7 research outputs found

    Monitoring the Sustainable Intensification of Arable Agriculture:the Potential Role of Earth Observation

    Get PDF
    Sustainable intensification (SI) has been proposed as a possible solution to the conflicting problems of meeting projected increases in food demand and preserving environmental quality. SI would provide necessary production increases while simultaneously reducing or eliminating environmental degradation, without taking land from competing demands. An important component of achieving these aims is the development of suitable methods for assessing the temporal variability of both the intensification and sustainability of agriculture. Current assessments rely on traditional data collection methods that produce data of limited spatial and temporal resolution. Earth Observation (EO) provides a readily accessible, long-term dataset with global coverage at various spatial and temporal resolutions. In this paper we demonstrate how EO could significantly contribute to SI assessments, providing opportunities to quantify agricultural intensity and environmental sustainability. We review an extensive body of research on EO-based methods to assess multiple indicators of both agricultural intensity and environmental sustainability. To date these techniques have not been combined to assess SI; here we identify the opportunities and initial steps required to achieve this. In this context, we propose the development of a set of essential sustainable intensification variables (ESIVs) that could be derived from EO data

    Updating Landsat-based forest cover maps with MODIS images using multiscale spectral-spatial-temporal superresolution mapping

    Get PDF
    Abstract With the high deforestation rates of global forest covers during the past decades, there is an ever-increasing need to monitor forest covers at both fine spatial and temporal resolutions. Moderate Resolution Imaging Spectroradiometer (MODIS) and Landsat series images have been used commonly for satellite-derived forest cover mapping. However, the spatial resolution of MODIS images and the temporal resolution of Landsat images are too coarse to observe forest cover at both fine spatial and temporal resolutions. In this paper, a novel multiscale spectral-spatial-temporal superresolution mapping (MSSTSRM) approach is proposed to update Landsat-based forest maps by integrating current MODIS images with the previous forest maps generated from Landsat image. Both the 240 m MODIS bands and 480 m MODIS bands were used as inputs of the spectral energy function of the MSSTSRM model. The principle of maximal spatial dependence was used as the spatial energy function to make the updated forest map spatially smooth. The temporal energy function was based on a multiscale spatial-temporal dependence model, and considers the land cover changes between the previous and current time. The novel MSSTSRM model was able to update Landsat-based forest maps more accurately, in terms of both visual and quantitative evaluation, than traditional pixel-based classification and the latest sub-pixel based super-resolution mapping methods The results demonstrate the great efficiency and potential of MSSTSRM for updating fine temporal resolution Landsat-based forest maps using MODIS images

    Spatial-temporal super-resolution land cover mapping with a local spatial-temporal dependence model

    Get PDF
    The mixed pixel problem is common in remote sensing. A soft classification can generate land cover class fraction images that illustrate the areal proportions of the various land cover classes within pixels. The spatial distribution of land cover classes within each mixed pixel is, however, not represented. Super-resolution land cover mapping (SRM) is a technique to predict the spatial distribution of land cover classes within the mixed pixel using fraction images as input. Spatial-temporal SRM (STSRM) extends the basic SRM to include a temporal dimension by using a finer-spatial resolution land cover map that pre-or postdates the image acquisition time as ancillary data. Traditional STSRM methods often use one land cover map as the constraint, but neglect the majority of available land cover maps acquired at different dates and of the same scene in reconstructing a full state trajectory of land cover changes when applying STSRM to time series data. In addition, the STSRM methods define the temporal dependence globally, and neglect the spatial variation of land cover temporal dependence intensity within images. A novel local STSRM (LSTSRM) is proposed in this paper. LSTSRM incorporates more than one available land cover map to constrain the solution, and develops a local temporal dependence model, in which the temporal dependence intensity may vary spatially. The results show that LSTSRM can eliminate speckle-like artifacts and reconstruct the spatial patterns of land cover patches in the resulting maps, and increase the overall accuracy compared with other STSRM methods

    Multisource and Multitemporal Data Fusion in Remote Sensing

    Get PDF
    The sharp and recent increase in the availability of data captured by different sensors combined with their considerably heterogeneous natures poses a serious challenge for the effective and efficient processing of remotely sensed data. Such an increase in remote sensing and ancillary datasets, however, opens up the possibility of utilizing multimodal datasets in a joint manner to further improve the performance of the processing approaches with respect to the application at hand. Multisource data fusion has, therefore, received enormous attention from researchers worldwide for a wide variety of applications. Moreover, thanks to the revisit capability of several spaceborne sensors, the integration of the temporal information with the spatial and/or spectral/backscattering information of the remotely sensed data is possible and helps to move from a representation of 2D/3D data to 4D data structures, where the time variable adds new information as well as challenges for the information extraction algorithms. There are a huge number of research works dedicated to multisource and multitemporal data fusion, but the methods for the fusion of different modalities have expanded in different paths according to each research community. This paper brings together the advances of multisource and multitemporal data fusion approaches with respect to different research communities and provides a thorough and discipline-specific starting point for researchers at different levels (i.e., students, researchers, and senior researchers) willing to conduct novel investigations on this challenging topic by supplying sufficient detail and references

    Learning-Based Spatial–Temporal Superresolution Mapping of Forest Cover With MODIS Images

    No full text
    Forest mapping from satellite sensor imagery provides important information for the timely monitoring of forest growth and deforestation, bioenergy potential assessment, and modeling of carbon flux, among others. Due to the daily global revisit rate and wide swath width, MODerate-resolution Imaging Spectroradiometer (MODIS) images are used commonly for satellite-derived forest mapping at both regional and global scales. However, the spatial resolution of MODIS images is too coarse to observe fine spatial variation in forest cover. The last few decades have seen the production of several fine-spatial-resolution satellite-derived global forest cover maps, such as Hansen's global tree canopy cover map of 2000, which includes abundant spectral, temporal, and spatial prior information about forest cover at a fine spatial resolution. In this paper, a novel learning-based spatial-temporal superresolution mapping approach is proposed to integrate both current MODIS images and prior maps of Hansen's tree canopy cover, to map present forest cover with a fine spatial resolution. The novel approach is composed of three main stages: 1) automatic generation of 240-m forest proportion images from both 240- and 480-m MODIS images using a nonlinear learning-based spectral unmixing method; 2) downscaling the 240-m forest proportion images to 30 m to predict the class possibilities at the subpixel scale using a temporal-example learning-based downscaling method; and 3) final production of the fine-spatial-resolution forest map by solving a regularization-based optimization problem. The novel approach produced more accurate fine-spatial-resolution forest cover maps in terms of both visual and quantitative evaluation than traditional pixel-based classification and the latest subpixel based superresolution mapping methods. The results show the great efficiency and potential of the novel approach for producing fine-spatial-resolution forest maps from MODIS images

    Sustainable intensification of arable agriculture:The role of Earth Observation in quantifying the agricultural landscape

    Get PDF
    By 2050, global food production must increase by 70% to meet the demands of a growing population with shifting food consumption patterns. Sustainable intensification has been suggested as a possible mechanism to meet this demand without significant detrimental impact to the environment. Appropriate monitoring techniques are required to ensure that attempts to sustainably intensify arable agriculture are successful. Current assessments rely on datasets with limited spatial and temporal resolution and coverage such as field data and farm surveys. Earth Observation (EO) data overcome limitations of resolution and coverage, and have the potential to make a significant contribution to sustainable intensification assessments. Despite the variety of established EO-based methods to assess multiple indicators of agricultural intensity (e.g. yield) and environmental quality (e.g. vegetation and ecosystem health), to date no one has attempted to combine these methods to provide an assessment of sustainable intensification. The aim of this thesis, therefore, is to demonstrate the feasibility of using EO to assess the sustainability of agricultural intensification. This is achieved by constructing two novel EO-based indicators of agricultural intensity and environmental quality, namely wheat yield and farmland bird richness. By combining these indicators, a novel performance feature space is created that can be used to assess the relative performance of arable areas. This thesis demonstrates that integrating EO data with in situ data allows assessments of agricultural performance to be made across broad spatial scales unobtainable with field data alone. This feature space can provide an assessment of the relative performance of individual arable areas, providing valuable information to identify best management practices in different areas and inform future management and policy decisions. The demonstration of this agricultural performance assessment method represents an important first step in the creation of an operational EO-based monitoring system to assess sustainable intensification, ensuring we are able to meet future food demands in an environmentally sustainable way
    corecore