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that curvature of the boundary of the convex hull is consistent with the 
fact that the Mapping Theorem cannot be used to obtain the desired 
convex hull. 

convp(.jw, Q )  = conv{p[,jw, q * ( d ,  e)]  : 0 E [O. 2 ~ 1 ) .  

Prooj? In the proof to follow, it is convenient to use the 
shorthand notation P, to denote the right-hand side above. First, 
note that convp (jw, Q )  is easily seen to be a subset of P, because 
U * ( & ,  0)  E Q for all 8 E [0, 2 ~ 1 .  Therefore, to complete the proof, 
we fix some zo E convp (.id. Q) and must show that to E P,. 

Proceeding by contradiction, if zo 6 P,, the Separating Hyper- 
plane Theorem (for example, see [4]) guarantees that the point zo 

can be strictly separated from the closed convex set P,. Hence, 
there exists some nonzero complex number 9 E C such that 

(v. Z O )  > ( 'V ,  P) 

for all p E P,. Now taking 

It is also important to recall that in a rolbust stability context, the 
convex hull can be readily exploited. That i,s, if p (s. y) has invariant 
degree and p ( s ,  qo)  is stable for some q" E Q, then satisfaction 
of the zero exclusion condition 0 $! c0nv.p (jw, Q )  for all w 2 0 
guarantees robust stability. For the example at hand, monicity of 
p ( s .  q )  guarantees invariant degree, and it is easily verified that 
with nominal uncertainty y = qo = 0, the polynomial p ( s .  q o )  
is stable. After carrying out a preliminary frequency sweep while 
plotting convp (jw% Q ) ,  it was determined that for robust stability 
purposes, the critical range is 1 5 w 5 5. In Fig. 2, the plot is shown 
with a frequency separation Aw = 0.25. Since zero is excluded 
from the convex hull at all frequencies, this family of polynomials 
is deemed to be robustly stable. 

00 = arg 9 

V. CONCLUSION 

In this paper, the notion of mappability was introduced. This 
demonstrated that one can handle much 1ar;Eer classes of uncertainty 
structures than those addressed by the Mapping Theorem. This work 
suggests that an approach based on convexification may be fruitful 
for even more complicated robustness problems. 

we divide both sides above by ) I / )  and obtain 

(eJ'O, z O )  > (e i0 ' ,  p) 

for all p E P,. Equivalently 

( e J 0 ' ,  2 0 )  > niax ( e J 0 ' ,  p). (1) 
P t P ,  
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The proof is now complete because this inequality contradicts ( 1 ) .  
Abstract-Motivated by questions of approximate modeling and iden- 

tification, we consider various classes of linear time-varying bounded- 
input-hounded output (BIBO) stable fading memory systems and prove 
some characterizations of them. These include fading memory systems, 

IV. NUMERICAL EXAMPLE 

In this section, we illustrate the application of the Generalized .. 

Mapping Theorem. To this end, we consider the nonlinear uncertainty 
structure in the example of Section 11-F and assume uncertainty 
bounds q2 E [0, 11 for i = 1, 2, 3, 4 and specific nonlinearities 

in general, almost periodic systems, and asymptotically periodic systems. 
We also show that norm and strong convergence coincide for BIBO stable 
causal fading memory 

cr"l(Q3) =413 + 2 2  

$ 9 3  (44 1 = - (U4 - 0 . v  

f4(U4)  = cos q4. 

W ( y 3 )  = C O S  243 

In Fig. 1, the convex hull of the value set is shown for frequency 
w = 1. For validation purposes, this figure also includes a plot 
of 10000 sample points which were obtained via random Matlab 
evaluations of p (jw. U); a uniform distribution over [O, 11 was used 
for each component qt of q .  It is interesting to note that the outward 

I. INTRODUCTION 

Recently, an intense research effort has taken place in the emerging 
field of identification for robust control [211, [9], [20], [6 ] ,  [17], 
[24], [7], [15], [14]. Both stochastic and nonstochastic approaches to 
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system identification have been studied in this context, often under 
the assumption that the true plant is a linear time invariant (LTI) 
system. However, real plants are often at least slightly time-varying 
due to wear of equipment, component aging, and other reasons. 

In the present paper we shall consider modeling of causal bounded- 
input bounded-output (BIBO) stable linear time-varying (LTV) sys- 
tems and derive results for several classes of such LTV systems. 
Classes of BIBO-stable LTV systems that will be studied in this paper 
include: fading memory (FM) LTV systems [2], [19] and various 
subsets of FM systems, such as almost periodic LTV systems and 
asymptotically periodic systems. The aim is to derive results that are 
important in understanding certain fundamental issues of modeling 
and identification of such systems rather than to derive concrete 
identification algorithms. One of the main questions considered here 
is how to obtain efficient model parameterizations for various classes 
of LTV systems. For a separable space such as the space of BIBO 
stable causal LTI systems, it is possible to use different bases to 
obtain useful model parameterizations. However, for LTV systems 
the notion of basis turns out to be less inviting. We also discuss the 
relevance of different convergence notions for systems (operators) 
and derive some results in this connection. 

The methods we use are mostly those of approximation theory. 
Although many papers have been written on identification of certain 
types of LTV systems for adaptive control, approximation concepts 
have not received enough attention. However, Zames ef al. [23], 
[lo] have obtained several interesting results on identification of 
slowly-varying systems using such concepts. 

In Section I1 we give some mathematical preliminaries. Fading 
memory systems and strongly fading memory systems are considered 
in Section 111. Asymptotically periodic and almost periodic systems 
are considered in Section IV. 

11. MATHEMATICAL PRELIMINARIES 

Let LL denote the space of bounded real sequences ( u ( T L ) ) ~ = ~  
with norm \lull = Iu(n)i, and let CO denote the closed linear 
subspace consisting o f a l l  sequences ( u ( n ) )  which tend to zero. 
Further, let coo be the subspace consisting of all eventually zero 
sequences, so that U E COO if and only if there exists -1- 2 1 such 
that U(.) = 0 for all 11 2 N .  Equivalently U E COO if and only 
if U is a finite linear combination of the vectors el = (1: 0.0. '  .), 
e2 = (0 ,1 :0 .0 , . . . )  . . . . .  

We shall also require spaces indexed by the whole set of integers, 
so we write 1, for the space of bounded real sequences (U(TL)),SO 
indexed by the nonpositive integers. We thus have a decomposition 
of 1, = L, (2) into 1, @ !&. We write COO (2) for the space of 
finitely supported sequences, i.e., the linear span of ( e k ) k t Z .  

Given any normed space X ,  the space L , ( X )  will be defined 
to be the space of all (one-sided) bounded sequences ( ' c ~ ) ~ ~ I  with 
norm Il(zt)ll = supt2l Ilztll. The subspace C O ( X )  consists of all 
sequences ( z f ) t 2 1  such that llzfll -+ 0 as t -+ x. 

In many approximation and identification situations it is convenient 
to be able to parameterize the space of candidate models in a linear 
way. For it to be possible to approximate 'all possible models by 
models depending on only finitely many parameters, it is necessary 
that our model space X be separable, that is, that it possesses 
a countable dense subset. Often this is assumed implicitly, and a 
priori information is assumed which makes the system lie in a 
relatively compact (and thus separable) set of models. Equivalently, 
X is separable if it is the closure of an increasing union of finite- 
dimensional subspaces 

X = U X .  
n > l  

where each X, is finite-dimensional (without loss of generality, 
dim X, = n for each n) and XI C Xz  C . . .. We call the sequence 
(,Xn),21 a model set (cf. [13]). Models in X can be approximated 
arbitrarily closely by a suitable choice of X,, and each model in X ,  
depends on only finitely many parameters. If (z,) is a sequence in 
X with dense linear span, then defining X ,  to be the linear span of 
{zl. . . . (I:,} for each n gives rise to a model set. 

We shall be interested in various notions of convergence of 
operators on normed spaces. Let X be a normed space and X "  its 
dual space. Recall that the norm of an operator G on X is given by 

Let G and (G,),zl be bounded operators on X .  Then one says that 
the sequence (G,) converges to G uniformly (or in operator norm) if 

llG, - GI1 + 0 as n --+ w. (3) 

One says also that (G,) converges to G strongly (or in the strong 
operator topology) if 

(IG,z - Gzll -+ 0 as n -+ 00 (4) 

for each (I: E X. Similarly one says that (G,) converges to G weakly 
(or in the weak operator topology) if 

Q(G,z - Gz) + 0 as n ---t 00 ( 5 )  

for each x E X and a E X*. It is easy to see that uniform 
convergence implies strong convergence which, in turn, implies weak 
convergence; in general these notions are not equivalent. 

As in [5] we shall consider the space BTV of strictly causal linear 
systems G: .C, + written as Volterra sum operators 

where for each t 2 1 the kernel gt = ( g ( t ,  k ) ) k 2 1  is a real sequence. 
It is well known [5] that the system G is BIBO stable (that is it defines 
a bounded operator on tm) if and only if the following quantity is 
finite: 

(7) 

An important subspace of BTV is the space BTI of linear strictly 
causal BIBO-stable time-invariant systems. These are characterized 
by the property that the sequences ( g ( t ,  k ) ) k > l  are independent o f t ,  
say, ( g ( t .  k ) ) k 2 l  = ( h ( k ) ) k ? l ,  for each t ,  where h = ( h ( k ) )  E 
is the unit impulse response of G. 

The space BTV is too large for our purposes, since it is well known 
to be nonseparable. We are therefore driven to consider subspaces of 
BTV of which an important class is analyzed in the next section. 

111. FADING MEMORY LTV SYSTEMS 

Although fading memory operators were earlier introduced by 
Boyd and Chua [2], we shall follow Shamma and Zhao [18], [19] 
in giving a simpler definition of (uniform) fading memory which 
applies to LTV causal systems (i.e., the class BTV). 

Let X be one of the sequence spaces CO or tp (1 5 p 5 m). For 
n 2 1, let P,: X + X be the projection operator taking ( zk )  E X 

An operator G: X -+ X is said to have finite memory if there is an 
increasing function 4 : N + N such that ( I  - P+(,))GP,z = 0 for 
all z E X. (In particular Gek E 1: @ COO for each k.) An operator 
is said to have fading memory if it is the norm limit of a sequence 
of finite memory operators. 

to ( % ) k i n .  
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Shamrna and Zhao [18], [19] show that any bounded linear operator 
on X has fading memory when X is eo or I,. (1 5 p < ea). 
However, the example G: I, + I ,  with (Gu)( l )  = 0 and 
(Gu) (n)  = u ( 1 )  for all 71 2 2 and for all U E e ,  clearly does 
not have fading memory [19]. 

Shamma and Zhao [ 191 also introduce the notion of pointwise finite 
memory and fading memory, but for linear discrete-time systems 
defined on X = CO or I ,  (1 5 p 5 m) these are clearly the same 
as the (uniform) finite memory and (uniform) fading memory defined 
above. 

We shall write B F ~ ,  for the closed subspace of BTV consisting of 
fading memory operators. One is interested in properties of causal 
linear operators on I ,  and the following preliminary result shows 
that the subspace co plays a key role in their study. 

Lemma 111.1 Let G be a causal BIBO-stable linear operator de- 
fined as in (6). Then the operator norm of G (i.e., on I m ( Z ) )  equals 
the operator norm of G restricted to I &  @ c0 which in turn equals 
the norm of G restricted to c00(2).  

Proof: Clearly the norm of G: I, + I& is at least as big as the 
norm of its restrictions to I ,  t% CO and C O O ( Z ) .  Suppose that U E I ,  
is such that /lull, = 1 and IIGu,llm > I<. Then there exists an index 
t such that I(G'u)(t)I > li. That is 

Clearly this last sum can be replaced by a finite sum (say, E:==,) 
while remaining larger than li. In that case the vector v E COO(Z)  
defined by 

if k - 1 v  5 r 5 k - 1; 
otherwise 

v ( r )  = { ;,(r)> 

satisfies l l u l l  5 1 and llG~ll > I< which implies the result. 0 
We shall also require the following general result which is of 

interest in its own right because it means that for the purposes of 
approximate modeling of systems with convolution operators conver- 
gence for every input automatically guarantees norm convergence. 

Theorem IIZ.1: Let G. (G,),21 be causal BIBO-stable convolu- 
tion operators defined as in (6). Then G, -+ G strongly (if and) only 
if G, + G in norm. 

Proof: Without loss of generality G = 0. We suppose that to 
obtain a contradiction G, U + 0 for all U E L ,  but that I/G, 1 1  f+ 0. 
By passing to a subsequence, relabeling, and scaling, we may assume 
without loss of generality that 11G.11 > 1 for each n 

We shall use the V notation for concatenating finite disjoint 
sequences while keeping them in position, so that 

a ( k )  if a ( k )  # 0; 
(a, V b ) ( k )  = b ( k )  if b ( k )  # 0; (8) { 0 otherwise. 

By Lemma 111.1 we can find a finitely supported sequence u1 of 
norm one such that llGlulll > 1. Let tl be any index such that 
IG1u1(tl)l > 1. By considering the kemel (g l ( t l ,k ) ) r=. .= ,  E e,,  we 
see that there is a finite set F1 containing the support of u1 such 
that IGl(u1 V v ) ( t l ) l  > 1 for any %r E L,(Z) supported on the 
complement of F1 and of norm at most one. 

Since G, + 0 strongly, we can now find another element of 
the sequence, without loss of generality G Z ,  such that the norm 
of the restriction of GZ to the subspace of e ,  consisting of all 
vectors supported on FI is at most 1/4. In particular IIG2U111 5 1/4. 
However, there is a finitely-supported vector UZ of norm one such 
that IIG:!i&ll > 1. By discarding those coefficients of U2 which lie 
in F1, we obtain a vector u2 with finite support disjoint from FI and 
such that I IG~(u~)II  > 3/4. 

Thus IIG1(u1V'u2)II > 1 and llGZ(u1 Vuz) l l  > 1/2. As above we 
can define a finite set Fi 3 PI, containing the support of u.1 V U Z ,  

such that (IGa(ul V u2 V v)II > 1 / 2  for any (i supported on the 
complement of Fz.  

We proceed inductively, obtaining now GS and U J  such that 
IIGl(u1 V uz  V w)11 > 1, llGZ(u1 V uz V u3)11 > 1/2,  and 
l lG3 (~ i  V ( ~ 2  V u3)11 > 1/2.  

Finally we obtain a vector U = U ,  V U %  V . . . E B ,  (2) such that 
Gnu f ,  0, a contradiction. 0 

The fairly well-known corollary now follows. 
Corollary 111.1: Let G, (G,),>1 be LTI BIB0 stable systems. 

Then G, -+ G strongly if and only if G, + G in norm. 
In fact, weak convergence of LTI BIBO-stable systems is equiv- 

alent to norm convergence. However, in g,eneral, weak convergence 
does not imply norm convergence for causal BIBO-stable LTV 
systems. Thus there are fundamental limitations as to the achievable 
identification accuracy for BIBO-stable ;LTV systems even when 
there is no noise. The next result illustrates the significance of input 
properties. 

Proposition 111.1: Let G, (G,),21 be LTI BIBO-stable systems 
restricted to I ,  @ CO. Then the condition that G,, + G strongly in 
I &  @j CO does not imply that G, --+ G in norm. 

Proof: Consider (G,),>l with unit impulse response defined 
by g,(k)  = l / n  for k = 1 ,2 ; . . , n ,  and g ( k )  = 0 otherwise. 
Take any U E 1, ct3 CO # 0. Given any E > 0, there then exists 
an integer li-, such that Iu(t)l 5 e for t 2 li,. Furthermore, take 
n 2 li, x max(1, l / u l l m / e ) .  Then l(Grzu)(t)1 5 2 ~ .  As F > 0 is 
arbitrary, it follows that for any U E :f) C O ,  llG12'ull -+ 0 when 

0 
We can now give a useful characterization of the class of all causal 

linear fading memory operators on I,. Intuitively, the fading memory 
systems are the ones for which the outputs tend to zero whenever the 
inputs do. 

Theorem 111.2: A bounded causal lineas operator G: I,(Z) + 

has fading memory if and only if G maps the subspace "i: CO 

Proof: We modify the proof of Proposition 2.3 in [ 181 to allow 

Let E > 0 be given and suppose that G does map I ,  CO into CO. 

For each j 2 0, the sequence ( ( I  - P,)~cs'Pj)~=~ is easily seen to 
tend to zero strongly, since GPj maps into I& 8-i CO and hence also 
in operator norm. Let us choose increasing indexes n ( j )  such that 
II(I--P,(o~)GPo!I < e / 2  and ~ / ( I - P , ( j ~ ) G e j ~ ~  < €/2j+' f o r j  2 1. 

Define G by GPO = P,(,,)GPO and Gej = P,(jlGej for j 2 1. 
It is clear that G has finite memory and 

n -+ ca. The result follows as llGnl/ = 1 for all n. 

into CO.  

for the fact that we are allowed inputs for t < 0. 

Conversely, since for any bounded operator G the space G(I;  8 
CO) is contained in the closure of G(L& @ COO) ,  it follows that if 
G does not map I, 8 CO into CO, then there is an eventually zero 
sequence, say v E I;@ E COO, such that G v  6 C O ;  then the operator 

0 
We now strengthen the notions of finite and fading memory 

systems. 
Dejinition III.1: Let M 2 1. A causal BIBO-stable operator 

G : L ,  + I &  corresponding to a kemell g ( t . k )  as in (6) is said 
to have finite memory of length M if g ( t , k )  = 0 for IC > M .  A 
system is said to have strongly fading memory if it is the norm limit 
of a sequence ( G M ) M > ~  where each GM has finite memory of length 
M .  We write BSFM for the class of strongly fading memory systems. 

G clearly does not have fading memory. 
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Clearly any system in BSFM is a fading memory system. However. 
there is another neat way of characterizing systems in BSFM. 

Lemma 111.2: A BIBO-stable system G = ( g t ) t 2 1  is in BSFXI if 
and only if the sequence ( g t )  tl 1 forms a relatively compact set in 11. 

Prooj This follows immediately because a bounded subset 
Ir' C 11 is relatively compact if and only if limn-= supfErc ] ] ( I  - 

0 
Note that although clearly BSFM C BFM, there are operators in 

BFM which are not in BSFM, for example, the finite memory operator 
G with gt = et for each t 2 1. 

However, for the purposes of approximation and identification, the 
space B ~ F M  is still too large since it is nonseparable. This we shall 
see in the next section, where we shall be interested in looking at 
smaller, separable, subspaces of BFM. 

P,).fll = 0 (see [41). 

IV. ASYMPTOTICALLY PERIODIC SYSTEMS 

We recall that an LTV causal BIBO-stable operator G is determined 
by a kernel ( g ( t ,  b))t21,i.>i as in (6), corresponding to a bounded 
sequence (gt)tzl of elements of 11 with l]G\l = suptzl I l g t l ] ~ .  

Thus we can regard BTV as a space of operators induced by 
elements of the Banach space t , ( L1 )  = 11 8 11 2 . . with norm 
l\(ht)ll = llhtlll. Moreover, G is time-invariant if and only 
if the sequence (gt) is a constant sequence in (1. Hence, we are 
interested in separable subspaces of !,(e,) which contain all the 
constant sequences. 

As before, let X be any normed space and define the left shift 
S : !,(X) + &(X) by ( S f ) t  = f t+ l ,  t 2 1. Note that the left 
shift "loses" the first term. Motivated by ideas from the theory of 
almost periodic functions [l], [4], [8], [ll], we make the following 
definitions. Note that although almost periodic systems are in general 
time-varying, there is some restriction on the extent to which they 
can vary in time. 
Definition IV.1: A sequence h = (h t ) tz l  E C,(X) is said to be 

almost periodic if (S"h),?o forms a relatively compact set. That 
is, given any sequence of translates (S"("h),  there is a convergent 
subsequence. The space of almost periodic sequences in I ,  (X) will 
be denoted ,4P(X). 

A sequence h = (h t ) t z l  E 1,(X) is said to be asymptotically 
periodic if h is in the closed linear span of c o ( X )  and the periodic 
sequences in 1, ( X ) .  The space of asymptotically periodic sequences 
in !,(X) will be denoted ASP(X). 

We write BAP and  BAS^ for the classes of systems induced by 
almost periodic and asymptotically periodic kernels, A P ( I 1 )  and 
ASP (!I), respectively. 

We are now ready to establish the strict inclusions 

BASP c BAP c BSFM c BFM c &3T\. (10) 

and see that only the space B ~ s p  is separable. 
Theorem IV.1: 

i) AP(X) is nonseparable. Any kernel in AP(I1) determines 
an operator in BSFM,  but there are strongly fading memory 
operators on too which are not determined by almost 
periodic sequences. 

ii) If X is separable, then ASP(X) is also separable. 
iii) A sequence h = ( h 3 )  is in ASP(X) if and only if 

given E > 0, there are integers N ,  M > 0 such that 
lls"+i"/L - SN+""h 1 1  < E for all j ,  k 2 0. 

iv) ASP(X) is contained in AP(X). Hence any kernel in 
ASP(!L) determines a strongly fading memory operator. 

Proof: 

i) In the scalar case X = R, we take an uncountable bounded 
set in !,, namely h s ( j )  = cosj0,  where 0 ranges over the 

interval [O. 2 7 ) .  It is easy to see that each h' is in AP(R) and 
llhs - hPI/  2 1 for 0 # d. Were AP(R) separable, this could 
not happen. The general case is similar, taking h e ( j )  = 2 cos j8  
where s E X is nonzero and arbitrary. 

Suppose now that h = ( h t )  E AP(11) determines an 
operator G. Then, since (S"h),?l form a relatively compact 
set in [=([I), we see on considering the first coordinate that 
( h n ) n l l  forms a relatively compact set in and the operator 
has strongly fading memory. 

for each t 2 1, where 
[A,) is any bounded sequence, has strongly fading memory 
(indeed it is a system having finite memory of length one). 
However, i t  corresponds toakernel ( h t )  = (0 ,A le I ,Aze l , . . . )  
and so is not almost periodic in general-for example, if (A,) 
is a random binary sequence consisting of values il, then with 
probability one, the kernel will fail to be almost periodic. The 
same is true whenever (A,) is an infinite Galois sequence [12]. 

ii) If X is separable, then let (z,) be a countable dense set in X. 
Now ASP(X) is the closed linear span of the countable 
family (zn5 O,O,. . .), (0, z,? 0,O.. . .), . . . , (z,, z,, . . .), 

and is therefore separable. 
iii) If h is in ASP(X), then there are sequences f E Q ( X )  

and g E 1 = ( X )  such that g is periodic (period M ,  say) 
and lIh - f - 911 < ~ / 4 .  Then Sr f  --f 0, and S'g has 
period M so it is clear that \lS"+3Mh - SNf"hll/ is no 
greater than llS"+3"(h - f - g) - SN+kM(h - f - g)ll + 

less than ~ / 2  + 0 + ~ / 2  = t, provided that N is sufficiently 
large (independent of j and k ) .  

Conversely, if given E > 0, there are N and M such that 
IIS-'-+3-'4h-SN+"h(I < E for a l l j  and k ,  then we can define 
g to be -11-periodic such that gt = ht for N + l  6 t 5 N + M  
and f E COO to be a finite sequence of length N such that 
f t  + gt = ht for 1 5 t 5 N .  It is now easy to see that 
h - f - g has infinity norm at most E .  

iv) This follows easily from iii) by a diagonal argument. Given 
a sequence (S"("h) of translates of h ,  we begin by taking 
F = 1 / 2  and using iii) to obtain a subsequence (S"('"))h) of 
(S"(")h) such that ( lSn( l ,p)h-  Sn( l 'q)h( (  < 1/2 for all p and 
q.  Then, in general, take E = 112' and obtain a subsequence 
( S n ( r . k ) h )  of (Sn ( 'p l , k )h )  such that IISn("P)h-Sn(r,q)hll < 
1/2' for all p and q.  It is now easily verified that (S"(',')h) 

0 
Having obtained a suitable separable subspace of BTV, it remains 

only to write down a suitable sequence of models whose linear span 
is dense in Basp. 

If we work with ASP(11), then we need only find a natural 
countable sequence (h " )  whose closed linear span is all of ASP(I1). 
If one assumes that the most natural systems to take as a first 
approximation are LTI systems, then this should include a model 
set for the constant sequences in ASP(!1), e.g., the FIR systems 
(e,, e,, e,. . ' .) with e ,  the natural basis of 1 1 .  

One then has to include in some order (normally by a diagonal 
technique) the period-two sequences, looking like (e,, 0, e,, 0,.  . .) 
and (0, e,: 0, e,, . . .), the period-three sequences, etc., but also the 
null sequences (e,, 0, 0, . . .), (0, e,, 0, 0, . . .) and so on. One could 
order these basis vectors by complexity (to be defined according to 
what sort of model is considered to be most "reasonable"). 

These LTV models can then be used for input-output identification, 
e.g., using Chebyshev (linear programming) methods as in [12] and 
[16]. However, we remark briefly that there is a significant difference 
from the LTI case in that a single input may no longer suffice-indeed 

Clearly the operator taking et to 

( z n i .  ~ n p .  zn1, zn2- . '  .), (zn l ,  z n z ,  Z n S ,  z n 1 ,  ~ n z ,  ~ n g r .  .) 

llS-'-+J-'Jf - S*'+"fIl + IISN+jMzcrg - S"f"gll which is 

is a convergent subsequence of (Sra(k)IL).  
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it is not hard to see that given any U E 1- there is a nontrivial system 
G E BTV such that Gu = 0. 

V. CONCLUSION 

We have studied various classes of LTV BIBO-stable systems 
from the point of view of approximate modeling and proved some 
characterizations of them. These have included fading memory sys- 
tems, strongly fading memory systems, almost periodic systems, and 
asymptotically periodic systems. Of these, only the space of BIBO- 
stable asymptotically periodic systems is separable and thus allows 
systematic model parameterizations. It would be important to find 
other natural separable subspaces of LTV systems. LTV systems 
exhibit fundamental limitations as to how accurately they can be 
identified from input-output data, cf. Tikku and Poolla [22]. Thus 
they provide a setting in which to understand the importance of 
realistic assumptions and a priori information about the system to 
be identified to obtain satisfactory modeling results. 
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Local Z,-Stability and Locad Small Gain 
Theorem for Discrete-Time Systems 

Henri Bourlks 

Abstract-The notion of local I ,  -stability iis defined. The relationship 
between this notion and Lyapunov stability is clarified. A local version of 
the small gain theorem is then established in the case of discrete-time 
systems. These results are applied to stabiliity analysis of a nonlinear 
discrete-time delay system. 

I. INTRODUCTIO~ 

The small gain theorem [8] ,  [15] plays a fundamental role in 
stability analysis of nonlinear systems in an input-output viewpoint. 
This theorem applies to discrete-time systems and to continuous-time 
ones as well. The type of stability which is then obtained is “ZP- 
stability” (1 5 p 5 CO); see, e.g., [13]. ‘This approach was limited 
by the fact that only global results are available in the literature. This 
will become clear in the following discussiion; consider the standard 
closed-loop system in Fig. 1 .  

Let us denote as S” the linear space of all sequences z = 
(z(O), z( l ) ,  . . .), where s( t )  E R”, Vt ;  G 1 is  a causal input-output 
operator S” + S” associated with a system C1 [2]’; suppose that 
the Z,-gain of GI is finite and is denoted as ?,(GI). Moreover, 
assume that G Z  is a causal memoryless operator S” -+ S”, defined 
by a nonlinearity @: N + R“ -+ R”, as follows: 

(Gzs)( t )  = @(t. z ( t ) ) ,  V X  E S”. Vt E N ( 1 )  
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’This notion was defined in [2] in the continuous-time case. In the 
discrete-time case, let C he a system defined by a state-space realization 
V ( t  + 1) = f ( t ,  ~ ( t ) ,  u( t ) ) ,  y(t) = g( t .  ~ ( t ) ,  ~ ( t ) ) ,  where V ( t )  is the state, 
u( t )  E R”,y(t) E Rq. Assume that ~ ( 0 )  = 0 (zero initial condition 
at initial time t = 0). Then, it is easy to prove by induction that for any 
t 2 0, y(t) can be expressed in function of t ,  U ( ( ) ) ,  . . . . u( t ) ;  in other words, 
there exists a causal operator G :  S” -+ SQ such that y = Gu; G is called 
the input-output operator associated with C.  If ZI is time-invariant, the initial 
time can be shifted without inconvenience. 
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