5 research outputs found

    leveraging artificial intelligence to improve voice disorder identification through the use of a reliable mobile app

    Get PDF
    The evolution of the Internet of Things, cloud computing and wireless communication has contributed to an advance in the interconnectivity, efficiency and data accessibility in smart cities, improving environmental sustainability, quality of life and well-being, knowledge and intellectual capital. In this scenario, the satisfaction of security and privacy requirements to preserve data integrity, confidentiality and authentication is of fundamental importance. In particular, this is essential in the healthcare sector, where health-related data are considered sensitive information able to reveal confidential details about the subject. In this regard, to limit the possibility of security attacks or privacy violations, we present a reliable mobile voice disorder detection system capable of distinguishing between healthy and pathological voices by using a machine learning algorithm. This latter is totally embedded in the mobile application, so it is able to classify the voice without the necessity of transmitting user data to or storing user data on any server. A Boosted Trees algorithm was used as the classifier, opportunely trained and validated on a dataset composed of 2003 voices. The most frequently considered acoustic parameters constituted the inputs of the classifier, estimated and analyzed in real time by the mobile application

    AUTOMATIC IDENTIFICATION OF DYSPHONIAS USING MACHINE LEARNING ALGORITHMS

    Get PDF
    Dysphonia is a prevalent symptom of some respiratory diseases that affects voice quality, even for prolonged periods. For its diagnosis, speech-language pathologists make use of different acoustic parameters to perform objective evaluations on patients and determine the type of dysphonia that affects them, such as hyperfunctional and hypofunctional dysphonia, which is important because each type requires a different treatment. In the field of artificial intelligence this problem has been addressed through the use of acoustic parameters that are used as input data to train machine learning and deep learning models. However, its purpose is usually to identify whether a patient is ill or not, making binary classifications between healthy voices and voices with dysphonia, but not between dysphonias. In this paper, harmonic-to-noise ratio, cepstral peak prominence-smoothed, zero crossing rate and the means of the Mel frequency cepstral coefficients (2-19) are used to make multiclass classification of voices with euphony, hyperfunction and hypofunction by means of six machine learning algorithms, which are: Random Forest, K nearest neighbors, Logistic regression, Decision trees, Support vector machines and Naive Bayes. In order to evaluate which of them presents a better performance to identify the three voice classes, bootstrap.632 was used. It is concluded that the best confidence interval ranges from 87% to 92%, in terms of accuracy for the K Nearest Neighbors model. Results can be implemented in the development of a complementary application for the clinical diagnosis or monitoring of a patient under the supervision of a specialist

    Ethics & AI: A systematic review on ethical concerns and related strategies for designing with AI in healthcare

    Get PDF
    In modern life, the application of artificial intelligence (AI) has promoted the implementation of data-driven algorithms in high-stakes domains, such as healthcare. However, it is becoming increasingly challenging for humans to understand the working and reasoning of these complex and opaque algorithms. For AI to support essential decisions in these domains, specific ethical issues need to be addressed to prevent the misinterpretation of AI, which may have severe consequences for humans. However, little research has been published on guidelines that systematically addresses ethical issues when AI techniques are applied in healthcare. In this systematic literature review, we aimed to provide an overview of ethical concerns and related strategies that are currently identified when applying AI in healthcare. The review, which followed the PRISMA guidelines, revealed 12 main ethical issues: justice and fairness, freedom and autonomy, privacy, transparency, patient safety and cyber security, trust, beneficence, responsibility, solidarity, sustainability, dignity, and conflicts. In addition to these 12 main ethical issues, we derived 19 ethical sub-issues and associated strategies from the literature.</p

    JDReAM. Journal of InterDisciplinary Research Applied to Medicine - Vol. 4, issue 2 (2020)

    Get PDF

    JDReAM. Journal of InterDisciplinary Research Applied to Medicine - Vol. 4, issue 2 (2020)

    Get PDF
    corecore