317 research outputs found

    A Closer Look into Recent Video-based Learning Research: A Comprehensive Review of Video Characteristics, Tools, Technologies, and Learning Effectiveness

    Full text link
    People increasingly use videos on the Web as a source for learning. To support this way of learning, researchers and developers are continuously developing tools, proposing guidelines, analyzing data, and conducting experiments. However, it is still not clear what characteristics a video should have to be an effective learning medium. In this paper, we present a comprehensive review of 257 articles on video-based learning for the period from 2016 to 2021. One of the aims of the review is to identify the video characteristics that have been explored by previous work. Based on our analysis, we suggest a taxonomy which organizes the video characteristics and contextual aspects into eight categories: (1) audio features, (2) visual features, (3) textual features, (4) instructor behavior, (5) learners activities, (6) interactive features (quizzes, etc.), (7) production style, and (8) instructional design. Also, we identify four representative research directions: (1) proposals of tools to support video-based learning, (2) studies with controlled experiments, (3) data analysis studies, and (4) proposals of design guidelines for learning videos. We find that the most explored characteristics are textual features followed by visual features, learner activities, and interactive features. Text of transcripts, video frames, and images (figures and illustrations) are most frequently used by tools that support learning through videos. The learner activity is heavily explored through log files in data analysis studies, and interactive features have been frequently scrutinized in controlled experiments. We complement our review by contrasting research findings that investigate the impact of video characteristics on the learning effectiveness, report on tasks and technologies used to develop tools that support learning, and summarize trends of design guidelines to produce learning video

    Advances in scalable learning and sampling of unnormalised models

    Get PDF
    We study probabilistic models that are known incompletely, up to an intractable normalising constant. To reap the full benefit of such models, two tasks must be solved: learning and sampling. These two tasks have been subject to decades of research, and yet significant challenges still persist. Traditional approaches often suffer from poor scalability with respect to dimensionality and model-complexity, generally rendering them inapplicable to models parameterised by deep neural networks. In this thesis, we contribute a new set of methods for addressing this scalability problem. We first explore the problem of learning unnormalised models. Our investigation begins with a well-known learning principle, Noise-contrastive Estimation, whose underlying mechanism is that of density-ratio estimation. By examining why existing density-ratio estimators scale poorly, we identify a new framework, telescoping density-ratio estimation (TRE), that can learn ratios between highly dissimilar densities in high-dimensional spaces. Our experiments demonstrate that TRE not only yields substantial improvements for the learning of deep unnormalised models, but can do the same for a broader set of tasks including mutual information estimation and representation learning. Subsequently, we explore the problem of sampling unnormalised models. A large literature on Markov chain Monte Carlo (MCMC) can be leveraged here, and in continuous domains, gradient-based samplers such as Metropolis-adjusted Langevin algorithm (MALA) and Hamiltonian Monte Carlo are excellent options. However, there has been substantially less progress in MCMC for discrete domains. To advance this subfield, we introduce several discrete Metropolis-Hastings samplers that are conceptually inspired by MALA, and demonstrate their strong empirical performance across a range of challenging sampling tasks

    LIPIcs, Volume 261, ICALP 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 261, ICALP 2023, Complete Volum

    Geographic information extraction from texts

    Get PDF
    A large volume of unstructured texts, containing valuable geographic information, is available online. This information – provided implicitly or explicitly – is useful not only for scientific studies (e.g., spatial humanities) but also for many practical applications (e.g., geographic information retrieval). Although large progress has been achieved in geographic information extraction from texts, there are still unsolved challenges and issues, ranging from methods, systems, and data, to applications and privacy. Therefore, this workshop will provide a timely opportunity to discuss the recent advances, new ideas, and concepts but also identify research gaps in geographic information extraction

    LIPIcs, Volume 274, ESA 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 274, ESA 2023, Complete Volum

    Fundamentals

    Get PDF
    Volume 1 establishes the foundations of this new field. It goes through all the steps from data collection, their summary and clustering, to different aspects of resource-aware learning, i.e., hardware, memory, energy, and communication awareness. Machine learning methods are inspected with respect to resource requirements and how to enhance scalability on diverse computing architectures ranging from embedded systems to large computing clusters

    ATHENA Research Book, Volume 2

    Get PDF
    ATHENA European University is an association of nine higher education institutions with the mission of promoting excellence in research and innovation by enabling international cooperation. The acronym ATHENA stands for Association of Advanced Technologies in Higher Education. Partner institutions are from France, Germany, Greece, Italy, Lithuania, Portugal and Slovenia: University of Orléans, University of Siegen, Hellenic Mediterranean University, Niccolò Cusano University, Vilnius Gediminas Technical University, Polytechnic Institute of Porto and University of Maribor. In 2022, two institutions joined the alliance: the Maria Curie-Skłodowska University from Poland and the University of Vigo from Spain. Also in 2022, an institution from Austria joined the alliance as an associate member: Carinthia University of Applied Sciences. This research book presents a selection of the research activities of ATHENA University's partners. It contains an overview of the research activities of individual members, a selection of the most important bibliographic works of members, peer-reviewed student theses, a descriptive list of ATHENA lectures and reports from individual working sections of the ATHENA project. The ATHENA Research Book provides a platform that encourages collaborative and interdisciplinary research projects by advanced and early career researchers
    • …
    corecore