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FOREWORD

The investigation described in this réport waé~performed by the '
Systems Engineering Division of Rensselaer Polyteéhnié Institute for
the Flight Dynamics and Cpﬁtrol Division of the Langley Research Center
as a part of the Digital Fly-By-Wire Program. It was carried out during
theiperiod September 15; 1972 - October 15, i973. The investigation was
headed by Professor Howard Kaufman who was assisted by thfee graduate

students.
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Digital Adaptive Flight
Controller Development

by

‘Howard Kaufmsn¥*, G. Alag*¥,
P. Berry*¥*, and S. Kotob**

Sumary _

Digital fly-ﬁy—wire.flight control systems are cufrentxy'of interest
because simple mechanical linkages are no longer able to cope with the many
control problems associated with high performance aircraft and space vehicles.
In view of this, adaptive flight control algorithms have beeﬁ developed for
ultimate implementation and flight testing in an onboard digital computer.

In érder to achieve this objective, the following hieraréhy of activity
was pursued:

. Development of a direct digital controller amenable
to on-line adaptation.
. A study of on-line discrete parameter identification procedures.
. A development of digital adaptive flight control logic suitable
for inflight implementation.

The -above analysis was performed using equations of motion and the
related parameters for a typical fighter aircraft as supplied by NASA.

As a result of computstional experiments performed using typical measure-

ment noise characteristics, two configurations are recommended, namely:

*  Assist. Professor of Systems Engineering Division, Rensselaer Polytechnic
Institute, Troy, N, Y. 12181

** Graduate students at Rensselaer Polytechnic Institute, Troy, N. Y. 12181



. An interfacing of linear quadratic optimal regulatbr 'logic with
a weighted least squares estlmator. » |
. An interfacing of control loglc, des1gned us1ng s:Lngle stage

K

performa.nce indices, w1th a welghted least squares est:.mator.



1.0 INTRODUCTION
141 Background
o Dlgltal fly—by-w1re fllght control systems are currently of interest
because 81mple mechanlcal llnkages are not able to cope with the many control
problems associated with high performance aircraft and space ve'hlcles.l’2
Digital implementation is extremely advantageous because of:

. The significant weight and volume savings.

. The availability of low cost integrated circuits.

. The ability fo design complex controllers'which previously

were impossible to implement onboard an aircraft.

. The high relldblllty of dlgltal logic.

. The capability for time sharing multiple control loops.
Furthermore the need for an adaptive control system capable of control adjust-
ment hés been established for ’h:

Providing unifbrm.stability and handling qualities over the .
complete flight envelope despite drastic changes in the
open loop characteristics of‘the aircraft.

Providing acceptable flying qualities over a wide range

of external' disturbances due to atmospheric turbulence and
outer loop command signals.

Design of a digital adaptive flight control s&stem.requires careful -
consideration of the following factors: o |

Computer storage iimitatibns

Computer cycle time

_ Computer operation time

Stability requirements

Parameter changes

Control limitations
Pilot input signals



Control hysteresis

Test signal requirements

Turbulence effects
Development of such a system can be guided by assigning a heirarchy of
structure to the system as shown in fig. 1. At the lowest level, directly
interacting with the aircraft dynamics, is the Direct Digital Controller
(DDC). This consists of a set of gains that multiply the appropriate states
along with the necessary summing logic. Because this DDC controller operates
directly on the aircraft, it is executed at the fastest rate. Typical sample
rates might be 30 times per second. |

Becsuse any given set of DDC gains cannot be sa.tisfa.ctbry over this
complete flight énvelope, it is neces‘sa.ryA to incorporate some sort of iogic '
that aﬁ,jusfs these gains whenever necessary. Thus the. adaptation logic is
placed at the second and third control levels.

For small paré.meter deviations, and subsequently small deviations
in performance, an iinplicit adaptation algorithm mig'ht' be used. This does not
.require' ‘explicit parameter identification and could be used at a sample rate
intermediate to the DDC logic and the explicit adsptation logic.

Finally, in prder to éd,just the DDC gains in the presence ‘of large
parameter variations, some type of on-line identification appears necessary
in order to guarantee system stability: The execution rste of this logic is
clearly dependent upon the rate of parameter variation and must be determined
thmﬁg‘n experimentation. |

A summary of the state of the art in adeptation can be found in
ref. 5. Some of the mofe salient conclusions of this sfudy are::

For nonminimum phase plants, the only methods that can

~achieve good control are those using some form of
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explicit parsmeter identification.

Adaptive techniques requiring explicit plant identifi-

datiqn tend to require the most computational capability.

The best adaptive control over butput performance character-
iétiCS is potentially provided by those adaptive methods that

explicitly identify the plant.

. Excessive bandwidth (gain) is undesirable because of the
resulting sensitivity to measurement noise and the danger

of exciting high order structural or sensor modes.

Control methods which' explicitly identify the aircraft have
the lowest gain level requirements because the gains can be
adjusted directly to their proper values which are functions

of the airframe parameters.

i

Despite the previously cited studies, an actual digital implementa-
tion of a completely adaptive flight controller has to date not been attempted.
This may be attributed to the limitations of the available analog equipment as
weli as the reluctance to change over to digital control. Consequently, a

feéearch effort was initiatéd_ﬁy NASA Langlewaesearcﬁ'Cehter for the ﬁﬁfposé

of applying modern digital control theory towards the development of an imple-

mentsble digital adaptive flight controller.

1.2 Objectives
In Yiew of the attractiveness of digital adaptive flight control,

an effort to develop such a system has been pursued by the Systems Division of



Rensselaei Polytechnic Institute (RPI) since September 1972. The objectives
of this effort have been:
1) To investigate adaptive control procedures which might
be capable of being implemented in a digital flight
computer.
2) To test these procedures using linearized lateral and
" longitudinal data as supplied by NASA for a typical
fighter aircraft operating over a given flight envelope.
' 3)' To validate the design using one of NASA's hy'brid'

simlations.

1.3 Scope and Outiine
| Develoﬁment of an édaptive control system iequires consideration of:

:l) The system equations»of.motion.

2) The seleétion of an index of performanéé.

3) The comparison of actu#l prdcess behavibr wiﬁh the

desired or ideal behavior. |
-4y The parameter gain adjustment procedure used to drive
the process more towards the desired‘behavior.

Whereas in the initial phases of the development, the linearized
lateral and longitudiﬁal equations of motion aré being considered separately
for control purposes, final results wili include the performance resulting
from the application of various developed controllers to a nonliﬁear'sixe
degree-of-freedam simulation. A description of the linearized eqﬁations is
contained in Section 2.1.

Because it is convenient to express desired aircraft response to



pilot commasnds in terms of a mathematical model, all pérférmance indices con-
sidered in the development penalize some measure of the error between the
process and model outputs. A detailed outline of such "model following"
performance is found in Section 2.2.

Usage of such a model also facilitates the instantaneous comparison
of process performance with-the desired behavior. This leads to the possi- A
bility of implementing either implicit adaptation logic which does not require
process parameter identification or explicit adaptation logic which indeed
does use online parameter estimates. Following a discussion of these alter-
natives in Section 2.3, various control st:uctures amengble to adaptation are
presented in Section 2.4. Procedures for online identification are then
described in Section 2.5. |

| Finaily based upon the various subsystem designs given in Section

2.0, overall adaptive control logic is presented in Section 3.0, and computa-
tional results based on this logic are given in Section L4.0.

Recommendations for implementation and for further studies are

found in Section 5.0.

1.4 gsignificance

Development of a digital adaptive flight control system is of
significance not only to the particular aircraft considered but also to digital
process control in general. Such a development represents an important appli-
cation of modern digital control theory that is a step towards narrowing of
the gap between theory and practice. The proposed logic, while feasible for
-digital process computers,is clearly impractical‘for analog implementatidn.

Of .immediate significance, however, is the demonstration that

digital fly-by-wire technology is capdble of providing desirable handling



qualities over the complete flight envelope of a high performance aircraft

despite changes in the open loop characteristics of the airframe.

-3



2.0 REQIIIREMEINTS FOR DIGITAL ADAPTIVE FLIGHT CONTROL

Items essential to adaptive control design are 1nd_1v1dually discussed
in the following four sections. System representation is first developed in
Section 2.1 followed by 'a discussion of performance eveiua‘bion in Section 2.2,
Adaptation principles and control structure are presented in Sections 2.3 and
2.4 respectively. 'F'inal.h‘r, me‘bhods for online parameter i_dentif'ication are
presented in Sectioﬁ 2.5'.

- Results pertinent to the tuning and the performance of these procedures '

-are given in Section L.

2.1 System Representa.tion

The linearized d:ynam:.cs of the alrcraft as supplled 'by NASA may be -

represented by the vector state equation

= Fx + Gu _ S - (2,1)

B

where denotes the state vector

1% - -

denotes the control vector

12

and F and G are matrices of the‘appmpriate dimensions.

For linearized lé.ter_al notion

T =7 [r) *f o1l rate
r = yaw rate
B sideslip angle
\@ roll angle
and u = (Sé‘ aileron deflection
¢ ‘Sr rudder deflection

10



For linearized longitudinal motion

x = Q pitch rate
v _ velocity
a angle of attack
o pitch angle
and u = (d'e) = (elevator deflection)

The elements of F and G, known to vary with mach number and
altitude,. we-re provided for a typical fighter aircraft for the six flight
~conditions (FC's) shown in the flight envelope of Figure 2. 'I_'hése are provided
in Appendix A.

4 'I'he o’bJectlve of the research was to f1nd mplementa’ble digital
algonthms for computlng the control signals J J and 5 so as to
insure uniform and desirable handling quantities for an aircraft fly:mg w1th1n
the given flight envelope; This was to be performed assuming that during flight
the elements of F aﬁd G were not readily available (e.g.,- as scheduie_d
ﬁlnctions of mach number and altitude). |

Because of the need to :unplement the control system in a dlgital
flight computer as shown in Fig. 3, Eqn. 2.1 was transformed into the equiva-

lent discrete form:

x (k#1) = A x (k) + B u (k) : (2.2)
where A = eFT:.
T
B = I FT a7 G
0
T = Sainpling Time

and x(k), u(k) denote x, u at time k.T.
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Eqn. 2.2 is a valid representation assuming that F and G do not vary for
kT 4; t £ (k+1) T and that the control signal is constant between sample
times, i.e.,

w(t) = u-(xT) for kT < t £ (k+1) P

This latter relation will be true assuming the use of a zero order hold type
of digital to analog'converter. The former assumptioh is valid if the rates
of change of F and G are such that changes over the sample period are

negligible.

2.2 Performance Evaluation ;

Inherent to the effectiveness of anyvadaptiﬁe control system is the
capability for rapidly assessing the performance and meking the necessary
modifications to the control gains. One such prpcedﬁre that fits these
requirements and at the same time has the pdtenﬁial for insuring uniform
hand%ing qualities is the concept of model following control as depicted in
fig. 4. This concept has been of interest to many investigators over the

6,7,8,9,10

past few yeafs. In fact, relative to these efforts, Erzberger has
published a set of "perfect model following" conditions under which the out-
put of the process can be made iaentical to the output of the model.-

Being that the ideal objective of modei following flight control is
to force the aircraft to‘respohd as the model would to'a given pilot command, -

it ig often desirable to simulate the online model dynamics in the flight

computer and to generate the aircraft control signal using the actual aircraft

ik
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states, the pilot input commends, and the model states. This situation is
sometimes referred to as the pilot's flying the computer while ‘the computer
is flying the aircraft. |

More precisely, the model following problem can be stated as follows:

Given the aircraft dynamics:

k+l) = k) + B u (k : o . (2.
x (1) = &) % (K) + B u) (k) | , (2.3)
where: xp(k) is the aircraft (nxl) state vector at sampie time k

up(k) is the (mx1)control vector
and %, Bp are matrices with the sppropriate dimensions 3

find the control u (k) such that the process state vector x (k) _

approximates " reasona.bly well" some model's state vector x (k) defined 'by '

the equation: , .
xm(k+l)v-= ‘%n X (k) + B, u, (k) | . : '(2.1}) .
- where X (k) is the (nx1) model state vector

u_ (k) is the (mxl) pilot input and

A Bm are matrices of the appropriaste dimensions.

One possible variation is to fJ.nd u, (k) such that the (rxl)
d:Lmens:Lona.l process output vector o

Hp xp (k)

approximates the model's (rxl) output vector

Hox (K).

16



_.’A:further possibility to consider is the situation in which there
is: process measurement noise n(k) such that the only available process out-

put is: _ - :
v, (k) = % (&) + N & - (2.5)

Turbulence can be considered in the above system by inclﬁding a

* process noise temm wk' such that'the'plant equationgBecomes:
x‘ﬁ k+1) = A x (k) + B u_ (k) + Mw . v ' (2.6
o (1) = A x (k) ¢ B u (k) M (2.6)

where

W is & stochastlc process whose statlstlcs are chosen to
approx;nmte the atmospheric condi tions and

r’- is the corresponding distribution matrix.

2.3 adaptation Logic
In the very early phases of the project, considerable study was
given to the tradeoffs involved in selecting either an explicit‘or an implicit
adaptation algorithm, the differences being that

. In explicit adaptation; on-line estimates of the aircraft
parameters are used for gain adjustment.

. In 1mpllclt adaptatlon, some megsure of the error between the
actual and the desired state tragectorles is used for galn
adjustment. That is, no explicit parameter 1dent1f1cat10n is
used.

This study and a similar one made by TASC in 19705 indicated that

explicit adaptation would initially be preferable because:

7



Stability wé,'s to be required in the presence of severe
-pa.ra.meter variations. “

. Effective_ness of impleméntiné implicit adaptation is
related to the satiéfaction of the' conditions of perfect

6,10,11 These in general will not be

model following.
satisfied for-HASA supp]ied models.
Implicit adaptlve control comparable to the hyperstabllz.ty approach

used by Landa.u6 is to be cons:Ldered at a later date.

L 2.k _VC‘ontrol Algorithms .
2.4.1 Perfect Model Following
In a model i;ollowing (mf) adaptive control system the design
_ goal is to force the compensated system to duplicate the performance of a
'reference model. The knowledge of plant parameters ensgbles controller gains
to be set so as to achieve the desired characteristics.

There are two configurations of mf, known as implicit mf
and real mf. As fig. 5 shows, iﬁ implicit mf, the aircraft controls are
formed from the aircraft states and pilot input. No dynamic coupling exists
between the model states and the closed-loop plant; the model state X
appears onJy 1n the perfomance 1ndex.

Figure 6 illustrates. real model follow:mg in which the model- 2
states must be generated for use in .forming the control law. Aligmnent of
plant and model in the presence of uncertainties such as unknown parameters
and random disturbances, requiz'-es this type of control. This enables a con-
tinuous cofrecfion _of the errors betweeﬁ model and plé,nt states even iﬁ the

presence of unknown disturbances.

18
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 PLANT _ Xp
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FIG. 5 Implicit Model Following
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Erzberger has shown the existence of a control for perfect

model following provided that:

(‘1-13p Bp'r) (a, - AP') = 0 ‘ ' (2.7)
(1 - B, Bpf ) B = 0 . | (2v.8)

where EPT is the pseudo inverse of BP. If these ¢onditions are satisfied,

then the control input

+ . + . »
u = B ‘ - X + B B u ' 2.
P G S Y S | (2.9)
will result in perfect model following.

Chan.lO has given an alternative control law which yields

perfect following if egs. 2.7 and 2.8 are satisfied, and which yields
stability in the sense of boundedhess otherwise.

This controller has fhe form:

u, = U+ U, (2.10)
where U, o= K, (2.11)
U, = BT (A - A) x + B 13 u (2.12)
2 o) m p’° -m P m m
e = x ;_xb, the error vector énd K is a gain matrix chosen

to stabilize (AP - BP K).

Related to the development of perfect model following
controllers is the single stage design spproach used by Mbtyka12 for
bsimﬁltaneously weighting both‘the state errbr and the contfol effort éf‘a
single ﬁime instant. Elimination of the control effoft wéighting and a élight

modification of the error state yields Erzberger's perfect mf controi law.
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~2.4.2 Single Stage Optimization

In view of the work by Chan and Motyka, and the attractive-
_ness of control gains readily adjustable in the presence of parameter chenges,
single stage indices were considered for digital adapti\}e control design.

The essential feature of a single stage performance index is
the fact that only a single point in time is considered. If e (k) describes
the error in mf at sample time k, then a performance index of the ferm
gT (k) Q@ e (k), vhere Q is a positive semidefinite weighting matrix,
-allows the designer to specify the relative importance of . mf in different
. states by trading off the ‘size of mf errors in different states. 1In |
addition, the plant control signal can also be Weight'ed in the perfoznanee
_1ndex by 1nclud1ng a fa.ctor of the form a, (k) R uP (k), where u, ris the
| control 51gna.l a.nd R is a pos:.tlve semi- deflmte welghtlng matrlx. Such a
factor allows further tradeoff between mf in the pla.nt states and the magni-
‘_tude of the control signals required to effect that mf. Thus, a performa.nce

index of the fom

Ik = et (k) qe(®) + w' (®) R w (k) | (2.13)

was considered.

To find the vector u_ to minimize J, V, J is formed
P 1,
and set to zero. The resulting equation gives the vector Ep'

The first formulation, called RF for "response feedback",
as developed by-Motyka.]'2 for contn_nuous time systems is now d_a.scussed here for
discrete tixne.. For known present plant state zp(k) the next state x (k+l)
can be required to be .th_at statev wni'cn would result if }_cp(k) were used in 2.k

instead of l‘m(k) i.,e., if the plant had the dynamics of the model. Such a
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desired correspondence would be realized if the plant. state at (k+l), i.e.,

xp(k+l) were equal to:

By %, (k) + B w (k) | (2.14) .
Thus the error signal e in eq. 2.13 becomes:

(B % () + By () = (A, () + B9, () (2.15)

V. J 1is set equal to zero to obtain:

22

u
b

T -1 T
= ¥*
u, (k) ( Rl+ BP Q Bp] 13p Q

L(ay -a) =, (&) +B u ()]

]

kx xp(k)+Ku u (k) | (2.16)
P m "

The features of this controller include the following:

(1) 1It is cloéed-loop containing feedback only from the
plant and not from the model. The model matrices
are, however, used in forming the controller gains;

(2) steady state behavior of the plant is not necessarily
equal to that of the model since model states are not
used for comparison;

(3) Real-time simulation of the model is not necessary;

A second formulation, to be denoted the "same state" algorithm
requires that the plant states be exactly equal to the model states at the

next sampling instant i.e., it requires that:



X, (k+1) = X (k+1) (2.17)

Substituting from (2.3) and (2.4), the error signal

e = (Ap x, (k) + Bp u, (x)) - (Am X (k) + B u (x)) (2.18)

Again setting YZép J = 0 gives:

. T -l T
k) = '
w) ='[rR+B an ] B  ax

P
(g % ) - & x () + B u (x) ] . (2.19)
or
u, (k) = KXm X (k) - Kxb %, (k) + Kum w (k)

This SS controller has the following features:

(1) It is closed-loop with respect to the plant and
explicit with respect to the model;

(2). The facto? Z = [§.+ BPT Q gé] -lBgQ‘ is common

T to all’three gain matrices.

:(3) Because . X is explicitly used, steady state
differences between plant and modei states
might be removed given enough independent controlling
‘elements.

(4) Gains can easily be updated on-line without having to

solve any nonlinear algebraic (Riccati) equations.

.Because of these attractive charactefistics, the same state
controller was chosen for implementation in an adaptive control loop, details

of which are presented in Section 3.1.
23



2.4.3 Infinite Time Optiﬁal Quadratic Control
2.4,3.1 Performance .
The performmance index which is selected for minﬁmi;
zation imélies'the controller type, the degree of model-fbllowing, and the’
overall control effort expended. A typical performance index might consist

of some positive semi-definite function of the model following error

(xb(k) - gm'(k)) balanced against a positive definite function of the control

up (k). Inclusion of control rate and/or integrals of the model following

error will result in a controller with a dynamic structure, i.e., with

integral feedback temms. Asseo7 has demonstrated that such dynamic feedbadk
can y1eld reduced sens1t1v1ty to plant parameter variations, and other

13,1k4,15

1nvest1gators have examined various specific stnlctures

T

In particular, Asseo considered the control rate
ﬁp(t) rather than the control itself as the independent variable. Tpis
necessitated the treatment of the plant control up(t) as an additional state
with the state equation

ﬁp(t) AN (2.20)

In the discrete case, the integrator is réplaced by

an accumulator (i.e., a unit delay with unity feedback), and the corresponding

‘equation becomes: ’ ’ ’ ' o T

2L

u (k1) = w (k) + &p(k) L (2.21):

An attractive feature of this formulation is the ability to include in the
performance index both,positive definite functions of up(k) (to prevent
overly large controls) and of vp(k) (to prevent overly large control rates).

Tﬁis control structure was the actual one utilized in the experimental studies.



» A -second dynamic feedback structure as suggested
by Tiroshi and Elliott13 is analoéoué to the classical proportional-integral
feedback structure. By infegrating the modél-plant error, it is expected
that any step change in‘the model states will result in zéio steady-state
plagt-model error. Again the discrete équivalent of an integrator is an

éccumﬁlator and the state equations for the "integral" are:
xa(k+l) = xa(k) + C(xp(k) - xm(k)) (2.22)

The matrix C specifies which model-following errors will be accﬁmulated, Care
must be taken in the selection of the matrix C, for an uncontrollable system
canvresult. A description'of this difficulty and a test for sYéteﬁ controll-
ability is given by Porter.lh This .controller wouid be'eSPecialli suitable
for a transport type aircraft (because of the accurate steady-S£ate control)
but may be more responéive'to noisy feedbaék than the first structﬁre because
the proportional-integral controller does include direct feedback.of the plant
states themselves. | .

| - The various. possibilities suggested above were
broken into two classes of performance indiées. The performance index
‘corresponding fo the first controller includes terms weighting both model-

following error and control rate, and has the form;
poy : >

% 2. (0 - 20" @y (K) - (1)) + v T RY,(0)  (2.2)

where Q and R are matrices to be chosen by the designer.
The performance index corresponding to the second
structure includes termms weighting model-following error (x.p - xh),accumulated

model-following error x, as defined in eq. 2.22, and the magnitude of the
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control up. This index;which therefore includes three weighting matrices

Q) S, and R, is of the form:

i} |
D (00T QG (0)x (0)+ x,Tw) 5 x (k)

=0

=

w T (k) Ruy(x) @

Notice that if the matrix S is all zeros, then no weight is placed on the
accumulated plant-model error and this controller will no longer effectlvely

have any feedback dynamlcs

2.h.3.2 Controller Structure
Infinite time optimal linear regulator tﬁeory was
used to find the minimum of the performance indices constrained by the appro-
priate state equations. This results in a control formed by feeding back a;l

15 (Details are presented in the next‘eection.)

states through constant gains.
With this in mind, the specific controller structure implied by these‘perfonm-
ance indices may be described. TFurther, the performance 1ndlces and state
equatlons for both cases may be put in terms of the 1nfin1te tlme optlmal
linear regulator problem:

. . ~Find u(k) to minimize

a

% EZ xT(k) Q' x(k) + uT(k) R' u(k) , (2.25a)
k=0 . S S
subject to
x(k+1) = A x(k) + B u(k). I - (2.25)
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» For the first performance index which penalizes
control rate rather than control magnitude (2.23), fig:'7Aillustrates the
final closed-ioop structure. Note that any control input (fram the model
state and control). or any plant state feedback sigﬁal must be "filtered"
| through the d&namic feedback«controlier before it affects the plant control.
- Reshaping the state equations into a fbrﬂlto;which the optimal linear regu-

lator results are directly qppllcable (2.25a and 2.25b) gives:

. [ . -—T =
_."(k’,_,s - I B T °
-2 wwovw a0 L 00 '
x(k) = ulk) = v.(k A= . B =
‘ gm(k) P 0 0 Ay By 0
0 0 0 I
u (k) _ Y
L..m . AL._. - - L4
— . -
Q. O-Q o
. 0 0 o o0 S - o -
Q' = R' = R o (2.26)
|- 0o q..0 : .

0. 0-. .0 O

P —

the that the pllot's input (equal to the model control u (k)) is modeled as
a constant - an assumptlon that does not overly distort the reallty of the
situation and allows a complete analysis of the problem from a theoretical
viewpoint. | |

The performénce index that includes the accumilated
' model-following error (eq. 2;2&)'leads to a controllérlstructure analogous.to‘
the classicai proportional-integral coﬁtroller, as shown in fig. 8; Manip-
: ulating the state equations into a forﬁ to which tﬁe optimal linear regulator

results are directly applicable, (2.25a and 2.25b) yields:
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1 ugh Xp (1) —-
—o{ o/a o Gp [ = am
' T
| I
| Fo |
b |
Up (k) Up(k+)  Vp(k) L
UNIT - N\ + :
DELAY A
| Kas Xem(k)
. : K24 Um (k)

— Koo

XD(t) = Fp(t) Xp(t) + Gp(t) Up(f)
Up(k+1) = Vp(k) + Uplk), -
Vp(K) = K21 Xp(k) + KopUp(k) + KpzXm(k) + KpgUm(k) -

FIG.7 Dynamic Feedback -System Using "Control Rate" Feedback
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FIG.8 DYNAMIC FEEDBACK SYSTEM USING"INTEGRAL ERROR"
FEEDBACK :

Xp (¢)=Fp(t) Xp(t)+ Gp(t) Up(t)
Xa (k+1)= Xg (k) + C (Xp (k)= Xm(k))
Up(k)= Ky Xp (k) + K2 Xa (k) +K;3 Xm(k)+ K4 Um (k)
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i 7 _ 0 0— = -
xb(k) AP 0 BP
x (k) : o I -C 0 0
x(k) =| ® u(k) = u (k) A=} . S B=
x (k) : p T lo o A B 0
u (k) S0 0 0 I [0 |

0 s o o0
Q' = R' =R (2.27)

-q. 0 Q O | | L

O -0 - 0 .0

As noted sbove, if the weighting matrix S were all
:zeros, then the feedback gain_'Kl2 in fig. 8 would be zero and the controller
would be non-dynamic. o

2.4.3.3 . Infinite Time Linear Optimal Regulator Solution
The solution to the minimization. of a. quadratic

performance index:

o 65} . : R .- . L, e o .
% <ZZ xT(k) Q x(k) + ur(k) R.u(k) - (2.25a)
k=0 ' ' N
_constrained by the state equation: o )
x(k+1) = A x(k) + B u(k) (2.25b).

is. well known and derived in Moore and Andersonls among others. The control
-has the constant feedback structure:

u(k) = - K x(k) L  (2.28)
where

K = (BTPB + R)'l BTpA (2.29)
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and P is specified by the steady state Riccati equation:

Q,+APA APB(R+BPB)1 Blpa- - (2.30)

This nonlinear equation in P may be solved in a nuﬁber of ways.. The

simplest appears to be by iteration of the time varying Ricatti eouation
P(k+l) = Q + AT P(k) A - AT P(k) B(R + BT P(k) B)"l”‘BTP(k) A (2.31)

This eQuation.converges to the solution for any positive definite initializa-
tion of P(k) provided that the pair [A, B |is controllable end the peir
[},Iﬁ] is dbservable (vhere Q = D D) At this point it should be noted
that even though the model is not controllable, the solution will still exist
| because of the controllability of the plant.16 ' |
The adaptation logic for this type controller is‘

based upon an online iteration of eq. 2.31. Since the aircraft parameters
vary continuously and relatively little within the anticipated gain update
cycles, it can be expected that the exact solution to_thevcorresponding'steady
state Riccati equation will'not vary significantly between gain updates. Thus
if at each gain ﬁpdate time, the Riccati equation is initialized with the most
recent solution, it is hypothesized that it will be necessary to iterate only
a few times to find the proper solution.

| Finglly as a practical matter, it should be noted
that' computation can be simplified if eq. 2.31 is partitioned taking into
account the symmetry of P and the sparseness of the augmented system matiices

A and B as defined by 2.26 and 2.27. The resulting expressions can be found

in egs. 3.1, 3.2, and 3.3.
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2.5 Parameter Identification
2.5.1 Introduction
Selection of a parameter identification algorithm for an
adaptive flighf control system requires consideration of the following items:

. Required frequency of parameter updating

. Measurement noise characteristics
The desirability of estimating true stability
derivatives versus the elements appearing in the
discrete transition matrix (These will be nonlinear

functions of the stability derivatives.)

. Nonlinearities induced by simultaneous estimation
of parameter and states

Performance under closed loop control
If parameters vary relatively slowly, then a batch process

(a7) might be feasible. However,'if updating must

such as quasilinearization
be done more frequently, then an online or recursive procedure with some sort
of fading memory should be employed. |

In designing parameter identification algorithms, attention
must be given to the measurement noise characteristics. Whereas s relaﬁivélj

“large variance necessitates the use of an identifier with a long memory to
achieve smoothing,‘a small variance will enable the use of a short memory
- idéntifier that will be more-responsive tovpérameter variations.;

Further, it is conjectured that in a digital environment,
greater success would be achieved if the unknown parameters of the discrete
transition matrix jtself rather than the physical stability derivatives are
identified. This follows because the discrete trensition matrix is a highly

nonlinear function of the stability derivatives making identification rather

difficult. Furthermore computation of the discrete control law requires
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estimates for elements of the discrete transition matrix, and not of the
stability_derivatives._ A precise description of the disecrete parameter esti-
mation problem is presented in Section 2.5.2.

In designing an identifier, consideration must be given to
algorithms for estimating only parameters and algorithmé for estimating both
parameters and states simultaneously. Whereas the former set of algorithms
utilizes the measurements to represent the true state, the latter set depends
upon the augmgntgtion of the unknown parameters to the system state vector.

As shown in ref. (18), the coﬁbined state and parameter estimation problem is
nonlinear bécéuSétof tﬁe ﬁeed to determine quantities that multiply each other
(parameter times state). Consequently one must select a priming trajectory
about which the system is to be linearized.

Typical algorithms for parameter estimation only include the.
weighted least squares,approach and the stochastic gradient method. These are
discussed in Section 2.5:3. Section 2.5.4 discusses two approaches for esti-
mating both parameters and states; namely, the extended Kalman filter and a
_decoupling process in which the linear state and parameter estimation problems
are treated separately and alternately.

Finally, of importance is the performance of these identi-
fication procedures under closedfloop control. Because such control often
results in transient béhayior for only a very small amount of time and steady
state. behavior for a relatively large amount of time, there may not be
sufficient excitation to allow accurate enough identification. Thus the need
” f@f‘an induced dither signal must be examined. Such dither could in fact be
produced by feeding‘back.fbr control computation the noisy state measurements

themselves rather than filtered state estimates. In any event the performance
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of the identifier should‘ultimately be measured’by’the overall behavior of
the adaptive control system rather than the individual egtimates»it produces
for the various parameters. This follows from the fact that not all states
are equally excited by any given pilot inpuf command. Hence various mdtions
will be completely decoupled or very insensitive to the specific valuesﬁw
obtained for some of the parameters. | |

Thus while there may not be sufficient excitatiqn present to
accurately t;ack a.parameter, its value may not be very igfluentia;‘in de@gr— .
mining the control signal needed for the maneuver being pndertaken,_vAcqurate
tracking of all parameter continuously will only be possible if dither can be
acceptably introduced into the motion of the aircraft. _ S

Results of identifying under closed-loopncontrol'using the
weighted least squares algorithm are presented in Section 4.s.

2.5.2 Problem Statement

The problem considered to date is that of determining the
values of certain paraméters appearing in the discretized aircraft equations
of motions given exact measurements of the inputs and noisy measurements of the
outputs. Noisy imput measurements are to be considered in subsequent studies.
Eﬁaluation of the'accuracy of this identification is to bé’baéed upon the
resulting adaptive control lobp performancé;' A | o
As given by eq. 2.3, the lateral or iongitﬁ&ina1 mbtion'cf

the aircraft is repfesented by the vector difféfence eqﬁation

zp(k+l) = A (a) >_cp(k) + B, (a) Ep(k) __ _ (2.32)

-where g 'is used to denote a vector whose elements are unknown parameters

appearing in the plant matrices. For estimation purposes, it will be assumed
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that the system measurements can be described by

¥, (k) = H x () + N (2.33)

-—

where: \\ (k) is a zero mean measurement noise sequence with covariance

matrix R
_ . o _ | .
R(i,j) =™ gi" where &;.=1, if i=j, and Ji_=0 otherwise
i J J - (2.34)
gnd: = H iéAﬁ selector matrix indicating just which states or combinations

6fystates‘aré'meésuréd. For the work considered to date, all states were
' assumed measurable, and hence HsI,Vthe identity matrix.

li:ijical noise characte;istics are included in Table I; these
ﬁere provided by NASA - Langley Research Center. Although the specified noise
is correlated, many of the experiments conducted to date have utilized

uncorrelated (i;e., white) noise sequences, having the values cited in

Table I, in order to simplify the analysis.

_2.5;3 Procedures for Parameter Estimation Only
2.5.3.1 Weighted Least Squ#res Parameter Identification_

The simple weighted least squares linear parametér
egtimation scheme20 was chosen‘to avoid some of the problems of algorithms
which estimate both parsmeters and states. Since noisy states are fed back
#hrough the éqnﬁrol ;oop and used for parameter estimation, it is expected
that some sort of state smoother will ultimately be necessary.

To apply this method to the systems defined by

"eqs} 2.32 and 2.33, it is necessary to differentiate.between the set of para-
meters (in both ‘Ap .and Bp) that are to be identified and the set of para-

meters that are not to be identified.
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In particular a convenient representation for (2.32)
results if all the parameters (both aI')(i',j) and bp(i,j))which are to be
idéntified are placed in a vector g , and all thoée parameters which are not
tozbe identifieq are placed in a vector s . With these definitions, the state

eqﬁatiohs can be rewritten as:
" x(k) = C(k -'1) g+ Dk -1)s S (2.35)

where Cij(k-l) contain the state or control measurement at the (k-l)S#~Sample

“that coupies Xi(k) to qj » and D__(k-1) .contains the state or control
ij - , _
measurement at the (k-—l)St sample :that couples xi(k)'tto sj. A zero entry
for a particular Cij (or Dij) would indicate that no coupling exists between '
x. and-'q, (or between x, and s.).
i B R , i 7 ,

Defining the estimate formed on the basis of k

samples for the parameter vector as aq(k), the weighted least squares algorithm

as developed by'Youngeo and Méndel21 minimizes the performance index:_:ﬂ

1- ) G- Ry - R0y 23
: i=0

where y(i) 4is the actual measurement made of §(i)
A LA .
and . x(1) = ¢(i-1) q(k) + D(i-1) s
i.e., x(i) is:the "estimate" of. x(i) formed by substituting q(k)
into the state'équatiqn (2.35).
' The weighting matrix R—l is usually selected to be
a diagonal matrix whoée elements rii_l reflect either the confidence and/or

the relative magnitudes of each of the measurements v Purthermore a fading

d ’ '2‘ . ’ -
factor of the form & E (a:»1) can:be included in R l. in order to give major
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emphasis to the most recent measurements.25’26

‘Minimization of (2.36) yieldseo:

Bx) = P(k) BK)

X Bl
where P (k) = ¢t (L-1)) &Y c(f-1)
, - |
k .
ad 3= ¢ (RD R -0 (L-1) 5]
Q.-:l

A
Note that computation of the estimate q (k) from these formula requires at
each new sample a matrix inversion of order equal to the number of parameters
being estimated. This solution however can be rewritten in a'recuréive manner

that takes into account the effects of an additional measurement in a manner so

. . A
as to reduce the matrix inversion requirements. In particular, the estimate d(k),

based upon k samples, can be written in terms of a(k-l), the estimate based upon

k-1 samples using the equations:<0 .
Q) = Q(k-1) - K(k) (C(k-1) Q(k-1) - (k) ) (2.37a)
z(k) = y(k) - D(k-1) s (2.37p)
K(k) = P(k-1) CT(k-l) (r+ ¢ (k-1) P (k-1) cT(k-l))'l (2.37c)
'1 P(k) =‘P(k-l) - K(k) C(k-l} P (k-l)'- e | (2.37&)

These equations are solved recﬁrsively given an initial value for the P
matrix, P(0), and an initial value for the estimates, 3(0).

‘ MendelzlAshowed that if the expécted value of the
mgasu?ement noise is zero (i.e., E (Y\ (k)= O)‘ and if and only if C(k) is

free of measurement errors, then the parameter estimates will be unbiased in
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the sense that
E(a(k) ) = q
The latter condition is clearly not applicable in the aircraft identification
problem since C(k) is indeed constructed from noisy samples of the states.
Then a biased estimate for q is anticipated.
Furthermore if the above condition did hold and if
R, the weighting matrix in 2.36 were selected to be the covariance of the
actual measured value of
x(k) - D(k-1) s
then q(k) as computed from 2.37 would be the linear minimum variance esti-
mate for q, and P(k) would be the covariance for this estimate.
Despite the inability to obtain a minimum variance
ilsing eq. 2.37, the diagonal elements of R, irii y were in practice set equal

to the variance in

¥; (k) - Z Dy (k-1) 8 _ , ~ (2.38)
l.e.
2 0 2 , ‘
'rii =0 o+ Z o’J 5 : : (2.39)
j .

where Jj ranges over those indices for which ljij 7! 0, and as in'eq. 2.33

2
o 5 is the variance of the disturbance inherent in vy o the measurement of

xl .
i
To take into account the time variations in the

parameters due to the aircfaft maneuvers, either‘the fading' factor @ 2k can

be incorporated of the equations can be rederived with the pla.rameter‘variations '
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modeled as fictitious noise sequences, ;'i (k).20 Such a representation is:
a (1) = a@ + £(), cov(}) =4 (2.10)

Pra cbically speaking, this artifice causes the
filter to continually track the parameters. The corresponding recursive .
scheme is similar to that of 2.37, but now includes an update of the matrix .

P(k) each sample as given in:

k) = Gk-) - k() (Cel) Qe-) - 2(€) ) (2.b1a)
z(k) = y(k) - D(k-1) s | ‘(2.&115)
P(k/k-1) = P'(k-l) +Q . o (2.41¢)
K(k) = P(k/k-l) c (k-l) (R + C(k-l)P(k/k-l)C (k—l) ) - (2.h14)
P(k) = P(k/k- 1) - K(k) C(k-l) P(k/k-l) ‘ (:.2.ﬁ1e)

The matrix- Q has the effect of keeping P(k) from

getting so small thatvparameter updating becomes insignificant due to a small
| gain matrix K(k). Note that at steady state P(k) will go to a fixed value
determined by Q. Selection of the elements of Q reqﬁifes a trade-off
between a filter that gives erroneous parameter estimates due to traqking of
.fhe measurement ﬁoisé (if-the elements of Q are too large) and a filter that
just.smooths 6ut the péfameter'?ariatioﬁs‘(if the eiementsiof Q Yare too sﬁall)

o | Computationally, the matrix 1nvef§i6n can be expected
tg,cause trSﬁbieL “However, if R and Q are chosen to be diagonal and 1f
P(k) is 1n1t1a11zed as a diagonal matrix, the term C(k-l)P(k/k-l)C (k-1) will

be diagonal since C(C(k-1) contains only one nonzero. entny in each column

The corresponding matrix inversion is thus reduced to scalar divisions.
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Details pertaining to the tuning of Q@ and P(0)

are given in Section 4.2.1.

2.5;3.2 Stochastic Gradient Estimation
In view of the fact that the weighted least squares
algorithm iéndrés the noise present in the matrix C(k;i) in eq. (2.35) and
ddnééquently produCes a biased estimate, a stochastic gradient procedure is
being considered in anticipation of its capabilities for producing unbiased
es@imatés.gl To illustrate its application, consider the ith row of
eq. 2.35, i.e., o ,
xi(k) = z Cij(k-l)qj + Z'Dij(k-l) 8 (2.42)
| j | B - 3 .
' To simplify the detsils it will be assumed that no term in the i'® row of
C(x) is zero. Trivial modifications can be incorporated if some of these terms
are in'facthzeroz
Eq. 2.42 is now rewritten as:’
| xi(k) - z 'D;.Lj(‘k-l)s.j = z _cij(k-l) 9 A(2.h3)
J J
At tﬁig poinﬁ it should be noted that since Dij(k-l)
is éither nuli, o#;igvthe state or éontrol that couples X, _to Sj » & para-
méter nbt requifing identification, the left hand side of (2.43) ié a linear
coﬁbination of measurabie quantities. Consequently, a measurement z(k) for
tﬁe left hand si@e of (2;&3) can be constructed b& replacing xi(k) and
xi(k-l) by the respective corresponding noisy measﬁrements yi(k) and
yi(k-i). Thus ~_ |
zi(k) = xi(k) - 2 Dij(k-l)sj +Y (k) (2.44)
I



-

where Y (k) contains the noise inherent in the measurement of xi(k) and

in the measurement of those states necessary for forming z Di,j (k-l)sj.

J

If Ci,j (k-1) in (2.43) is now replaced by its

corre-sponding measurement, then the following approximation model results.

AN P~ ’ .
'zi(k)n—g rij(k-l) a | (%-hS)

where rij(k-l) is the actual measured value for Cij (k-1).

Lo

Given this approximation model and assuming

uncorrelated noise -seqﬁences , the unbiased stochastic éra&iént a.lgonthm for

estimating 9y is:

where:

and ..

21

) =[x+ 900 3 ]G0 cumnZ e (@6

A
“q.(k) 'is the estimate for q..-
& 4

J
ri(l;) is the vector with components 755 (k)

N

Z ‘is the covariance of the noise inherent to the
measurement of ri(k-l)
W(k) is a weighting matrix.

To insure convergence W(k) must be of the _fgm:,?l

wk) = Q(k) diag '[hl(k)”;f’hﬂi (k)-]'



where:

L i a
Q(k) > 0
] ® ' o
> k) — O
=0 '

and

< 2
z e (k) < ®
k=0
These condition_s‘ essent_ially enable fhe procedure to be able to eorz}ecf the
parameter estimates as much as needed even for 1é.rge valgeé of k. -
} - Again because no simultaneous esfima.tion of sta.tes"
: and'parametél;é is involved the algéx'ithm is..strictly'lvine_ar.‘

~

2.5.4 Procedure for Simultaneous State and Parameter Estimation
Algorithms are now presented that perform both state and pare-.
meter estimation. Those ‘considered are the Extended Kalman filter and a
decoupling process iﬁ which linear state estimé.tion and linear pa.ralheter -
identifica.tiori_ are performed separately and altei-nately.
2.5.4.1 Extended Kalman Filter
- This sectionA presents _the‘g'eneral formla used in
Kalman filter estimation without any attempt for veﬁﬁcation. Detailed .
derivations may be found in ref. (23) or any complete text dealing with.
filtering and estimation theory. |

The system defined by egs. 2.32 and 2.33 will be

used for the presentation of the identif_‘ication algorithm. If only state



estimation were to be performed, then the Kalman estimate .’Ep(k) for the state
would be both a minimum variance estimate and a least squares estimate in the

sense of minimizing the performance ﬁmction(18)

T [r,(0) - u% (k)]T [ -rim] @

k-O
where R is the covariancé of the mea.surement no:.se n. However if the
measurement noise covariance matrix R is. not known expllca.tly and/or the

noise is not Gaussian, then the estimate is optmal in the sense of minimizing
A T -1 AT '

= k) - H% k:] R [ k) - HX k] 2.48

Z) (300 - 1 3,09] " 57 [0 - H 3,00 (2.48)

when Re' is 1_'.he estimated value of R. '.ThiS‘estimate,will not however 'be"
optimai in the sense of minimizing the variance of the error.
The estimated state §p(k) is given by:

A A :
k) = A k-1 B k-1
2p0) = Ay B (1) + 3y 9y () +

K(k) [Xp(k) - [Apgp(k-l) + B gp(k-lﬂ] (2.49)

. where:
Ap x (k-1) + B:p u_(k-1) is the "extra.polated" state.
H [A X (k 1) + B:p u (k-l):l is the "extrapola.ted" observation,
and K(k) is the gain matrix defined as:

K(k) =[M(k) HT] [H M(k) H + R] -1 (2.50)
M(k) is the "extrapolated covariance matrix of

A ' .
Ep(k) given the observations yp(k—l), yp(k-2_), yI’S(O) and is computed

L



recursively as: _
- M(k+1) = A P(k) AT . . . (2.51)
P(k) is the covariance of the estimate xp(k) given yp(k), yp(k-l),...

_.yp(o); that is

P(k) = i[& (k) - x (k:] [é& (k) - x (k:] 5,®), ...'lp(o)

a.nd can be com_puted from M(k) and K(k) as:

P(k) = M(k) - K(k) H M(k) | | | (2.532)
Up to. this point, it has been demonstratéd how XKalman filtering can be used
to estimate the pla.ntA state vector ?{-p'

To estima.te any u;ﬂ{nom pa:’rameters. Q appearing
in the state transition matrix AP and the gain mat;ix BP 1t is necéssary
to form an a.ugnen_ted state vector; This is done by appeﬁding to fhe sf.ate
equations the set of differenpe equations

q, (k1) = g (k) i=l, ...y P (2.53)
oi' in vecﬁor form - ‘

g (k+1) = g (k)

Thus the augmented system becomes:

x* (x+1) = &% (x* (x), k) + B (}_ca(k), k) u (k)
y(x) = B (k) ¥ (k) + N (k) (2.54)
where |
| X~ = augmented state vector, given by
X
S I
- a

s



A” = matrix of the augmented system given as
| A()) ! N |
a pd/ 1
A" = |emammaa N
1
N, ! I
2 1 P
1
®© - ~augmented system output matrix given by -
a [
H = H ! N
A
1

IP is an identity matrix of dimension ( p x p), and Nl’ Ne and N3 are null
matrices with dimensions of (nxp), (pxn) and (nx p'.');~ respectivei&;

Time variations in the parameters can be accounted
for by including a fictitious no;i.se compozient ?i(k) in eq. '2. 53 such

that: 20

a; (1) = @ (k) + 3,()

where the variance and degree of correlation in §i(k) are to be indicative
of the anticipated fluctua‘cionv in g. A particularly useful assumption is to
define ? (k) as an uncorrelated vector sequence with ;zers -mea.n and cové,ri-
ance Q. This term would th-n be added to the predicted covariance defined -
in eq. 2.51 giving:
o | ”M(k;l) = A”I; (kA) AT+ Q
An alt;,emate method for traci{ing time varying para-
meters is to introduce a fading on the filter's memory. by replacing the

weighting matrix R, appearing in-eq. 2.48 by:25 »26

R(k) = a-Ek R, a>1

16



where « the fading factor is typically between 1.0 and 1.l.

| ﬁote that the augmented system, eq. 2.54 is non-
linear and, therefore, incompatible. with the previous formula., This non-
linear equation must therefore be linearized aboﬁt a nominal or model
trajectory X . State vector a.nd'pa.rameter estimates will then be given in

terms of the incremental variations about this nominal trajectory or:

) (0) = 5y (1) + AF () (2.55)
and 8 (1) = qu(x) + A8 (x) (2.56)

where Xy and 9y.. are the state and parameters corresponding to the nominal
A A A

or model system, and Agp(k) and Agq (k) are the corresponding incremental

Quantities. Linearizing (2.54) about the nominal augmented state vector

T .
(xN, qN) yields:

- )
A x, (k1) A x, () |
= J (k) | (2.57)
A g (k+1) Ag (k) T
where J (k) is the Jaco'bian matrix:
. R . -

A (g,(x))

J (k) = ay(x) (2.58)

The extended Kalman filter equation applied to the

system defined by (2.54) is thus given by(23):

il



Agp (k+1/k+1) Agp (k+1/k)

A = A ) ]
Agp (k+1/k+1) A a (k+1/k) + K(k)[Azp(k) HAgp(k+l/k)
(2.59)
vhere: -
A%P; Ag are the estimated incremental variations in the state

© vector and parameters. .

_A_yp(k) = ¥ (k) - Yy (k) (2.60)
and AR (e+1)/x AZ (k/K)
=p D
= J (k) (2.61)
A/c_i (k+1)/k A[c_} (k/k)

Estimates for states and parameters at time k would thus be given by:

(k+1/k).

_')_{N(k+l) 4&%(k+1/k~)'_' ' (2.62)

e > ,é:«:>

(Relfs) = g+ Adle/k) (2.63)

With regard to defining the model tra.jecto;'y, the
following possibilities should be considered: |
Proceduz;e‘ 1l:
' The model or nominal traject'ory can be defined by specifying Ithe' initial
parameter vector qN(O), and the initia.j. state vector xN(O). These in tum

define the solution to:

Xy (k+1) Ay Xy (k) + By »gp(k) ‘ (2.64)

w6 = H xg (1) - (2.65)
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where Xy = state vector of ‘the nominal trajectoryv ) |
Ay _;I,system matrix defineé.by the initiai v§lue of the
paimmeters, G&(o).'
BN = gain vector defined by.the initial value of the paramefers,

4y(0).

, The matrix -J(k) is then updafed as follows using

this nominal trajectory' Xy and the initial vaiue of the parameters:

: Jd
Ay (a : 5 (AX, +Bu)
P s ey
J (k) = |=mmmmmmmee- Promoommmmmmmmomodemeoooo-
o |

Procedure 2:

The nominal trajectory is defined using the previous estimate of the state to

initialize the model equatioﬁs at each step, i.e.,
A
_>5N(k+1) = Ay X, (k/k) + By Ep(k)
As in the previbus case §h(k¥l) is used to campute J(k) from eq. 2.58.
Procedure 3:

The estimate Q (k/k) is used to replace the model parameter vector qN, such

that: . _ _ ‘ ' . ‘
(D) = AE (0) xy () + B, @ () (),

and J(k) is subsequently‘computéd using EN(k) and @(k) as:

k9



Procedure L:
The equations are linearized about the most recent estimates for both. G

and :_ck Thu§
x (1) = & (Q00) R (/i) + B,(Q00)) wy(k)

- A
Ay (k+1) = q (k+1/k+1)
This summarizes the nécessary equations for the extended Kalman filter for
' state estimation and/or parameter identification. Details of the numerical

exf;eﬁments. condnetéd are presented in Section 4.2,

2.5’.11.’2 | Separate mﬁear State and Parsmeter Estimatioﬁ | K
(SLSPE) | |
~ The separate linear state and ‘éé.rameter estimator

(SLSPE) as suggested by Grau.peal'L is a suboptimal decouplin‘g process in which
~linear state esti_mation and linear parameter identification are perfomed
separately and alternately. Because each estimation process is basically a
V recursive wéighted least squares algorithm, ’;he procedures are 'bé.Si’cally those
detailed in Section 2.5.3.1. -

' To define the procedure consider again the linear system:

x, (k+1) = A:p X, (k+i) + Bp B, (k+l) o | (2.6 68.)
¥, (k) = x,+1n | (2.66b)
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when Ap and Bp' contain unknown parameters.
Define two linear systems, the state system defined by eq. (2.66a) and
‘measured by eq. 2.66b, and the parameter system:

a (k1) = g (k) | (2.67)
measured by eq. 2.35. Clearly these two systems are coupled through the
system étate" X, and the parameter vector gq.

In order to decouple these systems, states are to
be estimated by assigning some value to the parameter vector a and
minimizing: B |

N _
D ICACEETOBLIE R NN D RN
subject to the satisfaction of eq. 2.66.

Parameters are in turr to be estimated by assigning a value to the state
vectoi' xp and minimizing:
-1
Z ) = R0 )BT 6 - Xm0 ) (2.69)
. k=0 '
where:

"’z?P(m) A(q)x(k>+s(q> ()

It is thus seen that the estlmatars for the states and
the parameters are the a.lgorlthms deflned respect:.vely by eq. 2. 1+9 a.nd eq.
2.37. In summary then, the SLSPE procedure is separable into the follomng

two distinct problems:

51,



A. At time k estimate Qp(k/k), using for q
its most recent estimate Q(k-1/k-1)
B. At time k estimate § (k/k), using for %
its most recent estimate, i.e., ’:\cp (k/k)
It is seen that the proposed procedure is suboptlmal
in the sense that the two objective functions are minimized separately and

not simultaneously, resulting in the need to alternate between a linear state

estimation problem and a linear parameter estimation problem.
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3.0 DIGITAL ADAPTIVE CONTROLLER REQUIREMENTS
3.1 Considerafions Cbncerning the Aﬂaftive Algorithms

\. When designing an algbiithm to be implémehted, practical considera-
tions must be very influential on the trade-off between accuracygand simpli-
city. In a digitél'adaptive flight controller, one of fhe prime practical
"Arésffictions'is the size'and'speed of the on-line digital computer. 'This will
affect both thé'timing and storage requirements of the adaptive algorithm.
FiguféAQ depicts the biock diagrém for an overall adaptive control,syétem, and
fig. 10 illustrates thé various timing'intérvals involvéd.in the realiéation.

The smallest timing interval is the control computation intervai
-(Tc) and typically is between 0.03. and 0.20 seconds., State estimation,if used,
must be as fast, since the state is used by the feedback controller in calcu—.
lating the new control. The two larger intervals are requiréd for gain
adaptation. The parameter identification interval (Ti) must not be longer
than the gain update interyal (Tg), sincg the gain update algorithm requires
the new parameter estimates. If parameter estimatioh alone is performed,
then it is possible to have Ti :>'Tc; however, if states and parameters are
to be estimated simultaneously, then it is necessary that Ti = Tc' Gain
update intervals (Tg) being considered range from 1.0 to 10,0 seconds.

Since sto&age requirements vary from algorithm to algorithm, they
must be taken into account. Recursive gain update, parameter identification
and’ state estimation algorithms will require storage of the various matrices
used in their formulation.

Attention must be given to methods for reducing the complication of
these algorithms. Prime among these is the identification of only the most

sensitive parameters of the aircraft, the others being set at some representa-
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tive nominal value. The specific barameters to be identified are found
according to the influence errors in identification have on the state. The
sensitivity study performed for this purpose is deseribed in Section 4.2.

Furthermore, algorithms can be simplified by taking advantage of the
sparseness of many of the matrices involved. This leads to a natural parti-
tioning of the problem into a group or series of simpler problems. A further
simplification may be made for calculations involving symmetric matrices,
although the extra information could be used to achieve more accurate calcula-
tions.

Struetural considerations‘for imblementing digital.adeptive ceﬁtfol'
systems based upon the single stage algorithm and llnear quadratlc regulator

logic are next presented in Sections 3.2 and 3. 3 respectively.

3.2 Adaptive Logic Based Upon Single Stage Optimization Procedures

Because of the characteristics outlined in Section 2.4.2, the. con-
troller based upon the sdngle stage index which penalizes the next stege error
between plant and model was chosen for implementation in an'adaptive control
loop. | |

The control law is derived‘baSedbupoh the minimization of a weighted
eambinatibn of the instantaneous .squared error between'the states of a linear
plant and model‘et the ne#t stage esd the bresent eontro} energy. The result
is a control signal that is a linear combination of plant and model states and
model inputs as given in 2.4.2, The explicit formula for computing the control
gainsdare shown at the bottom of fig. 11. In order to satisf& the identifica-
tion requirements, an on-line weighted least squares‘identifier, described by

eq. 2.41 has been interfaced with this controller. The results of the
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application of this controller to typical linearized lateral aircraft dynamics
are discussed in 4.5.1.

One of the problems encountered in the use of same state gains was
that no set of gains gave accqptdblelresponse at any FC other than that for~
which it was designed, particularly for a sampling period of 0.2 sec. Thus
in order to maintain stability and acceptable response with a same state con-
trolléer it is necessary to update the controller gains regularly at a rate
determinéd by the fastest expected rate of change of aircraft parameters in-
flight.

With regard to implementation of the necessary logic for‘ééntfgl"
computation, parameter estimation and gain wupdate, the following operational
procedures are requiréd (assuming n states, m controis; and ,f; -para-
meters to be identified in the ith state equation ).

CONTROL COMPUTATION

Formula,: A
u (k) =K_ x (k) -K x (k) + K u (k)
o) x, ™ Xb P w o -m

gc_m(k+1) = .Amzc_m(k) + B Em(k)

Operational Requirements
- ' o 2
Additions: Em? + 3m - 3m-n+n

Multiplications: n? + m? + 3mn

PARAMETER ESTIMATION

Formula: eq. 2.1
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. Operational Requirements:

Additions: n(mn) + 2«0 Z’Q 2 z )Z 3

i=1 i=1
Multiplications: n(m+n+l) + hpto + Tze z & 3
=l i=1

L where . Z £i = ’etot = total number of parameters to be
) i=1

identified.
GAIN UPDATE
" Formula:
. T -1 T
K = ER + B B ] B A
x, &P < p-4 P A
, I P |
K = [% +B - QB ’]
X P P
T -1 T
K = R+ B B
W [: %p @ Bpj] p ©Pn
Opéra.tional Requirements:
Additions: 3m> + 2m> - 3mn - 2m° + m

Multiplications: bann® + mn2 - 2n°

Matrix inversions 1 (m x m) matrix
m=1 : 1 multiplication
m=2 6 mltiplications and 1 addition

As a specific example if n =4, m= 2, _é.nd )Ql=ze3=6 the following

total computations would be necessary.
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Control:
38 additions . o
every Tc seconds
44 multiplications
Parameter identification:
552 additions

every,Ti seconds

580 multiplications 12 parameter estimated

Gain computation:
83 additions. ' o
: 4 “every T seconds
134 multiplications ) . - 8
‘For comparison, if an extended Kalman filter had been used for-
simultaneous state and parameter estimation, the above 552 additions .would
be replaced by 2235 addiﬁions and the 580 multipliqations would be replaced
by 4580 multiplications.
| | For T =T, = 0.2 sec. and Tg = l;b-sec; the total additions and
multiplications required per second would be:
Additions: 3033
Multiplications: 3254 _
If only 4 parameters instead of 6 are identified in réws 1l and 3, and
o = Ti = 0.1 second and Tg = 1.0 second, the-computational requirements -per
sec. would be:
Additions: | 2043

Multiplications: 2354
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3.3 Adaptive Logic Based on the Linear Optimal Regulator Solution

In view of the discussion in Section 2.4.3 an adaptive controller
based on the solution to the linear optimal regulator problem was chosen for
implementation as shown in fig. 12. .Identification was performed using the
weighted least squares algorithm as defined in éq. 2.41., Results using this
adaptive logic are presented in Section ﬁ.5.27

With rééardAto’;he implementation of the necessary logic fdf control
computation, parameter estimations, and gain update, the following opefational
procedures are required (assuming n states, mA‘controls, and/ei parameters

to be identified in the i°?' state equation:

CONTROL COMPUTATIONS

-Formula:
’ up(k+l)'= K5y xb(k) + (I + K22) up(k) + Kajjxm(k)»+ Ky, um(k)
Xy (k+1) = Ay ,xm(k,) * By um(k).

Operational Requirements:
Additions: 2m? + 3mn + n2 -m- n

Multiplications: 2m2 + 3mn + n2

PARAMETERS ESTIMATION

. Formula: Eq. 2.1

Operational Requirements:

n n
. 2 3
Additions: n(m + n) + 2Itot + ZQI * Z-Xl
| i=1 i=1

n n
v s 2 35/ 3
Multiplications: n(m + n + 1) + b’/gtot + Z—P : +2—ji
i=1 i=1
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n, .
where Zle =£tot

i=1

GAIN UPDATE
Formmla: (These were developed through partitioning of the Riccati
matrix, as defined in éq. 2.31, taking into account the

sparseness of the A and B matrices as defined by

eq. 2.26).
- P11 P12 P13 P14 i
12t pe2 P23 P2l
= | 5w (3.1)
N I LS < R < S N <13 B
B:l peyT  p3uT  pal
Pll(k+l) = Q + A.p (311 - P12(P22 + R) ~ P12 )4Ap (3.2a)

P12(k+l) = Ap? [(Pll‘h_Pie(Pég-4‘R)'l P12T) B, + P12(T - (P22 + R)™L P22)]
R o ‘ (3.2b)
i . ‘

P22(k+l) = Bp [(311~- P12(P22 + R) 1 P12T) Bp + P12(I - (P22 + R)'l P22)]

+ [gI - (P22 + R)7T P22).P12T]‘Bp + P22(1 - (p22 ¥ R)™L j22) (3.gc)

Kyp = - (P22(ke1) + R)™F (P12%(k+1) Bp +AP22(k+l)) - o (3.24)
Ky = = (P22(k+1) + R)“l (PlET(k+l) Ap) . ., (3.2e)
P13(k+l) = - Q +-APT(P13 - P12(P22 + R)'l P23) Am- - B (3.3a)
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P23(k+1) = B_T - -1 ﬂ
3(k+1) Bp (P13 - P12(P22 + R) ™™ p23) A | (3.3b)

+ (P23 - p22(P22 + R)~T P23) A

Ko3 = = (P22(k+1) + R)™ Pe3(ke1)A_ (3.3¢)
PIL(kt1) = A [rﬂﬁ-+-(ra3 - P12(P22 + R)"T P23) B, - P12(P22+R) L pol ]
T , (3.3)

P2h(k+l) = B, l:Plh-+ (P13 - P12(P22 + R)1 p23) B - P12(P22+R) "L Peh]
. (3.3e)

+ (P23 - P22(re2 + R)™ pe3) B

+ P2L - po2(P22 + R)'l P24
K, = = (P22(k+1) + r)™t (P23(k+1) B, + P2h(k+1)) ' - (3.21)

Operational Requirements: (per iteration)
: ‘ , o,
Additions: un3 + 6m3 + lhman + 9n2m - 12mn - na,é o

Maltiplications: 4n3 + 5m3 + onm + lhm°n

Metrix inversions: 1 (m x m) matrix
m=1 1 multiplication
m= 2 -6 multiplications and 1 addition

As an example, if n=L4 and m =2 the following operations are

necessary: L . -

Control:

42 additions
‘ every Tc seconds
48 multiplication
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Parameter identification:

'(i = ()'l': ;L: 3 O)

158 additions
) every T. séconds
178 multiplications +
Gain computation:

70l additions
, every Té.seconds
814 multiplication

For Tc = Ti = 0.1 sec. and Té = 1.0 sec. the operational requirements.

per second would be

Additions: . 2701

Multiplications: 307h4
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4.0 RESULTS
k.1 Introduction

Evaluation of a digital adaptive flight control system requires the
testing of each individual subsystem prior to integration as well as experi-
ments on the entire system. Consequently considerable effort was expenaed in
éimulation efforts to individually evaluate'each of the control algorifhms
discussed in Section 2;hhand each éf thevidentification algorithms discussed.
in Section 2.5.

Because of the need to examine the required'preciseness‘of identifi-
cation and the degree of adaptation needed, a typical'flight trajectory in the
altitude-mach number plane was postulated. This is defined in Teble II which
cites the order and timing for a typical fighter aircraft to encounter the
six given flight conditions of fig. 21. This trajectory corresponds to an
initial acceleration from Mach .3 to Mach .9 at a very low altitude, a com- -
bined climb to 3600 m and acceleration to Mach 1.1, a climb to 15,000 m, a
deceleration to Mach .9, and fiﬁally a'combinéd dive to 6000 m and a decelera-
tion to Mach .7. For simulation purposes, it was‘assumed that the parameters
of the aircraft's discrete Ap and BP matrices varied linearly with time
between flight conditions.

A decision was made early in the study to use an adaptive control
scheme based upon explicit identification of the unknown parameters. However,
as previously mentioned, it is impractical to consider estimation of all para-
meters in the AP and Bp matrices. A sensitivity study was therefore
performed to determine those parameters which least effected‘system performance
and which might therefore be considered constant. Results of this study are

presented in Section 4.2, and results of the identification experiments
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Table II

Flight Trajectory Used For Evaluation

5|

Time of encounter (seconds)

0
30
35
80
85

120
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themselves are presented in Section 4.3.

Prior to testing the adaptive loop including the identifier, an
evaluatiop of the gain update logic itself was made under the assumption of
perfect identification of various influential sets of time varying parameters.
This study, discussed in Section k4.4 led to conclusions regarding adaptation
timing requirements and the number of parameters that had to be identified.
Section 4.5 presents results for adaptive control incorporating online pafa-
meter estimation.

Finally, in ofdér to assess the practicality of some of the control
algqrithms in a digital environment, several tests were made using NASA
Langley's EAI 690 hybrid computer. Both linear and nonlinear procesé dynemics

were considered. These results are found in Section L4.6.

4.2 gstate Sensitivity of Parameter Estimation Errors
4.2.1 General Procedure
The explicit calculation of the sensitivity vector

)xp(k)

- (where gq is some element of the discrete aircraft matrices) was used to rank

the parameters as to the need for their identification. Depending upon the
rsize of this sehsitivity, it Wés-decided either - o

(1) to identify the parameter explicitly, thus having available an
accurate estimate of its value, or

(2) to set that parameter to some constant value and use that constant

value for all gain update work. This constant (called qav) was taken to be

68

the average value of that parameter over all six flight conditions.. Thus, the

error in the value of a parameter not identified was AQqQ=q - Qgye



To get an approximate value for the error in. the state
Avector dﬁe\to,npt identifying a given pa;ameter,xthe parameter error was
multiplied by a representative value for the state sensitivity to that para-
. meter giving. . o S o A ,

) a |

-Thus .even. if the .sensitivity itself is large, a small parameter variation A q
over the flight envelope will yield a small A xp. Each parameter was then
-ranked according to the error in each state of interest that would result‘from'
not»i@entifyiné this parameter.

Telcaleulate the sensitivity vector, a difference -equation
was found that determines the sensitivity vector!s_dynamics.e% This was done

by taking the partlal derivative of the state equatlon

x(k+l) £ (x(k), u(k), A, B) f(k) | (4.3)

with respect to the specified parameter, g, resulting in:

S (kfl) = )_fQ{_). s(k) + _)ﬂ.l.{_) (L.4)
d x(k) ya

Since the sensitivity is of interest for the closed-loop system:
x (k#+1) = (A - B K) x (k) - : - (b.5)

the sensitivity equations become: -
S(el) = (A< BK) S(K) + ———~  x (1)

Therefore, for a known state vector tragectory, the sens1t1v1ty of the various

states to a certaln parameter can be computed about that traJectory It
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" should be noted that these sensitivities will indeed be dependent upon both

70

the system input signals W and-the control gains implemented.
" Results of applying these sensitivity equations to the linear
1aferal equations of motion controlled by the single stage algorithms and the

optimal regulater are next presented in Sections 4.2.2 and 4.2.3 respectively.

4.2.2 sensitivity Results for Single Stage Optiﬁization
Sensitivity ealeulations for the eontrolier based upon single

stage optimization were performed using a simultaneous 'Sol aileron and 56
rudder pilot command input. In general, the set of most sens1t1ve parameters
for different flight conditions were the same except for some mlnor dlffer-
ences. The set of most sensitive parameters were obtained based upon the rank
ordering of the errer inlroll rate and sideslip that would result if the_
average value ef the parameters were used. It was foﬁnd;that in order to ‘
ensure good roll rate model following, the parameters that should ee identi-
fied, in orae; of impdrtance are: Bp(l,e),_ Ap(l,u), Bp(l,l), Ap(l,z_),
Ap(l’3)’ A _(1,1). ‘
To ensure good 81desllp follow1ng the parameters in order of 1mportance are:
B (3,2), A (3,4), B (3, l), A (3,2), A (3,3), A (3,1)
These twelve dlstlnct>parameters selected for 1dent1f1catipn consist of tpe
elements of the 1lst and 3rd rows of both AP and Bp' Subsequent
results reported in Sections 4.4t.1 and 4.5.1 are based upon this set of

parameters being identified.
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4.2.3 Sensitivity Results for the Linear Optimal Regulator .
Sensitivity calculations for the opitmal linear‘regulator

design were performed for a 50 sileron command acting alone énd for a 50

z&ileron command and 50 rudder command applied simultaneously. It was noted

that, except for minor differences, the list of most important parameters was

 the same for all flight conditions.

For the 50 alleron command, the follow1ng parameters
(in order of descending>importance) should be identified to ensure good roll

rate model follow1ng

B (1,1), AL, 1), B (¢,2), A (3,1), A, (1,2), A (34).

To achleve accurate side Sllp response, the follow1ng parametersbshould be
1dent1f1ed |

%(3,1), B (1,1), B (3,1), Ap(a,h) B (2, 2) Note that there are eight
parameters in the union of these two sets. ' ' .

It is also 1mportant to note that the llst of most 1mportant
parameters is a function of the.pilot'input. For example, in comparison with
the above and the results of Section 4.2.2, the 12 most sensitive parameters
for a 5° aileron deflection and a 5° rudder deflection epplied simultan-

cously were: A, (1,1), AP(;,Q), 4,(1,3), Bﬁ(lﬁl)?lgp(%,?)
A,(2,3) | B (2,2)
A(3:1), A(3:2); A(3:3), A (3,4), B(3,2)

Note that this set differs from the single stage set of 4.2.2 in that it

contains row 2 elements as well as some of the row 1 and row 3 elements.
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4,3 Identification Results
Evaluation of the various identification algorithgs presented in-
Section 2.3 was performed through a series of expériments that eﬁébléd:fhé
appropriafe design parameters to be tuned to the problem étlhand pfior t;ﬁ
implementing the fully adaptive control system. Considéféfions includeﬁi
Performance in the presence of open loop control signals “
having relatively large bandwidfhs'and variénéés.
Performance under open loop control signaisvhaving‘véry
little fluctuation.
Performance under closed loop control.
Input'requirements if elements of both columns of the
BP matrix were to be estimated. For example if
g'r = C S’a » then the corresponding control coupling
to X1 would be Bp(i,l)s‘a + Bp(i,2)($5r = (Bp(i,l) +
-Bp(i,Z)C)S'r; and thus it would not be possible. to specify
Bp(i.l) and Bp(i,2) uniquely.
Performence as a result of assuming erroneous measurement .
noise characteristics.

Influence of the linearization procedures discussed in .

Section 2.5.4.1.

In general it was observed that the simple recursive weighted least
squares algorithm gave better parameter estimates than did the extended
Kalman filter. Appareﬁt;y the improvement to be expected in simultaneous
optimization of both parameter and state estimates is more than offset by the
required linearizations. Consequently in subsequent adaptive -control imple-

mentations, the recursive weighted least squares algorithm was utilized.

14
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Comments concerning the tuning of this algorithm are contained in Section
h.3.l, and examples of its perfonmance'are contained in Section 4.5. As of
this writing, c;nclﬁsive results were not as yet available regarding
£ﬁe stochastic gradien#Aaléorithm,‘and studies are being made of its
uégfglness in trg;king time varying parameters in the presence of correlated
noi;e. |

| Performance chaxactgristics_pertinent to the two algorithms for
éimultanequs state énd parameter estimation, i.e., tﬁe extended Kalman filter

and the separate linear state and parameter estimation algorithms (SLSPE) are

contained in Section 4.3.2.

4.3.1 Results Pertinent to Procedures for Parameter Estimation

Only

The study conducted thus far on the stochastic gradient
estimation has been basically a theoretical one and has been geared towards
the development of the procedure for the identification of constant parameter
mul ti-input multi-output systems. Further development is expected in the near
future to adapt the procedure to the identification of time varying paraméters
and for the establishment of experimental results and analysis. This research
will be concentrated on the synthesis of the correction gain W(k) given in
eq. 2.46, taking into account both simplicity and speéd of convergence, and on
.the evaluation of performance in the presence of correlated noise sequences.

With regard to the recursive weighted least squares algorithm,
some of the results pertinent fo the selection of the P(0) and Q matrices
as used in eq. 2.41 are now presented. As stated in Seection L.1,

this algorithm was selected for implementation in the fully adaptive system.
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The pertinent parameter tracking capabilities are thus discussed in Section

4.5 along with the other results obtained from testing the overall system.

The use of large values in the Q matrix results in the
ability to track rapidly varying parameters. However, it also results in a
tendency to adjust parameters so as to account for variations‘dué.solely to
measurement noise. Similarly, small values in the Q matrix reé#lt in a more
pronounced filtering of the measurement noise while the abilit& to track time
varying parameters is degraded.

As a first approximation, the appropriate e;emehts of Q were

set equal to the expected square of the appropriate parameter change per

sample, and P(O)wasthen set equal to the corresponding steady state solutions

Th

of egs. 2.4le, 2.41d, and 2.4le. In practice, this was accomplished by iter-
ating through these filter equations and observing the steady state value of
P. Elements of the R matrix were computed in accordance with eq. 2.39,
although it was observed that setting Ty eqﬁal to d>12 gave equally good
results. |

For estimation of the 12 most sensitivity pérameterg”éS*uSéd
in the single stage adaptive algorithm (see Section 4.2.2), the diagonal

elements (alluother elements were zero) of P(0) and Q were:



Parameter

%(1:'1‘)
%(1,2)'

%(193) :
Ap(l:)*) “

%(3,1)
A(3,2)

A(3.4)
Bp(l,l)

Bp(l,z)' '

Bp(s‘,l)”

| Bi,(a,?_)'

For the eight most sensitive parameters as used in the adap-

tive controller based upon optimal regulator logic (see Section 4.2.3) the

- 3.8 x 107

P;;(0)

8.0 x lO-b'

2.Qx 1073

1.6 x :l.O-l

6.5 x 10~°

1.h x 1077

2.9 x 107
2.5 x 1073
1.4 x 10

1.9 x 1072

b4 x 1073

L

5.9 x 10~

diagonal elements of P(0) -and Q were:

Parsmeter

Ab(l,;)'
A,(1,2)

Bp(l,l)
Bp(l,2)

BP(2,2)

%(3;1) :
%(3:1\‘)

P;;(0)

2.0 x 1073

2,0 x 1073

1.2 x 1072

5.0 x 102
5.0 x 1073
1.2 x 1072
1.5 x 1077

1.’5 x 10‘1‘

6 B

8.6 x 10°

2.0 x 107

k.57 x 10
1.1 x 107
7.75 x 10
6.4, x 10

b4 x 1072
-8

7.1 x lO.6

4,0 x 10

y.h x 1072 |
9.h x 1070

6.4 x 1072
_i.o x 107

1.1 x 1077

et
6.0 x 1077
1.6 x 1071

3.4 x 107
i

6

2.3 x 10

3.4 x 107
10

1.2 x 1077

6

h_.
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4.3.2 Results pertinent to Estimation of Both States and Parameters
Conclﬁsions pertinentlto the perfpimance characteristics of
both the Kalman filter and the SLSPE were based upon simulation on an IBM
360/50 digital computer. Sampling periods of 1/30 secoﬁd and 1/10 second were
incorporated, and estimation of thg_four latera; stﬁtés and the eight most
sensitive parameters for the linear regulator logié.(észpresented in Section
h.2.3) was.c§nsidered.' Unless otherwise_cited, measurement noise was simulﬁted

as uncorrelated processes having the variances given in Table I.

4.3.2,1 Kalman Filter Results "
The following conclusions were reached regarding the

performance of the extended Kalman filter:

Selection of initial-covariance matrix P(0)

Assuming perfect knﬁwledge of the initial state, the
corresponding elements of P(0) should be zero.
The terms of P(0) corresponding to the parameters
can be zero if fictitious noise with a covariance

/ matrix - Q is used to modél the parameter ﬁariation;
oﬁherwise these elements should be proportional to

”-the expected square of the per sample chanée in -the

parameter.

- Measurement noise covariance matrix

It was noted that the use of the exact noise covariance
in the filter equations was not necessary for con-
vergence, Tt was observed that convergence was possible

with the noise covariance R set five times larger than



the actual noise covariance matrix; however
convergence did not occur for R matrix elements
much lower than those in the actual measurement

noise covariance matrix.

NSminal ﬁrajéctory selection

‘ F§f tiﬁe varying parameters it was found that the
:;Bés£:proce&ure for updating the nominal trajectory
was‘throﬁgh-the use of the most iécenf stafé>and :
parameter estimates for defining the point about
which linearization was to be performed. This is -
Procedure 4 as discussed in Section 2.5;h.l.: For
cqnstantsparameters? it was found that the best
trajectory to linearize about was defined by
Procedure 2. |

Feding memory implementation

From experimentel results, it was observed in general
that the use of a fictitious noise input for modeling
- the parameter variations yielded better convergence

. properties than did the procedure using an experi-
mentel weighting factor. This is illustrated in

fig. 13 for estimation of a under open-loop

31
excitation (+ 30o rudder at 1.5 Hz and + 30° aileron
at 1.0 Hz). State measurement noise was uncorrelated

with variances of one tenth those listed in Table I.
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4.3.2.2 SLSPE Results

In using the SLSPE it was observed that the para-
meters estimates were biased and that convergence was poor if parameters in
both columns of the Bp matrix were identified. However, these results
corresponded to experiments in which a recursive step of both the parameter
estimation algorithm and the state estimation algorithm were performed at each
and every sample. In view of the results obtained using the weighted least
squares algorithm for parameter estimation only, it is ' recommended that
either state estimation not be pefformed as often as the parameter estimation
or that the state measuremenfs, not the state estimates be used in the para-

meter estimation algorithm. Future efforts will consider these items.

4.4 Performance Under Perfect-Identification Prior to Interfacing
'Adaptive Contrpl_Logic
With an online identifier, it is necessary to validate the results
of the sensitivity study described in L4.2.1 apd_to determing how often adapta-
tion should be performeq. 'Upper bounds to these figures can be obtained by
simulating an adaptive controller with a perfect identifier. Thus while
parameters not being "identified" would be assumed at their average valﬁes,

true values would be used for these parameters. designated for identification.

4.,4.1 Performance of the Single Stage Algorithm
The following two experiments pertain to the performance of
the'single'stage controller:

Experiment I

Objective: Assuming no noise and perfect identification of all para-

meters, determine suitable gain update periods.
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Procedure: At each gain update sample time, the gains optimal for the
current flight conditions were to be computed from eq. 2.19 aﬁd held constant
until the next gain update sample time. These gains at the 6 FC's are given
in Appendix B.

Constant fgctors:

Pilot input: + 50 gileron, 0.1 hz square wave
Variable factors: |
Confrol sampling periods: .2, .033 sec.
Gain update periods: 1.0, 2.5, 5:6 sec.
~ Results: Figure 1L indicates good model following'for a gain update
pefiéd of 2.5 sec. and a control period of 0.2 sec. A gain update period of
5.0 sec. was found to be satisfactory for a control sampling interval of

.033 sec., but unsatisfactory for a control period of 0.2 sec.

 _.§§perimeht IT
. ijective: Assuming that only selected sets of 10-12 parameters arevto
be identified perfectly,4wifh fhe rémaindef set eqhal to their average value
' ‘::over the typlcal flight trajectory for six FC's detenmlne the neeessary
4 frequency of galn updating. The parameter sets to be identified are those
’ deemed to be the most influential as discussed in 4.2.1.
4‘froceduré: At each gain update sample, the gains were to be computed from
éq;'2.l9 uéing the true values for,those.parameters‘beiﬁg_"identified" and
averége (over.the 6 FC's) values for these parameters not being identified.
.Constant factors:
o

Pilot input: + 5 aileron, 0.1 hz square wave

Control sample period: 0.2 sec.
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Variable factors:
Parameters identified: 10 and 12 most influential parameters.
Gain update periods: 1..0, 2.5 sec.
Results: Figures 15 and 16 indicate the significent improvement that
results from identifying 12 rather than 10 parameters especially between
FC3 and FC4. This is true for both gain update periods. The most noteble
improvement in using a gain update period of 1.0 rather then 2.5 sec. is most

evident between FCl and FC2.

' Conclusions of both experiments: For the overall adaptive implementation,
identify the 12 most influential parameters, and based upon these, update

gains every 1.0 sec.

4.4,2 Performance of the Linear Optimal Regulator
The following three experiments pertain to the performance

of the linear optimel regulator design:

Experiment I

Objective- ASsuming no noise<and\perfect identification of all para-
meters,determane sultable gain update periods.

Procedure: At each gain update sample tlme, the P matrlx is recomputed
from a single iteration of the Riccati eq. (2.31) using those values of Ap
and Bp which correspond to the present flight conditions. Control gains
are then computed from eq. 2.29. (See Appendix B for the gains corresponding
to the 6 given FC's).

- Constant factors:

Pilot input: + Sojaileron, .2 hz square
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Control sample period:’ 0.1 sec.

Varigble factors:

Gain update»periods: 1, 5, 10 sec.

Results: Figures 17a and b show good model following for a gain update
period of 1.0 sec., while figs. 18a and b indicéte some degradation in perform-
ance for a gain update period of 5.0 sec. Stability for the closed loop
system was observed for the three tested gain update periods of 1, 5 and

10 sec.

Experiment II

Objective: Under‘the assumbfion of no noise and peiféct identification of
the 8 parameters, chosen by the sensitivity method descriﬁed in Section 4.2,
with all others set to their average value over all.6.flight conditions,
determiné.the required fféquéncy of éain update. |
Procedure: At eéch gain update sample, the gains were to be cdmputed
from one iteration of the Riccati eq. (2.31) using the true values for the
eight pargmeters being identified and average (over the 6 FC's) values for
the remaining 16 parameters.
Constant:factors:'
“ | | Pilot input: + SO'aileron, .2 hz square wave
Cdntrol sample period: .O.l sec.
Variable factors:
Gain update periods: 1, 5, 10 sec.
Results: Figs. 19 and 20 4llustrate the improvement in model following which
results from using a 1 sec. gain update period rather than a 5 sec. period.

For a 10 sec. period, the stability of the closed loop system was marginal.
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FIG. 19
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Note that relative to the results of Experiment I, there is more deterioration

of side slip model following than there is of roll rate following. This is
true because the set of eight parameters identified ‘is more influential in

defining the roll rate dynamics.

Experiment III

Objective: Determine how the results of Experlment II are affected if
noisy state measurements are used for control computatlon.
Procedure: Same as for Experiment II except control s1gnals were to be
computed frdm products of the gains and noisy state measuzements,
Constant factors:
Pilot input: + 50 aileron, .2 hz squa?e wave
Control semple period: 0.1 sec.
Gain update periods: 1, 5 secs.
Variable factors:
ﬁoise statistics: Table I characteristics echiefed using
first order filters with breaks at the
given bandwidths. ZRMS values given in
Table I and 1/10. fhese‘salues were used.
Results: Figure 21 shows that feeding back stetes:centemiﬁated with
noise results in seveie4 jittering of the aircraft response.::Some sort of
prefiltering is thus necessary. As expected, lowering the'rés velues of the

noise samples reduced the magnitude of this jitter.

Conclusions from all three experiments: For 1mplementat10n of an overall
adaptive system, identify the eight most 1nfluent1al parameters discussed in

Section 4.2.3, and:using these, update the gains every one to five seconds.
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Prefiltering is needed for state measurements contaminated by noise having

the charactgristics of Table I.

4,5 Adaptive Control System Performance Evaluation
L.5.1 Adaptive Control Loop Experiment - Single -Stage

Optimization Procedure

Objective: To study the behavior of the édaptive cént?ol system designed
by coupling a weighted least squares iden£ifier wiéh theuéingle stage con-
troller logic as shown in fig. 1l.

Procedure: Using noisy state measurements with nolprefiltering,'para-
‘meter estimates were obtained at each control sample period and then uéed at
each gain update period to compute the control.géins acéording to eq. 2.19.
The noisy state measurements were then used with'these géigs for control
computation.

Design factors:

Pilot input: + 50 aileron; 0.1 ﬁz square wave.

Conﬁfol sample period: 0;2 sec. |

Gain adaptatlon period: 1.0 sec.

Parameters 1dent1f1ed- Ap(l,l), A (1,2), A (1,3), Ap(l h),
A,(3,1) A (3,2), A (3,3), A,(354),
B (1,1), B,(1,2), B (3,1), B (3,2)

Remalnlng parameters Set at the averagevaluescomputed.over the 6 given
FC's. o

Measurement noise: As defined in Table I.
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Results:

Conclusions:

Resgonses

Figure 22 shows the roll rate response for portions of
the test flight trajectory. TheAnoisy state feédbéck results
in severe jittering of the aircraft and thus relatively poor
model following particularly at FC's 1 and 2, Side slip was
generally limited to + 0.4° except for FC1l where the maximum
excursiég was 2.8°.

Paremeter tracking

Figures 23a, b, ¢, 'd illustrate parameter tracking
behavior between FCl and FC2 during which model following is
the worst. To be noted is that despite ‘the existence of a

Eias in the estimate, the general trend in the variatidn is

\

followed.

Control gains

Comparisons between the optimél and adapted control gains
are given in figs. 24a, b, ¢, 4@ for part of the interval
bétween FCL and FC2. With the exception of the roll rate
feedback gains, the adapted gains were relatively close to
the optimal gains. In fact, beyond the 20 second interval

depicted in fig. 2L, all gains:converged closer to the true

- values.

In view of the fact that the adaptation procedure was capable

of producing'reasonable feedback gains,'it is concluded that a workable system

. should result from the inclusion of prefilters for removing jitter and the

“usage of an unbiased parsmeter identification algorithm.
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h.5;2 Adapti%e Control Loop-Experiment -~ Linear Optimal

Objective:

Regulator Procedure

To study the behavior of the adaptive control system designed

by coupling a weighted least squares identifier with the Riccati gain update

logic as shoWn'in fig. 12.

Procedure

Using toisy state measurements with no prefiltering, para-

meter estlmates were obtained at each control sample period and then used at

each galn update sample in one iteration of the Ricecati eq. (2.31). The gains

were then»computed from eq. 2.29, and along with the noisy state measurements

~ used for control computation.

De51gn factors

:Pllot 1nput + _50 aileron, .2 hz square wave

Control sample period: 0.1 sec.

 Gain adaptation periods: 1, 5 sec.

Parameters identified: Ap(l,l), Ap(l,2), Ap(?s,l), AP(S,M),

.Bp(l,l), Bp(l,z), Bp(2,2), Bp(s,l).

‘Remaining parameter: Set at the average value computed over the 6 given

FC's..

Measurement noise: As defined in Table I.

eReéults:

Responses

k Figure 25a and b depict roll rate and side slip responses
for a gein update of 5.0 sec. These responses are very
similar to those of fig; 21 (for noisy feedback but with

perfect identification of the above 8 parameters) indicating
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that the inclusion of an actual identifier did not seriously

degrade the performance. With a gain update period of 1.0
sec., improvements in the model following characteristics

were noted,

Parameter tracking

| Figures 26a, b and c illustrate typical parameter
tracking. Again as in 4.5.1 the presence of bias in the
estimate is readily evident as well as the capability for
tracking the variation. As might be expected, a réduction
of'fhe mms values to 1/10 those cited in Table I improved
the estimates.

Control gains

Comparisons between the gains computed based upon

perfect identification of all parameters and the actual

adespted gains are shown in figs. 27a, b, c, d, for part of

the intervel between FC1l and FC4t. Despite the differences
between the adépted-and optimal gains (most notably in the
feedback gains affecting roll rate) the general variations

in the gains were followed.

Conclusions: 1In view of the facts that the prﬁcedure‘was~capdble of adapting

the feedback gains to reasonsble values and the simularity between figs. 21

and 25, it is expected that the incorporation of prefiltering and an unbiased

parameter estimation algorithm should produce an acceptable adapﬁive control

system.
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4.6 Hybrid Computer Tests’

In addition to the previously'deécribed all digital simulations,
the EATI 690 anaiéé-digital hybrid computer at NASA LRC was.used for system
evaluation. The aircraft dynamics and pilot c@ntrois were programmed on thef
analog portion of the computer, whiié the discrete control iaws were pfq?

grammed on the digital portion.

4,6.1 Linear Simulation Results
The first tests were performed using the lihearized.aircréfttf
dynamics. These tests had as their objectives:
Evaluation of feedback controllers in a hybrid environment.
Evaluation of the gain adaptation algorithﬁ using perfect
paremeter identification.
The results indicated that:
Noise in the énalog to digital converters cén be g significant
problem for the noﬁdyﬁamic feedﬁaék controller developéd‘using the
single stage algorithm. The "type one" feedback controller develdped
using linear 6ptima1 contrpl theory was much less éensitive to this
noise. In particular, a noisy side slip measurement caused trouble
for the single stage controller because of the moderately large _
gains necessary to effect good model following.
Even when no information about the actual flight condition was
" included in the initial Riccati matrices, only one or two executioﬁs
of the gain update algoriﬁhm were necessary to produce gains giving
accqrgpe.mode;-following. Figure 28a illustrates.the aircrgft

response to a pilot aileron input using incorrect gains (those

102



FIG. 28 FLIGHT CONDITION

- FIG. 28b

.67
H= 6I00M

M=

FIG. 28a

\—. ~
0
o
’ 1]
~N
]
e |
_ = 20°/sec 2° 600° 40° | 40°
ROLL YAW SIDE BANK .
P RatE Y ATE P Siip  anclE Sa AILERON Sr RUDDER
- ._W ¥ . H
o ,
]
0
~ .
h 1
0 .
o [ o - ° © -3
— 20° /sec w 3 | 600 [ 40 40
ROLL _55.\ SToE 5 BANK
P Rame Y pamE B $ ANGLE 8a AILERON 8r RUDDER

SLIP

GAINS BASED ON

GAINS AFTER
ADAPTATION

M=.3
H=.0

103



designed for FCl actually applied to the aircraft at FC6), while
fig. 28b illustrates the aircraft response aftér'just one iteration
of the gain update algorithm. This aircraft response is indistin-

guishable from the model response.

4.6.2 Nonlinear Simulation Results
A second set of preliminary tests were performed using’_-' a

nonlinear 6 degree-of-freedom airéra.ft analog simulation and the same dynam:.c
feedﬁbacl; controller as described sbove. | To avoid the logic needed to account
for discontinuities in aircraft bank angle at ¢ = 180°, the sine of this angle
was fed back. | |

| The'laterai control system maintained the same pérforhiance
for small perturbations ébout the trim condition as it had in the linea.j,r case,
and did not fail to operate under extreme maneuvers. Figure 29 jillustrates

some of this behavior.
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5.0 DISCUSSION AND CONCLUSIONS
5.1 . Results Discussion
In summary, the results presented in Section 4.0 lead to the follow-
ing observations: |
. Digital adaptive flight controllers'can be‘desiéned using‘either
llnear-quadratlc optlmal regulator theory or s1ngle stage perfonm—‘
ance functlons ; o
Becaase of superior stablllty marglns, the des1gn based upon optlmal
regulator theory requires fewer parameters for 1dent1f1catlon ’
The performance of the overall adaptlve control system flg. 25 is
comparable to the performance of the "adaptlve" controller w1th
perfect identification S1mulated flg. 21 This was based upon
experiments using measurement noise w1th the characterlstlcs of
Table I. | |
The adapted control gains in general track the variations in the
optlmal gains. However, some bias is evident espec1ally in the
feedback galns 1nvolv1ng roll rate. | | -
. '{Prefllterlng of the n01sy measurements prlor to use 1n feedback
control computatlon is needed | o H
; “Usage of the noisy measurements themselves in the welghted least
squares identification algorithms appears perm1851ble.
'Identlflcatlon of only parameters, as opposed to estlmatlon of
| states and parameter together, appears preferable in view of the

results obtalned and the computatlonal and llnearlzatlon requlre-

ments of the latter.
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Application of the linearly designed controller to the actual
six degree of freedom coupled system should yield acceptable

results in view of the results discussed in Section 4.6.2.

. 5.2 Feasibility of Implementation
Both of the a.daptive control algorithms discussed in the preced.mg |
should 'be reé,dily implementable in a digital flight computer. For purposes
' of 1llustration, cons1der an add t:.me of three mlcro-seconds and a multiply
time of 31x mlcro-seconds. |
For the s1ngle sta.ge design discussed in Section 3.2 the follow:.ng
tlmng requlrements would be typical for a fourth order system with two

con‘brol inputs a.nd w1th we:l.ghted least squares identification 'be:mg performed

for 12 pa.rameters

Control computation .378 ms
Pa,rameter identification 5.13 ms
Gain computation 1.05 ms

For estimation ﬁsing an extended Ka.lman filter the timing requireﬁent would be

3k, 2 ms. Thus if at the worst the a,'bove three functions were performed at

each and every sample, a mininm sample penod of e.bout 7 ms would be needed

for welghted least squares 1dent1fication and a.'bout hO ms if extended Ka.lma.n

| »flltenng were used | |
Similarly for the optima.l desi@'l descr:Lbed in Sectlon 3 3, the

following would be typical timing requ:.r ements for a fourth order system with

two controls and weighted lea.st squa.res est:une,tn.on of elght para.meters

( identification of 12 parameters was not necessary)

Control computation Ak ms
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Parameter identification 1.54 ms
Gain computation ‘ 6.99 ms
Thus if in the worst case these three computations'had'to be perf&fmed at

éach and every sample, a minimum period of about 10 ms would be reqﬁired.

5.3 Recommendations for future research
In view of the experimental results discussed in Section 4.0, it is

recommended that the following topics be studied:

. Désign of filters to be used for smoothing the measurements
prior to control computation.

. The use of prefiltered measurements for identification.
. A stability analysis of the single stage design perhaps
.utilizing the procedures followed by Chanlo. These would -
incorporate'the use of a perfect model following controller
despite the non-satisfaction of the conditions of perfect .
model following.

. Applicability of the linear controller design to the
nonlinear six-degree-of freedom system which incorporates
coupling between lateral and longitudinal motion.

. Performance when true actuator dynsmics, bending modes,
and turbulence are considered.

. The need. for dither for improving identification.

The relative performance of an implicit adaptive controller

" based on hyperstability principles (see e.g., Landau, ref. 6).
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Appendix B

SS Laterai Controller Gain Métricés,
Q = diag (1, 0, 1, 0), R = diag (O, 0), Sampling
Period .2 sec.
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Optimal Regulator Gain Matrices,

Q = diag (16”, 0, 10°, 0), R = diag (102,'102),
Sampling Period .1 sec.
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