2,389 research outputs found

    Modeling of linear fading memory systems

    Get PDF
    Motivated by questions of approximate modeling and identification, we consider various classes of linear time-varying bounded-input-bounded output (BIBO) stable fading memory systems and the characterizations are proved. These include fading memory systems in general, almost periodic systems, and asymptotically periodic systems. We also show that the norm and strong convergence coincide for BIBO stable causal fading memory system

    Codes for QPSK modulation with invariance under 90 degrees rotation

    Get PDF
    The new rate 1/2 nonlinear convolutional codes for quadrature phase shift keying (QPSK) modulation allow the achievement of full 90 degree rotational invariance of coded QPSK signal sequences at no significant loss in real coding gains when compared to linear codes. For mobile communication systems operating in a fading environment with frequent periods of low signal-to-noise ratio and the possibility of losses of carrier phase synchronization in the receiver, the invariance to 90 degree ambiguous demodulation should be a significant advantage

    Data based predictive control: Application to water distribution networks

    Get PDF
    In this thesis, the main goal is to propose novel data based predictive controllers to cope with complex industrial infrastructures such as water distribution networks. This sort of systems have several inputs and out- puts, complicate nonlinear dynamics, binary actuators and they are usually perturbed by disturbances and noise and require real-time control implemen- tation. The proposed controllers have to deal successfully with these issues while using the available information, such as past operation data of the process, or system properties as fading dynamics. To this end, the control strategies presented in this work follow a predic- tive control approach. The control action computed by the proposed data- driven strategies are obtained as the solution of an optimization problem that is similar in essence to those used in model predictive control (MPC) based on a cost function that determines the performance to be optimized. In the proposed approach however, the prediction model is substituted by an inference data based strategy, either to identify a model, an unknown control law or estimate the future cost of a given decision. As in MPC, the proposed strategies are based on a receding horizon implementation, which implies that the optimization problems considered have to be solved online. In order to obtain problems that can be solved e ciently, most of the strategies proposed in this thesis are based on direct weight optimization for ease of implementation and computational complexity reasons. Linear convex combination is a simple and strong tool in continuous domain and computational load associated with the constrained optimization problems generated by linear convex combination are relatively soft. This fact makes the proposed data based predictive approaches suitable to be used in real time applications. The proposed approaches selects the most adequate information (similar to the current situation according to output, state, input, disturbances,etc.), in particular, data which is close to the current state or situation of the system. Using local data can be interpreted as an implicit local linearisation of the system every time we solve the model-free data driven optimization problem. This implies that even though, model free data driven approaches presented in this thesis are based on linear theory, they can successfully deal with nonlinear systems because of the implicit information available in the database. Finally, a learning-based approach for robust predictive control design for multi-input multi-output (MIMO) linear systems is also presented, in which the effect of the estimation and measuring errors or the effect of unknown perturbations in large scale complex system is considered

    Efficient Multidimensional Regularization for Volterra Series Estimation

    Full text link
    This paper presents an efficient nonparametric time domain nonlinear system identification method. It is shown how truncated Volterra series models can be efficiently estimated without the need of long, transient-free measurements. The method is a novel extension of the regularization methods that have been developed for impulse response estimates of linear time invariant systems. To avoid the excessive memory needs in case of long measurements or large number of estimated parameters, a practical gradient-based estimation method is also provided, leading to the same numerical results as the proposed Volterra estimation method. Moreover, the transient effects in the simulated output are removed by a special regularization method based on the novel ideas of transient removal for Linear Time-Varying (LTV) systems. Combining the proposed methodologies, the nonparametric Volterra models of the cascaded water tanks benchmark are presented in this paper. The results for different scenarios varying from a simple Finite Impulse Response (FIR) model to a 3rd degree Volterra series with and without transient removal are compared and studied. It is clear that the obtained models capture the system dynamics when tested on a validation dataset, and their performance is comparable with the white-box (physical) models

    Digital adaptive flight controller development

    Get PDF
    A design study of adaptive control logic suitable for implementation in modern airborne digital flight computers was conducted. Two designs are described for an example aircraft. Each of these designs uses a weighted least squares procedure to identify parameters defining the dynamics of the aircraft. The two designs differ in the way in which control law parameters are determined. One uses the solution of an optimal linear regulator problem to determine these parameters while the other uses a procedure called single stage optimization. Extensive simulation results and analysis leading to the designs are presented

    Perspective on unconventional computing using magnetic skyrmions

    Full text link
    Learning and pattern recognition inevitably requires memory of previous events, a feature that conventional CMOS hardware needs to artificially simulate. Dynamical systems naturally provide the memory, complexity, and nonlinearity needed for a plethora of different unconventional computing approaches. In this perspective article, we focus on the unconventional computing concept of reservoir computing and provide an overview of key physical reservoir works reported. We focus on the promising platform of magnetic structures and, in particular, skyrmions, which potentially allow for low-power applications. Moreover, we discuss skyrmion-based implementations of Brownian computing, which has recently been combined with reservoir computing. This computing paradigm leverages the thermal fluctuations present in many skyrmion systems. Finally, we provide an outlook on the most important challenges in this field.Comment: 19 pages and 3 figure
    • …
    corecore