8 research outputs found

    Towards a Fully Implantable Closed-Loop Opto-Electro Stimulation Interface for Motor Neuron Disease Treatment

    Get PDF
    This paper presents a fully-implantable closed-loop opto-electro stimulation interface for motor neuron disease studies, designed for experiments with freely moving rodents. A low power consumption Bluetooth data link is used to wirelessly control 64 opto-electro stimulation channels and receive neural recording data. The implant is powered by a wirelessly rechargeable lithium-ion battery, which can support 2.5 hours continuous operation with a stimulation output up to 10 mA. The battery is recharged using a QI standard wireless inductive power link, which can deliver >100mW power at a distance of 2 cm. The total size of the implant system is 29 mm Ă— 20 mm Ă— 13 mm. Its performance is compared with the state-of-the-art

    Optical cuff for optogenetic control of the peripheral nervous system

    Get PDF
    OBJECTIVE: Nerves in the peripheral nervous system (PNS) contain axons with specific motor, somatosensory and autonomic functions. Optogenetics offers an efficient approach to selectively activate axons within the nerve. However, the heterogeneous nature of nerves and their tortuous route through the body create a challenging environment to reliably implant a light delivery interface. APPROACH: Here, we propose an optical peripheral nerve interface – an optocuff -, so that optogenetic modulation of peripheral nerves become possible in freely behaving mice. MAIN RESULTS: Using this optocuff, we demonstrate orderly recruitment of motor units with epineural optical stimulation of genetically targeted sciatic nerve axons, both in anaesthetized and in awake, freely behaving animals. Behavioural experiments and histology show the optocuff does not damage the nerve thus is suitable for long-term experiments. SIGNIFICANCE: These results suggest that the soft optocuff might be a straightforward and efficient tool to support more extensive study of the PNS using optogenetics

    A Fully Implantable Opto-Electro Closed-Loop Neural Interface for Motor Neuron Disease Studies

    Get PDF
    This paper presents a fully implantable closed-loop device for use in freely moving rodents to investigate new treatments for motor neuron disease. The 0.18 µm CMOS integrated circuit comprises 4 stimulators, each featuring 16 channels for optical and electrical stimulation using arbitrary current waveforms at frequencies from 1.5 Hz to 50 kHz, and a bandwidth programmable front-end for neural recording. The implant uses a Qi wireless inductive link which can deliver >100 mW power at a maximum distance of 2 cm for a freely moving rodent. A backup rechargeable battery can support 10 mA continuous stimulation currents for 2.5 hours in the absence of an inductive power link. The implant is controlled by a graphic user interface with broad programmable parameters via a Bluetooth low energy bidirectional data telemetry link. The encapsulated implant is 40 mm × 20 mm × 10 mm. Measured results are presented showing the electrical performance of the electronics and the packaging method

    Fully-Implantable Self-Contained Dual-Channel Electrical Recording and Directivity-Enhanced Optical Stimulation System on a Chip

    Get PDF
    This thesis presents an integrated system-on-a-chip (SoC), designed, fabricated, and characterized for conducting simultaneous dual-channel optogenetic stimulation and electrophysiological recording. An inductive coil as well as power management circuits are also integrated on the chip, enabling wireless power reception, hence, allowing full implantation. The optical stimulation channels host a novel LED driver circuit that can generate currents up to 10mA with a minimum required headroom voltage reported in the literature, resulting in a superior power efficiency compared to the state of the art. The output current in each channel can be programmed to have an arbitrary waveform with digitally-controlled magnitude and timing. The final design is fabricated as a 34 mm2 microchip using a CMOS 130nm technology and characterized both in terms of electrical and optical performance. A pair of custom-designed inkjet-printed micro-lenses are also fabricated and placed on top of the LEDs. The lenses are optimized to enhance the light directivity of optical stimulation, resulting in significant improvements in terms of spatial resolution, power consumption (30.5x reduction), and safety aspects (temperature increase of <0.1c) of the device

    Electronic dura mater soft, multimodal neural interfaces:technology, integration and implementation to surface implants

    Get PDF
    Neuroprosthetic devices are engineered to study, support or replace impaired functions of the nervous system. The neural interface is an essential element of neuroprosthetic systems as it allows for transduction of signals and stimuli of desired functions (recording, stimulation, neuromodulation). A persistent challenge for translating neuroprosthetics from the laboratory to the clinic is the lack of long-term biointegration of neural interfaces. This thesis aims at improving biointegration of neural interfaces by reducing the mechanical mismatch between implant and neural tissue. In this thesis, the design, fabrication and characterization of soft surface neural interfaces is described. These soft neural interfaces, termed electronic dura mater or e-dura, were designed to mimic the mechanical properties of dura mater. In contrast with conventional neural technologies, e-dura neural interfaces were made of soft and compliant materials. They conform to the circumvolutions of the brain and spinal cord and follow their dynamic deformation without damaging the surrounding neural tissues. These soft multimodal neural interfaces were fabricated on silicone substrates using techniques imported from the microfabrication industry and incorporate compliant electrodes, stretchable electrical interconnects and a micro-catheter for drug delivery. Evaluation of the e-dura biointegration with spinal tissues demonstrated reduced foreign body reaction, compared to stiff polyimide based implants. Additionally, mechanical tests on an in-vitro spinal surrogate provided insights on the complex biomechanical coupling between implants and neural tissue. E-dura interfaces, implanted in rodents, maintained their functionality over extended periods and provided high-resolution neuronal recordings and concurrent delivery of electrical and chemical neuromodulation. Eventually, the use of gallium thin films was explored to create highly conductive and stretchable interconnects for integration of active electronic components in e-dura neural interfaces
    corecore