figure 7.3(a) displays A-I, i.e. the case where a topic owner device is the publishing device and
must notify the subscriber devices. The publishing device is here a2 of user and topic owner A.
The publishing device sends a NOTIFYReq message to all remaining devices, directly one after
another, quasi-simultaneously (step À). Since A is the topic owner, a2 holds the subscribers in the
Own Topics list and since subscriber C is a contact of A, C ’s devices are in a2’s Devices List. a2

also sends a NOTIFYReq message to all other topic owner devices (here: a1) in the same manner
(step À). Note that B is only an allowed publisher, neither subscriber nor topic owner nor (here)
publisher. Therefore, B’s devices to not belong to the remaining devices.

If a2 cannot reach all devices, this will be remedied by a state repair later on.

(a) Topic owner is publisher (A-I) (b) Topic owner is not publisher (A-II then A-I)

Figure 7.3: Instant-to-All: Notifications after publishing a new data item

A-II: Notifying topic owner devices

Figure 7.3(b) displays A-II, i.e. the case where the publishing device is not a topic owner device.
Here, the device b1 of (allowed) publisher B, sends NOTIFYReq messages to all devices of the
topic owner A, here a1 and a2 (step À). This already closes A-II. Step Á, which is executed on
each topic owner device, is again A-I: here, every topic owner simply sends a NOTIFYReq message
to the remaining devices. There is no coordination between the topic owner devices, therefore
each publisher device (except the publishing device) and each subscriber device receives as many
NOTIFYReq messages as topic owner devices exist.

7.3.3 Offload-First

In this section, the DE event D-I and the DE actions A-I and A-II are discussed for Offload-First.

156 7 SocioPath: Decision Engines

D-I: Piggyback published data object in notification?

This decision is identical to D-I in Instant-to-All (see Section 7.3.2), i.e. the decision is made by
regarding one system-wide parameter: sizeMax which is the maximum allowed bytesize of the
data object.

A-I: Notifying remaining devices

Figure 7.4(a) displays A-I, i.e. the case where a topic owner device is the publishing device. Here,
a2 of topic owner A is the publishing device. This topic owner device first checks if there is another
topic owner device with a lower CCV. If yes, it forwards the notification to that device, hence
triggering the DE event TopicOwnerNotified on that device and restarting procedure. Since each
device’s current CCV is sent together with the NOTIFYReq message, this procedure will terminate
and does not loop infinitely between two devices that falsely deem the other device stronger,
based on obsolete CCVs. For now, it is assumed that all devices know the correct CCV of all
contacts’ devices, as inferred by any recent message from these device.

The publishing device a2 is weaker than the other topic owner device a1. Hence, a2 sends a
NOTIFYReq message to a1 (step À). Since A is the topic owner, a1 holds the subscribers B and C in
the Own Topics list and since B and C are contacts of A, their devices are in a1’s Devices List.

a1 now notifies the devices of subscriber B and C in different ways:
All devices of B are weaker than a1. Hence, from a "macroeconomic" point of view (i.e. the

costs for A and B taken together), it is most efficient if a1 sends the NOTIFYReq to b1 and b2 by
itself (step Á).

C on the other hand, controls the device c1 with a lower CCV than a1. Hence, a1 sends a
NOTIFYReq message to c1 with the forward flag (see Section 5.4.2) set to true (step Á). By this flag,
c1 recognizes that it is asked to forward the notification to C ’s other devices. c1 then forwards the
notification to C ’s other device c2 (step Â).

If any device cannot reach another device, it does not retry to notify the remaining devices
by itself nor send the message to a fallback device. Instead, the remaining devices have to use
the state repair to receive the notification later. Due to the missing redundancy compared to
Instant-to-All, this can result in long delays, since the strongest device must be available.

A-II: Notifying topic owner devices

Figure 7.4(b) displays A-II, i.e. the case where the publishing device is not a topic owner device.
Here, the device b1 of (allowed) publisher B, sends a NOTIFYReq message to the strongest device
of the topic owner A, here a1 (step À). This already closes A-II. The topic owner device performs
the DE action A-I, i.e. Steps Á and Â are identical as in Section 7.3.3.

7.3.4 Helping-Friends

In this section, the DE event D-I and the DE actions A-I and A-II are discussed for Helping-Friends.
This DE requires additional fields in the NOTIFYReq messages that are not provided by SocioPath
itself. Such extensions for individual Decision Engines are not in the current design, however a

7.3 Notification Workflow 157

(a) Topic owner is publisher (b) Topic owner is not publisher

Figure 7.4: Offload-First: Notifications after publishing a new data item

generic field that a DE can fill with its individual extension data structure is one possible solution
here. These extensions are discussed after the workflow description.

D-I: Piggyback published data object in notification?

This decision is identical to D-I in Instant-to-All (see Section 7.3.2), i.e. the decision is made by
regarding one system-wide parameter: sizeMax which is the maximum allowed bytesize of the
data object.

A-I: Notifying remaining devices

Figure 7.5(a) displays A-I, i.e. the case where a topic owner device is the publishing device,
here a2 of user and topic owner A. B, C and D are subscribers, i.e. they are all contacts of A.
Furthermore, C and D are contacts of each other. It is assumed that all devices know the correct
CCV of all contacts’ devices.

The publishing device a2 is weaker than the other topic owner device a1. Hence, a2 sends a
NOTIFYReq message to a1 (step À) for disseminating it to the subscriber devices. So far, this step
is identical to the example in Offload-First.

a1 now checks in its Devices List if it knows a subscriber device which is stronger than a1 itself.
c1 of subscriber C is stronger than a1. a1 sends a NOTIFYReq message to c1 including the list of all
subscribers (B, C and D) in the field forwardToUsers, and forward set to true (step Á).

c1 now checks in its Contact List if it does not know any of the given subscribers (here B) and
returns that set in the declinedForwards field of the NOTIFYRsp message (step Â).

a1 now repeats the process for the remaining subscribers, until no declinedForwards are left.
Here, B is the remaining subscriber. a1 checks for the remaining subscriber devices if there is a
subscriber device which is stronger than a1. This is not the case, since B’s devices are all weaker

158 7 SocioPath: Decision Engines

than a1. Hence, a1 sends the notifications to B’s devices by itself, analogously to Offload-First
(step Ã).

In the meantime, c1 adds the notification into a forwarding map which holds a to-be-forwarded
notification together with the devices c1 has commited itself to forwarding (here: c2, d1, d2). c1

sends a NOTIFYReq message to each of these devices (step Ã). As soon as c1 a NOTIFYRsp message,
the respective combination of notification and device is deleted from the forwarding map. If
entries remain, because a device is unavailable, this is resolved during state repair.

(a) Topic owner is publisher

(b) Topic owner is not publisher

Figure 7.5: Helping Friends

A-II: Notifying topic owner devices

Figure 7.5(b) displays A-II, i.e. the case where the publishing device is not a topic owner device.
Here, the device b1 of (allowed) publisher B, sends a NOTIFYReq message to the strongest device
of the topic owner A, here a1 (step À). This already closes A-II. The topic owner device performs
the DE action A-I, i.e. Steps Á to Ã are identical as above.

7.4 Data Object Retrieval Workflow 159

Extensions

Regardless of any DE, only the topic owner devices know about a topic’s subscribers, as given by
their Own Topics lists. Thus, if one subscriber shall help another subscriber, the topic owner device
must tell the helping subscriber device which other users are also subscribers. This is achieved by
adding the forwardToUsers field in the NOTIFYReq message (see Table 7.4). In combination with
the already existing boolean forward flag, the sending topic owner device can ask the receiving
device to help deliver notifications to the device of the users in the forwardToUsers field.

Likewise, the subscriber device which was asked to help is able to decline forward requests.
The helping subscriber might not be contacts with all users inside the received forwardToUsers
field. The topic owner is not aware of this before sending the NOTIFYReq message, since the
topic owner does not know which users are contacts of the helping subscriber’s. Therefore, the
declinedForwards field is added to NOTIFYRsp message (see Table 7.5). The helping subscriber
device can enter the declined subset of the received forwardToUsers field into the declinedForwards
of the NOTIFYRsp message.

Note that by evaluating the differences between sent forwardToUsers fields and returned de-
clinedForwards fields, a topic owner can learn about the helping subscriber’s contacts. This is also
a loss of privacy for the helping subscriber.

Table 7.4: Additional fields inside a NOTIFYReq message. See Table 5.16 for the entries omitted here

Data type Field name Description

.

UID publisherUserId User ID of the data object’s publisher. Used to identify the original
publisher, since this field can differ from senderUserId.

Boolean forward This flag indicates to the Decision Engine whether the receiving
device is asked to forward the NOTIFYReq message to other devices.

Array<UID> forwardToUsers (Optional:) Can be used in combination with the forward flag to ask
a device to forward to other users.

Table 7.5: Additional fields inside a NOTIFYRsp message.

Data type Field name Description

Boolean ok General purpose for ACK / NACK

Array<UID> declinedForwards (Optional:) Used to decline a subset from the NOTIFYReq message’s
forwardToUsers field

7.4 Data Object Retrieval Workflow

As soon as a device was notified, the workflow for data object retrieval becomes relevant next. It
is displayed in Figure 7.6.

In case the data object was not piggybacked, it has to be retrieved by the notified device. This
is indicated by the DE event RetrieveRequired which lets the device’s DE decide if and when

160 7 SocioPath: Decision Engines

Figure 7.6: Data object retrieval workflow

to retrieve the data object. Additionally, the application is notified via a SODESSON notifyApp
method call where the content field is empty and the inline field is set to false (see Section 4.3.6).
The application can react to this call and hence enforce the retrieval of the data object, overriding
any decision the DE might have made in the context of RetrieveRequired. This case results in the
fix event RetrieveFromApp – the data object must be retrieved and the DE cannot decide here.

In order to initiate data object retrieval, the device has to send RETRIEVEReq message from one
or multiple source devices (DE action).

As soon as a source device receives the RETRIEVEReq message, the DE event DataObjectRe-
quested is triggered. Here, the source device must decide whether to accept or decline the request.
The source device tells the requesting subscriber in the corresponding RETRIEVERsp message. If
the request is accepted, the data object transfer has to be performed. If the request is denied, the
requesting returns back to the RetrieveRequired. On completion, the remaining device’s final

7.4 Data Object Retrieval Workflow 161

action is performed: notifying the application via a SODESSON notifyApp method call with a
non-empty content field.

7.4.1 Overview on DE events and DE actions

The DE events which require a DE decision are as follows:

• DE event decision II (D-II): Send retrieval request?

• DE event decision III (D-III): Accept retrieval request?

The DE actions where the DE must decide from which devices it shall retrieve, are as follows:

• DE action III (A-III): Retrieve from source devices

7.4.2 Instant-to-All

D-II: Send retrieval request?

Instant-to-All always instantly triggers the retrieval of a data object from all known sources, as
soon as the device receives a NOTIFYReq message without piggybacked data object. The DE tries
this once for every received NOTIFYReq message. If needed, the application must initiate repeatedly
the data object retrieval by triggering the fix event RetrieveFromApp.

D-III: Accept retrieval request?

In Instant-to-All, retrieval requests are always accepted if the device which receives the RETRIEVEReq

message is actually a source device.

A-III: Retrieving from source devices

As soon as either the fix event RetrieveFromApp occurs or the decision D-II for DE event Retriev-
eRequired results in a retrieval request, the device sends a RETRIEVEReq message to all known
source devices.

7.4.3 Offload-First and Helping-Friends

Offload-First and Helping-Friends behave identically for D-II, D-III and A-III and are thus regarded
together in one section.

D-II: Send retrieval request?

For triggering the retrieval of a data object automatically, Offload-First takes CCVs into account: As
soon as device is notified, the event RetrieveRequired is triggered. If the device has a lower CCV
than a threshold ccvMax, it sends a RETRIEVEReq message to all known source devices. Otherwise,
the DE does nothing and the application must initiate the retrieval. Note: a simple improvement
here would be to recheck for pending retrievals as soon as the CCV drops below ccvMax, for
example if a mobile device switches from a metered, mobile connection to a free WiFi.

162 7 SocioPath: Decision Engines

D-III: Accept retrieval request?

As soon as a device receives a RETRIEVEReq message, the DE event DataObjectRequested is
triggered. In Offload-First, a source device accepts a retrieval request, if it has a lower CCV than
a threshold ccvMax, otherwise it declines the request.

A-III: Retrieving from source devices

As soon as either the fix event RetrieveFromApp occurs or the decision D-II for DE event Retriev-
eRequired results in a retrieval request, the device sends a RETRIEVEReq message to all known
source devices.

7.5 State Repair Workflow

The workflow for state repairs is simple and consists of only one DE event and one DE action

• DE event decision IV (D-IV): Initiate state repair now?

• DE action IV (A-IV): Send STATEReq to other devices

The DE runs periodically (for example every second) into the DE event SendState. Here, the
DE has to decide (D-IV) whether to actually initiate state repair or ignore the event. For example,
a possible decision could be "initiate state repair every 5 minutes". In that case, the DE would
ignore the DE event SendState 299 times and send a STATEReq to one or multiple source devices
(DE action A-IV).

7.5.1 Instant-to-All

D-IV: Initiate state repair now?

A device sends STATEReq messages within a so-called state round. Hence, it has to decide when to
start a new state round. There are two possible triggers for a new state round:

• Proactively: A new state round is started after n := randUniform({0.5· statePeriod, . . . , 1.5·
statePeriod}) seconds, with n being drawn after the previous state round. statePeriod is
a system-wide parameter. The randomness is used in order to prevent oscillation effects
between multiple devices.

• Reactively: A new state round is started as soon as an unavailable device becomes available
again. This requires the device to have a mechanism on operating system level to detect
whether it is available or unavailable for other devices (e.g. by having Internet access).

A-IV: Send STATEReq to other devices

A state round on a device a1 is performed as follows: For each contact X , X ’s devices are collected
from the Devices List in arbitrary order. Again for each contact X , a1 generates a STATEReq message,

7.5 State Repair Workflow 163

based on the the relevant topics RA,X (see Section 6.1.1). a1 sends this STATEReq message to the
first device x1 of that contact. Hence, for n contacts, a1 sends n STATEReq messages in one burst.
As soon as a state repair is resolved with one of these devices, a1 creates a new STATEReq message
based on the relevant topics for that contact. a1 sends this new STATEReq message to the next
device x2 of that contact. This procedure continues for all devices of all contacts.

Hence, in a state round different contacts are handled parallelly, while the devices of the same
contact are handled subsequently. The state repair from user A to different contacts X and Y
are based on different sets of relevant topics RA,X and RA,Y , which allows for parallelism. The
subsequent handling of X ’s devices prevents a1 from unnecessarily receiving notification multiple
times. Assume that x1’s and x2’s Data Storages hold an entry about a data object γt that a1

has missed. After the state repair with x1, a1 updates its Data Storage first before sending a
STATEReq message to x2. This way, x2 does not resend a notification about γt . If a1 would have
sent the STATEReq message to x1 and x2 at the same time, it would have unnecessarily received
the notifications twice.

7.5.2 Offload-First

D-IV: Initiate state repair now?

This decision is identical to D-IV in Instant-to-All (see Section 7.5.1), i.e. state rounds are initiated
either proactively or reactively.

A-IV: Send STATEReq to other devices

Analogous to Instant-to-All, a device sends STATEReq messages within a so-called state round,
triggered either periodically or reactively (see Section 7.5.1). Within one state round, each
contact’s devices are handled subsequently. This means, as soon as device a1 has resolved a state
repair with device x1 of contact X , a1 sends a STATEReq message to another X ’x device x2, for all
devices of X .

Unlike Instant-to-All (which chooses a random device order), Offload-First takes CCVs into
account, consequently X ’s devices are ordered by their CCVs, strongest device first. The consider-
ation here is that if stronger devices are asked first, they can already resend most of the missed
notifications. Weaker devices only have to resolve the remaining notifications (if any exist) that
the stronger devices did not know about.

7.5.3 Helping-Friends

The DE event decisions D-I to D-IV in Helping-Friends are identical to those Offload-First. See
Sections 7.3.3 to 7.5.2.

A-IV: Synchronize STATE with other devices

For the device x of user X , which sends the STATEReq message, A-IV in Helping-Friends is almost
identical to A-IV in Offload-First. However, before the actual state round begins, x sends the first
STATEReq message to the strongest device s of all of X ’s contacts. It is assumed that if a device

164 7 SocioPath: Decision Engines

holds notifications in its forwarding map for x , it is probably s. Hence, s can already send missed
notifications to x before the actual state round begins and alleviate other devices from resends.

Generally, if a device y receives a STATEReq message from x , it checks in its forwarding map if it
contains notifications for x , i.e. notifications y has committed to forwarding to x but has not
succeeded yet. If true, y increases the number in the numMisses field of the STATERsp message
accordingly and sends these notifications as missed notifications besides the actual STATE repair
about the relevant topics between X and Y .

Note: If a notification from the forwarding map has another topic owner than X or Y , y cannot
recognize whether x has already received said notification from another device. A STATEReq

message only contains information about the relevant topics between X and Y . In that case, it
might happen that x receives the same notification multiple times.

7.6 Overall Process

So far, Decision Engines were described in three separate workflows: notification, data object
retrieval and state repair. The former two workflows are put together in Figure 7.7. State repair
is not shown in the figure, since it is a maintenance task, that can run periodically and is not
triggered by events such as incoming notification or publishing of a new data object.

Table 7.6 summarizes the connections between device role, decisions on DE events and DE
actions.

Table 7.6: Summary of device roles, decisions on DE events and DE actions

DE Event Device Role Triggered when Decision Action

PublishFromApp Publishing device (from
topic owner)

Application has pub-
lished a new data
object

D-I A-I

PublishFromApp Publishing device (not
from topic owner)

Application has pub-
lished a new data
object

D-I A-II

TopicOwnerNotified Topic owner device Topic owner’s device has
received a NOTIFYReq
message from another
user’s device

D-I A-I

RetrieveRequired Remaining device Device has received a NO-
TIFYReq message where
the data object was not
piggybacked

D-II A-III

DataObjectRequested Source device Device has received a RE-
TRIEVEReq message

D-III Transfer

SendState Any device to be defined by DE D-IV A-IV

7.6 Overall Process 165

Figure 7.7: Decision Engine workflow

166 7 SocioPath: Decision Engines

7.7 Conclusion

SocioPath is designed to be resource-aware by supporting different forwarding policies for data
objects. Depending on different factors, one behaviour can be more preferrable than another.
Such factors are for example the distribution of personal devices with regard to number, device
availabilites and device capabilities) or different demands on privacy. In order to enable different
forwarding policies, SocioPath defines different points in its protocol cycle which are left to be
defined by a so-called Decision Engine (DE) – so-called DE events and DE actions: For each DE
event, a DE must define to react to that event. Each DE action involves sending messages to other
devices – here the DE must select a suitable subset of the targeted devices.

DE events and DE actions are a substantial part of three different workflows: notifications,
data object retrieval and state repairs. Each Decision Engine takes this workflow as a template,
and specifies its behaviour on these well-defined events and action. This was presented for three
example DEs: Instant-to-All, Offload-First and Helping-Friends, where each of them aims for a
different trade-off between privacy, low delays and resource conservation.

Chapter 8

Evaluation

Figure 8.1: Placement of Chapter 8 in the big picture

8.1 The Overlay Simulation Framework OverSim

For evaluating the performance of SocioPath, a prototype was implemented for the overlay
simulation framework OverSim [7] [8]. OverSim enables implementations of new network
protocols which can then be evaluated with a configurable number of devices in a simulated
network. The following helpful features simplify the implementation:

167

168 8 Evaluation

• Device availability models: each device is bound to a churn generator which sets the device
into subsequent availability and unavailability phases according to a probabilistic model,
e.g. Weibull or Pareto. The parameters of each probability distribution are configurable.

• Realistic network latencies: Latencies for sent messages between two devices are based
on the Internet-realistic Skitter [57] dataset of the CAIDA project [17].

• Statistics: During simulation, relevant protocol data can be collected for each device. At the
end of the simulation, these can be either collected as single values or be used to calculate
a single minimum / mean / maximum value over all devices.

• Graphical interface: a GUI allows for protocol debugging, e.g. by inspecting device states
and message contents

8.1.1 Own Contributions to OverSim

Figure 8.2 shows a UML class diagram of the essential modules that are relevant for the evaluation
of SODESSON and SocioPath. Modules in grey were already provided by OverSim, all colored
modules are own contributions. The colors of the modules match the colors from Chapter 4 which
described the SODESSON middleware: applications are yellow, SODESSON is blue and modules
related to SODESSON’s DDP (i.e. SocioPath) are green. Additionally, there are two new global
modules for OverSim in red.

The tasks of the newly developed modules are as follows:

• GlobalUserObserver stores the mapping between each device and its user. Additionally, it
stores a global social graph (i.e. the information which user has a social relationship with
whom). Note that two users in a social relationship are not contacts in SODESSON until their
devices have established them as contacts. The latter is done via the SodessonContactMaker
application. Furthermore, this module offers an abstraction for discovering devices to
SocioPath. It is used by SocioPath when a user adds a new device (see Section 5.6.2) or
adds a new contact (see Section 5.6.3). The GlobalUserObserver provides the sending
device automatically with an IP address of the target device where the sending device
can send an BOOTSTRAPReq or NEWCONTACTReq message respectively. In any real world
implementations, this would require extra an mechanism such as a name service, discovery
messages broadcasts, etc.

• SodessonContactMaker is an application which does not publish data objects, but instead
only calls the addContact() method. The application learns from the module GlobalUser-
Observer the social neighbors of the user which runs the application. From these social
neighbors, one user is randomly picked and used for the addContact() call. This simu-
lates the decision of two friends (social neighbors) to become SODESSON contacts (call of
addContact()). This is repeated over and over until all social connections of a user are
eventually SODESSON contacts.

• GlobalSodessonTestObserver tracks all information to each device’s SodessonTestApp and
helps to abstract from details that would be normally handled by the application. If a

8.1 The Overlay Simulation Framework OverSim 169

Figure 8.2: Implementation of SODESSON and SocioPath in OverSim. Grey modules were provided
by OverSim, colored modules are own contributions.

new topic gets generated on the SodessonTestApp on device a, the topic is stored in the
GlobalSodessonTestObserver. If the SodessonTestApp on device b subscribes to a topic,
it selects an existing topic that was previously stored in the GlobalSodessonTestObserver.
This subscription is also stored in the GlobalSodessonTestObserver. If device a publishes a
new data object for a given topic, the GlobalSodessonTestObserver knows which devices
should receive that data object and tracks the individual delivery delays. At the end of the
simulation, these delivery delays are used for the statistics.

• SodessonTestApp simulates an application for U2U communication and the respective user
behaviour. It runs on each simulated device and – according to a given configuration –
generates new topics, subscribes to topics, publishes new data objects and accepts received
data objects.

170 8 Evaluation

• SODESSON provides methods to the applications as described in Chapter 4. For this proof-
of-concept in OverSim, SODESSON is designed as an interface which is implemented by
the SocioPath class.

• SocioPath implements the SODESSON interface and creates the messages as described
in Chapters 5 and 6. Additionally, it holds the SODESSON module Local Data Storage
(see Section 4.3.5) as a data structure, since SODESSON is merely an interface in this
implementation. The methods in this module after either triggered by an application via
the SODESSON interface, by a received message sent by another device or by the respective
Decision Engine.

• BaseDecisionEngine is an interface which is implemented by each Decision Engine. There
is a mutual dependency between SocioPath and the Decision Engine. For example, if So-
cioPath receives a NOTIFYReq message where the RetrieveRequired flag is set (see Section
5.7), it calls the evRetrieveRequired() event method from the BaseDecisionEngine in-
terface. Vice-versa, if a Decision Engine for example decides to retrieve a object, it calls
sendRetrieveCall() method in SocioPath.

• Instant-to-All / Offload-First / Helping-Friends are implementations of the Decision
Engines described in Chapter 7. They implement the BaseDecisionEngine interface.

Of the existing modules that are provided by OverSim, the following are relevant for the
interaction with the new modules:

• GlobalStatistics: used by GlobalSodessonTestObserver and SocioPath. The GlobalSodesson-
TestObserver sends information about successful deliveries (and their delays). SocioPath
sends information about the number of sent messages, their size and the respective costs.
Both statistics (delays and costs) are performance metrics in this chapter.

• SimpleUnderlay: offers a UDP/IP interface to SocioPath, which lets SocioPath send arbi-
trary messages to the IP address of target device. On sending a messaging, SimpleUnderlay
adds an Internet-realistic latency based on network coordinates before the message arrives
at the target device [53].

8.1.2 Simplifications

Each SocioPath message is completely sent via SimpleUnderlay in a single packet, regardless of
its size. Since OverSim offers a UDP/IP interface, technical restrictions of UDP like maximum
transmission units are abstracted here. Instead only the SocioPath message sizes are regarded
(i.e. the transport protocol’s payload), independent of any underlying transport protocol.

8.2 Simulation of User-Centric Networks

OverSim simulates UCNs with the help of four input parameter classes:

• Social graph

8.2 Simulation of User-Centric Networks 171

• Device classes

• Device ownerships

• Applications

Each simulation run generates a configurable number of user and devices entities. Between
some users, social relationships get created, i.e. a social graph is generated. The devices are of
different device classes with different availabilities and capabilities. Each generated device gets
mapped to exactly one user, thus creating device ownerships. One user of the social graph becomes
the topic owner (TO) while his contacts use applications on their owned devices. Applications
subscribe to a given topic, publish data objects or accept data objects that were published by the
same application on another device.

These four parameter classes are now discussed in detail.

8.2.1 Social Graph

The basis for a simulated social graph is a real-world data set from Facebook, generated and made
available by Viswanath et al. [114]. The data set consists of anonymized, bidirectional links that
were inferred by crawling Facebook’s New Orleans regional network. The statistics of the data
set were analyzed for this thesis with the help of OverSim’s statistic generation and the graph
analyzer tool Gephi [5]. They are presented in Table 8.1. The found numbers differ slightly from
the numbers as published by the authors.

Table 8.1: Statistics of the Facebook New Orleans data set [114]

Overall number of users 63,731

Overall number of bidirectional contact links 1,545,686

Number of links per user: Average 48.5

Number of links per user: Standard deviation 75.8

Number of links per user: Median 20

Number of links per user: Minimum 1

Number of links per user: Maximum 2113

Average clustering coefficient: 0.253

Social neighborhood generation

In order to be able to perform realistic simulation on a packet level, the number of simulated
devices and thus users has to be limited. Only a subset of the New Orleans data set is regarded per
simulation run. A random sub-graph is generated from this data set, i.e. the social neighborhood
of a so-called anchor user. This anchor user is randomly chosen, together with a configurable
number of his social relationships. In turn, any links between these social relationship are also
kept intact. This sub-graph is stored in the GlobalUserObserver and is the basis for SODESSON
contacts that get established during the simulation run.

172 8 Evaluation

(a) Overall social graph (b) Random selection of a user with at
least (nUsers − 1) = 4 links as anchor

user. A with 8 links fulfills this
requirement.

(c) Random selection of (nUsers − 1) = 4
neighbors of the anchor user, keeping

links between them intact.

Figure 8.3: Social graph generation for nUsers = 5

In the simulation runs, the anchor user will be the topic owner. Since in a UCN, all users are
contacts of the topic owner, this sub-graph is used as a base set for selecting the users in each
UCN.

The sub-graph generation is displayed in Figure 8.3. Starting point is the overall data set
(schematized as a social graph in Figure 8.3a). Before each simulation run, an integer parameter
nUsers defines how many users are to be simulated. Then, anchor user A with at least (nUsers − 1)
links, i.e. social relationships, is randomly picked from the dataset (Figure 8.3b). Then, (nUsers−1)
from all of A’s social relationships are randomly picked (Figure 8.3c). In turn, all links (if any)
between these social relationship are also kept intact.

The result is a subset of A’s 1-hop social neighborhood, reduced to (nUsers − 1) relationships.
As will be discussed below, application use-cases revolve around the anchor user, with him being
the TO.

From Table 8.1 it can be seen that the largest sub-graph for a simulation is 2114 users, i.e. the
user with the maximum number of links as anchor user and his 2113 links.

As the default for the simulations, 20 users will be simulated, i.e. the anchor user with 19 links.
This is close to the measured median of the dataset (20 links).

8.2.2 Device Classes

Three different device classes are simulated:

• Smartphone: High availability, low capability

• Laptop: Low availability, medium capability

• Home Server: High availability, high capability

8.2 Simulation of User-Centric Networks 173

These device classes were already presented as examples in Section 3.2.3. They differ in two
aspects: availability and capability. For a definition of availability and capability, see Section 3.2.
These two aspects are modeled as follows.

Availability model

The different device classes have different availabilities. Each device’s availability can be modeled
by alternating lifetime and deadtime phases, as proposed in [118]. If and only if two devices
are in a lifetime phase (or alive) at the same time, they are available for each other and can
communicate with each other during that time. If a device is in a deadtime phase, it is called
dead until it becomes alive again.
[73] proposes a synthetic approach to modeling churn and communication delays in so-called

1-hop social overlays. Like [118], the model also follows the notion of subsequent lifetime and
deadtime phases. The length of these phases follow a heavy-tailed, pareto-shifted distribution
with shape parameter α= 3. This is also applied for the simulations here.

For lifetime phases, the authors use an expected value of 30 minutes, whereas for deadtime
phases an expected value of 1 hour is used. These numbers are based on measurements in P2P
filesharing network. They are used as the default values for the Laptop device class. This is based
on the assumption that a typical file sharing client is running on a computer and is sitting in the
background while a user uses his computer, hence the connectivity of the filesharing client being
equal to the connectivity of the laptop. Thus, a laptop has an average availability ratio of 1/3.1

For the smartphone device class (high availability), an expected lifetime phase length of 16
hours is assumed in this evaluation. This reflects a continuous availability during a full working
day plus evening. At night, a smartphone is assumed to be switched off. This is modeled by an
expected deadtime phase length of 8 hours. The average availability ratio of a smartphone is
therefore 2/3.

Home servers are assumed to have no deadtime phases at all, thus a server has an availability
ratio of 1.

The discussed parameters are summarized in Table 8.2.

Table 8.2: Parameter values for three device classes

Device class Expected lifetime phase length Expected deadtime phase length CCV

Smartphone 16 hours 8 hours 10

Laptop 30 minutes 1 hour 5

Home Server ∞ hours 0 seconds 1

Laptops and smartphones differ in another important aspect besides their average availability:
the expected lengths of lifetimes and deadtimes are much longer for smartphones than for laptops
(16 hours vs. 30 minutes and 8 hours vs. 1 hour respectively). This means that once a smartphone
is dead it will be probably dead for a long time, unlike a laptop.

1The average availability of device class C is: āC := E(LC)
E(LC)+E(DC)

with E(LC) being the expected length of a lifetime
phase for devices of class C and E(DC) being the expected length of a deadtime phase respectively.

174 8 Evaluation

Figure 8.4 illustrates this aspect. Here, the pareto-distributed lifetimes and deadtimes of
smartphones and laptops are displayed as cumulative distribution functions (CDFs). A CDF is
defined as FX (x) := P(X ≤ x). It describes the probability P that a random variable X (here:
length of a lifetime / deadtime) will be less than or equal to x . For a pareto-shifted distribution

with shape parameter α = 3, it is FX (x) = 1−
�

2
3 ∗

E(X)
x

�3
with E(X) being the expected value for

X . For example, about 87% of all smartphones deadtimes are shorter than 38400 seconds, but
every smartphone deadtime lasts at least 19200 seconds.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1
2
0
0

2
4
0
0

1
0
8
0
0

1
9
2
0
0

2
8
8
0
0

3
8
4
0
0

4
8
0
0
0

5
7
6
0
0

C
u
m

u
la

ti
v
e
 D

is
tr

ib
u
ti
o
n
 F

u
n
c
ti
o
n

Length of Phase [s]

Laptop Lifetime
Laptop Deadtime

Smartphone Lifetime
Smartphone Deadtime

Figure 8.4: Cumulative distribution functions for pareto-distributed lifetime and deadtime phase
lengths with the expected values from Table 8.2 (shape parameter α= 3)

Capability model

High capability is reflected in SocioPath by a low Communication Costs Value (CCV) (see
Chapter 5) and low capability is reflected by a high CCV. For the simulation scenarios, CCVs are
fix for each device class. Each device class’s CCV is shown in Table 8.2.

CCVs are abstract values which are chosen arbitarily here. For this evaluation, penalty values
for being battery-driven (factor 5) and having a metered mobile connectivity where every sent and
received byte counts against a quota (factor 5). However, this is configurable and the simulation
environment also supports other values.

For the simulation scenarios, it is assumed that a smartphone is battery-driven and has a metered
mobile connectivity, therefore the penalties sum up to a factor of 10. A laptop is battery-driven,
but when it has connectivity, it is always a WiFi connection, therefore the overall penalty factor
is 5. A home server is neither battery-driven and has fast and cheap connectivity, therefore the
overall penalty factor is 1.

8.2 Simulation of User-Centric Networks 175

8.2.3 Device Ownerships

To the generated users, application devices and optionally support devices are mapped.

Application devices

An application device is a device which runs the SodessonTestApp with a yet to-be-defined applica-
tion behaviour (see Section 8.2.4). This means, an application device publishes data objects and
shall receive data objects if its user is a subscriber.

During each simulation run, each user has exactly one application device. An application device
is either a smartphone or a laptop. All users have the same type of application device.

Support devices

A support device is a device that is associated to a user (in addition to the application device), but
does not run the SodessonTestApp. It acts as an additional resource that can be used by SocioPath.

The following distributions of support devices with the following namings will be regarded
throughout the evaluation.

• NoSupp: no user has any additional devices besides his application device

• TOSuppServer: topic owner (TO) has an additional home server

• TOSuppSmartphone: TO has one additional smartphone

• TOSuppLaptop: TO has an additional laptop

8.2.4 Applications

Two different use-cases will be regarded: private instant messaging and group instant mes-
saging.

For instant messaging, one or multiple disjunct groups are defined per simulation run. In
each group, one user publishes a small data object while the remaining users of that group
are subscribers. This process is repeated multiple times, with different users being publishers,
therefore simulating group-internal conversations.

To realize this scenario via UCNs, anchor user A first becomes the TO for a pre-defined number
m of topics. Each of A’s contacts becomes an allowed publisher / allowed subscriber for exactly
one topic and subscribes to that topic.

This results in m groups. Given that nUsers − 1 have been sampled before as the anchor user’s
(i.e. TO’s) contacts and the TO is member of each group, this results in

�

nUsers−1
m + 1
�

users per
group.

For the simulations, these two extremes are regarded:

• Private instant messaging: the scenario here is a private conversation between TO A and
one distinct contact. Thus, nUsers − 1 topics are generated by A. A subscribes to all of
them and makes each contact an allowed publisher / allowed subscriber for a different

176 8 Evaluation

topic. Each contact subscribes to his distinct topic. Every message with a given topic t is
either published by A or the single distinct contact Ct associated to t. That message is only
delivered to two subscribers: A and Ct , Thus, each group size is 2.

• Group instant messaging: the scenario here is a group conversation between TO A and all
his contacts. Only one single topic is generated by TO A. A subscribes to it and defines all
contacts as allowed publishers/allowed subscribers for this topic. Each contact subscribes
to this topic. Any user can publish a message. The message gets delivered to all users. Thus,
the size of the (only) group is nUsers.

Figure 8.5 shows both private and group instant messaging for user A and three contacts.

Figure 8.5: Private and group instant messaging scenario for anchor user / topic owner A and three
contacts.

On each application device, an instant message is published on average every 200 seconds2.
This average send period is derived by [3] where an average of 17.6 messages per hour was
measured for participants in a study on instant messaging behaviour.

Every instant message published by contact X t is a data object with the subscribed topic t. For
each instant message published by A, one of the (nUsers − 1) topics is picked randomly (uniformly
distributed). Since A sends as many messages as a single contact, on average each contact receives

1
nUsers−1 of the number of messages the same contact sends. In turn, A receives on average nUsers−1
times as many messages as A sends.

Each instant message size is uniformly distributed between 2 and 150 bytes. Thus, the expected
value is 76 bytes. This number reflects the average of 13.5 words per instant message [58], the
assumption of an average of 5 characters per word in the English language [98] and a UTF-8
encoding which mostly uses Western 1-byte characters.

All instant messages are piggybacked in SocioPath NOTIFYReq messages.

2This average is reached by uniformly distributed intervals between 0 and 400 seconds.

8.3 Performance Metrics 177

8.3 Performance Metrics

During each simulation scenario, two metrics are evaluated: delays and sending costs.

8.3.1 Delays

From the time when an application on a publishing device has published a new data object until
it has been received on a specific subscriber device, four notable points in time can be identified
(see Figure 8.6):

• Time À – Published: an application on the publishing device publishes the data object

• Time Á – Sending first possible: the publishing device is alive at À or becomes alive for the
first time after À. Thus, it is able to forward the data object to any other devices

• Time Â – Receiving first possible: the subscriber device is alive on or after Á and is
potentially able to receive the data object if delivered by another device

• Time Ã – Received: the alive subscriber device has fully received the data object, i.e. got it
completely delivered from at least one other device

Figure 8.6: A publishing and a subscriber device with alternating lifetime (green) and deadtime
(red) phases. The important durations here are the baseline delay (grey, between Á and
Â) and the delivery delay (black, between Á and Ã)

For each subscriber device, different values for Â and Ã can occur. It is À ≤ Á ≤ Â ≤ Ã.
If the publishing device is alive at the time of publishing, it is Á = À.
From these points in time, two notable delays relevant for the evaluation can be deduced:

• Baseline delay: time period between Á and Â

• Delivery delay: time period between Á and Ã

178 8 Evaluation

Baseline delay

The baseline delay BD(a1,b1,δt) is a lower bound for the delay of delivering a data object δt

from the publishing device a1 to a specific subscriber device b1.
The baseline delay covers the timespan where publishing device a1 is first able to forward δt

to any other device until the time where subscriber device b1 is first able to receive data objects
from any other device, i.e. from Á to Â. Thus, the baseline delay is only defined by the lifetime
and deadtime phases of the publishing and subscriber device respectively.

This is the smallest delay considered achievable. To see this, imagine a CSP which is always
available and any other device can forward or receive a data object of arbitrary size in no time as
long as that device is alive. Therefore, the publishing device a1 would forward the data object
as soon as possible (at Á) and the subscriber device b1 would receive it as soon as possible
afterwards (at Â).

Physical transmission delays are ignored here. The baseline delay is therefore a theoretical
lower bound which cannot be achieved in reality: If a1 and b1 are both alive during the time
where sending is possible for a1, it is Á = Â. Hence, BD(a1,b1,δt) is exactly 0 seconds in this
case.

Delivery delay

The delivery delay DD(a1,b1,δt) covers the timespan where the publishing device a1 is first able
to forward δt to any other device until the time where a specific subscriber device b1 has fully
received δt , i.e. from Á to Ã.

It is Ã ≥ Â, thus it is DD(a1,b1,δ) ≥ BD(a1,b1,δ).
Unlike the baseline delay, the delivery delay is not a theoretical lower bound. Instead, the

delivery delay adds up any delays that occur after Á until Ã is finally reached. The expected main
contributors are as follows:

• Network latency between any two devices

• Selection of involved devices as given by the Decision Engine

• Deadtimes of all devices involved in the delivery, i.e. publishing device, subscriber device,
TO devices or any other support devices.

Example

The following example shall illustrate how baseline delay and delivery delay depend on the
publishing device’s and each subscriber device’s individual lifetime and deadtime phases.

Figure 8.6 shows two devices: one publishing device a1 and a subscriber device b1 which is
supposed to receive a data object δt published by a1. At least one of the two devices is a TO
device.

At time À, an application on a1 publishes δt . At the same time, a1 is dead, therefore δt cannot
be delivered to b1 (nor any other device, if there would be any). Still, from the application’s point
of view, the message has been successfully published and passed to the SODESSON middleware.

8.4 Comparison of Results 179

At time Á, a1 becomes alive for the first time after À. From this point, it becomes possible for
a1 to forward δ to any other devices. Thus, it is always À ≤ Á.

b1 becomes alive at Â. It was dead at Á, thus it is now first possible for b1 to receive δt . Note
that b1 was alive at À. However, it is impossible for b1 to be notified about nor receive δ until
the publishing device a1 is alive for the the first time. Thus, it is always À ≤ Á ≤ Â.

At Ä, b1 has fully received δt . Most of the difference between Â and Ã is due to a1 being in
a deadtime phase again. a1 is the only source device in this scenario, therefore δt cannot be
delivered to b1 if a1 is dead. After a1 becomes alive again, an additional delay is assumed due to
underlay network latency for the transport of the notification.

In Figure 8.6, the baseline delay BD(a1,b1,δt) is displayed as the grey bar in the middle. The
delivery delay DD(a1,b1,δt) is displayed as the black bar in the middle.

8.3.2 Sending Costs

As a second performance metric, the costs for sending a data object will be measured. To this
end, each sent byte of each device is measured and multiplied with the respective device’s CCV as
penalty. Thus, the costs of each device will be measured in weighed bytes per second or wb/s.

Based on these measurements, three values will be regarded in the statistics:

• Minimum: costs of the single device with the least costs in one simulation run

• Mean: average costs of all devices in one simulation run

• Maximum: costs of the single device with the most costs in one simulation run

Since multiple simulation runs are performed, the cost plots will show an average minimum,
average mean and average maximum.

8.4 Comparison of Results

Based on the given evaluation metrics (Section 8.3), results can be compared in terms of better
and worse.

8.4.1 Delays

In the upcoming simulations, baseline delay and delivery delay are measured for each published
data object, between the publishing device and the application devices of each subscriber. Since
each user has only one application device where he consumes the data object, this is the delay
each user cares about. Support devices do not count towards baseline delay nor delivery delay.

The simulation results are aggregated in a cumulative distribution function (CDF) for baseline
delays and delivery delays respectively. As already defined in Section 8.2.2, a CDF is defined as
FX (x) := P(X ≤ x). It describes the probability P that a random variable X will be less than or
equal to x . Since a single delay can be regarded as a sample for a random variable X , the CDFs
describe the percentage of delivery delays and baseline delays which are smaller or equal to x .

180 8 Evaluation

Via the CDF measurements for a given delay X , baseline delay and delivery delay can be
compared to each other. This way, SocioPath’s actual performance in terms of delivery delay can
be assessed with regard to the theoretical lower bound which is the baseline delay: the smaller
the difference between the two, the better.

Only delays lower than 8 hourse (28800 seconds) will be taken into account, which is the
expected deadtime of a smartphone. Since not the absolute values of the delivery delays are
relevant, but instead their difference to the baseline delay, the results thus display how the delivery
delays compare to the baseline for the first 8 hours. This is deemed to be sufficient for a good
performance evaluation: if a large gap between baseline and delivery line cannot be closed within
8 hours, performance will be unacceptable anyway.

8.4.2 Sending Costs

Generally, the lower the measured average minimum / average mean / average maximum costs,
the better. Additionally, the device with the highest costs will be identified. This way it is possible
to tell which user will have the highest costs with what device.

8.4.3 Privacy

According to the privacy model in Section 3.6, a higher privacy level is better since it gives away
less application metadata to the users of a closed group. Instant-to-All and Offload-First reach
privacy level IV, i.e. the highest achievable privacy level according to the model.

8.5 Simulation Runs

Each simulation run is measured for 48 hours. This decision is based on the long expected
lifetimes (16 hours) and deadtimes of smartphones (8 hours). Shorter simulations run would lead
to the risk that one smartphone is always alive or always dead during a whole run. Before the 48
hours are measured, there is a 24 hour transition phase where all subscriptions, contacts, multiple
devices per user are established and made known to the relevant devices. This "warm-up" does
not count to the statistics. This way, an stabilized communication scenario is simulated. This
excludes for example outliers in the delivery delays. Assume SodessonTestApp subscribes to a
topic, the device is stored as a subscriber device in the GlobalSodessonTestObserver and counted
for delivery delays, but the subscription request takes a long time until it reaches a TO device and
before data objects get delivered. Such transition cases are not regarded here.

For each configuration, 100 simulations runs are performed. Of the results, the average is
calculated, as well as the 98th percentile. The latter is shown as confidence intervals in all plots
below. The respective lines and bars show the average.

8.6 Private Instant Messaging

First, private instant messaging will be regarded (see Section 8.2.4). Each closed group contains
the TO and one distinct contact. The TO and the contact each have exactly one application

8.6 Private Instant Messaging 181

device. All application devices in the same simulation run have the same class – they are either
smartphones or laptops.

Additionally, there is either no support device (NoSupp) or exactly one TO support device
(TOSuppServer, TOSuppSmartphone, TOSuppLaptop).

First, the delays for Instant-to-All (Section 8.6.1) and Offload-First (Section 8.6.2) will be
evaluated. State repairs are reactive here. For comparison, delays with periodic state repairs will
be shortly discussed in Section 8.6.4.

Second, the costs for Instant-to-All (Section 8.6.5) and Offload-First (Section 8.6.6) will be
evaluated.

An summarizing overview on the key results will close this section.

8.6.1 Delays: Instant-to-All

Here, the baseline and delivery delays for private instant messaging with Instant-to-All will be
evaluated.

Baseline delays for laptops and smartphones

Figure 8.7a shows graphs for laptops as application devices. For the baseline delay CDF (red line),
it is FX (0) = 0.35, i.e. about 1/3 of all published instant messages have a baseline delay of zero.
This matches exactly with the expectation that a laptop is alive 1/3 of the time: at the time when
sending is first possible for the publishing device, the subscriber device is alive at the same time
with a probability of 1/3, resulting in a baseline delay of zero.

A similar observation can be made for smartphones (Figure 8.7b, red line). A smartphone is
expected to be alive 2/3 of the time. For the baseline delay CDF, it is FX (0) = 0.72, which is only
slightly above the expected value of 2/3.

For laptops, the baseline delay CDF eventually reaches 1.0 in Figure 8.7a at about 20000
seconds. For smartphones on the other hand (Figure 8.7b), only ∼ 95% of all baseline delays are
lower than eight hours. This is an important result: even though smartphones are alive more
often than laptops (2/3 of the time compared to 1/3), smartphones are expected to have much
longer deadtime phases – according to Figure 8.4, ∼ 30% of all smartphone deadtimes are longer
than 28800s. Thus, once a smartphone is dead, it is less probable to become alive again than
a laptop. While it is dead, it cannot receive any new instant messages, which results in longer
baseline delays.

Delivery delays with no support device

For laptops as application devices and NoSupp (yellow curve in Figure 8.7a), low delivery delays
until ∼ 1800 seconds are about as probable as for the baseline, i.e. the best case. For higher
delivery delays, a gap between delivery delay CDF and baseline delay CDF opens and gradually
closes again.

This can be explained as follows: in private instant messaging, there is only one publishing
device and one other subscriber device per data object. The baseline regards the interval from
the time when the publishing device is first alive to the time when the subscriber device is first

182 8 Evaluation

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 22000

 24000

 26000

 28000

C
u

m
u

la
ti
v
e

 D
is

tr
ib

u
ti
o

n

Delay [s]

Instant−to−All / Application device: Laptop / Reactive state repairs

Baseline
TOSuppServer

TOSuppSmartphone
TOSuppLaptop

NoSupp

(a)

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 22000

 24000

 26000

 28000

C
u

m
u

la
ti
v
e

 D
is

tr
ib

u
ti
o

n

Delay [s]

Instant−to−All / Application device: Smartphone / Reactive state repairs

Baseline
TOSuppServer

TOSuppSmartphone
TOSuppLaptop

NoSupp

(b)

Figure 8.7: Private instant messaging / Instant-to-All: delay CDFs with reactive state repairs

alive. After 1800 seconds, more and more cases occur where the subscriber device becomes alive,
but the publishing device is already dead again and cannot deliver the data object – note that
the expected lifetime phase for a laptop is 1800 seconds. Afterwards, it can happen that the
publishing device becomes alive again, but the subscriber device is dead again and so on. As soon
as one device is alive and the second one just becomes alive, the second device initializes a state
repair reactively and the data object is successfully delivered eventually. The probability that
both devices are at least once alive at the same time increases as time passes, therefore the gap
between baseline delay CDF and delivery delay CDF closes again.

8.6 Private Instant Messaging 183

For smartphones as application devices and NoSupp (yellow curve in Figure 8.7b), the delivery
delay CDF behaves in exact the opposite way as laptops: instead of a gap which opens and then
closes again, here the difference between delivery and baseline delay CDF grows for higher delays.
This can be explained as follows: smartphones are more often alive than laptops (2/3 of the time
as opposed to 1/3). Thus, there is a higher probability that the publishing device is still alive
when the subscriber device becomes alive for the first time. This explains the general closeness
between delivery delay CDF and baseline delay CDF. However, once a smartphone is dead, it can
be dead for a long time – according to Figure 8.4, 30% of all smartphone deadtimes are longer
than 28800 seconds. Therefore, most state repairs happen more sooner than later. Once the
publishing device becomes dead, the probability that it becomes alive again before the end of the
observed 28800 seconds is much lower than for laptops. Thus, the probability for successful state
repairs diminishes here, the more time passes and no state repair has been successfully performed
yet.

Around 0 seconds, Figures 8.7a and 8.7b seemingly show a jump of the delivery delay CDF to
the baseline delay CDF. Figure C.1 in Appendix C shows the first 5 seconds for delivery delay CDF
and baseline delay CDF in larger detail. It explains the jump: the baseline is a theoretical lower
bound that can equal zero, but delivery delays are always larger than zero due to the simulated
network latencies in OverSim. After 1-2 seconds, the delivery delay CDF has approximated the
baseline delay CDF.

Delivery delays with TO support device

For laptops, TO support devices help to close the gap after 1800 seconds faster (see Figure 8.7a).
Instead of making a state repair directly between publishing and subscriber device, the publishing
device can make a state repair with the support device. Later, the subscriber device can make a
state repair with the support device. In this case, publishing and subscriber device do not have to
be alive at the same time. Naturally, the more often a support device is available for state repairs,
the more helpful it is. This is reflected by the increasing closeness to the baseline from NoSupp,
over TOSuppLaptop, TOSuppSmartphone up to TOSuppServer. The is latter always available, and
thus almost congruent with the baseline and hardly visible in the graph.

To see this, also refer to Table 8.3. It shows selected values from the CDF plot, i.e. for delays
lower or equal to 5s, 3600s and 28800s respectively. For example: for laptops with NoSupp,
64,6% of all delivery delays are lower than or equal to 3600 seconds. With TOSuppServer, it is
90,6%. The baseline is 90,7% here.

For smartphones, support devices do not help as much as for laptops. This can also be ex-
plained by the long lifetimes and long deadtimes of smartphones – support devices eliminate the
requirement that publishing and subscriber device are alive at the same time. If both smartphones
are alive at the same time, a support device is unneeded. If the subscriber smartphone is dead
and never comes alive again, a support device cannot help either – this is the reason why the gap
widens . Thus, smartphones do not profit from support devices as much as laptops do.

Again, this can be seen in Table 8.3. For example: for smartphones with NoSupp, 75,5% of all
delivery delays are lower than or equal to 3600 seconds. The baseline is 75,6% here, i.e. the
delivery delays with NoSupp are already very close, even without a support device.

184 8 Evaluation

Table 8.3: Private instant messaging / Instant-to-All: percentage of delivery delays that are lower or
equal to 5s / 3600s / 28800s

Private instant messaging / Instant-to-All

Application Device: Laptop Application Device: Smartphone

≤ 5s ≤ 3600s ≤ 28800s ≤ 5s ≤ 3600s ≤ 28800s

Baseline 35.0% 90.7% 99.99% 71.7% 75.7% 97.2%

TOSuppServer 34.3% 90.6% 99.93% 71.4% 75.2% 97.2%

TOSuppSmartphone 33.9% 79.9% 99.66% 70.5% 74.5% 95.4%

TOSuppLaptop 34.5% 73.1% 99.87% 71.0% 74.9% 96.1%

NoSupp 34.0% 64.6% 98.84% 71.6% 75.6% 93.9%

8.6.2 Delays: Offload-First

Now, the most relevant differences of Offload-First as a Decision Engine compared to Instant-to-All
will be discussed. Besides the Decision Engine, the same configuration will be discussed.

Baseline delays

In general, the baseline delays do not differ from the ones where Instant-to-All is used. Baseline
delays are only defined by the lifetimes and deadtimes of each publishing device and respective
subscriber device. They are independent from the Decision Engine and therefore do not have to
be discussed again. To see this, compare the red curves of the respective plots between Figure 8.7
and Figure 8.8.

Delivery delays with no support device

If there are no support devices, i.e. only there is exactly one subscriber device besides the
publishing device for each data object, the delivery delays for Offload-First are the same as for
Instant-to-All: the publishing device sends a NOTIFY message to the subscriber device and asks it
to forward to all other devices of the same user. Since there are none, the notification process
is complete, just like for Instant-to-All. State repair procedures are also identical if there are no
support devices. To see this, compare the yellow curves of the plots in Figure 8.7 and Figure 8.8
respectively.

Delivery delays with TO support device

If the TO support device has lower or equal communication costs to the application devices, it
becomes a bottleneck for forwarding notifications in Offload-First, unlike in Instant-to-All. If this
support device is dead, the whole notification process stalls and state repairs are required later,
even if the application devices are alive.

This bottleneck effect can be observed in Figure 8.8b (Offload-First), as opposed to Figure 8.7b
(Instant-to-All). Here, each user has a smartphone as the application device. For the blue curve,
there is a TOSuppLaptop. Since the Communication Costs Value (CCV) is lower for laptops (5)

8.6 Private Instant Messaging 185

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 22000

 24000

 26000

 28000

C
u

m
u

la
ti
v
e

 D
is

tr
ib

u
ti
o

n

Delay [s]

Offload−First / Application device: Laptop / Reactive state repairs

Baseline
TOSuppServer

TOSuppSmartphone
TOSuppLaptop

NoSupp

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 22000

 24000

 26000

 28000

C
u

m
u

la
ti
v
e

 D
is

tr
ib

u
ti
o

n

Delay [s]

Offload−First / Application device: Smartphone / Reactive state repairs

Baseline
TOSuppServer

TOSuppSmartphone
TOSuppLaptop

NoSupp

(b)

Figure 8.8: Private instant messaging / Offload-First: delay CDFs with reactive state repairs

than for smartphones (10), Offload-First chooses the TOSuppLaptop as the device for offloading.
Only the TOSuppLaptop received the NOTIFY message first. However, laptops are less often alive
than smartphones. If the TOSuppLaptop is dead when the publishing device tries to send the
NOTIFY message, the whole notification process stalls until the next state repair betwen these two
devices. Unlike for Instant-to-All, the other application device does not get notified directly.

Due to this bottleneck effect when using support devices, the delivery delay CDF is visibly worse
than for Instant-to-All. The only exception is TOSuppServer which has no deadtimes at all and is
thus always available.

186 8 Evaluation

8.6.3 Delays: Scalability

In the previous results, all simulations were done with 20 users. Since private instant messaging
was evaluated, this means there were 19 groups with the topic and one distinct contact. Figure 8.9
shows results for other group sizes: 5, 50 and 100 users for of Instant-to-All with TOSuppServer
and NoSupp.

The results indicate that the delays are independent from the number of users: there are two
clusters of graphs, but the difference is made by TOSuppServer versus NoSupp. The graphs align
with the respective graphs in Figure 8.7a, which was already discussed in Section 8.6.1.

User numbers not having an effect here is an intuitive result: independent from the number of
users, each group size is still 2. This means, each published instant message only needs to be
delivered to the TO’s application device and one distinct contact’s application device. This is with
a single state repair between the devices of the respective users. The only difference is that the
number of state repairs for the topic owner changes with the number of contacts.

This shows that in terms of delay, the private instant messaging scenario scales at least to up to
99 contacts of the topic owner.

8.6.4 Delays: Periodic State Repairs

In the previous results for delivery delays, state repairs were reactive: as soon as a device becomes
alive after a deadtime, it initiates state repairs and also demands a returned STATEReq from the
contacted devices. An alternative to reactive state repairs are periodic state repairs: each device
can simply periodically initiate state repairs with all known devices, regardless of any previous
deadtimes. Here, no returned STATEReq messages are demanded, since every device sends them
periodically. The periodic interval is a system-wide parameter and is called State Sending Interval
(SSI).

Generally, the sooner a state repair is performed, the better: the sooner states are repaired, the
sooner missed notifications are delivered to the subscriber device. Less frequent state repairs
have a negative impact on the delivery delay CDF. It now depends on the class of the application
devices, whether reactive or periodic states should be preferred. This shall be discussed at the
example of Offload-First for both laptops and smartphones.

Laptops have short lifetimes and short deadtimes. Thus, a laptop often changes from a deadtime
to a lifetime. If reactive states are used, state repairs are also often initiated here. Figure 8.10a
shows periodic SSIs for laptops. STATEReq messages are sent on average every 500s. Compare
Figure 8.8a (reactive states) to Figure 8.10a (periodic states). If periodic states are used, there is
a larger gap between the delivery delay CDFs and the baseline CDF. For laptops, reactive state
repairs are on average faster than periodic state repairs every 500s.

However, smartphones have long lifetimes and long deadtimes. Thus, a smartphone rarely
changes from a deadtime to a lifetime. If reactive states are used, state repairs are very rare. Thus,
smartphones profit from periodic state repairs. To see this, compare Figure 8.8b (reactive states)
with Figure 8.10b (periodic states). If periodic states are used, the delivery delay CDFs approximate
the baseline delay CDF very closely and visibly faster than with the reactive approach. Especially
the availability bottleneck TOSuppLaptop is alleviated in Offload-First, due to the periodic state

8.6 Private Instant Messaging 187

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 22000

 24000

 26000

 28000

C
u

m
u

la
ti
v
e

 D
is

tr
ib

u
ti
o

n

Delay [s]

Instant−to−All / Application device: Laptop / Reactive state repairs

5 Users, NoSupp
20 Users, NoSupp
50 Users, NoSupp

100 Users, NoSupp
5 Users, TOSuppServer

20 Users, TOSuppServer
50 Users, TOSuppServer

100 Users, TOSuppServer

(a)

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 22000

 24000

 26000

 28000

C
u

m
u

la
ti
v
e

 D
is

tr
ib

u
ti
o

n

Delay [s]

Instant−to−All / Application device: Smartphone / Reactive state repairs

5 Users, NoSupp
20 Users, NoSupp
50 Users, NoSupp

100 Users, NoSupp
5 Users, TOSuppServer

20 Users, TOSuppServer
50 Users, TOSuppServer

100 Users, TOSuppServer

(b)

Figure 8.9: Private instant messaging / Instant-to-All: delay CDFs with different user numbers

repairs of the application devices with each other: for SSI = 500s reactive, 70% of all data objects
are delivered after 1000 seconds, as opposed to 8000 seconds with the reactive approach.

8.6.5 Costs: Instant-to-All

For Instant-to-All, the red-toned bars in Figure 8.11 show the total sent bytes per second, weighed
with each device class’s penalty value (weighed bytes per seconds or wb/s). For each device
distribution, the minimum costs (taken from the device with the overall least costs), mean and

188 8 Evaluation

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 22000

 24000

 26000

 28000

C
u

m
u

la
ti
v
e

 D
is

tr
ib

u
ti
o

n

Delay [s]

Offload−First / Application device: Laptop / State Sending Intervals: 500s

Baseline
TO Server

TO Smartphone
TO Laptop

No Support Devices

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 22000

 24000

 26000

 28000

C
u

m
u

la
ti
v
e

 D
is

tr
ib

u
ti
o

n

Delay [s]

Offload−First / Application device: Smartphone / State Sending Intervals: 500s

Baseline
TO Server

TO Smartphone
TO Laptop

No Support Devices

(b)

Figure 8.10: Private instant messaging / Offload-First: delay CDFs with periodic state repairs

maximum (taken from the device with the overall highest costs) are shown. All state repairs are
reactive.

8.6 Private Instant Messaging 189

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

TOSuppLaptop TOSuppServer TOSuppSmartphone NoSupp

S
e
n
t
w

e
ig

h
e
d
 b

y
te

s
 p

e
r

s
e
c
o
n
d
 [
w

b
/s

]

Application device: Laptop

Instant−to−All, min
mean

max
Offload−First, min

mean
max

(a)

 0

 50

 100

 150

 200

 250

 300

 350

 400

TOSuppLaptop TOSuppServer TOSuppSmartphone NoSupp

S
e
n
t
w

e
ig

h
e
d
 b

y
te

s
 p

e
r

s
e
c
o
n
d
 [
w

b
/s

]

Application device: Smartphone

Instant−to−All, min
mean

max
Offload−First, min

mean
max

(b)

Figure 8.11: Private Instant Messaging: Costs

Costs with no support device

If no support device is used, the minimum, mean and maximum costs for laptops and smartphones
are similar: for laptops, the min / mean / maximum costs are 6 / 12.6 / 115.6 wb/s. For
smartphones, the min / mean / maximum costs are 8.7 / 16.9 / 112.6 wb/s). This is counter-
intuitive, since the CCV for smartphones is twice as high as for laptops, but the ratios of the
number are 1.45 / 1.34 / 0.97 instead of 2.0 respectively. On the other hand, the availability
ratio of smartphones is twice as high as the laptops’ availability ratio. Thus, less state repairs are
required for smartphones. These two factors balance each other out to a certain degree.

Costs with TO support device, laptops as application devices

For laptops as application devices and any support device (TOSuppLaptop, TOSuppServer and
TOSuppSmartphone), the minimum, mean and maximum costs are higher than with no support
device (see Figure 8.11a).

It can be assumed that the device with the minimum costs belongs to a contact, while the
device with maximum costs belongs to the TO, as will be discussed further below. Thus, the

190 8 Evaluation

higher costs affect the contacts as well as the TO, which can be deduced from higher minimum
costs and higher maximum costs: the average minimum costs are: 9.6 / 9.4 / 9.6 wb/s for
TOSuppLaptop / TOSuppServer / TOSuppSmartphone compared to 6 wb/s without any support
device. In Instant-to-All, each contact’s laptop sends a notification after publishing to two TO
devices: the TO’s laptop (application device) and the TO support device. The costs are not twice
as high, since state repairs of the TO devices can also be made between the TO devices themselves
– in that case the contact device would only need to send one notification. The average maximum
costs are 174.2 wb/s (164.2 wb/s) for TOSuppLaptop (TOSuppServer) compared to 115.4 wb/s
without any support device. Thus, the additional device also results in higher costs for the TO.

Note that the confidence interval is very large for TOSuppSmartphone in Figure 8.11a – the
98th percentile ranges between 389 wb/s and 723 wb/s. Whether the maximum costs are in
the upper or lower end of this range, depends on the individual lifetimes and deadtimes of the
single TOSuppSmartphone: once the smartphone is dead, it cannot be a target for state repairs for
probably a long time. In this case, state repairs happen only between the laptops as application
devices with their lower CCV. Since TOSuppSmartphone is not involved here, this reduces its costs,
i.e. the maximum costs, significantly. However, if TOSuppSmartphone has a very long lifetime
during the simulation, it often becomes a target for state repairs. This results in high costs for
TOSuppSmartphone, i.e. high maximum costs.

Costs with TO support device, smartphones as application devices

For smartphones as application devices and TOSuppSmartphone (see Figure 8.11b), the costs also
grow with a TO support device, as already discussed for laptops.

The confidence intervals for TOSuppSmartphone have a smaller range: regardless of the indi-
vidual lifetimes and deadtimes of the support device TOSuppSmartphone, state repairs always
happen between smartphones with a high CCV. This results in a lower variance for the maximum
costs. Additionally, the average maximum costs are lower for smartphones as application devices
than for laptops (compare TOSuppSmartphone in Figure 8.11b with TOSuppSmartphone in Figure
8.11a): the average maximum costs for smartphones (laptops) are 317 wb/s (615 wb/s). The
reason for this result is again the higher availability of smartphones: less state repairs are required,
which results in lower maximum costs.

Device with highest costs, with no support device

In all cases, there is a strong difference between mean and maximum, regardless of support
devices and Decision Engine. This lets one suspect that a single device has most of the costs: the
mean is measured across all devices, but the maximum is measured from a single device. In case
of a completely fair distribution across all devices, the mean costs would equal the maximum
costs. On the other hand, the stronger the difference between mean and maximum, the more
one single device obviously behaves differently than the other devices regarded as a whole. This
effect shall be investigated now.

To identify the single device with the highest costs for laptops as application devices, see Figure
8.11a with NoSupp. Here, the mean costs for each device are 12 wb/s, which for 20 devices yields

8.6 Private Instant Messaging 191

an overall sum of 240 wb/s. Given that one device has costs of 115 wb/s (i.e. the maximum),
this means that one single device has almost as high costs as all other devices taken together.

Intuitively, this has to be the application device of the TO. However, that device’s publishing
behaviour is identical to all contact’s devices, i.e. on average it publishes as many instant messages
as any other application device. For each instant message, only one one subscriber device must
be notified – this is also identical to the costs of any contact’s application device. Thus, the reason
for the large difference must be state repairs. Indeed, when the TO device becomes alive from a
deadtime, it performs up to 19 state repairs – one with each contact device that is currently alive.
Vice-versa, each contact’s device performs only one state repair, again with the TO device. Thus,
besides its own large number of state repairs, the TO device is also the target of any other state
repairs.

Device with highest costs, with TO support device

It is now clear that the device with the highest costs is a TO device. If there is a TO support
device, the TO has two devices: the application device and one support device. It shall now be
investigated which of the two TO devices has the highest costs. The respective device class could
be deduced by comparing the maximum costs with the maximum sent bytes (unweighed). The
results of this comparison are listed in Table 8.4.

Table 8.4 shows that the device which sends the most bytes is not necessarily the device with the
highest costs. For example, for laptops as application devices and a TOSuppServer as a support
device, a server sends most bytes. This can only be the TOSuppServer. However, when weighed
with the CCV (server = 1, laptop = 5), a laptop has the highest costs. This has to be the laptop
of the TO. As discussed above, Figure 8.11a shows for Instant-to-All and laptops as application
devices, that a TOSuppServer raises the maximum costs. Thus, a TOSuppServer does not lower the
costs, but instead raises them for the TO’s application device.

The same considerations can be applied to all other device distributions as well, with one
exception: for laptops as application device and TOSuppSmartphone, the support device actually
has the highest costs.

Table 8.4: Private instant messaging / Instant-to-All: Device class of the device with the most sent
bytes (bytes per second, unweighed) and the highest costs (weighed bytes per second)

Private instant messaging / Instant-to-All

Application Device: Laptop Application Device: Smartphone

Support Device Max Sent Bytes
(b/s)

Max Costs
(wb/s)

Max Sent Bytes
(b/s)

Max Costs
(wb/s)

TOSuppLaptop Laptop Laptop Laptop Smartphone

TOSuppServer Server Laptop Server Smartphone

TOSuppSmartphone Laptop Smartphone Smartphone Smartphone

NoSupp Laptop Laptop Smartphone Smartphone

192 8 Evaluation

8.6.6 Costs: Offload-First

For Offload-First, the green-toned bars in Figure 8.11 show the total sent bytes per second,
weighed with each device class’s penalty value (weighed bytes per second or wb/s). Most of
the observations for Instant-to-All also apply here. Thus, only the relevant differences shall be
discussed here.

Costs with no support device

There is a notable difference for the maximum costs for laptops and smartphones, when compared
to Instant-to-All. For laptops, the maximum costs are about equal to Instant-to-All (see Figure
8.11a). For smartphones however, the maximum costs are about twice as high as for Instant-to-All
(see Figure 8.11b). This difference can be explained by the way how original notifications (i.e. no
resent notification during state repairs) are sent in Offload-First. If a contact’s application device
publishes an instant message, the following steps occur: first, the contact application device sends
a notification to the TO’s application device. Second – since the contact’s application device CCV
is lower or equal (here: equal) to the TO device’s CCV – the TO device sends back the notification
and asks the contact’s device to forward it to other devices of the same contact. Since the contact
has no other devices, this is an unneeded step that results in wasted costs (see also Table 8.5).
This is an issue in the current design which can be easily resolved since the TO device knows that
the publisher only has this single device.

For laptops as application devices, this effect is not visible. The reason for this is the low
availability of laptops. Most notifications are (re)sent during state repairs, where no forwarding
takes place. Offload-First behaves identically to Instant-to-All for state repairs.

Costs with TO support device

With laptops as application devices, results are comparable to Instant-to-All. For smartphones
however, minimum, mean and maximum costs can be lowered with Offload-First. The respective
values from Figure 8.11b are also displayed in Table 8.5. For the minimum and mean, the results
show that it is always more cost-efficient to use Offload-First for smartphones and any TO support
device. Offload-First can save 25.9% for the minimum and 28.7% for the mean (both with
TOSuppServer).

For the maximum however, Offload-First is only preferable if the TO support device has a lower
CCV than the application devices. In that case, the maximum costs can be lowered by 22.4%
(TOSuppLaptop) and 40.3% (TOSuppServer) respectively. With TOSuppSmartphone, the maximum
costs are 22.4% higher when using Offload-First.

As can be seen from Table 8.6, the device which sends the most bytes is not necessarily the device
with the highest costs. This discussion was already led for Instant-to-All in Section 8.6.5. For
Offload-First this means, that e.g. for smartphones as applications and TOSuppServer, still the TO’s
smartphone has the maximum costs – even though most bytes are sent by TOSuppServer. However,
Offload-First relieves the smartphone from 40.3% of its costs as compared to Instant-to-All.

8.6 Private Instant Messaging 193

Table 8.5: Private instant messaging: Comparison of minimum, mean and maximum costs between
Instant-to-All and Offload-First. Application devices are smartphones. Absolute numeric
values are in wb/s. Lower values are better.

Application Device: Smartphone

Support Device Min Costs (wb/s)
Instant-to-All

Min Costs (wb/s)
Offload-First

Costs saved by
Offload-First

TOSuppLaptop 18.3 13.7 25.1%

TOSuppServer 16.2 12.0 25.9%

TOSuppSmartphone 16.1 12.4 22.9%

NoSupp 8.7 8.6 1.1%

Mean Costs (wb/s)
Instant-to-All

Mean Costs (wb/s)
Offload-First

Costs saved by
Offload-First

TOSuppLaptop 44.2 37.4 15.3%

TOSuppServer 33.8 24.1 28.7%

TOSuppSmartphone 47.8 46.3 3.1%

NoSupp 16.9 22.1 −30.8%

Max Costs (wb/s)
Instant-to-All

Max Costs (wb/s)
Offload-First

Costs saved by
Offload-First

TOSuppLaptop 297.8 231.2 22.4%

TOSuppServer 261.3 155.9 40.3%

TOSuppSmartphone 312.1 382.0 −22.4%

NoSupp 112.6 219.7 −95.1%

Table 8.6: Private instant messaging / Offload-First: Device class of the device with the most sent
bytes (bytes per second, unweighed) and the highest costs (weighed bytes per second)

Private instant messaging / Offload-First

Application Device: Laptop Application Device: Smartphone

TO Support Device Max Sent Bytes
(b/s)

Max Costs
(wb/s)

Max Sent Bytes
(b/s)

Max Costs
(wb/s)

TOSuppLaptop Laptop Laptop Laptop Laptop

TOSuppServer Server Laptop Server Smartphone

TOSuppSmartphone Laptop Smartphone Smartphone Smartphone

NoSupp Laptop Laptop Smartphone Smartphone

8.6.7 Storage Footprint

In order to estimate the storage footprint for the private instant messaging scenario, Figure 8.12
shows the minimum / mean / maximum size of the Local Data Storage (in unweighed megabytes)
after the end of the simulation. Note that the Local Data Storage does not only contain the instant

194 8 Evaluation

messages, but also all maintenance data objects, such as notifications about new subscribers, new
devices, and so on.

Here it can be seen that for all device distributions, the final mean (maximum) size is below 1
(7) megabytes. Since 48 hours were simulated, the mean (maximum) would result in less than
15 (105) megabytes per month, which is deemed acceptable for the scenario. As already seen,
the maximum is significantly higher than the mean, which indicates that again a TO device has
the highest storage footprint.

The size of the Local Data Storage correlates with the delivery delay CDF, since each successfully
delivered data object is an entry in the Local Data Storage. Here, it is only relevant whether a
data object arrived within 28800s or not, thus only the far right of each delivery delay CDF graph
needs to be taken into account. For example, since in Figure 8.7b (Instant-to-All, smartphones
as application devices), the delivery delay CDF is worse for 28800s for NoSupp than for e.g.
TOSuppServer. This is also reflected in the respective Local Data Storage size.

 0

 1

 2

 3

 4

 5

 6

 7

TOSuppLaptop TOSuppServer TOSuppSmartphone NoSupp

M
e
g
a
b
y
te

s
 [
m

b
]

Application device: Laptop

Instant−to−All, min
mean

max
Offload−First, min

mean
max

(a)

 0

 1

 2

 3

 4

 5

 6

TOSuppLaptop TOSuppServer TOSuppSmartphone NoSupp

M
e
g
a
b
y
te

s
 [
m

b
]

Application device: Smartphone

Instant−to−All, min
mean

max
Offload−First, min

mean
max

(b)

Figure 8.12: Private instant messaging: Local Data Storage size at the end of simulation

8.6 Private Instant Messaging 195

8.6.8 Key results

The following points sum up the most relevant insights from evaluating the private instant
messaging scenario.

General observations

• Generally, it is possible to gain delivery delays that closely approximate the baseline.3 This
result applies to instant deliveries (i.e. delivery delays of a few milliseconds) as well as high
delays, based on state repairs. This shows that both the designed notification and state
repair systems work. In terms of delay, SocioPath is applicable for private instant messaging
under conditions of the assumed model.

• If application devices have a low availability (here: laptops), TO support devices can
improve the delivery delay CDFs for messages that could not be delivered instantly.4 For
example, with Instant-to-All and TOSuppServer, it is possible to deliver 90.6% of all messages
in under 1 hour (baseline is 90.7%)5, while only 64.6% are delivered with NoSupp.

• If application devices have a high availability (here: smartphones), TO support devices are
not as useful, since the delivery delay CDF is very close to the baseline CDF, even without
support devices6.

• The sooner state repairs are performed, the better are the delivery delay CDFs.

• Not only the availability ratio, but also the expected lengths for lifetimes and deadtimes are
relevant for both delivery delays and costs.

• If application devices have long lifetimes and long deadtimes, i.e. rarely become alive
from a deadtime (here: smartphones), reactive states repairs are rarely performed. Here,
periodic state repairs lead to better delivery delay CDFs than reactive state repairs.7

• Since the TO participates in 19 groups, but each contact only in one group, the costs for TO
devices are much higher than for each contact’s. For example, for Instant-to-All, NoSupp
and laptops as application devices, the TO’s laptop has as many costs as all contacts’ devices
taken together.

• Delivery delays CDFs are about identical for 5, 20, 50 or 100 users8. Thus, SocioPath scales
for the given private instant messaging scenario up to 100 users in terms of delivery delays.

• Storage footprint is acceptable with less than 105 megabytes per month for the topic owner
and less than 15 megabytes per month for contacts.9

3see Figures 8.7 and 8.8
4see Figures 8.7a and 8.8a
5see Table 8.3
6see Figures 8.7b and 8.8b
7compare Figure 8.7b with Figure 8.10b
8see Figure 8.9
9see Figure 8.12

196 8 Evaluation

Instant-to-All

• If Instant-to-All and no support devices are used, then high (low) availability and low (high)
CCV cancel each other out with regard to costs: smartphones have a CCV which is twice as
high as a laptop’s CCV, but their availability ratio is also twice as high. Still, laptops and
smartphones have comparable costs here. The reason is that high availiability requires less
state repairs.

• For Instant-to-All, the advantage of an additional TO support device (improving the delivery
delay CDFs) comes at additional costs for both the TO and the respective contact: each
application device now has to send two notifications instead of one. The additional costs
for the TO are defined by the TO support device’s class. For example, a TOSuppSmartphone
with its high availability is often a target for state repairs, which results in much higher
sending costs for the TO due to its high CCV.

Offload-First

• In Offload-First, the TO device with the lowest CCV can become an availability bottleneck if
it has a low availability: notifications get offloaded there first due to the low CCV. If it is
dead, the whole notification process stalls.10

• For Offload-First, a support device can lower the costs. The average minimum / mean /
maximum costs can be lowered up to 25.9% / 28.7% / 40.3% (smartphones as application
devices, TOSuppServer as TO support device).11 Since usually a TO device has the highest
cost, the support device can help to relieve the cost of the application device. However,
Offload-First brings the risk of availability bottleneck if the TO device with the lowest CCV
has a low availability.

8.7 Group Instant Messaging

8.7.1 Delays: Instant-to-All

This section discusses the most notable differences of group instant messaging compared to private
instant messaging with regard to delays when using Instant-to-All.

Baseline delays for laptops and smartphones

Baseline delays are identical to private instant messaging. To see this, compare the red curves
between Figure 8.7a and Figure 8.13a (laptops) / Figure 8.7b and Figure 8.13b (smartphones).
This result is to be excepted: the lifetime and deadtime distributions of the involved devices
are identical in both private instant messaging and group instant messaging. The number of
subscriber devices or Decision Engine does not have an influence here.

10see Figure 8.8b
11see Table 8.5

8.7 Group Instant Messaging 197

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 22000

 24000

 26000

 28000

C
u

m
u

la
ti
v
e

 D
is

tr
ib

u
ti
o

n

Delay [s]

Instant−to−All / Application device: Laptop / Reactive state repairs

Baseline
TOSuppServer

TOSuppSmartphone
TOSuppLaptop

NoSupp

(a)

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 22000

 24000

 26000

 28000

C
u

m
u

la
ti
v
e

 D
is

tr
ib

u
ti
o

n

Delay [s]

Instant−to−All / Application device: Smartphone / Reactive state repairs

Baseline
TOSuppServer

TOSuppSmartphone
TOSuppLaptop

NoSupp

(b)

Figure 8.13: Group Instant Messaging: Delay CDFs (Instant-to-All, reactive states)

Delivery delays with no support device

For delivery delays on the other hand, the number of subscriber devices has a strong influence.
For laptops and NoSupp, Figure 8.13a, shows that only 33% of all data objects are delivered in
under 3600 seconds. This is a strong difference to private instant messaging where 64.6% are
delivered in under 3600 seconds (see Figure 8.7a and Table 8.3).

For smartphones and NoSupp, Figure 8.13b, shows that 44% of all data objects are delivered
in under 3600 seconds. This is higher than for laptops, which can be explained with the higher

198 8 Evaluation

availability of smartphones. However, this is still a strong difference compared to the 75.6% for
private instant messaging (see Figure 8.7b and Table 8.3).

The reason for this difference: TO devices are a more important bottleneck in the group instant
messaging scenario than in private instant messaging. If one published data object cannot be
delivered due to the TO device being dead, this does not only affect one delivery, but 19 deliveries.
Simply put: the more subscribers, the greater the TO’s responsibility.

This bottleneck effect can be especially seen for instant deliveries (i.e. delivery delay lower
than 5 seconds). In order to deliver an instant message to subscriber that is not the TO, without
any state repairs required, three devices need to be alive at the same time: publishing device,
TO device and subscriber device. Since delivery delays are measured from the time where the
publishing device is first alive, the probability that the publishing device is alive at this time is
1.0. The probability that the TO device is alive at this time is 1/3 (laptop) or 2/3 (smartphone).
The same applies to the subscriber device. Thus, the expected probability that all three devices
are alive at the same time, is (1 ∗ 1/3 ∗ 1/3) = 1/9 for laptops and (1 ∗ 2/3 ∗ 2/3) = 4/9 for
smartphones.12

The actual results are comparable to this analysis: 6% (laptop) and 38% (smartphone) of all
delivery delays are lower or equal to 5 seconds. This can be directly seen in the graphs (Figure
8.13a for laptops and Figure 8.13b for smartphones) (for a detail view on the first 5 seconds, see
Figure C.2 in Appendix C).

Additionally, for private instant messaging, one single state repair between the TO device and
one single contact’s device is enough to deliver any missed notifications. This is not the case for
group instant messaging where more than two users are involved – here, multiple state repairs
are required.

To see this, consider the following situation: there are three users A, B and C in the group
instant messaging scenario. A is the TO. The three application devices are a, b and c respectively.
b publishes a new message δt while it is dead. When smartphone b becomes alive again, sending
becomes possible. Subscriber device c is alive. Thus, the baseline delay BD(b,c,δt) = 0 seconds.
b performs a state repair with TO device a. However, a does not notify c about the new data
object, since this is not part of the state repair. c does not get notified. Instead, c must itself
perform a state repair with TO device a. Since reactive state repairs are used, either a or c must
become dead and alive again. Especially for smartphones, this can take a long time due to the
long lifetimes and long deadtimes of smartphones.

Delivery delays with TO support device

As with Instant-to-All in private instant messaging, a TO support device helps to improve the
delivery delay CDFs: for laptops and TOSuppServer, 79.5% of all data objects are delivered in
under 3600 seconds (NoSupp: 33%). Still, even the improved result of 79.5% is a strong difference
to private instant messaging where 90.6% are delivered in under 3600 seconds with laptops
and a TOSuppServer (see Figure 8.7a and Table 8.3). Until 9000s, the delivery delay CDF for
TOSuppServer is visibly below the baseline CDF, while for private instant messaging these lines
are almost congruent.

12P(A)∩ P(B) = P(A) ∗ P(B)

8.7 Group Instant Messaging 199

The reason for this effect is again the requirement of multiple state repairs (see the discussion
above for NoSupp). A TOSuppServer is always alive and never initiates state repairs. Thus, first
the publishing laptop needs to initiate a state repair and at a later point, the subscriber laptop
needs to initiate a state repair in order for the instant message to get delivered.

This effect has an even worse impact when smartphones are used as application devices. Here,
TOSuppLaptop is the most helpful support device for delivery delays over 4000 seconds and even
outperforms TOSuppServer: this may seem counter-intuitive, but since smartphones rarely switch
between lifetimes and deadtimes themselves, a smartphone’s best chance for initiating a reactive
state repair is a TOSuppLaptop, which often switches between deadtimes and lifetimes.

8.7.2 Delays: Offload-First

This section discusses the most relevant differences between Offload-First and Instant-to-All for
group instant messaging with regard to delays. If required, differences between group instant
messaging compared (Offload-First) and private instant messaging (Offload-First) will also be
explained.

Baseline delays for laptops and smartphones

As for Instant-to-All, baseline delays are identical to private instant messaging. To see this,
compare the red curves between Figure 8.14a and Figure 8.8a (laptops) / Figure 8.14b and Figure
8.8b (smartphones). Baseline delays are only influenced the lifetime and deadtime distributions
of the involved devices, but are independent from the number of subscriber devices or the used
Decision Engine.

Delivery delays with no support device

For NoSupp, the delivery delays between Offload-First and Instant-to-All are very similar. To see
this, compare the yellow curves in Figures 8.14 and 8.13. Thus, the same differences between
private instant messaging and group instant messaging, that apply to Instant-to-All, also apply
here to Offload-First: again, delivery delay CDFs are worse in group instant messaging than in
private instant messaging, due to the TO device being a more important bottleneck. Additionally,
multiple state repairs are required here. See the explanation in Section 8.7.1 for details.

Delivery delays with TO support device

For laptops as application devices, the delivery delays between Offload-First and Instant-to-All
are very similar. To see this, compare Figure 8.14a with Figure 8.13a. As for the delivery delays
with NoSupp, most insights from Instant-to-All can be applied to Offload-First as well – see the
explanations in Section 8.7.1 for details.

However, there are notable differences between Offload-First and Instant-to-All if smartphones
are used as application devices. With TOSuppLaptop and Offload-First only 17% of all instant
messages are instantly delivery (i.e. in under 5 seconds), whereas with TOSuppLaptop and Instant-
to-All 41% are instantly delivered. The reason for this is again TOSuppLaptop being the availability

200 8 Evaluation

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 22000

 24000

 26000

 28000

C
u

m
u

la
ti
v
e

 D
is

tr
ib

u
ti
o

n

Delay [s]

Offload−First / Application device: Laptop / Reactive state repairs

Baseline
TOSuppServer

TOSuppSmartphone
TOSuppLaptop

NoSupp

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 22000

 24000

 26000

 28000

C
u

m
u

la
ti
v
e

 D
is

tr
ib

u
ti
o

n

Delay [s]

Offload−First / Application device: Smartphone / Reactive state repairs

Baseline
TOSuppServer

TOSuppSmartphone
TOSuppLaptop

NoSupp

(b)

Figure 8.14: Group Instant Messaging: Delay CDFs (Offload-First, reactive states)

bottleneck: since TOSuppLaptop has a lower CCV than the smartphones, each publishing device
tries only to reach TOSuppLaptop. If TOSuppLaptop is unavailable, the whole notification process
stalls. In Instant-to-All on the other hand, there is still the TO’s smartphone that gets notified
and can notify the subscribers even if TOSuppLaptop is unavailable. If state repairs are required,
TOSuppLaptop even outperforms TOSuppServer after 8000 seconds, similar as in Instant-to-All –
see the explanations in Section 8.7.1 for details.

Another notable difference between Offload-First is the brown curve for TOSuppSmartphone:
For Instant-to-All, it is similar to TOSuppServer, but for Offload-First, it is similar to the curve

8.7 Group Instant Messaging 201

for no support device, i.e. has no effect. The reason for this difference is the following: with
TOSuppSmartphone, the TO has two smartphones. For Instant-to-All, the TO can notify the
subscribers if at least one of the two smartphones is available. Each smartphone is available with
an expected probability of 2/3, thus the probability for at least one of two smartphones being
alive is13: (2/3+ 2/3− 4/9)≈ 0.89. Thus, for Instant-to-All, a second smartphone achieves an
increase of 22% in the overall TO device availability, which is only 11% short of a TOSuppServer’s
permanent availability. However, for Offload-First a publishing device sends its notification to
only one smartphone. Since the application device of the TO is also a smartphone, the additional
smartphone is no help.

8.7.3 Delays with Periodic State Repairs

Similar to periodic state repairs for private instant messaging (see Section 8.6.4), devices that
rarely switch between lifetime and deadtime gain better delivery delays with periodic state repairs.
To see this at the example of Offload-First and smartphones as application devices, compare Figure
8.14b (reactive state repairs) with Figure 8.15b (periodic state repairs = every 500 seconds).
With periodic state repairs, the delivery delay CDFs approximate the baseline CDF more closely
and faster, as long as a support device is used.

For devices that often switch between lifetimes and deadtimes, periodic state repairs can be
harmful to the delivery delays. This can be seen at the example of Offload-First and laptops
as application devices, by comparing Figure 8.14a (reactive state repairs) with Figure 8.15a
(periodic state repairs = every 500 seconds). For periodic state repairs, the delivery delay CDFs
approximate the baseline slower for NoSupp or TOSuppLaptop.

8.7.4 Costs: Instant-to-All

This section discusses the most notable differences of group instant messaging compared to private
instant messaging with regard to costs when using Instant-to-All.

For Instant-to-All, the red-toned bars in Figure 8.16 show the total sent bytes per second,
weighed with each device class’s penalty value (weighed bytes per seconds or wb/s). For each
device distribution, the minimum costs (taken from the device with the overall least costs), mean
and maximum (taken from the device with the overall highest costs) are shown.

Costs with no support device

Compared to private instant messaging, minimum, mean and maximum costs rise significantly for
group instant messaging with NoSupp for both laptops and smartphones as application devices.
For laptops in instant group messaging, the mean / maximum costs are 233 / 2400 wb/s. For
smartphones, the mean / maximum costs are 293 wb/s / 4273 wb/s.

The reason for the higher mean and maximum costs is the additional effort for the TO device –
instead of one delivery there are 19 deliveries per instant message. Additionally, each state repair
becomes more expensive for the TO device, since there is only one group instant messaging topic,

13Since events A (smartphone 1 is available) and B (smartphone 2 is available) are independent, it is P(A)∪ P(B) =
P(A) + P(B)− P(A)∩ P(B) = P(A) + P(B)− P(A) ∗ P(B)

202 8 Evaluation

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 22000

 24000

 26000

 28000

C
u

m
u

la
ti
v
e

 D
is

tr
ib

u
ti
o

n

Delay [s]

Offload−First / Application device: Laptop / State Sending Intervals: 500s

Baseline
TO Server

TO Smartphone
TO Laptop

No Support Devices

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 22000

 24000

 26000

 28000

C
u

m
u

la
ti
v
e

 D
is

tr
ib

u
ti
o

n

Delay [s]

Offload−First / Application device: Smartphone / State Sending Intervals: 500s

Baseline
TO Server

TO Smartphone
TO Laptop

No Support Devices

(b)

Figure 8.15: Group Instant Messaging: Delay CDFs (Offload-First, periodic state repairs)

which is relevant to every device in this scenario. For private instant messaging, each closed
group consists of the TO and one distinct contact with their own topic, which is thus not relevant
for the other contacts.

The reason for the higher minimum costs are not as intuitive. As discussed earlier in Section
8.6.5, it is a contact’s application device which has the minimum cost. However, while a contact
device receives more instant messages in group instant messaging, it does not send more. The only
possible explanation is the increased number NOTIFYRsp messages that it sends after receiving a
notification and during state repair.

8.7 Group Instant Messaging 203

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

TOSuppLaptop TOSuppServer TOSuppSmartphone NoSupp

S
e
n
t
w

e
ig

h
e
d
 b

y
te

s
 p

e
r

s
e
c
o
n
d
 [
w

b
/s

]

Application device: Laptop

Instant−to−All, min
mean

max
Offload−First, min

mean
max

(a)

 0

 1000

 2000

 3000

 4000

 5000

 6000

TOSuppLaptop TOSuppServer TOSuppSmartphone NoSupp

S
e
n
t
w

e
ig

h
e
d
 b

y
te

s
 p

e
r

s
e
c
o
n
d
 [
w

b
/s

]

Application device: Smartphone

Instant−to−All, min
mean

max
Offload−First, min

mean
max

(b)

Figure 8.16: Group Instant Messaging: Costs

Costs with TO support device, laptops as application devices

As earlier discussed for private instant messaging, a support device raised the minimum, mean
and maximum costs when Instant-to-All was used (see Section 8.6.5). This is different for group
instant messaging. As can be seen in Figure 8.16a, mean and maximum are different depending
on the choice of the support device:

• TOSuppLaptop: here, the maximum is lower than with NoSupp, but the mean is higher. This
means that the two TO laptops share the effort for state repairs. This is beneficial in group
instant messaging: state repairs are more expensive than in private instant messaging since
each published data object has 19 other subscribers.

• TOSuppServer: here, both the mean and maximum are lower than with NoSupp. This means
that the TOSuppServer can accepts and forward all notifications and is always a target for
state repairs (due to its 100% availability) and strongly relieves the TO laptop from the
effort for state repairs.

• TOSuppSmartphone: here, both the mean and maximum are higher than with NoSupp. The
reason for this is the higher CCV of a smartphone compared to a laptop’s. Due its high

204 8 Evaluation

availability, the smartphone is often a target for state repairs. The reason for the large
confidence interval (98th percentile) was already discussed for private instant messaging
(see Section 8.6.5).

Costs with TO support device, smartphones as applications devices

For Instant-to-All and smartphones as application device, a TO support device helps to lower the
maximum costs compared to NoSupp (see Figure 8.16b), however the mean rises. This indicates
that both TO devices share the effort for state repairs. Even a TOSuppSmartphone reduces the
maximum costs (unlike for laptops), since both the application device and TO support device are
smartphones with the same CCV.

8.7.5 Costs: Offload-First

This section discusses the most notable differences of group instant messaging compared to private
instant messaging with regard to costs when using Instant-to-All.

For Offload-First, the green-toned bars in Figure 8.16 show the total sent bytes per second,
weighed with each device class’s penalty value (weighed bytes per second or wb/s). Most of
the observations for Instant-to-All also apply here. Thus, only the relevant differences shall be
discussed here.

Costs with no support device

For smartphones as application devices and NoSupp, the maximum costs are only minimal higher
than for Instant-to-All. This is a notable difference to private instant messaging, where the costs
for Offload-First were almost twice as high as for Instant-to-All. The reason for this was identified
as the unneeded notification that gets sent back from the TO device to the publishing device in
Offload-First (see Section 8.6.6). This also happens in group instant messaging, however the
impact of one additional notification is much lower: 20 instead of 19 notifications are about 5%
more costs, whereas in private instant messaging, 2 instead of 1 notification are 100% more costs.

Other than that, the results of Offload-First are comparable to Instant-to-All with NoSupp for
group instant messaging.

Costs with TO support device

For group instant messaging, both TOSuppServer and TOSuppSmartphone help to lower the costs
compared to NoSupp. This applies to laptops and smartphones as application devices. Specifically,
the cost reduction for smartphones with TOSuppServer is visibly better than for private instant
messaging: compared to the 28.7% / 40.3% for mean and maximum in private instant messaging,
here 46.9% / 79.6% can be reached (compare Table 8.5 with Table 8.7).

With TOSuppLaptop, the mean and maximum costs are higher than for Instant-to-All. The
device with the highest costs is the TOSuppLaptop (see Table 8.6, which is also applicable for
group instant messaging), since all notifications from publishing device are forwarded to it first
due to to its lower CCV. Additionally, due to its short lifetimes and deadtimes, it often triggers state

8.7 Group Instant Messaging 205

repairs. Since multiple state repairs are required in group instant messaging (see Section 8.7.1),
this overall results in high sending costs, even if it has a lower CCV than the TO’s smartphone.

Table 8.7: Group instant messaging: Comparison of minimum, mean and maximum costs between
Instant-to-All and Offload-First. Application devices are smartphones. Absolute numeric
values are in wb/s. Lower values are better.

Application Device: Smartphone

Support Device Min Costs (wb/s)
Instant-to-All

Min Costs (wb/s)
Offload-First

Costs saved by
Offload-First

TOSuppLaptop 127.9 46.3 63.7%

TOSuppServer 61.4 46.5 24.2%

TOSuppSmartphone 66.8 54.9 17.8%

NoSupp 19.5 19.0 2.5%

Mean Costs (wb/s)
Instant-to-All

Mean Costs (wb/s)
Offload-First

Costs saved by
Offload-First

TOSuppLaptop 472.7 595.6 −25.9%

TOSuppServer 312.7 166.0 46.9%

TOSuppSmartphone 443.0 435.2 1.8%

NoSupp 292.8 300.2 −2.5%

Max Costs (wb/s)
Instant-to-All

Max Costs (wb/s)
Offload-First

Costs saved by
Offload-First

TOSuppLaptop 2990.3 4890 −63.5%

TOSuppServer 3341 681.5 79.6%

TOSuppSmartphone 3450 3349.1 2.9%

NoSupp 4273.5 4408 −3.1%

8.7.6 Storage Footprint

In order to estimate the storage footprint for the group instant messaging scenario, Figure 8.17
shows the minimum / mean / maximum size of the Local Data Storage (in unweighed megabytes)
after the end of the simulation. Note that the Local Data Storage does not only contain the instant
messages, but also all maintenance data objects, such as notifications about new subscribers, new
devices, and so on.

The footprint is visibly higher than for private instant messaging. For the minimum (a contact
device) and thus the mean, this is to be expected: each contact does not only receive messages
published by the topic owner (as it is the case in private instant messaging), but also from all
other group members. Thus, the minimum size as about as large as the maximum size for private
instant messaging (see Figure 8.17).

206 8 Evaluation

However, the topic owner receives as many instant messages as in the private instant messaging
scenario. Still, the maximum size is about twice as high as for private instant messaging. One
possible explanation is a higher maintenance overhead due to the higher number of subscribers.

Still, for all device distributions, the final mean (maximum) size is below 7 (14) megabytes.
Since 48 hours were simulated, the mean (maximum) would result in less than 105 (210)
megabytes per month. Note that is twice the size for maximum, but the tenfold of subscribers
compared to private instant messaging.

 0

 2

 4

 6

 8

 10

 12

 14

TOSuppLaptop TOSuppServer TOSuppSmartphone NoSupp

M
e
g
a
b
y
te

s
 [
m

b
]

Application device: Laptop

Instant−to−All, min
mean

max
Offload−First, min

mean
max

(a)

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

TOSuppLaptop TOSuppServer TOSuppSmartphone NoSupp

M
e
g
a
b
y
te

s
 [
m

b
]

Application device: Smartphone

Instant−to−All, min
mean

max
Offload−First, min

mean
max

(b)

Figure 8.17: Group instant messaging: final Local Data Storage size

8.7.7 Key Results

In group instant messaging, there are 20 subscribers instead of 2 per topic. The central role of the
TO is even more visible here, since the tenfold of data deliveries depend on him for each published
data object. The most important differences to private instant messages are now summarized.

• Data deliveries CDF are considerably worse than for private instant messaging with otherwise
identical configurations. The reason for this is the central role of the TO: if all TO devices

8.8 Summary 207

are dead, not only one but 19 delivieries cannot be performed. Since the CDF takes all
deliveries into account, this gives visibly worse results.

• Thus, unlike for private instant messaging, scalability is a problem with a rising number of
subscribers for a given topic.

• If contact device c1 wants to forward a published data object to the TO, but all TO devices
are dead at that time, two state repairs are required for each subscriber: the first between
c1 and the TO device, the second between the TO device and the subscriber device

• The multiple state repairs have an especially negative effect on the delivery delay CDFs of
smartphones where reactive state repairs are rare. Periodic state repairs are beneficial here.

• Costs are overall higher for all devices.

• Higher costs apply especially to the TO devices: for each published data object, not only
one notification, but instead 19 must be sent.

• Higher costs also apply to the contacts: they do not send more, but receive more data
objects, thus they have to send more NOTIFYRsp messages

• Proportionally, Offload-First can save even more costs over Instant-to-All than in private
instant messaging. For the mean / maximum cost, up to 46.9% / 79.6% of the costs can be
saved (smartphones as application devices).

8.8 Summary

This chapter presented the evaluation of SODESSON and SocioPath, based on an implementation
in the overlay simulation framework OverSim. The extensions to OverSim were described first.

The major part of this chapter discussed two different application use-cases: private instant
messaging and group instant messaging. For both use-cases, different device distributions (laptops
and smartphone as devices which run the application, plus different support devices for the topic
owner) and the Decision Engines Instant-to-All and Offload-First were regarded. The main
performance metrics for the evaluations are delivery delays and sending costs. The former are
compared to a theoretical lower bound, the baseline delay. The latter are weighed with a cost
penalty factor, depending on the respective device classes and their capability. The key results for
private instant messaging were summarized in Section 8.6.8, whereas the key results for group
instant messaging are in Section 8.7.7.

As bottom line, the evaluations have shown that SocioPath is a functional approach to the
presented use-cases. Specifically state repairs help to deliver instant messages after intermittent
device deadtimes and thus approximate the delivery delays very closely to the baseline delays.
Specifically support devices can support a faster approximation: for private instant messaging,
with a home server as a TO support device, the difference between delivery delay and baseline
delay is always less than 1%. Depending on the expected lifetimes and deadtimes of the devices,
periodic state repairs are more preferrable than reactive state repair.

208 8 Evaluation

However, SocioPath’s performance is strongly dependent on the TO devices. Since the topic
owner has a central position in every closed group, no data objects can be delivered without his
device. Additionally, topic owner devices have the majority of costs. The central responsibility of
the topic owner becomes even greater when the number of subscribers for one topic grows (i.e.
in group instant messaging) and even more deliveries depend on him. Also, the costs grow for
group instant messaging.

It is possible to reduce the costs with Offload-First compared to Instant-to-All, if a support
device is used: for private instant messaging, up to 40.3% can be saved, whereas for group instant
messaging even 79.6% can be saved. However, a TO device with low costs and low availability
can become an availability bottleneck in Offload-First.

The mean storage footprint for the Local Data Storage is less than 15 megabytes per month for
private instant messaging, and less than 105 megabytes per month group instant messaging. This
includes not only the published data objects by the application, but also SocioPath’s maintenance
data objects.

Chapter 9

Conclusion and Perspectives

Private user-to-user communication in a closed group (U2U communication) is a key commu-
nication scenario of our everyday lives. In order to store and deliver data objects to the users’
personal devices, typically third-party application providers are involved. They relieve the data
storage and data object delivery effort from the personal devices of the closed group members
and thus help raising the data availability of each published data object. However, since these
data objects are only meant for a closed group, the third-party provider must also perform access
control. Here, explicit application metadata is required for the provider to identify and address
the correct users. Typically, a unique identifier for each user is a part of explicit metadata in U2U
communication. Examples are email addresses or online social network profiles. As soon as users
are addressed by unique identifiers, the third-party provider becomes a threat to the users’ privacy
since it can track their service usage behaviour. In combination with implicit application metadata,
the provider can further learn about its users – for example, identify very close social contacts by
the number of interactions or learn about specific interests by the user’s data object consumption
patterns. Depending on the user identifiers, even a user’s real-world identity can be revealed.
While there exist privacy enhancing techniques that enable third-party anonymity for the users,
these are mostly designed for obfuscating connection metadata in the network.

For this reason, this thesis proposed and investigated User-Centric Networking as an alternative
to third-party providers for U2U communication. User-Centric Networking is based on self-
sufficiency, which is the idea that delivering data objects from the publisher to the subscriber shall
be handled by the personal devices of the closed group members only. The main advantage of this
approach is an improvement of the closed group members’ privacy, since application metadata is
not visible to a third party. There exists related work on approaches where data objects are only
stored on trusted personal devices. However, the assumed trust in those approaches is always of
a general kind in specific users such as friends or family. Trust on a per-data-object basis was not
regarded so far and makes User-Centric Networking a novel approach to this problem.

Leveraging personal devices has disadvantages, as they are heterogenous with regard to device
availability and device capability. User-Centric Networking follows two design goals that take such
heterogeneity into account: first, partition tolerance shall handle intermittent lack of availability

209

210 9 Conclusion and Perspectives

between devices and let them recover from missed data object deliveries. Second, resource
awareness shall take the individual devices’ availabilities and devices’ capabilities into account
for the policy of forwarding data objects from the publisher to the subscribers. In this context,
three mutually exclusive goals were identified: low delivery delays, low costs and high privacy.
Depending on the distribution of devices and privacy demands within the closed group, one
forwarding policy can be more preferable than another. A technical solution must offer flexibility
here.

This thesis has made the following central contributions:

• Design of a U2U communication model based on the notion of topic owners

• Definition of the novel User-Centric Networking paradigm and specification of its design
goals

– Self-sufficiency: U2U communication within a UCN with the group members’ personal
devices

– Partition tolerance: coping with personal devices’ intermittent unavailability

– Resource-awareness: taking different capabilities of personal devices into account

• Technical realization of User-Centric Networking

– SODESSON: a middleware for U2U communication, based upon the designed U2U
communication model

– SocioPath: a self-sufficient and partition-tolerant Data Distribution Protocol (DDP) for
the SODESSON middleware, which is compliant to the design goals of User-Centric
Networking

– Instant-to-All, Offload-First, Helping-Friends: three Decision Engines for SocioPath
which implement different forwarding policies and demonstrate SocioPath’s flexibility
with regard to resource awareness

9.1 Results of This Thesis

Design of a U2U communication model based on the notion of topic owners

As a first result, a model for U2U communication scenario was created. A published data object
with a specific topic shall be shared between the members of a closed group only. Before any
data object can be published, the topic owner defines from his contacts which users are allowed
publishers and allowed subscribers for a given topic. The applicability of this model was shown
for three third-party provider schemes: Centralized Service Provider, Federated Service Providers
and structured P2P overlay networks.

For this model, required trust dependencies between the closed group and any third-party
providers were analyzed. Four important security and privacy goals were analyzed: content data
confidentiality, content data integrity, content data availability and application metadata privacy.
The three third-party provider schemes were analyzed with regard to these goals. As one result

9.1 Results of This Thesis 211

of the trust dependency considerations, all closed group members must blindly trust a third-party
provider with regard to application metadata privacy if unique identifiers are used. This result
supported the motivation for User-Centric Network.

Definition of User-Centric Networking and specification of its design goals

User-Centric Networking was proposed as a novel alternative to third-party provider schemes for
U2U communication. U2U communication in User-Centric Networking is self-sufficient, i.e. data
object delivery from the publisher to the subscribers is handled by the personal devices of the
closed group members only – not even by devices of generally trusted contacts (e.g. friends, family
or co-workers) outside of the closed group. This is a new concept compared to the state-of-the-art.
The main disadvantage is that all efforts for data object storage and delivery cannot be outsourced
to a third party, but need to be handled by the personal devices of the closed group members.
These personal devices are heterogeneous with regard to two aspects: device availability and
device capability.

The next results are two proposed solutions for the problem of device heterogeneity: first,
partition tolerance shall cope with intermittent device availability: if a network splits into two
partitions A and B, it is still possible for devices in each respective partition to publish and deliver
data objects as long as there is at least one topic owner device in the same partition. Additionally,
if two partitions merge at a later time, the devices in A shall get data objects delivered that were
published earlier in B and vice-versa. The second design goal is resource awareness, which shall
take devices’ availabilities and devices’ capabilities into account and enable different forwarding
policies for data objects based on the given resources. The impact of different forwarding policies
was explained with the help of three examples.

Based on the comparison of third-party provider schemes and User-Centric Networking with
regard to trust dependencies, a privacy model with four different levels was created. Each provider
scheme, whether third-party provider schemes or self-sufficient forwarding policies can be mapped
into this model. This enables the comparison of different provider schemes with regard to privacy.

Technical realization of User-Centric Networking

The key contribution of this thesis is the technical realization of the presented concepts and design
goals. This technical realization consists of three major parts: SODESSON, which is complemented
by SocioPath, which in turn is complemented by a Decision Engine.

SODESSON is a middleware for enabling U2U communication applications and implements
the U2U communication model presented in the beginning. This means, SODESSON enables
applications to publish data objects and to subscribe to topics. Besides topics, SODESSON complies
with the U2U entities of topic owners, allowed publishers and allowed subscribers. It features
an application interface which builds upon these entities. Additionally, the interface supports
decoupling of notifications and data object retrieval. This decoupling plays an important role for
establishing resource awareness in User-Centric Networking later. SODESSON by itself is agnostic
of any device handling and provider schemes. It can leverage third-party provider schemes as
well as User-Centric Networking. To this end, SODESSON needs to be complemented with a Data
Distribution Protocol (DDP) which handles the inter-device communication.

212 9 Conclusion and Perspectives

SocioPath is a DDP for SODESSON which realizes the novel concept of User-Centric Networking.
SocioPath’s main features are realization of the design goals in User-Centric Networking: self-
sufficiency, partition tolerance and resource awareness. As a basis for self-sufficiency, each device
holds a list of all devices of all contacts and thus can communicate directly with them. Therefore,
each user can take the role of a topic owner and define allowed publishers and allowed subscribers
from SODESSON’s Contact List. A publishing device can forward a data object to a topic owner’s
device (since the topic owner is a contact of the publisher) and the topic owner’s device in turn
can deliver data objects to the devices of the subscribers, which are a subset of his contacts. This
delivery can be decoupled into notifications and the actual data object content, giving each device
its own decision if and when to retrieve a data object.

SocioPath achieves partition tolerance by so-called state repairs. A state repair is a process
of set reconciliation between two devices with regard to the notifications that they respectively
store. Depending on the users of the regarded devices and their roles (publisher, subscriber, topic
owner), different notifications need to be synchronized between two devices. These notification
are identified by their topic, i.e. there are different relevant topics depending on the constellation
of the affected users’ roles. The respective notifications are hashed into a space-efficient Bloom
Filter. For additional space efficiency, each device remembers the timestamp of each last successful
state repair for all other known devices. Any notifications older than that timestamp can be
disregarded for the next state repair and do not need to be hashed into the Bloom Filter.

SocioPath is designed to support different forwarding policies for data objects. Depending on
the available resources, one policy can be more preferable than another. Factors here are for
example the distribution of personal devices with regard to number, device availabilities and
device capabilities or different demands on privacy. In order to be flexible, SocioPath defines
different points in its protocol cycle which are left to be defined by a so-called Decision Engine (DE).
First, a workflow was presented with well-defined DE events and DE actions: for each DE event, a
DE must define to react to this event. Each DE action involves sending messages to other devices
– here the DE must select a suitable subset of the targeted devices. Each Decision Engine takes
this workflow as a template, and specifies its behaviour on these well-defined events and actions.
To establish this concept, three different DEs Instant-to-All, Offload-First and Helping-Friends
were presented. Each DE integrates in SocioPath and aims at a different trade-off: Instant-to-All
aims at low delivery delays and high privacy. Offload-First aims at low costs and high privacy.
Helping-Friends aims at low delivery delays and low costs.

Finally, SODESSON and SocioPath were implemented for and evaluated with the help of the
overlay network simulator OverSim [7]. The evaluation metrics were delivery delays and sending
costs. Different device distributions were regarded, where each user either has a smartphone (high
availability, high costs) or a laptop (low availability, medium costs). Optionally, the topic owner
has an additional support device, either an additional smartphone, laptop or home server (high
availability, low costs). Results have shown that it is possible to gain delivery delays that closely
approximate to a baseline, which is a theoretical lower bound that depends on the involved
device’s individual availabilities. This result applies to instant delivery (low delays of a few
milliseconds) as well as later delivery via a state repair. For private instant messaging, with a
home server as a TO support device, the difference between delivery delay and baseline delay is
always less than 1%.

9.2 Perspectives 213

If a device rarely changes its availability status, periodic state repairs are to be preferred over
reactive state repairs. In terms of delay, SocioPath is applicable for private instant messaging
and group instant messaging under the assumed model. However, if Offload-First is used, the
topic owner’s device can become an availability bottleneck and increase delivery delays. For
costs, each device class’s abstract CCV (smartphone = 10, laptop = 5, home server = 1) is
multiplied as a penalty with each sent byte. Under this model, Offload-First lowers the average
minimum/mean/maximum costs up to 63.7%/46.9%/79.6% (smartphones as application devices,
group instant messaging). Thus, the selection of a suitable Decision Engine has a notable impact,
depending on the respective scenario.

9.2 Perspectives

This thesis has laid the groundwork for User-Centric Networking, a novel approach to U2U
communication. Evaluation results have shown promising results that can be further evaluated,
based on the concepts realized in SODESSON and SocioPath, as well as the existing implementation
in OverSim. Specifically, the Decision Engine system in SocioPath allows for pursuing new ideas
and improvements.

Simulative evaluations have shown that there is not one optimal solution for a forwarding
policy, depending on the distribution of devices among the users and on which of the three goals
in User-Centric Networking the communication scenario focuses: low delivery delays, low costs
or high privacy. Instead, flexible policies are required with changing scenarios. With its Decision
Engine system, SocioPath offers a solution to designing new policies.

As a perspective, new and more sophisticated Decision Engines can be developed for SocioPath.
For example, instead of the abstract CCV used for costs in this thesis, more detailed measurements
of device resources can be made (with regard to both availability and capability) and be taken
into account. Additionally, user behaviour is an interesting source for Decision Engines, e.g. by
taking into account which user uses which application on which device at a specific time of the
day and adapt the forwarding polices accordingly.

An important issue in User-Centric Networking is the centrality of the topic owner. While
subscribers can help delivering data objects to other subscribers (e.g. with the Helping-Friends
DE), all access control is performed on the topic owner’s devices only. If these are unavailable, it
is not possible to subscribe to a new topic of that owner and notifications about newly published
data objects cannot be sent to subscribers even if their devices are available. One possible solution
here could be the relaxation of the topic owner role. For example, there could be multiple users
equally assuming the role of the topic owner. Additionally, with the current design it is not possible
to pass ownerships from one user to another.

In terms of privacy, only application metadata was regarded in this thesis. For example, an
attacker in the physical network can currently observe devices of contacts that communicate with
each other. For ensuring communication metadata privacy, SocioPath could be combined with
existing anonymization approaches, e.g. as mix networks such as Tor [25].

Appendix A

SODESSON Application Interface:
Publish/Subscribe

• updateTopic App É Middleware
Set allowed publishers and allowed subscribers for a topic the current user is topic owner of.
Create topic if it does not exist yet. Delete topic if allowed publisher and allowed subscriber
sets are empty.

Arguments:

– title: String
Topic title, as defined in Section 4.3.1.

– allowedPublishers: Set<Contact>
Set of Contact List entries that are allowed to publish data objects to this topic.

– allowedSubscribers: Set<Contact>
Set of Contact List entries that are allowed to subscribe to this topic.

– privacyLevel: Enum
(Optional) Demanded privacy level (1-4) as defined in Section 3.6.2. This has to be
supported by the DDP, otherwise this parameter has no effect.

• publish App É Middleware
Publish a data object.

Arguments:

– topic: Topic
Topic as defined in Section 4.3.1

– OID: Unsigned Integer
(Optional) OID as defined in Section 4.3.1. Set only if the application wants to set a
specific value. If empty, the middleware sets a value, as defined in section 4.3.1.

215

216 A SODESSON Application Interface: Publish/Subscribe

– content: BinaryData
The content of the data object to be published. Either passed directly in this field or as
filepath reference (see argument "inline")

– inline: Boolean
True: The data object is directly passed from the application to SODESSON in the
argument "content".
False: The data object is a file on the local device’s filesystem and the filepath is passed
to SODESSON.

– TTL: Unsigned Integer
Time-to-live in seconds for the data object until it is seen obsolete and can be safely
deleted / ignored. Counted from the time of this publish call. 0 = forever.

Return value: Unsigned Integer
The OID is returned. If a non-empty OID different was provided, exactly that OID is returned.
Otherwise the OID chosen by SODESSON is returned.

• subscribe App É Middleware
Subscribe to a topic. SODESSON makes a best effort to deliver a subscription request to the
device(s) which are responsible for handling subscriptions to that topic. Until SODESSON
receives a subscription grant / denial, the request is pending from the application point of
view.

Arguments:

– topic: Topic
Topic as defined in Section 4.3.1

– handle: 32-bit unsigned integer
Handle to identify the subscribing application. A handle is a unique identifier for
an application running on this device. By passing it here, SODESSON learns which
application(s) are subscribed to a specific topic and need to be notified on an incoming
data object. This way, multiple applications can subscribe to the same topic.

Return value: Boolean
True: A storage device responsible for enforcing access control application has acknowl-
edged that the requesting user is an allowed subscriber and successfully entered him as a
subscriber.
False: A storage device responsible for enforcing access control application has denied that
the requesting user is an allowed subscriber.

Note: Until the subscribe request receives this response, the application is in a state where
the subscription request is pending. If a responsible storage device is unavailable, the
pending status persists in the meantime.

Note: An application is free to repeat a subscription request.

217

• unsubscribe App É Middleware
Unsubscribe from a topic. SODESSON makes a best effort to deliver a subscription request
to the device(s) which are responsible for handling subscriptions to that topic. Until
SODESSON receives a unsubscription acknowledgement, any incoming data objects tied to
the given topic are not passed to the application anymore.

Arguments:

– topic: Topic
Topic as defined in Section 4.3.1

– handle: 32-bit unsigned integer
Handle to identify the subscribing application. A handle is a unique identifier for
an application running on this device. By passing it here, SODESSON knows which
application wants to unsubscribe.

Return value: Boolean
True: The application was subscribed and SODESSON processes the unsubscription request.
False: The application has already unsubscribed or was not subscribed in the first place.

• registerApp App É Middleware
Register an application.

Return value: 32-bit unsigned integer
A handle, which identifies the application in further requests.

• unregisterApp App É Middleware
Unregister an application via its handle.

Arguments:

– handle: 32-bit unsigned integer
The handle to be unregistered.

Return value: Boolean
True: The application was successfully unregistered.
False: The application is already unregistered or handle is invalid.

• notifyApp Middleware É App
A data object was published on another device and this device has received notice about it.
Notify an application, which is subscribed to the data object’s topic, about the data object.
Since a DDP might decouple a notification about the publication of a data object and the
actual data object transfer, the data object’s content might not already be on this device.

If argument "content" is empty, this method call is a pure notification about the data object,
without the data object’s content being on the device. The data object’s actual transfer
can be triggered by the application via the method retrieve. It is then delivered to the
application via another notifyApp call in the future, with a non-empty "content" argument.

Arguments:

218 A SODESSON Application Interface: Publish/Subscribe

– topic: Topic
Topic as defined in Section 4.3.1

– OID: 64-bit unsigned integer
OID as defined in Section 4.3.1. Originally set on the publishing device, either by the
application or SODESSON middleware (see method publish).

– timestamp: 32-bit unsigned integer
Data object timestamp as defined in Section 4.3.1. Originally set on the publishing
device by the SODESSON middleware.

– content: BinaryData
(Optional) If not empty: The content of the published data object. Either passed
directly in this field or as filepath reference (see argument "inline").
If empty: This method call is a pure notification about the data object.

– inline: Boolean
True: The data object is directly passed to the application from SODESSON in the
argument "content".
False: Argument "content" is empty or the data object is a file on the local device’s
filesystem and the filepath is passed to the application.

• getNotifyApps App É Middleware
An application calls this method to make SODESSON repeat notifyApp calls for a given
topic. SODESSON looks up all entries in the Local Data Storage and replys with a notifyApp
for each entry. This method is helpful for newly installed or reinstalled application to gain
knowledge about existing data objects in the Local Data Storage.

Arguments:

– topic: Topic
Topic as defined in Section 4.3.1

• retrieve App É Middleware
Trigger the download of a data object the application was earlier notified about via notifyApp
with an empty "content" argument. It is transparent to the application if the object is already
available on the same device or if it has to be downloaded by SODESSON from another
device first. On success, this results in another notifyApp call with an non-empty "content"
argument.

Arguments:

– topic: Topic
Topic as defined in Section 4.3.1

– OID: 64-bit unsigned integer
(Optional) OID as defined in Section 4.3.1. Originally set on the publishing device,
either by the application or SODESSON middleware (see method publish).

219

– timestamp: 32-bit unsigned integer
Data object timestamp as defined in Section 4.3.1. Originally set on the publishing
device by the SODESSON middleware.

Appendix B

SODESSON Application Interface:
Contact Management

• registerUser App É Middleware
Register a new user with this device being the first one in his device pool. SODESSON
creates a fresh public / private keypair for this user and initializes empty data structures.

Arguments:

– keypairFilepath: String
This path to a non-existing file tells SODESSON where to write the public/private key
file. If the file exists it is not overwritten, rather an error code is returned.

Return value: Enum
The method returns one of the following status codes:

(0) Success

(1) Write error while writing private key

(2) Error while generating private key

• importUser App É Middleware
Register an existing user on another device, i.e. adding this device to the user’s device pool.
User requires his public / private keypair from another device for successful import.

Arguments:

– keypairFilepath: String
This path to a file tells SODESSON where to find the existing user’s public/private key
files.

Return value: Enum
The method returns one of the following status codes:

(0) Success

(1) Invalid keypair at given filepath

221

222 B SODESSON Application Interface: Contact Management

• getContacts App É Middleware
Return the contents of the Contact List to the requesting application.

Return value: Set<UID, String>
List of <User ID, User Alias> tuples

• addContact App É Middleware
Add a contact to the Contact List.

Arguments:

– publicKeyFilepath: String
This path to a file tells SODESSON where to find the contact’s public key file.

– alias: String
(Optional) User alias for better human readability. Can be freely defined by the device
owner.

• removeContact App É Middleware
Remove a contact from the Contact List.

Arguments:

– userId: UID
Contact’s UID as defined in Section 4.3.1.

• editContactAlias App É Middleware
Edit the alias of an existing contact.

Arguments:

– userId: UID
Contact’s UID as defined in Section 4.3.1.

– alias: String
User alias for better human readability.

Appendix C

SocioPath – Additional Evaluation Results

223

224 C SocioPath – Additional Evaluation Results

 0

 0
.0

5

 0
.1

 0
.1

5

 0
.2

 0
.2

5

 0
.3

 0
.3

5

 0
.4

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Cumulative Distribution

D
e
la

y
 [s

]

In
s
ta

n
t−

to
−

A
ll / A

p
p
lic

a
tio

n
 d

e
v
ic

e
: L

a
p
to

p
 / R

e
a
c
tiv

e
 s

ta
te

 re
p
a
irs

B
a
s
e
lin

e
T

O
S

u
p
p
S

e
rv

e
r

T
O

S
u
p
p
S

m
a
rtp

h
o
n
e

T
O

S
u
p
p
L
a
p
to

p
N

o
S

u
p
p

(a)

 0

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Cumulative Distribution

D
e
la

y
 [s

]

In
s
ta

n
t−

to
−

A
ll / A

p
p
lic

a
tio

n
 d

e
v
ic

e
: S

m
a
rtp

h
o
n
e
 / R

e
a
c
tiv

e
 s

ta
te

 re
p
a
irs

B
a
s
e
lin

e
T

O
S

u
p
p
S

e
rv

e
r

T
O

S
u
p
p
S

m
a
rtp

h
o
n
e

T
O

S
u
p
p
L
a
p
to

p
N

o
S

u
p
p

(b)

 0

 0
.0

5

 0
.1

 0
.1

5

 0
.2

 0
.2

5

 0
.3

 0
.3

5

 0
.4

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Cumulative Distribution

D
e
la

y
 [s

]

O
fflo

a
d
−

F
irs

t / A
p
p
lic

a
tio

n
 d

e
v
ic

e
: L

a
p
to

p
 / R

e
a
c
tiv

e
 s

ta
te

 re
p
a
irs

B
a
s
e
lin

e
T

O
S

u
p
p
S

e
rv

e
r

T
O

S
u
p
p
S

m
a
rtp

h
o
n
e

T
O

S
u
p
p
L
a
p
to

p
N

o
S

u
p
p

(c)

 0

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Cumulative Distribution
D

e
la

y
 [s

]

O
fflo

a
d
−

F
irs

t / A
p
p
lic

a
tio

n
 d

e
v
ic

e
: S

m
a
rtp

h
o
n
e
 / R

e
a
c
tiv

e
 s

ta
te

 re
p
a
irs

B
a
s
e
lin

e
T

O
S

u
p
p
S

e
rv

e
r

T
O

S
u
p
p
S

m
a
rtp

h
o
n
e

T
O

S
u
p
p
L
a
p
to

p
N

o
S

u
p
p

(d)

Figu
re

C
.1:

Private
Instant

M
essaging:

D
elay

CD
Fs

(detailview
for

the
first

5
seconds)

225

 0

 0
.0

5

 0
.1

 0
.1

5

 0
.2

 0
.2

5

 0
.3

 0
.3

5

 0
.4

0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5

5.
0

Cumulative Distribution

D
e
la

y
 [
s
]

In
s
ta

n
t−

to
−

A
ll

/
A

p
p
lic

a
ti
o
n
 d

e
v
ic

e
:
L
a
p
to

p
 /
 R

e
a
c
ti
v
e
 s

ta
te

 r
e
p
a
ir
s

B
a
s
e
lin

e
T

O
S

u
p
p
S

e
rv

e
r

T
O

S
u
p
p
S

m
a
rt

p
h
o
n
e

T
O

S
u
p
p
L
a
p
to

p
N

o
S

u
p
p

(a
)

 0

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5

5.
0

Cumulative Distribution

D
e
la

y
 [
s
]

In
s
ta

n
t−

to
−

A
ll

/
A

p
p
lic

a
ti
o
n
 d

e
v
ic

e
:
S

m
a
rt

p
h
o
n
e
 /
 R

e
a
c
ti
v
e
 s

ta
te

 r
e
p
a
ir
s

B
a
s
e
lin

e
T

O
S

u
p
p
S

e
rv

e
r

T
O

S
u
p
p
S

m
a
rt

p
h
o
n
e

T
O

S
u
p
p
L
a
p
to

p
N

o
S

u
p
p

(b
)

 0

 0
.0

5

 0
.1

 0
.1

5

 0
.2

 0
.2

5

 0
.3

 0
.3

5

 0
.4

0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5

5.
0

Cumulative Distribution

D
e
la

y
 [
s
]

O
ff
lo

a
d
−

F
ir
s
t
/
A

p
p
lic

a
ti
o
n
 d

e
v
ic

e
:
L
a
p
to

p
 /
 R

e
a
c
ti
v
e
 s

ta
te

 r
e
p
a
ir
s

B
a
s
e
lin

e
T

O
S

u
p
p
S

e
rv

e
r

T
O

S
u
p
p
S

m
a
rt

p
h
o
n
e

T
O

S
u
p
p
L
a
p
to

p
N

o
S

u
p
p

(c
)

 0

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5

5.
0

Cumulative Distribution
D

e
la

y
 [
s
]

O
ff
lo

a
d
−

F
ir
s
t
/
A

p
p
lic

a
ti
o
n
 d

e
v
ic

e
:
S

m
a
rt

p
h
o
n
e
 /
 R

e
a
c
ti
v
e
 s

ta
te

 r
e
p
a
ir
s

B
a
s
e
lin

e
T

O
S

u
p
p
S

e
rv

e
r

T
O

S
u
p
p
S

m
a
rt

p
h
o
n
e

T
O

S
u
p
p
L
a
p
to

p
N

o
S

u
p
p

(d
)

Fi
gu

re
C

.2
:

G
ro

up
In

st
an

t
M

es
sa

gi
ng

:
D

el
ay

CD
Fs

(d
et

ai
lv

ie
w

fo
r

th
e

fir
st

5
se

co
nd

s)

Appendix C

Bibliography

[1] L. M. Aiello and G. Ruffo. “LotusNet: Tunable Privacy for Distributed Online Social Network
Services.” In: Computer Communications 35.1 (2012), pp. 75–88.

[2] L. M. Aiello et al. “An Identity-Based Approach to Secure P2P Applications with Likir.” In:
Peer-to-Peer Networking and Applications 4.4 (Jan. 2011), pp. 420–438.

[3] D. Avrahami and S. E. Hudson. “Communication Characteristics of Instant Messaging:
Effects and Predictions of Interpersonal Relationships.” In: Proceedings of the 20th An-
niversary Conference on Computer Supported Cooperative Work. Banff, Alberta, Canada,
Nov. 2006, pp. 505–514.

[4] R. Baden et al. “Persona: An Online Social Network with User-Defined Privacy.” In:
Proceedings of the ACM SIGCOMM 2009 conference on Data communication. Barcelona,
Spain, Aug. 2009, pp. 135–146.

[5] M. Bastian, S. Heymann, and M. Jacomy. “Gephi: An Open Source Software for Exploring
and Manipulating Networks.” In: Proceedings of the Third International AAAI Conference
on Weblogs and Social Media. San Jose, CA, USA, 2009.

[6] I. Baumgart and F. Hartmann. “Towards Secure User-Centric Networking: Service-Oriented
and Decentralized Social Networks.” In: 2011 Fifth IEEE Conference on Self-Adaptive
and Self-Organizing Systems Workshops. Ieee, Oct. 2011, pp. 3–8.

[7] I. Baumgart, B. Heep, and S. Krause. “OverSim: A Flexible Overlay Network Simula-
tion Framework.” In: Proceedings of 10th IEEE Global Internet Symposium (GI ’07) in
conjunction with IEEE INFOCOM 2007. Anchorage, AK, USA, 2007, pp. 79–84.

[8] I. Baumgart, B. Heep, and S. Krause. “OverSim: A Scalable and Flexible Overlay Framework
for Simulation and Real Network Applications.” In: 9th International Conference on Peer-
to-Peer Computing (IEEE P2P’09). Sept. 2009, pp. 87–88.

[9] I. Baumgart and S. Mies. “S/Kademlia: A Practicable Approach Towards Secure Key-Based
Routing.” In: Proceedings of the 13th International Conference on Parallel and Distributed
Systems (ICPADS ’07), Hsinchu, Taiwan. 2007.

227

228 Bibliography

[10] K. Bennett et al. GNUnet - A truly anonymous networking infrastructure. Tech. rep. 2002.

[11] A. Bielenberg et al. “The Growth of Diaspora - A Decentralized Online Social Network in
the Wild.” In: Proceedings of IEEE INFOCOM Workshops 2012. IEEE, Mar. 2012, pp. 13–
18.

[12] bloom. URL: https://github.com/arashpartow/bloom (visited on 05/11/2016).

[13] B. H. Bloom. “Space/Time Trade-Offs in Hash Coding with Allowable Errors.” In: Com-
munications of the ACM 13.7 (July 1970), pp. 422–426.

[14] E. Brewer. “Towards Robust Distributed Systems.” In: Proceedings of the 19th Annual
ACM Symposium on Principles of Distributed Computing. 2000, pp. 7–10.

[15] A. Broder and M. Mitzenmacher. “Network Applications of Bloom Filters: A Survey.” In:
Internet Mathematics 1.4 (Jan. 2004), pp. 485–509.

[16] S. Buchegger et al. “PeerSoN: P2P Social Networking — Early Experiences and Insights.”
In: Proceedings of the Second ACM EuroSys Workshop on Social Network Systems (SNS
’09). Nuremberg, Germany, Apr. 2009, pp. 46–52.

[17] K. C. Claffy. “CAIDA: Visualizing the Internet.” In: Internet Computing Online (2001),
p. 88.

[18] I. Clarke et al. Private Communication Through a Network of Trusted Connections: The
Dark Freenet. Tech. rep. 2010.

[19] B. Cohen. “Incentives Build Robustness in BitTorrent.” In: Workshop on Economics of
Peer-to-Peer systems. Vol. 6. Berkeley, CA, USA, June 2003, pp. 68–72.

[20] J. Crowcroft et al. “Unclouded Vision.” In: Distributed Computing and Networking. Ed. by
M. K. Aguilera et al. Vol. 6522. Lecture Notes in Computer Science. Springer, 2011,
pp. 29–40.

[21] L. A. Cutillo, R. Molva, and T. Strufe. “Safebook: A Privacy-Preserving Online Social
Network Leveraging on Real-Life Trust.” In: IEEE Communications Magazine. Consumer
Communications and Networking 47.12 (Dec. 2009), pp. 94–101.

[22] G. Danezis et al. Privacy and Data Protection by Design – from Policy to Engineering.
Tech. rep. December. European Union Agency for Network and Information Security
(ENISA), Dec. 2014. arXiv: 1501.0372.

[23] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.2. IETF
RFC 5246. Aug. 2008.

[24] R. Dingledine and N. Mathewson. “Anonymity Loves Company: Usability and the Network
Effect.” In: Proceedings of the Fifth Workshop on the Economics of Information Security
(WEIS 2006). Ed. by R. Anderson. Cambridge, UK, 2006.

[25] R. Dingledine, N. Mathewson, and P. Syverson. “Tor: The Second-Generation Onion
Router.” In: Proceedings of the 13th Conference on USENIX Security Symposium. San
Diego, CA, USA, Aug. 2004, pp. 303–320.

https://github.com/arashpartow/bloom
http://arxiv.org/abs/1501.0372

Bibliography 229

[26] S. Dohrmann and C. M. Ellison. “Public-Key Support for Collaborative Groups.” In: 1st
Annual PKI Research Workshop. Gaithersburg, Maryland, USA, 2002, pp. 139–148.

[27] P. Dorling. Snowden reveals Australia’s links to US spy web. Sydney, Australia, July 2013.
URL: http://www.smh.com.au/world/snowden-reveals-australias-links-to-us-
spy-web-20130708-2plyg.html.

[28] J. R. Douceur. “The Sybil Attack.” In: IPTPS ’02: Revised Papers from the First International
Workshop on Peer-to-Peer Systems. London, UK: Springer-Verlag, 2002, pp. 251–260.

[29] Dropbox. URL: https://dropbox.com (visited on 05/11/2016).

[30] M. Dürr, M. Maier, and F. Dorfmeister. “Vegas - A Secure and Privacy-Preserving Peer-to-
Peer Online Social Network.” In: Proceedings of 2012 ASE/IEEE International Conference
on Privacy, Security, Risk and Trust and 2012 ASE/IEEE International Conference on
Social Computing (PASSAT/SocialCom 2012). Amsterdam, The Netherlands: IEEE, Sept.
2012, pp. 868–874.

[31] J. Dwyer. “Four Nerds and a Cry to Arms Against Facebook.” In: New York Times (May
2010), A19.

[32] Electronic Frontier Foundation (EFF). Why Metadata Matters. URL: https://www.eff.
org/de/deeplinks/2013/06/why-metadata-matters (visited on 10/26/2015).

[33] Facebook. URL: https://facebook.com (visited on 05/11/2016).

[34] Facebook: Company Info. URL: http://newsroom.fb.com/company-info/ (visited on
11/22/2015).

[35] A. Famulari and A. Hecker. “Mantle: A Novel DOSN Leveraging Free Storage and Local
Software.” In: Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics) 7593 LNCS (2013), pp. 213–
224.

[36] J. Farina, M. Scanlon, and M.-T. Kechadi. “BitTorrent Sync: First Impressions and Digital
Forensic Implications.” In: Digital Investigation 11 (May 2014), S77–S86.

[37] Financial Times. Snapchat triples video traffic as it closes the gap with Facebook. URL:
http://www.ft.com/cms/s/0%7B%5C%%7D252Fa48ca1fc-84e7-11e5-8095-ed1a37d1e096.

html (visited on 11/22/2015).

[38] M. Florian, F. Hartmann, and I. Baumgart. “A Socio- And Locality-Aware Overlay for
User-Centric Networking.” In: Proceedings of the International Conference on Computing,
Networking and Communications (ICNC 2014). Honolulu, Hawaii, USA, Feb. 2014.

[39] A.-T. Gai and L. Viennot. “Broose: a Practical Distributed Hashtable based on the De-Bruijn
Topology.” In: Fourth International Conference on Peer-to-Peer Computing (P2P 2004).
Zurich, Switzerland, Aug. 2004, pp. 167–174.

[40] S. Gilbert and N. Lynch. “Brewer’s Conjecture and the Feasibility of Consistent, Available,
Partition-Tolerant Web Services.” In: ACM SIGACT News 33.2 (June 2002), p. 51.

[41] GlobalWebIndex. Device Summary Q1 2015. Tech. rep. 2015, pp. 1–8.

http://www.smh.com.au/world/snowden-reveals-australias-links-to-us-spy-web-20130708-2plyg.html
http://www.smh.com.au/world/snowden-reveals-australias-links-to-us-spy-web-20130708-2plyg.html
https://dropbox.com
https://www.eff.org/de/deeplinks/2013/06/why-metadata-matters
https://www.eff.org/de/deeplinks/2013/06/why-metadata-matters
https://facebook.com
http://newsroom.fb.com/company-info/
http://www.ft.com/cms/s/0%7B%5C%%7D252Fa48ca1fc-84e7-11e5-8095-ed1a37d1e096.html
http://www.ft.com/cms/s/0%7B%5C%%7D252Fa48ca1fc-84e7-11e5-8095-ed1a37d1e096.html

230 Bibliography

[42] Google. Gmail now has over 900M users! 2015. URL: https://plus.google.com/
+Gmail/posts/AjktcDswdKh (visited on 11/25/2015).

[43] Google+. (Visited on 08/06/2015).

[44] Google Docs. URL: https://docs.google.com (visited on 05/11/2016).

[45] K. Graffi et al. “LifeSocial.KOM: A Secure and P2P-based Solution for Online Social
Networks.” In: Proceedings of the 8th Annual IEEE Communications and Networking
Conference. Jan. 2011, pp. 554–558.

[46] D. Gray and D. Citron. “The Right to Quantitative Privacy.” In: Minnesota Law Review 98
(2013), pp. 62–144.

[47] J. Gray and D. Siewiorek. “High-Availability Computer Systems.” In: Computer 24.9 (Sept.
1991), pp. 39–48.

[48] J. Gray and C. van Ingen. Empirical Measurements of Disk Failure Rates and Error Rates.
Tech. rep. December. Microsoft Research, 2005, pp. 1–3.

[49] B. Greschbach, G. Kreitz, and S. Buchegger. “The Devil is in the Metadata – New Privacy
Challenges in Decentralised Online Social Networks.” In: Proceedings of the 2012 Inter-
national Workshop on Security and Social Networking (SESOC ’12). Lugano, Switzerland,
Mar. 2012, pp. 333–339.

[50] S. Guha, K. Tang, and P. Francis. “NOYB: Privacy in Online Social Networks.” In: Workshop
on Online Social Networks (WOSN) (2008), pp. 49–54.

[51] F. Hartmann and I. Baumgart. “SocioPath: Protecting Privacy by Self-Sufficient Data
Distribution in User-Centric Networks.” In: Proceedings of the 7th IEEE International
Conference on Social Computing and Networking (SocialCom 2014). Sydney, Australia,
Dec. 2014.

[52] F. Hartmann and I. Baumgart. “Towards Socio- and Resource-Aware Data Replication in
User-Centric Networking.” In: Proceedings of the 1st KuVS Workshop on Anticipatory
Networks, pp. 20-24, Stuttgart, Germany, September 2014. Stuttgart, Germany, Sept.
2014.

[53] B. Heep. “Effizientes Routing in strukturierten P2P Overlays.” PhD thesis. 2011, pp. 49–64.

[54] B. Heep. “R/Kademlia: Recursive and Topology-aware Overlay Routing.” In: Proceedings
of 2010 Australasian Telecommunication Networks and Applications Conference (ATNAC
2010). Auckland, New Zealand, Nov. 2010, pp. 113–118.

[55] T. Heer et al. “Adapting Distributed Hash Tables for Mobile Ad Hoc Networks.” In: Fourth
Annual IEEE International Conference on Pervasive Computing and Communications
Workshops (PERCOMW’06). IEEE, 2006, pp. 173–178.

[56] V. C. Hu, D. R. Kuhn, and D. F. Ferraiolo. “Attribute-Based Access Control.” In: Computer
48.2 (Feb. 2015), pp. 85–88.

[57] B. Huffaker et al. “Topology Discovery by Active Probing.” In: Proceedings of the 2002
Symposium on Applications and the Internet Workshops (SAINT-W ’02). Nara, Japan,
2002, pp. 90–96.

https://plus.google.com/+Gmail/posts/AjktcDswdKh
https://plus.google.com/+Gmail/posts/AjktcDswdKh
https://docs.google.com

Bibliography 231

[58] E. Isaacs et al. “The Character, Functions, and Styles of Instant Messaging in the Work-
place.” In: Proceedings of the 2002 ACM conference on Computer supported cooperative
work - CSCW ’02. New York, New York, USA: ACM Press, 2002, p. 11.

[59] S. Jahid, P. Mittal, and N. Borisov. “EASiER: Encryption-based Access Control in Social
Networks with Efficient Revocation.” In: Proceedings of the 6th ACM Symposium on
Information, Computer and Communications Security - ASIACCS ’11. New York, New
York, USA: ACM Press, 2011, p. 411.

[60] S. Jahid et al. “DECENT: A Decentralized Architecture for Enforcing Privacy in Online
Social Networks.” In: 2012 IEEE International Conference on Pervasive Computing and
Communications Workshops. IEEE, Mar. 2012, pp. 326–332. arXiv: arXiv:1111.5377v2.

[61] S. Jain, K. Fall, and R. Patra. “Routing in a delay tolerant network.” In: ACM SIGCOMM
Computer Communication Review 34.4 (Oct. 2004), p. 145.

[62] S.-w. S. Jiwon et al. “PrPl: A Decentralized Social Networking Infrastructure.” In: Proceed-
ings of the 1st ACM Workshop on Mobile Cloud Computing & Services: Social Networks
and Beyond (2010), 8:1–8:8.

[63] C. Johnson III. Safeguarding Against and Responding to the Breach of Personally Identifi-
able Information. Tech. rep. 2007, p. 7.

[64] J. Klensin. Simple Mail Transfer Protocol. Tech. rep. IETF, Oct. 2008.

[65] B. Krishnamurthy and C. E. Wills. “On the Leakage of Personally Identifiable Information
via Online Social Networks.” In: Proceedings of the 2nd ACM workshop on Online social
networks. 2009, pp. 7–12.

[66] P. Leach, M. Mealling, and R. Salz. A Universally Unique IDentifier (UUID) URN Namespace.
Tech. rep. RFC Editor, July 2005, pp. 1–32.

[67] N. Lidzborski. Staying at the forefront of email security and reliability: HTTPS-only and
99.978% availability. 2014. URL: http://gmailblog.blogspot.de/2014/03/staying-
at-forefront-of-email-security.html (visited on 11/25/2015).

[68] D. Liu et al. “Confidant: Protecting OSN Data Without Locking It Up.” In: Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics) 7049 LNCS (2011), pp. 61–80.

[69] E. K. Lua et al. “A Survey and Comparison of Peer-to-Peer Overlay Network Schemes.” In:
IEEE Communications Survey and Tutorial 7 (2005), pp. 72–93.

[70] M. Lucas and N. Borisov. “FlyByNight: Mitigating the Privacy Risks of Social Networking.”
In: Proceedings of the Seventh ACM Workshop on Privacy in the Electronic Society. 2008,
pp. 1–8.

[71] P. Maymounkov and D. Mazières. “Kademlia: A Peer-to-Peer Information System Based
on the XOR Metric.” In: Lecture Notes in Computer Science. Vol. 2429/2002. Cambridge,
MA, USA, 2002, pp. 53–65.

http://arxiv.org/abs/arXiv:1111.5377v2
http://gmailblog.blogspot.de/2014/03/staying-at-forefront-of-email-security.html
http://gmailblog.blogspot.de/2014/03/staying-at-forefront-of-email-security.html

232 Bibliography

[72] G. Mega, A. Montresor, and G. P. Picco. “Efficient Dissemination in Decentralized So-
cial Networks.” In: Proceedings of 2011 IEEE International Conference on Peer-to-Peer
Computing (P2P 2011). Tokyo, Japan: IEEE, Aug. 2011, pp. 338–347.

[73] G. Mega, A. Montresor, and G. P. Picco. “On Churn and Communication Delays in Social
Overlays.” In: 2012 IEEE 12th International Conference on Peer-to-Peer Computing (P2P).
Ieee, Sept. 2012, pp. 214–224.

[74] S. Michiels et al. “Digital Rights Management - A Survey of Existing Technologies.” In:
Report CW 428 (2005).

[75] D. Mills et al. Network Time Protocol Version 4: Protocol and Algorithms Specification.
Tech. rep. RFC Editor, June 2010, pp. 1–110.

[76] Y. Minsky, A. Trachtenberg, and R. Zippel. “Set Reconciliation with Nearly Optimal
Communication Complexity.” In: IEEE Transactions on Information Theory 49.9 (Sept.
2003), pp. 2213–2218.

[77] S. Nilizadeh et al. “Cachet: A Decentralized Architecture for Privacy Preserving Social
Networking with Caching.” In: Proceedings of the 8th international conference on Emerg-
ing networking experiments and technologies - CoNEXT ’12. New York, New York, USA:
ACM Press, Dec. 2012, p. 337.

[78] P. Olson. Facebook Closes $19 Billion WhatsApp Deal. 2014. URL: https://www.forbes.
com/sites/parmyolson/2014/10/06/facebook-closes-19-billion-whatsapp-

deal (visited on 11/03/2017).

[79] T. Paul, A. Famulari, and T. Strufe. “A Survey on Decentralized Online Social Networks.”
In: Computer Networks 75 (Dec. 2014), pp. 437–452.

[80] T. Paul et al. “Exploring Decentralization Dimensions of Social Networking Services :
Adversaries and Availability.” In: Proceedings of the First ACM International Workshop on
Hot Topics on Interdisciplinary Social Networks Research (HotSocial ’12). Beijing, China,
2012, pp. 49–56.

[81] B. C. Popescu, B. Crispo, and A. S. Tanenbaum. “Safe and Private Data Sharing with
Turtle: Friends Team-Up and Beat the System.” In: Proceedings of the 12th International
Workshop on Security Protocols. Cambridge, UK, Apr. 2004.

[82] S. Ratnasamy et al. “A Scalable Content-Addressable Network.” In: In Proceedings of
ACM SIGCOMM. San Diego, CA, USA, Aug. 2001, pp. 161–172.

[83] E. Rescorla and N. Modadugu. Datagram Transport Layer Security. Tech. rep. Jan. 2012,
pp. 1–32.

[84] S. Rhea et al. “Handling Churn in a DHT.” In: ATEC ’04: Proceedings of the annual
conference on USENIX Annual Technical Conference. Boston, MA, USA, 2004, pp. 127–
140.

[85] S. Rhea et al. “OpenDHT: a Public DHT Service and Its Uses.” In: SIGCOMM ’05: Proceed-
ings of the 2005 conference on Applications, technologies, architectures, and protocols
for computer communications. Philadelphia, PA, USA: ACM Press, Aug. 2005, pp. 73–84.

https://www.forbes.com/sites/parmyolson/2014/10/06/facebook-closes-19-billion-whatsapp-deal
https://www.forbes.com/sites/parmyolson/2014/10/06/facebook-closes-19-billion-whatsapp-deal
https://www.forbes.com/sites/parmyolson/2014/10/06/facebook-closes-19-billion-whatsapp-deal

Bibliography 233

[86] S. Roos and T. Strufe. “Dealing with Dead Ends: Efficient Routing in Darknets.” In: ACM
Trans. Model. Perform. Eval. Comput. Syst. 1.1 (2016), 4:1–4:30.

[87] A. Rowstron and P. Druschel. “Pastry: Scalable, Decentralized Object Location, and
Routing for Large-Scale Peer-to-Peer Systems.” In: Lecture Notes in Computer Science.
Vol. 2218/2001. Heidelberg, Germany, Nov. 2001, pp. 329–350.

[88] F. Ruskey and M. Weston. “A Survey of Venn Diagrams.” In: The Electronic Journal of
Combinatorics 5 (2005).

[89] S. C. Rute, J. Crowcroft, and J. Kempf. “User-Centric Networking.” In: Proceedings of
Dagstuhl Seminar 10372. Ed. by P. Mendes. Wadern, Germany, 2010.

[90] P. Saint-Andre. Extensible Messaging and Presence Protocol (XMPP): Core. Tech. rep.
IETF, Mar. 2011.

[91] P. Saint-Andre. Extensible Messaging and Presence Protocol (XMPP): Instant Messaging
and Presence. Tech. rep. Mar. 2011.

[92] M. Sayrafiezadeh. “The Birthday Problem Revisited.” In: Mathematics Magazine 67.3
(June 1994), p. 220.

[93] B. Schneier. Applied Cryptography. 1st ed. John Wiley & Sons, 2015, pp. 1–784.

[94] L. Schwittmann et al. “Privacy Preservation in Decentralized Online Social Networks.” In:
IEEE Internet Computing 18.2 (2014), pp. 16–23.

[95] L. Schwittmann et al. “SoNet - Privacy and Replication in Federated Online Social Net-
works.” In: Proceedings - International Conference on Distributed Computing Systems
(2013), pp. 51–57.

[96] T. M. Shafaat, A. Ghodsi, and S. Haridi. “Handling Network Partitions and Mergers in
Structured Overlay Networks.” In: Peer-to-Peer Computing, 2007. P2P 2007. Seventh
IEEE International Conference on, pp. 132–139.

[97] A. Shakimov et al. “Vis-à-Vis: Privacy-Preserving Online Social Networking via Virtual
Individual Servers.” In: 2011 Third International Conference on Communication Systems
and Networks (COMSNETS 2011). IEEE, Jan. 2011, pp. 1–10.

[98] C. E. Shannon. “Prediction and Entropy of Printed English.” In: Bell System Technical
Journal 30.1 (Jan. 1951), pp. 50–64.

[99] R. Sharma and A. Datta. “SuperNova: Super-peers based architecture for decentralized
online social networks.” In: 2012 Fourth International Conference on Communication
Systems and Networks (COMSNETS 2012). IEEE, Jan. 2012, pp. 1–10. arXiv: arXiv:
1105.0074v2.

[100] W. Sherchan, S. Nepal, and C. Paris. “A Survey of Trust in Social Networks.” In: ACM
Computing Surveys 45.4 (Aug. 2013), pp. 1–33.

[101] M. Shiels. The anti-Facebook.

[102] A. Singh et al. “Eclipse Attacks on Overlay Networks: Threats and Defenses.” In: 25th IEEE
International Conference on Computer Communications ({INFOCOM} 2006). Barcelona,
Spain, Apr. 2006.

http://arxiv.org/abs/arXiv:1105.0074v2
http://arxiv.org/abs/arXiv:1105.0074v2

234 Bibliography

[103] Skype. URL: https://skype.com (visited on 10/31/2014).

[104] Snapchat. URL: https://www.snapchat.com (visited on 11/22/2015).

[105] R. Sofia et al. “User centric networking and services: Part I [Guest Editorial].” In: IEEE
Communications Magazine 52.9 (Sept. 2014), p. 18.

[106] I. Stoica et al. “Chord: A Scalable Peer-to-peer Lookup Service for Internet Applications.”
In: Proceedings of the {ACM} {SIGCOMM} ’01 Conference. San Diego, California, Aug.
2001.

[107] J. Su et al. “Haggle: Seamless networking for mobile applications.” In: Lecture Notes in
Computer Science 4717.2007 (2007), pp. 391–408.

[108] Telegram. URL: https://telegram.org/ (visited on 07/29/2015).

[109] TextSecure. URL: https://whispersystems.org (visited on 07/29/2015).

[110] The Guardian. WhatsApp privacy backlash: Facebook angers users by harvesting their data.
2016. URL: https://www.theguardian.com/technology/2016/aug/25/whatsapp-
backlash-facebook-data-privacy-users (visited on 03/11/2017).

[111] Threema. URL: https://threema.ch (visited on 07/29/2015).

[112] D. Tsolis et al. Digital Rights Management for E-Commerce Systems. IGI Global, 2008,
p. 38.

[113] J. Ugander et al. “The Anatomy of the Facebook Social Graph.” In: (Nov. 2011), p. 17.
arXiv: 1111.4503.

[114] B. Viswanath et al. “On the Evolution of User Interaction in Facebook.” In: Proceedings of
the 2nd ACM workshop on Online social networks - WOSN ’09 (2009), p. 37.

[115] W. Vogels. “Eventually Consistent.” In: Queue 6.6 (Oct. 2008), p. 14.

[116] Whatsapp. URL: http://www.whatsapp.com (visited on 10/31/2014).

[117] X. Xing et al. “Routing in User-Centric Networks.” In: IEEE Communications Magazine
52.9 (Sept. 2014), pp. 44–51. arXiv: 14 [0163-6804].

[118] Z. Yao et al. “Modeling Heterogeneous User Churn and Local Resilience of Unstructured
P2P Networks.” In: Proceedings of the 2006 IEEE International Conference on Network
Protocols (Nov. 2006), pp. 32–41.

[119] B. Y. Zhao et al. “Tapestry: A Resilient Global-Scale Overlay for Service Deployment.” In:
IEEE Journal on Selected Areas in Communications 22.1 (2004), pp. 41–53.

https://skype.com
https://www.snapchat.com
https://telegram.org/
https://whispersystems.org
https://www.theguardian.com/technology/2016/aug/25/whatsapp-backlash-facebook-data-privacy-users
https://www.theguardian.com/technology/2016/aug/25/whatsapp-backlash-facebook-data-privacy-users
https://threema.ch
http://arxiv.org/abs/1111.4503
http://www.whatsapp.com
http://arxiv.org/abs/14

	Zusammenfassung
	List of Figures
	1 Introduction
	1.1 Overview
	1.1.1 Basic Scenario
	1.1.2 Privacy Considerations

	1.2 Problem Statement
	1.3 User-Centric Networking
	1.4 Building Blocks for User-Centric Networking
	1.4.1 SODESSON Middleware
	1.4.2 SocioPath
	1.4.3 Trade-Offs in Designing Decision Engines

	1.5 Outline

	2 Basics of User-to-User Communication
	2.1 Model for User-to-User Communication
	2.1.1 Data Objects
	2.1.2 Closed Groups
	2.1.3 User Identifiers
	2.1.4 Personal Devices
	2.1.5 Network Communication
	2.1.6 Summary

	2.2 Third-Party Provider Schemes
	2.2.1 Data Object Delivery
	2.2.2 User Identifiers
	2.2.3 Advantages of Third-Party Providers
	2.2.4 Centralized Service Providers
	2.2.5 Federated Service Providers
	2.2.6 Structured P2P Overlay Networks

	2.3 Security and Privacy in U2U Communication
	2.3.1 Content Data Security
	2.3.2 Application Metadata Privacy
	2.3.3 Trust

	2.4 Comparison of Third-Party Provider Schemes
	2.4.1 Criteria for Comparison
	2.4.2 Centralized Service Provider
	2.4.3 Federated Service Providers
	2.4.4 Structured P2P Overlay Networks
	2.4.5 Summary

	2.5 Related Work
	2.5.1 Metadata and Privacy
	2.5.2 Privacy-Aware Online Social Networks
	2.5.3 Friend-to-Friend Networks

	2.6 Conclusion

	3 User-Centric Networking
	3.1 Self-sufficient U2U communication
	3.1.1 User-Centric Network (UCN)
	3.1.2 Data object delivery

	3.2 Available Resources in a UCN
	3.2.1 Device availability
	3.2.2 Device capability
	3.2.3 Example Device Classes

	3.3 Partition tolerance
	3.3.1 Example

	3.4 Resource Awareness
	3.4.1 Examples for resource-aware forwarding

	3.5 Trust Dependencies
	3.5.1 Review from Chapter 2
	3.5.2 Additional trust dependencies
	3.5.3 Helping subscribers

	3.6 Privacy Model
	3.6.1 Adversary Types
	3.6.2 Privacy Levels

	3.7 Related Work
	3.7.1 Other approaches to metadata privacy
	3.7.2 User-to-user communication via trusted devices
	3.7.3 Other definitions of User-Centric Networking

	3.8 Conclusion

	4 SODESSON Middleware
	4.1 Introduction
	4.2 Basic Concept and Architecture
	4.2.1 Tasks of the DDP

	4.3 Publish/Subscribe Service
	4.3.1 Representing U2U Entities in SODESSON
	4.3.2 Users vs. Applications
	4.3.3 Publishing a Data Object: Step by Step
	4.3.3.1 Step one: Binding an application to SODESSON
	4.3.3.2 Step two: Creating a new topic
	4.3.3.3 Step three: Subscribing to a topic
	4.3.3.4 Step four: Publishing a new data object and delivering it to the subscribers
	4.3.3.5 Summary

	4.3.4 Module: App Manager
	4.3.5 Module: Local Data Storage
	4.3.6 Retrieving a Data Object
	4.3.7 Updating and deleting a data object

	4.4 Contact management
	4.4.1 Data structure: Contact List
	4.4.2 Initial Setup
	4.4.3 Adding contacts
	4.4.4 Editing contacts

	4.5 Conclusion

	5 SocioPath: Protocol Overview
	5.1 Overview
	5.1.1 Outline of the upcoming sections and chapters

	5.2 Internal Data Structures
	5.2.1 Devices List
	5.2.2 Own Topics List
	5.2.3 Subscriptions List

	5.3 Fundamentals of Data Object Delivery
	5.3.1 Basic delivery process
	5.3.2 Maintenance Topics
	5.3.3 Encryption

	5.4 Protocol Flow Details
	5.4.1 General properties of messages
	5.4.2 Messages for Data Object Delivery
	5.4.3 Maintenance Topics
	5.4.4 CCV and Forward Flag

	5.5 Example Workflow of Data Object Delivery
	5.5.1 Creating a new topic
	5.5.2 Subscription
	5.5.3 Publishing a new data object

	5.6 Additional Maintenance
	5.6.1 Initial Setup
	5.6.2 Adding new devices
	5.6.3 Adding contacts

	5.7 Decoupling notifications and data object retrievals
	5.7.1 Decoupling example
	5.7.2 Notifications
	5.7.3 Data object retrievals
	5.7.4 Source management

	5.8 Conclusion

	6 Partition Tolerance in SocioPath
	6.1 Consistency Demands for SocioPath
	6.1.1 Relevant Topics
	6.1.2 Positioning SocioPath in the CAP Model

	6.2 Set Reconciliation
	6.2.1 General Problem Definition
	6.2.2 Data Structures for Set Reconciliation
	6.2.2.1 Identifier List
	6.2.2.2 Bloom Filters
	6.2.2.3 Size comparison

	6.3 State Repairs
	6.3.1 Reactive vs. Periodic State Repairs
	6.3.2 Message Exchange
	6.3.3 Successful vs. Unsuccessful State Repairs
	6.3.4 Improving space efficiency
	6.3.5 Example

	6.4 Conclusion

	7 SocioPath: Decision Engines
	7.1 Overview on the Three Presented Decision Engines
	7.1.1 Instant-to-All
	7.1.2 Offload-First
	7.1.3 Helping-Friends

	7.2 Device Roles, DE Events and DE Actions
	7.3 Notification Workflow
	7.3.1 Overview on DE events and DE actions
	7.3.2 Instant-to-All
	7.3.3 Offload-First
	7.3.4 Helping-Friends

	7.4 Data Object Retrieval Workflow
	7.4.1 Overview on DE events and DE actions
	7.4.2 Instant-to-All
	7.4.3 Offload-First and Helping-Friends

	7.5 State Repair Workflow
	7.5.1 Instant-to-All
	7.5.2 Offload-First
	7.5.3 Helping-Friends

	7.6 Overall Process
	7.7 Conclusion

	8 Evaluation
	8.1 The Overlay Simulation Framework OverSim
	8.1.1 Own Contributions to OverSim
	8.1.2 Simplifications

	8.2 Simulation of User-Centric Networks
	8.2.1 Social Graph
	8.2.2 Device Classes
	8.2.3 Device Ownerships
	8.2.4 Applications

	8.3 Performance Metrics
	8.3.1 Delays
	8.3.2 Sending Costs

	8.4 Comparison of Results
	8.4.1 Delays
	8.4.2 Sending Costs
	8.4.3 Privacy

	8.5 Simulation Runs
	8.6 Private Instant Messaging
	8.6.1 Delays: Instant-to-All
	8.6.2 Delays: Offload-First
	8.6.3 Delays: Scalability
	8.6.4 Delays: Periodic State Repairs
	8.6.5 Costs: Instant-to-All
	8.6.6 Costs: Offload-First
	8.6.7 Storage Footprint
	8.6.8 Key results

	8.7 Group Instant Messaging
	8.7.1 Delays: Instant-to-All
	8.7.2 Delays: Offload-First
	8.7.3 Delays with Periodic State Repairs
	8.7.4 Costs: Instant-to-All
	8.7.5 Costs: Offload-First
	8.7.6 Storage Footprint
	8.7.7 Key Results

	8.8 Summary

	9 Conclusion and Perspectives
	9.1 Results of This Thesis
	9.2 Perspectives

	A SODESSON Application Interface: Publish/Subscribe
	B SODESSON Application Interface: Contact Management
	C SocioPath – Additional Evaluation Results
	Bibliography

