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1 

Abstract 

In case of profound sensorineural hearing loss and deafness, cochlear implants (CIs) partially restore 

hearing and provide missing auditory information to the brain. Electrical stimulation of the spiral 

ganglion neurons (SGNs) enables speech understanding in the majority of the approximately 500,000 

CI users. However, the utility of current clinical CIs is limited by their wide current spread resulting in 

limited coding of spectral information. As light can be better confined in space, optical CIs (oCIs) 

promise lower spread of excitation in the cochlea which might enable better speech comprehension 

in noisy background as well as music appreciation. 

This thesis focuses on five key aspects for development of future CIs in research and clinical translation: 

(1) Characterizing a novel ultrafast optogenetic tool in the mouse cochlea: Chronos, a 

channelrhodopsin (ChR) supporting high temporal fidelity prerequisite for auditory coding. (2) 

Improving spiral ganglion neuron (SGN) expression levels and SGN targeting by the recently discovered 

adeno-associated virus (AAV)-PHP.B. (3) Enhancing ChR trafficking to the plasma membrane 

(Chronos—ES/TS). (4) Evaluating cochlear space for optical probes in common animal models 

employing phase-contrast X-ray tomography thereby providing a comprehensive library for 

morphological parameters relevant for CI development in rodents and non-human primates. (5) 

Establishing first multichannel oCIs based on microfabricated light-emitting diode (LED) arrays in 

channelrhodopsin-2 (ChR2)-expressing rats and their functional validation utilizing auditory brainstem 

responses (ABRs). 

Taken together, the thesis demonstrates feasibility of optogenetic cochlea stimulation by expressing 

the ultrafast ChR Chronos and LED-based multichannel oCIs. 
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1 Introduction 

1.1 Neuroprosthetics 

“We are the first generation able to decide what organs and senses we want to have.” This slogan by 

the Cyborg Foundation raises hopes to enhance body functions beyond the natural capabilities of 

human bodies. Founder Neil Harbisson was born with an extreme form of colorblindness, which 

restricted him to perceive his environment in grayscale only. Since 2004 he has an implanted antenna 

which allows him to sense colors in the visible and invisible range of human eyes via audible vibrations 

inside his head. This permits him to not only extract colors used in daily live but also to tell the amount 

of ultraviolet (UV) radiation at the beach. The osseointegrated device implanted in Harbisson’s head is 

a hybrid device of a bone-conducting hearing aid and a camera. Thus, the so-called cyborg antenna is 

not a neuroprosthesis by definition, but still illustrates the intention and purpose.  

Neuroprosthetics offer the possibility to link medical auxiliaries to the human nervous system via 

neural interface to partially restore body functions. Often the field of neuroprosthetics is seen as a 

brain-computer interface only, but it offers far more: missing biological function can be replaced by 

medical devices to regain quality of life. Today, patients with diverse deficiencies in their senses can 

partially regain function. In the field of vision restoration, the retina implant has proven the most 

successful. The bionic eye electrically stimulates the visual nerve circumventing the degenerated 

photoreceptors, as for example in case of retinitis pigmentosa or geographic atrophy. Another 

prominent example for neuroprosthesis is the deep brain stimulator (brain pacemaker), which uses 

implanted electrodes in the central nervous system (CNS) to treat movement and neuropsychiatric 

disorders. The most successful clinical neuroprosthesis, however, is the cochlear implant (CI) which 

this thesis will focus on. 

Despite all efforts in neuroprosthetics one should not underestimate the capabilities of the brain, 

which likely explains much of the success of e.g. the CI. Neuroplasticity, the ability of the CNS to adapt 

and rebuild synaptic connections in a stimulus-dependent manner, plays a major role in the great 

success observed in human rehabilitation. The reformation of neurons enables the brain to integrate 

new inputs and rebuilt a functional perception. Therefore, neural implants are most successful, the 

more peripheral the interface connects to the nervous system as this enables medical devices to make 

use of the neural processing of the brain along the many relay stations up to the cortex. 
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1.2 Cochlear implants 

1.2.1 The auditory system 

The outer and middle ear: The adequate physical stimulus for the ear is sound. Pressure waves are 

collected by the pinna of the outer ear and directed onto eardrum that connects to the ossicular chain 

in the middle ear consisting of malleus, incus and stapes (Figure 1). The middle ear conveys the 

pressure waves to the fluid filled cochlea via the oval window. This mechanism is required for signal 

amplification because otherwise sound would be strongly attenuated due to the different inertia of 

gaseous and fluid media. 

 

Figure 1. The human ear 

Frontal section through the human ear starting at the outer ear (top left) to the inner ear (top center). 
The three scalae are depicted as a 3D mouse model (top right) as it is the focus of this thesis. Bottom 
shows cross-sections through a cochlear turn (right) and the organ of Corti (left). Modified and 
reprinted with permission from (Purves, 2018) 

The inner ear: The cochlea itself, a bony, snail-shaped structure, consists of three distinct fluid-filled 

cavities (scala tympani, separated via the basilar membrane from the scala media, which in turn is 

separated via Reissner’s membrane from the scala vestibuli) wrapped around the central pillar of the 

cochlea, the modiolus (Figure 1). At the cochlear apex, the scala tympani and the scala vestibuli are 
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connected via the helicotrema, and both are filled with a liquid called perilymph. At the cochlear base, 

two membrane-covered windows are found: the oval window (where the footplate of the stapes ends) 

in the scala vestibuli and the round window in the scala tympani. When the footplate of the stapes 

moves, it also moves the oval window membrane. Perilymph in the scala vestibuli is pushed towards 

the cochlear apex and in turn pushes the perilymph in the scala tympani via the helicotrema towards 

the round window, which is bulged outwards. 

Since not all intracochlear structures are rigid, pressure waves cause motion while traveling through 

the cochlea - most importantly at the basilar membrane. Due to its physical properties – i.e. gradual 

decrease in width and increase in stiffness from the cochlear apex towards the base – its displacement 

depends on the frequency of pressure waves: While high frequencies deflect the stiff and narrow part 

at the cochlear base, low frequency waves travel up to the cochlear apex and mainly deflect the wider 

and more flexible part of the basilar membrane (Figure 2). As a result, a frequency-place code in the 

cochlea is established, where different frequencies of pressure waves cause basilar membrane 

deflections at different locations in the cochlea. 

 

Figure 2. Travelling wave along the uncoiled cochlea 

The uncoiled cochlea with the basilar membrane showing a travelling wave at a given instance. 
Modified and reprinted with permission from (Purves, 2018). 

Mechanotransduction: The responsible organ for signal transduction – the organ of Corti – is located 

on the basilar membrane in the scala media. It is covered by a second membrane, the tectorial 

membrane, which is connected to the basilar membrane via the rods of Corti (also known as pillar 

cells) and surrounded by endolymph. The sensory cells in the organ of Corti, the so-called hair cells, 
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detect cochlear vibrations via their stereociliar bundles. While the outer hair cells (OHCs) serve as 

mechanical amplifier, the inner hair cells (IHCs) are the “genuine” sensory cells conveying the sound 

information to type I spiral ganglion neurons (SGNs) at their afferent synapses. The stereocilia of are 

connected via tip-links. Mechanically activated cation channels in the membrane of stereocilia are 

partially open in their resting state allowing moderate potassium influx from the endolymph into the 

hair cells generating a rather depolarized resting potential. A propagating wave along the cochlea 

deflects the basilar membrane thus the organ of Corti in respect of the tectorial membrane. This leads 

to deflection of the hair cell bundles. Depending on the direction of movement this can either lead to 

an increase or decrease in tension on the cation channel i.e. a more open or closed state, respectively. 

Opening of mechanotransducer channels causes additional potassium influx further depolarizing the 

cell: receptor potential. In IHCs the receptor potential activates voltage-gated calcium channels IHCs 

causing to calcium influx at the presynaptic ribbon-type active zones. The incoming calcium triggers 

the release of the neurotransmitter glutamate into the synaptic cleft. The released glutamate 

subsequently activates afferent fibers of spiral ganglion neurons (SGNs), the primary neurons in the 

auditory system, which – if activation is strong enough – initiate action potentials. This process 

converts the mechanical sound signal into an electrical nerve signal. The somata of the bipolar SGNs 

are located in Rosenthal’s canal within the modiolus, with their peripheral neurites reach to the base 

of IHCs. Their central neurites form the auditory nerve and project to the cochlear nucleus of the 

brainstem, thus sending information about acoustic signals from the ear to the central nervous system. 

Neural encoding of sound: Basically, sound waves are characterized by their frequency (number of 

cycles per time window) and amplitude (sound pressure or intensity). While frequency is perceived as 

pitch, amplitude corresponds to loudness. As mentioned above, the travelling wave deflects the basilar 

membrane at different locations resulting in a distinct IHC activation pattern. The subsequent 

activation of neuronal populations by sound waves of different frequencies is maintained throughout 

the auditory pathway up to primary auditory cortex – the so-called tonotopy. Thereby, the brain is able 

to infer the frequency of an acoustic signal by the spatial activation pattern of neurons: pitch 

perception. Loudness, on the other hand is coded by two mechanisms: a larger amplitude leads to a 

greater vibration of the basilar membrane leading to (1) a stronger deflection of the stereocilia, leading 

to a greater receptor potential and ultimately results in a higher rate of action potential firing in the 

auditory nerve fibers and (2) a broader stimulation of IHCs, thus activating a larger population, thus 

more activated SGNs. 

This is a simplified view of hearing from the outer ear up to the first stage of the CNS. From there 

processing continues along many parallel pathways in relay stations including the superior olivary 

complex, nuclei of the lateral lemniscus, inferior colliculus and medial geniculate body up to the 
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primary auditory cortex. The central auditory pathway achieves not only pitch and loudness 

perception, but also e.g. sound localization through binaural integration. Finally, the information is 

integrated with other cortical areas in order to produce behaviorally relevant output to auditory 

signals. 

1.2.2 Hearing impairment 

According to the World Health Organization, approximately 466 million people worldwide – which 

account for 6.1 % of the human population – suffer from disabling hearing loss, resulting in an 

economic impact of about $750 billion globally spent on the treatment of hearing loss (WHO, 2018). 

As of today, 1 out of 800 children is born with profound hearing impairment, 15% of the world’s adult 

population experience at least mild hearing loss and approximately one third of the population above 

65 years of age are affected by disabling hearing loss. While approximately half of the cases of hearing 

impairment in children can be assigned to genetic mutations, the remaining ones are caused by 

environmental factors. In adults, acquired hearing loss – mainly noise-induced or age-related – 

contribute to make hearing loss the most prevalent sensory disorder. Consequences of hearing loss 

are severe and diverse: During early childhood, and especially during critical windows of development, 

the auditory system relies on sensory input in order to establish, mature and maintain the sense of 

audition. Furthermore, the acquisition of vocal speech fully depends on the auditory system. During 

adulthood, hearing impairments can cause decreased professional capabilities, risk for diseases such 

as depression, and decreased quality of life in general. In elderly, hearing impairment has been linked 

to cognitive decline and dementia. Furthermore, over all ranges of age, hearing impairment causes 

social isolation which in turn is linked to a diversity of secondary disadvantages. 

1.2.3 Hearing restoration 

When hearing fails, rehabilitation  depends on the nature and degree of the respective hearing 

impairment. For diagnosis subjective audiometry like determination of hearing thresholds and speech 

recognition as well as objective audiometry like otoacoustic emissions or auditory brainstem responses 

(ABRs) are used to classify the hearing impairment in severity and etiology. Depending on the extend 

of hearing loss, ranging from mild (20-40 dB) to moderate (40-70 dB) or severe (70-90 dB) form, 

patients might benefit from hearing aids, middle ear implants or bone conduction implants. When 

these treatments fail, in case of profound sensory neural hearing loss (SNHL, 90-120 dB) or in the deaf 

a cochlear implant (CI) is currently the best option to partially restore hearing. This requires the 

auditory nerve to not be severely compromised or missing. In this rare case, implants need to stimulate 

structures more central to the auditory nerve, reducing hearing restoration outcome  compared to CIs 

(Peng et al., 2018). Most prominent example is the auditory brainstem implant (ABI), which can restore 
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a hearing percept, but speech perception is limited and the craniotomy is not without significant risk 

(Schwartz and Wilkinson, 2017). 

Electrical cochlear implants (eCI) consist of an internal part with an intracochlear electrode array 

encapsulated in silicone linked to an extracochlear stimulator. The stimulator is built of two parts: An 

implanted receiver connected to the electrodes in the cochlea and a speech processor including 

battery supply, microphones and a transmitter magnetically fixed on the skin. While the microphone 

picks up sounds from the environment, the acoustic signal is decomposed into frequency bands and 

transcutaneously transmitted to the receiver/stimulator delivering current pulses to the electrode 

contacts within the cochlea, directly stimulating the SGNs, thereby circumventing the non-functional 

sensory organ of Corti. Current flows from an active single electrode contact either to a reference 

electrode located in the temporalis muscle or in the housing of the receiver/stimulator in the so-called 

monopolar stimulation; or to a neighboring electrode, in the so-called bipolar stimulation. Thereby, 

the electrode array - located in the scala tympani - makes use of the tonotopic axis of the cochlea: a 

electrode contact located at the base primarily excites SGNs coding for high frequencies, while an 

electrode contact placed in the apex stimulates neurons coding for lower frequencies. Most implant 

systems make use of the monopolar configuration, as performance is at least comparable to bipolar 

stimulation (Zhu et al., 2012; Zwolan et al., 1996), but require far less battery power for auditory 

percepts (Pfingst and Xu, 2004) compared to the bipolar modality. 

Current CIs enable patients to comprehend open speech in quietness and to some degree in an 

environment with background noise, but the appreciation of music is limited (Kohlberg et al., 2014). 

Decisive for good speech comprehension is the amount of stimulation channels – in case of an eCI the 

number of electrodes. As reported by Shannon et al. (1995) speech recognition in quietness only 

requires 4 stimulation channels, whereas in noise 8 or more channels are necessary (Smith et al., 2002). 

For melody recognition Shannon et al. (Shannon et al., 2004) suggests to at least provide 48 spectral 

channels. While commercial CIs currently provide 12-24 physical channels, only a low number of 

effective channels can be used (Friesen et al., 2001) due to wide current spread within the highly 

conductive perilymph of scala tympani (Kral et al., 1998). This leads to broad activation of large 

subpopulations of SGNs resulting in reduced frequency resolution. If it comes to speech processing 

and coding strategy, the independent sites are limited to 4-8 (Fishman et al., 1997; Friesen et al., 2001; 

Garnham et al., 2002; Kiefer et al., 2000; Wilson, 1997). 

Another obstacle for CIs is the placement within the scala tympani: As the implant is commonly located 

close to the lateral wall of scala tympani, the large distance between stimulation site and SGNs in the 

Rosenthal’s canal further decreases performance for eCIs (Cohen et al., 2006). Furthermore, CIs barely 

cover the whole length of scala tympani (Lee et al., 2010; Wilson, 2008) due to its coiled structure and 

decrease in diameter (chapter 3). 
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Optical stimulation promises to bypass the bottleneck of current eCIs: Light can be spatially confined 

and does not lead to channel cross-talk (Figure 3, also see reviews (Dombrowski et al., 2018; Jeschke 

and Moser, 2015; Richter and Tan, 2014)). However, optogenetic stimulation requires genetic 

modification of the auditory nerve to render the cells sensitive for light stimulation. 

 

Figure 3. Schematic overview of different cochlear stimulation modalities 

Electrical cochlear implant (left) typically use 12-24 stimulation channels while for optical cochlear 
implants (middle) an increase of stimulation channels by an order of magnitude might be possible. The 
right panel shows fiber-based optical stimulation used for in vivo characterization in animal models. 
Modified and reprinted with permission from (Moser, 2015). 

1.3 Optogenetics 

Optogenetics enables selective control of target cells with light stimuli in space and time. The use of 

light-sensitive proteins to control cellular function is considered as one of the most revolutionary 

innovations in the life sciences in recent years. Channelrhodopsins (ChR) were discovered around the 

millennium in the green alga Chlamydomonas reinhardtii as a light-sensitive membrane protein used 

in phototaxy. The DNA sequence was identified in the Hegemann group as encoding for large microbial-

type rhodopsins. In collaboration with Nagel and Bamberg, expression and subsequent analysis in 

Xenopus oocytes of the two types ChR1 and ChR2 was achieved (Nagel et al., 2002, 2003). Several 

groups started working on these newly described blue light-gated ion-channels offering the possibility 

to manipulate cells electrically. In 2005, ChR2 was used to drive neural activity with a millisecond 

precision in hippocampal neuron cultures (Boyden et al., 2005). Shortly after, first in vivo studies 

demonstrated neural photostimulation with ChR2 in freely moving mice (Adamantidis et al., 2007) 

using a lentiviral gene transfer. Depending on the choice of opsin, discussed in the next chapter, it is 

not only possible to excite, but also inhibit neural activity (Figure 4). 

This was the beginning of a new era. The two main features of optogenetic applications to 

neuroscience are (1) matching the dynamics of neuronal action potentials and synaptic currents and 

(2) spatial selectivity within the tissue excluding stimulation of neighboring areas. 
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Figure 4. Principle of optogenetics in neuroscience 

Illustration of the stimulation principles of electrical and optogenetic stimulation modalities. 
Optogenetic stimulation allows cellular and projection specificity, which is not feasible for electrical 
stimulation. The example shows electrical stimulation (left) vs. blue channelrhodopsin excitation 
(middle) vs. yellow halorhodopsin inhibition (right). Reprinted with permission from (Deisseroth, 
2011). 

1.3.1 Opsins 

The microbial optogenetic tools belong to the type I opsins and are found in all three domains of life: 

Archaea, bacteria and eukaryota. Type II opsins (animal type) are only found in higher eukaryotes 

responsible for vision or the circadian rhythm (Shichida and Yamashita, 2003). Both superfamilies 

belong to the seven-transmembrane proteins (Yizhar et al., 2011a). Here, we focus on the type I opsin 

family that are the main tools in optogenetics. Next to the light-sensitive ion channels, the 

bacteriorhodopsins (BR) and halorhodopsins (HR) compose the group of light-gated ion pumps (Figure 

5). While ChRs are selective for cations and BRs are outward proton pumps, HRs are light-activated 

chloride pumps, thus, - in neurons - the first two lead to excitation, while the latter lead to inactivation 

of the target cell (Figure 4). Recently, a light-driven inward proton pump was described (Inoue et al., 

2016) which enables further optogenetic control of cells. This thesis focuses on ChRs as it is most 

relevant for optogenetics in SGNs. 

 

Figure 5. Schematic of basic function of rhodopsins 

Light-gated cation channel channelrhodopsin (ChR, blue), chlorid pump 
halorhodopsin (HR, yellow) and outward proton pump bacteriorhodopsin (BR, 
turquoise). Modified and reprinted with permission from (Yizhar et al., 2011b) 
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For the light-gated ion channel to function it requires a retinal molecule which is a vitamin A-related 

organic cofactor assisting as the photon detector. In conjunction with the protein complex the retinal 

is termed rhodopsin. In channelrhodopsin, the most prominent optogenetic tool, the light-dependent 

ion channel undergoes several molecular transitions , which are described by several state maps based 

on spectroscopic methods (Bamann et al., 2008; Ernst et al., 2008; Neumann-Verhoefen et al., 2013; 

Ritter et al., 2008). Upon light stimulation, the molecule is thought to cycle through these states. In 

brief, the retinal absorbs photons leading to a series of conformational changes. The 

photoisomerization happens within nanoseconds, leading to an opening of the internal gate within 

sub-millisecond scale (τon), thus, enabling cations to pass through the pore (Kuhne et al., 2015). After 

light stimulation, the channel remains open - completing the photocycle - the so-called off-kinetics 

(τoff). The time interval after light-off varies greatly among ChRs. ChR2 – best activated at a wavelength 

of around 460 nm (Nagel et al., 2003) - has a τoff of about 10 ms (Gunaydin et al., 2010) which limits 

the temporal fidelity for high stimulation rates. Mutations in pore residues shortens the τoff  as in E123T 

(ChETA variant) to about 4 ms allowing sustained spiking of up to 200 Hz (Gunaydin et al., 2010). 

However, the increase in temporal fidelity comes at the cost of a decrease in light sensitivity since 

fewer channels remain in the open state on the photocurrent (Yizhar et al., 2011b). Another promising 

mutation, despite the slow τoff of 16 ms, is the calcium translocating ChR (CatCh). CatCh supports rapid 

repolarization due to enhanced calcium influx speeding up hyperpolarization and has an increased light 

sensitivity of about 70-fold (Kleinlogel et al., 2011). Chronos, a recently described channelrhodopsin 

isolated from Stigeoclonium helveticum (Klapoetke et al., 2014) promises to unite high light sensitivity 

and fast kinetics which will be discussed in chapter 2. 

Also, ChRs with different spectral properties are available: The first discovered ChRs best activated at 

a wavelength of around 530 nm is Volvox carteri ChR1 (VChR1) (Zhang et al., 2008). Soon modified 

variants like ReaChR and C1V1 were designed (Lin et al., 2013; Prigge et al., 2012; Yizhar et al., 2011c). 

More recently, the most red-shifted ChR to date – namely Chrimson - was identified in Chlamydomonas 

noctigama with an absorption peak at 590 nm (Klapoetke et al., 2014). Following Chrimson, two faster 

variants were engineered in the Bamberg lab (Mager et al., 2018): f-Chrimson and vf-Chrimson show 

channel kinetics close to Chronos. Red-shifted optogenetics offers advantages given the longer 

stimulation wavelength: higher transmission in organic tissue, thus allowing deeper tissue penetration 

and no phototoxic side-effects described for blue light stimulation.  An overview of the increasing 

range of ChR variants and mutations that are generated and discovered is depicted in Figure 6. 
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Figure 6. Opsin kinetics and peak absorption wavelength for 
common optogenetic tool variants 

Data were recorded in neurons at room temperature except 
for *CatCh which was tested in HEK cells. Modified from 
(Jeschke and Moser, 2015; Yizhar et al., 2011b). 

1.3.2 Genetic modification 

Neurons need to be rendered sensitive to light by expression of opsins. This is achieved via genetic 

modification of the target neurons – the spiral ganglion neurons for the sake of this thesis. For basic 

research, transgenic lines are readily available for mice (Zeng and Madisen, 2012) and rats (Witten et 

al., 2011). For experiments in chapter 4, we used ChR2-expressing rats, in which ChR2 expression is 

driven by the broad neuronal promoter Thy1.2. However, for higher flexibility regarding the use of 

alternative opsins and later clinical translation to humans, the need for alternative genetic 

modification arises. 

Here the most promising approach considered today is gene transfer via viral vectors. This method 

allows easy and fast incorporation of newly designed components. Further, tissue and cell specificity 

can be regulated by the choice of promoter, capsid of specific viral subtypes, and application site. 

Adeno-associated viruses (AAVs) seem to be the best candidate to date as researchers for vision 

restoration were successfully running clinic trials to replace the gene RPE65 (reviewed in (Dalkara et 

al., 2016)). 

AAVs provide a number of advantages: (1) AAVs are not linked to any known cause of disease to date, 

(2) show low immune responses and (3) are replication-deficient. AAVs are able to integrate into the 

host genome at a safe harbor, however, common modifications on the AAV backbone restrict 

integration to form episomal DNA structures allowing long-term expression in post-mitotic cells. AAVs 

can effectively target different cell types across the cochlea (Shu et al., 2016) and were successfully 

used to deliver ChRs to the SGNs (Duarte et al., 2018; Hernandez et al., 2014; Mager et al., 2018). 
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1.3.3 Optical stimulators 

To be able to stimulate SGNs with light, an appropriate emitter needs to be placed in the coiled 

cochlea. The choice of emitter needs to be deliberately weighed against pros and cons of the respective 

optoelectronic device. This topic is covered in chapter 3 and 4. An overview of available optical 

stimulators is provided here. 

In principle, the emitter needs to be power-efficient, small enough to fit in the cochlea providing more 

stimulation channels than currently used for eCIs and bright enough to drive optically evoked action 

potentials in the light sensitive neurons. An oCI can be designed either as an active stimulator – 

generating light at the emitter site – or as an passive stimulator with waveguides transporting photons 

from an external light source to the target site of excitation. 

Light-emitting diodes (LEDs) promise to be an ideal candidate for an active oCI: Wafer-level processed 

LEDs based on gallium nitride (GaN) achieve power efficiencies of more than 50 % (Laubsch et al., 2010) 

and can be miniaturized to fit more than 100 emitters within the size of a mouse cochlea (Goßler et 

al., 2014). Next to conventional LEDs, organic LEDs (OLEDs) might provide an alternative promising 

high spatial resolution and mechanical flexibility at dimensions below cellular size (Steude et al., 2016). 

Passive oCIs, however, offer several advantages and have been similarly miniaturized to accommodate 

to the cochlear space (Schwaerzle et al., 2016a): The light generating element is located outside the 

spatially confined cochlea thus providing additional space. Further, potential heat is not presented to 

the sensitive inner ear. On the downside, coupling of light into waveguides comes with transmission 

loss (Cho et al., 2010; Zorzos et al., 2010). 

1.4 Outline 

This thesis aims at providing basic insight for optogenetic cochlear stimulation by addressing the 

following points also relevant for future translation: 

 Characterization of the most promising blue-light sensitive channelrhodopsins in the auditory 

system to estimate its potential for optogenetic research and hearing restoration 

 Evaluation of cochlear space across animal models commonly used in auditory neuroscience 

 Assessment of first multi-channel optical cochlear implant stimulation in the rat cochlea 
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2.1 Abstract 

Optogenetic tools, providing non-invasive control over selected cells, have the potential to 

revolutionize sensory prostheses for humans. Optogenetic stimulation of spiral ganglion neurons 

(SGNs) in the ear provides a future alternative to electrical stimulation used in cochlear implants. 

However, most channelrhodopsins do not support the high temporal fidelity pertinent to auditory 

coding because they require milliseconds to close after light-off. Here, we biophysically characterized 

the fast channelrhodopsin Chronos and revealed a deactivation time constant of less than a millisecond 

at body temperature. In order to enhance neural expression, we improved its trafficking to the plasma 

membrane (Chronos-ES/TS). Following efficient transduction of SGNs using early postnatal injection of 

the adeno-associated virus AAV-PHP.B into the mouse cochlea, fiber-based optical stimulation elicited 

optical auditory brainstem responses (oABR) with minimal latencies of 1 ms, thresholds of 5 µJ and 

100 µs per pulse, and sizable amplitudes even at 1000 Hz of stimulation. Recordings from single SGNs 

demonstrated good temporal precision of light-evoked spiking. In conclusion, efficient virus-mediated 

expression of targeting-optimized Chronos-ES/TS achieves ultrafast optogenetic control of neurons. 

2.2 Introduction 

Since the discovery of channelrhodopsins (ChRs, (Nagel et al, 2002, 2003) and the application of these 

light-gated ion channels for controlling excitable cells (Boyden et al, 2005), the concept of optogenetics 

has revolutionized the life sciences (Adamantidis et al, 2015; Kim et al, 2017). Application of 

optogenetics to restore sensory function in the immune-privileged eye and the ear are thought to have 

a fair chance of clinical translation (Jeschke & Moser, 2015; Sahel & Roska, 2013). Indeed, AAV-

mediated optogenetics for vision restoration has recently entered a first clinical trial in a dose-finding 

effort (RST-001 Phase I/II Trial for Advanced Retinitis Pigmentosa - Full Text View - ClinicalTrials.gov). 

While neural coding of visual information can likely be achieved with ChRs that deactivate within 

several milliseconds (Busskamp et al, 2012), faster ChRs are required for sound coding in spiral ganglion 

neurons of the ear (SGNs) that spike at hundreds of Hz with sub-millisecond precision (Jeschke & 

Moser, 2015).  

If such ultrafast optogenetic control of neural activity was available, it would serve auditory research 

and could fuel the development of future optical cochlear implants (oCIs). Clinically, this is highly 

relevant as approximately 360 million people – 5 % of the world’s population – suffer from a disabling 

hearing impairment (WHO, 2006) and we are still lacking causal therapies for the most common form; 

sensorineural hearing impairment. Consequences are impaired communication, often social isolation, 

depression, and reduction in professional capabilities. As of today, partial restoration of auditory 

function by hearing aids and electrical CIs (eCI) represent the options of choice for rehabilitation in 
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sensorineural hearing impairment, which results from cochlear dysfunction or degeneration. The eCI 

bypasses dysfunctional or lost cochlear hair cells via direct electric stimulation of SGNs and, with most 

of the approximately 500.000 users achieving open speech comprehension, is considered the most 

successful neuroprosthesis (Zeng, 2017; Lenarz, 2018). Nonetheless, there is an urgent need for further 

improvement of the CI. The biggest bottleneck of the eCI is the poor spectral resolution of coding that 

arises from the wide spread of current around each electrode contact (Kral et al, 1998). Using light for 

stimulation in oCI is one of the present developments to improve spectral coding by CIs, as light can 

be better spatially confined than electric current (e.g. Richter et al, 2011; Hernandez et al, 2014). One 

of the implementations used optogenetic stimulation of SGNs for a first proof-of-principle study on 

activation of the auditory pathway up to the midbrain (inferior colliculus, IC), demonstrating a lower 

spread of cochlear excitation for fiber-based oCI than for monopolar eCI (Hernandez et al, 2014). 

However, the temporal fidelity of ChR2-mediated optogenetic control of SGN firing seemed limited; 

auditory brainstem responses broke down even below 100 Hz of stimulation. Higher temporal fidelity 

of optogenetic SGN stimulation might be achieved when using faster ChRs such as Chronos (Klapoetke 

et al, 2014) or the newly engineered Chronos mutant ChroME (Mardinly et al, 2018).  

Therefore, characterizing and optimizing fast ChRs is of great importance for fast spiking neurons in 

the auditory system, but also in the somatosensory system, cerebellum, and a wide range of inhibitory 

circuits. Here, we targeted Chronos, the fastest ChR reported so far, and first dissected its gating by 

patch-clamp recordings of photocurrents. Towards its application for optogenetic stimulation of 

mouse SGNs we optimized Chronos, the viral vector and virus injection approach for achieving high 

plasma membrane expression. As described for another opsin (Gradinaru et al, 2010) we appended 

sequences for improved exit from the endoplasmic reticulum (ES) (Stockklausner et al, 2001; Ma et al, 

2001) and trafficking to the plasma membrane (TS) (Hofherr, 2005) to Chronos (Chronos-ES/TS) and 

performed postnatal injections of AAV-PHP.B serotype (Deverman et al, 2016), which drove highly 

efficient Chronos-ES/TS expression. We demonstrate by recordings of oABR and single SGN firing that 

Chronos-ES/TS enables ultrafast stimulation of the auditory pathway. 
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2.3 Results 

2.3.1 Chronos undergoes sub-millisecond on/off transitions at 36°C 

The kinetic properties of ChRs are best studied in cells with little background conductance to 

characterize the light-induced conductance in isolation. To this end, we used Human Embryonic Kidney 

cells 293T (HEK-293T cells) expressing Chronos or ChR2 (Methods). We clamped the membrane voltage 

to -60 mV where any light-induced change in the conductance is then linearly reflected in a change of 

the pipette current. First, we compared gating kinetics of ChR2 and Chronos at a low light intensity of 

0.27 mW mm-², far below the half maximal activation. At 22°C, we found activation and de-activation 

time constants (mean ± SEM) of act = 4.9 ± 0.3 ms, deact = 9.4 ± 1.0 ms (n = 6) for ChR2 and 

act = 1.5 ± 0.1 ms, deact = 3.0 ± 0.2 ms (n = 21) for Chronos (Figure 1A). When increasing the 

temperature to 36°C, activation and deactivation accelerated, with act = 0.58 ± 0.02 ms and 

deact = 0.76 ± 0.05 ms (n = 6), Chronos reached the sub-millisecond range, while ChR2 gating kinetics, 

act = 2.3± 0.1 ms, deact = 3.0 ± 0.3 ms (n = 6 and 5 respectively), at 36°C were comparable to the values 

achieved by Chronos at 22°C. Hence, already at such a low light intensity, Chronos, but not ChR2, 

activation and deactivation should permit signal transmission with a bandwidth of several hundred 

Hertz. Probing the frequency bandwidth directly by applying light chirps, Chronos confers a much 

higher bandwidth compared to ChR2 (Figure 1B). The gain of chirp responses could be very well 

characterized by a single cut-off frequency of 24 Hz and 86 Hz for ChR2 and Chronos, respectively, at 

22°C and 63 Hz and 150 Hz at 36°C (Figure 1C). 
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Figure 1. Chronos mediates fast light-driven currents 

(A) One second long light pulses (LED centered 480 nm, 0.27 mW mm-²) elicit current responses in HEK-
293T cells expressing ChR2 and Chronos, tested at 22°C and 36°C. Right panels show activation and 
deactivation at higher time resolution.  
(B) A quasi-periodic chirp stimulus is use to directly probe the bandwidth of Chronos- and ChR2-
mediated photocurrents in HEK-293T cells. Top: stimulus, middle: full response, bottom: sections from 
the beginning, middle and end of the response. Note the substantially larger frequency range over 
which Chronos currents follow the light stimulus. At 36°C this range is extended even further. 
(C) Analysis of the chirp responses of HEK-293T cells as in Figure 1B. The current amplitude modulation 
is plotted against the stimulus frequency. The smooth lines represent fits to the magnitude of the 
transfer function of a single pole filter 𝑎𝑏𝑠((1 + 𝑖𝑓/𝑓𝑐𝑢𝑡)−1 ). 

2.3.2 Improving the plasma membrane expression of Chronos 

The above biophysical characterization had indicated Chronos as a strong candidate for optogenetic 

stimulation of SGNs with the required high temporal fidelity, provided sufficient plasma membrane 

expression can be achieved. Recent studies have shown that adding ER export and trafficking signals, 

isolated from a vertebrate inward rectifier potassium channel, to the cytoplasmic C-terminus of opsins 

promote their plasma membrane expression (Gradinaru et al, 2010). Hence, we added these 

sequences, here nick-named ES (Export Signal) and TS (Trafficking Signal), sandwiching EYFP, to 

Chronos (Chronos-ES/TS, Figure 2A). We first compared expression of Chronos-ES/TS and Chronos in 
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HEK-293T cells transfected with the respective pAAV plasmid by immunocytochemistry. Using confocal 

and stimulated emission depletion (STED) microscopy we found a preferentially peripheral, likely 

plasmalemmal, localization of Chronos-ES/TS with some intracellular signal most likely arising from the 

Golgi, while the original Chronos construct was more diffusely distributed throughout the extra-

nuclear intracellular space (Figure 2B-D). We quantified the cellular distribution of the opsin by line 

profile analysis (Figure 2C) and found a significantly greater peripheral than central 

immunofluorescence for Chronos-ES/TS when compared to the original Chronos construct (Figure 2C, 

D). The larger variance of the ratio of membrane and intracellular fluorescence for Chronos-ES/TS 

(Figure 2D) is likely explained by dividing by the relatively low, yet varying intracellular abundance of 

the opsin. In summary, the data suggests improved trafficking to the plasma membrane of Chronos-

ES/TS. 

 

Figure 2. Optimizing membrane expression of Chronos by adding ER-exit and trafficking signals: HEK-
293T cells 

(A) pAAV vector used in the study Chronos with a trafficking signal (TS), EYFP and ER export signal (ES) 
Chronos-ES/TS (upper) or containing the original Chronos-EGFP (Klapoetke et al, 2014), lower). In each, 
expression was driven by the human synapsin promoter (hSyn) and enhanced by the Woodchuck 
hepatitis virus posttranslational regulatory element (WPRE) and bovine Growth Hormone (bGH) 
polyadenylation signal (bGH poly A) sequences. ITR: inverted terminal repeats  
(B) Confocal and STED section of representative HEK-293T cells transfected with ChronosES/TS (upper) 
and Chronos (lower) and immunolabeled for FP: membranous labeling is more obvious for Chronos-
ES/TS. Scale bars: 10, 5 and 2 µm for left, middle and right panels. 
(C) Peak-normalized line profiles (7.5 µm) centered on the estimated membrane of HEK-293T cells 
expressing Chronos-ES/TS (blue) or Chronos (green) as in (B): mean ± SEM. Chronos-ES/TS-expressing 
cells showed a clear peripheral, likely membrane peak, which is missing in Chronos-expressing cells. 
Right panels show exemplary line profile placements (yellow). One line per cell was placed 
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perpendicular and centered to cell edge, aiming at sufficient intracellular coverage and avoiding 
fluorescent aggregates (arrowheads). N corresponds to analyzed cells (1 sample/cell). 
(D) Box and whisker plot ratio of maximal membrane and maximal cytoplasmic fluorescence of 
immunolabeled HEK-293T cells expressing Chronos-ES/TS or Chronos: Mann-Whitney U test showed 
significantly higher ratio in Chronos-ES/TS cells demonstrating an improved membrane expression of 
Chronos-ES/TS (p-value = 4.4e-4). The horizontal line within the box indicates the median, boundaries 
of the box indicate the 0.25- and 0.75-percentile, and the whiskers indicate the highest and lowest 
values of the results. Squares: individual data points. For details on membranous and cytoplasmic area 
see method section. 

Similar findings were also obtained in hippocampal neurons in culture transduced by AAV2/6 or AAV-

PHP.B (Figure 3). This indicates that neurons, too, struggle to traffic Chronos to the plasma membrane 

and that this can be alleviated when adding the ES- and TS-signals, at least when tested in culture. 

 

Figure 3. Improved membrane expression of optimized Chronos-ES/TS in hippocampal neurons 

(A) Hippocampal neurons infected at DIV 10 with two different versions of Chronos show very distinct 
expression patterns. Neurons infected with Chronos-ES/TS (upper panels) either using AAV2/6 (left) or 
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PHP.B virus (middle) show very specific plasma membrane expression in somatic regions and proximal 
dendrites. Infection of neurons with Chronos (lower panels) either using AAV2/6 (left) or AAV-PHP.B 
(middle) showed more intracellular opsin abundance. Right panels show exemplary line profile 
placement (yellow). Scale bar: 50 µm applies to all panels. 
(B) Peak-normalized line profiles (1.5 µm) centered on the outer cell edge of AAV-PHP.B transduced 
hippocampal proximal dendrites expressing Chronos-ES/TS (blue) or Chronos (green) as in (A): mean ± 
SEM. Chronos-ES/TS-expressing cells showed a clear peripheral, likely plasmalemmal peak, which is 
missing in Chronos-expressing cells. 
(C) Box and whisker plot of the ratio of maximal membrane and maximal intracellular fluorescence of 
immunolabeled hippocampal neurons expressing Chronos-ES/TS or Chronos: Mann-Whitney U test 
showed significantly higher ratio in Chronos-ES/TS cells demonstrating an improved membrane 
expression of Chronos-ES/TS (p-value = 4.2e-8). The horizontal line within the box indicates the 
median, boundaries of the box indicate the 0.25- and 0.75-percentile, and the whiskers indicate the 
highest and lowest values of the results. Squares: individual data points. For details on membranous 
and cytoplasmic area see method section. 

2.3.3 AAV-mediated expression of Chronos and Chronos-ES/TS in mouse SGNs 

Next, we turned to expression of Chronos in mouse SGNs in vivo and, once more, compared the original 

Chronos and Chronos-ES/TS. We aimed to establish efficient AAV-mediated transduction of SGNs and 

employed the human synapsin promoter (hSyn, Figure 2A) that had turned out to drive efficient and 

specific SGN expression (Hernandez et al., 2014). We first followed our previous protocol using 

transuterine injections of AAV2/6 into the otocyst of mouse embryos at embryonic day 11.5 (Figure 

4A, upper). In most of the cases the expression of Chronos-EGFP was absent or sparse (Figure 4B, left 

and middle). Exceptionally we saw high expression levels (Figure 4B right). As before (Hernandez et al., 

2014), the expression, if any, was largely limited to the SGNs of the basal cochlear turn and was never 

seen in inner hair cells (Figure 4B right, inset). 

Next, we moved on to early postnatal injections (Figure 4A, middle and lower, postnatal day 5-7) into 

the cochlea via the round window, which had proven highly successful for transduction of hair cells 

(e.g. Akil et al., 2012; Jung et al., 2015). We employed AAV-PHP.B, a novel AAV-serotype (Deverman et 

al, 2016) with improved efficiency of neural transduction, for expression of Chronos-ES/TS and Chronos 

(hSyn promoter, comparable titers, 1012 GC ml-1) in SGNs. 12 out 12 AAV-PHP.B-injected mice showed 

substantial SGN transduction in immunohistochemistry for Chronos-ES/TS and 9 out 9 for Chronos. 

Postnatal injection of AAV-PHP.B drove strong expression of Chronos-ES/TS across all cochlear turns 

(Figure 4C). Similar to HEK-293T cells and hippocampal neurons in vitro, Chronos-ES/TS localized 

preferentially peripheral, likely plasmalemmal in SGNs in vivo, while the original Chronos construct was 

more diffusely distributed throughout the cell (Figure 4D). Once again, we quantified the cellular 

distribution of the opsin by line profile analysis (Figure 4E) and found a significantly greater peripheral 

than central immunofluorescence for Chronos-ES/TS when compared to the original Chronos construct 

(Figure 4E, p = 4.1e-5). The difference can be appreciated by the 0.56 µm more intracellular 50 % FP-

immunofluorescence for Chronos. We note that the cytosolic parvalbumin immunofluorescence 
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allowed a better estimation of the cell border which was independent of the opsin expression, both 

advantageous when compared to HEK-293T cell analysis (Figure 2). Despite some differences in 

absolute numbers between both analyses, which are not unexpected given the different cell types, 

means of transfection and analysis method, both support the main observation: improved relative 

plasma membrane abundance of Chronos-ES/TS. 

 

Figure 4. Establishing efficient expression of Chronos in SGNs: use of Chronos-ES/TS, potent AAV-
PHP.B, and postnatal mode of AAV-injection 

(A) Upper panel: schematic representation of the viral injection into the embryonic otocyst (left: black 
cylinder marks the light guide used to trans-illuminate the embryo in the uterus after mobilization from 
the abdominal cavity, green: micropipette filled with fast green-colored AAV suspension). Middle 
panel: schematic representation of AAV-injection into the postnatal cochlea via the round window 
(RW). Lower panel: surgical situs of a p7 mouse with retroauricular incision, graphical aid encircles the 
injection site). Inset shows ex-vivo cochlea just after AAV injection via RW. Scale bar: 2 mm. 
(B) Maximum projection of confocal images of immunolabeled mid-modiolar cochlear cryosections 
(exemplary sections of basal turn) of embryonically AAV2/6-Chronos-injected mice collected at 4-
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weeks of age. EYFP (green) marks transduced SGNs, calretinin (magenta) was used as generic marker 
of SGNs, scale bar: 50 µm. In the inset, color code for EYFP channel was changed to fire (EYFP). Left 
panel: most common, non-expressing example, inset shows zoom of negative SGNs. Middle panel: 
occasional, sparsely expressing example, inset: one out of two positive SGNs. Right panel: rare, highly 
expressing example, inset: negative inner hair cell (calretinin in gray), exclusive localization of EYFP in 
the SGN boutons and fibers. 
(C) Postnatally AAV-PHP.B-Chronos-ES/TS-injected mouse (see (B) except where stated differently). 
EYFP (green) marks transduced SGNs, parvalbumin (magenta) was used as generic marker of SGNs, 
scale bar: 50 µm. High transduction rate, good membrane expression. In inset, color code for the green 
channel was changed to fire for better visualization. Similar to (B). 
(D) Postnatally AAV-PHP.B-Chronos-injected mouse (see (C) except where stated differently). 
Substantial SGN transduction, poor membrane expression. 
(E) Line profile analysis of FP-immunofluorescence across the membrane of SGN somata. Traces were 
centered at the transition from high to low parvalbumin immunofluorescence as a proxy of plasma 
membrane location. Left panel: clear membrane abundance in Chronos-ES/TS (blue, mean ± SEM), but 
mostly intracellular localization in Chronos (green, mean ± SEM). Right panel: Box and whisker plot of 
the ratio of maximal membrane and maximal intracellular FP fluorescence for Chronos-ES/TS (left) and 
Chronos (right): stronger relative membrane expression in Chronos-ES/TS (Mann–Whitney U test, p-
value = 4.1e-5). Squares: individual data points. For details on membranous and cytoplasmic area see 
method section. 
(F) Box and whisker plot of the fraction of FP-positive SGNs (transduced out of all parvalbumin-positive 
SGNs) for the apical, middle and basal cochlear turn of the injected ear (colored) and contralateral, 
non-injected (grey) ear of Chronos-ES/TS-AAV-PHP.B and Chronos-AAV-PHP.B mice. Points: individual 
animals plotted on top; n refers to number of cochleae studied. The horizontal line within the box 
indicates the median, boundaries of the box indicate the 0.25- and 0.75-percentile, and the whiskers 
indicate the highest and lowest values of the results. 
(G) Box and whisker of the SGN density for the apical, middle and basal cochlear turn of the injected 
(colored) ear and the contralateral, non-injected (grey) ear (as in (F)). No significant differences 
between Chronos and Chronos-ES/TS nor between injected and non-injected ear. Points: individual 
animals plotted on top; n refers to number of cochleae studied. 

When analyzing the transduction rates in the injected (left) and non-injected (right) cochleae, we 

confirmed robust SGN transduction across all turns of the injected cochlea for both Chronos-ES/TS and 

Chronos (Figure 4F). We note that the counterstain for parvalbumin- used for AAV-PHP.B injected 

ears, is a more general marker of SGNs than calretinin, used for AAV2/6 injected ears, which is present 

only in a subset of SGNs. Therefore, if anything, we would have been prone to overestimate the 

transduction rate for AAV2/6 injected ears, which, however, was very low. Interestingly, for both cases 

of AAV-PHP.B injection we also found substantial expression in the contralateral, non-injected 

cochleae, indicating spread of virus in the specific conditions of pressure injection into the scala 

tympani of the early postnatal cochlea. This spread likely occurred via the cochlear aqueduct and/or 

the endolymphatic ducts and the cerebrospinal fluid space (Lalwani et al, 1996). The density of SGNs 

in the injected as well as in non-injected ears were comparable (Figure 4G). The injected mice behaved 

normal as concluded from routine animal observation.  
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2.3.4 Chronos-mediated optogenetic neural stimulation of the auditory pathway: transuterine 

injections of AAV2/6 

We performed acute recordings of oABRs using fiber-coupled laser stimulation 4-12 weeks after AAV-

injection. Following posterior tympanotomy, we inserted a 50 µm optical fiber through the round 

window (RW) to project the light of a blue laser (λ = 473 nm) onto the SGNs. When oABRs were present 

(Figure EV1), we typically found three to five oABR peaks, which likely reflected the synchronous 

activation of Chronos-expressing SGNs (first peak) and downstream auditory pathway (subsequent 

peaks). Transuterine injections of AAV2/6-Chronos did not generally support oABRs; only 3 out of 120 

injected mice (including 2 different AAV2/6 produces) showed oABRs. In these positive mice, oABR 

grew in amplitude and showed shorter latencies when increasing radiant flux (see inset of Figure EV1). 

 

Figure EV1. Demonstrating functional expression of Chronos in SGNs following transuterine AAV2/6 
injection reported by recordings of oABRs 

In 3 out of 120 animals we could record oABRs using fiber-coupled laser stimulation 4-12 weeks after 
embryonic transuterine injection of AAV2/6 carrying Chronos using 4 ms pulses at 10 Hz with 30 mW 
radiant flux. Responses were verified as oABRs by the increasing amplitude with stronger light pulses 
(inset: shows oABRs of an exemplary oABR-positive mouse for varying radiant flux, colors code the 
radiant flux in mW). A small onset and offset artifact (arrowheads) is visible for the average (black) of 
the negative animals (gray, n = 117) which we occasionally observed in the early phase of the project. 

2.3.5 Chronos-ES/TS enables ultrafast optogenetic stimulation of the auditory pathway: oABRs 

Postnatal injection of AAV-PHP.B reliably achieved high transduction rates (Figure 4), which enabled 

oABRs in 19 out of 20 AAV-PHP.B-Chronos-ES/TS-injected mice and 8 out of 17 AAV-PHP.B-Chronos-

injected mice. Next, we performed a detailed characterization of Chronos-ES/TS-mediated optogenetic 

activation using oABRs and compared the results to those obtained with Chronos. oABR amplitude 

grew with increasing stimulus intensity (Figure 5A, B, 1 ms light pulses delivered at 10 Hz – averaged 
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across 1000 repetitions), while oABR latency (i.e. the time interval between the stimulus onset and the 

oABR P1 wave) got shorter for Chronos-ES/TS (sign test between the threshold and highest radiant flux 

tested, p-value = 0.009) and was constant for Chronos (Figure 5A, C; p-value = 0.11). oABR thresholds 

and amplitudes differed between animals (shown for the first peak, P1-N1, Figure 5B). Stimuli as weak 

as 1.08 mW (duration: 1 ms, rate: 10 Hz – averaged across 1000 repetitions) were sufficient to drive 

oABRs in one Chronos ES/TS injected mouse and 4.56 mW in a Chronos injected mouse. For 1 ms light 

pulses delivered at 10 Hz, the average oABR threshold amounted to 6.58 ± 1.08 mW and 

13.95 ± 3.52 mW for Chronos-ES/TS and Chronos, respectively (p-value = 0.0367, Mann–Whitney U 

test; n = 13 and n = 8). In most animals oABR amplitudes grew with radiant flux increasing over more 

than one order of magnitude (Figure 5B). The minimal latency of the first oABR peak (P1, Figure 5C) 

amounted to 0.95 ± 0.07 ms (n = 13) for Chronos-ES/TS and 1.26 ± 0.07 ms for Chronos (n = 8, p-

value = 0.014, Mann-Whitney U test). 
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Figure 5. Characterizing optogenetic stimulation by recordings of oABRs 

(A) oABRs driven with varying radiant flux (1 ms at 10 Hz, colors code the radiant flux in mW) for 
exemplary mice injected with AAV-PHP.B-Chronos (left) or AAV-PHP.B-Chronos-ES/TS (right).  
(B) Normalized P1 – N1 amplitude of oABR as a function of light intensity for Chronos as in A (green, 
throughout figure) and Chronos-ES/TS (blue). Radiant flux was binned per 5 mW steps (horizontal 
error: ± SEM). Inset: maximal absolute P1 – N1 amplitude of oABR (mean ± SEM) was greater for 
Chronos-ES/TS than for Chronos (Mann–Whitney U test, p-value ≤ 0.001). 
(C) Latency of oABR P1 as a function of radiant flux as in (B). Radiant flux was binned per 5 mW steps 
(horizontal error: ± SEM). 
(D) oABRs driven with varying stimulus duration (10 Hz, 38 mW, colors code the duration) for 
exemplary mice injected with AAV-PHP.B-Chronos (left) or AAV-PHP.B-Chronos-ES/TS (right). 
(E) P1-N1 amplitude as a function of stimulus duration as in (D) (normalized against the largest P1-N1 
oABR amplitude). 
(F) Latency of oABR P1 as a function of stimulus duration as in (E). 
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(G) oABRs driven with varying stimulus rate (1 ms and 0.5 ms for 10-500 Hz and 500-1000 Hz, 
respectively, 38 mW, colors code the stimulus rate) for exemplary mice injected with AAV-PHP.B-
Chronos (left) or AAV-PHP.B-Chronos-ES/TS (right). 
(H) P1-N1 amplitude as a function of stimulus rate as in (G) (normalized against P1-N1 oABR amplitude 
at 20 Hz). 
(I) Latency of oABR P1 as a function of stimulus rate as in (H): Chronos-ES/TS enables responses up to 
at least 1000 Hz. Dashed line indicates latencies data points obtained with a pulse duration of 0.5 ms. 
The P1-N1 amplitude and P1 latency were measured on the same animals. Animal count (n) is stated 
on bottom right of panel B, E and H. Data are expressed as mean ± SEM. 

oABRs could be elicited by light pulses as short as 20 µs with Chronos-ES/TS and 400 µs with Chronos 

(irradiance: 38 mW, rate: 10 Hz – averaged across 1000 repetitions, Figure 5D, E). oABR amplitudes 

grew with pulse duration up to approximately 0.6 ms and tended to become smaller for longer pulses, 

possibly due to accumulating channel inactivation and/or increasing depolarization-block of SGNs 

upon prolonged photo-depolarization (Figure 5D, E).  

Next, we tested the dependence of oABRs on the stimulus rate (duration: 1 ms up 500 Hz and 0.5 ms 

from 500 Hz, intensity: maximum (38-43 mW)). When increasing stimulus rate, oABR amplitudes 

declined (Figure 5G) and latencies prolonged (Figure 5G, I). However, in contrast to our previous 

reports on : i) ChR2: where potentials were found only up to 60 Hz (Hernandez et al, 2014); ii) CatCh: 

up to 200 Hz, and f-Chrimson: up to 250 Hz (respectively (Wrobel et al, 2018; Mager et al, 2018)); we 

could detect sizable P1-N1 up to stimulus rates of 500 Hz for Chronos (Figure 5G left, H) and 1000 Hz 

for Chronos-ES/TS (the highest stimulus rate tested in our experiments, Figure 5G-H). P1-latency 

increased with higher stimulus rates in both cases.  

2.3.6 Chronos-ES/TS enables ultrafast optogenetic stimulation of the auditory pathway: recordings 

from single putative SGNs 

To further validate the Chronos-ES/TS-mediated SGN stimulation and evaluate the temporal fidelity of 

stimulation, we performed juxtacellular recordings from auditory nerve fibers (central axon of SGN) as 

described in (Hernandez et al, 2014; Mager et al, 2018). In brief, we targeted glass micropipettes to 

where the auditory nerve enters the anteroventral cochlear nucleus (AVCN) and searched for 

responses while stimulating the SGNs through the round window via an optical fiber coupled to a blue 

laser. We favored recordings of SGNs by deep positioning (>1000 µm relative to the surface of the 

cochlear nucleus) of the pipette tip, but, given that responses to acoustic stimuli were lost upon the 

ear surgery, we could not safely discriminate SGNs from AVCN neurons, hence, we termed the light-

responsive neurons “putative SGN”. We found that the putative SGNs fired upon optogenetic 

stimulation with high temporal precision for stimulus rates of up to hundreds of Hz (Figure 6A, B); some 

neurons followed stimulation to some extent even up to 1000 Hz (Figure 6B). Temporal precision of 

firing, evaluated based on vector strength (Goldberg & Brown, 1969), see methods, Figure 6C) and 
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spike jitter (i.e., standard deviation of spike latency across trials, Figure 6D), was generally high, but 

varied across the recorded neurons. 

 

Figure 6. Characterizing optogenetic stimulation by extracellular recordings from single putative 
SGNs 

(A) Raster plots showing spiking activity from a representative putative SGN (“unit”) in response to 400 
ms-long trains of laser pulses (at 30 mW, 1 ms for 20-600 Hz, 500 µs for ≥700 Hz) recorded at five 
different stimulation rates over 20 repetitions. Polar plots to the right side of raster plots show 
synchronicity of firing relative to the cycle between two pulse onsets.  
(B) Same protocol and analysis of the “fastest unit” recorded, showing lower adaptation and firing even 
at very high stimulation rates. 
(C-F) Quantification of the vector strength (C), spike jitter (D), spike probability (E) and discharge rate 
(F) as a function of repetition rate of 40 putative SGNs (obtained from 6 mice). In panel D the red-
shaded area represents the hazard function obtained in response to simulated Poisson spike trains.  
Black data points and lines show mean ± SEM, individual units are shown in gray. The units shown on 
panels A-B are shown in green and blue, respectively. Number of units tested for each repetition rate: 
20 Hz: 40, 50 Hz: 25, 100 Hz: 24, 200 Hz: 26, 300 Hz: 21, 400 Hz: 20, 500 Hz: 21, 600 Hz: 18, 700 Hz: 18, 
800 Hz: 19, 900 Hz: 21, 1000 Hz: 19. 

Temporal precision and spike probability (Figure 6E) diminished with increasing stimulation rates, 

indicating that single SGNs code optogenetic information in a less reliable manner at very high 

stimulation rates. Spike jitter, calculated for spikes occurring in a time window comprised between 

two pulse onsets, increased with rate but was typically below a millisecond for stimulus rates lower 

than 300 Hz (Figure 6D). At higher stimulus rates, spike jitter increased beyond the values obtained for 

simulated Poisson spike trains (see methods, red-shaded area, Figure 6D), indicating spike 

synchronization with the light pulses became less reliable. The lower spike precision and limited spike 

probability at stimulus rates beyond 100 Hz observed are likely compensated by the population 
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response, as several SGNs jointly encode information from each place of the tonotopic map (Liberman, 

1978). 

Light-evoked firing rate patterns differed among the putative SGNs as stimulation rates increased 

(Figure 6F). There was, in general, a linear rise of discharge rates up to 100 Hz, followed by a constant 

decrease as a response to mid and high stimulation rates. Nevertheless, some putative SGNs were able 

to maintain moderate (and to some extent synchronized) spike rates even at pulse rates of 1000 Hz 

(fibers showing computable spike probability —see Methods— at 500 Hz: 7/21, 33.3%; at 600 Hz: 3/18, 

16.7%; at 700 Hz: 3/18, 16.7%; at 800 Hz: 1/19, 5.26%; at 900 Hz: 2/21, 9.52%; and at 1000 Hz 2/19, 

10.53%). Interestingly, the response patterns of the putative SGNs that we recorded varied across units 

at increasing stimulation rates (Figure EV2). We found two main types of responses; putative SGNs 

that rapidly adapted their spiking as stimulation rates rose (Figure EV2A), and neurons that continued 

spiking even at very high pulse rates (albeit with a lower frequency as compared to lower stimulation 

rates, Figure EV2B). 
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Figure EV2. Activity of two exemplary putative SGNs upon light stimulation at increasing repetition 
rates 

(A) Raster plot showing spike timing (blue symbols) of a rapidly adapting putative SGN in response to 
400 ms pulse trains at stimulation rates 50-1000 Hz (30 mW, 1 ms for 50-600 Hz; 30 mW, 0.5 ms for 
700-1000 Hz). 
(B) Raster plot showing activity of a slowly adapting putative SGN in response to the stimulation 
paradigm described in (A). 
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2.4 Discussion 

Here, we characterized and optimized Chronos for its utility in fast optogenetic control of excitable 

cells. We demonstrate sub-millisecond off-kinetics at physiological temperature of Chronos. Using the 

auditory system as a fast spiking neural model circuitry, we show that Chronos supports ultrafast 

control of neuronal spiking. In doing so, we solved a major shortcoming that plagued optogenetics as 

a stimulus modality for the cochlea; the low temporal fidelity of light-driven SGN-firing, caused by the 

slow deactivation kinetics of the ChR2 employed so far. We found that adding sequences promoting 

ER-exit and plasma membrane trafficking to Chronos (Chronos-ES/TS) and using postnatal injection of 

the powerful AAV-PHP.B vector critically improved the in vivo utility. In conclusion, Chronos-ES/TS in 

combination with potent viral vectors such as AAV-PHP.B is a promising tool for auditory neuroscience 

and a candidate ChR for use in future optical CIs. 

2.4.1 Biophysical characterization of Chronos and improving plasma membrane expression 

Here, we compared activation and deactivation for ChR2 and Chronos and also studied the 

temperature dependence of gating for Chronos. In our hands Chronos deactivates about 3 times faster 

than ChR2 and has sub-milliseconds off-kinetics at physiological temperature with a Q10 of 2.7. This 

reflects short-lived open states for Chronos resulting in lower open probability, which together with 

the relatively poor membrane expression likely explains the challenges we faced with using the original 

Chronos construct for driving SGN spiking, when using the transuterine injection in the AAV2/6-hSyn 

vector that we previously used successfully for the ChR2 mutant CatCh (Hernandez et al, 2014). No 

problems were reported in two other studies of Chronos in the auditory system using different viruses 

and stages of the pathway; cochlear nucleus (Hight et al, 2015) and inferior colliculus (Guo et al, 2015). 

A recent study using the in silico predicted ancient AAV Anc80 also achieve functional expression in 

the cochlea, but did not differentiate between expression in SGNs and hair cells (Duarte et al, 2018). 

Inspecting the Chronos-GFP expression in the cochlear nucleus (Figure 2 of (Hight et al, 2015)) and 

SGNs (Duarte et al, 2018) suggest a similar diffuse intracellular distribution as we observed in HEK-

293T cells (Figure 2) and hippocampal neurons (Figure 3) in culture as well as in SGNs in our study 

(Figure 4). Using these 3 cell types and vastly different conditions, we show a robust improvement of 

the plasma membrane expression of Chronos upon adding ER-export (Stockklausner et al, 2001; Ma et 

al, 2001) and trafficking signals (Hofherr et al, 2005) of inward rectifying K+ channels. Introduction of 

the powerful AAV-variant AAV-PHP.B (Deverman et al, 2016) was an additional factor changing the 

game: even the unmodified Chronos (Klapoetke et al, 2014) enabled oABRs on a regular basis. 

However, when comparing the functionality of Chronos-ES/TS with enhanced membrane trafficking to 

Chronos, transduced by the same AAV-PHP.B vector, titer, injection method and incubation time, we 

found increased oABR amplitudes and improved temporal fidelity of the Chronos-ES/TS-mediated 
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responses, when increasing the rate of stimulation. Disentangling the contributions of the improved 

membrane expression and the slightly higher fraction of Chronos-positive SGNs with Chronos-ES/TS is 

challenging. Regardless of the precise contributions, these experiments suggest that Chronos-ES/TS 

will be a valuable tool for optogenetic applications requiring good temporal fidelity. Moreover, 

avoiding the largely intracellular localization of Chronos lowers the proteostatic stress to the cell. 
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2.4.2 Ultrafast Chronos-mediated stimulation of the auditory pathway 

Stimulation of the auditory pathway is a prime example for an application of optogenetics requiring 

both high speed and light sensitivity. Upon sound stimulation, SGNs fire at hundreds of Hz and show 

sub-millisecond temporal precision of spiking relative to the stimulus. When considering optogenetics 

for improved cochlear prosthetics, each stimulus should not exceed the energy requirements of 

electrical cochlear implants which are in the range of 0.2 µJ per pulse (Zierhofer et al, 1995). However, 

so far, the threshold for optogenetic activation of SGNs reported for ChR2 and ChR2 variant CatCh 

amounted to approximately 2 µJ, and the responses broke down for stimulation rates exceeding 20 Hz 

(Hernandez et al, 2014).  

Chronos, featuring a sub-millisecond deactivation time constant at physiological temperature (Figure 

1) is an obvious candidate for cochlear optogenetics. So far, we had employed transuterine AAV2/6-

injections into the embryonic otocyst and observed a strong basoapical gradient of expression in the 

cochlea (Hernandez et al, 2014). Using AAV-PHP.B, a novel AAV vector (Deverman et al, 2016) at high 

titers (1-2.5 1012 GC/ml) for injections into the cochlea of p5-p7 mice, we found highly efficient 

transduction of SGNs across all cochlear turns (Figure 5). The light thresholds estimated for oABRs 

mediated by Chronos-ES/TS in SGNs following postnatal AAV-PHP.B injections the average oABR 

threshold amounted to approximately 7 µJ (14 µJ for Chronos), which is substantially higher than the 

energy per pulse employed for suprathreshold stimulation in eCIs. Therefore, further improvements 

of membrane expression of Chronos or the design of fast channels with larger pore remain an 

important objective. At present, we can only speculate how much light will be required for an auditory 

percept mediated by Chronos-based cochlear optogenetics. Future studies using behavioral 

experiments will be required to address this point. Nonetheless, we argue that future optogenetic CIs 

might not need the high stimulation rates employed in eCIs (800 Hz or higher) which might help 

balancing a greater energy requirement per pulse of an oCI. In most animals, oABR increased in 

amplitude when increasing light intensity over more than one order of magnitude (Figure 6). Hence, 

the output dynamic range of optical stimulation assessed as P1-N1 amplitude, on average, was > 20 dB 

compared to typically < 10 dB for coding with eCI (Zeng et al, 2008). This likely reflects the lower spread 

of excitation with optical stimulation as well as differences in the levels of Chronos-ES/TS expression 

among SGNs at the same tonotopic place of stimulation. 

The temporal fidelity of Chronos-ES/TS-mediated optogenetic stimulation was estimated at the single 

SGN and the SGN population levels. The minimal oABR latency was considerably shorter 

(1.01 ± 0.09 ms) than that of the first light-evoked potential, typically a trough, that we had previously 

reported for transgenic ChR2 mice (3.14 ± 0.26 ms (Hernandez et al, 2014)). Moreover, the minimal 

duration of the light pulse required for eliciting an oABR at high light intensity was shorter (<100 µs) 
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than that found before with ChR2 or CatCh (≥ 200 µs; (Hernandez et al, 2014)). Most importantly, 

population responses mediated by Chronos-ES/TS followed pulse rates up to at least 1000 Hz unlike 

for ChR2, where oABRs were lost below 100 Hz. Obviously, the analysis had to be restricted to a very 

short measurement time window in order to track the response to such high rates and hence signal 

propagation along the pathway cannot be demonstrated. This ABR analysis suggests that the Chronos-

ES/TS mediated optogenetic stimulation achieves a temporal fidelity similar to that of acoustic coding. 

Using juxtacellular recordings we could demonstrate firing of single SGNs in response to trains of light 

pulses at hundreds of Hz with sub-millisecond temporal precision. Such temporal fidelity of 

optogenetic control of SGN firing marks a major breakthrough on the way towards using optogenetic 

stimulation for auditory research and for the future development of the clinical optical cochlear 

implant. 
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2.5 Materials and Methods 

2.5.1 Illumination during patch clamp 

Illumination at 488 nm was provided either by a frequency doubled solid state laser (Sapphire, 

Coherent) or by a diode laser (Cobolt MLD). The solid state laser was shuttered by a custom made, 

mechanical shutter based on the voice-coil actuator of a hard drive (Maguire et al, 2004). The diode 

laser provided even faster on/off times and made it possible to rapidly change amplitudes. However, 

its output was not as stable as the solid state laser. Especially after drastic intensity changes, the 

intensity oscillated by up to 10%, which also led to oscillating Chronos currents. The beams of the lasers 

were coupled into the optical path of the microscope and focused on the sample to a spot size smaller 

than the field of view of the camera, to precisely determine the absolute intensity in the plane of the 

cells. The laser power was adjusted by neutral density filters, and the absolute power of the laser was 

measured at the position of the sample with a photo-diode based power-meter (PM100D, Thorlabs, 

Newton, NJ). A photo-diode recorded the temporal shape of the laser intensity during the experiments 

and digitization was performed by the patch-clamp amplifier also used for triggering the laser shutters 

(EPC10, HEKA, Lambrecht, Germany). The average intensity on each cell was calculated by comparing 

the size and exact position of the cell with the intensity profile of the laser spot. When using the 

mechanical shutter, artifacts lasting only two data-points were common during switching due to the 

strong transient currents in the voice-coil. These were removed in post processing. For the initial 

kinetic analysis a rapidly switchable 480 nm LED was placed 25 mm below the cells (5 W Luxeon rebel 

color with Lambertian dome, Philips Lumileds), that provided homogeneous whole-field illumination 

at a maximum of 0.27 mW/mm². 

2.5.2 Cloning 

For the cloning of pAAV_hSyn_Chronos-ES/TS as a starting material we have used pAAV-Ef1a-DIO-

eNpHR 3.0-EYFP (Addgene, plasmid nr. #26966). In order to obtain flanked EYFP with ES/TS sequences 

we perform a classical PCR reaction. The primers that we used for this cloning were 5’-

GAGAACCGGTCAAGAGCAGGATCAC-3’ and 5’-GTGGGGTACCCCTTACACCTCGTTCTC-3’. In the second 

step obtained PCR fragment was digested with AgeI/Acc65I (Thermo Scientific, MA, USA) (Acc65I 

produces compatible cohesive ends as BsrGI) gel extracted (GeneJET Gel Extraction Kit, Thermo 

Scientific, MA, USA) and further used for ligation. At the same time plasmid pAAV_hSyn_Chronos-GFP 

(Addgene, plasmid no. 59170) was also digested using restriction enzymes AgeI/BsrGI and used as a 

backbone plasmid. All obtained ligation products were further tested by the mean of colony PCR and 

finally sequenced by external company. 
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2.5.3 Cell Culture and HEK-293T transfection 

HEK-293T cells (ATCC, USA) were cultured at 37°C and 5 % CO2 in DMEM (Gibco, USA) supplemented 

with 10 % fetal calf serum (Gibco, Germany), and 1 % penicillin/streptomycin (Sigma, Germany). One 

day prior to transient transfections the HEK293T cells were seeded on 24-well plates. Day after cells 

were transiently transfected with pAAV_hSyn_Chronos-ES/TS or pAAV_hSyn_Chronos using PEI 

25.000MW (Polysciences Inc. USA). Two days after transfection cells were briefly washed and then 

fixed with 4 % PFA for 10 min. After fixation cells were mounted with Mowiol (Sigma, Germany) and 

processed to confocal/STED imaging. Cells were regularly tested for mycoplasma contamination. No 

method of cell line authentication was used. 

For characterization of gating kinetics, HEK-293T cells were transfected with 3-5 µg of plasmid DNA 

encoding a ChR2-YFP or a Chronos-GFP fusion protein via nucleofection using a Lonza nucleofector 

device and the Amaxa Cell Line Nucleofection Kit V (Lonza, Switzerland; program Q-01), following the 

manufacturer’s instructions. The pcDNA 3.1-ChR2-YFP construct was kindly provided by Ernst Bamberg 

(MPI for Biophysics, Frankfurt, Germany), and Chronos-GFP was kindly provided by Edward Boyden 

(MIT, Cambridge, MA). After transfection, the cells were plated on poly-L-lysine coated 10 mm glass 

cover slips. Electrophysiological characterization was performed 20 to 30 h after transfection. 

2.5.4 Electrophysiology 

Transfection success was accessed via fluorescence in an inverted Axiovert 135 TV fluorescence 

microscope (ZEISS, Germany), equipped with a 40X/0.65 N.A. Achroplan objective. Only cells isolated 

from others and exhibiting clear membrane fluorescence signal were recorded. Whole-cell patch-

clamp recordings were made in voltage-clamp mode (-60 mV holding potential) in an EPC 10 USB 

amplifier (HEKA Elektronik, Germany). Current signals were low-pass filtered at 3 kHz and digitized at 

20 kHz. Patch-pipettes were prepared from PG10165-4 glass capillaries (World Precision Instruments, 

USA) in a PIP 6 vertical puller (HEKA Elektronik, Germany), and had resistances between 3-5 MOhm 

when filled with the following pipette solution (in mM): 110 NaCl, 10 Na4-EGTA, 4 MgCl2, 10 HEPES, 

and 10 Glucose (pH 7.4 and osmolarity between 285-290 mOsm). The bath solution contained (in mM): 

145 NaCl, 3 KCl, 1 MgCl2, 2 CaCl2, 10 HEPES, and 15 Glucose (osmolarity between 310-315 mOsm and 

pH 7.35). Series resistance (always < 20 MOhm before compensation) was electronically compensated 

60 to 90 %. For recordings at physiological temperature, warm solution was perfused by gravitation in 

the recording chamber via an HPT-2 in-line heater (ALA Scientific Instruments, USA) controlled by a TC-

10 temperature controller (NPI Electronic, Germany). Temperature at the recording chamber was 

monitored via a thermistor placed in the chamber and it was maintained at 36  1 °C. Light-stimulation 

was achieved using a 480 nm diode (5 W Luxeon rebel color with Lambertian dome; Philips Lumileds) 

controlled by a custom-built controller. Stimulation protocols consisted of 1 s-long light steps at 
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different intensities (0.08, 0.14, 0.19, 0.23, 0.27 mW mm-2), with a 11 s-long dark period in between, 

or a 10 s-long light chirp linearly-increasing from 0.1 to 100 (or 500) Hz and maximum amplitude of 

0.27 mW mm-2 (following a 1 s-long pre-pulse at half maximum intensity). The LED output faithfully 

followed the voltage command up to at least 5 kH. Light-elicited currents were analyzed offline in 

Matlab 2011b/2014b (Mathworks, USA), Igor Pro 6/7 (Wavemetrics, USA) and OriginPro 7 (OriginLab, 

USA), this included the correction of baseline drifts during the 10 s-long chirp recordings. For 

recordings at 36°C occasionally spike-like artifacts occurred due to the in-line heater. Those spikes 

were removed for display purposes in Figure 1. 

2.5.5 Dissociation and culture of hippocampal neurons, AAV infection and immunocytochemistry 

E18 pregnant Wistar rats were sacrificed using CO2, embryos were removed and heads of embryos 

were placed in a 10 cm petri dish containing ice-cold dissection media (HBSS (Gibco) + 10 mM Hepes 

(Gibco)). Brains were removed and collected in fresh dissection medium. Hippocampi were separated 

from the brain and meninges were removed. Hippocampi were digested with 2 ml pre-warmed 37°C 

0.05 % trypsin-EDTA (Gibco, Germany) for 20 min at 37°C. Trypsin was removed and the tissue was 

washed three times with 4°C dissection medium. Dissection medium was replaced with 1 ml pre-

warmed NB+ (Neurobasal with 1X B-27 supplement, 1X Glutamax and Penicillin (5,000 U ml-

1)/Streptomycin (5000 µg ml-1); all from Gibco) and tissue was triturated by gentle pipetting. The tissue 

suspension was filtered through a 100 mm cell strainer (BD Biosciences). Cells were counted using the 

trypan blue exclusion method and cultured on 12 mm glass coverslips (Thermo Scientific) coated with 

poly-D-lysine (PDL, Sigma) dissolved in 0.1 M borate buffer, in 24-well plates (CytoOne) at a density of 

80,000 hippocampal neurons per cm2 in NB+ medium in a Hera Cell 240i cell culture incubator (Thermo 

Scientific) at 37°C and 5 % CO2. On DIV 10 neurons were infected with 1 µl AAV2/6 Chronos, AAV2/6 

Chronos-ES/TS or the same constructs packed in PHP.B virus capsid. 72 h after infection neurons were 

briefly washed with pre-warmed PBS and then fixed with 4 % PFA at RT for 10 min. After fixation and 

several steps of washing, neurons were subjected to immunocytochemistry (rabbit anti-Map2 primary 

antibody, 1:1000, Abcam and goat anti-rabbit Alexa 555 secondary antibody, 1:1000, Invitrogen) and 

later on to confocal microscopy (Leica SP5). 

2.5.6 Virus purification 

AAVs were generated in HEK-293T cells (ATCC) using polyethylenimine transfection (25.000 MW, 

Polysciences, USA) (Gray et al, 2011; Deverman et al, 2016). In brief, triple transfection of HEK-293T 

cells was performed using pHelper plasmid (TaKaRa/Clontech), trans-plasmid providing viral capsid 

PHP.B (generous gift from Ben Deverman and Viviana Gradinaru, Caltech, USA) and cis-plasmid 

providing Chronos or Chronos-ES/TS (Figure 1A). The cell line was regularly tested for mycoplasma. We 
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harvested viral particles 72 h after transfection from the medium and 120 h after transfection from 

cells and the medium. Viral particles from the medium were precipitated with 40 % polyethylene glycol 

8000 (Acros Organics, Germany) in 500 mM NaCl for 2 h at 4°C and then after centrifugation at 4,000 

g for 30 min combined with cell pellets for processing. The cell pellets were suspended in 500 mM 

NaCl, 40 mM Tris, 2.5 mM MgCl2, pH 8, and 100 U mL-1 of salt-activated nuclease (Arcticzymes, USA) 

at 37°C for 30 min. Afterwards, the cell lysates were clarified by centrifugation at 2,000 g for 10 min 

and then purified over iodixanol (Optiprep, Axis Shield, Norway) step gradients (15 %, 25 %, 40 % and 

60 %) (Zolotukhin et al, 1999; Grieger et al, 2006) at 58,400 rpm for 2.25 h. Viruses were concentrated 

using Amicon filters (EMD, UFC910024) and formulated in sterile phosphate-buffered saline (PBS) 

supplemented with 0.001 % Pluronic F-68 (Gibco, Germany). Virus titers were measured using AAV 

titration kit (TaKaRa/Clontech) according to manufacturer’s instructions by determining the number 

of DNase I resistant vg using qPCR (StepOne, Applied Biosystems). Purity of produced viruses was 

routinely checked by silver staining (Pierce, Germany) after gel electrophoresis (Novex™ 4-12 % Tris-

Glycine, Thermo Fisher Scientific) according to manufacturer’s instruction. The presence of viral capsid 

proteins was positively confirmed in all virus preparations. Viral stocks were kept at -80 °C until 

experimental day. 

2.5.7 Transuterine AAV injection into the cochlea 

For in vivo transduction, anesthesia was induced with a mixture of ketamine and xylazine 

(0.125/5 mg kg-1) and maintained with isoflurane (1 %–2 %). Viral inoculum (~250 nl, 4e+8 particles μl-

1) was microinjected through the uterus into the mouse otocyst from E11.5 to E12.5 as previously 

described (Brigande et al, 2009; Reisinger et al, 2011). Only the left otocyst of each embryo was 

injected. The non-injected contralateral ear served as an internal control. AAV2/6_hSyn_Chronos-GFP 

and AAV2/6_hSyn_Chronos-ES/TS were purchased from the University of North Carolina Vector Core, 

Chapel Hill, USA. 

2.5.8 Postnatal AAV injection into the cochlea  

Postnatal AAV-injection into scala tympani of the left ear via the round window was performed at p5-

p7 wild-type C57BL/6 mice essentially as described (Akil et al, 2012) using AAV-PHP.B viral capsids and 

hSyn promoter to drive transgenic expression of opsins in SGNs. In brief, under general isoflurane 

anaesthesia and local analgesia achieved by means of xylocaine, the left ear was approached via a 

dorsal incision and the round window membrane was identified and gently punctured using a 

borosilicate capillary pipette that was kept in place to inject approximately 1-1.5 µl of AAV2/6_hSyn-

Chronos (2.33E+12 GC ml-1), AAV2/6_hSyn-Chronos-ES/TS (2.2E+12 GC ml-1), PHP.B_hSyn-Chronos-

GFP (1.07E+12 GC ml-1) or PHP.B_hSyn-Chronos-ES/TS-EYFP (2.31E+12 GC ml-1). After virus application, 
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the tissue above the injection site was repositioned and the wound was sutured and buprenorphine 

(0.1 mg kg-1) was applied as pain reliever. Recovery of the animals was then daily tracked. In all 

experiments, mice were randomly selected for injection. No blinding was possible since injections have 

to be performed in the left ear leaving the right ear as an internal control. Hence, surgery prior to 

stimulation needed to be done in the injected ear. Animals were then kept in a 12 h light/dark cycle, 

with access to food and water ad libitum. All experiments were done in compliance with the national 

animal care guidelines and were approved by the board for animal welfare of the University Medical 

Center Goettingen and the animal welfare office of the state of Lower Saxony (Animal protocol no. 

17_1726). The calculation of animal number was performed prior to starting experiments. We planned 

to use the Wilcoxon Rank Sum Test and an error probability alpha smaller than 0.05, a power (1-beta) 

of 0.95 and effect size depending on the precise experimental protocol. 

2.5.9 Immunostaining and imaging of cochlear cryosections 

Cochleae were fixed with 4 % paraformaldehyde in phosphate buffered saline (1 h). Sections of the 

cochlea were cryosectioned following 0.12 M EDTA decalcification. After incubation of sections for 1 h 

in goat serum dilution buffer (16 % normal goat serum, 450 mM NaCl, 0.6 % Triton X-100, 20 mM 

phosphate buffer, pH 7.4) primary antibodies were applied over night at 4°C. The following antibodies 

were used: chicken anti-GFP (catalog n.: ab13970, Abcam, 1:500), guinea pig anti-parvalbumin (catalog 

no.: 195004, Synaptic Systems, 1:300). Secondary AlexaFluor-labeled antibodies (goat anti-chicken 488 

IgG (H+L), catalog no.: A-11039, Thermo-Fisher Scientific, 1:200; goat-anti guinea pig 568 IgG (H+L), 

catalog no. A1107, Thermo-Fisher Scientific, 1:200) were applied for 1 h at room temperature. 

Confocal images were collected using a SP5 microscope (Leica) and processed in ImageJ. Expression 

was considered positive when FP fluorescence in a given cell (marked by parvalbumin) was found to 

be higher than 3 SD above the background fluorescence of the tissue. 

For FP localization analysis line profiles (length: 7.5 µm, 7.5 µm and 1.5 µm for SGNs, HEK cells and 

hippocampal neurons, respectively, width: 3 pixels) were centered to the outer edge of the estimated 

cell membrane. The line profiles were oriented perpendicular to the cell edge. Sample size was 1, 1 

and 3 per cell for SGNs, HEK cells and hippocampal neurons, respectively. For membrane/intracellular 

expression ratio a maximum peak detection was performed for membranous area (defined as -11 µm, 

-11 µm and -0.50.3 µm for SGNs, HEK cells and hippocampal neurons, respectively) and for intracellular 

area (defined as 1.12 µm, -1.12 µm and 0.40.5 µm for SGNs, HEK cells and hippocampal neurons, 

respectively). 
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2.5.10 STED microscopy  

Images were acquired using an Abberior Instruments Expert Line STED microscope, with excitation 

lasers at 488 nm and STED lasers at 595 nm, 1 W using a 1.4 NA 100x oil immersion objective, either in 

confocal or in 2D-STED mode. 

2.5.11 Optical stimulation in vivo  

The left bulla was reached using a retroauricular approach and opened to expose the cochlea. A 

50/200 µm optical fiber coupled to a 594 nm laser (OBIS LS OPSL, 100 mW, Coherent Inc.) was inserted 

into the cochlea via the round window. Irradiance was calibrated with a laser power meter 

(LaserCheck; Coherent Inc.). 

2.5.12 Auditory brainstem responses  

For stimulus generation and presentation, data acquisition, and off-line analysis, we used a NI System 

and custom-written Matlab software (The MathWorks, Inc.). Optically-evoked ABRs (oABRs) and 

acoustically-evoked ABRs (aABRs) were recorded by needle electrodes underneath the pinna, on the 

vertex, and on the back near the legs. The difference potential between vertex and mastoid subdermal 

needles was amplified using a custom-designed amplifier, sampled at a rate of 50 kHz for 20 ms, 

filtered (300–3000 Hz) and averaged across 1000 and 500 presentations (for oABRs and aABRs, 

respectively). The first ABR wave was detected semi-automatically with a custom-written Matlab script 

in which the wave was detected for each trace in a temporal window defined by the user and for which 

the amplitude was bigger than the average + 2 standard deviations. Thresholds were determined by 

visual inspection as the minimum sound or light intensity that elicited a reproducible response 

waveform in the recorded traces. 

2.5.13 Juxtacellular recordings from single putative SGNs  

For auditory nerve recordings, glass microelectrodes (~50 MΩ) were advanced through the posterior 

end of the anteroventral cochlear nucleus using an Inchworm micro-positioner (EXFO Burleigh, NY, 

USA) and aimed towards the internal auditory canal. Action potentials were amplified using an ELC-

03XS amplifier (NPI Electronic, Tamm, Germany), filtered (300–3000 Hz), digitized (National 

Instruments card PCIe-6323), analysed and prepared for display using custom-written Matlab (The 

MathWorks, Inc.) software. When light-responsive fibers were found, 400 ms-long pulse trains at 

repetition rates 20-1000 Hz were presented, leaving 100 ms inter-train recovery over 20 iterations for 

each tested rate. Different rates were tested following no particular order, being 20 Hz the first 

repetition rate presented across all units. For repetition rates higher or equal to 200 Hz, parameters 

were computed if the spike probability was equal or superior to 5 %. If not, values were set to 0. Phase-
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locking was quantified using the vector strength (Goldberg & Brown, 1969), considering a cycle starting 

at the onset of a light pulse and ending at the onset of the subsequent pulse, and conforming to the 

equation: 𝑣𝑒𝑐𝑡𝑜𝑟 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ = 
√[? cos?i

n
i=1 ]2+[? sin?i

n
i=1 ]2

n
, being Θ1, Θ2, …, Θn cycle phases in which spikes 

occurred. The Rayleigh test was used to evaluate the significance of vector strength: if L > 13.8, the 

null hypothesis is rejected at the 0.001 significance level (Hillery & Narins, 1987) and insignificant VS 

were set to 0. The spike probability was calculated as the ratio between the number of spikes and the 

number of light-pulses. The temporal jitter is the standard deviation of spike latency across trials. The 

hazard function (for the temporal jitter analysis) was calculated for each stimulation rate by simulating 

spiking as a Poisson process at given rates (from 10 to 1000 spikes s-1). 

2.5.14 Data analysis 

The data were analysed using Matlab (Mathworks), Excel (Microsoft), Igor Pro (Wavemetrics), FIJI 

(ImageJ2), Origin (Microcal Software), and GraphPad Prism (GraphPad Software). Averages were 

expressed as mean ± SEM or mean ± SD, as specified. References to data in the main text were 

expressed as mean ± SEM. For statistical comparison between two groups, data sets were tested for 

normal distribution (the D’Agostino & Pearson omnibus normality test or the Shapiro-Wilk test) and 

equality of variances (F-test) followed by two-tailed unpaired Student’s t-test, or the unpaired two-

tailed Mann-Whitney U test when data were not normally distributed and/or variance was unequal 

between samples.  

For evaluation of multiple groups, statistical significance was calculated by using one-way ANOVA test 

followed by Tukey’s test for normally distributed data (equality of variances tested with the Brown-

Forsythe test) or one-way Kruskal-Wallis test followed by Dunn’s test for non-normally distributed 

data. 
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3.1 Abstract 

The cochlea, harboring the hearing end organ of Corti, is an intricate structure hidden in the temporal 

bone. Compared to other sensory organs such as the eye, the cochlea has remained poorly accessible 

for investigation, for example, by imaging. This limitation also concerns the further development of 

technology for restoring hearing in case of cochlear dysfunction, which requires quantitative 

information on spatial dimensions and neural status of the cochlea. Here, we employed phase-contrast 

X-ray tomography and light sheet microscopy for multiscale imaging of cochlear morphology in species 

that serve as established animal models for auditory research. We provide a systematic reference for 

morphological parameters relevant for cochlear implant development for rodent and non-human 

primate models. Based on imaging inserted electrical and optical cochlear implants we derive a 

baseline for functional studies on hearing restoration. We simulate the spread of light from the 

emitters of the optical implants within the reconstructed cochlea, which indicates a spatially narrow 

excitation of opsin-expressing spiral ganglion neurons. Finally, we devised an automated approach for 

estimating the fraction of transduced spiral ganglion neurons based on light-sheet microscopy of the 

cleared cochlea. 

3.2 Significance Statement 

For developing the optical cochlear implant (oCI), knowledge of the cochlear morphology is crucial. 

Here, we employed multiscale X-ray and fluorescence imaging for quantitative assessment of scala 

tympani, scala vestibule et media and Rosenthal’s canal for species commonly used in auditory 

research. Further, we demonstrate feasibility of oCI implantation for rodents and the marmoset, as a 

non-human primate model. Using modeling of light propagation from the emitters of the oCI we 

estimate the frequency selectivity and range covered by optical stimulation in the cochlea. 
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3.3 Introduction 

In case of profound sensorineural hearing impairment, cochlear implants (CIs) partially restore hearing 

by providing auditory information to the brain. Electrical stimulation of the spiral ganglion neurons 

(SGNs) enables speech understanding in the majority of the approximately 500,000 users worldwide. 

However, current clinical CIs are limited from their wide current spread (Kral et al., 1998) resulting in 

a limited coding of spectral information (Kang et al., 2009). Recently, cochlear optogenetics was 

proposed to use light to drive the auditory nerve (Duarte et al., 2018; Hernandez et al., 2014; Mager 

et al., 2018; Wrobel et al., 2018). As light can be better confined in space, future optical CIs (oCIs) with 

lower spread of excitation in the cochlea promise improved speech comprehension in noisy 

background as well as greater music appreciation (Dombrowski et al., 2018; Jeschke and Moser, 2015). 

For oCIs to be developed towards a medical device, currently major efforts are undertaken to devise 

multichannel optical stimulators for the cochlea (Ayub et al., 2016; Goßler et al., 2014; Klein et al., 

2018; Schwaerzle et al., 2016). As is the case for the electrodes of current CIs, future oCIs will place 

multiple stimulation channels, here microscale emitters, along the tonotopic axis of the cochlea. 

Further development of the oCIs requires precise estimates of parameters such as scala tympani size, 

bending radius, appropriate encapsulation and probe stiffness. Moreover, cochlear optogenetics 

employs gene transfer to the SGNs for which adeno-associated viruses (AAVs) seem promising 

candidate vectors (Hernandez et al., 2014; Mager et al., 2018; Wrobel et al., 2018). AAV delivery has 

used injection of virus suspension via the round window (Mager et al., 2018) or directly into the 

Rosenthal’s canal (Wrobel et al., 2018). Estimation of the required virus load for injection into the 

cochlea relies on understanding the volumetric proportions of the inner ear. Therefore, the volumes 

of Rosenthal’s canal and the scalae tympani, vestibuli et media needed to be evaluated. Finally, the 

efficiency and safety of viral gene transfer requires the quantification of SGN density and transduction 

rate. 

Employing multiscale X-ray and fluorescence imaging, here we provide a comprehensive analysis of 

cochlear morphology for mouse, rat, gerbil, guinea pig and marmoset as animal models for auditory 

research. Each of these animal models offers unique advantages. The mouse is readily available for 

optogenetic manipulation (e.g. (Zeng and Madisen, 2012). Channelrhodopsin-expressing transgenic 

lines are available also for rats (Tomita et al., 2009; Witten et al., 2011) that offer a larger cochlea and 

can carry larger weight implants then mice (Irving et al., 2013; King et al., 2016; Lu et al., 2005). Gerbils 

and guinea pigs are established rodent models for auditory research and offer a larger cochlea. Gerbils, 

which have low frequency hearing more similar to human, have already been employed for cochlear 

optogenetics (Wrobel et al., 2018). Finally, we focus our analysis on the marmoset, as a well 

established non-human primate model for auditory research (e.g. (Johnson et al., 2012; Osmanski and 
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Wang, 2011). Marmosets possess a rich vocalization, are highly communicative and a pitch perception 

mechanism to humans is shared (Song et al., 2016). Therefore, we compare state-of-the-art eCI to 

newly designed oCIs in marmoset cochleae and estimate the optical spread of excitation using Monte-

Carlo ray tracing simulation. 

3.4 Results 

3.4.1 Multiscale, multimodal photonic imaging of cochlear morphology 

We combined X-ray tomography and lightsheet microscopy for multiscale, multimodal photonic 

imaging of cochlear morphology. Using phase contrast X-ray tomography (Figure 1A) enabled us to 

resolved cochlear soft tissue, whereby we focused on the spiral ganglion and the basilar membrane 

(Figure 1B, C). Our custom X-ray tomography setup allowed multiscale studies of the cochlear anatomy 

down to a voxel size of 2 µm. An example of a raw volume rendering of a guinea pig cochlea dataset is 

shown in Figure 1C. The hemisected cochlear reconstruction reveals the scalae tympani and media et 

vestibule, separated by the basilar membrane as well as the Rosenthal canal. The same set-up enables 

the analysis of differently sized cochleae from various species: from mouse to marmosets (Figure 1D). 

The species differ in shape, number of turns, overall size of the cochlea and position of the round and 

oval window can be appreciated in Figure 1D. Human data were reconstructed from published micro-

CT data. Quantification of the cochlear morphology as required e.g. design of appropriately shaped 

and sized o/eCIs as well as for modeling of SGN-stimulation via CI is presented below. 

Lightsheet microscopy was performed by Carlos Duque Afonso and the results are not included in this 

thesis. 
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Figure 1. 3D models of rodent and primate cochleae 

(A) Experimental setup. X-ray beam is generated by a liquid-metal jet microfocus tube and are detected 
by a high-resolution scintillator-based CCD camera. 
(B) Raw 2D projection before wave propagation and phase retrieval algorithm. 
(C) Volume rendering of reconstructed image stack. Scala tympani (blue), scala vestibuli et media 
green), Rosenthal’s canal (purple), osseous spiral lamina (orange), basilar membrane (black line) and 
modiolar axis (dashed line). 
(D) Segmented cochleae visualized with bone (gray), basilar membrane (green) scala tympani (blue), 
round window (dashed line), oval window (dotted line) and apex (arrow). Scale bar 1 mm. 
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Figure 2. Measurements of the scala tympani crucial for cochlear implantation 

(A) Segmented scala tympani with smoothed centerline beginning at the round window (red dot). 
Centerline was used as trajectory for virtual cross-sections (gray). 
(B) Smallest radius of the scala tympani from base to apex. Data were scaled along the distance 
dimension to fit the mean length of the scala tympani. The shaded region indicates the standard 
deviation of the mean, n as in (C). 
(C) Measurements of parameter crucial for cochlear implant design considerations. Diameter is derived 
the centerline calculation, height and width were determined in virtual sections, curvature represents 
the radius from the modiolar axis to the centerline of scala tympani. N indicated animal count. Please 
note that the different species are plotted in different scales. 
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3.4.2 Quantifying scala tympani for cochlear implant design and insertion 

For considerations on CI design and for modeling of SGN-stimulation via CI measurements of the scala 

tympani are most crucial, as this is where the CI electrodes are placed. Here, we quantified X-ray 

tomography data. Following 3-dimensional reconstruction (Figure 1), we calculated the centroid for 

virtual sections of scala tympani along the turns by determining the minimum radius by means of the 

closest point on the cavity’s surface for each sampling point (Figure 2A). This resulted in a centerline 

for scala tympani (Figure 2A). For all analyzed species, the minimum radius was largest at the cochlear 

base close to the round window and smallest at the apex (Figure 2B). Assuming an CI covering 60 % of 

scala tympani length (Lee et al., 2010), the front of the CI should be limited to a radius of 

0.13 mm/0.12 mm/0.12 mm/0.15 mm/0.23 mm/0.44 mm in mice, rats, gerbils, guinea pigs, 

marmosets and humans, respectively (Figure 2B, see also Table 1). The automatically determined 

diameter was identical with the height resulting from semi-automatic measurements on virtual 

sections, which indicates accuracy of the automatic analysis. 

The bending radius, here referred to as radius of curvature (short curvature), has great relevance for 

the design of waveguide-based and light-emitting diode (LED) oCIs. LEDs such as blue GaN-LEDs 

(Laubsch et al., 2010) are stiff, and hence their size and pitch within the array on a flexible substrate 

(Goßler et al., 2014) need to accommodate the curvature of the coiled scala tympani. To be able to 

cover 60 % of the cochlear length in mice a radius of curvature of 0.29 mm has to be obeyed. In 

contrast, the cochleae rats, marmosets or humans provide greater radii of curvature: 0.51 mm, 

0.80 mm and 1.64 mm. Regardless, all radii of curvature require the use of microscale LEDs (µLEDs) for 

the sake of optoelectronic (active) oCIs. Considering such µLED–based oCIs that feature a mostly two-

dimensional shape due to their circuit plane, an oval-shaped design of the oCI could make use of the 

about 1.9 times larger width compared to the height of the tympanic duct. 

3.4.3 Insertion studies for oCI and eCI in different species 

When starting the insertion studies, we first tested various combinations of carrier materials and 

encapsulations in explanted mouse cochleae. Among the first attempts of an oCI insertion we used a 

plain polyimide substrate of 15 µm thickness without encapsulation. It could be implanted into the 

mouse cochlea up to its full length of 5 mm, but in subsequent X-ray tomography was shown to cut 

through the basilar membrane (Figure 3A inset). Hence, we thereafter encapsulated the probes. We 

first turned to dipping into silicone and thereafter spinning the probes, which resulted in a cylindrical 

shape of the polyimide-based probes and mechanical properties that were very well suitable for 

implantation (Figure S2). 
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We then turned to encapsulating µLED arrays following the design published earlier (Goßler et al., 

2014). Those encapsulated µLED arrays could be inserted into scala tympani via the round window for 

approximately 4.7 mm without detectable damage to the cochlea (Figure 3A, see also Table 2). When 

approximating the frequency-place map of Greenwood (Greenwood, 1990), the insertion covered a 

frequency range from 2.572.2 kHz of a total hearing range from 0.679.3 kHz which corresponds to 4.9 

out of 7.0 octaves. The 93 µLEDs accommodated on the 4.6 mm intracochlear portion would 

correspond to a dense coverage of approximately 20 channels per octave. Further, µLED orientation 

appeared optimal: the active µLED surface was facing Rosenthal’s canal. 

 
Figure 3. Implantation trials in rodent cochleae 

(A) Mouse cochlea with an optical cochlear implant comprising 93 µLEDs covering a frequency range 
from 72.2-2.5 kHz. Insertion depth: 4.6 mm. Basilar membrane is color-coded for corresponding 
frequency, Rosenthal’s canal (purple), LED (blue), silicone (light blue) and bone (gray). View from 
lateral. Inset shows a mouse cochlea with a probe penetrating the basilar membrane (green) at 0.5 
turns. In this case the polyimide substrate (blue) was not encapsulated in silicone. View from medial. 
Scale bar: 1 mm. 
(B) Rat cochlea with an optical cochlear implant comprising 13 µLEDs covering a frequency range from 
49.4-6.7 kHz. Insertion depth: 3.6 mm. View from lateral. 

We next turned to species with larger cochleae for investigating the utility of mold encapsulation. 

Using a state-of-the art mold-injection process, a low-density µLED array (13 µLEDs, pitch of 300 µm) 

was encapsulated yielding an outer diameter of 340 µm. The probe was inserted into scala tympani of 

a rat cochlea in situ. This way we achieved an implantation depth of 3.6 mm (Figure 3B). Despite the 

round profile orientation of the probe, µLEDs were well positioned in regard to the Rosenthal’s canal. 

However, the insertion depth was much inferior to what we found above with probes coated by 

dipping and spinning in the smaller cochlea of the mouse (Figure 3A). 

Finally, we performed a comparative insertion study of eCIs and LED-based oCIs in the marmoset, a 

non-human primate model. Using cadaver skulls, we performed a posterior tympanotomy and inserted 

the CIs via the round window. The probes were specially designed to fit the marmoset cochlea: eCIs 
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had a diameter of 300 µm with 10 electrodes and an electrode spacing of 1000 µm and 1500 µm. oCIs 

were designed to closely resemble the eCIs with 10 LEDs (250 x 200 µm) and an LED spacing of 500 µm. 

They were dip-coated in silicone with a final diameter of approximately 260 µm. eCI and oCI could be 

implanted for 8.9 mm/7.6 mm (Figure 4) covering 60 %/51% of the scala tympani, respectively. In case 

of the oCI 10 LEDs were placed on 4.5 mm with a mean distance of 671±93 µm to the centerline of 

Rosenthal’s canal. For eCIs 6 and 7 electrode contacts were located in the scala tympani with a mean 

distance of 674±24 µm.  

In regard of volumetric proportions within the cochlea, we found Rosenthal’s canal’s volume to be 

0.055 µL/0.148 µL/0.095 µL/0.366 µL/0.179 µL/3.263 µL in mouse, rat, gerbil, guinea pig, marmoset 

and human, respectively, in accordance with literature for mouse and guinea pig (Table S1). 

 

Figure 4. Implantation trials in marmoset cochleae 

(A) Optical cochlear implant in marmoset scala tympani. LED bond pads (blue), spacing between LEDs 
300 µm, silicone (bright blue), basilar membrane (color coded for corresponding frequency). View from 
cochlear base to apex. Top: Best example, insertion depth: 7.6 mm. Bottom: insertion depth: 6.4 mm. 
(B) Electrical cochlear implant in marmoset scala tymplani. Top: Best example, insertion depth: 
8.9 mm, spacing 1.5 mm. Bottom: Insertion depth: 6 mm, spacing 1 mm. 
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Table 2. Comparision of cochlear implant insertion depth across species 

Species  Mouse Rat Marmoset Human 

Scala tympani length (mm)  6.3 7.1 14.8 26.0 

Scala tympani length (turns)  2.00a 2.25a 2.75a 2.60a 

oCI insertion depth (mm)  4.5 3.6 7.6 - 

oCI insertion depth (turns)  1.43 1.14 1.41 - 

eCI insertion depth (mm)  1.0-2.0b 1.5-3.2c 8.9 21.0d 

eCI insertion depth (turns)  0.32-0.63 0.48-1.01 1.65 2.10 

a (West, 1985) 

b (Irving et al., 2013; Mistry et al., 2014) 

c (Argence et al., 2008; King et al., 2016; Lu et al., 2005) 

d (Lee et al., 2010) 
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3.5 Discussion 

In this study, we quantitatively characterized commonly used temporal bones in auditory research on 

the basis of µCT-derived models to enable design of an oCI array for use in rodents and marmosets. X-

ray tomography offered the possibility to precisely determine electrode and LED position within the 

scala tympani. The distinct advantage of 3D models is the possibility to have a digitized version readily 

available to be viewed from any angle. Further, virtual cross-sectioning gives valuable insight in 

cochlear structures and measurements that can easily be taken without manipulation of the original 

sample. However, soft tissue cannot easily be resolved and demonstrates a limitation of the method, 

thus, we employed lightsheet microscopy to be able to visualize histological details in 3D space. 

Knowledge of cochlear fine structure enabled us to implant an optical probe for 4.5 mm in mice, 

doubling insertion depth previously reported (Table 2). Likewise, in rats the oCI array could be placed 

in lower frequency regions of 6.7 kHz compared to maximum values known from literature. In case of 

a redesign of rat oCI similar to the one used in mice, using a dip coating rather than mold-injection 

encapsulation (260 µm vs. 340 µm in mouse and rat oCI, respectively), insertion depth could 

potentially be further increased. 

Implantation of eCIs in marmosets exceeded previously reported insertion depth of 8 mm (Johnson et 

al., 2012) by ~1 mm achieving a frequency-place range from 2.3-29.7 kHz estimated with the 

Greenwood function according to an audible frequency range from (Osmanski and Wang, 2011). An 

improvement in upper limit coverage was possible through round window implantation, thus, making 

use of the high-frequency hook region of the cochlea. 

Further, we now accomplished to implant 3 of 4 marmosets with specially designed 10 contact 

electrodes with an insertion depth of 12 mm estimating a lower frequency level of 920 Hz. In one 

animal, we could position 7 contacts with an insertion depth of approximately 8 mm. 

Learning from scala tympani estimation, a more complex probe design could benefit the implantation 

depth further. Considering the curve progression of the height of scala tympani is mostly linear in all 

analyzed species with a negative slope of 76.5 (R²=0.78), 65.5 (R²=0.90), 57.0 (R²=0.87), 44.4 (R²=0.93), 

33.1 (R²=0.91) for mouse, rat, gerbil, guinea pig, marmoset and human respectively, a tampered probe 

design could customize the shape to the cochlear specification. This could minimize damage to the 

sensitive scala tympani (Fan-Gang Zeng et al., 2008; Rebscher et al., 2008). 

Here, we demonstrated deepest cochlear implantation depths reported for respective animal models 

(Table 2) with specially designed optical probes. Taking together ongoing development of multichannel 

oCIs harboring µLEDs (Klein et al., 2018), optogenetic stimulation of the auditory pathway (Duarte et 

al., 2018; Keppeler et al., 2018; Mager et al., 2018; Wrobel et al., 2018) and the findings of this study, 

the future for optical cochlear implants looks promising. 
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3.6 Methods 

3.6.1 Animals 

Cochleae were obtained from sacrificed adult CD1 and C57BL/6N mice (Mus musculus), Wistar rats 

(Rattus norvegicus), gerbils (Meriones unguiculatus), Hartley guinea pigs (Cavia porcellus) and 

common marmosets (Callithrix jacchus). A human sample (doi:10.22016/smir.o.29498) was obtained 

from the SICAS Medical Image Repository (Kistler et al., 2013) under the CC BY 3.0 license. All 

experiments conformed to the local and national guidelines for the care and use of laboratory animals 

in research and were approved by the local authorities of the State of Lower Saxony (LAVES). 

3.6.2 Sample preparation 

Surgery for optical and electrical cochlear implant was performed on fresh marmoset skulls or 

sacrificed rodents. A small retro-auricular incision was made and overlaying muscles were translocated 

to expose the middle ear or in case of rodents the bulla. The probe was implanted via the round 

window and kept in place with instant adhesive. After preparation the samples were fixated in 4% 

paraformaldehyde until imaging. Known tissue shrinkage of paraformaldehyde between 2.9 % and 

4.5 % (Fox et al., 1985; Jonmarker et al., 2006; O’Malley et al., 2009) was not corrected for. 

3.6.3 Cochlear implants 

Optical cochlear implants were designed with CreeTR2227 LEDs flip-chip bonded on flexible polyimide 

and subsequently dip-coated in silicone as described in (Schwaerzle et al., 2016) for marmosets. The 

optical probes contained 10 LEDs (size 220x270 µm) spaced with 500 µm and dip-coated in silicone 

(total diameter of approximately 260 µm). For rodents, we used integrated thin-film µLEDs (size 

50 µm) as described in (Ayub et al., 2016) with 93 µLEDs, spaced at 50 µm, tapered from 194 µm to 

160 µm, encapsulated in silicone (oval profile approx. 240x130 µm) and 13 µLEDs, spaced at 300 µm, 

encapsulated in silicone (round profile 340 µm) for mouse and rat, respectively. Electrical cochlear 

implants were kindly provided by Med-El in two different designs: Electrode spacing was 1000 µm and 

1500 µm, wires wriggled or straight for probe 1 and 2, respectively. Electrode diameter was 500 µm. 

3.6.4 MicroCT 

Anatomical and morphological features in animal models were assessed with phase-contrast 

tomography at a compact laboratory X-ray source essentially as previously described (Bartels et al., 

2013). The custom-built cone-beam in-line tomography instrument equipped with a liquid-metal X-ray 

source (JXS D2, Excillum) operated at 70 kV acceleration voltage was combined with a 20 µm LuAG-

scintillator-based fiber-coupled CCD detector (6.5 μm pixel size; C12849-102U; Hamamatsu). Fast 

https://doi.org/10.22016/smir.o.29498
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Fourier-based phase reconstruction was used to calculate the image volume. Reconstruction of the 

raw data was performed using the ASTRA toolbox (van Aarle et al., 2015, 2016). Voxel dimensions were 

isotropic, ranging from 2.00-6.63 µm. 

3.6.5 Image analysis 

Segmentation, 3D visualization of the reconstructed volume, measurements and analysis were 

performed with Avizo (FEI Visualization Sciences Group, Thermo Fisher Scientific Inc.). The raw dataset 

was initially visualized as volume rendering. Each point in the data volume is represented by scalar 

data using a user-defined colormap including alpha values. For segmentation, the µCT cross-sections 

were viewed in three orthogonal planes. Automatic histogram-based segmentation was used to 

visualize bony structures. The basilar membrane, Rosenthal’s canal, osseous spiral lamina, modiolus, 

scala tympani and scala vestibuli et media were traced with semiautomatic segmentation. In most 

cases soft tissue structures like the Reissner’s membrane could not be resolved. Thereby, the scala 

media could not be separated from scala vestibule and, thus, both cavities were lumped together in 

one fluid space. The volume of surfaces was determined based on a voxel count of the reconstructed 

spaces. The centerline was calculated with Avizo tools implementing the TEASAR algorithm originally 

described in (Sato et al., 2000). Also, the Euclidean distance to the nearest boundary was determined 

for every point of the spatial graph (591-1762 sampling points depending on species) giving an 

estimation for the radius. Subsequently the centerline tree was reduced to the relevant branch and 

smoothed with a moving average filter. In case of the scala tympani the centerline was used as a 

trajectory for virtual cross-sections (20-47 sampling points depending on species) along the spiral 

cavity. The cross-sectional area, width and height of the scalae were measured using standard Avizo 

tools. The width was determined in parallel to the osseous spiral lamina at the maximum distance 

between the lateral and medial wall. The height was also measured at its maximum, perpendicular to 

the width. The length of the basilar membrane was determined with a fitted spline along the centerline 

between lateral and medial edge. The insertion depth of CIs was measured with a fitted spline curve 

to markers along the device. 

3.6.6 Data analysis 

Parameter of the scala tympani (radius, height, width, curvature) were scaled along the distance from 

base dimension to fit the mean length of the scala tympani per species, interpolated to retrieve 100 

linearly spaced query points and subsequently averaged. For the curvature, the Euclidean distance 

between centerline and modiolar axis was determined for every sample point along the spline. 

Frequency-place estimates were derived from the Greenwood function (Greenwood, 1961, 1990) and 

fitted along the basilar membrane. Estimated audible frequency ranges were taken from (West, 1985). 
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For estimation of the corresponding frequency of individual stimulation nearest neighbor search to the 

basilar membrane was used. Data were reported with standard error of the mean if not stated 

differently. 
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3.7 Supplements 

 
Figure S1. Cross-sectional area and perimeter 

Measurements were obtained from virtual cross-sections along the cochlea. Please note the two 
different ordinates for area and perimeter. 
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Figure S2. Implantation trials of dip-coated polyimide-based probes in mouse cochleae 

Polyimide-based probes were encapsulated via dip-coating into silicone and thereafter spun in a 
custom-built centrifuge. Two ex vivo implantation examples in translucent mouse cochleae through 
prior embedding in 2,2-thiodiethanl (TDE): 
(A) Suboptimal silicone layer with droplet formation at the tip (arrow, left and right panel). Right panel 
depicts implantation of encapsulated probe with an insertion depth of 1.8 mm. The tip of the probe 
was stuck after approximately half a turn at the lateral wall of scala tympani (view from medial side). 
(B) Optimal silicone layer without droplet formation (left panel). An implantation depth of 3.8 mm was 
achieved via the round window (dashed line). The tip of the probe (arrow) reached one turn in the 
scala tympani. Oval window (dotted line). Scale bar 1 mm.  
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4.1 One Sentence Summary 

We report the design, fabrication, and technical characterization of highly flexible LED-arrays and their 

successful application for optogenetic stimulation of the auditory pathway. 

4.2 Abstract 

When hearing fails, cochlear implants (CIs) provide the brain with auditory information that enables 

speech understanding in the majority of the approximately 0.5 million users. One important bottleneck 

of CIs is the poor spectral resolution of coding that results from the wide current spread throughout 

the cochlea from each of the electrode contacts. Optical CIs (oCIs) promise to make better use of the 

tonotopic order of spiral ganglion neurons (SGNs) inside the cochlea by more focal stimulation. Here 

we established multichannel oCIs based on microfabricated light-emitting diode (LED) arrays and 

employed them for optical stimulation of channelrhodopsin-2 (ChR2)-expressing SGNs in transgenic 

rats. Power-efficient blue LED chips (220×270 µm2, 454 nm emission) were integrated at a pitch of 350 

or 500 µm onto 15-µm-thin polyimide-based carriers comprising interconnecting lines that addressed 

individual LEDs. Thin-film passivation using a fluoropolymer was followed by silicone encapsulation. 

We extensively characterized the optoelectronic, thermal and mechanical properties of the oCIs and 

demonstrated stability over weeks. Finally, we implanted oCIs into ChR2-expressing transgenic rats 

and studied optical auditory brainstem responses (oABR) stimulated by individual or multiple LEDs. 

The oCIs could be advanced into scala tympani to cover the basal cochlear turn, as demonstrated by 

X-ray tomography. In conclusion, the study demonstrates feasibility of LED-based multi-channel oCIs. 

4.3 Introduction 

Hearing impairment (HI) is the most common sensory deficit and approximately 5% of the world’s 

population suffers from disabling HI (1). Despite the dramatic clinical need and major research 

activities, a causal therapy is not yet available for the most common form: sensorineural HI (2–4). 

Hence, hearing aids and CIs, once HI has reached severe state, will remain the key means for partial 

restoration of hearing. CIs use only 12-24 electrode contacts along the tonotopic map of the human 

cochlea, which in normal hearing allows discrimination of approximately 2000 frequency steps (5), and 

cover a frequency range of approximately 100 Hz to 10 kHz (6). Moreover, the spread of current from 

each electrode contact (7) leads to channel crosstalk (8) and diminishes the number of independent 

stimulation channels (9, 10). Optogenetic stimulation of the cochlea is a promising approach to 

increase the spectral resolution of CI coding, as the cochlear spread of excitation was shown to be 

lower for light emitted from an optical fiber with a core diameter of 250 µm than with monopolar 

electrical stimulation (11). However, much remains to be done in order to develop optical stimulation 
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as an alternative operating mode in clinical CIs (12). Next to establishing virus-mediated expression of 

opsins in auditory neurons (11, 13, 14), multichannel oCIs need to be developed. Generally, active and 

passive optical probes might be implanted into the cochlea (12). While waveguide arrays would 

passively propagate light from sources outside the cochlea, e.g. from within the sealed housing of the 

CI stimulator, active optoelectronic probes would convert current to light in encapsulated microscale 

emitters inside the cochlea. Interesting candidate emitters for blue optogenetic applications at the 

systems level are gallium-nitride (GaN) based micro LEDs (µLEDs, (12, 15, 16)). These µLEDs can be 

integrated on flexible substrates using various approaches (17–19). So far, light sources used for 

optogenetic stimulation of SGNs have been GaN LEDs and optical fibers coupled to an external laser. 

Both LEDs or fibers were either placed onto a cochleostomy or into the cochlear scala tympani via the 

round window (11) and were limited to a single stimulation channel. A fiber-based single channel 

approach was also demonstrated for photoactivation of auditory brainstem and midbrain neurons 

expressing either channelrhodopsin-2 (ChR2) or Chronos (13, 14). Clearly, single-channel optical 

stimulation has been an important step towards establishing the optogenetic control of the auditory 

pathway. However, developing oCIs for auditory research and future clinical translation requires the 

generation of multichannel devices. We have recently reported the wafer-level integration of GaN-

based µLEDs into flexible high-density arrays carrying 100 µLEDs with a size of 50×50 µm2 on a 

substrate with a length of 10 mm that fits into the cochlea of mice (18). However, the custom-made 

µLEDs were not yet optimal in terms of radiant flux (sub-mW) and wavelength (405 nm) required for 

the activation of ChR2, and robust electrical connection as well as encapsulation of the probe remained 

to be established prior to their functional characterization.  

Here, we established and characterized LED-arrays as multichannel oCIs integrating larger and highly 

power-efficient commercial GaN-based LED chips integrated on a polyimide carrier. We study 

electrical, optical and thermal properties and optimized the electrical passivation and mechanical 

properties as required for an application in the cochlea. The oCI encapsulation employed thin-film 

passivation using the fluoropolymer Cytop™, which lent the oCI stability in saline solution for weeks of 

operation with negligible leakage currents between the interconnecting lines. When further 

encapsulated in silicone, these oCIs were compatible with the use in the cochlea of larger rodents such 

as the rat. Using transgenic rats expressing ChR2-Venus under the pan-neuronal promoter Thy1.2 (20), 

we performed a first characterization of insertion and functional stimulation. This work paves the way 

for acute and chronic studies of optogenetic stimulation of the cochlea but will likely also aid 

optogenetic studies in other systems. A preliminary conference report on the technical development 

of these tools has been presented recently (21). 
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4.4 Results  

4.4.1 Design of LED-based optical cochlear implants (oCIs) 

In order to design oCIs with appropriate dimensions and mechanical properties, we first performed X-

ray tomography of the rat cochlea (22) yielding estimates of the cross-section of scala tympani and its 

curvature (Fig. 1A and B). The cross-section starts out with a width of near 1000 µm at the cochlear 

base, drops to approximately 300 µm in the mid-cochlea and then levels off. Likewise, the radius of 

curvature starts out large (approximately 1.4 mm) and declines to about 400 µm in the apex. Hence, 

our target was a slim and flexible array not exceeding 300 µm in diameter after encapsulation and 

being compatible, both mechanically as well as functionally, with a bending radius of approximately 

500 µm. 

The design of the oCIs based on a polyimide (PI) substrate and commercially available LED chips 

emitting at 454 nm is illustrated in Fig. 1C. It consists of a slender implantable section (width 240 µm) 

with a linear array of LEDs at its tip wired to the interface section designed for zero insertion force (ZIF) 

connectors. The central 11 contact pads of the ZIF connector section and the respective wiring lines (a 

broader common n-contact line and ten p-contact lines, one for each LED, inset in Fig. 1C), address 

individual LEDs for their independent control. The outer three pads on each side of the ZIF interface 

were short-circuited, hence allowing a connection test of the electrical interface in the case of these 

first oCI prototypes. The linear array of ten LEDs at the oCI tip was designed with a pitch of 500 µm or 

350 µm (see Fig. 1C). In addition, an array with four LEDs containing a temperature sensor based on a 

platinum meander integrated beneath the first LED chip was established (see Fig. 1D). The four-wire 

interconnection of this meander enables a precise resistance measurement and thus probe 

temperature determination while operating the LED chips. 
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Figure 1. Design of the LED-based multichannel optical cochlear implants. 

(A) Reconstruction of the scala tympani of a rat based on X-ray tomography, with the round window 
at the bottom and cochlear apex pointing up. Green line: center of scala tympani, blue areas: the 
exemplary cross-sections, blue lines: short and long axes of the cross-sections, black line: modiolar axis 
of the cochlea subjectively derived from the X-ray data. 
(B) Radius of curvature (dotted line), short (light blue) and long (dark blue) axes of cross-sections (area 
in green, right axis) as a function of distance from the round window. 
(C) Design of the highly flexible PI-based oCI with a linear array of ten LED chips integrated at the tip 
of the slender implantable section of the optical probe. The LEDs are individually wired and connected 
via a zero insertion force (ZIF) interface at the wider connector part comprising fixation holes for 
optional device attachment to the skull. 
(D) Design of the probe tip with resistive temperature sensor integrated beneath the first of four LED 
chips that were arranged at a pitch of 750 µm. The platinum meander of the temperature sensing 
element is connected via four wires for a precise resistance measurement. 
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(E, F) Optical micrographs of fabricated and silicone-encapsulated oCIs with (E) ten LED chips 
assembled at an LED pitch of 350 µm and (F) with an integrated temperature sensor beneath the first 
LED with an LED pitch of 750 µm. 
(G) Functionality test of an oCI demonstrating the individual control of LEDs prior to device passivation. 
(H) Bending test of a silicone-molded oCI inserted into a 300-µm-wide channel with an outer radius of 
1 mm milled into a PMMA substrate. 
(C,D,G) Copyright© IEEE. All rights reserved. Reprinted, with permission, from [20]. 

4.4.2 Fabrication, assembly and passivation 

The fabrication of the oCIs started by generating the PI-based carrier on a silicon (Si) handle wafer. The 

microfabrication steps, as detailed in the Supplementary Material, included the subsequent spin 

coating and curing of three PI layers patterned by reactive ion etching (RIE) sequences, the sputter 

deposition and lift-off structuring as well as electroplating of metal layers used for the integrated 

temperature sensor (first metallization), as well as LED wiring (second metallization; thickness 1 µm) 

and contact pads (third metallization; thickness 5 µm), respectively.  

The sequential integration of the LED chips onto the PI substrates employed flip-chip bonding which 

enabled the accurate and reliable assembly of individual LEDs to the electroplated bond pads by 

applying force, temperature and ultrasonic agitation. The n- and p-pads of the LEDs are clearly visible 

through the transparent LED substrate, as indicated in Figs. 1E and F. Polymeric encapsulation layers 

were manually applied after the LED assembly (Supplementary Material and Fig. S2). The oCIs received 

a polymeric underfill of the LEDs (epoxy EPO-TEK® 301-2) and were encapsulated in a thin 

fluoropolymer film (Cytop™) as well as in silicone, all applied by a manual dispensing process (Figs. 1E 

and F, and Fig. S2A) or using a precision-machined mold (Fig. 1H). The thicknesses of the fluoropolymer 

layer and underfill were in the low micrometer-range and defined by the height of the electroplated 

LED pads underneath the LEDs, while the silicone layer was about 50 µm in thickness.  

Functionality tests were performed before and after device passivation by sequentially addressing all 

LEDs (LED 1 – LED 10, Fig. 1G). In addition, motivated by the snail-like structure of the cochlea we 

tested the oCI mechanical functionality by inserting the optical implant into 300-µm-wide channels 

with different outer radii realized in polymethylmethacrylat (PMMA). We determined the minimal 

outer radius which differed depending on the LED pitch and the thickness of the silicone encapsulation. 

Figure 1H demonstrates the function of all ten LEDs of an oCI bent to an outer radius of 1 mm. This oCI 

had an LED pitch of 350 µm and was mold-encapsulated to an outer diameter of 300 µm. oCIs with an 

LED pitch of 500 µm and a silicone thickness of approximately 50 µm could be bent to a radius of only 

500 µm while remaining functional.  

4.4.3 Electrical, optical and thermal characterization of the oCI 

The electrical and optical characterization of the oCIs was performed by measuring the LED voltage V 

(Fig. 2A) and radiant flux  (Fig. 2B) as a function of the LED current ILED which was varied between 0 
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to 45 mA and pulsed at a duty cycle (DC) and a frequency of 10% and 10 kHz, respectively, resulting in 

pulses of duration tp = 4 ms. The threshold voltage of the applied LEDs was extracted from the data 

shown in Fig. 2A to Vth = 2.6 V which is comparable to the value given in the LED datasheet (23). The 

slopes of the I-V-curve are determined by the LED characteristics and the line resistance of the 

respective LED wiring, which likely explains the small differences among the various LEDs. On average 

a voltage of 4.32±0.04 V was measured at ILED = 30 mA. The measurements of the optical radiant flux 

 as a function of ILED (Fig. 2B) were performed using a calibrated integrating sphere. The LEDs of this 

representative probe showed the same behavior and provided a time averaged radiant flux of 

1.405±0.054 mW at ILED = 30 mA (10% DC and 10 kHz). This corresponds to a radiant flux of 14 mW 

during the 10-µs-long light pulses. Taking the LED foot print of 220×270 µm² into account, 

236 mW/mm² were emitted during those current pulses. Time averaged radiant emittances of 10, 15, 

and 20 mW/mm² relevant for optogenetic experiments (11) were consequently emitted at ILED = 1.25, 

1.61, and 2.27 mA, respectively. Spectral measurements of assembled and passivated LEDs showed 

light emission with an averaged center wavelength of 453.8±1.1 nm.  

Since the oCIs are active devices with limited optoelectronic conversion efficiency, we set out to 

characterize heat production and dissipation using the integrated Pt meander (Fig. 1D) to determine 

the temperature increase of the probe as close as possible to an operating LED chip. Sensor calibration 

and the measurement setup are described in detail in the Supplementary Material. Based on a set of 

transient temperature measurements performed by applying different pulse durations tp and LED 

currents ILED, the thermal time constant of the system was determined to be 11.8 ms. The experiments 

were performed with the oCI sandwiched between layers of agarose gel kept at 37°C. These conditions 

aimed to mimic the thermal properties of the perilymph fluid inside scala tympani of the cochlea. The 

experiments allowed to extract thermal relaxation functions modeling the temperature response of 

the probe to LED operation and to predict the maximum temperature increases for given LED currents 

and pulse durations. As expected, the modeled temperature evolution under the operated LED in 

response to 4-ms-long current pulses increased with ILED (producing the respective radiant fluxes Φ, 

Fig. 2C). Correspondingly, for a constant ILED (38.9 mA, maximal ILED used in physiology resulting in 

Φ = 18.1 mW) the maximum temperature Tmax rose with pulse durations tp between 0 and 10 ms (Fig. 

2D). Furthermore, Fig. 2E shows Tmax as a function of Φ for 4-ms-long pulses. Clearly, to operate the 

oCI at a given stimulation rate below a certain temperature, ILED and thus radiant flux or pulse duration 

should be limited. Since the temperature is measured within the oCI as close as possible to the heat 

source, i.e. the LED, it definitely overestimates the temperature increase in the surrounding tissue. 

Moreover, we note, that the heat dissipated by an oCI will be eliminated more efficiently within the 

scala tympani than by the agar gel of the experimental setup. We expect convection by the cochlear 
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blood flow and conduction by structures neighboring scala tympani to dissipate the produced heat, to 

which the cochlear aqueduct likely also contributes.  

 

Figure 2. Electrical, optical and thermal characterization of an oCI. 

(A) I-V curves of ten LEDs of an oCI exhibiting a threshold voltage of 2.6 V. (B) Time-averaged radiant 
flux Φ of ten assembled and passivated LEDs of an oCI as a function of the LED current ILED applied at 
10 % DC and a frequency of 10 kHz. (C) Modeled time-dependent temperature T of an oCI sample with 
integrated temperature sensor in response to current pulses of amplitude ILED and duration tp = 4 ms; 
the pulses produced the indicated radiant flux values Φ; the oCI was sandwiched in-between agarose 
gel layers kept at 37°C. (D) Modeled maximum temperature Tmax vs. tp, when LED 1 was driven with 
ILED 1 = 38.9 mA to Φ = 18.1 mW. (E) Tmax vs. Φ at tp = 4 ms. (F) Spectral density distribution of LED 1 
with peak emission at 457 nm (black line) and ChR2 normalized action spectrum (blue line) (24) with a 
peak at 460 nm (25). (G) Measured leakage currents Ileak vs. time of three representative oCI samples 
for various polymeric encapsulation procedures (Ar =  argon plasma treatment for surface activation), 
as detailed in the Supplementary Material and Fig. S2-A (up to stage vi). (H) oCI longevity derived from 
Ileak measurements, as shown in (G); oCI failure is defined by Ileak > 1 µA for more ten consecutive 
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measurement points. The temporal behavior of Ileak of samples marked by an asterisk are shown in 
panel G; dashed horizontal lines indicate a long-term measurement still running; vertical lines in each 
horizontal bar indicate the failure of a specific sample. 

4.4.4 Longevity tests 

Longevity tests were performed on oCIs which had been processed with different underfill and/or 

encapsulation materials. In saline solution, the integrated LEDs were reverse biased by a non-

permissive voltage of –5 V between their n- and p-lines measuring the leakage current Ileak (for details 

see Supplementary Material). Ileak values of three representative oCI samples show a clear dependence 

of longevity on the underfill and encapsulation procedure (Fig.  2G). The oCI indicated by blue symbols 

was underfilled using the solvent-containing fluoropolymer CytopTM only and failed already after less 

than 8 hours as evident by the increasing Ileak. In contrast, the oCI underfilled by solvent-free epoxy, 

with a surface activation by an argon (Ar) plasma before and after the underfill, survived for more than 

30 days (orange). This indicates an advantage of using a solvent-free underfill, as further detailed in 

Figs. S2-C and S2-D. Finally, combining the repeated plasma treatment with epoxy underfill and 

CytopTM encapsulation (Fig. 2G, red symbols) further increased the longevity of the oCI to more than 

200 days. These longevity results are summarized in Fig. 2H for the oCI samples characterized to date. 

We suggest, that the additional silicone encapsulation as used for the in vivo experiments, will support 

mechanical stability and further increase longevity as required for future chronic studies of 

multichannel optical stimulation. 

4.4.5 Optogenetic activation of the auditory pathway by multichannel oCIs 

Next, we turned to transgenic ChR2-Venus rats (20) in order to test the feasibility of optogenetic 

activation of the auditory pathway by multichannel LED-based oCIs. The oCIs were connected via their 

ZIF connector interface (Fig. 3A) and driven in synchrony with the recordings of auditory brainstem 

responses. Prior to each experiment we measured the emitted light power per LED as a function of ILED 

with an integrating sphere and probed the electrical integrity of the oCIs in saline solution. Then, using 

a retroauricular approach, we performed a posterior tympanotomy (“bullostomy”, Fig. 3B), inserted 

the oCI probe through the round window and gently advanced it into the scala tympany. In few cases 

we inserted the oCI through an artificial small opening of the lateral wall of the middle cochlear turn 

(cochleostomy). The position of the implant was validated by X-ray phase-contrast microscopy using a 

superbright laboratory X-ray source, as described before (22). With round window insertion and 

without forcing, the oCIs usually covered the basal turn of scala tympani (Fig. 3C). We then compared 

supra-threshold auditory brainstem responses (ABR) evoked by acoustic clicks (aABR, Fig. 3D, upper 

curve), 4-ms-long laser light pulses (oABR, Fig. 3D, middle curve, 473 nm, 6.6 mW delivered via a 

200 µm optical fiber inserted into the scala tympani via the round window) and oCI stimulation with 
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the LED-based implant (oABR, front LED, 454 nm, 6.8 mW, Fig. 3D, lower curve). The LED-stimulation 

caused an electrical onset artifact that was variable in size, preceded the oABR (asterisks mark the first 

positive peak, p1) and was followed by an artifact at the end of the stimulus. Except for these ILED-

related artifacts, the oABRs elicited by laser and LED stimulation at comparable light intensities were 

similar. Both were also comparable in amplitude, but shorter in latency when compared to aABR, and 

showed less prominent later ABR peaks. The oABR strictly depended on the intrascalar position of the 

LED (Fig. 3E): when placed in the bulla (middle ear) no oABR could be elicited. Moreover, oABRs 

vanished after euthanizing the animal, despite intracochlear stimulation (Fig. 3E). We never observed 

oABRs in ChR2-negative rats (Figs. 3E and S3). Individual LEDs of the optical implant evoked slightly 

different oABR waveforms (Fig. 3F). While the oCI contained 10 LED chips, we were typically able to 

place only up to 5 of them inside the scala tympani with gentle insertion via the round window, 

resulting in stimulation of the basal turn. X-ray tomography indicated that this was likely because the 

oCI tip did not glide further due to contact with the lateral wall. 

 

Figure 3. oCI stimulation of the auditory pathway in ChR2 transgenic rats. 

(A) Silicone-encapsulated oCI connected to a PCB via a ZIF connector in comparison to a 200 µm optical 
fiber, magnified in the lower panel. (B) Retroauricular approach to the middle ear: Surgical situs shows 
a bullostomy (dashed line) revealing the cochlea with the stapedial artery and round window. The inset 
shows the oCI inserted into the round window. (C) 3D model of an implanted rat cochlea derived from 
X-ray tomography showing the position of the LED-based oCI in the scala tympani when inserted via 
the round window. The insertion depth was 5.1 mm harboring 8 LEDs inside the scala tympani in this 
case. Note that the cochlea was reflected horizontally relative to position in (B) for easier orientation. 
(D) Comparison of aABR and oABRs evoked by laser light (473 nm) and LED light (454 nm). Top: average 
of acoustic responses to 500 clicks (300 µs) at 60 dB (SPL) applied at 20 Hz. Middle: rectangular 4-ms-
long laser stimulation at 6.8 mW and 10 Hz (average of 500 trials). Bottom: rectangular 4-ms-long LED 
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stimulation at 6.6 mW and 10 Hz (average of 500 trials). First response peak (p1) is marked with an 
asterisk. (E) oABR recordings obtained from an LED stimulation (4-ms-long duration at 8.9 mW and 
10 Hz, 500 trials) with the LED placed inside the round window (dark blue), in the bulla outside the 
round window (light blue), the first LED at the tip of the array inside scala tympani after the animal was 
euthanized (red) and in a negative ChR2 rat (control, black): only onset and end artifacts are evident 
in both cases. (F) Representative oABRs obtained from five different LEDs (8-ms-long duration at 
2.15 mW and 2 Hz, 300 trials) of an implanted oCI.  

Next, we performed a first characterization of the reproducibility and reliability of the multichannel 

oCIs. First, we compared the oABRs elicited by LED 1 of five different oCIs inserted into the scala 

tympani of the same rat via cochleostomy for most cautious insertion (Fig. 4A). The p1-morphology of 

the oABRs was qualitatively conserved with some variability of amplitude and latency (Fig. 4A-B). The 

electrical artifacts varied among oCI insertions. The p1-amplitude increased more than one order of 

magnitude as a function of light power. At high radiant flux (18 mW), stimuli as short as 100 µs were 

sufficient to elicit oABRs, which grew in amplitude with duration up to 2 ms and then leveled off (Fig. 

4C). The p1-amplitude decreased with increasing stimulus rate, but remained detectable up to 200 Hz 

(Fig. 4D). 

Next, we compared oABRs evoked by laser light (optical fiber implanted via cochleostomy) to those 

driven by an oCI (implanted via cochleostomy) in 5 different animals (Figs. 4E-H). We first studied the 

response to the laser and then inserted oCI 2 (which generated small electrical artifacts). We observed 

significant variability in oABRs to LED-1-stimulation among the animals. The oABRs evoked by the oCI 

were comparable in amplitude to those elicited by laser pulses of the same radiant flux, pulse duration 

and rate (Fig. 4F). The dependence of the oCI-evoked oABRs on pulse duration was comparable to the 

result in Fig. 4C. For the laser stimuli with their higher radiant flux, we observed a tendency of the 

oABRs to decline beyond durations of 2 ms (Fig. 4G). The rate-dependent p1-amplitude decline seemed 

shallower for LED-stimulation than for laser stimulation (Fig. 4H).  

Finally, we performed first multichannel stimulation experiments aiming to study potential additive 

effects of LEDs recruited in addition to LED 1. The reasoning was that, if, indeed, each LED only 

activated a sub-population of the spiral ganglion, the oABR amplitude should grow when recruiting 

additional, more basal LEDs that would activate further SGNs. Figure S4 shows an exemplary 

experiment in which we subsequently recruited additional LEDs and studied the effects on the oABR 

amplitude for different radiant flux, pulse durations and stimulation rates. Additivity was strongest 

when activating LED 2 in addition to LED 1 and lower gain in amplitude was found when recruiting 

further LEDs. Additivity of stimulation by multiple LEDs indicates that the spread of excitation from the 

LEDs is limited at least at a low stimulus intensity such that the more basal LEDs could drive further 

SGNs. 



Multichannel LED-based cochlear optogenetics 

81 

 
Figure 4. Characterizing oCI stimulation by recordings of oABRs in rats. 

Optical CI or optical fiber were placed on the middle cochlear turn via a cochleostomy. (A) Exemplary 
oABRs driven by LED 1 of oCIs 1-5 (color code) in the transgenic ChR2 rat used in B – D with a radiant 
flux of 18.1 mW (4-ms-long stimulus at 10 Hz, 500 trials throughout the figure). Note the onset and 
end artifacts of opposite polarity that flank the stimulus. First peak of response (p1) is marked with an 
asterisk. (B - D) oABR amplitude of p1 recorded from one rat with 5 different oCIs as a function of 
radiant flux (B, duration: 4 ms, rate: 10 Hz), stimulus duration (C, radiant flux 18.1 mW, rate: 10 Hz) 
and stimulation rate (D, 18.1 mW, duration: 2 ms). Negative standard deviation (SD) shown in light 
blue. (E) Exemplary oABRs from transgenic ChR2 rats 1-5 (color code) used in (F – H) stimulated by 
LED 1 of oCI 2. (F – H) p1 amplitude of oABRs recorded from four rats, first using a 200 µm optical fiber 
(coupling in the light of a 473 nm laser; dark grey symbols), thereafter employing LED 1 of oCI 2 (blue 
symbols), presented as a function of radiant flux (F, duration: 4 ms, rate: 10 Hz), stimulus duration (G, 
radiant flux: 18.1 mW (oCI), 27.3 mW (laser), rate: 10 Hz) and stimulation rate (H, radiant flux 18.1 mW 
(oCI), 27.3 mW (laser), duration: 2 ms). The oCI SDs are shown in light blue, laser SDs (only negative 
SDs shown) in light grey. 
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4.5 Discussion 

Here we demonstrate the technological fabrication and biological application of LED-based 

multichannel optical cochlear implants. The design and fabrication of these oCIs was guided by the 

diameter of scala tympani of the rat cochlea (>300 µm), as estimated from X-ray tomography, and the 

minimal bending radius to comply with (1 mm). This obviously placed constraints on the design of oCIs 

for rodents, also restricting the number of integrated LED chips, which in our case were individually 

addressed as is the case of electrodes in current clinical CIs. As the applied LED chips require currents 

in the mA-range for light emission that activates optogenetically-modified SGNs, line width and height 

were requested to be as large as possible. The LED dimensions of 270×220×50 µm³ were small enough 

for an implantation into the rat cochlea and large enough for LED assembly using flip-chip bonding. 

The LED size and pitch turned out to limit the bending radii of the oCI. Reducing probe dimensions and 

bending radii can be achieved by the integration of thin-film µLEDs, as recently demonstrated (18). The 

optical characterization of the radiant flux indicated that a sufficient optical power can be generated 

for optogenetic activation of SGNs, which was directly revealed by biological experiments. The 

temperature modeling based on measurements with passivated oCIs in contact with agarose gel 

enabled the determination of the implant temperature in a worst-case scenario without any cooling 

by the cochlear blood flow. For radiant emittances of 15 mW/mm2 at the LED surface we extracted a 

temperature increase of the integrated temperature sensor under an operated LED of approximately 

2 K. This seems acceptable according to the ISO 14708-1 standard for implantable medical devices 

limiting the temperature increase to 2 K. Future in vivo temperature measurements using the 

integrated Pt meander will help to set the upper limits for operating oCIs in the cochlea without a risk 

of overheating the surrounding tissue.  

The novel oCIs could readily be inserted into the scala tympani of the rat via the round window or 

cochleostomy and were capable of eliciting oABRs comparable to those evoked by laser-pulses but 

flanked by electrical artifacts. Since no leakage currents were observed, we assume that the artifacts 

were of capacitive origin, which calls for a better electrical shielding of the oCI supply lines. The oCI-

elicited oABRs were highly specific as they were absent when (i) the stimulating LED chip was outside 

the scala tympani, (ii) the animal was euthanized, and (iii) wild-type rats lacking ChR2-expression in 

SGNs were stimulated. Sequential insertion of several oCIs into a given rat cochlea as well as the 

subsequent insertion of one oCI in several rats was possible and compatible with function, indicating 

general utility as well as sufficient mechanical and electrical stability of the oCI prototypes. While some 

variability of oABRs was found with both experiments, it seemed less pronounced than in our previous 

experiments where oABRs were vastly different in response to the focused light of a power-LED (11).  

Importantly, maximal oABR amplitudes, thought to relate to the number of SGNs that were 

synchronously activated by the LED, were in the low µV range, quite similar to aABR, but much smaller 
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than what we had previously reported for oABRs for mice (11). This suggests better specificity of 

activation of the auditory pathway by oCIs in the present study. The observed oABR amplitudes grew 

over more than one order of magnitude of radiant flux and did not show evidence for saturation, which 

indicates a large dynamic range of optical coding (more than 20 dB, typically less than 10 dB in 

electrical CI (6)). Unlike in our previous study, where oABRs failed even below 100 Hz (11), we could 

demonstrate oABRs elicited by oCIs in ChR2-transgenic rats for stimulus rates as high as 200 Hz. While 

we cannot fully explain this discrepancy, we speculate that it, too, might relate to more specific 

activation of the auditory pathway in the present study.  

Much remains to be done in order to develop multichannel oCIs as tools for research and for future 

translation into the clinic. As an example, long-term in vitro testing of mechanical and optoelectronic 

integrity as well as chronic implantation studies of reliability and safety will be required. Moreover, 

while our study provides a basic proof of functionality for a few LEDs, future studies will aim at 

establishing and characterizing arrays with a higher emitter density. Thin-film GaN µLEDs are well 

established and can reach power efficiencies of up to 50% (25). Hence, they are good candidates as 

emitters for ‘active’ blue oCIs (12). However, as Lambertian emitters they are not ideal for providing 

highly focused optical stimulation. Focusing by micro-lenses (27) and/or ‘modiolus-hugging’ (28) in 

order to bring the oCI as close as possible to the medial wall of the cochlea and to let the LEDs directly 

face the SGN somas in Rosenthal’s canal can be expected to reduce the spread of light. However, even 

without optimization LED-stimulation might realize some spatial selectivity. In our study, a first test of 

simultaneous multichannel optical stimulation using LED-based oCIs showed an increase of oABR 

amplitude at least upon the recruitment of one additional LED. We suggest that this reflects 

independence of both LEDs regarding SGN activation to some extent, as it likely happened at different 

tonotopic positions. Future characterization of the spread of optogenetic excitation by multichannel 

µLED oCIs will require recordings from the auditory midbrain, where the central nucleus of the inferior 

colliculus provides convenient access to the tonotopic map (10, 26–28). 
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4.6 Materials and methods 

See supplemental information. 
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4.9 Supplementary information  

Supplementary materials and methods 

Supplementary Fig. S1. Fabrication of the highly flexible oCI substrates. 

Supplementary Fig. S2. Assembly and passivation of oCIs. 

Supplementary Fig. S3. oCIs do not evoke potentials in littermate control rats lacking ChR2 or in dead 

ChR2-positive rats. 

Supplementary Fig. S4. Additivity of LEDs in eliciting oABRs. 

 

Supplementary Movie S1. Visualization of implanted cochlea by high resolution X-ray tomography.  

3D-visualization of an explanted rat cochlea obtained by X-ray phase contrast tomography first 

displayed as raw X-ray sections and volume rendering representing pixel values in grey scale. 

Segmented model reveals LEDs (blue), basilar membrane (green) scala tympani (turquois) and 

Rosenthal’s canal (purple). Towards the end the camera follows the path of the oCI into the scala 

tympani via the round window. 

 

Supplementary Movie S2. Visualization of oCI stimulation in the explanted rat cochlea.  

Explanted rat cochlea submerged in thiodiethanol (to render the bone translucent) with fully 

implanted 10 LED oCI in the basal turn via the round window. LEDs were activated via fast Fourier 

transformed audio track signal.  
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4.10 Supplementary materials and methods 

4.10.1 Microfabrication of the optical cochlear implant substrates 

Figure S1 summarizes the microfabrication of the highly flexible triple layer polyimide (PI) substrates. 

Their total thickness of 15 µm results from three layers of PI and three metal layers. A first 5-µm-thick 

PI (UPIA-ST, UBE Europe GmbH, Duesseldorf, Germany) layer was spin-coated onto a silicon (Si) handle 

wafer and cured at 450°C for 3 h (Fig. S1-A). This was followed by the first metallization (platinum (Pt), 

250 nm) which was sputter-deposited after applying an oxygen plasma activation of the PI surface at 

80 W for 1 min (Fig. S1-A). This first metal layer was lift-off patterned using an image reversal 

photoresist (AZ5214E, Merck KGaA, Darmstadt, Germany). The second PI layer was spin-coated to a 

thickness of 2.5 µm and patterned using a photoresist mask (AZ9260, Merck KGaA) and reactive ion 

etching (RIE), as shown in Fig. S1-B. To improve the adhesion of this second PI layer to the PI substrate 

an oxygen plasma (80 W, 1 min) was again applied. The second metallization comprising the LED supply 

lines made use of a sputter-deposited seed layer (Pt/gold (Au)/titanium (Ti), 30/200/30 nm). The seed 

layer adhesion was improved by an argon (Ar) plasma treatment directly prior to the metal deposition. 

This was followed by deposition and patterning of a second photoresist mask, the removal of the upper 

30-nm-thick Ti adhesion layer using 1% hydrofluoric acid (HF), and electroplating of Au to a thickness 

of 1 µm for the LED wiring (Fig. S1-C). After removal of the electroplating mask, the remaining Ti and 

Au seed layers around the electroplated structures were wet etched using 1% HF and potassium 

iodide/iodine (KI/I2) solution, respectively, while the Pt layer was dry etched using an Ar plasma 

(Fig. S1-D). For the third PI layer with a thickness of 1 µm and the third metallization of the LED bond 

pads with a thickness of 5 µm we applied the same procedure as for the second layer level (Fig. S1-E-

G). The PI and thus probe patterning employed RIE using a 30-µm-thick AZ9260 photoresist as the 

masking layer (see Fig. S1-H). Finally, the oCI substrates could be peeled off the wafer using tweezers 

(Fig. S1-I). 

4.10.2 Assembly and packaging 

oCI substrates (see Fig. S2-A(i)) peeled off the handle wafer were individually turned into functional 

oCIs starting with the LED chip assembly (see Fig. S-2A(ii)). Ten LED chips (Cree® C460TR2227-S2100, 

Three Five (III-V) Materials, Inc., NY, USA) were sequentially flip-chip bonded with their n- and p-

contacts on the corresponding pads on the PI substrate. The flip-chip bonder (Fineplacer 96λ, Finetech 

GmbH, Berlin, Germany) offers an accuracy of ±5 µm; we applied a bonding force of 1.5 N at a 

temperature of 120°C and an ultrasonic energy of 300 mW. These process parameters ensure the 

mechanical and electrical interconnection of the LED bond pads to the 5-µm-high substrate pads. After 

LED assembly, we rinsed the oCIs with DI water before an Ar plasma (50 W, 1 min) cleaned and 



Multichannel LED-based cochlear optogenetics 

88 

activated the PI surface (Fig. S2-A(iii)). Immediately thereafter, the LEDs were underfilled with a solvent 

free epoxy (EPO-TEK® 301-2, John P. Kummer GmbH) (Fig. S2-A(iv)). The underfill was cured for 

12 hours in an oven at 120°C. A first polymeric encapsulation using Cytop™ 809 M (Asahi Glass Co. Ltd., 

Tokyo, Japan) was applied immediately after a further plasma treatment (Ar, 50 W, 1 min), as shown 

in Figs. S2-A(v) and A(vi). A soft bake of this passivation was performed in an oven at 50°C for 30 min 

and 80°C for 1 h. This stage of fabrication including an additional hard bake step at 180°C for 1 h was 

used for the longevity testing (Fig. 2G, H). For the oCI samples used in vivo, an oxygen plasma (50 W, 

1 min) was then applied (Fig. S2-A(vii)) to improve the layer adhesion of the final silicone (ELASTOSIL® 

RT 604, Wacker Chemie AG, Muenchen, Germany) passivation layer (see Fig. S2-A(iii)). The final 

annealing process was performed in two steps at 80 and 180°C, both applied for 1 h each.  

The top view and cross-sectional schematics in Fig. S2-B illustrate the layered structure of the oCI and 

the used materials in the LED area. Figures S2-C and D demonstrate the benefit of using a solvent-free 

underfill: when CytopTM was used as underfill gas bubbles were observed underneath the LEDs (Fig. S2-

D), while the use of the solvent-free EPO-TEK® 301-2 avoided bubble formation (Fig. S2-D). 

4.10.3 Experimental characterization 

The optoelectronic characterization of the oCIs was performed with a custom-made setup consisting 

mainly of a current source and an optical measurement system (OMS). The current source was built 

using a diode driver (iC-HKB, iC-Haus GmbH, Bodenheim, Germany) combined with an evaluation 

board from iC-Haus GmbH. The DAQ PCIe-6259 board (National Instruments, Austin, USA) was 

controlled by a LabView program. The LED current supplied by the driver and the voltage-drop over 

the oCI were measured and stored via the LabView program. In parallel, the program controls the OMS 

consisting of an integrating sphere (ISP-50-I-USB, Ocean Optics, Ostfildern, Germany) combined with 

a spectrometer (USB4000, Ocean Optics). It enables the radiant flux  as well as the spectral 

distribution of the emitted light to be determined. For this purpose, the LED-carrying tip of the oCI was 

inserted into the 8-mm-wide aperture of the integrating sphere while varying the LED current ILED from 

0 to 45 mA at a DC of 10% and a frequency of 10 kHz for the time-averaged radiant flux measurements. 

The thermal characterization was performed using the integrated Pt meander as a temperature 

sensing element. In a first calibration measurement, we extracted the resistance change of the Pt 

meander as a function of temperature between 22.5°C and 58.5°C. The resistance change was 

measured using a four-wire setup by applying a constant Pt meander current of 100 µA and measuring 

the voltage-drop along the Pt meander. The extracted temperature coefficient of resistance was 

2.71×10–3 K–1 at 37°C. In order to determine the temperature increase of an LED in operation, the oCI 

was sandwiched between two agarose gel slides kept at 37°C and simulating the thermal coupling of 

the probe to tissue. Measurements of the meander resistance and thus temperature as a function of 
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time were performed while applying LED current pulses of various magnitudes ILED and durations tp. 

For each combination of ILED and tp, 16 measurements were averaged. By fitting exponential relaxation 

functions to the data, a thermal time constant of 11.8 ms was extracted. As a second relevant 

parameter, the asymptotic temperature increase of the Pt meander under the LED was determined as 

well. The thermal model of the oCI allows predicting the maximal temperature increase for a given LED 

current, pulse duration and stimulation frequency. 

4.10.4 Passivation validation 

The characterization of the oCI encapsulation was performed with an automated leakage current test 

setup. Here, the oCI was connected via a ZIF connector to a printed circuit board (PCB) integrated into 

a tailored silicone plug of a test tube. The oCI was inserted into the test tube containing Ringer’s 

solution simulating the environment of the probe in the cochlea. The leakage test was performed by 

applying the maximum recommended LED reverse bias voltage of -5 V while measuring the leakage 

current Ileak between the n- and p-lines of the LED using a source meter (Model 2602A, Keithley 

Instruments, USA). The source meter was controlled via a GPIB interface using a LabView program 

storing the current value at predefined time intervals. The measurement was terminated once Ileak 

exceeded the set limit of 1.0 μA for 10 consecutive measurement points of Ileak. 

4.10.5 Animals 

Experiments were performed on adult wild-type and transgenic channelrhodopsin-2 rats of either sex 

(Thy1-ChR2-Venus, (20)). All experiments conformed to the local and national guidelines for the care 

and use of laboratory animals in research and were approved by the local authorities of the State of 

Lower Saxony (LAVES). 

4.10.6 Surgery 

For in vivo experiments transgenic rats were anesthetized with isoflurane (4 % at 1 l/min for induction, 

1-2 % at 0.4 l/min for maintenance) and appropriate analgesia was obtained with subdermal injection 

of buprenorphine. The animals were then placed onto a custom-designed heating blanket (37°C) on a 

vibration isolation table in a sound-proof chamber. Access to the left cochlea for stimulation was 

achieved by a retroauricular approach. Optical stimulation was performed through the round window 

or cochleostomy. For morphological studies we euthanized the animals with isoflurane and then 

explanted and fixed the cochlea. 
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4.10.7 ABR recordings 

oCIs or a 200-μm optical fiber coupled to a blue laser (473 nm, MLL-FN-473-100, 100 mW DPSS; 

Changchun New Industry Optoelectronics) were inserted into the cochlea via the round window (or 

via a cochleostomy, where indicated). The radiant flux of laser and oCIs were calibrated with a laser 

power meter (Gentec-EO Solo 2, München, Germany) and a custom built integrating sphere, 

respectively. The LED-based optical probes were controlled via digital-to-analog (DA) outputs achieving 

pulse sequences with a resolution of 2 µs driven with an operational amplifier. The light output was 

defined by the voltage output of the the DA. ABRs were recorded by needle electrodes underneath 

the pinna, on the vertex, and a reference electrode on the neck. The differential potential between 

vertex and mastoid subdermal needles was amplified using a custom-designed amplifier (gain 10,000), 

sampled at a rate of 50 kHz (NI PCI-6229, National Instruments), and filtered off-line (0.3 kHz to 3 kHz 

Butterworth filter) for acoustically and optically evoked ABRs. 

Stimulus generation and presentation (acoustic and optic), and data acquisition were realized by a 

customized software in MATLAB (The MathWorks, Inc.) employing National Instruments cards in 

combination with custom-built hardware to amplify and attenuate audio signals. In case of acoustically 

evoked ABRs, clicks of 0.3 ms length were presented in an open near field via a single loudspeaker 

(Vifa, Avisoft Bioacoustics) placed on average 30 cm in front of the animal at the level of the animal’s 

head. Sound pressure levels were calibrated with a 0.25-inch microphone (D 4039, Brüel & Kjaer 

GmbH) and measurement amplifier combination (2610; Brüel & Kjaer GmbH). 

4.10.8 X-ray tomography 

Positioning of the oCI was confirmed with phase-contrast tomography at a compact laboratory X-ray 

source essentially as previously described (22). The custom-built cone-beam in-line tomography 

instrument equipped with a liquid-metal X-ray source (JXS D2, Excillum, Sweden) operated at 70 kV 

acceleration voltage was combined with a 20 µm LuAG-scintillator-based fiber-coupled CCD detector 

(6.5 μm pixel size; C12849-102U; Hamamatsu). Fast Fourier-based phase reconstruction was used to 

calculate the image volume. Reconstruction was performed using the ASTRA toolbox (29, 30). 

Segmentation and 3D visualization of the reconstructed volume was performed with Avizo 3D 9 

(Visualization Sciences Group, FEI Company). Automatic histogram-based segmentation was used to 

visualize bony structures. The basilar membrane, Rosenthal’s canal, scala tympani were traced with 

semiautomatic segmentation. Insertion depth was measured with a fitted spline curve to markers 

along the oCI.  
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Figure S1. Fabrication of the highly flexible oCI substrates. 

(A) Spin coating of first PI layer on Si handle wafer and lift-off patterning of Pt metal lines forming the 
temperature-sensing element in the first metallization layer. (B) Spin coating of second PI layer, RIE 
patterning to open vias using photoresist mask. (C) Deposition of metal seed layer and patterned Au 
electroplating of the second metallization using a second photoresist mask. (D) Resist strip and seed 
layer etch. (E) Spin coating of the third PI layer and via opening using a third photoresist mask and RIE. 
(F) Metal seed layer deposition and patterned Au electroplating of the third metallization. (G) Resist 
strip and seed layer etch. (H) oCI probe patterning using a fourth photoresist mask and RIE. (I) 
Photoresist strip and peeling the patterned optical probes off the handle wafer. 
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Figure S2. Assembly and passivation of oCIs. 

(A) Individual LED assembly on the (i) flexible PI substrate using (ii) flip-chip bonding and (iii) surface 
cleaning and adhesion promotion using argon plasma treatment. (iv) LED underfill with EPO-TEK® 301-
2. (v) Argon plasma treatment for adhesion promotion and surface cleaning. (vi) Inner CytopTM 
encapsulation. (vii)  Oxygen plasma treatment for adhesion promotion and surface cleaning. (viii) 
Outer silicone encapsulation. (B) Schematic of an LED on a PI substrate illustrating the underfill and 
exposed materials. (C) Perfectly underfilled LED by using solvent-free EPO-TEK® before applying the 
CytopTM- and silicone encapsulation layers. (D) Underfill grade of 77 % by applying CytopTM showing 
gas bubbles. 
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Figure S3. oCIs do not evoke potentials in littermate control rats lacking ChR2 or in dead ChR2-
positive rats. 

Upper two traces show stimulus-locked average response to intracochlear LED-based oCI stimulation 
in a ChR2-positive rat before (blue: clear oABR, p1 labeled by an asterisk, 18.1 mW, 10 Hz stimulus 
rate, 4 ms stimulus duration) and after euthanizing (red, no oABR, only artifacts) for reference. Lower 
three traces were obtained from a ChR2-negative littermate rat at different light intensities (9.0 to 
18.1 mW, 10 Hz stimulation rate, 4 ms stimulation duration). The oCI was placed in the middle cochlear 
turn via a cochleostomy in all cases. Stimulus is displayed as blue bar. 
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Figure S4. Additivity of LEDs in eliciting oABRs. 

The oCI was placed on the middle cochlear turn via cochleostomy. oABR amplitude of p1 recorded 
from one rat with subsequent addition of up to four LEDs (light to dark blue) as a function of radiant 
flux (A), stimulus duration (B) and stimulation rate (C). LED 1 was inserted for about 3 mm, LED 4 was 
at the bony edge of the cochleostomy. 
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5 Discussion 

5.1 Temporal fidelity 

First demonstration of optogenetic stimulation of the auditory nerve in rodents was demonstrated by 

(Hernandez et al., 2014) in ChR2-transgenic mice under the broad neural promoter Thy1.2. Using 

transgenic animals was sufficient for first basic questions. Hernandez et al. could show activation of 

the auditory pathway with blue light. Further, use of a viral vector injected in mouse embryos on day 

11.5 with AAV2/6-hSyn carrying the ChR2 mutant CatCh was reported successfully. However, activity 

broke down at simulation rates higher than 70 Hz, well below the temporal fidelity needed for hearing 

restoration (Hernandez et al., 2014). The auditory nerve employs spontaneous firing rates of up to 

120 Hz (Liberman, 1978; Schmiedt, 1989) and sustained firing rates of several hundreds of Hz in 

mammals (Taberner and Liberman, 2005). For assumptions in humans computational models might 

close the gap from animal models to humans as physiological studies of the auditory nerve are only 

available for animals due to the invasive nature of those experiments (Verhulst et al., 2018). Recently, 

Wrobel et al. 2018 used a direct modiolar AAV-CatCh injection in adult gerbils achieving population 

responses up to 200 Hz of stimulation. The difference with the previous study likely indicates more 

specific activation of the auditory pathway, as indeed, the amplitudes of the optical evoked population 

responses were comparable to acoustic auditory brainstem responses (Wrobel et al., 2018) while they 

were 1-3 orders greater in the previous study (Hernandez et al., 2014). Juxtacellular recordings from 

individual auditory nerve fibers showed well-synchronized responses to light pulses up to 

approximately 125 Hz with some fibers following up to 500 Hz with decreased vector strength. While 

these results indicate that CatCh-mediated optogenetic activation of SGNs might enable near 

physiological firing rates, improving temporal fidelity remained an important objective. 

Therefore, in chapter 2 we biophysically characterized one of the most promising candidates for 

translation to humans: Chronos is among the fastest ChRs described to date (Klapoetke et al., 2014). 

Chronos has been used successfully in the cochlear nucleus (Hight et al., 2015), inferior colliculus (Guo 

et al., 2015) and the cochlea (Duarte et al., 2018). In our study (Keppeler et al., 2018) we found 

deactivation time constant of 3 ms (chapter 2) compared to ChR2 (deact = 9.4 ms) and CatCh 

(deact ∼ 16 ms) at room temperature. At body temperature, the deactivation time constant for 

Chronos even drops below one millisecond. The ultrafast ion-channel showed sizable oABRs on 

population level of up to 1000 Hz of stimulation and firing of single SGNs in response to trains of light 

pulses at hundreds of Hz with sub-millisecond temporal precision. These findings promise the 

possibility of physiological spiking of the optogenetically-driven auditory nerve. 
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5.2 Optogenetic manipulation of spiral ganglion neurons 

ChRs enabling neurons to spike upon light are key to enable optical cochlear stimulation. High 

transduction efficiency of SGNs within the Rosenthal’s canal and efficient trafficking of ChRs in the cell 

membrane for high light sensitivity and low proteostatic stress are important factors to consider for 

functional optogenetic hearing restoration. First, the neuronal cells in the cochlea need to be targeted. 

Most commonly, delivery of genes is achieved via virus-mediated gene transfer. This method harbors 

the benefit of high flexibility with the use and characterization of new ChR variants (Klapoetke et al., 

2014; Mager et al., 2018; Mardinly et al., 2018). Various viruses have been tested for suitability as viral 

vectors, however, only few are considered safe for application in humans (Kantor et al., 2014). 

Usage of viral vectors has the theoretical risks of cell toxicity, their malignant transformation and 

immune responses. Non-viral vectors have been used to transduce the cochleae with plasmids through 

electroporation (Pinyon et al., 2014) or attached to nanoparticles (Praetorius et al., 2007) though cell 

targeting can be limited to directly neighboring cells (Pinyon et al., 2014) and poor transduction 

efficiency has been reported (Staecker et al., 2001). 

Here, we focused on AAV-mediated gene transfer which has been most commonly used and AAV has 

emerged as one of the safest vectors to date (Lentz et al., 2012). Most critical for AAV-mediated gene 

transfer is the selection of the appropriate serotype and viral titer while age at injection appears to 

have less influence on expression levels (Yoshimura et al., 2018). Further, the viral titer correlates 

directly with general safety (Ramachandran et al., 2017). 

While cochlear optogenetics previously embarked on AAV2/6 (Hernandez et al., 2014; Mager et al., 

2018) our recent study presented in chapter 2 of this thesis used a novel AAV serotype (Deverman et 

al., 2016) with improved efficiency of neural transduction. Moreover, after initially employing 

transuterine AAV-injections we finally focused on postnatal injections that proved efficient and present 

less harm to the animals. We kept the human synapsin promoter, successfully used before for SGN-

specific transduction in the cochlea (Hernandez et al., 2014; Mager et al., 2018). Using postnatal 

injections of AAV-PHP.B substantial SGN transduction across all cochlear turns was revealed by 

immunohistochemistry, which is an important advance over the primarily basocochlear expression 

found with transuterine AAV2/6-injection. While high transduction rates were also found with AAV-

PHP.B carrying the original Chronos construct, optogenetic stimulation was not efficient owing to the 

poor membranous expression of Chronos. Only 47% of Chronos animals showed auditory population 

responses, while 95% of injected animals showed reliable peaks for Chronos-ES/TS also using the AAV-

PHP.B vehicle. Cell membrane targeting is essential for functional expression of Chronos which was 

achieved appending sequences for improved exit from the endoplasmic reticulum (ES) (Ma et al., 2001; 
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Stockklausner et al., 2001) and trafficking to the plasma membrane (TS) (Hofherr, 2005). Improved 

targeting also comes with the advantage of less proteostasis. 

In research, ChRs are fused to a florescent reporter to visualize expression effectively. For translation 

to humans it might be necessary to remove the reporter due to immune responses caused by the 

fluorescent protein (Stripecke et al., 1999) which, however, so far has not been reported for 

immunologically privileged organs like the eye (Dalkara et al., 2013). 

5.3 Light-tissue interaction 

When light is applied to tissue, photons interact with organic material in diverse manners, which can 

be mainly reduced to scattering and absorption. While scattering mostly alters the propagation path 

spreading the photons over a large area, absorption leads to energy conversion from light to 

vibrational energy within the absorbing molecules. To reduce scattering in tissue in the most effective 

way one could match the refractive index as proposed for in vivo imaging (Boothe et al., 2017), 

however, this technique would be limited to acute, laboratory experiments and not be feasible for 

translation. More realistically one could make use of red-shifted ChRs. Naturally, longer wavelengths 

harbor the benefit of increased penetration depth and more localized targeting of SGNs due to reduced 

scattering (Jacques, 2013). Narrower spread of excitation would ultimately allow a higher number of 

stimulation channels. Further, blue-light stimulation harbors a higher risk of photo-toxic damage to 

cells and tissue (Stockley et al., 2017). In principle, all wavelength of light can be harmful to cells in 

vitro depending on the dose (Frigault et al., 2009). However, the shorter more energetic wavelengths 

below 500 nm are particularly damaging (Wäldchen et al., 2015), thus, stimulation with red-shifted 

wavelength can reduce potential cellular harm (Mager et al., 2018; Magidson and Khodjakov, 2013). 

For the commonly used 470 nm blue light stimulation, a temperature increase of up to 1 K was 

reported depending on stimulation protocol (Gysbrechts et al., 2016), not considering additional heat 

evolving with active stimulators (e.g. 2 K directly at LED) as described in chapter 4. Temperature shifts 

not reaching the threshold for tissue damage might still influence cellular physiology (Moser et al., 

1993) and animal behavior (Long and Fee, 2008). Thermal effects towards the SGNs will likely be 

attenuated due to the circulating perilymph within the scala tympani along with the decay in distance, 

which is in the range of a few hundred micrometers in mice to several hundred in non-human primates. 

5.4 Advances in oCI development 

Development of optical cochlear implants heavily depends on technical advances to overcome size 

limitations within the bony boundary of the cochlea. Therefore, we employed phase-contrast X-ray 

tomography to reveal requirements given by cochlear morphology of commonly used animal models. 

This detailed study was necessary as a systematic reference was missing. The few studies available 
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used various methods from micro-dissection, microscopic analysis to phase-contrast X-ray 

tomography, which makes direct comparison difficult. Further, the majority of publications focus on 

cochlear mechanics or eCIs and lack volumetric descriptions of the Rosenthal’s canal or SGN count 

which is particularly interesting for optogenetics as the auditory nerve needs to be genetically 

manipulated, thus requiring injection of a viral vector. 

For a light emitting device, an active and a passive design are discussed (Moser, 2015). Active optical 

stimulators make use of LEDs (Schwaerzle et al., 2016b), LEDs (Goßler et al., 2014; Klein et al., 2018) 

or OLEDs (Steude et al., 2016). Fitting the micro-scaled scala tympani with its several turns presents a 

major technological challenge as it requires a highly flexible oCI design and miniaturized light emitters. 

Further, placing the optoelectronics of active oCIs within the cochlea necessitates robust passivation 

of the probe so that the circuit paths are well isolated from the highly conductive perilymph without 

the encapsulation absorbing or scattering the emitted light. Passive optical emitters consist of an 

waveguide array (Schwaerzle et al., 2016a) directing light from remote light sources. Typically vertical-

cavity surface-emitting lasers (VCSELs) (Tien-Chang Lu et al., 2009) or laser diodes could be used as a 

light sources. The biggest advantage of a waveguide based oCI would be that all active electronic parts 

would stay outside the spatially constrained cochlea, thus enabling robust sealed housing e.g. in a 

titanium case. Further, the intracochlear temperature increase discussed in chapter 4.3 can be largely 

neglected. A drawback for passive designs is the loss of light occurring during coupling and outcoupling 

into/from the waveguide. Optical beam-steering could improve the spread of light at the outcoupling 

spot regardless of the two design modalities: Microlenses (Huang et al., 2017) or microprisms (Reardon 

et al., 2009). However, the rigid lenses or prisms can negatively impact flexibility of the probe thus 

impeding smooth implantation into the scala tympani. 

Design of LED implant prototypes based on morphological parameters enabled insertion in mouse 

cochleae for first proof-of-principle experiments. The probe was oriented optimal, with the emitters 

facing the Rosenthal’s canal and an insertion depth of 4.6 mm corresponding to 71% of scala tympani. 

These findings exceed all previously reported implantation depth for mice (Irving et al., 2013; Mistry 

et al., 2014). 

For functional studies we moved on to the larger rat cochlea with oCIs carrying larger and power-

efficient LEDs for higher light output (chapter 4). The LED arrays could be implanted into the scala 

tympani, with then usually five intracochlear LEDs, each of which was capable of eliciting oABRs in ann 

additive manner. Subsequent re-insertion of the optical probe into cochlea demonstrated sufficient 

mechanical stability. However, artifacts occurred at stimulation onset and offset and flanked or even 

occluded the optical ABR. Hence, encapsulation and passivation need to be improved to exclude 

current leakage and interference with electrophysiological recordings. 
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Measurements of cochlear morphology helped to develop first chronic oCI experiments and evluate 

cochlear light spread by computer simulations (Wrobel et al., 2018). Fiber-based single channel 

implants could be established in a deafened gerbil model. As the light spread of the optical fiber within 

the cochlea could not be determined, a 3D model was used for Monte Carlo ray tracing to simulate the 

irradiance at stimulation site. Based on the maximum light intensity used in experiments (30 mW), the 

estimated maximal irradiance at the SGN somata was well within the safe range of optogenetic in vivo 

applications (Cardin et al., 2010; Han, 2012). 

For the first time, we demonstrated an acoustic perception in behavioral experiments upon optical 

stimulation in the cochlea: In avoidance behavior experiments gerbils responded to sound and light 

alike indicating an acoustic percept in both cases. 

In parallel to improvements specific for optical stimulators, oCIs might also profit from ongoing 

attempts to further advance conventional eCIs: One approach focuses on decreasing the distance from 

stimulator to spiral ganglion within the volume of the scala tympani: a modiolus-hugging probe made 

of a shape memory polymer could be pre-shaped prior to implantation with a given curvature (Ajieren 

et al., 2016). The array is straight and relatively stiff prior to insertion which enables directing it towards 

implantation site. Upon insertion the probe warms up to body temperature and reconstitutes to its 

coiled shape. Thereby, the memory-shape polymers promise a straightforward insertion and 

atraumatic modiolus-hugging in oCI decreasing the distance of Rosenthal’s canal. 

Also, application of hydrogel particles to the rear side of the CI was proposed: Located in the tympanic 

space of the cochlea, polymer components enlarge by absorbing liquid of the perilymph, thus, 

passively directing the probe further proximal (Stieghorst et al., 2016). 

5.5 Current and future work 

The key question remains: Is optical stimulation of the cochlea superior to electrical stimulation? How 

spatially confined is optical stimulation and how much better is the frequency resolution that can be 

achieved compared to that of eCI? This question cannot be addressed on ABR level, but requires 

analysis of higher stages along the auditory pathway. Commonly multichannel electrode recordings in 

the inferior colliculus (IC) or in the auditory cortex are used to indirectly investigate spatial spread of 

excitation within the cochlea. A preliminary assessment about optical spatial spread of stimulation was 

provided by (Hernandez et al., 2014) in mice: An optical fiber was placed in the basal turn of the cochlea 

while recording local field potentials with a multichannel tungsten electrode located in the IC. The 

largest response was detected in the most ventral region of the IC coding for high frequencies as 

expected from fiber stimulation close to the round window. Spread of excitation for optogenetic 

stimulation was comparable to acoustic stimulation and significantly narrower compared to electrical 

stimulation. 
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Figure 7. X-ray volume rendering of a chronically implanted gerbil. 

Volume rendering of a gerbil chronically implanted with an intracochlear LED probe (blue) and a 
flexible subcutaneous polyimide cable (orange) reaching the vertex of the gerbil head. The inset shows 
the well-placed LED array (blue) in the scala tympani facing the Rosenthal’s canal (purple). The 
implantation was atraumatic and did not show damage to the basilar membrane. Scale bar: 0.5 mm. 
For future experiments, a mobile processor (right top) could be used to enable wireless stimulation. 
The 3D model of the mobile processor was derived from 2D drawings of Daniel Weihmüller. Scale bar: 
3 mm. 

However, all current studies so far used single channel optical stimulation. Therefore, chronic 

implantation with multichannel oCIs will be essential to further address remaining questions. 

Behavioral experiments need to demonstrate the quality of the perceived input. Ongoing efforts focus 

on improvement of passivation and encapsulation of active oCIs to be used for chronic behavioral 

experiments. In a first proof-of-principle experiment chronic implantation was successful in gerbils 

(chapter 5, Figure 7) and showed detectable oABRs over the time course of one week (data not shown). 

However, passivation of the LED probe was not sufficient to prevent stimulation onset and offset 

artifacts, which were growing over time so that reliable ABR peak detection was not possible after one 

week. The nature of the artifact has not yet been entirely resolved: During implantation and 

subsequent bending of the fragile probe, hair-line cracks in the passivation layer could occur. This 

would allow water to reach the circuit paths through the vapor-permeable silicone layer. Additional 

passivation, based on chemical vapor deposited polymers like Parylene-C could diminish artifacts (Yang 
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et al., 2017). Another possibility would be cold plasma surface treatment for hydrophobization (Waters 

et al., 2017). 

Chronic implants would enable behavior experiments like the discrimination task based on the  well-

established shuttle-box paradigm (Wrobel et al., 2018). Thus, the question on spatial spread and 

independent channels for oCIs could be addressed also based on behavioral experiments. To match 

the needs for medical application, we have developed a mobile processor to enable optical stimulation 

in freely-moving animals (chapter 5, Figure 7) in long-term behavior experiments. 
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6 Outlook 

The development of an oCI is an intricate and multifaceted process. A number of independent 

technologies must be brought together before clinical translation to the human ear can be realized 

which essentially includes three steps. (1) Recombinant genetics: SGNs need to be genetically modified 

to allow light stimulation. Here, most likely adeno-associated viruses will be the vector of choice 

provided successful demonstration of biosafety, lack of oncogenic potential and long-term stability 

tests in higher vertebrates. (2) Biological application: the selection of the light-gated ion channel itself, 

i.e. the ChR of choice. Defining and evaluating parameters like action spectrum, gating kinetics and ion 

selectivity of available ChRs are crucial for future success. (3) Engineering technology: Development of 

appropriate linear arrays of light emitters, considering the limiting microscale dimensions of the 

intracochlear part, is critical. Here, one possible way is to place an active microscale stimulator within 

in the cochlea harboring conventional LEDs (Goßler et al., 2014; Klein et al., 2018; Park et al., 2015) or 

organic LEDs (Steude et al., 2016). Another possibility would be a passive approach using waveguides 

propagating light from an extracochlear light source (e.g. laser diode, VCSEL) to outcoupling spots 

placed along the tonotopic axis of the cochlea (Schwaerzle et al., 2016a). Further aspects to consider 

are number and pitch of the emitters, beam profile, maximum irradiance, available emission 

wavelengths and built-up of temperature, as well as energy consumption ultimately determining 

battery life.  

The number of independent channels is limited by the spatial spread of the excitation from each 

emitter and needs to be evaluated. In comparison to electrical stimulation where current readily 

spreads far from each contact, light can be spatially confined, keeping in mind the aforementioned 

technical aspects like numerical aperture and emitter size as limiting factors with regards to this. 

Additionally, knowledge about the amount of light required for auditory perception is scarce to this 

date necessitating animal behavior experiments to address this question. Furthermore, a coding 

strategy needs to be developed that will likely differ from the well-established strategies used for 

electrical stimulation. For example, while electrical stimulation does not allow simultaneously 

addressing multiple electrodes due to channel cross-talk, multiple emitters can likely be used at the 

same time for optical stimulation thus enabling stimulation patterns fundamentally different from 

currently available coding strategies. For validation, optically-evoked electrophysiological data from 

higher regions of the auditory pathway and psychophysical data are indispensable for developing 

optical coding strategies. Ultimately, if the oCI can be developed into a medical device, the 

optimization of the coding strategy will benefit from feedback of human subjects in clinical trials. 

First translation to the clinic might be achieved by using hybrid implants consisting of an oCI as well as 

a state-of-the-art eCI. Here, the eCI could act as a backup solution in case of complications with the 
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optical stimulation. Furthermore, a combination of electrical and optical stimulation could be 

discussed with a subthreshold electrical stimulus being presented prior to an optical pulse lowering 

the respective required threshold. 

However, before these can be implemented biocompatibility tests of encapsulation and passivation 

compounds (e.g. medical grade silicone) are necessary. Long-term stability tests are needed to ensure 

functionality over decades and to guarantee that metal ions or other substances used for light emitters 

are well insulated from the patient’s body. 

All these building blocks are crucial for forthcoming application of oCI in humans. This thesis takes on 

the project at an early stage of the oCI project thus addressing basic questions for future translation 

to humans. The main goal of this thesis was to demonstrate feasibility of optogenetic stimulation of 

the cochlea and lay groundwork for future oCIs. Here, the focus laid on genetic modification of SGNs, 

optimization and characterization of a promising new opsin, the study of morphological features 

enabling cochlear implantation in common animal models in auditory neuroscience and the 

demonstration of feasibility of first multi-channel oCIs in rats. Beyond the auditory field, conclusions 

can be related to the field of optogenetics and sensory restoration.

7 Summary 

This thesis introduces the ultra-fast channelrhodopsin Chronos to the auditory system matching 

temporal fidelity needed for auditory coding. We provide a comprehensive analysis of the cochlear 

morphology of animal models commonly used in auditory neuroscience laboratories. Further, we 

demonstrated, for the first time to my knowledge, first functional results with multichannel optical 

cochlear implants in rat cochleae. These preclinical studies achieved major steps towards developing 

the optical cochlear implant for clinical translation. However, many more milestones need to be 

addressed before the optical cochlear implant can be developed into a medical device for improved 

hearing restoration. 
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