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FOREWORD

The investigation described in this report vas performed "by the

Systems Engineering Division of Rensselaer Polytechnic Institute for

the Flight Dynamics and Cpntrol Division of the Langley Research Center

as a part of the Digital Fly-By-Wire Program. It vas carried out during

the period September 15, 1972 - October 15, 1973. The investigation vas

headed by Professor Hovard Kaufman vho vas assisted by three graduate

students.
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Digital Adaptive Flight
Controller Development

"by

Howard Kaufman*, G. Alag**,

P. Berry**, and S. Kotob**

Summary

Digital fly-by-wire.flight control systems are currently of interest

because simple mechanical linkages are no longer able to cope with the many

control problems associated with high performance aircraft and space vehicles.

In view of this, adaptive flight control algorithms have been developed for

ultimate implementation and flight testing in an onboard digital computer.

In order to achieve this objective, the following hierarchy of activity

was pursued:

. Development of a direct digital controller amenable

to on-line adaptation.

A study of on-line discrete parameter identification procedures.

. A development of digital adaptive flight control logic suitable

for inflight implementation.

The -above analysis was performed using equations of motion and the

related parameters for a typical fighter aircraft as supplied by NASA.

As a result of computational experiments performed using typical measure-

ment noise characteristics, two configurations are recommended, namely:

* Assist. Professor of Systems Engineering Division, Rensselaer Polytechnic
Institute, Troy, N. Y. 12l8l

** Graduate students at Rensselaer Polytechnic Institute, Troy, N. Y. 12l8l



An interfacing of linear quadratic optimal regulator logic with

a weighted least squares estimator.

An interfacing of control logic, designed using single stage

performance indices, with a weighted least squares estimator.



1.0 INTRODUCTION

1.1 Background

Digital fly-by-wire flight control systems are currently of interest

"because simple mechanical linkages are not able to cope with the many control

12problems associated with high performance aircraft and space vehicles. '

Digital implementation is extremely advantageous because of:

The significant weight and volume savings.

. The availability of low cost integrated circuits.

. The ability to design complex controllers which previously

were impossible to implement onboard an aircraft.

. The high reliability of digital logic.

. The capability for time sharing multiple control loops.

Furthermore the need for an adaptive control system capable of control adjust-
o k

ment has been established for ' :

Providing uniform stability and handling qualities over the .

complete flight envelope despite drastic changes in the

open loop characteristics of the aircraft.

Providing acceptable flying qualities over a wide range

of external disturbances due to atmospheric turbulence and

outer loop command signals.

Design of a digital adaptive flight control system requires careful

consideration of the following factors:

Computer storage limitations
Computer cycle time
Computer operation time
Stability requirements
Parameter changes
Control limitations
Pilot input signals



Control hysteresis
Test signal requirements
Turbulence effects

Development of such a system can be guided by assigning a heirarcby of

structure to the system as shown in fig. 1. At the lowest level, directly

interacting with the aircraft dynamics, is the Direct Digital Controller

(DDC). This consists of a set of gains that multiply the appropriate states

along with the necessary summing logic. Because this DDC controller operates

directly on the aircraft, it is executed at the fastest rate. Typical sample

rates might be 30 times per second.

Because any given set of DDC gains cannot be satisfactory over this

complete flight envelope, it is necessary to incorporate some sort of logic

that adjusts these gains whenever necessary. Thus the adaptation logic is

placed at the second and third control levels.

For small parameter deviations, and subsequently small deviations

in performance, an implicit adaptation algorithm might "be used. This does not

require explicit parameter identification and could be used at a sample rate

intermediate to the DDC logic and the explicit adaptation logic.

Finally, in order to adjust the DDC gains in the presence of large

parameter variations, some type of on-line identification appears necessary

in order to guarantee system stability. The execution rate of this logic is

clearly dependent upon the rate of parameter variation and must be determined

through experimentation.

A summary of the state of the art in adaptation can be found in

ref. 5. Some of the more salient conclusions of this study are:

For nonminimum phase plants, the only methods that can

achieve good control are those using some form of
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FIG. 1 Digital adaptive flight control system.



explicit parameter identification.

Adaptive techniques requiring explicit plant identifi-

cation tend to require the most computational capability.

The best adaptive control over output performance character-

istics is potentially provided by those adaptive methods that

explicitly identify the plant.

. Excessive bandwidth (gain) is undesirable because of the

resulting sensitivity to measurement noise and the danger

of exciting high order structural or sensor modes.

. Control methods which explicitly identify the aircraft have

the lowest gain level requirements because the gains can be

adjusted directly to their proper values which are functions

of the airframe parameters.

i

Despite the previously cited studies, an actual digital implementa-

tion of a completely adaptive flight controller has to date not been attempted.

This may be attributed to the limitations of the available analog equipment as

well as the reluctance to change over to digital control. Consequently, a

research effort was initiated by NASA Langley Research Center for the purpose

of applying modern digital control theory towards the development of an imple-

mentable digital adaptive flight controller.

1.2 Objectives

In view of the attractiveness of digital adaptive flight control,

an effort to develop such a system has been pursued by the Systems Division of



Rensselaer Polytechnic Institute (KPl) since September 1972. The objectives
\

of this effort have been:

1) To investigate adaptive control procedures which might

be capable of being implemented in a digital flight

computer.

..2) To test these procedures using linearized lateral, and

' longitudinal data as supplied by NASA for a typical

fighter aircraft operating over a given flight envelope.

3) To validate the design using one of NASA's hybrid

simulations.

1.3 Scope and Outline

Development of an adaptive control system requires consideration of:

1) The system equations of motion.

2) The selection of an index of performance.

3) The comparison of actual process behavior with the

desired or ideal behavior. .

U) The parameter gain adjustment procedure used to drive

the process more towards the desired behavior.

Whereas in the initial phases of the development, the linearized

lateral and longitudinal equations of motion are being considered separately,

for control purposes, final results will include the performance resulting

from the application of various developed controllers to a nonlinear six-

degree-of-freedom simulation. A description of the linearized equations is

contained in Section 2.1.

Because it is convenient to express desired aircraft response to

7



pilot commands in terms of a mathematical model, all performance indices con-

sidered in the development penalize some measure of the error between the

process and model outputs. A detailed outline of such "model following"

performance is found in Section 2.2.

Usage of such a model also facilitates the instantaneous comparison

of process performance with the desired behavior. This leads to the possi-

bility of implementing either implicit adaptation logic which does not require

process parameter identification or explicit adaptation logic which indeed

does use online'parameter estimates. Following a discussion of these alter-

natives in Section 2.3, various control structures amenable to adaptation are

presented in Section 2.h. Procedures for online identification are then

described in Section 2.5.

Finally based upon the various subsystem designs given in Section

2.0, overall adaptive control logic is presented in Section 3«0, and computa-

tional results based on this logic are given in Section U,0.

Recommendations for implementation and for further studies are

found in Section 5.0.

l.h Significance

Development of a digital adaptive flight control system is of

significance not only to the particular aircraft considered but also to digital

process control in general. Such a development represents an important appli-

cation of modern digital control theory that is a step towards narrowing of

the gap between theory and practice. The proposed logic, while feasible for

digital process computers, is clearly impractical for analog implementation.

Of immediate significance, however, is the demonstration that

digital fly-by-wire technology is capable of providing desirable handling

8



qualities over the complete flight envelope of a high performance aircraft

despite changes in the open loop characteristics of the airframe.



2.0 REQUIREMENTS FOR DIGITAL ADAPTIVE FLIGHT CONTROL

Items essential to adaptive control design are individually discussed

in the following four sections. System representation is first developed in

Section 2.1 followed by a discussion of performance evaluation in Section 2.2.

Adaptation principles and control structure are presented in Sections 2.3 and

2.k respectively. Finally, methods for online parameter identification are

presented in Section 2.5. .•

Results pertinent to the tuning and the performance of these procedures

are given in Section k. , ;

2.1 System Representation

The linearized dynamics of the aircraft as supplied by NASA may be

represented by the vector state equation

x .= F x + G u

where x denotes the state vector

u denotes the control vector

and F and G are matrices of the appropriate dimensions.

For linearized lateral notion

0

roll rate »

yaw rate

sideslip angle

roll angle

(2,1)

and u aileron deflection\

rudder deflection /

10



For linearized longitudinal motion

/

and u

pitch rate

velocity

angle of attack,

pitch angle

(elevator deflection)

The elements of F and G, known to vary with mach number and

altitude, were provided for a typical fighter aircraft for the six flight

conditions (FC's) shown in the flight envelope of Figure 2. These are provided

in Appendix A.

The objective of the research was to find implementable digital

algorithms for computing the control signals e3 , d , and d so as toa r eo , a , and o
a r

insure uniform and desirable handling quantities for an aircraft flying within

the given flight envelope. This was to be performed as sinning that during flight

the elements of F and G were not readily available (e.g., as scheduled

functions of mach number and altitude).

Because of the need to implement the control system in a digital

flight computer as shown in Fig. 3> Eqn. 2.1 was transformed into the equiva-

lent discrete form:

where

x (k+1)

A =

B =

A x (k) + B u (k)

FT

I

(2.2)

T = Sampling Time

and x(k), u(k) denote x, u at time k.-T.

11
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Eqn. 2.2 is a valid representation assuming that F and G do not vary for

k T *• t 4: (k+l) T and that the control signal is constant between sample

times, i.e.,

u (t) = u (kT) for kT ^ t ^ (k+l) T

This latter relation will be true assuming the use of a zero order hold type

of digital to analog converter. The former assumption is valid if the rates

of change of F and G are such that changes over the sample period are

negligible.

2.2 Performance Evaluation ;

Inherent to the effectiveness of any adaptive control system is the

capability for rapidly assessing the .performance and making the necessary

modifications to the control gains. One such procedure that fits these

requirements and at the same time has the potential for insuring uniform

handling qualities is the concept of model following control as depicted in

fig. k. This concept has been of interest to many investigators over the
/r i~v Q (̂  i f\

past few years. ' '*' In fact, relative to these efforts, Erzberger has

published a set of "perfect model following" conditions under which the out-

put of the process can be made identical to the output of the model.

Being that the ideal objective of model following flight control is

to force the aircraft to respond as the model would to a given pilot command,"

it is often desirable to simulate the online model dynamics in the flight

computer and to generate the aircraft control signal using the actual aircraft
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states, the pilot input commands, and the model states. This situation is

sometimes referred to as the pilot's flying the computer while the computer

is flying the aircraft.

More precisely, the model following problem, can be stated as follows:

Given the aircraft dynamics:

xp(k+l) =, ̂  xp (k) + Bp up (k) ... (2.3)

where: x (k) is the aircraft (nxl) state vector at sample time k

u (k) is the (mxl-) control vector

and A , B are matrices with the appropriate dimensions ;

find the control u (k) such that the process state vector x (k)

approximates "reasonably well" some model'' s state vector x (k) defined by

the equation:

k+1> = \ xm <k + Bm um

where x (k) is the (nxl) model state vector

u (k) is the (mxl) pilot input and

A , B are matrices of the appropriate dimensions.

One possible variation is to find u - (k) such that the (rxl)

dimensional process output vector

approximates the model's .(rxl) output vector

H x (k).m m

16



A ;further possibility to consider is the situation in which there

is proces.s measurement noise n(k) such that the only available process out-

put is:

(k) + (k) . (2.5)

Turbulence can "be considered in the above system by including a

process noise term w, such that the plant equation becomes:

Xp (k+1) = Ap xp (k) + Bp up (k) + Twk ,(2.6)

where

w, is a stochastic process whose statistics are chosen to
K . - . ' , ' . " - .

approximate the atmospheric conditions and

P is the corresponding distribution matrix.

2.3 Adaptation Logic

In the very early phases of the project, considerable study was

given to the tradeoffs involved in selecting either an explicit or an implicit

adaptation algorithm, the differences being that :

In explicit adaptation̂  on-line estimates of the aircraft

parameters are used for ga?.n adjustment.

In implicit adaptation, some measure of the error between the

actual and the desired state trajectories is used for gain

adjustment. That is, no explicit parameter identification is

used.

This study and a similar one made by TASC in 1970 indicated that

explicit adaptation would initially be preferable because:

IT



. Stability was to be required in the presence of severe

parameter variations.

. Effectiveness of implementing implicit adaptation is

related to the satisfaction of the conditions of perfect

model following. ' ' These in general will not be

satisfied for HASA supplied models.

Implicit adaptive control comparable to the hyperstability approach

used by Landau is to be considered at a later date.

2.U Control Algorithms

2.U.I Perfect Model Following

In a model following (mf) adaptive control system the design

goal is to force the compensated system to duplicate the performance of a

reference model. The knowledge of plant parameters enables controller gains

to be set so as to achieve the desired characteristics.

There are two configurations of mf, known as implicit mf

and real mf. As fig. 5 shows, in implicit mf, the aircraft controls are

formed from the aircraft states and pilot input. No dynamic coupling exists

between the model states and the closed-loop plant; the model state x

appears only in the performance index.

Figure 6 illustrates real model following in which the model

states must be generated for use in forming the control law. Alignment of

plant and model in the presence of uncertainties such as unknown parameters

and random disturbances, requires this type of control. This enables a con-

tinuous correction of the errors between model and plant states even in the

presence of unknown disturbances.

18



SIMULATION
NOT REQUIRED

MODEL I xm

PLANT

K

XP

FIG. 5 Implicit Model Following

Urn

FIG. 6 Real Model Following



Erzberger has shown the existence of a control for perfect

model following provided that:

(I - Bp B^ ) (Am - y = 0 (2.7)

(l-BpBp > Bm = ° <2-8>

where B is the pseudo inverse of B . If these conditions are satisfied,

then the control input

up = Bpf <\ ' V % + ̂  B» U* (2*9)

will result in perfect model following.
!

Chan has given an alternative control law which yields

perfect following if eqs. 2.7 and 2.8 are satisfied, and which yields

stability in the sense of boundedness otherwise.

This controller has the form:

Up = Ul + U2 (2-1°)

where 1^ = KQ (2.11)

u0 = B ' (A - A ) x + B B u (2.12)2 p v m p ' - m p m m v /

e = x - x , the error vector and K is a gain matrix chosen
m p

to stabilize (A - B K).

Related to the development of perfect model following

12controllers is the single stage design approach used by Motyka for

simultaneously weighting both the state error and the control effort at a

single time instant. Elimination of the control effort weighting and a slight

modification of the error state yields Erzberger's perfect mf control law.

20



2.U.2 Single Stage Optimization

In view of the work "by Chan and Motyka, and the attractive-

ness of control gains readily adjustable in the presence of parameter changes,

single stage indices were considered for digital adaptive control design.

The essential feature of a single stage performance index is

the fact that only a single point in time is considered. If e (k) describes

the error in mf at sample time k, then a performance index of the form

T£ (k) Q _e (k), where Q is a positive semidefinite weighting matrix,

allows the designer to specify the relative importance of mf in different

states "by trading off the size of mf errors in different states. In

addition, the plant control signal can also "be weighted in the performance
'• ' T

index "by including a factor of the form u (k) R u (k), where u is the

control signal and R is a positive semi-definite weighting matrix. Such a

factor allows further tradeoff between mf in the plant states and the magni-

tude of the control signals required to effect that mf. Thus, a performance

index of the form

J(k) = eT(k)Qe(k) + up
T (k) R up (k) (2.13)

was considered.

To find the vector u to minimize J, V J is formed
.-P Hp

and set to zero. The resulting equation gives the vector u .

The first formulation, called RF for "response feedback",

12as developed by Motyka for continuous time systems is now discussed here for

discrete time. For known present plant state x (k), the next state x (k+l)

can be required to be that state which would result if x (k) were used in 2.1*

instead of x (k) i.e., if the plant had the dynamics of the model. Such a

21



desired correspondence would "be realized if the plant, state at (k+l), i.e.,

x (k+l) were equal to:

\ xp (k) + Bm um (k) (2.HO

Thus the error signal e in eq. 2.13 Becomes:

(Ap xp (k) + Bp up (k)) - (Am xp (k) + Bm um (k)) (2.15)

V j is set equal to zero to obtain:
UP

' up (k) = CR + BP
T Q B^-1 Bp

T Q*

- V Xp (k) + Bm

= Kx Xp(k)+Ku Ump * m

The features of this controller include the following:

(1) It is closed-loop containing feedback only from the

plant and not from the model. The model matrices

are, however, used in forming the controller gains;

(2) Steady state behavior of the plant is not necessarily

equal to that of the model since model states are not

used for comparison;

(3) Real-time simulation of -the model is not necessary.

A second formulation, to be denoted the "same state" algorithm

requires that the plant states be exactly equal to the model states at the

next sampling instant i.e., it requires that:

22



xp (kfl) =. xm (k+1) (2.17)

Substituting from (2.3) and (2.h)f the error signal

e = (Ap xp (k) + Bp up (k)) - (̂  xm (k) + Bm um (k)) (2.18)

Again setting T7 J =0 gives:T7
*^

xm(k) * YXP <k) + Bm

or

Up (k) = Kx Xm (k) - Kx Xp (k) + Ku* m P m

This SS controller has the following features:

(1) It is closed-loop with respect to the plant and .

explicit with respect to the model;

- .(2).. The factor Z = [_R + B Qfi]] ""TB Q is common

•". "'̂  to all 'three gain matrices.

(3) Because . x is explicitly used, steady state

differences "between plant and model states

might be removed given enough independent controlling

elements.

(k} Gains can easily be updated on-line without having to

solve any nonlinear algebraic (Riccati) equations.

.Because of these attractive characteristics, the same state

controller was chosen for implementation in an adaptive control loop, details

of which are presented in Section 3.1.
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2.1*.3 Infinite Time Optimal Quadratic Control
\

2.̂ .3.1 Performance

The performance index which is selected for minimi-

zation implies the controller type, the degree of model-following, and the

overall control effort expended. A typical performance index might consist

of some positive semi-definite function of the model following error

(x (k) - x (k)) "balanced against a positive definite function of the control

u (k). Inclusion of control rate and/or integrals of the model following

error will result in a controller with a dynamic structure, i.e., with
7 . . .. . . •

integral feedback terms. Asseo has demonstrated that such dynamic feedback

can yield reduced sensitivity to plant parameter variations, and other

investigators have examined various specific structures. '
7In particular, Asseo considered the control rate

•

u (t) rather than the control itself as the independent variable. This

necessitated the treatment of the plant control u (t) as an additional state

with the state equation

up(t) = vp(t) (2.20)

In the discrete case, the integrator is replaced by

an accumulator (i.e., a unit delay with unity feedback), and the corresponding

equation becomes: ' " -

up(k+l) = up(k) + vp(k) '. (2.21)

An.attractive feature of this formulation is the ability to include in the

performance index both .positive definite functions of u (k) (to prevent

overly large controls) and of v (k) (to prevent overly large control rates).

This control structure was the actual one utilized in the experimental studies,

2k



A -second dynamic feedback structure as suggested

by Tiroshi and Elliott ^ is analogous to the classical proportional-integral

feedback structure. By integrating the model-plant error, it is expected

that any step change in the model states will result in zero steady-state

plant-model error. Again the discrete equivalent of an integrator is an

accumulator and the state equations for the "integral" are:

xa(k+l) = xjk) + C(xp(k) - xjk)) (2.22)

The matrix C specifies which model-following errors will he accumulated. Care

must "be taken in the selection of the matrix C, for an uncontrollable system

can result. A description of this difficulty and a test for system controll-

1̂ability is given by Porter. This controller would be especially suitable

for a transport type aircraft (because of the accurate steady-state control)

but may be more responsive to noisy feedback than the first structure because

the proportional-integral controller does include direct feedback of the plant

stages themselves.

The various possibilities suggested above were

broken into two classes of performance indices. The performance index

corresponding to the first controller includes terms weighting both model-

following error and control rate, and has the form;
00

1 £ (xp(k) - xm(k))
T Q(xp(k) - xjk)) + vp

T(k) R vp(k) (2.23)
2 k=0

where Q and R are matrices to be chosen by the designer.

The performance index corresponding to the second

structure includes terms weighting model-following error (x - x ), accumulated

model-foliowing error x as defined in eq. 2.22, and the magnitude of the.a



control u . This index, which therefore includes three weighting matrices
P

Q, S, and R, is of the form:

CD

S xa(k)
k=0

+ up
T (k) R up(k) ••-'- "(2*210

Notice that if the matrix S is all zeros, then no weight is placed on the

accumulated plant-model error and this controller will no longer effectively

have any feedback dynamics.

2.̂ .3.2 Controller Structure

Infinite time optimal linear regulator theory was

used to find the minimum of the performance indices constrained by the appro-

priate state equations . This results in a control formed by feeding back all

states through constant gains. (Details are presented in the next section.)

With this in mind, the specific controller structure implied by these perform-

ance indices may be described. Further, the performance indices and state

equations for both cases may be put in terms of the infinite time optimal

linear regulator problem:

- - . . Find u(k) to minimize

00

- xT(k) Q' x(k) + uT(k) R1 u(k) (2.25a)
k=0

subject to

x(k+l) = A x(k) + B u(k). '" (2.25b)
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. For the first performance index which penalizes

control rate rather than control magnitude (2.23), fig-. 7 illustrates the

final closed-loop structure. Note that any control input (from the model

state and control), or any plant state feedback signal must "be "filtered"

through the dynamic feedback controller "before it affects the plant control.

Reshaping the state equations into a form to which the optimal linear regu-

lator results are directly applicable (2.25a and 2.25b) gives:

up(k)
u(k) = vp(k) A =

A
P

0

0

0

B
P

I

0

0

0

0

V
0

0

0

Bm

I

B .=

0

I

0

0

Q

0

-Q

0

0 .-Q

0 0

0 Q

0 .0

0

0

0

Q

R' = R (2.26)

Note that the"pilot's input (equal to the model control u (k)) is modeled as

a constant - an assumption that does not overly distort the reality of the

situation and allows a complete analysis of the problem from a theoretical

viewpoint.

The performance index that includes the accumulated

model-following error (eq. 2.2U) leads to a controller structure analogous to

the classical proportional-integral controller, as shown in fig. 8. Manip-

ulating the state equations into a form to which the optimal linear regulator

results are directly applicable, (2.25a and 2.2J?b) yields:



Um(k)

Xp(t) = Fp(t)Xp(t) + Gp(t)Up(t)

Up(k-H) = Vp(k) + Up(k)

Vp(k) = K2|Xp(k) -i- K22Up(k) + K23Xm(k) -»- K24Um(k)

FIG. 7 Dynamic Feedback System Using "Control Rate" Feedback
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Xm

Xp(k)

Xm(k)

FIG.8 DYNAMIC FEEDBACK SYSTEM USING"lNTEGRAL ERROR1

FEEDBACK

Xp( t ) = Fp(t) Xp(t)+Gp(t)Up(t)

Xa (k4-i)= Xa(k) + C(Xp (k)-Xm(k))

Up(k)=K,, Xp(k)-t-K,2 Xa(k) + K,3 Xm(k) + K,4 Um(k)
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x(k) =

ft1 =

x (k)p
x (k)
a

x (k)m

>00;

u(k) = u (k) A =
P

' .

Q 0 . -ft 0

O S 0 0

•-Q . 0 ft . . p.

0 , 0 0 . 0

' A o o op
C I -C 0

,

0 0 A BzQ ro

0 0 0 1

B =

"BP"
0

0

.0

R1 = R (2.27).

As noted above, if the weighting matrix S were all

zeros, then the feedback gain K..p in fig. 8 would be zero and the controller

would be non-dynamic.

... 2.14-.3.3 .Infinite Time Linear Optimal Regulator Solution

The solution to the minimization, of a. quadratic,

performance index: . . ,

. . . . C D • . - . . , ; . - . . , .

| Y xT(k) ft x(k) + uT(k) R u(k) (2.25a)
*- f • • • . ; i • • •

k=0

constrained by the state equation:

x(k+l) = A x(k) + B u(k)

15is, well known and derived in Moore and. Anderson among others,

has the constant feedback structure: . ,

u(k) = - K x(k)

where -

K = (BTPB + R)"1 BTPA

(2.25b)

The control

.(2.28)

(2.29)
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and P is specified "by the steady state Riccati equation:

P = Q -f ATPA - ATPB(R + B̂ B)"1 BTPA (2.30)

This nonlinear equation in P may "be solved in a number of ways. The

simplest appears to be by iteration of the time varying Ricatti equation

P(k+l) = Q + AT P(k) A - AT P(k) B(R + BT P(k) B)"1 BTp(k) A (2.31)

This equation converges to the solution for any positive definite initializa-

tion of P(k) provided that the pair |_A, B_J is controllable and the pair

|_A, D I is observable (where Q = D D). At this point it should be noted

that even though the model is not controllable, the solution will still exist

because of the controllability of the plant.

The adaptation logic for this type controller is

based upon an online iteration of eq. 2.31. Since the aircraft parameters

vary continuously and relatively little within the anticipated gain update

cycles, it can be expected that the exact solution to the corresponding steady

state Riccati equation will not vary significantly between gain updates. Thus

if at each gain Update time, the Riccati equation is initialized with the most

recent solution, it is hypothesized that it will be necessary to iterate only

a few times to find the proper solution.

Finally as a practical matter, it should be noted

that' computation can be simplified if eq. 2.31 is partitioned taking into

account the symmetry of P and the sparseness of the augmented system matrices

A and B as defined by 2.26 and 2.27. The resulting expressions can be found

in eqs. 3.1, 3.2, and 3.3. •

31



2.5 Parameter Identification

2.5.1 Introduction

Selection of a parameter identification algorithm for an

adaptive flight control system requires consideration of the following items:

. Required frequency of parameter updating

. Measurement noise characteristics'

. The desirability of estimating true stability
derivatives versus the elements appearing in the <
discrete transition matrix (These will be nonlinear
functions of the stability derivatives.)

. Nonlinearities induced by simultaneous estimation
of parameter and states

. Performance under closed loop control

If parameters vary relatively slowly, then a batch process

(17)such as quasilinearizationv ' might be feasible. However, if updating must

be done more frequently, then an online or recursive procedure with some sort

of fading memory should be employed.

In designing parameter identification algorithms, attention

must be given to the measurement noise characteristics. Whereas a relatively

large variance necessitates the use of an identifier with a long memory to

achieve smoothing, a small variance will enable the use of a short memory

identifier that will be more responsive to parameter variations. ' - '

Further, it is conjectured that in a digital environment,

greater success would be achieved if the unknown parameters of the discrete

transition matrix itself rather than the physical stability derivatives are

identified. This follows because the discrete transition matrix is a highly

nonlinear function of the stability derivatives making identification rather

difficult. Furthermore computation of the discrete control law requires
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estimates for elements of the discrete transition matrix, and not of the

stability derivatives. A precise description of the discrete parameter esti-

mation problem is presented in Section 2.5.2.

In designing an identifier, consideration must "be given to

algorithms for estimating only parameters and algorithms for estimating both

parameters and states simultaneously. Whereas the former set of algorithms

utilizes the measurements to represent the true state, the latter set depends

upon the augmentation of the unknown parameters to the system state vector.

As shown in ref. (18), the combined state and parameter estimation problem is

nonlinear because of the need to determine quantities that multiply each other

(parameter times state). Consequently one must select a priming trajectory

about which the system is to be linearized.

Typical algorithms for parameter estimation only include the.

weighted least squares approach and the stochastic gradient method. These are

discussed in Section 2.5.3. Section 2.5.̂  discusses two approaches for esti-

mating both parameters and states; namely, the extended Kalman filter and a

..decoupling process in which the linear state and parameter estimation problems

are treated separately and alternately.

Finally, of importance is the performance of these identi-

fication procedures under closed-loop control. Because such control often

results in transient behavior for only a very small amount of time and steady

state.behavior for a relatively large amount of time, there may not be

sufficient excitation to allow accurate enough identification. Thus the need

for an induced dither signal must be examined. Such dither could in fact be

produced by feeding back.for control computation the noisy state measurements

themselves rather than filtered state estimates. In any event the performance
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of the identifier should ultimately be measured by the overall behavior of

the adaptive control system rather than the individual estimates it produces

for the various parameters. This follows from the fact that not all states

are equally excited by any given pilot input command. Hence various motions

will be completely decoupled or very insensitive to the specific values

obtained for some of the parameters.

Thus while there may not be sufficient excitation present to

accurately track a parameter, its value may not be very influential in deter-

mining the control signal needed for the maneuver being undertaken. Accurate

tracking of all parameter continuously will only be possible if dither can be

acceptably introduced into the motion of the aircraft.

Results of identifying under closed-loop, control using the

weighted least squares algorithm are presented in Section 4.5-

2.5.2 Problem Statement .

The problem considered to date is that of determining the

values of certain parameters appearing in the discretized aircraft equations

of motions given exact measurements of the inputs and noisy measurements of the

outputs. Noisy input measurements are to be considered in subsequent studies.

Evaluation of the accuracy of this identification is to be based upon the

resulting adaptive control loop performance. ••• , - —

As given by eq. 2.3, the lateral or longitudinal motion of

the aircraft is represented by the vector difference equation

x (k+1) = A (q) x (k) + B (q) u (k) (2.32)
Jr jr sr Jr P

where q is used to denote a vector whose elements are unknown parameters

appearing in the plant matrices. For estimation purposes, it will be assumed



that the system measurements can be described by

yp(k) = H xp(k) + \ (k) (2.33)

where: (̂  (k) is a zero mean measurement noise sequence with covariance

matrix R

R(i,j) =(T~ &.., where 0. .=1, if i=j, and $. .=0 otherwise
i 10 10 10 (2.3U)

and: H is a selector matrix indicating just which states or combinations

of states are measured. For the work considered to date, «-il states were

assumed measurable, and hence H=I, the identity matrix.
- . • • • : '

Typical noise characteristics are included in Table I; these

were provided by NASA - Langley Research Center. Although the specified noise

is correlated, many of the experiments conducted to date have utilized

uncorrelated (i.e., white) noise sequences, having the values cited in

Table I, in order to simplify the analysis.

2.5.3 Procedures for Parameter Estimation Only

2.5.3-1 Weighted Least Squares Parameter Identification

The simple weighted least squares linear parameter

20
estimation scheme was chosen to avoid some of the problems of algorithms

which estimate both parameters and states. Since noisy states are fed back

through the control loop and used for parameter estimation, it is expected

that some sort of state smoother will ultimately be necessary.

To apply this method to the systems defined by

eqs. 2.32 and 2.33, it is necessary to differentiate between the set of para-

meters (in both A .and B ) that are to be identified and the set of para-
•Xr Jcr

meters that are not to be identified.
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In parti cular a convenient representation for (2.32)

results if all the parameters (both a (i,j) and b(i,j)) which are to be

identified are placed in a vector q , and all those parameters which are not

to; be identified are placed in a vector £ . With these definitions, the state

equations can be rewritten as:

x(k). = C(k, -; 1) q + D(k - 1) £ . (2.35)

st
where C. .(k-l) contain the state or control measurement at the (k-l) -sample

-*-o

that couples x.(k) to q. , and D (k-l) .contains the state or control1 3 ij
measurement at the (k-l) sample : that couples x.(k) -.to s.. A zero entry

r- • - ti

for a particular C. . (or D. .) would indicate that no coupling exists between
ij ij • ,

x. and' q. (or between x. and s.).
i. .0 :.',• , I' - - J ' - \.

.';.: '. - Defining the estimate formed on the basis of .k

samples for the parameter vector as q(k), the weighted least squares algorithm

: - 20 • 21 '
as developed by Young and Mendel minimizes the performance index: ...

) - x(i) ) (2.36)

i=o

where y(i) is the actual measurement made of x(i)
.. .

and , . x(i) = C(i-l) q(k) + D(i-l) _s

A ; '' ".. -
i.e., x('̂ -) i.s'.̂ the "estimate"

into the state equation (2.35).

A ; '' ".. - A
i.e., x('̂ -) i.s'.̂ the "estimate" of x(i) formed by substituting q(k)

•' The weighting matrix E~ is usually selected to be

a diagonal matrix whose elements r. . reflect either the confidence and/or

the relative magnitudes of each of the measurements y. . Furthermore a fading

factor of the form a (a XL) can.be included in R in order to give major
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. >

Minimization of (2.36) yields

emphasis to the most recent measurements.

20

q(k) = P(k) B(k)

where p (k) =

k
^

and B (k) = CT (£-1) R-1 [y(J?) - D (J?- l) s]

Note that computation of the estimate q (k) from these formula requires at

each new sample a matrix inversion of order equal to the number of parameters

being estimated. This solution however can be rewritten in a recursive manner

that takes into account the effects of an additional measurement in .a manner so

as to reduce the matrix inversion requirements. In particular, the estimate q(k) ,

based upon k samples, can be written in terms of q(k-l) , the estimate based upon
20k-1 samples using the equations:

q(k) = q(k-l) - K(k) (C(k-l) q(k-l) - z(k) ) (2.3?a)

z(k) = y(k) - D(k-l) s (2.37b)

K(k) = P(k-l) CT(k-l) (R+ C (k-1) P (k-1) Ĉ k-l))'1 (2.3?c)

P(k) = P(k-l) - K(k) C(k-l-) P (k-1) v (2.37d)

These equations are solved recursively given an initial value for the P
A

matrix, P(0), and an initial value for the estimates, q(0).

21Mendel showed that if the expected value of the

measurement noise is zero (i.e., E ( V"i (k))= 0) and if and only if C(k) is

free of measurement errors, then the parameter estimates will be unbiased in

38



the sense that

E(q(k) ) = q

The latter condition is clearly not applicable in the aircraft identification

problem since C(k) is indeed constructed from noisy samples of the states.

Then a biased estimate for q is anticipated.

Furthermore if the above condition did hold and if

R, the weighting matrix in 2.36 were selected to be the covariance of the

actual measured value of

x(k) - D(k-l) £

then q(k) as computed from 2.37 would, be the linear minimum variance esti-

mate for q, and P(k) would be the covariance for this estimate.

Despite the inability to obtain a minimum variance

using eq. 2.37, the diagonal elements of R, r.. ', were in practice set equal

to the variance in
D (k~i) s (2-38)

i.e.

(2.39)

where j ranges over those indices for which D... ̂  0, and as in eq. 2.33
J-J

2
ff~. is the variance of the disturbance inherent in y. / the measurement of

Xi '

To take into account the time variations in the

2kparameters due to the aircraft maneuvers, either the fading factor ct can

be incorporated or the equations can be rederived with the parameter variations

39



< CJ
modeled as fictitious noise sequences, £ . (k). Such a representation is:

q (k+1) = q (k) + (k), cov(f) =Q (2.1*0)

Pra ctically speaking, this artifice causes the

filter to continually track the parameters. The corresponding recursive

scheme is similar to that of 2.37, but now includes an update of the matrix .

P(k) each sample, as given in: . . . . . . .

q(k-l) - K(k) (C(k-l) q(k-l) - z(k) ) (2.1vla)

z(k) = y(k) - D(k-l) s (2.Ulb)

P(k/k-l) = P(k-l) + Q (2.

K(k) = P(k/k-l) CT(k-l) (R + C(k-l)P(k/k-l)CT(k-l) J"1 (2.

P(k) = P(k/k-l) - K(k) C(k-l) P(k/k-l) (2.1ae)

The matrix Q has the effect of keeping P(k) from

getting so small that parameter updating becomes insignificant due to a small

gain matrix K(k). Note that at steady state P(k) will go to a fixed value

determined by Q. Selection of the elements of Q requires a trade-off

between a filter that gives erroneous parameter estimates due to tracking of

the measurement noise (if the elements of Q are too large) and a filter that

just smooths out the parameter variations (if the elements of Q are too small).

Computationally, the matrix inversion can be expected

to cause trouble. However, if R and Q are chosen to be diagonal and if
. . . . . ' m

P(k) is initialized as a diagonal matrix, the term C(k-l)p(k/k-l)C (k-l) will

be diagonal since C(k-l) contains only one nonzero- entry' in each column.

The corresponding matrix inversion is thus reduced to scalar divisions.



Details pertaining to the tuning of Q and P(0)

are given in Section 4.2.1.

2.5.3.2 Stochastic Gradient Estimation

In view of the fact that the weighted least squares

algorithm ignores the noise present in the matrix C(k-l) in eq. (2.35) and

consequently produces a "biased estimate, a stochastic gradient procedure is

being considered in anticipation of its capabilities for producing unbiased
O*l 4-1-

estimates. To illustrate its application, consider the i row of

eq. 2.35, i.e.,

xi(k) = x v
k-i}*) +' i'v*-1' so (^2)

3 3

To simplify the details it will be assumed that no term in the i row of

C(k) is zero. Trivial modifications can be incorporated if some of these terms

are in fact zero:

Eq. 2.42 is now rewritten as:

- y D (k-Ds = y c (k-D CL (2.43)
i—> 3-0 3 *— • • 1J d

At this point it should be noted that since D. . (k-l)
i«J

is either null, or is the state or control that couples x. to s. , a para-
• • - v

meter not requiring identification, the left hand side of (2A3) is a linear

combination of measurable quantities. Consequently, a measurement z(k) for

the left hand side of (2.1*3) can be constructed by replacing x. (k) and

x.(k-l) by the respective corresponding noisy measurements y. (k) and

y±(k-l). Thus

D..(k-l)s.
d 1J D



where Y" (k) contains the noise inherent in the measurement of x.(k) and

in the measurement of those states necessary for forming / D. .(k-l)s..
£ ^ 1 3 3

If C..(k-l) in (2.43) is now replaced by its
•̂•3

corresponding measurement, then the following approximation model results.

A

where r. .(k-1) is the actual measured value for C. . (k-1).
13 13

Given this approximation model and assuming

uncorrelated noise sequences, the unbiased stochastic gradient algorithm for

• 2 1 • • • • • • • • • • - • • •
estimating q. is:

q^fcfl) = [l + W(k) ]T ~]\W + W(k)ri(k)Zi(k) (2.1*6)

where:

q.(k) is the estimate for q..

A

r. (k) is the vector with components r. .(k.) . •-.•••'•
i 13

\ • .. _ _

L— . is the covariance of the noise inherent to the

measurement of r.(k-l)i , . . . . - . . -

and . W(k) is a weighting matrix. .

21
To insure convergence W(k) must be of the form:.

W(k) = \ (k) diag -[tL(k),...,hD (k)}
\ *±



where:

0-h ^ h. - h <o>L i a

CD

k=o

and

CD

V P (k) < CD
L~ \

k=>o

These conditions essentially enable the procedure to be able to correct the

parameter estimates as much as needed even for large values of k.

Again because no simultaneous estimation of states

and parameters is involved the algorithm is strictly linear.

N

2.5.̂  Procedure for Simultaneous State and Parameter Estimation

Algorithms are now presented that perform both state and para-

meter estimation. Those considered are the Extended Kalman filter and a

decoupling process in which linear state estimation and linear parameter

identification are performed separately and alternately.

2.5.U.1 Extended Kalman Filter

This section presents the general formula used in

Kalman filter estimation without any attempt for verification. Detailed

derivations may be found in ref. (23) or any complete text dealing with

filtering and estimation theory.

The system defined by eqs. 2.32 and 2.33 will be

used for the presentation of the identification algorithm. If only state



estimation were to be performed, then the Kalman estimate x (k) for the state

would be both a ™-i niitnirn variance estimate and a least squares estimate in the

sense of minimizing the performance function̂  '

n

k=0

where R is the covariance of the measurement noise n. However if the

measurement noise covariance matrix R is not known explicitly and/or the

noise is not Gaussian, then the estimate is optimal in the sense of minimizing

n .

Jn = I
k=0

when R is the estimated value of R. This estimate will not however bee •

optimal in the sense of minimizing the variance of the error.

The estimated state x (k) is given by:
~P

gpCk) = Ap xp(k-l) + Bp ̂(k-l) +

K(k) [yp(k) - H [Ap S

where: .

A x (k-1) + B u (k-1) is the "extrapolated" state.

H FA x (k-1) + B u (k-l)j is the "extrapolated" observation,

and K(k) is the gain matrix defined as:

K(k) =4(k) HT l M(k) HT + R"" "-1 (2.50)

M(k) is the "extrapolated covariance matrix of

ions y (k-l), y (k-2),... yx (k) given the observations y (k-l), y (k-2),... y (0) and is computed



recursively as:

M(k+l) = A P(k) A (2.5D

P(k) is the covariance of the estimate x (k) given y (k), y (k-l),...
jr y p

y (0); that is

P(k) = E < p ( k ) - xp(k)] [£p(k) - xp(k)]:

and can be computed from M(k) and K(k) as:

P(k) = M(k) - K(k) H M(k)

yp(k),...yp(o)

(2.52)

Up to this point, it has been demonstrated how KalTnan filtering can be used

A
to estimate the plant state vector x .

-P

To estimate any unknown parameters q. appearing

in the state transition matrix A_ and the gain matrix 3 it is necessary
P P

to form an augmented state vector. This is done by appending to the state

equations the set of difference equations

q̂ k+1) = q̂ k) i=l,..., p (2.53)

or in vector form

q (k+1) = q (k)

Thus the augmented system becomes:

Xa (k+1) = Aa (Xa (k), k) + B (Xa(k), k) u (k)

y(k) = Ha (k) Xa (k) + V\ (k) (

where

Q

X = augmented state vector, given by

xa'-=



A = matrix of the augmented system given as

N

H = augmented system output matrix given "by

H

and N_ are millI is an identity matrix of dimension ( p x p), and N..,

matrices with dimensions of (n x p), (p x n) and (n x p) - respectively.

Time variations in the parameters can be accounted

for "by including a fictitious noise component |\(k) in eq. 2.53 such

that:20

where the variance and degree of correlation in ^ . (k) are to be indicative

of the anticipated fluctuation in q. A particularly useful assumption is to

define > (k) as an uncorrelated vector sequence with zero mean and covari-

ance Q. This term would thai be added to the predicted covariance defined

in eq. 2.51 giving:

M(k+l) = A P (k) AT + Q

An alternate method for tracking time varying para-

meters is to introduce a fading on the filter's memory by replacing the

weighting matrix R appearing in eq. 2.hQ by:.25,26

R(k) = a' R

1*6



where a the fading factor is typically between 1.0 and 1.1.

Note that the augmented system, eq. 2.5U is non-

linear and, therefore, incompatible, with the previous formula. This non-

linear equation must therefore be linearized about a nominal or model

trajectory x . State vector and parameter estimates will then be given in

terms of the incremental variations about this nominal trajectory or:

xp (k) = ̂ (k) + A£ (k) (2.55)

and (2.56)

where and q are the state and parameters corresponding to the nominal

or model system, and Ax (k) and Aq (k) are the corresponding incremental

quantities. Linearizing (2.5̂ -) about the nominal augmented state vector

, qN) yields:

Axp (k+1)

A _£ (k+1)
J (k)

where J (k) is the Jacobian matrix:

J (k) =

0

A*p 00

A I (k)
(2.57)

(2.58)

system defined by (2.5̂ ) is thus given by

The extended Kalman filter equation applied to the

(23).



Axp (k+l/k+1)

At. (k+l/k+1)

where:

xp (k+l/k)

S (k+l/k)
(2.59)

Ax > A<1 are "the estimated incremental variations in the state—p —

vector and parameters.

A yp(k) = yp 00 - YN 00 (2.60)

and Ax (k+l)/k

= J 00

A

q (k/k)

(2.61)

Estimates for states and parameters at time k would thus be given by:

x̂ k+l/fc)

S (k+l/k)

= xjk+l) + Ax (k+l/k-)
-N • -p

= q + Aq( k+l/k)

(2.62)

(2.63)

With regard to defining the model trajectory, the

following possibilities should be considered:

Procedure 1;

The model or nominal trajectory can be defined by specifying the initial

parameter vector (̂O); and the initial state vector x̂ (0). These in turn

define the solution to :

(k) = H x (k) (2.65)



where x^ = state vector of the nominal trajectory

A = . system matrix defined "by the initial value of the

parameters, 0̂ (0). '

BN = gain vector defined "by the initial value of the parameters,

V0)-
, The matrix J(k) is then updated as follows using

this nominal trajectory x_ and the initial value of the parameters:

0

(A B V

Procedure 2;

The nominal trajectory is defined using the previous estimate of the state to

initialize the model equations at each step, i.e.,

xp (k/k) up(k)

As in the previous case xM(k~
|-l) is used to compute J(k) from eq. 2.58.

Procedure 3:

A
The estimate q (k/k) is used to replace the model parameter vector q

that:

L) = Ap(q[ (k)) ^ (k) + Bp £ (k)) Up

such

and j(k) is subsequently computed using and q(k) as:



J(k) =

0

A
<L

Procedure U;

The equations are linearized about the most recent estimates for both a

and x, . Thus , .

p̂ (k/k) + Bp(3(k)) up(k)

This summarizes the necessary equations for the extended Kalman filter for

state estimation and/or parameter identification. Details of the numerical

experiments, conducted are presented in Section U.2.

2. 5. ̂.2 Separate Linear State and Parameter Estimation

(SLSPE)

The separate linear state and parameter estimator
2)4.

(SLSPE) as suggested by Graupe is a suboptimal decoupling process in which

linear state estimation and linear parameter identification are performed

separately and alternately. Because each estimation process is basically a
r

recursive weighted least squares algorithm, the procedures are basically those

detailed in Section 2.5.3.1.

To define the procedure consider again the linear system:

= Ap Bp up (2.66a)

(2.66b)
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when A and £ contain unknown parameters.

Define two linear systems, the state system defined by eq. (2.66a) and

measured by eq. 2.66b, and the parameter system:

q (k+1) = q (k) (2.67)

measured by eq. 2.35. Clearly these two systems are coupled through the

system state x - and the parameter vector £•

In order to decouple these systems, states are to

be estimated by assigning some value to the parameter vector q and

im TITTO*! ziDfi *

N

Jg =. £(yp(k) - xp(k) )
T Eg"1 (yp(k) - xp (k) ) (2.68)

k=0

subject to the satisfaction of eq. 2.66. .

Parameters are in turn to be estimated by assigning a value to the state

vector x and minimizing:
P

N

k=0

Jp = 2 (y(k) - xp(k) ) R^
1 (y(k) - ̂(k) ) (2.69)

where:

x (k+l) , Ajq) x (k) + Bn(q) u (k)
x' Jr j? jr - xr

It is thus seen that the estimators for the states and

the parameters are the algorithms defined respectively by eq. 2.k$ and eq.

2.37- In summary then, the SLSPE procedure is separable into the following

two distinct problems:

51.



A. At time k estimate x (k/k), using for q.

its most recent estimate q.(k-l/k-l)

B. At time k estimate q (k/k), using for x

its most recent estimate, i.e., x (k/k)

It is seen that the proposed procedure is suboptimal

in the sense that the two objective functions are minimized separately and

not simultaneously, resulting in the need to alternate between a linear state

estimation problem and a linear parameter estimation problem.



3.0 DIGITAL ADAPTIVE CONTROLLER REQUIREMENTS

3.1 Considerations Concerning the Adaptive Algorithms

When designing an algorithm to be implemented, practical considera-

tions must be very influential on the trade-off between accuracy and simpli-.

city. In a digital adaptive flight controller, one of the prime practical
i "• - • . •

restrictions is the size and speed of the on-line digital computer. This will

affect both the timing and storage requirements of the adaptive algorithm.

Figure 9 depicts the block diagram for an overall adaptive control system, and

fig. 10 illustrates the varipus timing intervals involved in the realization.

The smallest timing interval is the control computation interval

(Tc) and typically is between 0.03. and 0.20 seconds.. State estimation, if used,

must be as fast, since the state is used by the feedback controller in calcu-

lating the new control. The two larger intervals are required for gain

adaptation. The parameter identification interval (T. ) must not be longer

than the gain update interval (T ), since the gain update algorithm requires
O

the new parameter estimates. If parameter estimation alone is performed,

then it is possible to have T. > T ; however, if states and parameters are

to be estimated simultaneously, then it is necessary that T. = T . Gain

update intervals (T ) being considered range from 1.0 to 10.0 seconds.
P

Since storage requirements vary from algorithm to algorithm, they

must be taken into account. Recursive gain update, parameter identification

and'state estimation algorithms will require storage of the various matrices

used in their formulation.

Attention must be given to methods for reducing the complication of

these algorithms. Prime among these is the identification of only the most

sensitive parameters of the aircraft, the others being set at some representa-
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tive nominal value. The specific parameters to "be identified are found

according to the influence errors in identification have on the state. The

sensitivity study performed for this purpose is described in Section b.2.

Furthermore, algorithms can be simplified by taking advantage of the

sparseness of many of the matrices involved. This leads to a natural parti-

tioning of the problem into a group or series of simpler problems. A farther

simplification may be made for calculations involving symmetric matrices,

although the extra information could be used to achieve more accurate calcula-

tions .

Structural considerations for implementing digital adaptive control

systems based upon the single stage algorithm and linear quadratic regulator

logic are next presented in Sections 3..2 and 3.3 respectively.

3.2 Adaptive Logic Based Upon Single Stage Optimization Procedures

Because of the characteristics outlined in Section 2.1̂ .2, the con-

troller based upon the single stage index which penalizes the next stage error

between plant and model was chosen for implementation in an adaptive control

loop. .

The control law is derived based upon the minimization of a weighted

combination of the instantaneous •squared error between the states of a linear

plant and model at the next stage and the present control energy. The result

is a control signal that is a linear combination of plant and model states and

model inputs as given in 2.1+.2. The explicit formula for computing the control

gains are shown at the bottom of fig. 11. In order to satisfy the identifica-

tion requirements, an on-line weighted least squares identifier, described by

eq. 2.*a has been interfaced with this controller. The results of the



Z = [R •«• Bp Q Bp] Bp Up(k)= - KXpXp(k)

FIG. II Digital Adaptive Controller Based Upon Single Stage Optimization
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application of this controller to typical linearized lateral aircraft dynamics

are discussed in 4.5-1.

One of the problems encountered in the use of same state gains was

that no set of gains gave acceptable response at any FC other than that for

which it was designed, particularly for a sampling period of 0.2 sec. Thus

in order to maintain stability and acceptable response with a same state con-

troller it is necessary to update the controller gains regularly at a rate

determined by the fastest expected rate of change of aircraft parameters in

flight.

With regard to implementation of the necessary logic for control

computation, parameter estimation and gain update, the following operational

procedures are required (assuming n states, m controls, and J(. para-

meters to be identified in the i state equation ).

CONTROL COMPUTATION

Formula:

u (k) = K x (k) - K x (k) + K u (k)p x -m ' x —p u -mve m P m

x (k+1) = A x (k) + B u (k)-m m. —m m -m

Operational Requirements

2 2
Additions: 2m + 3nin - 3m - n + n

2 2Multiplications: n + m + 3mn

PARAMETER ESTIMATION

Formula: eq. 2.^1
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Opera tional. Requirements: .

Additions: n(m+n) + 2Jf+^+_ + > ̂  + /

i=l i=l

n n

Multiplications: n(m+n+l) + t^ t̂ot + ̂ *-±
 + X i

i=l i=l
• " > :• n

where / x.. = /L. . = total number of parameters to be

1-1 identified.

GAIN UPDATE

Formula:

f~ T "1 -1 T
= R + BT, Q BT, BT,1T P P-J P

*~ T

\

Operation«LL Requirements:

2 2 • '•• 2
Additions: 3m + 2mn .- 3?nn - 2nu + m

2 2 2Multiplications: kam + mn - 2n

Matrix inversions 1 (m x m) matrix

m - 1 1 multiplication

m = 2 6 multiplications and 1 addition:

As a specific example if n = k, m = 2, and J{ = X = 6 the following

total computations would be necessary.



Control:

38 additions
> every T seconds

multiplicationŝ  .

Parameter identification:

552 additions
C. every T. seconds

580 multiplicationŝ  12 parameter estimated ""

Gain computation:

83 additions ™̂ \
< every T seconds ^.

13̂ - multiplications \

For comparison, if an extended Kalman filter had been used for

simultaneous state and parameter estimation, the above 552 additions would

be replaced by 2235 additions and the 580 multiplications would be replaced

by ̂ 580 multiplications.

For T = T. = 0.2 sec. and T = 1.0 sec. the total additions and
c i g

multiplications required per second would be:

Additions: 3033

Multiplications: 325̂

If only k parameters instead of 6 are identified in rows 1 and 3, and

T = T. = 0.1 second and T = 1.0 second, the computational requi rements per
c i g

sec. would be:

Additions: 20̂ 3

Multiplications: 235*1
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3-3 Adaptive Logic Based on the Linear Optimal Regulator Solution

In view of the discussion in Section 2. if-. 3 an adaptive controller

based on the solution to the linear optimal regulator problem was chosen for

implementation as shown in fig. 12. Identification was performed using the

weighted least squares algorithm as defined in eq. 2.iH. Results using this

adaptive logic are presented in Section U.5.2.

With regard to the implementation of the necessary logic for control

computation, parameter estimations, and gain update, the following operational

procedures are required (assuming n states, m controls, and/[. parameters
~i"V»

to be identified in the i state equation:

CONTROL COMPUTATIONS .

Formula:

" up(k+l) = K21 xp(k) + (I + K22) up(k) + K23 xjk)

, xm<k+1). = Am xm(k) + Bm Vk)

Operational Requirements:

2 2
Additions: 2m + 3mn + n - m - n

2 2 •
Multiplications: 2m + 3nm + n

PARAMETERS ESTIMATION

• Formula: Eq. 2.̂ 1

Operational Requirements:

Additions: n(m + n) + 2J[

n n

*

61

Multiplications: n(m + n + l) + uj) + 2T^ ±
2 + 2- Jl
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*•» i -J? tot

GAIN UPDATE

Formula: (These were developed through partitioning of the Riccati

matrix, as defined in eq. 2.31, taking into account the

sparseness of the A and B matrices as defined "by

eq. 2.26).

P =

Pll
TP12

T
, P13

P12

P22

T
P23

P13 HA

P23 P2U

P33 P31*-
(3.1)

Pll(k+l) = Q + Ap
T(Pll - P12(P22 + R)"1 P12T) A (3.2a)

P12(k-H) = Ap
T [(ELL ••- pie(-P22 + R)'1 P12T) B + P12(I - (P22 + R)'1 P22)]

(3.2b)

P22(k+l) = Bp
T [(Pll - P12(P22 + R)'1 P12T) B + P12(I - (P22 + R)'1 P22)]

+ [(I -• (P22 + R)"1 P22) P12TJ Bp + .P22(l - (P22 * R)"1 P22) (3.2c)

. -T . T.

(3.2d)= - (P22(k+l) + R)'1 (P12T(k+l) Bp + P22(k-KL))

K21 = - (P22(k+l) + R)"1 (P12T(k+l) A )

P13(k+l) = - Q + A T(P13 - P12(P22 + R)"1 P23)

(3.2e)

(3-3a)
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m

m

P23(k+l) = Bp
T(P13 - P12(P22 + R]

+ (P23 - P22(P22 + R)'1 P23) A

K = - (P22(k+l) + R)'1 P23(k+l)A
m

*• (P13 - P12(P22

(3.3d)

i- (P13. - P12(P22 + R)'l P23) B - P12(P22+R)~1 P2hl

(3.3e)

+ (P23 - P22(P22 + R)'1 P23) B

+ P24 - P22(P22 + R)"1 __

K2lf = - (P22(k+l) + R)'1 (P23(k+l) sm + r#n&+i)) (3>2f)

Operational Requirements: (per iteration) •,-

3 3 2 2 2 . ' 2
Additions: ^n + 6m + liftn n + 911 m - I2mn - n - m

3 3 2 i 2Multiplications: 1m + 5nr + 9n m + 14m n

Matrix inversions: 1 (m x m) matrix

m = 1 1 multiplication

m = 2 6 multiplications and 1 addition

As an example, if n = 4 and m = 2 the following operations are

necessary: .

Control:

h2 additions )
X every T seconds

l<-8 multiplication&J



Parameter identification:
J. = (̂  1, 3, o)

^
158 additions )

\ every T. seconds
178 multiplications-J 1

Gain computation:
{ '-'•- • ' ; ' —N .

701 additions \
''- ^ every T seconds

• . . ., '8l*l multiplications.^

For T = T. = 0.1 sec. and T = 1.0 sec. the operational requirements

per second would "be

Additions: . 2701

Multiplications: 30714-



k.O RESULTS

U.I Introduction

Evaluation of a digital adaptive flight control system requires the

testing of each individual subsystem prior to integration as well as experi-

ments on the entire system. Consequently considerable effort was expended in

simulation efforts to individually evaluate each of the control algorithms

discussed in Section 2.U and each of the identification algorithms discussed

in Section 2.5.

Because of the need to examine the required preciseness of identifi-

cation and the degree of adaptation needed, a typical flight trajectory in the

altitude-mach number plane was postulated. This is defined in Table II which

cites the order and timing for a typical fighter aircraft to encounter the

six given flight conditions of fig. 21. This trajectory corresponds to an

initial acceleration from Mach .3 to Mach .9 at a very low altitude, a com-

bined climb to 3600 m and acceleration to Mach 1.1, a climb to 15,000 m, a

deceleration to Mach .9* and finally a combined dive to 6000 m and a decelera-

tion to Mach .7. For simulation purposes, it was assumed that the parameters

of the aircraft's discrete A and B matrices varied linearly with time
P P

between flight conditions.

A decision was made early in the study to use an adaptive control

scheme based upon explicit identification of the unknown parameters. However,

as previously mentioned, it is impractical to consider estimation of aiX para-

meters in the A and B matrices. A sensitivity study was therefore

performed to determine those parameters which least effected system performance

and which might therefore be considered constant. Eesults of this study are

presented in Section U.2, and results of the identification experiments
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Table II

Flight Trajectory Used For F^aluation

PC Time of encounter (seconds)

1
2

3
k
5
6

0
30

35
80

85
120



themselves are presented in Section 4.3.

Prior to testing the adaptive loop including the identifier, an

evaluation of the gain update logic itself was made under the assumption of

perfect identification of various influential sets of time varying parameters.

This study, discussed in Section 4.4 led to conclusions regarding adaptation

timing requirements and the number of parameters that had to be identified.

Section 4.5 presents results for adaptive control incorporating online para-

meter estimation.

Finally, in order to assess the practicality of some of the control

algorithms in a digital environment, several tests were made using NASA

Langley's EAI 690 hybrid computer. Both linear and nonlinear process dynamics

were considered. These results are found in Section 4.6.

4.2 State Sensitivity of Parameter Estimation Errors

4.2.1 General Procedure

The explicit calculation of the sensitivity vector

= s (k) (4.1)

(where q. is some element of the discrete aircraft matrices) was used to rank

the parameters as to the need for their identification. Depending upon the

size of this sensitivity, it was decided either

(1) to identify the parameter explicitly, thus having available an

accurate estimate of its value, or

(2) to set that parameter to some constant value and use that constant

value for alii gain update work. This constant (called ci ) was taken to be

the average value of that parameter over all six flight conditions.. Thus, the

error in the value of a parameter not identified was Al = <1 -
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To get an approximate value for the error in.the state

vector due to not identifying a given parameter, the parameter error was

multiplied by a representative value for the state sensitivity to that para-

:meter giving.
^ x_ \

(M)

..Thus even if. the .sensitivity itself is large, a small parameter variation ̂  q

over the flight envelope will yield a small .A x . Each parameter was then

ranked, according to the error in each state of interest that would result from

not identifying this parameter. . . ..

To -calculate the sensitivity vector, a difference equation

2kwas found that determines the sensitivity vector's dynamics. - This was done

"by taking the partial derivative of the state equation:

x(k+l) = f (x(k), u(k), A, B) = f(k) (H.3)

with respect to the specified parameter, q, resulting in:

s (k+i) = s(k)

Since th-e sensitivity is of interest for the closed-loop system:

x (k+1) = (A - B K) ,x (k) :

the sensitivity equations become:

^ (A - B K)
,S(k+l) = (A - B K) S(k) + - x (k)" '

Therefore, for a known state vector trajectory, the sensitivity of the various

states to a certain parameter can be computed about that trajectory. It
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should be noted that these sensitivities will indeed be dependent upon both

the system input signals u and the control gains implemented.

Results of applying these sensitivity equations to the linear

lateral equations of motion controlled by the single stage algorithms and the

optimal regulater are next presented in Sections 4.2.2 and '4.2.3 respectively.

4.2.2 Sensitivity Results for Single Stage Optimization

Sensitivity calculations for the controller based upon single

stage optimization were performed using a simultaneous 5 aileron and 5

rudder pilot command input. In general, the set of most sensitive parameters

for different flight conditions were the same except for. some minor differ̂

ences. The set of most sensitive parameters were obtained based upon the rank

ordering of the error in roll rate and sideslip that would result if the

average value of the parameters were used. It was found that in order to

ensure good roll rate model following, the parameters that should be identi-

fied, in order of importance are: B (1,2), A (1,4)> B (1,1), A (1,2),

To ensure good sideslip following the parameters in order of importance are:

Bp(3,2), Ap(3,4), Bp(3,l), Ap(3,2), Ap(3,3), Ap(3,D.

These twelve distinct parameters selected for identification consist of the

elements of the 1st and 3rd rows of both A and B . Subsequent
P P

results reported in Sections 4. 4.1 and 4.5.1 are based upon this set of

parameters being identified.
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4.2.3 Sensitivity Results for the Linear Optimal Regulator .

-, Sensitivity calculations for the opitmal linear regulator

design were performed for a 5 aileron command acting alone and for a 5°

..; aileron command and 5 rudder command applied simultaneously. It was noted

that, except for minor differences, the list of most important parameters was

the same for all flight conditions.

For the 5 aileron command, the following parameters

(in order of descending importance) should be identified to ensure good roll

rate model following:

Bp(l,l), Ap(l,l), B (1,2),' Ap(3,l), Ap(l,2), Ap(3̂ ).

To achieve accurate side slip response, the following parameters should be

identified:

Ap(3,l), Bp(l,l), B (3,1)', Ap(3̂ ) B (2,2). .Note that there are eight

parameters in the union of these two sets.

It is also important to note that the list of most important

parameters is a function of the pilot input. For example, in comparison with

the above and the results of Section .4.2.2, the 12 most sensitive parameters

for a 5° aileron deflection and a 5° rudder deflection applied simultan-

eously were: Ap(l,l), Ap(l,2), Ap(l,3), Bp(l,l), Bp(l,2)

Ap(2,3) Bp(2,2)

Ap(3,D, 'Ap(3,2), Ap(3,3), Ap(3,̂ ), Bp(3>2) ,

Note that this set differs from the single stage set of 4.2.2 in that it

contains row 2 elements as well as some of the row 1 and row 3 elements.
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U.3 Identification Results

Evaluation of the various identification algorithms presented in /

Section 2.3 was performed through a series of experiments that enabled the

appropriate design parameters to be tuned to the problem at hand prior to

implementing the fully adaptive control system. Considerations included:

Performance in the presence of open loop control signals

having relatively large bandwidths and variances.

Performance under open loop control signals having very

little fluctuation.

Performance under closed loop control.

Input requirements if elements of both columns of the

B matrix were to be estimated. For example if

0 = c \ • , then the corresponding control coupling

to x . would be B (i,l)f + B (i,2)<f = (B (1,1) +.pi p « a p ' '<t r p

B (i,2)C)£ ; and thus it would not be possible.to specify

B (i.l) and B (i>2) uniquely.

- Performance as a result of assuming erroneous measurement

noise characteristics.

Influence of the linearization procedures discussed in

Section 2.5.1|.l.

In general it was observed that the simple recursive weighted least

squares algorithm gave better parameter estimates than did the extended

Kalman filter. Apparently the improvement to be expected in simultaneous

optimization of both parameter and state estimates is more than offset by the

required linearizations. Consequently in subsequent adaptive control imple-

mentations, the recursive weighted least squares algorithm was utilized.
/
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Comments concerning the tuning of this algorithm are contained in Section

\ U.3.1, and examples of its performance are contained in Section U.5. As of

this writing, conclusive results were not as yet available regarding

the stochastic gradient algorithm, and studies are "being made of its
. >

usefulness in tracking time vaiying parameters in the presence of correlated
- ' , - • - • -

noise.

Performance characteristics pertinent to the two algorithms for

simultaneous state and parameter estimation, i.e., the extended Kalman filter

and the separate linear state and parameter estimation algorithms (SLSPE) are

contained in Section IK3.2.

U.3'.l Results Pertinent to Procedures for Parameter Estimation

Only

The study conducted thus far on the stochastic gradient

estimation has "been basically a theoretical one and has been geared towards

the development of the procedure for the identification of constant parameter

multi-input multi-output systems. Further development is expected in the near

future to adapt the procedure to the identification of time varying parameters

and for the establishment of experimental results and analysis. This research

will be concentrated on the synthesis of the correction gain W(k) given in

eg.. 2.46, taking into account both simplicity and speed of convergence, and on

the 'evaluation of. performance in the presence of correlated noise sequences.

With regard to the recursive weighted least squares algorithm,

some of the results pertinent to the selection of the P(0) and Q matrices

as used in eq. 2.Ul are now presented. As stated in Section U.I,

this algorithm was selected for implementation in the fully adaptive system.
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The pertinent parameter tracking capabilities are thus discussed in Section

it-.5 along with the other results obtained from testing the overall system.

The use of large values in the Q matrix results in the

ability to track rapidly varying parameters. However, it also results in a

tendency to adjust parameters so as to account for variations due solely to

measurement noise. Similarly, swali values in the Q matrix result in a more

pronounced filtering of the measurement noise while the ability to track time

varying parameters is degraded.

As a first approximation, the appropriate elements of Q were

set equal to the expected square of the appropriate parameter change per

sample, and P(0) vasthen set equal to the corresponding steady state solutions

of eqs. 2.Ulc, 2.Uld, and 2.1)le. In practice, this was accomplished by iter-

ating through these filter equations and observing the steady state value of

P. Elements of the R matrix were computed in accordance with eq. 2.39,

• 2although it was observed that setting r.. equal to ff"'. gave equally good

results.

For estimation of the 12 most sensitivity parameters as used

in the single stage adaptive algorithm (see Section ̂ .2.2), the diagonal

elements (all other elements were zero) of P(0) and Q were:



Parameter

Vlfl)

A/1,2)

yi,3)-
V1A)

ys,D '
Ap(3,2) '

•Ap<3,3)
V3*^
Bp(l,l)

Bp(l,2)

Bp(3,D

Bp(3,2)

8.0 x 10*

2.0 x ID"3

1.6 x 10"1

6.5 x 1C"5

1A x 10*5

2.9 x 1C"5

2.5 x lO-3

1A x 10"6

1.9 x 10"2

k.k x ID"3

'3.8 x 10

5.9 x ID"5

.̂ 57 x 10"6

1.1 x 10"5

7.75 x 10*

6 A xio"11

k.k x 10"9

k.O x 10"8

7-1 x 10"

ij-A x 10~°

9 A x 10"5

6 A x 1C"5

1.0 x 10"

1.1 x 10"7

For the eight most sensitive parameters as used in the adap-

tive controller based upon optimal regulator logic (see Section ̂ .2.3) the

diagonal elements of P(0) -and Q were:

Parameter p.

Api -
Xr

V1'2)
B

E
P

BP
Ap
f

ApJr
BP

(1^1)

(1,2)

(2,2)

(3,1)

(3,U)

(3,D

2.

2.

1.

5.

5-

1.

1.

1.

0

0

2

0

0

2

5

5

x ID"3

x 1C"3

-2
x 10.

x 10"2

x 10"3

x lO"5

xlO-5
i

x 10"

6

l

3

2

3

.8

1

2

.0

.6

A

• 3

.*

.6

.2

.0

a.

x

x

X

X

x

X

X

X

L

10-5

io-7

~ii10"
ic-1*

io-«

!0-10

ID'7

-6iob
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U.3-2 Results pertinent to Estimation of Both States and Parameters

Conclusions pertinent to the performance characteristics of

both the Kalman filter and the SLSPE were "based upon simulation on an IBM

360/50 digital computer. Sampling periods of 1/30 second and 1/10 second were

incorporated, and estimation of the four lateral states and the eight most

sensitive parameters for the linear regulator logic.(as presented in Section

.̂2.3) was considered. Unless otherwise cited, measurement noise was simulated

as uncorrelated processes having the variances given in Table I.

U.3.2.1 Kail man Filter Results

The following conclusions were reached regarding the

performance of the extended Kalman filter:

Selection of initial covariance matrix P(0)

Assuming perfect knowledge of the initial state, the

corresponding elements of P(0) should be zero.

The terms of P(0) corresponding to the parameters

can be zero if fictitious noise with a covariance

matrix Q is used to model the parameter variation;

otherwise these elements should be proportional to

the expected square of the per-sample change in the

parameter.

Measurement noise covariance matrix

It was noted that the use of the exact noise covariance

in the filter equations was not necessary for con-

vergence, it was observed that convergence was possible

with the noise covariance R set five times larger than
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the actual noise covariance matrix; however

convergence did not occur for R matrix elements

much lower than those in the actual measurement

noise covariance matrix.

Nominal trajectory selection

For time varying parameters it was found that the

best-procedure for updating the nominal trajectory

was through the use of the most recent state and

parameter estimates for defining the point about

which linearization was to be performed. This is .

Procedure k as discussed in Section 2.5.U.I. For

constant parameters, it was found that the best

trajectory to linearize about .was defined by

Procedure 2.

Fading memory implementation

From experimental results, it. was observed in general

that the use of a fictitious noise input for modeling

the parameter variations yielded better convergence

properties than did the procedure using an experi-

mental weighting factor. This is illustrated in

.fig. 13 for estimation of a_, under open-loop

excitation (+ 30 rudder at 1.5 Hz and 4- 30 aileron

at 1.0 Hz). State measurement noise was uncorrelated

with variances of one tenth those listed in Table I.
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U.3.2.2 SLSPE Results

In using the SLSPE it was observed that the para-

meters estimates were biased and that convergence was poor if parameters in

both columns of the B matrix were identified. However, these results

corresponded to experiments in which a recursive step of both the parameter

estimation algorithm and the state estimation algorithm were performed at each

and every sample. In view of the results obtained using the weighted least

squares algorithm for parameter estimation only, it is recommended that

either state estimation not be performed as often as the parameter estimation

or that the state measurements, not the state estimates, be used in the para-

meter estimation algorithm. Future e'fforts will consider these items.

k.k Performance Under Perfect Identification Prior to Interfacing

Adaptive Control Logic

With an online identifier, it is necessary to validate the results

of the sensitivity study described in U.2.1 and to deteiming how often adapta-

tion should be performed. 'Upper bounds to these figures can be obtained by

simulating an adaptive controller with a perfect identifier. Thus while

parameters not being "identified" would be assumed at their average values,

true values would be used for these parameters.designated for identification.

h.h.l Performance of the Single Stage Algorithm

The following two experiments pertain to the performance of

the'single stage controller:

Experiment I

Objective: Assuming no noise and perfect identification of all para-

meters, determine suitable gain update periods.
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Procedure: At each gain update sample time, the gains optimal for the

current flight conditions were to be computed from eq. 2.19 snd held constant

until the next gain update sample time. These gains at the 6 FC's are given

in Appendix B.

Constant factors: . .

Pilot input: -f 5 aileron, '0.1 hz square wave

: Variable factors:

Control sampling periods: .2, .033 sec.

Gain update periods: 1.0,. 2.5, 5«0 sec.

Results: Figure lU indicates good model following for a gain update

period of 2.5 sec. and a control period of 0.2 sec. A gain update period of

5.0 sec. was found to be satisfactory for a control sampling interval of

.033 sec., but unsatisfactory for a control period of 0.2 sec.

Experiment II

Objective: Assuming that only selected sets of 10-12 parameters are to

be identified perfectly, with the remainder set equal to their average value

over the typical flight trajectory for six FC's determine the necessary

frequency of gain updating. The parameter sets to be identified are those

deemed to be the most influential as discussed in U.2.1.

Procedure: At each gain update sample, the gains were to be computed from

eq,. 2.19 using the true values for those.parameters being "identified" and

average (over the 6, FC's) values for these parameters not being identified.

Constant factors:

Pilot input: + 5° aileron, 0.1 hz square wave

... Control sample.period: 0.2 sec..

80



(0
or
UJ
i-
li 1UJ

<
cr
<
Q.

_i
_i

u.
o
z
o
5
o
lLIk

d

P
E

R
F

E
C

T
 

ID
E

M
'

I
\-
£

g *
i3Z CL

1
1
1
1

V^

^
^

1 ~

<s__-

^

w

I I I 1

^

_

1*
>

— =t-

s
\
\

*
*

_-L_^=4=±^

^t
o-^-
L_

|
1

^
^

rO
O-^-
L.

CJ
O-^-
U_

x
x

^;
/
f

"/
/
/
/
i

0— -

' <fr
00

CJ
~00

ô̂
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Variable factors:

Parameters identified: 10 and 12 most influential parameters.

Gain update periods: 1.0, 2.5 sec.

Results: Figures 15 and l6 indicate the significant improvement that

results from identifying 12 rather than 10 parameters especially between

FC3 and FCU. This is true for both gain update periods. The most notable

improvement in using a gain update period of 1.0 rather than 2.5 sec. is most

evident between FC1 and FC2.

Conclusions of both experiments: For the overall adaptive implementation,

identify the 12 most influential parameters, and based upon these, update

gains every 1.0 sec.

k.k.2. Performance of the Linear Optimal Regulator

The following three experiments pertain to the performance

of the linear optimal regulator design:

Experiment I

Objective: Assuming no noise and perfect identification of all para-

meters, determine suitable gain update periods.

Procedure: At each gain update sample time, the P matrix is recomputed

from a single iteration of the Riccati eq. (2.31) using those values of A

and B which correspond to the present flight conditions. Control gains

are then computed from eq. 2.29. (See Appendix B for the gains corresponding

to the 6 given FC's).

Constant factors:

Pilot input; + 5° aileron, .2 hz square
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Control sample period: 0.1 sec.

Variable factors:

Gain update periods: 1, 5, 10 sec.

Results: Figures 17a and b show good model following for a gain update

period of 1.0 sec., while figs. l8a and TD indicate some degradation in perform-

ance for a gain update period of 5.0 sec. Stability for the closed loop

system was observed for the three tested gain update periods of 1, 5 and

10 sec.

Experiment II

Objective: Under the assumption of no noise and perfect identification of

the 8 parameters, chosen by the sensitivity method described in Section .̂2,

with all others set to their average value over all 6 flight conditions,

determine the required frequency of gain update.

Procedure: At each gain update sample, the gains were to be computed

from one iteration of the Riccati eq. (2.31) using the true values for the

eight parameters being identified and average (over the 6 FC's) values for

the remaining l6 parameters.

Constant factors: .

Pilot input: + 5 aileron, .2 hz square wave

Control sample period: 0.1 sec.

Variable factors:

Gain update periods: 1, 5> 10 sec.

Results: Figs. 19 and 20 illustrate the improvement in model following which

results from using a 1 sec. gain update period rather than a 5 sec. period.

For a 10 sec. period, the stability of the closed loop system was marginal.
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FIG. I8a . ROLL RATE RESPONSE
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FIG. 19 o ROLL RATE RESPONSE
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FIG. 2Oa ROLL RATE RESPONSE
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Note that relative to the results of Experiment I, there is more deterioration

of side slip model following than there is of roll rate following. This is

true because the set of eight parameters identified is more influential in

defining the roll rate dynamics.

Experiment m

Objective: Determine how the results of Experiment II are affected if

noisy state measurements are used for control computation.

Procedure: Same as for Experiment II except control signals were to be

computed from products of the gains and noisy state measurements.

Constant factors:

Pilot input: -j- 5 aileron, .2 hz square wave

Control sample period: 0.1 sec.

Gain update periods: 1, 5 sees. •.••:•/

Variable factors:

Noise statistics: Table I characteristics achieved using

first order filters' with breaks at the

given bandwidths. RMS values given in

Table I and 1/10 these values were used.

Results: Figure 21 shows that feeding back states contaminated with

noise results in severe jittering of the aircraft response. Some sort of

prefiltering is thus necessary. As expected, lowering the rms values of the

noise samples reduced the magnitude of this jitter.

Conclusions from all three experiments: For implementation of an overall

adaptive system, identify the eight most influential parameters discussed in

Section ̂ .2.3, and-using these, update the gains every'one to five seconds.
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Prefiltering is needed for state measurements contaminated by noise having

the characteristics of Table I.

b.5 Adaptive Control System Performance Evaluation

I*. 5.1 Adaptive Control Loop Experiment - Single Stage

Optimization Procedure '•

Objective: To study the "behavior of the adaptive control system designed

by coupling a weighted least squares identifier with the single stage con-

troller logic as shown in fig. 11.

Procedure: Using noisy state measurements with no prefiltering, para-

meter estimates were obtained at each control sample period and then used at

each gain update period to compute the control gains according to eq. 2.19.

The noisy state measurements were then used with these gains for control

computation .

Design factors:

Pilot input: + 5° aileron, 0.1 hz square wave.

Control sample period: 0.2 sec. ..

Gain adaptation period: 1.0 sec.

Parameters identified: A (1,1)* A (1,2), A (l,3)> A (l,U),

), Ap(3,2), Ap(3,3),

Bp(l,l), Bp(l,2), Bp(3,D, Bp(3,2).

Remaining parameters: Set at the average values' computed over the 6 given

FC's.

Measurement noise: As defined in Table I.



Results:

Responses

Figure 22 shows the roll rate response for portions of

the test flight trajectory. The noisy state feedback results

in severe jittering of the aircraft and thus relatively poor

model following particularly at FC's 1 and 2. Side slip was

generally limited to +_ 0.4 except for FC1 where the maximum
t

excursion was 2.8 .

Parameter tracking

Figures 23a, b, c, 'd illustrate parameter tracking

"behavior "between FC1 and FC2 during which model following is

the worst. To be noted is that despite the existence of a

bias in the estimate, the general trend in the variation is
v

followed.

Control gains

Comparisons between the optimal and adapted control gains

are given in figs. 24a, b, c, d for part of the interval

between FC1 and FC2. With the exception of the roll rate

feedback gains, the adapted gains were relatively close to

the optimal gains. In fact, beyond the 20 second interval

depicted in fig. 24, all gains converged closer to the true

• values.

Conclusions: In view of the fact that the adaptation procedure was capable

of producing reasonable feedback gains, it is concluded that a workable system

should result from the inclusion of prefilters for removing jitter and the

usage of an unbiased parameter identification algorithm.
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•̂5.2 Adaptive Control Loop Experiment - Linear Optimal

Regulator Procedure

Objective: To study the behavior of the adaptive control system designed

by coupling a weighted least squares identifier with the Riccati gain update

logic as shown in fig. 12.

Procedure: Using noisy state measurements with no prefaltering, para-

meter estimates were obtained at each control sample period and then used at

each; gain update sample in one iteration of the Riccati eq.. (2.31). The gains

were then computed from eq.. 2.29, and along with the noisy state measurements

used for control computation.

^Design factors:

Pilot input: +_ 5 aileron, .2 hz square wave

Control sample period: 0.1 sec.

; Gain adaptation periods: 1, 5 sec.

J Parameters identified: A (l,l)> A (1,2), A (3A)> \(3̂ )*

.B (1,1), Bp(l,2), Bp(2,2), Bp(3,D. :

. Remaining parameter:- Set at the average value computed over the 6 given

PC's..

Measurement noise: As defined in Table I.

Results:

Responses

Figure 25a and b depict roll rate and side slip responses

for a gain update of 5-0 sec- These responses are very

similar to those of fig. 21 (for noisy feedback but with

perfect identification of the above 8 parameters) indicating .
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that the inclusion of an actual identifier did not seriously

degrade the performance. With a gain update period of 1.0

sec., improvements in the model following characteristics

were noted.

Parameter tracking

Figures 26a, b and c illustrate typical parameter

tracking. Again as in U.5.1 the presence of bias in the

estimate is readily evident as well as the capability for

tracking the variation. As might "be expected, a reduction

of the rms values to 1/10 those cited in Table I improved

the estimates.

Control gains

Comparisons between the gains computed based upon

perfect identification of all parameters and the actual

adapted gains are shown in figs. 27a, b, c, d, for part of

the interval between FC1 and FCk. Despite the differences

between the adapted and optimal gains (most notably in the

feedback gains affecting roll rate) the general variations

in the gains were followed.

Conclusions: In view of the facts that the procedure was capable of adapting

the feedback gains to reasonable values and the simularity between figs. 21

and 25, it is expected that the incorporation of prefiltering and an unbiased

parameter estimation algorithm should produce an acceptable adaptive control

system.
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k.6 Hybrid Computer Tests

In addition to the previously described all digital simulations,

the EAI 690 analog-digital hybrid computer at NASA LRC was used for system

evaluation. The aircraft dynamics and pilot controls were programmed on the

analog portion of the computer, while the discrete control laws were pro,-'

grammed on the digital portion.

h.6.1 Linear Simulation Results

The first tests were performed using the linearized aircraft..

dynamics. These tests had as their objectives:

Evaluation of feedback controllers in a hybrid environment.

Evaluation of the gain adaptation algorithm using perfect

parameter identification.

The results indicated that:

Noise in the analog to digital converters can be a significant

problem for the nondynamic feedback controller developed using the

single stage algorithm. The "type one" feedback controller developed

using linear optimal control theory was much less sensitive to this

noise. In particular, a noisy side slip measurement caused trouble

for the single stage controller because of the moderately large

gains necessary to effect good model following.

Even when no information about the actual flight condition was

included in the initial Riccati matrices, only one or two executions

of the gain update algorithm were necessary to produce gains giving

accurate model-following. Figure 28a illustrates the aircraft

response to a pilot aileron input using incorrect gains (those
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designed for FC1 actually applied to the aircraft at FC6), while

fig. 28b illustrates the aircraft response after just one iteration

of the gain update algorithm. This aircraft response is indistin-

guishable from the model response.

U.6.2 Nonlinear Simulation Results

A second set of preliminary tests were performed using a

nonlinear 6 degree-of-freedom aircraft analog simulation and the same dynamic

feedback controller as described above. To avoid the logic needed to account

for discontinuities in aircraft bank angle at 0 = l80°, the .sine, of.this angle

was fed back.

The lateral control system maintained the same performance

for small perturbations about the trim condition as it had in the linear case,

and did not fail to operate under extreme maneuvers. Figure 29 illustrates

some of this behavior.
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5.0 DISCUSSION AND CONCLUSIONS ,

5 . 1 Results Discussion . - - • . - -

In summary, the results presented in Section U..O lead to the follow-

ing observations:

Digital adaptive flight controllers can be designed using either

linear-quadratic optimal regulator theory or single stage perform-
'.. r . ,,

ance functions.

Because of superior stability margins, the design based upon optimal
-, . . • . A._, . '

regulator theory requires fewer parameters for identification.

The performance of the overall adaptive control system fig. 25 is

comparable to the performance of the "adaptive" controller with

perfect identification simulated fig. 21. This was based upon

experiments using measurement noise with the characteristics of

Table I.

The adapted control gains in general track the variations in the

optimal gains. However, some bias is evident especially in the

feedback gains involving roll rate.

Prefiltering of the noisy measurements prior to use in feedback

control computation is needed.

Usage of the noisy measurements themselves in the weighted least

squares identification algorithms appears permissible.

Identification of only parameters, as opposed to estimation of

states and parameter together, appears preferable in view of the

results obtained and the computational and linearization require-

ments of the latter.

106



Application of the linearly designed controller to the actual

six degree of freedom coupled system should yield acceptable

<: ' results in view of the results discussed in Section U.6.2.

5.2 Feasibility of Implementation

Both of the adaptive control algorithms discussed in the preceding

should be readily implementable in a digital flight computer. For purposes

of illustration, consider an add time of three micro-seconds and a multiply

time of six micro-seconds.

For the single stage design discussed in Section 3-2 the following

timing requirements would be typical for a fourth order system with two

control inputs and with weighted least squares identification being performed

for 12 parameters:

Control computation -378 ms

Parameter identification 5.13 ms

Gain computation 1.05 ms

For estimation using an extended Kalman filter the timing requirement would be

3̂ .2 ms. Thus if at the worst the above three functions were performed at

each and every sample, a minimum sample period of about 7 ms would be needed

for weighted least squares identification and about ko ms if extended Kalman

filtering were used.

Similarly for the optimal design described in Section 3.3, the

following would be typical timing requirements for a fourth order system with

two controls and weighted least squares.estimation of eight parameters

(identification of 12 parameters was not necessary):

Control computation .4l4 ms
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Parameter identification 1.5̂ - ms

Gain computation 6.99 ms

Thus if in the worst case these three computations had to be performed at

each and every sample, a minimum period of about 10 ms would be required.

5-3 Recommendations for future research

In view of the experimental results discussed in Section 4.0, it is

recommended that the following topics be studied:

Design of filters to be used for smoothing the measurements

prior to control computation.

The use of prefiltered measurements for identification.

A stability analysis of the single stage design perhaps

. utilizing the procedures followed by Chan . These would •

incorporate the use of a perfect model following controller

despite the non-satisfaction of the conditions of perfect .

model following.

Applicability of the linear controller design to the 0

nonlinear .six-degree-of freedom system which incorporates

coupling between lateral and longitudinal motion.

Performance when true actuator dynamics, bending modes,

and turbulence are considered.

The need.for dither for improving identification. .

The relative performance of an implicit adaptive controller

based on hyperstability principles (see e.g., Landau, ref. 6).
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Appendix A

Aircraft Continuous Lateral Matrices
Corresponding to Equation 1.1.

G.

FC1

FC2

FC3

FC5

FC6

MODEL

-3.598
-.0377

.0688

.99^7

-10.22
.0671

-.0101
_ -9997

-8.675
.1078

-.011*5
_-9998

-1-377.
-.0037
.1152

_ .9888

-1.525
-.0116

.0698

.99^5

-^.033
-.0158

.0236
_ .9983

-10.0
0
0
i

.1968
-.3576
-.9957

.1027

-.11*16
-.9610
-.9958

.021*5

-.1313
-.9961
-.9967

.0207

.2230
-.1955
-.9992

.11*91*

.0678
-.1502
-.9992

.101*1*

.0630
-.3688
-.9971

.0592

0
- -7
- 1.

0

-35-18
5.881*

-.2163
0

-11*7.8
29.1*3

-.5613
0

-155.2
30.57

-.5710
0

-33.13
6.710

-.1071*
0

-30.02
5.159

-.0903
0

-53.69
8.8ll*

-.2333
0

-10.0
9.

-.7
0

0
0

.0733
0

0
0

.0309
0

0
o •

.0271*
0

0
0

.0302
0

0
0

.0350
0

0
0

.01+63
0

0
0
0
0

" ll*.65
.2179

-.00511
0

*77.86
.9165

-.021*7
0

51*. 30
.73̂ 7
-.0176
0

11.63
.2086

-.0011*
0 .

11.51
.1891*
-.0030
0

26.01*
.3293
-.0100
. 0

20
0
0
0

6.538
-3.087
.0516
0

1*2.61
-ll*.l*0
.0861*
0

1*3.22
-9.961
.0538
0

U.l*35
-1.761
.0107
0

5.21*1
-1.968
.0135
0

11.96
-U.823
.0528
0 _

2.8
-3.13

0
0

112



Appendix B

SS Lateral Controller Gain Matrices,
Q = diag (1, 0, 1, 0), R = diag (0, 0), Sampling
Period .2 sec.

K K K
X X U—m —p —HI

P r & (0 P r & (fi Cj^_ £

FCl (".070 .911 -4.15 0.1 p.178 1.22 -6.6l -.092! [".890 -.179!
.̂112 -2.34 10.3 O.J \_.U.k "-2.57 H.9 .197J b-144 .77oJ

FC2 [".019 -203 -.929 o.l r.02i .347 -.175 -.0121 [.245 -.0331
L-002 -.645 2.83 O.J |-.00l -.535 1.62 .018] L-°28 .223J

FC3 f.023 .517 -2-32 0.1 T.039 -681 -3.l4 -.021! f.297 -.132]
[.004 -.925 4.05 O.J (-.004 -.752 2.22 .023J (_.048 .320J

FC4 f.080 1.52 -6.85 0.1 f".24l 1.97 -10,2 -.0661 rl.02 -.368]
^.036 -4.37 19.2 O.J 1_.323 -4.94 22.2 .153J (-.454 l.4iJ

FC5 [.076 1.63 -7.33 o7| f.277 2.09 -10.9 -.07^ [-970 -.Ul3"l
[-.017 -3.84 16.9 O.J [.196 -if.^2 20.4 .157J |-.217 1.27J

FC6 r.038 ..611 -2.76 o.l Hio8 .845 -4.62 -.o4f| [.490 -
j-.OOl -1.59 6.98 O.J L-03^ -1.71 7-55 .083J t-.013
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Appendix B

Optimal Regulator Gain Matrices,

= diag (10\ 0, 10\ 0
Sampling Period .1 sec.
Q = diag (10 0, 10 0), R = diag (102, 102),

FC1

.P

[-.
b.

p
-.302 -1.04 4.4 .08 1

1.42 -1.7 -.115]

Feedback from x_

K22 ~

a
f-1.54 - .08"]
L- -30 -1.28J
Feedback from i

DC975 .55 -1.10
025 -1.15 1.25

o.ol
O.OJ

Feedback from xm

•C1.33 - .23
•13 .!

Feedback from um

FC2

K21 = p. 025 -.50 1.7 .021
t-005 +.47 0.3 -.02Ji K22= £%

^ = T.025 .35 -1.0 O.Ol • K2, = F.33
[_.0075 -.70 1.75 o.qj . 2h [.08

FC3

^1 =

K23 =

p. 040 -.67 2.0 .025^
t.010 ,45 0.8 -.015.

f.0275 .53 -1.3 o.ol
L.OIO -.75 1.65 o.oJ

\ ^ • £3

\ ^- C'o

.38"!
-1.65J

-.141
.4oj

.301
-1.3J

-.24



K21 =

-23
-1.2 4.9 .035]
1.6 - .6 -.05.J

.58 -.95
L-0275 -1.25 0.90

o.o]
o.qj

-1.63 -.20]
-.37 -1.06J

p.. 53 -.28]
L.13 1.20]

FC5 '

K21 =

P

,54 -1.25 5.1
.23 1.80 -1.3 -.065

108 .63 -.95
-1.25 .6>

o.o]
o.oj

pi.66 -.23 ]
|_- .37 -1.18J

[1.52 -.34"!
L .15 1.28J

FC6
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