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Abstract 

By 2050, global food production must increase by 70% to meet the demands of a growing 

population with shifting food consumption patterns. Sustainable intensification has been suggested 

as a possible mechanism to meet this demand without significant detrimental impact to the 

environment. Appropriate monitoring techniques are required to ensure that attempts to 

sustainably intensify arable agriculture are successful. Current assessments rely on datasets with 

limited spatial and temporal resolution and coverage such as field data and farm surveys. Earth 

Observation (EO) data overcome limitations of resolution and coverage, and have the potential to 

make a significant contribution to sustainable intensification assessments. Despite the variety of 

established EO-based methods to assess multiple indicators of agricultural intensity (e.g. yield) and 

environmental quality (e.g. vegetation and ecosystem health), to date no one has attempted to 

combine these methods to provide an assessment of sustainable intensification.  

The aim of this thesis, therefore, is to demonstrate the feasibility of using EO to assess the 

sustainability of agricultural intensification. This is achieved by constructing two novel EO-based 

indicators of agricultural intensity and environmental quality, namely wheat yield and farmland bird 

richness. By combining these indicators, a novel performance feature space is created that can be 

used to assess the relative performance of arable areas. This thesis demonstrates that integrating EO 

data with in situ data allows assessments of agricultural performance to be made across broad 

spatial scales unobtainable with field data alone. This feature space can provide an assessment of 

the relative performance of individual arable areas, providing valuable information to identify best 

management practices in different areas and inform future management and policy decisions. The 

demonstration of this agricultural performance assessment method represents an important first 

step in the creation of an operational EO-based monitoring system to assess sustainable 

intensification, ensuring we are able to meet future food demands in an environmentally sustainable 

way.  
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1. Introduction 

By 2050, global food production must increase by an estimated 70% to meet growing 

demand resulting from projected population increases, shifting food consumption patterns and 

increases in income (Dillon et al., 2016; FAO, 2009; Garnett and Godfray, 2012; Tilman et al., 2011, 

2002). Globally we are seeing an abrupt decline, and sometimes complete stagnation, in the rate of 

yield increase on existing farmland (Grassini et al., 2013). If yield growth continues at its current 

trajectory, projected food demand will not be met without large expansion of crop area, which 

would have wide-ranging environmental consequences (Cassman and Grassini, 2020).  

Sustainable intensification of agriculture has been proposed as a way to address the need 

for increased food production on existing agricultural land, while maintaining or enhancing 

environmental quality (Dillon et al., 2016). Various methods of sustainable intensification are being 

developed such as Integrated Pest Management and Conservation Agriculture (Pretty and Bharucha, 

2014). However, the success of these methods is context-dependent (Pretty and Bharucha, 2014), 

and the potential to achieve sustainable intensification varies from local field or farm scales, to 

regional, national and global scales (Cassman and Grassini, 2020). As such, any attempts at 

sustainable intensification must be monitored carefully to ensure they are achieving their intended 

outcomes.  

To date, attempts to monitor the sustainable intensification of agriculture have been largely 

non-existent. A number of studies have explored related themes, however, these have tended to 

focus on assessing either the intensity (e.g. Herzog et al., 2006) or the sustainability (e.g. Dillon et al., 

2010) of agriculture, rarely have they combined these elements to assess sustainable intensification. 

In addition, these studies tend to focus on specific farms, due to their reliance on traditional in situ 

data such as field and farms surveys. These data are typically costly and time consuming to collect, 

resulting in data of limited spatial and temporal resolution, which restricts the scale of these studies.  
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Meeting future food demands, without destroying the environment, is a global issue and 

therefore requires a global solution. As such, we need to understand how agriculture is performing 

in all locations, not simply in a few specific places. The current lack of a system for quantifying 

sustainable intensification potential in terms of both production and environmental performance 

across various scales has been identified as one of the critical missing links in the current global 

research portfolio (Cassman and Grassini, 2020). Gaining an understanding of agricultural 

performance at relevant scales requires a long-term data set of high resolution (field-level) data 

collected on a global scale. Creating such a data set with traditional data collection techniques on 

their own is unfeasible. We must therefore look beyond the traditional to more modern solutions if 

we are to close this knowledge gap. This thesis aims to demonstrate, for the first time, one possible 

solution to this data problem by exploring the potential of Earth Observation to assess sustainable 

intensification.  

Earth Observation (EO) provides repeat measurements and a long-term dataset with global 

coverage over a range of spatial and temporal resolutions. As such, EO offers the potential to scale 

up in situ data to allow various indicators of agricultural intensity (e.g. yield) and aspects of 

environmental sustainability (e.g. biodiversity) to be monitored across the globe at a range of spatial 

and temporal scales. While EO has been used to monitor a variety of these indicators, so far no one 

has attempted to combine these indicators to provide a large-scale assessment of agricultural 

performance. The aim of this thesis, therefore, is to explore the potential contribution that EO could 

make to assessing the sustainable intensification of arable agriculture. This is achieved through four 

subsidiary aims: 

1. Review evidence from the literature in order to scope out the potential role of EO in 

monitoring the sustainable intensification of arable agriculture; 

2. Quantify agricultural intensity on a landscape-scale using wheat yield variability derived 

from EO data as an indicator; 
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3. Assess environmental quality on a landscape-scale using farmland bird richness derived 

from EO data as a proxy for environmental quality; 

4. Combine the EO-derived measures of agricultural intensity and environmental quality to 

create a feature space to assess agricultural performance on a landscape-scale and for 

specific arable areas.  

 

  This thesis comprises of six chapters (plus appendices). In chapter 1, the aims and structure 

of the thesis are outlined. Chapter 2 provides an introduction to the concept of and need for 

sustainable intensification and the current issues regarding how it is monitored. A detailed review is 

then presented of the contribution that Earth Observation could make in addressing these 

monitoring issues, exploring the potential of EO to monitor indicators of agricultural intensity and 

environmental quality; the latter is split into indicators of vegetation health, soil quality, water 

quality and availability, biodiversity and ecosystem health. This chapter concludes with an overview 

of the opportunities for an EO-based sustainable intensification assessment system and provides a 

set of recommendations for its implementation including the development of a set of Essential 

Sustainable Intensification Variables (ESIVs). This review was published in the International Journal 

of Applied Earth Observation and Geoinformation; a full reference can be found in the statement of 

authorship.  

Following this review, three analytical chapters are presented. The first of these has been 

published (see statement of authorship for full reference and authorship details) and the other two 

have been prepared in the style appropriate for submission to a scientific journal. An overall 

reference list, collated from the reference lists for each individual chapter, is provided at the end of 

this thesis.  

Chapter 3 demonstrates the potential to map within-field wheat yield variability on a 

landscape scale by combining satellite data with environmental data (e.g. meteorological data). This 



4 
 

work explored the impact of data spatial resolution and availability on the accuracy of yield 

estimation through the use of different combinations of input data for different periods throughout 

the growing season. This work demonstrated how satellite data can be used to scale up precision 

yield measurements from a limited number of fields to provide a high-resolution map of yield on a 

landscape scale. This analysis helped to identify the best combination of satellite and environmental 

data to maximise accuracy and coverage of yield estimation. This knowledge was used to create the 

wheat yield dataset used as an indicator of agricultural intensity in chapter 5.  

 Chapter 4 explores the use of satellite data to assess environmental quality, using bird 

species diversity as a proxy for environmental quality. This work demonstrates that satellite-derived 

measures of habitat productivity and heterogeneity can be used to model distributions of farmland 

and woodland bird diversity and richness for the whole of Great Britain. Furthermore, this analysis 

provides an insight into the contributions of the most important explanatory variables, 

demonstrating the non-linear nature of these relationships. Understanding the nature of these 

relationships is important to identify the characteristics required to promote bird richness, which 

can inform management practices. The results of this work were used to inform the creation of the 

farmland bird richness dataset used as an indicator of environmental quality in chapter 5.  

Chapter 5 demonstrates the potential for using EO to assess agricultural performance on a 

landscape-scale. This is achieved by combining the indicators of agricultural intensity (yield) and 

environmental quality (bird species richness) derived in chapters 3 and 4 to create a novel 

performance feature space to assess relative agricultural performance. The analysis demonstrates 

how this feature space can be used to assess performance of arable areas within the landscape 

allowing identification of the best and worst performing locations to inform changes in management 

practice.  

Chapter 6 then concludes this thesis, summarising the main research contributions from 

each chapter and discussing some of the wider considerations, such as issues of uncertainty and 
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scale, when assessing agricultural performance and how these may be addressed. Finally, this 

chapter outlines the future work that is required to ensure the potential contribution of EO to 

sustainable intensification assessments is fully realised.  
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2. Monitoring the Sustainable Intensification of Arable Agriculture: the 

Potential Role of Earth Observation – Literature Review 

Merryn L. Hunt, George Alan Blackburn & Clare S. Rowland 

This chapter is a replication of a constituent paper of this research that was published in 

International Journal of Applied Earth Observation and Geoinformation.  

Hunt, M.L., Blackburn, G.A., & Rowland, C.S. (2019). Monitoring the Sustainable Intensification of 

Arable Agriculture: the Potential Role of Earth Observation. International Journal of Applied Earth 

Observation and Geoinformation, 81, 125-136. 

 

Abstract 

Sustainable intensification (SI) has been proposed as a possible solution to the conflicting 

problems of meeting projected increase in food demand and preserving environmental quality. SI 

would provide necessary production increases while simultaneously reducing or eliminating 

environmental degradation, without taking land from competing demands. An important 

component of achieving these aims is the development of suitable methods for assessing the 

temporal variability of both the intensification and sustainability of agriculture. Current assessments 

rely on traditional data collection methods that produce data of limited spatial and temporal 

resolution. Earth Observation (EO) provides a readily accessible, long-term dataset with global 

coverage at various spatial and temporal resolutions. In this paper we demonstrate how EO could 

significantly contribute to SI assessments, providing opportunities to quantify agricultural intensity 

and environmental sustainability. We review an extensive body of research on EO-based methods to 

assess multiple indicators of both agricultural intensity and environmental sustainability. To date 

these techniques have not been combined to assess SI; here we identify the opportunities and initial 

steps required to achieve this. In this context, we propose the development of a set of Essential 

Sustainable Intensification Variables (ESIVs) that could be derived from EO data.  
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2.1 Introduction 

With a projected population increase of 2.3 billion by 2050, increases in income and shifting 

food consumption patterns, global food production must increase by an estimated 70% to meet 

growing demand (Campbell et al., 2014; Caviglia and Andrade, 2010; Dillon et al., 2016; FAO, 2009; 

Garnett et al., 2013; Lampkin et al., 2015; Schut et al., 2016; Tilman et al., 2011, 2002). Both 

agricultural expansion (clearing additional land for crop production) and intensification (increasing 

productivity of existing agricultural land) could provide necessary crop production increases 

(Godfray and Garnett, 2014; Tilman et al., 2011). Current competition for land restricts the potential 

for conversion of new land to agriculture, thus limiting the viability of expansion in many cases 

(Godfray et al., 2010; Pretty et al., 2011). In addition, expansion is thought to have a greater 

detrimental impact on the environment than intensification, with potential for significant 

greenhouse gas release through land conversion and major biodiversity losses affecting essential 

ecosystem service provision (Garnett et al., 2013; Godfray and Garnett, 2014). Consequently, future 

demands must be met through production increases on current agricultural land alongside shifts in 

diet and the reduction in food waste (including transport and consumption). Previous agricultural 

intensification has been achieved through changes in management practices including increased 

agrochemical inputs, cropping intensity and irrigation, and adoption of monoculture practices 

(Benton et al., 2003; Crowder and Jabbour, 2014; Meeus, 1993; C. Stoate et al., 2001). However, it is 

now widely recognised that such intensification measures detrimentally impact the environment, 

through over exploitation of natural resources for inputs and emission of pollution and waste (Pretty 

et al., 2011). This raises concerns over the long-term ability to maintain intensive agricultural 

practices, with intensification-induced environmental degradation having negative feedbacks on 

sustained crop productivity (Bommarco et al., 2013a; Foley et al., 2005; Matson et al., 1997). It is 

clear therefore that a sustainable method of agricultural intensification is required.  

One possible solution is sustainable intensification (SI), which involves increasing production 

efficiency to achieve higher agricultural outputs with the same or fewer inputs, while simultaneously 
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significantly reducing or eliminating environmental degradation (Dillon et al., 2016). However, no 

definitive mechanisms of SI exist, with the success of different methods dependent on situation-

specific conditions. As such, to ensure any attempts at SI are successful suitable methods are 

required to assess the sustainability of intensification efficiently over diverse landscapes and spatial 

scales on a long-term basis.  

  The purpose of this review is to outline the current state of SI assessments and explore the 

potential contributions EO could make. While it is true that various studies have used EO to assess 

either agricultural intensity or various indicators of environmental sustainability, to date no one has 

attempted to combine established EO-based methods to provide an actual assessment of 

sustainable intensification. Hence, this review explores the basis for the development of an 

operational SI monitoring system that uses EO data. This review is structured as follows. Section 2.2 

provides an overview of the key concepts of agricultural intensification (AI) and SI, as well as briefly 

introducing SI assessment. Section 2.3 and Section 2.4 present a more detailed outline of the current 

approaches used to assess agricultural intensity and agricultural environmental sustainability, 

respectively, highlighting ways in which EO data is presently used and further contributions it could 

make. The review concludes with a discussion of the opportunities of EO to contribute towards an 

operational SI monitoring system applicable for a range of spatial and temporal scales. This review 

focuses on the intensification arable agriculture; as such methods for monitoring pastoral agriculture 

are not explicitly discussed.  

2.2 Key Concepts/Definitions 

2.2.1 Agricultural Intensification (AI) 

Agricultural intensification (AI) is the “increase in agricultural production per unit of inputs”, 

where inputs may include labour, land, time, seed, fertiliser, feed or cash (FAO, 2004). Intensification 

can refer to maintenance of current production with decreased inputs, and/or increased production 

through higher input productivity (FAO, 2004). Methods of intensification include: increased 
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agrochemical inputs; increased cropping intensity (e.g. double or triple cropping); increased crop 

density; removal of linear and point features such as hedgerows and ponds (landscape simplification 

and field enlargement); decreased crop diversity (monoculture adoption); and increased irrigation 

(e.g. Crowder and Jabbour, 2014; Donald et al., 2001; Newton, 2004; Stoate et al., 2001). 

Detrimental environmental impacts of AI are wide-ranging, covering a range of spatial (local to 

global) and temporal (short-term to long-term or permanent) scales. These factors are driving the 

growing interest in alternative, more sustainable methods for meeting growing food demand. Figure 

A1 in Appendix 1 highlights some of the key environmental impacts of various mechanisms of 

agricultural intensification. The potential for environmental degradation resulting from AI activities is 

intensified by the complexity of the agricultural environment, with numerous interactions, 

connections and feedbacks within the system, and multiple causal relationships. Such degradation 

could have significant impacts both within the immediate vicinity of intensification and over wider 

spatial scales. The wide range of potential impacts and system complexity poses a challenge when 

trying to devise a monitoring system that can accurately measure all required elements.  

2.2.2 Sustainable Intensification (SI) 

Sustainable intensification (SI) has been proposed as an alternative to conventional 

intensification providing necessary yield increases, whilst ensuring environmental degradation is 

kept at a sustainable level (Tilman et al., 2011). The concept originated in the 1990s (Buckwell et al., 

2014), with much debate since over the exact definition of the term “sustainable intensification”. A 

common definition describes SI as a form of production wherein greater yields are produced with 

the same or fewer inputs, while adverse environmental impacts are simultaneously reduced or 

eliminated and contribution to natural capital and ecosystem service flow is increased (Barnes and 

Thomson, 2014; Dillon et al., 2016; Garnett and Godfray, 2012; Godfray et al., 2010; Pretty, 2008; 

Pretty et al., 2011). The theoretical model of sustainable intensification is illustrated in figure A2 in 

Appendix 1. SI as a concept prescribes no particular development paths or methods; the aim is 

simply to create resource efficient agriculture with significantly better environmental performance 
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than conventional intensification (Buckwell et al., 2014). Instead, a framework is provided facilitating 

exploration of the optimum mix of approaches based on existing situation-specific biophysical, 

social, cultural and economic contexts (Buckwell et al., 2014; Garnett et al., 2013; Garnett and 

Godfray, 2012; Pretty and Bharucha, 2014). The suitability of different methods varies depending on 

conditions, as well as current agricultural productivity and environmental performance of the system 

(Buckwell et al., 2014; Garnett and Godfray, 2012). 

Possible interventions to achieve SI include: Integrated Pest Management (IPM), use of on- 

and off-farm biodiversity to manipulate pest ecologies; Agroforestry Systems, for example 

intercropping; Precision Agriculture; and Conservation Agriculture (Pretty and Bharucha, 2014).  

2.2.3 Assessing Sustainable Intensification 

As there is no definitive mechanism for SI, realising the goal of resource efficient agriculture 

requires suitable methods to assess the sustainability of intensification efficiently over diverse 

landscapes and spatial scales on a long-term basis. At present, there is no routine monitoring of 

sustainable intensification, with availability of suitable data representing a major issue (Cassman and 

Grassini, 2020; Siebrecht, 2020). Current assessment attempts rely largely on farm surveys 

(questionnaires and interviews), field data, national government statistics and other traditional data 

sources. Data collection is often costly and time consuming, limiting the spatial and temporal scale 

and extent, with consequent impacts on the representativeness of both the data and the 

assessments. As such, the current reliance on interpolation of point data and average statistics 

severely restricts timely provision of accurate sustainability assessments for all agricultural areas. 

Deficiencies such as these highlight the need for a new, more efficient assessment technique.  

Generally, studies focus on either agricultural sustainability, with no explicit attempt to 

quantify intensification (e.g. Dillon et al., 2010; Rasul and Thapa, 2004), or on agricultural intensity at 

a specific point in time, with no assessment of sustainability (e.g. Herzog et al., 2006; 

Niedertscheider et al., 2016). Studies that assess the sustainability of intensification are largely 
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conducted on farms where management practices are known to have shifted towards more 

intensive measures; hence, no attempt is made to quantify the degree or rate of intensification. The 

few studies that do include a measure of intensity (e.g. crop yield) commonly ignore change over 

time and use a single point in time. Intensification is a process rather than a fixed end state; looking 

at intensity at one specific time is therefore not sufficient (Elliott et al., 2013; Firbank et al., 2013). To 

get a full picture of the sustainability of any intensification in agricultural production, the change 

that has occurred over time must be investigated and trends identified to determine the actual 

environmental impacts. The potential of a quantified SI assessment approach at the individual farm 

level, using data held by farmers from two different years, was explored by Firbank et al. (2013). 

Results demonstrated the ability to assess sustainability of farms adopting different management 

strategies, but the data source restricted the completeness of the assessment, limiting measurable 

indicators and identifiable spatial and temporal variation. The limited temporal resolution of the 

data restricted full exploration of the intensification and subsequent effects on yield and 

environmental sustainability. The study constitutes an important step in the development of an 

operational SI assessment method, but more comprehensive data is required. 

Ideally, field measurements would be taken at all locations to provide data on which SI could 

be assessed. However, as this is not feasible, data sources with greater spatial and temporal 

coverage and lower acquisition costs must be sought that can be used in conjunction with field 

measurements. Incorporation of satellite data into sustainability assessments could allow greater 

flexibility, over various spatial and temporal scales, providing more accurate and representative 

results at lower costs. Recent decades have seen considerable increases in Earth Observation (EO) 

data use, with applications in diverse research areas. A number of international monitoring systems 

have been developed incorporating satellite data for crop condition monitoring and yield forecasting 

over regional, national and global scales. Such systems include the Group on Earth Observations 

Global Agricultural Monitoring system (GEOGLAM) (GEO, 2019), the USDA Foreign Agricultural 

Service (FAS) Global Agricultural Monitoring (GLAM) System (USDA FAS, 2019), the Chinese Academy 
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of Sciences Crop Watch Program (Bingfang, 2006), and the Monitoring Agriculture by Remote 

Sensing (MARS) project developed by the Joint Research Centre of the European Commission 

(European Commission, 2016). The operational status of these systems demonstrates the value of 

EO for agricultural monitoring. Outputs from these systems could be used to monitor intensification, 

but currently this is not done explicitly. The potential contribution of these EO-based systems to SI 

assessment has so far not been fully explored or realised, with little or no evidence of the use of 

satellite-derived data within agricultural sustainability assessments. 

To date EO researchers have not explicitly attempted to quantify SI and so intensity and 

environmental sustainability have not been assessed for the same sites from EO. This review treats 

aspects of sustainability and intensification separately to provide a comprehensive overview of 

current research and the potential contribution of Earth Observation. The next two sections provide 

a more detailed overview of the methods used to assess both agricultural intensity and 

sustainability, highlighting the ways in which satellite data is used at present and the opportunities 

moving forwards.  

2.3. Assessing the Intensity of Arable Production 

2.3.1 Current Approaches 

The types of indicators used to assess agricultural intensity differ between studies. Some 

focus on indicators which reflect the increase in land productivity caused by human intervention 

(Dietrich et al., 2012) such as yield per ha (e.g. Singh et al., 2002). Others focus on indicators which 

measure the change in inputs or other factors of management (Shriar, 2000) including total nitrogen 

(fertiliser) input (e.g. Temme and Verburg, 2011), number of pesticide applications (e.g. Herzog et 

al., 2006), and inputs costs per ha (e.g. Teillard et al., 2012). As such, the range of indicators used to 

assess agricultural intensity can be split into two general groups: agricultural input indicators (e.g. 

input cost per ha, crop acreage) and agricultural output indicators (e.g. production per area and 

time). Examples of indicators used in EO-based studies can be found in table 2.1. Some direct 
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indicators of agricultural intensity, such as fertiliser and pesticide input cannot be measured using 

EO, but may be detectable indirectly from, for example, changes in yield. Typically either a single 

indicator is adopted to assess intensity (e.g. Biradar and Xiao, 2011; Mingwei et al., 2008), or 

multiple indicators are aggregated to produce an intensity index (e.g. Kerr and Cihlar, 2003; Shriar, 

2000). Aggregated indicators simplify complex situations into a single element, but this is done at 

the expense of interpretability and transparency. Whether a single indicator or an index is 

appropriate will vary depending on the purpose of the study (Herzog et al., 2006).  

 

 

Table 2.1: Key EO-derived indicators for assessing agricultural intensity.  Examples of methods to 

derive these EO-based indicators can be found in table A2 in Appendix 1. 

Agricultural Intensity 

• Crop yield (e.g. tonnes/ha)                  • Cropping area (e.g. acres, km2) 
• Multi-cropping: Number of harvests within a single year (i.e. growing season) 
• Cropping intensity: Number of cropping cycles per year or number of years a field is sown with 

crops and actually reaches harvest 
• Cropping frequency: Number of years a pixel was cropped over an observation 
• Crop duration ratio: Ratio of time period (during growing season) for which a pixel was 

cropped and the total length of the growing season 
• Fallow cycles: Recurring periods of fallow cropland                

Further information in table A2 (Appendix 1) 
 

 

Data sources for agricultural intensity assessments include interviews, government statistics, 

field and farm surveys, aerial photographs and satellite data (see table A1 in Appendix 1 for further 

examples of data sources and indicators used by various authors to investigate agricultural 

intensity). EO techniques are fairly common within this area, with a range of satellites appearing 

within the literature including MODIS, AVHRR, Landsat and Sentinel.  EO-based methods used to 

investigate agricultural intensity vary depending on the indicator of interest; some examples of 

specific methods can be found in table A2 in Appendix 1.   

EO has a range of advantages over other data sources for intensity assessments. The use of 

EO allows better cross-country comparisons to be made; country boundary restrictions do not apply 
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in the same way as to government statistics data, thus improving data consistency (Herzog et al., 

2006). Additionally, low-cost methods using relatively simple technology can be developed, allowing 

application of EO-based methods in areas where costs of traditional data collection methods 

prohibit reliable intensity assessments (Ferencz et al., 2004). Furthermore, EO-based cropping 

indicators perform well for broad-scale agricultural monitoring, suggesting they could complement 

(potentially) more accurate sample-based ground-data, by providing wall-to-wall observations of 

agricultural management (Estel et al., 2016). Lack of spatially distributed information on key 

environmental and agronomic variables tends to limit application of crop simulation models for 

regional scale yield estimation (Moriondo et al., 2007). EO data can alleviate this problem, by 

providing estimates of relevant variables over a range of spatial and temporal scales.  

2.3.2 Potential for Expanding the Use of EO to Assess Agricultural Intensity 

As previously noted, the use of EO within agricultural intensity studies is already fairly 

common, but it is still not typically routine and operational. In addition, with continued 

advancements in sensor technology, the launch of new satellites and the development of new 

methods, the full potential of EO has yet to be realised. Moving forward research should continue to 

focus on the creation of high resolution, global products which can be provided regularly (annually), 

consistently and in a timely manner (Claverie et al., 2018; Egorov et al., 2019; Roy et al., 2010). In 

the past, the production of high resolution operational EO-derived products was hindered by a lack 

of suitable cloud-free imagery and the time and computing power required to process the vast 

number of images needed to provide global coverage. However now, with an increase in the number 

of moderate and high resolution satellites, improvements in gap-filling and sensor integration 

techniques, and the advent of cloud computing systems that can facilitate more rapid processing, 

the potential for producing high resolution EO products for assessing agricultural intensity on a 

global scale has never been greater. Work is already underway to produce a variety of large-scale 

high-resolution (30m) products, for example, cropland extent maps on a country- (e.g. Teluguntla et 

al., 2018) and continental-scale (e.g. Xiong et al., 2017). International programmes such as 
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GEOGLAM and commercial organisations such as OneSoil (OneSoil, 2018) are also working to map 

various agricultural parameters, including crop type and crop condition/development, on a global 

scale. The timely production of high resolution, global products, which provide an accurate 

representation of the diverse agrosystems around the world, is likely to require either the 

development of generic, transferable models or an increase in the collection and provision of in situ 

data. In reality, the solution will probably involve some combination of the two.  

The accessibility of appropriate field data for calibration and validation is a major constraint 

on the development of an operational EO-based system for assessing intensification. A step-change 

in monitoring capability could be provided by having EO as part of an integrated system that makes 

in situ data routinely available. Similarly, the creation and adoption of better data fusion methods 

may help with interpretation of the EO data, limiting the impact of confounding factors, and 

improving assessment potential. However, despite the various challenges which exist at present, EO 

data provides an important, practical and viable approach for regional and global monitoring of land 

surface dynamics, including variations in agricultural intensity (Yan et al., 2014). The value of EO for 

agricultural intensity assessments lies, in part, in the spatially explicit nature of the data, consistency 

across political borders and the systematic acquisition setup (Kuemmerle et al., 2013).  

2.4. Assessing the Environmental Sustainability of Arable Systems 

2.4.1 Current Approaches 

Sustainability has three dimensions: economic, social and environmental sustainability 

(Allahyari et al., 2016). EO has the potential to contribute valuable information on the environmental 

dimension however, to provide a comprehensive assessment of sustainability, EO must be used 

alongside datasets covering economic and social variables. Accepted socio-economic indicators are 

regularly (e.g. yearly) monitored by governments and international organisations (e.g. United 

Nations, World Health Organisation) on a regional, national and global scale. This provides a readily 

available, long-term dataset for economic and social sustainability, something that is not currently 
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available for environmental sustainability. Consequently, in this review the focus is on the 

environmental dimension of sustainability. 

Assessing environmental sustainability is a complex process fraught with challenges and 

pitfalls. Selection of appropriate indicators, weighting and aggregation methods for specific 

situations and requirements are essential to the successful assessment of sustainability. A number of 

frameworks have been developed to aid in the selection and aggregation of appropriate indicators, 

to provide a single score by which sustainability of agricultural systems can be assessed. These 

frameworks differ in their definition of sustainability, indicator selection approach, and aggregation 

and validation methods. Frameworks include  

 SAFA: Sustainability Assessment of Food and Agriculture Systems (FAO, 2014, 2013) 

 IDEA: Indicateur de Durabilité des Exploitations Agricoles (Zahm et al., 2008) 

 ISAP: Indicator of Sustainable Agricultural Practice (ISAP) (Rigby et al., 2001) 

 RISE: Response-Inducing Sustainability Evaluation (RISE) (Häni et al., 2003, 2006) 

 SAFE: Sustainability Assessment of Farming and the Environment (Van Cauwenbergh 

et al., 2007) 

 SSP: Sustainability Solution Space for Decision Making (Wiek and Binder, 2005) 

 Sustainable Intensification Assessment Framework (Musumba et al., 2017; Snapp et 

al., 2018) 

 

Issues surrounding the use of indicators and frameworks are explored in other publications 

(e.g. Binder et al., 2010; Binder and Wiek, 2006; Gómez-Limón and Sanchez-Fernandez, 2010; Roy 

and Chan, 2012; Singh et al., 2009; Smith et al., 2017; Stein et al., 2001) so no further discussion will 

be presented here. 

Current agricultural sustainability studies generally rely on a mixture of primary and 

secondary data including: questionnaires, field data collection (e.g. soil sampling, spatial 
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information) and government statistics (e.g. Gómez-Limón and Sanchez-Fernandez, 2010; Rasul and 

Thapa, 2004; Rodrigues et al., 2010; Zhen et al., 2005). There are however a number of challenges 

specifically arising as a consequence of current data sources and collection methods which limit the 

ability to accurately and efficiently assess environmental sustainability: 

(1) No baseline data – Sustainability studies frequently lack baseline data, using data from a 

single point in time. This prevents analysis of temporal variability. Multi-temporal datasets 

would enable more comprehensive and therefore more reliable assessments.  

(2) Uncertainty from sample data interpolation – Reliance on sample data and interpolation or 

averaging techniques limit the potential to accurately assess spatial variability. Ideally all 

points would be sampled, providing (near-) continuous coverage, however, the cost and 

time required to complete such a task, clearly makes this impossible using traditional data 

collection techniques. Current assessments assume the sample data are representative of 

the wider study area, which may introduce error.    

(3) Subjective data – Frequent use of questionnaires, farm surveys and interviews arguably 

affects the objectivity of many studies. Apart from obvious issues over the truth of answers, 

subjectivity of qualitative collection methods limits the extent to which data can be 

integrated and compared. Use of objective, quantified data would likely improve assessment 

capabilities.  

(4) Limited data – Data availability, resolution and coverage (both spatial and temporal) are 

often limited by costly and time-consuming collection methods. Bias may also exist, with 

data less readily available in more inaccessible and poorer areas. Sustainability assessments 

are important in all areas if food demands are to be met and environmental quality 

maintained or improved; lack of necessary data due to traditional data collection methods 

hinders this.  
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EO has the potential to reduce some of these issues when assessing environmental 

sustainability. 

2.4.2 Potential Applications of EO-based Methods for Assessing Environmental 

Sustainability 

The potential applications for EO-based methods are described by splitting environmental 

sustainability into five key areas: (1) vegetation health; (2) soil quality; (3) water quality and 

availability; (4) biodiversity; and (5) ecosystem health (table 2.2). Environmental sustainability does 

encompass other aspects however the ability to assess elements such as air quality using EO, at 

scales relevant to agricultural systems, is restricted. This review therefore focuses on the areas 

considered to have most potential for assessment via EO-derived indicators for agriculture-based 

studies. Research efforts have not been evenly split between the areas covered in this section. 

However, to maintain a consistent structure and attempt to provide a balanced overview, each has 

approximately equal coverage in this section.  

 

 

Table 2.2: Potential EO-based indicators which could be used to assess environmental sustainability. 

Examples of EO-based methods to derive these indicators can be found in tables A3 to A7 in Appendix 1. 

Environmental Sustainability 

Vegetation health 

• Crop condition 
• Biophysical traits inc. biomass, fraction of absorbed photosynthetically active radiation 

(fAPAR), photosynthetic activity 
• Structural traits inc. crop/canopy height, leaf area index (LAI), biomass, canopy morphology 
• Biochemical traits inc. chlorophyll (Ch), water content, nitrogen (N) and phosphorous (P) 
 

 Further information in table A3 (Appendix 1) 

Soil Quality 

• Soil organic carbon (SOC)          • Soil organic matter (SOM)          • Soil moisture content          
• Soil salinity         • Crop residue/conservation tillage density          • Nitrogen status/availability 
 

                                                                                            Further information in table A4 (Appendix 1) 

Soil erosion/protection  

• Vegetation cover            • Erosion feature detection         • Erosion modelling e.g. USLE 
 

Further information in table A4 (Appendix 1) 
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Table 2.2 continued 

Water Quality 

• Water Quality Indices derived from different spectral band combinations 
• Physical water quality parameters inc. total suspended solids (TSS), turbidity, suspended 

sediment concentration (SSC), chlorophyll concentration, temperature and water clarity 
• Chemical water quality parameters inc. concentration of total nitrogen, NO3-N (nitrate as 

nitrogen) and total phosphorous 
• Water quality proxy e.g. health of vegetation alongside water bodies 
 

  Further information in table A5 (Appendix 1) 

Water Availability 

• Water body area and configuration           • Water use efficiency and crop water stress  
• Water level and volume                                                               

Further information in table A5 (Appendix 1) 

Biodiversity 

• Direct mapping of individuals and associations               • Plant (and animal) species diversity 
• Habitat suitability based on known habitat requirements of specific species                
• Species Richness        • Landscape structure inc. composition, isolation and complexity               
• Invasive Species 

  Further information in table A6 (Appendix 1) 

Ecosystem Health 

• Vigour 
- Net Primary Productivity (NPP) & Gross Primary Productivity (GPP) 
- Fractional cover of green vegetation, non-photosynthetic vegetation (NPV) and bare soil  
- Biochemical properties inc. nitrogen, phosphorous and chlorophyll 

• Organisation                                                                           • Resilience 
- Species richness and biodiversity                               • Ecosystem Services as a Proxy for 
Ecosystem Health 
- Vegetation structural traits                              Further information in table A7 (Appendix 1) 

 

 

2.4.2.1 Vegetation Health 

Environmental quality depends in part on the presence of healthy, diverse and abundant 

vegetation to provide ecosystem services including soil protection, carbon sequestration and flood 

prevention (Crossman et al., 2013; Hein, 2014). Vegetation health, in turn, relies on a healthy 

environment to provide essential resources, including stable soil substrate and nutrients. This 

interdependence suggests that agricultural and non-agricultural vegetation health can be used as an 

indicator of environmental quality within the agricultural system. Various aspects of vegetation 

health have been assessed using EO over a range of spatial (e.g. field-/plot-scale to tens/hundreds 

km2 and global scale) and temporal scales (e.g. single date assessments to decadal variation), in a 

diverse range of environments (e.g. grasslands, shrublands, forests, rainforests, mountainous 
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regions), including agricultural systems (e.g. corn farms, irrigated maize). Many of these studies were 

conducted using freely available satellite data including Landsat, MODIS and AVHRR, suggesting 

established methods exist, which can be readily applied to a range of environments. Examples of EO-

based methods used to assess vegetation health can be found in table A3 in Appendix 1.  

Empirical models are commonly used to assess a variety of vegetation health-related 

properties. The frequency and timing of image acquisition affects the strength of relationships 

between specific vegetation indices (VIs) (e.g. NDVI) and related variables (e.g. net primary 

productivity) (Tebbs et al., 2017). In some situations it may therefore be preferable to use coarser 

spatial resolution satellites which provide daily coverage (e.g. MODIS), instead of finer spatial 

resolution satellites with less frequent data acquisition (e.g. Landsat) (Jackson et al., 2004). The 

successful application of Radiative Transfer Models (RTMs) demonstrates the potential to develop 

(simple) algorithms to predict various plant traits from satellite data, spanning a range of vegetation 

types (Myneni et al., 1997; Trombetti et al., 2008).  

2.4.2.2 Soil Quality 

Deterioration of soil quality through intensive use of agricultural land has far-reaching 

impacts affecting plant productivity, water and air quality (Doran and Zeiss, 2000). Soil quality is 

therefore an important indicator of sustainability and has been studied over a range of scales, from 

10s to 1000s km2, and across diverse landscapes including cultivated, semi-natural and natural 

vegetation areas using EO data. Previous studies clearly demonstrate the great potential for soil 

quality assessment in agricultural areas. However, disparity between achievable spatial resolutions 

with current freely available satellite data (e.g. Landsat) and typical agricultural field sizes limits the 

ability to conduct field-scale assessments in some parts of the world. Examples of methods used to 

assess soil quality and erosion/protection using EO data can be found in table A4 in Appendix 1.   

Soil reflectance is a function of the soil’s physical properties such as soil moisture and soil 

organic carbon, but also tillage practices, crop residue and row orientation. Multispectral imagery is 



21 
 

therefore best suited for application to farms with uniformly tilled fields and constant soil moisture 

conditions at the time of image acquisition; such conditions increase the dominance of the property 

of interest in the spectral response (Barnes and Baker, 2000). Microwave sensors allow direct soil 

moisture estimates by exploiting the relationship between moisture content and the dielectric 

constant of the soil (Wagner et al., 2007). Polarisation and study site conditions influence detection 

of soil parameter variation. For example, at low moisture conditions, vertical polarisation offers 

higher sensitivity to salinity; at high moisture levels horizontal polarisation exhibits slightly higher 

sensitivity (Lasne et al., 2008; Shoshany et al., 2013).  

2.4.2.3 Water Quality and Availability 

Agricultural intensification can negatively affect both quality and availability of water 

resources, so sustainability assessments should consider both. EO-based water quality and 

availability assessments have focused predominantly on large water bodies such as lakes, reservoirs 

and coastal environments, for non-agriculture-related investigations. Although the methodology 

may theoretically be transferable to agricultural environments, the applicability of EO methods to 

sustainability assessments depends partly on the scale of the study. Water bodies of interest for 

field- or farm-based assessments are likely to be much smaller than can easily be detected by 

current satellites due to limiting spatial resolutions; as sensors continue to develop the potential to 

adopt such methods will increase. At present, EO-based water-related assessments are likely to be 

most suitable for catchment- or regional-scale investigations, where the impact of multiple farms on 

larger water bodies is considered using coarser resolution data. Some of the common EO-based 

methods used to assess water quality and availability are outlined in table A5 in Appendix 1.    

Water quality assessments commonly employ empirical models to estimate physical and 

chemical water quality parameters. Transference of empirical methods to areas and circumstances 

for which they were not formulated adds uncertainty and may not be appropriate. For example, 

current generation satellite sensors have limited ability to map chlorophyll content in mesotrophic 
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and oligotrophic water, despite successful application for eutrophic and hyper-eutrophic water 

(Gons et al., 2008). However, understanding the limitations of the empirical relationships means 

they can be applied appropriately. For example a set of robust relationships established between 

suspended sediment concentration and MODIS spectral reflectance data can be applied, but only for 

rivers larger than 500m (Martinez et al., 2008). 

The operational feasibility of applying a single water body detection algorithm over diverse 

environmental and climatic conditions has been demonstrated, producing results with a high-degree 

of accuracy (Mueller et al., 2016). The spatial resolution of satellite altimetry is about 1.7 to 3km (for 

calm waters), so water level assessments have typically targeted large lakes or rivers, however, 

satellite altimetry-based techniques have been successfully applied to medium-sized water bodies 

(200-800m wide), with some potential for application to small-sized water bodies (40-200m wide) 

(Sulistioadi et al., 2015).   

2.4.2.4 Biodiversity  

Agricultural intensification has been linked with biodiversity losses on local, regional and 

global scales. Biodiversity helps maintain ecosystem health and provision of ecosystem services, so 

its loss can have serious implications for human well-being (Pettorelli et al., 2014; Turner et al., 

2015). Preservation or ideally enhancement of biodiversity is essential for sustainable agriculture, 

hence the spatial and temporal variability of biodiversity is an important indicator of sustainability. 

The use of EO to monitor biodiversity has been reviewed by a number of authors, who have outlined 

key methods, challenges and opportunities (e.g. Gillespie et al., 2008; Kerr and Ostrovsky, 2003; 

Kuenzer et al., 2014; Mairota et al., 2015; Nagendra, 2001; Rocchini et al., 2010; Turner et al., 2003; 

Wang et al., 2010). Consequently, in this review we provide only a brief overview covering examples 

of indicators and related methods (table 2.2). Examples of some EO-based methods used to assess 

biodiversity can be found in table A6 in Appendix 1.  
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Biodiversity can be assessed using both direct and indirect techniques.  Individual plants or 

associations of single species may be directly mapped using (very) high spatial resolution satellite 

images. Where direct mapping of biodiversity indicators is not feasible, indirect approaches that rely 

on environmental parameters as proxies may be adopted (Turner et al., 2003). Both species 

abundance and richness are considered to be fundamentally affected by landscape heterogeneity; 

more heterogeneous landscapes can host more diverse species than homogeneous landscapes due 

to greater niche availability (Feng et al., 2010; Honnay et al., 2003). EO-derived measures of 

landscape structure such as composition, complexity and isolation can therefore be used to predict 

species distribution and diversity. Habitat fragmentation and removal of connectivity elements (e.g. 

hedgerows) negatively affect species richness and distribution; this relationships allows species 

richness predictions based on relatively simple landscape metrics (Griffiths and Lee, 2000; Honnay et 

al., 2003). Lack of consideration of environmental factors such as temperature and disturbance, 

which affect biodiversity, may reduce accuracy of land cover- and landscape metric-based 

predictions (Griffiths and Lee, 2000; Z. Li et al., 2014). 

Satellite-derived habitat maps can be used in conjunction with known habitat requirements 

to model potential distribution and abundance of individual species (e.g. Nagendra, 2001; Weiers et 

al., 2004); habitat suitability parameters such as the existence of suitable water bodies can be 

derived to assist this modelling (e.g. Weiers et al., 2004). Habitat-based species distribution 

modelling requires land cover data of sufficient spatial and thematic resolution to ensure all habitats 

that the target species could potentially occupy are identified; in situ or ancillary data is almost 

certainly necessary to meet requirements for predicting actual distributions of many species (Kerr 

and Ostrovsky, 2003). Where species do not occupy all suitable habitats, only potential rather than 

actual distribution can be predicted (Davis et al., 2007; Kerr and Ostrovsky, 2003). A limitation of 

using habitat maps to predict species distribution and diversity is the fact that this provides no 

insight into within-habitat variation (Nagendra, 2001). 
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2.4.2.5 Ecosystem Health 

Ecosystem health affects the ability of ecosystems to provide essential services. A 

sustainable ecosystem is one which has the ability to maintain its function (or vigour) and structure 

(or organisation) over time and is resilient even with the application of external stress (Costanza and 

Mageau, 1999). The potential of EO has been acknowledged and reviewed previously by other 

authors (e.g. Andrew et al., 2014; Feng et al., 2010; Z. Li et al., 2014). Assessments generally focus on 

three aspects of ecosystem health: vigour, a measure of a system’s activity, metabolism and primary 

productivity; organisation, the number and diversity of interactions between a system’s 

components; and resilience, a system’s ability to maintain its pattern and structure in the presence 

of stress (Costanza and Mageau, 1999; Z. Li et al., 2014; Li and Guo, 2012). Common indicators of 

ecosystem health are GPP or NPP (for vigour), species richness and diversity (for organisation) and 

the ratio of an ecosystem health indicator pre- and post-disturbance (for resilience) (Costanza and 

Mageau, 1999; Z. Li et al., 2014; Li and Guo, 2012) (table 2.2). Examples of some possible EO-based 

methods for assessment of ecosystem health can be found in table A7 in Appendix 1.   

Ecosystem health can also be assessed using the supply of ecosystem services (ES) as a 

proxy. ES represent the goods and services supplied by organisms and their activities, controlled by 

the abiotic characteristics of the system and the anthropogenic impacts it experiences (Andrew et 

al., 2014). Agricultural systems are both a source and beneficiary of ES (Balbi et al., 2015; Power, 

2010). EO-based ES mapping has been reviewed by various authors (e.g. Andrew et al., 2014; 

Crossman et al., 2013). ES supply has been mapped at various scales (e.g. sub-national to global) 

using both direct and indirect techniques. Whether direct or indirect techniques should be used 

depends on the information needs and characteristics of the ES of interest (Andrew et al., 2014). EO-

based methods can improve ES supply estimates through their ability to depict subtle spatial 

variations in the plant functional traits and soil properties known to influence the supply of many 

services (Andrew et al., 2014).  
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It is worth noting that apart from microwave imagery, EO has limited capability for 

penetrating the vegetation canopy to extract useful information about any lower strata such as 

herbs or shrubs when the overstory is dense (Nagendra, 2001). Similarly, EO is incapable of providing 

direct information on below ground components of the ecosystems; these must be inferred from 

above ground data (Feng et al., 2010). EO-based assessments may therefore only provide a partial 

picture of diversity and soil-based ES, for example, restricting the potential to comprehensively 

assess ES provision. This restriction of EO data highlights the importance of creating an integrated 

framework of EO and in situ data collection, not only to provide data for training and validation of 

EO products, but also to provide information on the areas that cannot be adequately assessed using 

EO.   

2.5. Discussion  

When using satellite data there are a number of considerations to take into account, 

including data gaps and image frequency. The availability, or lack thereof, of cloud-free images at 

suitable timescales is a critical challenge for many EO-based applications. Research suggests revisit 

frequencies ranging from <1 day to exactly 8 days (depending on location and time of year) would be 

necessary to achieve a view at least 70% clear within 8 days (Whitcraft et al., 2015). Previously, such 

revisit times were only achievable using coarse resolution data, which restricted the ability to 

perform fine-scale assessments of agricultural intensity. However, the number of medium-high 

resolution satellites has increased in recent years, for example with the launch of those within the 

Copernicus Programme. Combining freely available data from these various systems increases the 

number of images available for each point on earth. For example, by combining Landsat 8 with 

Sentinel-2A/B data, one image should be available every 3 days on average (Li and Roy, 2017), 

increasing the likelihood of obtaining sufficient cloud-free images. The creation of a Harmonised 

Landsat and Sentinel-2 reflectance data set (Claverie et al., 2018) alongside the free availability of 

Sentinel-1 data (Torres et al., 2012), which is not affected by cloud cover, the launch of satellite 
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fleets (e.g. Planet Labs) and the increased use of UAVs are all helping to mitigate the impact of 

cloud-cover on EO-based applications.  

Various techniques also exist to deal with gaps and noise in the data. These techniques 

include pixel unmixing (Zhang et al., 2017), data fusion (Gevaert and García-Haro, 2015; Senf et al., 

2015; Wang and Atkinson, 2018), best-pixel selection (Griffiths et al., 2013; Hermosilla et al., 2018), 

data interpolation (Inglada et al., 2017; Vuolo et al., 2017), climatology fitting (Verger et al., 2013), 

temporal smoothing (Kandasamy et al., 2013; Shao et al., 2016; Tan et al., 2011) and temporal 

aggregation (Loveland et al., 2000). The introduction of computing platforms such as Google Earth 

Engine (Gorelick et al., 2017) allows these complex algorithms to be applied to large volumes of 

data, by providing access to greater computing power and satellite datasets on a global-scale 

(Carrasco et al., 2019). These platforms greatly reduce the time and cost associated with image 

processing, which increases the viability of such gap-filling techniques and facilitates development of 

new approaches for producing necessary cloud-free datasets. 

Another key issue is the development of universally applicable EO-based monitoring 

techniques. Methods, such as crop yield models, that rely on largely location- and sensor-specific 

empirical relationships to retrieve indicators are common within many EO-based applications. 

However, lack of historic and large-scale in situ data for all areas limits the potential for calibration 

and validation of such methods (Doraiswamy et al., 2005; Estel et al., 2016). Suitable validation and 

calibration data may exist, but availability to researchers may be restricted due to commercial 

confidentiality, among other factors. The frequent reliance on empirical relationships, and lack of in 

situ data for all locations, limits the transportability of these methods to different sensors and study 

areas (Andrew et al., 2014; Z. Li et al., 2014); development of more generalised models is required. 

Less empirical models still often have parameters that need calibrating, to enable them to be applied 

appropriately to new geographical areas, new crops, or new animal species. 
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The creation of generic, transferable and widely applicable models must consider a variety 

of factors including the scale and resolution over which specific relationships apply (Foody, 2004; 

Gillespie et al., 2008; Gustafson, 1998) and the variation in the relative dominance of different 

variables within space and time (A. K. Prasad et al., 2006). Additionally, the impact that landscape 

characteristics can have on the accuracy with which indicators can be retrieved needs to be 

considered. For example, the size, shape and orientation of objects, such as narrow rivers (Sulistioadi 

et al., 2015) and small habitat patches (Luoto et al., 2002), can limit their detectability. Underlying 

environmental conditions can also affect the accuracy with which variables such as crop residue 

(Pacheco and McNairn, 2010) and soil moisture (Lakhankar et al., 2009) can be retrieved. As such, 

comparison over diverse agricultural environments must be done with care, and with an 

understanding of the underlying differences in landscape characteristics.  

To create models that can be widely applied, either empirical models are required that are 

integrated with ground collection efforts (e.g. Boryan et al., 2011), or model-based methods that 

need no calibration to be applied to new areas must be developed. In practice, the solution is likely 

to involve a mixture of these two options.  

2.5.1 Opportunities for an EO-based SI Assessment System 

Despite the potential importance of SI for securing future food supplies, methods for 

assessing the success of SI attempts are currently lacking. Gaps in these assessments arise, in part, 

due to the reliance on data that typically lacks the temporal and spatial coverage and resolution 

necessary to make a reliable assessment of SI. EO provides a range of opportunities for the 

development of an operational SI monitoring system that can be applied from field-scale to global-

scale, at various temporal resolutions.  The global coverage and consistency (e.g. image resolution, 

data quality and processing standards) afforded by EO data facilitates multi-scale analysis and 

comparisons between countries with diverse farming practices and field data availability. 

Additionally, the ability to derive different indicators from the same EO data sources ensures 
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coherence between measures of sustainability and intensification; this facilitates easier, more 

reliable integration of indicators into an assessment framework. The availability of long-term data 

(30-40 years from Landsat data archive) and repeat measurements allows the establishment of a 

baseline against which long-term and short-term changes can be assessed. Combined with the 

increasing availability of free satellite data, these factors allow a more flexible, adaptable and cost-

effective approach to SI assessment to be developed. Furthermore, the ease, speed and efficiency 

with which assessments can be conducted is increased by the digital nature of EO data which allows, 

for example, simpler data input and processing. Recent advances in computer processing 

power/capability, such as cloud computing, further improve the situation, enhancing our ability to 

process and analyse large datasets. 

As this review demonstrates, the basic EO-based assessment techniques for indicators of 

environmental sustainability and agricultural intensity are already established. This means that 

future work can focus on amalgamating existing work and creating a framework to integrate 

relevant indicators. An important step in the development of a comprehensive EO-based assessment 

framework is the creation of a set “Essential Sustainable Intensification Variables” (ESIVs) to form 

the basis for a global monitoring program. Having a set of “essential variables” helps to prioritise 

efforts by outlining a minimum set of essential measurements (Pereira et al., 2013) required to 

capture major dimensions of agricultural and environmental change, allowing the sustainability of 

intensification to be assessed. Identifying the relevant variables to be included in this list will 

ultimately require the establishment of a clear selection framework to ensure all relevant variables 

are identified and their selection is justified (although the development of such a framework falls 

beyond the scope of this study). The development of this list should build on the selection 

frameworks created for the Essential Climate Variables (ECVs) and Essential Biodiversity Variables 

(EBVs) of the Global Framework for Climate Services (GCFS) and Group on Earth Observations 

Biodiversity Observation Network (GEO BON) respectively. In brief, variable selection will require an 

open, inter-disciplinary process, involving the engagement of scientific, policy and other 
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communities (Pereira et al., 2013). This will ensure it builds on existing activities such as the ECVs, 

EBVs and GEOGLAM. Variables should be identified based on key criteria such as relevance, 

feasibility, scalability, temporal sensitivity and cost effectiveness (Bojinski et al., 2014; Pereira et al., 

2013). As Pettorelli et al. (2016) highlight for the ECVs and EBVs, the identification of suitable ESIVs 

will be an evolving process. The list of indicators will need to be periodically updated as technology 

advances, and as sensor availability and observation priorities change. Table 2.3 provides an 

example list of possible “essential” EO-based indicators. This list is based on indicators already 

incorporated in the EBVs and ECVs, and previous SI frameworks including the Sustainable 

Intensification Assessment Framework (Musumba et al., 2017). As this review is focused on the role 

of EO within SI assessment, this list only includes possible indicators that could be derived using EO 

data. The final list of essential variables would need to include indicators derived from a variety of 

data sources to ensure key aspects of sustainable intensification can be monitored.   

Table 2.3: Examples of possible Essential Sustainable Intensification Variables (ESIV). *indicates variables which 

are already included within the list of EBVs. ˟ indicates variables which are already included within the list of 

ECVs. NB: the OneSoil data is not currently available for download, but it shows the potential for the creation of 

an operational global crop-type map. 

ESIV 
examples 

Relevance Existing Operational Products 
Ideal Product 
Coverage 

Agricultural intensity 

Crop type Essential product required to 
be able to accurately 
monitor/derive crop yield 
and area, but not an 
indicator in its own right.  

• OneSoil crop-type map 2016, 2017, 2018 
• Country-level products e.g. CEH Land 
Cover plus: Crops 2015 (partial coverage), 
2016, 2017, 2018 (GB) 

• Annually (possibly 
more often for multi-
cropping systems) 

Crop yield Needed to quantify 
agricultural intensity 

Currently no operational products exist • Annually 

Crop yield 
gap 

Needed to help identify 
areas that could be farmed 
more intensively  

Currently no operational products • Annually 

Cropping 
area 

Needed to quantify 
agricultural extent 

• OneSoil crop-type map 2016, 2017, 2018 
Crops are a subset of land cover maps: 
• Country-specific Land Cover maps e.g. 
CEH GB Land Cover Map 2015 30m 
• Pan-European: CORINE Land Cover 
minimum mapping unit 25ha 
• Global land cover map 30m (Chen et al., 
2015) 

• Annually 
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Table 2.3 continued 

ESIV 
examples 

Relevance Existing Operational Products 
Ideal Product 
Coverage 

Environmental sustainability 

NPP/GPP* Provides a measure of the 
health/degradation of the 
ecosystem; underpins all 
production-based ecosystem 
services. 

• NASA MODIS yearly 500m/1km 
2000 to present 
• Copernicus GDMP 10-day 1km 
1999 to present & 10-day 300m 
2014 to present 

• Patches of 
natural/semi-natural 
habitat within the 
farmed area 
• Annually 

Soil 
moisture ˟ 

Indicator of soil quality. Increased 
fertiliser use can increase water 
consumption and deplete soil 
moisture. A decline in soil moisture 
may be an indication of 
unsustainable intensification. 

• SMOS daily/3-day/10-
day/monthly 15/25km 2009 to 
present  
• Copernicus METOP/ASCAT daily 
0.01° 2007 to present 
• Copernicus Sentinel-1 daily 1km 
2015-2017 (Europe only) 

• Farmed area 
• Annually 

Soil erosion Removal of interstitial features 
(e.g. hedgerows) and increased 
runoff (due to soil compaction) 
increases soil erosion. An increase 
in soil erosion may be an indication 
of unsustainable intensification. 

Currently no operational products 
exist 

• Farmed area plus 
surrounding area 
• Annually 

Soil organic 
carbon ˟ 

Indicator of soil quality. Increased 
irrigation and soil erosion lead to a 
decline in organic matter content. 
A decrease in soil organic carbon 
may be an indication of 
unsustainable intensification.  

Currently no operational products 
exist 

• Farmed area 
• Annually 

Water 
clarity/ 
turbidity 

Increased agrochemical inputs and 
increased soil erosion reduce water 
quality. Lower clarity/higher 
turbidity may be an indication of 
unsustainable intensification.  

• Copernicus ENVISAT/MERIS 10-
day 300m/1km 2002 to 2012 
• Copernicus Sentinel-3/OLCI 10-
day 300m/1km 2017 to present 

• Nearby water 
bodies 
• Annually 

Landscape 
structure* 

Removal of interstitial features e.g. 
hedges and increased field sizes 
cause simplification of habitat 
structure and loss of ecosystem 
connectivity. Knock-on effect on 
species populations and diversity 
(e.g. birds). 

• Country-specific Land Cover 
maps e.g. CEH GB Land Cover 
Map 2015 30m 
• Pan-European: CORINE Land 
Cover Minimum mapping unit 
25ha 
• Global land cover map 30m 
(Chen et al., 2015) 

• Surrounding area 
• Annually 

Species 
richness/ 
diversity* 

Increase in agrochemical inputs, 
irrigation and landscape structure 
simplification alter species 
composition. A decrease in species 
richness and diversity may be an 
indication of unsustainable 
intensification. 

• European Atlas of Forest Tree 
Species 1km 

• Surrounding area 
• Annually 
• Flora and fauna 
species 
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Once a comprehensive list of ESIVs has been generated, careful consideration must be given 

to the selection of appropriate methods to assess each variable. This could be achieved by adopting 

an open process of algorithm inter-comparison and selection similar to that used by ESA in their 

Climate Change Initiative (Hollmann et al., 2013), 2013) and the Sen2-Agri project (Bontemps et al., 

2015). To allow reliable comparison of different algorithms and to ensure their relevance at local 

scales and widely varying agricultural systems at global scales, an open test dataset similar to that 

used in the Sen2-Agri project should be developed. This dataset was created through acquisition of 

satellite and in situ data from the same season over sites representative of global agricultural system 

diversity (Bontemps et al., 2015). Application of the potential algorithms to this data set ensured an 

objective and transparent algorithm selection method, which should be mirrored in the creation of 

the ESIV data products.  

 An important part of building the ESIV products will be a comprehensive assessment of the 

associated uncertainties and a clear communication of these uncertainties to the end-user. Kissling 

et al. (2018) set out a workflow of 11 steps used to operationalise the process of building EBV data 

products, including the quantification and communication of uncertainties in terms of data, model 

algorithms and parameters. Consideration must be given to uncertainties associated with the 

underlying raw data, from both satellite and in situ sources, and from processing methods (e.g. gap-

filling techniques) and models applied to this data. Kissling et al. (2018) highlight the need to 

develop high-throughput processing tools for quantifying uncertainties; the same will be true for the 

ESIVs.  

 Another key element will be the development of a framework through which the ESIVs can 

be utilised to provide an assessment of the sustainability of agricultural intensification. Previous 

assessment frameworks have utilised indicators in a number of ways: (i) individually, expressed in 

units, (ii) as part of a set, or (iii) in a composite index, whereby scores of individual indicators are 

combined into a single , dimensionless number, or sustainability score (Dantsis et al., 2010; Farrell 
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and Hart, 1998; Mitchell et al., 1995; Van Passel and Meul, 2012). An example of a widely used 

composite indicator for sustainability assessment is the Ecological Footprint which combines various 

indicator footprints including carbon, forest, crop land, & built up land footprint to provide a 

measurement of human demand for land and water areas (Toderoiu, 2010 in Čuček et al., 2012; Galli 

et al., 2012). Some studies choose not to aggregate their indicators, adopting instead the use of 

sustainability polygons, webs and radars, which removes the need for aggregation across different 

scales by displaying scores for different index components simultaneously (Rigby et al., 2001). The 

development of a suitable assessment framework has been identified as one of the key strands of SI 

research (Siebrecht, 2020) and is currently being actively explored (see recent reviews by Cassman 

and Grassini, 2020; Siebrecht, 2020). However, at present there is little investigation into the 

incorporation of EO data into such frameworks. The creation of an EO-based framework, and a 

decision about the best way to utilise the ESIVs within this, will require expert knowledge, 

interdisciplinary/international collaboration and consultation with researchers and intended users.  

The success of the proposed EO-based assessment framework will rely heavily on the 

development of an integrated system of routine collection and provision of in situ data. In situ data 

is required to perform a number of roles including calibration and validation of EO-derived products 

and assessment of elements of the environment that cannot efficiently/effectively be monitored 

using EO data, for example below-ground properties and processes. A comprehensive assessment of 

SI will also require economic and social data that cannot be provided by EO.  

An EO-based assessment framework could be implemented at different scales and at 

different levels of detail. For example at country-level, assessments are more likely to have access to 

environmental and farming data sets that would enable more detailed assessments of 

environmental sustainability. National-scale assessments are also more likely to have access to 

additional economic and social data that would enable more comprehensive SI assessments to be 

conducted. However, globally less detailed in situ data is likely to be available, although programs 
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such as GEOSS and GEOGLAM have shown that good quality reference data sets can be collected for 

some areas to help the development of more global solutions.  The development of detailed 

nationally-based methods, and less detailed globally-based methods, is likely to occur in different 

ways. A globally-based system would develop most sensibly through integration with existing global 

initiatives such as GEOSS, which is already generating products capable of agricultural and 

environmental monitoring. Whereas national-scale solutions are likely to develop from existing 

country-level environmental and agricultural monitoring schemes. However, for both the global and 

national-scale, the more integrated the EO and other strands of environmental monitoring are the 

better system will be. 

2.6. Conclusion 

One element of meeting the future food demands of a growing population, with shifting 

food consumption patterns, will be the intensification of agricultural production. To ensure long 

term environmental degradation is avoided, any increases in food production must be undertaken in 

a sustainable manner. The lack of any prescribed methods of sustainable intensification mean that 

to successfully achieve this goal a comprehensive method of assessing the sustainability of 

intensification endeavours must be developed. Various frameworks exist at present; however, these 

commonly rely on traditional data sources that do not provide adequate coverage, resolution, or 

frequency of data to generate reliable results for all agricultural systems. The potential for an EO-

based assessment system is clear, with an extensive body of research into EO methods for 

monitoring earth surface properties and their spatial and temporal variation.  

The element that is currently missing is a system for combining these indicators to provide a 

comprehensive assessment of the sustainability of agricultural intensification. Such a system could 

build on the approaches used to develop the EBVs and ECVs and global agricultural monitoring 

schemes such as GEOGLAM. Determining the optimum format for this system will require a multi-
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disciplinary, multi-organisation working group involving farmers, researchers, government bodies 

and other stakeholders.  

Irrespective of the exact nature of the final system, EO offers the opportunity to obtain more 

spatially and temporally representative data, over scales and resolutions unobtainable with 

conventional data collection methods. An EO-based system, however, does not exclude the need for 

in situ data, rather it will supplement current systems facilitating more efficient and consistent multi-

scale assessments over a range of temporal resolutions at a lower cost. Integration of EO and in situ 

data on national and global scales, will be provide a step change in our ability to provide regular, 

consistent and timely assessments. This is essential if we are to meet future production demands 

without causing significant, irreparable damage to the environment. 
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Abstract 

Accurate crop yield estimates are important for governments, farmers, scientists and 

agribusiness. This paper provides a novel demonstration of the use of freely available Sentinel-2 data 

to estimate within-field wheat yield variability in a single year. The impact of data resolution and 

availability on yield estimation is explored using different combinations of input data. This was 

achieved by combining Sentinel-2 with environmental data (e.g. meteorological, topographical, soil 

moisture) for different periods throughout the growing season. Yield was estimated using Random 

Forest (RF) regression models. They were trained and validated using a dataset containing over 8000 

points collected by combine harvester yield monitors from 39 wheat fields in the UK. The results 

demonstrate that it is possible to produce accurate maps of within-field yield variation at 10m 

resolution using Sentinel-2 data (RMSE 0.66 tonnes/ha). When combined with environmental data 

further improvements in accuracy can be obtained (RMSE 0.61 tonnes/ha). We demonstrate that 

with knowledge of crop-type distribution it is possible to use these models, trained with data from a 

few fields, to estimate within-field yield variability on a landscape scale. Applying this method gives 

us a range of crop yield across the landscape of 4.09 to 12.22 tonnes/ha, with a total crop 

production of approx. 289000 tonnes.  
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3.1 Introduction 

Crop yield is a key agricultural variable. Accurate crop yield estimates serve a range of 

important purposes helping to make agriculture more productive and more resilient. Reliable yield 

estimates can be used to identify yield-limiting factors to guide development of site-specific 

management strategies (Diker et al., 2004; Jin et al., 2017b). Building a time-series of yield estimates 

allows producers and consultants to understand how management strategies affect crop 

productivity, guiding future practices (Birrell et al., 1996; Grisso et al., 2002; Lobell, 2013). Accurate 

estimates also provide valuable information about mean yields and variability of yields at the field-

scale, which are required for insurance and land market decisions (Lobell et al., 2015). Despite its 

importance, crop yield information is currently patchy within and between countries, in part due to 

commercial sensitivities. Various organisations are rapidly addressing this issue for present day yield 

estimates. Activities such as GEOGLAM (GEO, 2018; Whitcraft et al., 2015) are assessing crop 

condition on a country/global-scale, while commercial companies are offering predictive services at 

a field/farm-scale. However, as these organisations typically focus on assessing current conditions 

rather than retrospective estimation, there is currently no facility to build up a long-term time series 

of field-scale crop yields. There are also a lack of estimates of within-field yield variability at the 

landscape-scale, which is of most concern to scientists assessing the sustainability of agriculture and 

its impact on the environment. 

Agricultural monitoring has been a key focus of Earth Observation (EO) activity since the first 

terrestrial satellites were launched (Anuta and MacDonald, 1971; Draeger and Benson, 1972; Horton 

and Heilman, 1973). However, the potential of EO has been limited by image costs and limited 

repeat frequency, which combined with cloud means that key phases in crop growth are missed. 

This is all changing with the opening of the Landsat archive (Wulder et al., 2012), the launch of the 

Sentinel satellites (Drusch et al., 2012; Torres et al., 2012) and readily accessible cloud-computing 

platforms like Google Earth Engine (Gorelick et al., 2017). EO systems are increasingly able to 

support the operational production of data products, however, it is still important to choose the 
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most appropriate data set and method for mapping a particular variable. This is particularly true for 

agricultural monitoring, where key validation data, specifically crop yield, is held by individual 

farmers. Such data is often deemed commercially sensitive, making it difficult to collate large data 

sets to enable development and validation of EO-based methods. The EO work to date has therefore 

been constrained by the type and scale of validation data available.  

Various studies have explored the possibility of using EO data to map yield at the field-level, 

with particular focus on yield variability within smallholdings (Burke and Lobell, 2017; Jain et al., 

2016; Jin et al., 2017a). While results of these studies have been promising, many of them rely on 

commercial EO data (Burke and Lobell, 2017) or a combination of commercial and freely available EO 

data (Jin et al., 2017a). Costs of very high resolution (<5m) commercial satellite data are decreasing, 

particularly with the increase in the number of “cubesat” companies (Burke and Lobell, 2017). 

However, the fact that there is still a cost associated with obtaining the data means that it will not be 

universally accessible, particularly in developing countries. If similar accuracies can be achieved using 

slightly lower resolution freely available data, as provided by Sentinel-2, then this provides a more 

practical option for yield mapping. Previous studies have highlighted the potential of Sentinel-2 to 

play a key role in estimating crop yield (Battude et al., 2016; Lambert et al., 2017; Skakun et al., 

2017), but so far the potential for mapping within-field variability in yield has yet to be fully 

explored.  

Lack of high resolution yield data for training and validation is a common problem for EO-

based studies seeking to map yield at high resolution. Yield data are often collected in the field 

through crop cuts on sample plots and farm surveys. Lack of accurate location data and concerns 

over yield data accuracy mean this data is typically aggregated to the field level (Burke and Lobell, 

2017; Lambert et al., 2017) or to the district level (Jin et al., 2017a). Various studies have 

demonstrated the relatively high yield estimation accuracy obtainable using high resolution satellite 

images for aggregated spatial units, and high resolution maps have been produced (e.g. 1m: Burke 
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and Lobell, 2017). However, due to the common practice of aggregating crop yield data past studies 

have typically been unable to verify the accuracy of within-field variability shown.  

In recent years, there have been a number of innovations in farming technology to allow 

farmers to observe, measure and respond to spatial and temporal variation in crops. Such “precision 

farming” approaches aim to ensure accurate targeting of agricultural interventions and reduce waste 

and detrimental impacts. A key component of precision farming has been the incorporation of high-

accuracy GPS technology into farm machinery, including combine harvesters. Coupled with on-board 

yield monitors, this offers the potential for accurate, fine-resolution mapping of within-field 

variation in crop yields. High resolution data collected by yield monitors on-board combine 

harvesters has been used to assess the  capability of EO to estimate crop yield, with positive results 

(Kayad et al., 2016; Yang et al., 2009). So far, however, high resolution yield data has not been 

combined with Sentinel-2 data to estimate yield, beyond the initial exploration of the correlation 

between Sentinel-2 NDVI and spring barley yield data by Jurecka et al. (2016). As such, the present 

study seeks to explore the ability of Sentinel-2 data to estimate within-field yield variability using 

combine harvester data for training and validation.  

 In this study, the capability of Sentinel-2 to estimate within-field wheat yield variability was 

assessed. The aim was to produce an empirical model calibrated with combine harvester data to 

estimate yield. A method was developed that can be applied for a given year at high spatial 

resolution at the landscape scale, when suitable training data are available. Random Forest (RF) 

models were trained and validated using data from yield monitors on-board combine harvesters. 

The combine harvester dataset contained over 8000 points collected in 39 wheat fields within the 

UK. The analysis was structured around 5 key questions designed to explore how different 

combinations of data, in terms of both type and temporal coverage, impact the accuracy of wheat 

yield estimation. 
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 Question 1: How does Sentinel-2 spatial resolution affect the accuracy of yield estimation?  

 Question 2: Does calculating separate vegetation indices (VIs) contribute any extra 

information to the estimation model? 

 Question 3: How do different combinations of Sentinel-2 data and environmental data affect 

estimation accuracy? 

 Question 4: Which single-date Sentinel-2 image provides the most accurate estimation? 

 Question 5: How does estimation accuracy vary with accumulation of data throughout the 

growing season for Sentinel-2 data only (Qu 5a), Sentinel-2 and environmental data 

combined (Qu 5b), and environmental data only (Qu 5c)? 

 

The paper concludes by applying the optimal RF model to estimate within-field yield 

variability on a landscape scale.  

3.2 Field Sites 

This study was conducted using data from 39 conventionally farmed wheat fields in the UK. 

The data were spread over two different regions, with 28 fields in Lincolnshire and 11 fields in 

Oxfordshire covering a total of 438.2ha and 224.2ha respectively (figure 3.1). Lincolnshire is 

relatively flat and, at 75% arable, is the most intensively farmed county in the UK, whereas 

Oxfordshire is less flat, with more of a mix of arable (52%) and grassland (32%) (Rowland et al., 

2017a).  The average annual rainfall in Lincolnshire, from 1981-2010, was 614mm and for 

Oxfordshire 659mm. Annual average temperatures ranged from 6.3 to 13.5°C and 6.9 to 14.6°C for 

Lincolnshire and Oxfordshire respectively  (Met Office, 2018). In 2016 the average wheat yield at the 

Lincolnshire sites was 10.27 tonnes/ha, and at the Oxfordshire sites 9.79 tonnes/ha (based on 

cleaned and interpolated combine harvester yield data at 10m resolution).  
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Figure 3.1: Location of study sites. 

 

3.3 Data and Methods 

Figure 3.2 provides an overview of the method used in this study, outlining how the combine 

harvester data, satellite data and environmental data were processed and combined to estimate 

yield. The specific details of the data and data processing techniques are outlined in sections 3.3.1-

3.3.3, and the analysis techniques are outlined in sections 3.3.4-3.3.6. 
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Figure 3.2: Overview of the method used to estimate yield at high resolution on a landscape scale. 

 

3.3.1 Wheat Yield Data  

High resolution wheat yield data was downloaded from CLAAS telematics, a web-based 

vehicle fleet management data analysis system (CLAAS, 2018). The wheat yield data were acquired 

during the 2016 harvest period between 6th August and 9th September using combine harvesters 

equipped with a GPS and optical yield monitor. Wheat was chosen as the crop of interest for this 

study due to its high prevalence within the available dataset. In the UK, winter wheat crops are 

typically planted in October and harvested in August (AHDB, 2018). The raw data were cleaned to 

remove inaccurate grain yield measurements arising, for example, from the harvesting dynamics of 

the combine harvester and the accuracy of positioning information (AHDB, 2016; Lyle et al., 2014). 
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Simple cleaning steps included removing data points for which no latitude/longitude were recorded 

and points where the yield monitor or front attachment were not switched on. Additionally, a check 

was applied to ensure each field was harvested by a single combine harvester, as different combines 

will have differently calibrated yield monitors. A series of threshold-based cleaning steps were then 

applied to remove values recorded while the combine harvester was turning (turning angle > 0.6 

radians for time step < 30s), accelerating or decelerating (accel. > 0.05 ms-2), or when the speed fell 

outside the optimum limits to accurately measure the yield (ground speed <2 kmh-1 or >8 kmh-1). 

Finally, data were cleaned on a per field basis removing yield values which fell outside the global 

mean ± 2.5 sd or the local mean ± 2.5 sd (based on the closest 3 points). A summary of the criteria 

for data cleaning can be found in figure 3.3. 

 

Figure 3.3: Summary of the criteria for data cleaning.  

 

To avoid any mixed pixels in the satellite data, a 20m buffer around the inward edge of the 

field was applied to the cleaned data. Further to this, additional areas were manually masked out to 

remove large gaps arising in the dataset as a result of the data collection and cleaning process. These 

gaps typically occurred at the edge of the fields and in areas where the combine harvester turned. 

Figure 3.4 shows an example of the data gaps in one field and the stages in the buffering process 

used to remove them. Post-buffering the data covered an area of 252.2ha (c.f. 438.2ha) in 

Lincolnshire and 100.4ha (cf. 224.2ha) in Oxfordshire.  
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Figure 3.4: Example yield data points for one field showing a) gaps in the data arising from the data 
collection and cleaning process and b-c) the stages in the buffering process used to remove these 

gaps. 

 

The cleaned and buffered yield data were resampled to resolutions of 10m and 20m using 

an Inverse Distance Weighting function. Yield was mapped at these resolutions to align with the 

Sentinel-2 data used within this study, and to allow an assessment of the optimum resolution for 

yield estimation to be made. The appropriateness of mapping at these resolutions was supported by 

the relative uniformity of points (figure 3.5) and the mean nearest neighbour distance of 11m for the 

yield points. Additionally, when considering yield data, a major factor limiting the spatial resolution 

is the width of the cutting head on the combine harvester, which will determine the minimum 

acceptable resolution. The cutting widths for the combine harvesters used in this study ranged from 

4.95m to 12.27m, thus providing further justification for mapping yield at 10m and 20m resolution. 

Sample points were generated in the centre of each interpolated raster cell. To reduce the impact of 

auto-correlation between pixels only alternate pixels were used, producing a sample dataset 

containing 8794 values. The sample data was then randomly split into training (70%) and validation 

(30%) datasets. 
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Figure 3.5: Example of the distribution of yield data points relative to a) 10m and b) 20m resolution 
interpolated yield data. 

 

3.3.2 Sentinel-2 Data 

3.3.2.1 Sentinel-2 Image Processing  

Predominantly cloud-free Sentinel-2 images (Claverie et al., 2018; Drusch et al., 2012) for 

tiles 30UXC and 30UXD were downloaded from the Copernicus Open Access Hub (ESA, 2018); only 

bands at 10 or 20m resolution were used in this study. Details of the bands used within this study 

can be found in table 3.1. Relatively cloud-free images were available over the growing season for 

the 29th December 2015, 20th April 2016, 6th June 2016 and 19th July 2016 (table 3.2); figure A3 in 

Appendix 3 shows where these images fit in relation to the growth stages of wheat. The four suitable 

images available from Sentinel-2 compare favourably to Landsat-8, which would have provided only 

one suitable cloud-free image for the 2016 growing season. All bands were atmospherically 

corrected using the Sen2Cor processor and bands at 20m resolution were rescaled to 10m before 

the bands were stacked. Cloud was then manually masked out of the April and December images, 

because the current Sentinel-2 cloud masking is not completely accurate (Coluzzi et al., 2018).   
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Table 3.1: Central wavelength and spatial resolution for the Sentinel-2 bands used in this study 

(Drusch et al., 2012). 

Spectral Band Central Wavelength (nm) Spatial Resolution (m) 

Band 2 Blue 490 10 
Band 3 Green 560 10 
Band 4 Red 665 10 
Band 5 Vegetation red edge 705 20 
Band 6 Vegetation red edge 740 20 
Band 7 Vegetation red edge 783 20 
Band 8 NIR 842 10 
Band 8a Narrow NIR 865 20 
Band 11 SWIR 1610 20 
Band 12 SWIR 2190 20 

 

 

Table 3.2: Explanatory variables used in Random Forest regression analysis.  

Variable type Dataset Pixel size Temporal coverage 

Sentinel-2 Sentinel-2 Level 1C bands: 
2, 3, 4, 5*, 6*, 7*, 8, 8a*, 11*, 12* 

10m 
(*20m rescaled to 
10m) 

29th Dec 2015     
20th April 2016 
6th June 2016      
19th July 2016 Vegetation indices GCVI, GNDVI, NDVI, SR and 

WDRVI calculated from Sentinel-2 
data 

10m 

Environmental Precipitation UKCP09 gridded observation 
dataset – Total precipitation 
amount over the calendar month 
(mm) 

5km Dec 2015 – July 
2016  

Temperature UKCP09 gridded observation 
dataset – Average of daily mean 
air temperature over the calendar 
month (°C) 

5km 

SWI Monthly average Soil Water Index 
calculated using SCAT-SAR SWI 
T01 data 

500m 

DTM NEXTMap Digital Terrain Model  10m Created using data 
collected in 2002 & 
2003 

Aspect Calculated using the NEXTMap 
DTM  

10m 

Slope 10m 

 

 

3.3.2.2 Vegetation Indices Calculation  

Five vegetation indices (VIs) that have been used in previous yield estimation studies (e.g. Jin 

et al., 2017a; Shanahan et al., 2001; Yang et al., 2009, 2000; Yang and Everitt, 2002) were calculated 
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from the Sentinel-2 imagery, specifically GCVI, GNDVI, NDVI, SR and WDRVI (see table 3.3 for 

equations).   

 

Table 3.3: Vegetation indices calculated using Sentinel-2 imagery, where R is Red (B4), G is green (B3) 

and NIR is near-infrared (B8a) 

VI Abbreviation Equation Reference 

Green Chlorophyll 
Vegetation Index 

GCVI 
𝐺𝐶𝑉𝐼 = (

𝑁𝐼𝑅

𝐺
) − 1 

Gitelson et al., 2003 

Green Normalised 
Difference Vegetation 
Index 

GNDVI 
𝐺𝑁𝐷𝑉𝐼 =  

𝑁𝐼𝑅 − 𝐺

𝑁𝐼𝑅 + 𝐺
 

Gitelson et al., 1996 

Normalised Difference 
Vegetation Index 

NDVI 
𝑁𝐷𝑉𝐼 =  

𝑁𝐼𝑅 − 𝑅

𝑁𝐼𝑅 + 𝑅
 

Rouse et al., 1973 
 

Simple Ratio SR 
𝑆𝑅 =

𝑁𝐼𝑅

𝑅
 

Jordan, 1969 
 

Wide Dynamic Range 
Vegetation Index 

WDRVI 
𝑊𝐷𝑅𝑉𝐼 =

0.2 ∗ 𝑁𝐼𝑅 − 𝑅

0.2 ∗ 𝑁𝐼𝑅 + 𝑅
 

Gitelson, 2004 
 

    

 

3.3.3 Environmental Data 

3.3.3.1 Precipitation and Temperature  

Monthly 5km gridded UKCP09 data sets of total rainfall (mm) and mean air temperature (°C) 

were downloaded from the UK Met Office (Met Office, 2017). Monthly data was downloaded for 

December 2015 to July 2016 to match the period covered by the Sentinel-2 images (table 3.2). 5km 

is coarse and ideally higher resolution data would have been utilised. Unfortunately such data were 

not available for the study sites at the required dates. However, given the spatial distribution of the 

fields across the study areas of Lincolnshire and Oxfordshire data from 54 of the 5km squares was 

used. This distribution allowed spatial variation in precipitation and temperature across the study 

area to be detected despite the coarse resolution of the data.  

3.3.3.2 Soil Water Index 

The Soil Water Index (SWI), first proposed by Wagner et al. (1999), is an indicator of the soil 

moisture profile. SWI values for December 2015 to July 2016 were obtained from the SCAT-SAR SWI 
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T01 dataset (Scatterometer – Synthetic-Aperture-Radar Soil Water Index) created by the TU Wien 

Department of Geodesy and Geoinformation (table 3.2). This data is derived from radar data 

observed by the MetOp-A/B ASCAT and Sentinel-1 SAR satellite sensors. SWI images have a pixel 

spacing of 500m which correspond to a resolution of 1km. Monthly mean values were calculated 

from the SWI giving a percentage ranging from completely dry soil (0%) to completely saturated soil 

(100%).  

3.3.3.3 Topographic Variables 

 A 10m resolution digital terrain model (DTM) was obtained from NEXTMap Britain (table 

3.2). The DTM was created by Intermap Technologies Inc. based on airborne radar data collected 

during 2002 and 2003 (Intermap Technologies, 2009). This data was used to calculate aspect and 

slope variables at 10m resolution.  

3.3.4 Random Forest Regression  

Random Forest was trained and applied to estimate wheat yields over the satellite image 

extent. Random Forest (RF; Breiman, 2001) is a machine learning algorithm that can be used to 

estimate a continuous response variable using regression analysis. The RF algorithm first creates a 

pre-defined number of new training sets with random sampling and then builds a different tree for 

each of these bootstrapped datasets. In each tree, a random subset of explanatory variables is used 

to recursively split the data at each node into more homogenous units (Breiman, 2001; Everingham 

et al., 2016; A. M. Prasad et al., 2006). The trees are fully grown and the mean fitted response from 

all the individual trees provides the estimated value of a continuous response (Everingham et al., 

2016). Further details on Random Forest and its implementation can be found in Appendix 2. 

Previous studies have used RF to estimate yields for a variety of crops including sugarcane 

(Everingham et al., 2016), corn (Kim and Lee, 2016), wheat, maize and potato tuber (Jeong et al., 

2016).  
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In this study RF analysis was carried out using a modified version of the 

“randomForestPercentCover” script produced by Horning (2014), which uses the R “randomForest” 

package developed by Liaw and Wiener (2002). The original script was designed to explore 

continuous vegetation cover, so modification was required to provide mean yield per pixel as 

opposed to percentage vegetation cover. The default settings of the randomForest package were 

used: one third of all available explanatory variables were used to split the data at each node and 

the number of trees was 500 (Liaw and Wiener, 2002).  

The RF model was trained to estimate crop yield using the variables outlined in table 3.2 as 

explanatory variables. The impact of different data combinations and different temporal coverages 

on estimation accuracy were explored using the layer combinations shown in table 3.4.  
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Table 3.4: Data combinations tested in Random Forest analysis. All Sentinel-2 data is at 10m 

resolution (except for the S2_20 combination). All environmental data were resampled to 10m. For 

individual layer details see table 3.2.  

Combination Data layers 

Question 1 

S2 Sentinel-2 data 
S2_20 Sentinel-2 data resampled to 20m 

Question 2 

S2 Sentinel-2 
S2_VI Sentinel-2, VIs 
VI VIs 

Question 3 

S2 Sentinel-2 
S2_Met Sentinel-2, Precipitation, Temperature  
S2_SWI Sentinel-2, SWI  
S2_Topo Sentinel-2, DTM, Aspect, Slope  
S2_Env Sentinel-2, Precipitation, Temperature, SWI, DTM, Aspect, Slope 

Question 4 

D Sentinel-2 data December only  
A Sentinel-2 data April only 
Jn Sentinel-2 data June only 
J Sentinel-2 data July only 

Question 5a 

D Sentinel-2 data December only 
DA Sentinel-2 data December and April 
DAJ Sentinel-2 data December, April and June 
DAJJ (S2) Sentinel-2 data December, April, June and July 

Question 5b 

D-S2_Env Sentinel-2 and Environmental data December only 
DA-S2_Env Sentinel-2 data December and April 

Environmental data up to end of April 
DAJ-S2_Env Sentinel-2 data December, April and June 

Environmental data up to end of June 
DAJJ-S2_Env 
(S2_Env) 

Sentinel-2 data December, April, June and July 
Environmental data up to end of July 

Question 5c 

D-Env Environmental data December only 
DA-Env Environmental data up to end of April 
DAJ-Env Environmental data up to end of June 
DAJJ-Env Environmental data up to end of July 
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3.3.5 Accuracy Assessment  

The performance of the models built from each layer combination were compared using the 

coefficient of determination (R2) and the root mean squared error (RMSE, eq. 6). 

𝑅𝑀𝑆𝐸 =  √∑ (𝐸𝑖−𝑂𝑖)2𝑁
𝑖=1

𝑛
   [6] 

Where O represents the observations in the test data sets, E the estimated yield, and n is the 

number of samples. These accuracy measures (RMSE & R2) were calculated using two different 

datasets: (i) ten-fold cross-validation (using the training data) and (ii) an independent validation 

dataset not used to train the RF models. In 10-fold cross-validation, the data is divided into 10 nearly 

equally sized subsets. Ten iterations of training and validation are performed such that within each 

iteration a different subset of the data is withheld for validation, while the remaining 9 subsets are 

used to train the model. The RMSE and R2 values for each iteration are then averaged to provide an 

overall estimate of model accuracy (Refaeilzadeh et al., 2009). The standard deviation in accuracy 

measures over the ten iterations were used to produce error bars to aid comparison of models. The 

accuracy measures were calculated for the cross-validation and independent validation datasets to 

ensure that the models were not overfitting the training data. Model accuracy was considered to be 

dependably different if accuracy error bars did not overlap.  

3.3.6 Establishing a Baseline 

 To set this study within the wider context of yield estimation methodologies, a baseline was 

established against which to compare the models created. As yield has often been estimated using 

simple (linear) regression applied to a variety of VIs, this method was used to provide the baseline. 

Linear and Random Forest (RF) regression were applied to a variety of single-date VIs derived from 

the available Sentinel-2 imagery. As well as using single-date VIs, previous studies have also used 

multi-date VI data accumulated throughout the growing season. The variation in accuracy with 

accumulation of VI data was therefore assessed, using RF regression and the NDVI as an example.  
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3.4 Results 

3.4.1 Baseline Data 

From the baseline data analysis, linear regression produced RMSE values between 1.68 to 

2.00 tonnes/ha (R2 0.01 to 0.29), while RMSE values from RF ranged from 1.54 and 2.01 tonnes/ha 

(R2 0.12 to 0.44) (table 3.5). Of the combinations of month and VI assessed the NDVI and WDRVI for 

July offered the highest accuracy (RMSE 1.54 tonnes/ha). Compared to this baseline, all further 

models created in this study displayed improved yield estimation accuracy (table 3.7; figure 3.6). The 

baseline results also suggest that the accuracy of yield estimation improves throughout the growing 

season, with reductions in RMSE as NDVI data accumulates from December to July (table 3.6).  

 

Table 3.5: RMSE and R-squared values calculated from the validation dataset for linear and Random 

Forest regressions using vegetation indices calculated for each month. 

Month VI 

Linear Regression Random Forest Regression 

RMSE  RSQ  RMSE  RSQ  
December GCVI 1.86 0.12 1.87 0.20 
 GNDVI 1.87 0.12 1.90 0.19 
 NDVI 1.87 0.12 1.87 0.20 
 SR 1.82 0.16 1.85 0.21 
 WDRVI 1.84 0.14 1.86 0.21 

April GCVI 2.00 0.01 1.93 0.18 
 GNDVI 1.99 0.02 1.90 0.19 
 NDVI 1.97 0.04 2.01 0.12 
 SR 1.99 0.03 2.01 0.12 
 WDRVI 1.98 0.03 2.01 0.13 

June GCVI 1.68 0.28 1.82 0.24 
 GNDVI 1.70 0.27 1.79 0.25 
 NDVI 1.79 0.19 1.91 0.15 
 SR 1.78 0.20 1.98 0.13 
 WDRVI 1.79 0.19 1.96 0.13 

July GCVI 1.74 0.25 1.59 0.41 
 GNDVI 1.70 0.28 1.59 0.41 
 NDVI 1.69 0.29 1.54 0.44 
 SR 1.78 0.22 1.55 0.44 
 WDRVI 1.71 0.28 1.54 0.44 
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Table 3.6: RMSE and R-squared values calculated from the validation dataset for Random 
Forest regressions using NDVI data accumulated over the growing season. 

NDVI  RMSE RSQ 

December 
 

1.86 0.23 

December + April 
 

1.37 0.54 

December + April + June 
 

1.24 0.62 

December + April + June + July 0.96 0.77 

 

3.4.2 Random Forest Model Comparison 

Validation of the RF models was conducted in two ways, using the 10-fold cross-validation 

from RF (using the training data) and also in a separate validation using a small data set that was not 

used for training. In general, the validation RMSEs fall within the error bars for the training RMSEs 

(table 3.7; figure 3.6). This suggests the accuracy reported using the training data is relatively reliable 

and RF is not overfitting the data. Where this is not the case (S2_20, S2_SWI, DA-Env, DAJ-Env), the 

validation RMSE is only 0.01 tonnes/ha outside the error bar, suggesting only minimal discrepancy. 

This difference may be due to the relatively small size of the validation dataset. 
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  Table 3.7: Results of Random Forest analysis.  

Combination RMSE (training 
data – 10-fold 
cross 
validation) 

RMSE 
(validation 
data) 

R2 (training 
data – 10-fold 
cross 
validation ) 

R2 
(validation 
data) 

S2 (DAJJ) 0.64 0.66 0.90 0.89 

S2_20 0.78 0.70 0.85 0.88 

S2_VI 0.64 0.66 0.90 0.89 

VI 0.88 0.87 0.81 0.81 

S2_Met 0.63 0.65 0.90 0.89 

S2_SWI 0.58 0.62 0.91 0.91 

S2_Topo 0.60 0.63 0.91 0.90 

(DAJJ-) S2_Env 0.59 0.61 0.92 0.91 

D 1.01 1.01 0.74 0.74 

A 0.94 0.96 0.78 0.77 

Jn 0.88 0.88 0.80 0.81 

J 0.89 0.90 0.80 0.80 

DA 0.78 0.78 0.85 0.85 

DAJ 0.70 0.69 0.88 0.88 

D-S2_Env 0.64 0.67 0.89 0.89 

DA-S2_Env 0.60 0.63 0.91 0.90 

DAJ-S2_Env 0.60 0.62 0.91 0.91 

D-Env 0.69 0.71 0.88 0.87 

DA-Env 0.66 0.69 0.89 0.88 

DAJ-Env 0.65 0.69 0.89 0.88 

DAJJ-Env 0.67 0.69 0.89 0.88 
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Figure 3.6: Ten-fold RMSE values from Random Forest analysis calculated using the training dataset 

and RMSE values from the validation dataset. Error bars produced using the standard deviation in 

ten-fold RMSE iterations.  Specific data values can be found in table 3.7. For question 5, S2 is the 

Sentinel-2 only data, S2_Env is the Sentinel-2 and environmental datasets, whilst Env is just the 

environmental data sets (see table 3.4 for more details).  

 

 

 

This study centred on 5 key questions designed to investigate how inclusion of different 

datasets affects the accuracy of yield estimation. The results of the RF analysis are outlined in the 

following sections.   
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Question 1: How does resampling the spatial resolution of Sentinel-2 data affect the accuracy of 

yield estimation? 

As Sentinel-2 has bands with differing resolutions (10m, 20m), the data will typically be 

resampled to either 10m or 20m for analysis. Comparison of RF using 10m (S2) and 20m resolution 

(S2_20) Sentinel-2 data demonstrates that yield estimation is more accurate for the 10m model 

(figure 3.6).  

 

Question 2: Does calculating separate VIs contribute any extra information to the estimation model? 

The RMSE is very similar between the S2 and S2_VI models, although the uncertainty 

increases for S2_VI, while using the VI data on its own produces lower accuracy (figure 3.6). This 

shows that adding VIs to the basic Sentinel-2 data does not improve the accuracy of yield estimation.  

 

Question 3: How do different combinations of Sentinel-2 data and environmental data affect 

estimation accuracy? 

The model results demonstrate that yield estimation can be improved by the introduction of 

environmental data to the Sentinel-2-based RF model. However, the results differ depending on the 

type of data added, i.e. meteorological, topographical, soil moisture or a combination of all three. 

Compared to the S2 combination, S2_SWI and S2_Env produce higher accuracy estimations, while 

S2_Met and S2_Topo do not offer any definite improvement (figure 3.6). This suggests that adding 

either soil moisture data or a combination of all available environmental data to Sentinel-2 data can 

improve yield estimations. 
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Question 4: Which single-date Sentinel-2 image provides the most accurate estimation? 

The availability of spectral data varies between years and locations. In places particularly 

prone to cloud cover, such as the UK, only 1 or 2 cloud-free images may be available over the 

growing season. How the accuracy of yield estimation from single-date images varies throughout the 

year is therefore an important question. Comparison of the available Sentinel-2 images 

demonstrates that estimation accuracy increases substantially from December to June (figure 3.6). 

From June onwards however there is no clear difference in accuracy.  

 

Question 5: How does estimation accuracy vary with accumulation of data throughout the growing 

season for Sentinel-2 data only (Qu 5a), Sentinel-2 and environmental data combined 

(Qu 5b), and environmental data only (Qu 5c)? 

5a: Sentinel-2 data 

The accumulation of Sentinel-2 data over the year improves estimation accuracy throughout 

the growing season. Clear decreases in RMSE are observed as successive Sentinel-2 images are 

added to the estimation model (figure 3.6). The biggest improvement occurs from December to 

April. 

 5b: Sentinel-2 plus environmental data 

The addition of environmental data to Sentinel-2 data improves estimation accuracy across 

all date combinations compared to the Sentinel-2 only combinations (Qu 5a) (figure 3.6). Combining 

Sentinel-2 data and environmental data from December alone (D-S2_Env) provides similar accuracy 

to the full Sentinel-2 data set combined (DAJJ S2). RMSE does not vary substantially as successive 

data are added to the S2_Env combinations. This suggests little improvement with accumulation of 

data over the growing season.  
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 5c: Environmental data  

Environmental data for December alone provides a yield estimation accuracy comparable to 

the DAJ Sentinel-2 data combination (Qu 5a) (figure 3.6). Accumulation of environmental data over 

the growing season has little impact on estimation accuracy.  

The environmental data contains two types of data: those which are static over the growing 

season (topography), and those which are dynamic (precipitation, temperature, SWI). Considering 

these separately, the topographic data appear contribute more to the estimation accuracy (RMSE 

1.18 ± 0.05 tonnes/ha) than the other environmental variables (RMSE 1.32-1.34 ± 0.02-0.05 

tonnes/ha depending on temporal coverage). However, the topographic data alone does not match 

the high accuracy achieved when the two types of environmental data are combined (regardless of 

temporal coverage).  

In general, most of the combinations containing only environmental data provide less 

accurate estimates than having a combination of Sentinel-2 data and environmental data.  

3.4.3 Mapping Within-field Wheat Yield Variability 

The results from the 5 questions demonstrate that within-field yield variability can be 

estimated relatively accurately, with an RMSE between 0.61 and 1.01 tonnes/ha, depending on the 

data combination. This accuracy is reflected when comparing the observed and estimated yields, 

which show that the estimated yields reflect the general patterns of yield variability within individual 

fields (figure 3.7).  The difference map (figure 3.7) shows no clear pattern of over- or under-

estimation of yield values, suggesting there are no systematic spatial errors in the estimated yield 

values.  
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Figure 3.7: Observed yield interpolated from the combine harvester data (top left), estimated yield 

from the S2_Env RF model (top right) for a selection of fields within the training area, and the 

difference between the observed and estimated yield (bottom).  

  

Comparing frequency distributions of observed and estimated yield for each field suggests 

that the ability of the RF models to detect within-field variability varies between fields (figure 3.8 
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shows the frequency distributions for the best RF model: S2_Env). The shape of the yield distribution 

varies between fields, with some exhibiting simple unimodal distributions (e.g. field 15 (figure 3.8)) 

and others more complex bimodal distributions (e.g. field 21 (figure 3.8)). Comparing the two 

distributions for both individual fields and all fields combined there appears to be a tendency for 

overestimation of the frequency of modal values, and underestimation of the highest and lowest 

values. Despite these tendencies, the model appears to provide relatively accurate estimates of 

within-field yield variability for individual fields with RMSE values between 0.24 and 1.94 tonnes/ha 

(table 3.8). Additionally, the regression graph confirms the trends shown in the frequency 

distributions (figure 3.9).  

 

Figure 3.8: Frequency distributions for observed and estimated yields using the validation data set for 

the S2_Env model for all fields and a sample of individual fields. Individual fields chosen were those 

with the two highest (fields 15 and 14), two middle (fields 13 and 31), and two lowest (fields 21 and 

17) RMSE values to provide a representative selection.  
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Table 3.8: RMSE values for individual fields using the validation data set for the S2_Env model. NB: 

this model was run using data from 34 fields, rather than the full 39, due to missing data values for 

some satellite images.   

Field number RMSE Field number RMSE Field number  RMSE  
1 0.45 13 0.47 25 0.56 
2 0.37 14 0.27 26 0.72 
3 0.61 15 0.24 27 0.59 
4 0.7 16 0.43 28 0.65 
5 0.4 17 1.94 29 0.29 
6 0.29 18 0.45 30 0.63 
7 0.32 19 0.58 31 0.48 
8 0.61 20 0.49 32 0.3 
9 0.41 21 1.36 33 0.46 
10 0.47 22 0.87 34 0.37 
11 0.28 23 0.77   
12 0.89 24 0.79   

 

 

 

Figure 3.9: Linear regression between observed and estimated yield for the validation data set from 

the S2_Env model.  

 

 3.4.4 Mapping Within-field Wheat Yield Variation at Landscape-scale 

Satellite data enables scaling-up of yield estimation across the wider landscape area using 

data from a few fields. To demonstrate this potential, the S2_Env RF model was used to estimate 

yield for the area covered by the Sentinel-2 image (figure 3.10 shows a portion of this map). Fields 
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containing wheat were identified using the 2016 Land Cover Plus®: Crops map. To remove mixed 

boundary pixels from the dataset, field boundaries in the crop map were buffered in by 20m. In this 

study, the yields estimated in all fields across the entire area fell within the range of values in the 

training data, increasing the likelihood of the yield estimations being accurate. Additionally, the 

fields from which the training and validation data were obtained mark the southwest and northeast 

extent of the landscape-scale map. Extrapolation outside the input data range, both spatially and in 

terms of yield values, would be less reliable.  

High resolution yield maps make it is possible to look at within-field and between-field yield 

differences, and identify wider landscape patterns. For example, in the area covered in this study 

yield ranges from 4.09 to 12.22 tonnes/ha, with a mean value of 9.02 tonnes/ha (mean per field 5.83 

to 11.21 tonnes/ha) and a total yield production of approx. 289000 tonnes. Using such maps it is 

possible, among other things, to identify clusters of higher or lower yielding fields within the same 

climate region. For example, in figure 3.10 there is a cluster of higher yielding fields in the northwest 

corner of the map and a cluster of lower yielding fields in the east of the image. Knowledge of such 

clusters facilitates further investigation into the causes of yield variation within the landscape, such 

as differences in crop management practices and environmental conditions. Furthermore, using 

information on yield variability it is possible to identify different management zones and yield-

limiting factors to improve the efficiency of farming practices in different areas (Diker et al., 2004). 

 



62 
 

 

Figure 3.10: Landscape-scale wheat yield estimation based on S2_Env RF model. 

 

3.5 Discussion 

3.5.1 Benefits of Random Forest 

All the multi-variable RF regression models developed in this study outperformed the single-

date VI-based linear regression and RF models used as a baseline. This demonstrates the superior 

ability of RF and multi-variable models in general. While RF is now widely used for image 

classification, its use for yield estimation is not so common with studies generally relying on 

traditional regression models. However, RF has a number of key advantages over traditional 

regression models for yield estimation, some of which are demonstrated by the results of this study. 

Firstly, using RF may increase the amount of data available for training. RF randomly selects a subset 

of the calibration dataset that it reserves for assessing model accuracy rather than model training 
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(Jeong et al., 2016). In this study, the additional step was taken of also splitting the data into training 

and validation datasets outside of RF to provide a means of checking whether the model was 

overfitting the data. The results suggest overfitting was not an issue in this study. If holding back 

some data for validation is less important for RF than for traditional regression models, this would 

increase the volume of data available to train the model, which will likely improve its estimative 

capability. 

Secondly, it appears RF is able to utilise relationships between explanatory variables to 

control for confounding factors. Of the data combinations explored in this study, the integration of 

environmental data with Sentinel-2 data provided the most accurate yield estimation. 

Environmental data has been used alongside satellite data to support crop yield estimation in 

numerous studies, commonly through the use of crop simulation models (Azzari et al., 2017; 

Doraiswamy et al., 2005; Jin et al., 2017b; Lobell et al., 2015; Moriondo et al., 2007). Despite the 

clear advantages of including environmental data such as the SWI in the RF model, linear regression 

reveals no obvious relationship between SWI and crop yield (R2 of 0.004-0.11 depending on the 

month). It therefore appears that the improvement in accuracy arises not from a direct relationship 

between soil moisture and yield, but from an underlying relationship between SWI and spectral 

reflectance. It may be that the inclusion of SWI data enables RF to control for the impact on spectral 

reflectance of soil moisture variability between Sentinel-2 images. RF appears to be able to identify 

and unpick relationships between explanatory variables and to use these to account for confounding 

factors, which could reduce accuracy. The ability of RF to cope with multi-variate relationships 

between data of different types and resolutions is a key advantage over methods such as linear 

regression, which can only address uni-variate relationships.  

Further to this, the apparent ability of RF to detect underlying relationships can also reduce 

the number of explanatory variables required to provide an accurate estimation. Previous studies 

have commonly utilised a variety of VIs to estimate yield by inferring relationships between VIs and 
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yield (Liaqat et al., 2017; Lopresti et al., 2015; Ren et al., 2008), or to derive relationships with 

surface parameters such as LAI and fAPAR, which can be used to estimate yield (Boschetti et al., 

2014; Nigam et al., 2017). In this study, using VIs and the original Sentinel-2 data together provided 

no improvement in accuracy. This may indicate that RF is able to infer the relevant information for 

yield estimation normally provided by VIs from the individual Sentinel-2 bands themselves. Whether 

this is the case or not, the fact that RF does not require separate VIs could have significant benefits. 

By removing the need to calculate separate indices, RF may simplify processing and reduce 

processing time.  

3.5.2 Optimum Processing Resolution 

This study demonstrates that Sentinel-2 data has the potential to provide relatively accurate 

estimates of within-field yield variability in the UK. In this study, yield estimation is more accurate at 

10m resolution than 20m resolution. Conversely, Yang et al. (2009) found accuracy increased as 

resolution decreased; SPOT 5 pixels rescaled to 30m resolution explained 15% more of the yield 

variability than the original 10m pixels. The reason for this disagreement may be found in the nature 

of the different datasets used in each study. Pre-rectification, SPOT 5 images have a locational 

accuracy of 30m (Yang et al., 2009), while Sentinel-2 images have a locational accuracy of 20m 

(Drusch et al., 2012). Such differences in spatial precision could partly account for the discrepancy in 

the image resolution-yield accuracy relationship seen in these two studies.  

In addition, the accuracy of the yield data used within different studies will vary as data will 

be collected at different times, for different crops and using different yield monitors and combine 

harvesters. Yield monitors are susceptible to a number of potential errors including time delays, 

calibration errors and combine operational errors (Grisso et al., 2002). The exact yield monitor used 

and the way in which these errors are assessed and adjusted for will affect the final accuracy of the 

yield data. While various studies have been conducted into the different options for data correction 

(Lyle et al., 2014), there is currently no universally accepted procedure. It is therefore likely that the 
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corrections applied and the thresholds used will differ between studies, affecting the relative 

accuracy of the training data.  

Our findings showed higher yield estimation accuracy at 10m than 20m. This may be 

because advances in satellite sensor design and data processing, alongside improved processing 

methods for combine harvester data, provide higher quality image data and reference data that 

enable accurate yield estimation at high resolution. This suggests that it is important to optimise the 

resolution and the match between the satellite data and the reference data. Testing a number of 

different resolutions may be the best way of identifying the optimum resolution, as it may not be 

obvious from the point density and resolution of the satellite data.  

The high frequency of cloud cover within the UK restricts the number of optical satellite 

images available for crop yield estimation (Armitage et al., 2013). Satellites with a lower spatial 

resolution and higher temporal resolution, such as MODIS, have the potential to provide a greater 

number of cloud-free images throughout the growing season. The availability of more cloud-free 

images would allow crop growth dynamics to be tracked more accurately over the growing season. 

This might allow more generic solutions for using satellite data to estimate within-field yield 

variability. However, the typically small field-sizes (approx. 2ha to 175ha for wheat) and high within-

field variability within the UK mean that using lower resolution images would not be suitable, with 

large numbers of mixed pixels being produced. Assessment of within-field variability within the UK 

therefore requires satellite data with a higher spatial resolution, even if it means allowances have to 

be made for image frequency and availability of cloud-free images.  

 While this study uses Sentinel-2 data, it is important to remember that higher resolution 

data is available from various commercial sources (e.g. RapidEye, Planet Labs). Such higher 

resolution data could potentially allow more detailed assessment of within-field variability. 

However, previous work highlights the limits to the spatial precision of the combine harvester data, 

because of the way the sensors and combine harvesters work (Lyle et al., 2014). The yield spatial 
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resolution and precision is system dependent, as it is a function of the monitoring equipment, the 

cutting head and the software. For example Lyle et al. (2014) found a spatial resolution of about 20-

25m appropriate for the system they investigated. This suggests that the key constraints on the 

highest spatial resolution that yield can be mapped and validated at may be determined by the 

combine systems rather than the satellite data. As such, whether there is any benefit to using higher 

resolution commercial satellite data for the spatial resolution it offers will depend on the exact 

nature of the sensor used. There may, however, be a benefit from the high repeat frequency that 

could capture key periods of the growing season, even if the data cannot be used to estimate yield 

at higher resolutions than Sentinel-2. Since the precision and spatial ‘footprint’ of yield monitor data 

is determined largely by header width, future advances may be driven by research purposes that 

require more spatially precise data, through for example, use of plot combine harvesters with 

smaller header widths than commercial combine harvesters (Marchant et al., 2019). However, 

similar advances are unlikely for commercial yield monitors due to the impact smaller header widths 

would have on harvesting times and efficiency.   

Despite the difference in spatial resolution between the Sentinel-2 data (10m) and the 

temperature and precipitation data (5km), the results suggest that inclusion of these environmental 

variables did in fact increase the accuracy of the results. This is likely due to the fact that the 39 

fields used for training the RF models were widely dispersed over the Oxfordshire and Lincolnshire 

study areas. This meant that data from 54 of the 5km squares was used to build the RF model, 

despite the relatively small area covered by the fields themselves (476 ha), allowing some variation 

across the study area to be detected. It is likely that the inclusion of higher resolution data would 

increase the accuracy further by allowing better detection on finer scale variations in temperature 

and precipitation across the study area. Future work could look at methods for downscaling the data 

to make it more suitable for field-scale yield assessment.  
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3.5.3 Variability in Accuracy Through the Season  

The accuracy of yield estimation based on single-date Sentinel-2 images generally improves 

throughout the growing season. The biggest improvement occurs between the December and April 

images, with a further, smaller increase by June. There are a few possible explanations for this. 

Firstly, the signal-to-noise ratio will vary throughout the growing season, with differences in sun 

angle and incoming radiation intensity, which will affect the estimation accuracy. Secondly, towards 

the beginning of the growing season (e.g. December) the canopy may not have developed enough to 

give a good characterisation of the spatial variability in growth. Later in the growing season (e.g. 

April), the canopy will be more fully developed allowing more accurate detection of spatial 

variability. Visual interpretation of the Sentinel-2 images (figure 3.11) suggests the lack of 

improvement from June to July may be due to the crops ripening, or beginning to ripen, over this 

period. This will likely affect the accuracy of yield estimation from Sentinel-2 data alone. 

 

 

 

Figure 3.11: Evidence of crops ripening between successive Sentinel-2 images for June (left) and July (right). 
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3.5.4 Future Developments 

Future work should explore the contribution Sentinel-2 can make to crop models used to 

estimate yield. Crop models are widely used to estimate and predict crop yields and are known to 

provide relatively accurate results for specific crops. Previous crop model studies have commonly 

relied on freely available data from satellites such as Landsat (Lobell et al., 2015; Xie et al., 2017), 

MODIS (Doraiswamy et al., 2005; Ines et al., 2013) and AVHRR (Moriondo et al., 2007). The low to 

moderate resolution of such data has limited the ability to assess within-field yield variability, with 

yield estimation studies mostly focusing on farm- (Sehgal et al., 2005), regional- (Huang et al., 2015; 

Padilla et al., 2012) and county-scales (Ju et al., 2010). The ability to detect within-field yield 

variability using Sentinel-2 demonstrated by this study suggests future work should explore the 

benefit of incorporating Sentinel-2 data into current crop models. Battude et al. (2016) 

demonstrated the theoretical potential using SPOT4-Take5 data, which was designed to simulate the 

spatial and temporal sampling of Sentinel-2, within the Simple Algorithm For Yield (SAFY) crop model 

to estimate maize yields. Further work is needed to ascertain whether this potential can be realised 

with actual Sentinel-2 data, and whether this translates to other crop models.  

Additionally, an exploration of the key Sentinel-2 bands for yield estimation could prove 

useful. Knowledge of which bands are most valuable for estimating yield could allow models to be 

streamlined, removing the bands which contribute the least to yield estimation. Such work would 

require consideration of study sites in a variety of countries with a range of environmental 

conditions to ensure that any patterns of band importance apply generally and are not limited to 

specific sites. Building on this, future work could also compare the ability of Landsat and Sentinel 

wavebands to estimate yield. Such a comparison could provide valuable information on the 

requirements of satellite sensors for yield estimation, and, for example, whether the inclusion of the 

Sentinel-2 vegetation red edge bands contributes any useful information. Understanding band 

importance for different applications is valuable for the remote sensing community as it can inform 

the development of future satellites. 



69 
 

In this study, no attempt was made to extrapolate beyond the available data, so yield 

estimation was constrained by three factors: firstly, by the upper and lower limits of the yield data, 

with all estimated yield values falling within the range of the training dataset; secondly, by the 

geographical location of the study sites, which marked the north-eastern and south-western-most 

extent of the landscape-scale yield estimations; finally, by focussing on wheat fields only. Future 

work should test the transferability of the method used in this study (figure 3.2) to other areas, 

environmental conditions and crop types.  

3.6 Conclusion 

This study demonstrates that Sentinel-2 data is capable of providing relatively accurate 

estimates of within-field yield variability (RMSE 0.66 tonnes/ha) when combine harvester data are 

available to calibrate against. Combining Sentinel-2 with environmental data provides more accurate 

estimates than using Sentinel-2 data or environmental data individually (RMSE 0.61 tonnes/ha). 

Furthermore, RF appears to provide higher yield estimation accuracy than commonly used simple VI-

based linear regression. This study has also proposed a method that can be adapted to other crops 

and locations, when suitable training data are available. The method is applied to estimate yield at 

the landscape scale and produce a landscape-level estimate of crop yield.  
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 4. Satellite-derived Environmental Heterogeneity and Productivity as 

Indicators of Bird Diversity 

Merryn L. Hunt, George Alan Blackburn, Gavin Siriwardena, Luis Carrasco & Clare S. Rowland 

 

Abstract 

Birds are useful indicators of general biodiversity, which, despite targets to reduce its loss, 

has continued to decline globally. Understanding the spatial drivers which affect species diversity 

patterns at different scales is essential to predict how species may respond to future environmental 

changes and inform the creation of effective conservation strategies. To achieve this, comprehensive 

information is required regarding species distribution and changes over time. However, current bird 

population indicators are typically aggregated at country or regional levels making it difficult to 

analyse the data spatially. An opportunity exists to better explore the spatial drivers of bird diversity 

by developing methods using satellite data to model the diversity data to produce higher resolution 

maps of bird diversity. This would provide greater spatial detail to aid efforts to reduce or halt 

biodiversity decline.  

This paper explores methods to model bird diversity distribution across Great Britain using 

satellite data. Random Forest regression, trained using Countryside Survey 2000 data, was used to 

explore the extent to which a combination of satellite-derived measures of habitat heterogeneity 

and habitat productivity could explain the variation of bird diversity across Great Britain. This study 

focused on farmland and woodland birds, grouped according to the BTO/JNCC/RSPB wild bird 

indicator designations for the UK and England. Refined RF models were produced using variable 

selection techniques to reduce the number of variables. Feature contribution analysis was also 

performed to explore the nature of the relationships between the response and estimator variables 

in the refined RF models. The results of this study demonstrate that it is possible to estimate 

farmland and woodland bird diversity relatively accurately (R2 0.64 to 0.72) using just a few satellite-
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derived measures of habitat productivity and heterogeneity. The variable selection and feature 

contribution analysis highlight a number of important spatial drivers of species richness/diversity 

including arable land area for farmland birds, woodland patch edge length for woodland birds, and 

high productivity grassland during spring for both groups. 
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4.1 Introduction 

Despite targets to reduce its loss, global biodiversity has continued to decline, with no 

significant reductions in rate, as pressures on biodiversity have increased (Butchart et al., 2010). Loss 

of species diversity has been linked to large effects on primary productivity and decomposition, with 

a knock-on effect on the provision of essential ecosystem services (Hooper et al., 2012). An 

understanding of the spatial drivers determining species richness and diversity patterns at different 

spatial scales is essential to predict how species may respond to future environmental changes and 

inform the creation of effective conservation strategies. To achieve this, comprehensive information 

is required regarding species distribution and changes over time. However, field assessment may not 

be practical or feasible for large areas (Heywood, 1995; Link and Sauer, 1997), as techniques are 

often difficult, time-consuming and expensive. One means by which this issue can be overcome is 

through the integration of satellite data into biodiversity monitoring schemes.  

Satellite images provide a readily accessible, global dataset at various spatial and temporal 

resolutions from which indicators of species diversity may be derived (e.g. Kerr and Ostrovsky, 2003; 

Nagendra, 2001; Turner et al., 2003). Previous studies have mapped bird diversity – an important 

indicator of global biodiversity patterns (Furness and Greenwood, 2013) – using satellite-derived 

measures of two key factors affecting species diversity: (1) spatial heterogeneity, including measures 

of habitat structure, composition and connectivity (Carrasco et al., 2018; Coops et al., 2009b; 

Griffiths and Lee, 2000; Luoto et al., 2004); (2) environmental productivity, measured using fraction 

of absorbed photosynthetically active radiation (fAPAR) (Coops et al., 2009a), gross and net primary 

productivity (GPP/NPP) (Phillips et al., 2010, 2008) and normalised difference vegetation index 

(NDVI) (Duro et al., 2014; Foody, 2005; Seto et al., 2004). Studies tend to focus on either spatial 

heterogeneity or environmental productivity measures, although there are examples of these 

measures being integrated to map species diversity in places including North America (e.g. Hurlbert 

and Haskell, 2003) and Canada (e.g. Coops et al., 2009b).  
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While Landsat data has been around for many years, coarser resolution MODIS data has 

typically been the favoured source for satellite-derived measures of environmental productivity to 

estimate bird diversity on a national scale (e.g. Bonthoux et al., 2018; Coops et al., 2009b; Hobi et al., 

2017). Use of higher resolution data would allow these measures to be derived at scales more 

suitable for detecting smaller-scale, within-habitat variations, of environmental productivity thus 

improving the accuracy with which bird diversity can be mapped. Historically, however, use of such 

data has been hindered by the processing power and time required for analysis on a national scale. 

Now, with the availability of machine learning and cloud computing platforms such as Google Earth 

Engine (Gorelick et al., 2017), this analysis is possible. Recent years have also seen a focus on 

improving the quality and consistency of satellite data sets for automated analysis, with improved 

georeferencing and cloud-masking (Roy et al., 2014). These developments mean that it is now timely 

to assess the spatial drivers of bird richness/diversity at a higher spatial resolution of 30m. While this 

does not alter the actual resolution at which bird diversity itself can be mapped, something that is 

determined by the typically coarse (e.g. >1km) resolution of the field survey-based training data, it 

will allow the determining factors of bird richness to be better represented, thus improving map 

accuracies.  

 Birds are useful indicators of general biodiversity and ecosystem health (Furness and 

Greenwood, 2013), and preserving and enhancing bird diversity is important (Whelan et al., 2008). 

However, increases in agricultural intensity and land use conversion over the decades has led to 

severe declines in many farmland bird populations across much of Europe (Chamberlain et al., 2000; 

P. F. Donald et al., 2001). This study focusses on mapping bird species diversity within Great Britain. 

Reports based on the Wild Birds Population Indicators (DEFRA, 2018), derived from British Breeding 

Bird Survey (BBS) data, suggest that farmland and woodland bird populations decreased by 56% and 

24% respectively between 1970 and 2016 (DEFRA, 2018). The Wild Birds Population Indicators, and 

indices like them, have been critical in quantifying declines and identifying causal factors. However, 

they are typically aggregated at country or regional levels making it difficult to analyse the data 
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spatially. An opportunity exists to better explore the spatial drivers of bird diversity declines, and 

potentially increases in bird diversity, by developing methods to model the bird diversity data to 

produce higher resolution maps of bird diversity. This would provide greater spatial detail to aid 

efforts to reduce or halt this decline.  

Therefore, in this paper we explore methods to model bird diversity distributions across GB 

using satellite data. To do this, Random Forest regression, trained using Countryside Survey 2000 

data, was used to explore the extent to which a combination of satellite-derived measures of habitat 

heterogeneity and habitat productivity could explain the variation of bird diversity across GB. 

Variable selection techniques were used to reduce the number of variables and produce a set of 

refined RF models. These models were then used to produce national scale estimative maps of 

farmland and woodland bird diversity. To guide conservation schemes, it is also important to have 

an understanding of the key spatial drivers of species diversity. Finally, therefore, feature 

contribution analysis was used to explore the nature of the relationships between the response and 

estimator variables in the refined RF models. While this study focuses on mapping bird diversity in 

GB, the approach developed could theoretically be applied in any country where similar bird 

diversity data exists.  

4.1.1 Bird Diversity Monitoring in GB 

Bird species richness in GB has previously been estimated using measures of habitat 

heterogeneity derived from the Land Cover Map 2000 (LCM2000; Fuller et al., 2002) and training 

data from bird counts in the Countryside Survey 2000 (CS2000; Wilson and Fuller, 2002). Rhodes et 

al. (2015) demonstrated that, while they cannot match the accuracy provided by field surveys (i.e. 

CS2000), satellite-derived measures of broad habitat can provide a reasonable estimation of bird 

richness for a variety of species. The results suggest that the spatial and temporal coverage offered 

by increasingly freely available satellite data could allow a more cost effective and practical 

approach for mapping bird richness on a national and global scale. Carrasco et al. (2018) explored 



75 
 

the relationships between bird richness and spatial environmental heterogeneity variables, using 

LCM2000 to scale-up field survey data to provide a map of bird species richness for Great Britain. 

The current study builds on this work to incorporate not only satellite-derived measures of habitat 

heterogeneity, but also habitat productivity. It is hoped that inclusion of productivity measures will 

provide a more nuanced picture of bird diversity patterns, allowing variations in factors such as 

management practices and climate to be detected, rather than simply landscape structure.  

4.2 Data and Method 

Figure 4.1 provides an overview of the method used in this study, outlining how the bird 

count data and satellite data were processed and combined to estimate bird diversity distributions 

across GB.  
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Figure 4.1: Overview of the method used to estimate bird diversity distributions across GB.  

 

4.2.1 Bird Data 

Bird count data were collected between April and June of 2000 in 335 Countryside Survey 

2000 (CS2000) squares (Wilson and Fuller, 2002). These squares are part of a randomly stratified 

sample of 569 nationally representative 1km squares of rural GB used to compile detailed 
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information on the landscape. Bird counts were recorded on two separate visits during the early and 

late breeding season, using up to 4km of line transect counts within each square. The surveying 

methodology followed that of the BTO/JNCC/RSPB Breeding Bird Survey (Harris et al., 2019). In this 

study, species richness and the Shannon diversity index were used as measures of farmland and 

woodland bird species diversity. The designation of farmland and woodland species was based on 

the groupings used by the BTO/JNCC/RSPB wild bird population indicators for the UK and England 

(Eaton and Noble, 2018); these groupings can be seen in table A8 in Appendix 4. Farmland and 

woodland bird richness were calculated for all squares by counting all the different species within 

these groups recorded along any of the four transects.  

4.2.2 Habitat Heterogeneity Variables 

 While there are many measures of environmental heterogeneity (Stein et al., 2014), in this 

study the focus is on land cover heterogeneity, referring to between-habitat heterogeneity (Stein et 

al., 2014), which can be readily measured using satellite-derived land cover maps. Measures of 

habitat heterogeneity including patch area and edge length within each 1km square were derived 

from the UK Land Cover Map 2000 (LCM2000; Fuller et al., 2002) using FRAGSTATS v4 (McGarigal et 

al., 2012). LCM2000 is made up of 26 LCM Subclasses. To calculate the landscape variables the land 

cover classes were aggregated into a smaller set of broader land cover classes (details of class 

groupings can be found in table A9 in Appendix 4). The various FRAGSTATS metrics were only 

calculated for the arable, broadleaved, coniferous, grassland and semi-natural broader land cover 

classes. Details of the 17 class-level area, edge, shape and aggregation metrics calculated for each 

land cover class can be found in table A10 in Appendix 4. Below are the details for the metrics which 

appear in the final models built for each response variable; details of variable selection techniques 

are given in section 4.2.4. Metric descriptions adapted from McGarigal (2015). 

 Percentage of landscape (PLAND): the percentage of each square comprised of a particular 

class. 
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 Effective mesh size (MESH): Quantifies habitat fragmentation based on the probability that 

two randomly chosen points in the region under interest are located in the same non-

fragmented patch (Jaeger, 2000). The probability is multiplied by the total area of the 

landscape unit. The more barriers (e.g. roads, railroads) in the landscape, the lower the 

probability that the two locations will be located in the same patch, and the lower the 

effective mesh size. 

 Contiguity index (CONTIG): Measure of spatial connectedness/contiguity of cells within a 

grid-cell given as the mean (MN), coefficient of variation (CV) or area-weighted mean (AM) 

per class. An index value of 0 represents a one-pixel patch, increasing to a limit of 1 as 

connectedness increases. 

 Related circumscribing circle (CIRCLE): Measure of overall patch elongation using the ratio 

of patch area to the ratio of the smallest circumscribing circle given as mean (MN), 

coefficient of variation (CV) or area-weighted mean (AM) per class. Highly convoluted but 

narrow patches give a low index value, while narrow and elongated patches have a high 

index value. 

 Patch cohesion (COHESION): Provides a measure of the physical connectedness of the 

corresponding class. COHESION approaches 0 as the proportion of the focal class decreases 

and becomes increasingly subdivided, and therefore less physically connected.   

 Largest Patch Index (LPI): Quantifies the percentage of the total landscape area comprised 

by the largest patch of a class. The LPI approaches 0 when the largest patch of the 

corresponding type is increasingly small. An LPI value of 100 indicates the entire landscape is 

made up of a single patch of the corresponding class. Measured in percent (%). 

 Total edge (TE): Absolute measure of total edge length of a particular class. Measured in 

metres (m). 

 Edge density (ED): Edge length of a particular class standardised to a per unit area basis. 

Measured in metres per hectare (m/ha). 
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4.2.3 Habitat Productivity Variables 

In this study, the Normalised Difference Vegetation Index (NDVI) was used as a proxy for 

habitat productivity. There are some constraints of using the NDVI, including saturation of the index 

in highly productive areas (Box et al., 1989; Huete et al., 2002) and its susceptibility to soil 

reflectance influence in regions with low vegetation (Huete, 1989). However, studies have 

demonstrated a strong positive correlation between NDVI and net primary productivity (NPP) at 

latitudes and habitat types similar to those that occur in Britain (e.g. Boelman et al., 2003; Evans et 

al., 2005; Kerr and Ostrovsky, 2003; Tebbs et al., 2017), hence the NDVI was used.  

The NDVI-based habitat productivity metrics were calculated in Google Earth Engine 

(Gorelick et al., 2017) using data from Landsat 5 and Landsat 7. A greenest pixel composite was 

produced for each month from March to September for both Landsat 5 and Landsat 7 using images 

from 1999 to 2002; these were used to produce monthly NDVI images. The Landsat 5 and Landsat 7 

data sets were then merged by taking the maximum NDVI value for each pixel from the Landsat 5 

and Landsat 7 monthly NDVIs; this created monthly Maximum Value Composites (MVCs). 

Atmospherically corrected Landsat 5 and Landsat 7 images have been shown to produce similar 

NDVI measurements (Thieme et al., 2020; Vogelmann et al., 2001), hence no cross-calibration was 

required before the data sets were merged. Combining Landsat 5 and Landsat 7 reduced the impact 

of cloud cover, resulting in an average of approximately 6.1 cloud-free images per pixel for each 

month (figure A4 Appendix 4). This allowed monthly MVCs with near-complete cloud-free coverage 

for the whole of GB to be produced (figure A5 in Appendix 4).  

From the monthly MVCs, individual NDVI metrics were calculated for each land cover class 

within each square, for each month and for the growing season (March-September) as a whole; 

areas of the different land cover classes were identified using LCM2000. The metrics chosen were 

mean, standard deviation, coefficient of variation, median, minimum, maximum, range, 20th 

percentile, 80th percentile, interquartile range and sum (growing season only) of the NDVI values. 
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These metrics were only calculated for the arable, broadleaved, coniferous, grassland and semi-

natural broad land cover classes derived from LCM2000 (table A9 in Appendix 4). An example of the 

Google Earth Engine script used to extract the NDVI metrics can be found in Appendix 2. 

4.2.4 Random Forest Models and Variable Selection 

Random Forest (RF) regression (Breiman, 2001) was used to determine which measures of 

habitat productivity and habitat heterogeneity, in combination, provide the best estimation of 

farmland and woodland bird species richness and diversity. The randomForest package (Liaw & 

Wiener, 2002) in R was used to build and analyse the RF models with 1000 trees. Further details on 

Random Forest and its implementation can be found in Appendix 2. RF was chosen because of its 

ability to handle non-linear responses and complex interactions between variables (Breiman, 2001; 

A. M. Prasad et al., 2006). Previous studies have used RF to assess the response of bird species 

richness to environmental heterogeneity variables (Carrasco et al., 2018) and estimate rare species 

distribution in undersampled areas (Mi et al., 2017). 

Minimal depth selection (Ishwaran et al., 2010) was used to rank the explanatory power 

(importance) of each estimator variable within the RF models, using the randomForestSRC package 

in R (Ishwaran and Kogalur, 2019). Minimal depth assumes that variables that tend to split nearest to 

the root node have a higher impact on the estimation than variables that split nodes further down 

the tree. While it is possible for non-estimative variables to split close to the root node and not 

impact estimation, such occurrences are rare in a large forest of trees and averaging minimises their 

effects (Ishwaran et al., 2010). Variables which were not deemed important by the minimal depth 

selection were excluded from the RF models. 

Feature selection was used to further reduce model complexity and correlation between 

estimators, and simplify interpretation of the RF models. To identify the number of variables which 

should be included in each model, lower importance variables, as determined by the minimal depth 
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selection, were excluded progressively and the change in the variance explained by the model was 

assessed. This information was used to produce an accuracy curve (figure 4.2) after removing all of 

the variables one by one (Ishwaran et al., 2010). The number of variables included in each of the 

final refined RF models was determined based on the point at which a decrease in accuracy 

(variance explained) was first observed in the accuracy curves following the addition of another 

estimator variable to the model. Graphs for this analysis can be seen in figure 4.2. This analysis 

revealed that the top 4 most important variables, according to the minimal depth selection, were 

required for the farmland bird richness, the top 10 for farmland bird diversity, the top 3 for 

woodland bird richness, and the top 4 for woodland bird diversity. Subsequent analyses are based 

on these refined RF models. 

 

Figure 4.2: Variance explained (%) for the models including different numbers of estimators (by 

ranking). The red dot indicates the point immediately before a decrease in accuracy is first observed as 

another estimator is added, indicating the number of estimators to be included in each refined model. 
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The refined models were used to estimate farmland and woodland bird species richness and 

diversity across GB at 1km resolution. All models were trained using data from the 335 CS2000 

squares with bird count data. As the data were not collected in squares with greater than 54.6% 

urban cover, squares with more urban cover than this were excluded. A tendency was observed for 

RF to underestimate the maximum value and overestimate the minimum value for each of the 

response variables. This is a recognised problem and was solved by applying a linear regression-

based correction to the maps produced by RF to adjust for this bias (Zhang and Lu, 2012). 

The performance of the models built at each different stage of the variable selection process 

were compared using R2 values calculated in two different ways: (i) internal validation carried out by 

the randomForest package, and (ii) a separate 10-fold cross-validation using the full training data set.   

4.2.5 Feature Contribution 

To explore the relationship between the estimator and response variables in each of the 

final models, feature contribution analysis was performed (Palczewska et al., 2014) using the 

forestFloor package in R (Welling et al., 2016). To calculate feature contribution, the increments of 

the estimated response are recorded after each node split by a given variable. FC is determined by 

summing the increments for each observation for each variable, then dividing by the number of 

trees. The effect of a studied variable in isolation on variations in the response variable estimations 

can be effectively separated and visualised by plotting the feature contribution against the value of 

each variable.  

4.3 Results 

4.3.1 Model Accuracies and Estimative Maps 

R2 values for RF models constructed using individual habitat productivity and heterogeneity 

measures can be found in table A11 in Appendix 4. The RF models containing all variables had 10-



83 
 

fold cross validation R2 values between 0.66 and 0.76 for farmland and woodland bird richness and 

diversity; while models containing only the important variables (identified using minimal depth 

selection) produced R2 values between 0.68 and 0.74 (table 4.1).  

The refined models (with the number of variables determined using the accuracy curve) 

contained the following variables in order of importance: 

 Farmland bird richness: percentage of arable land, effective arable mesh size, March 80th 

percentile NDVI for grassland, April maximum NDVI for grassland 

 Farmland bird diversity: arable contiguity index, September NDVI range for arable land, June 

80th percentile NDVI for grassland, April maximum NDVI for grassland, April 80th percentile 

NDVI for grassland, March 80th percentile NDVI for grassland, April median NDVI for semi-

natural land, March maximum NDVI for grassland, September maximum NDVI for grassland, 

arable related circumscribing circle (area-weighted) 

 Woodland bird richness: April 80th percentile NDVI for grassland, total broadleaved 

woodland edge length, broadleaved woodland edge density 

 Woodland bird diversity: September maximum NDVI for broadleaved woodland, April 80th 

percentile NDVI for grassland, semi-natural patch cohesion, semi-natural largest patch index 

 

These refined models had 10-fold cross validation R2 values between 0.64 and 0.72 (table 

4.1). While this suggests they offer a slightly lower accuracy, the considerable reduction in the 

number of variables required has significant benefits, reducing complexity of the models and 

simplifying interpretation.  
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Table 4.1: R-squared values for (i) RF models containing all variables, (ii) RF models containing 

variables categorised as important by the minimal depth selection, (iii) the final refined RF models. R-

squared values are given for the internal RF validation and a separate 10-fold cross validation.  

Response 
Variable 

R2 values 

Full RF model 
(all variables) 

Model containing only 
important variables 

(# of variables) 

Refined RF model 
(# of variables) 

Internal RF 
validation 

10-fold cross 
validation 

Internal RF 
validation 

10-fold cross 
validation 

Internal RF 
validation 

10-fold cross 
validation 

Farmland 
bird richness 
 

0.72 0.73 0.74      (28)      0.74 0.72       (4)       0.72 

Farmland 
bird diversity 
 

0.66 0.66 0.69      (73)      0.70 0.67      (10)      0.67 

Woodland 
bird richness 
 

0.70 0.72 0.68      (18)      0.68 0.60       (3)       0.64 

Woodland 
bird diversity 

0.75 0.76 0.74     (111)     0.74 0.68       (4)       0.72 

 

The refined RF models were used to produce maps of farmland and woodland bird richness 

and diversity in 2000 for GB at a 1km resolution (figure 4.3 and 4.4). Figure 4.3a and 4.3b show that 

farmland bird richness and diversity are highest in the east of England and lower in the west of 

England and in Scotland, a pattern which broadly matches the distribution of arable land across GB. 

Figure 4.4a and 4.4b show that levels of woodland bird richness and diversity appear to be more 

distributed around GB, although there appears to be a prevalence for higher species 

richness/diversity in lowland areas and lower richness/diversity in highland areas; this broadly 

reflects the distribution of broadleaved and coniferous woodland in GB. The fact that the 

distributions of land cover and bird richness/diversity do not match completely highlights the 

importance of elements other than simple percentage land cover in determining bird 

richness/diversity. 

Although a bias correction was applied, this did not completely account for the under-

estimation of maximum values and over-estimation of minimum values. For example, the minimum 

value of woodland bird richness in the observed data was 0, while the lowest estimated value was 3. 

The fact that the estimated values do not currently reflect what we see in the CS data may suggest 
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that the current estimator variables do not capture all the important environmental factors affecting 

bird species richness/diversity; further discussion of this is presented in section 4.4.4. Despite this 

slight uncertainty, there was no evidence of systematic error spatially, with no pattern in terms of 

the location (e.g. NS/EW, upland/lowland) of over- or under-estimated pixels, or in the magnitude of 

the error (figures A6 and A7 in Appendix 4).  

 

 

Figure 4.3: Estimated farmland bird (a) richness and (b) diversity (Shannon Index) maps at 1km resolution. 



86 
 

 

Figure 4.4: Estimated woodland bird (a) richness and (b) diversity (Shannon Index) maps at 1km resolution. 

 

4.3.2 Feature Contribution (for the Refined Models) 

The feature contribution analysis showed different response shapes for the different habitat 

productivity and heterogeneity measures included in the refined models for each response variable 

(figure 4.5-4.8). The following section breaks down the feature contributions for each of the 

explanatory variables in each refined model for farmland bird richness and diversity, and woodland 

bird richness and diversity in turn. Feature contribution values above 0 indicate that the specific 

estimator value has a positive effect on the response variable; feature contribution values below 0 

indicate a negative effect.  
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4.3.2.1 Farmland Bird Richness 

From the feature contribution analysis (figure 4.5) it appears that for farmland bird richness: 

 Arable land covering more than 5% of the areas has positive effect on richness (figure 4.5a). 

The intensity of this effect increases with the percentage of arable land, until around 70% 

when it becomes asymptotic.  

 An effective mesh size of more than 0 has a positive effect on richness (figure 4.5b). The 

intensity of this effect increases as effective mesh size increases from 10 to 30, before 

reaching a plateau and decreasing slightly. 

 The presence of high productivity grassland in March and April (NDVI p80Mar > 0.5 and NDVI 

maxApr > 0.7) contributes positively towards richness (figure 4.5c and 4.5d). The intensity of 

the positive effect for each of these variables increases rapidly, with a clear step change for 

the March variable, to a maximum before flattening out and fluctuating slightly thereafter.  

 

 

Figure 4.5: Feature contribution plots for the farmland bird richness estimation model. The y-axis 

represents the change of estimated bird richness for a given variable value, measured with the cross-

validated feature contribution. The x-axis represents the studied variable. The fitted line is based on 

the k-nearest neighbour (knn) estimations. The red line indicates the point of zero feature 

contribution. 

 

 

 



88 
 

4.3.2.2 Farmland Bird Diversity 

 From the feature contribution analysis (figure 4.6) it appears that for farmland bird diversity:  

 The presence of large contiguous patches of arable land is important, with high contiguity 

index values (>0.8) having a positive effect and low values having little to no effect (figure 

4.6a). 

 Broad variation in the productivity of arable land in September (NDVI rangeSep > 0.25) has a 

positive effect on richness, with a small gradual increase to a peak around an NDVI rangeSep 

value of 0.7 (figure 4.6b). Very low NDVI range values have a negative effect.  

 The presence of high productivity grassland throughout the growing season (NDVI 

maxMar/maxApr/maxSep > 0.6-08; NDVI p80Mar/p80Apr/p80June > 0.5-0.6) contributes positively 

towards diversity (figure 4.6c-f, 4.6h-i). The intensity of this effect tends to increase rapidly 

towards a maximum before reaching a plateau.  

 The effect of the productivity of semi-natural habitats in April appears to be generally weak, 

although there is a peak around an NDVI medianApr value of 0.6 where it appears to have a 

relatively significant positive effect (figure 4.6g).  

 The presence of very elongated, narrow arable patches do not appear to promote high 

diversity, with high CIRCLE (>0.7) values having a negative effect (figure 4.6j); CIRCLE values 

between 0.4 and 0.6 have a weak positive effect.   
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Figure 4.6: Feature contribution plots for the farmland bird diversity estimation model. The y-axis 

represents the change of estimated bird diversity for a given variable value, measured with the cross-

validated feature contribution. The x-axis represents the studied variable. The fitted line is based on 

the k-nearest neighbour (knn) estimations. The red line indicates the point of zero feature 

contribution. 

 

4.3.2.3 Woodland Bird Richness 

 From the feature contribution analysis (figure 4.7) it appears that for woodland bird 

richness: 

 The presence of high productivity grassland in April (NDVI p80Apr > 0.6) contributes positively 

towards richness, reaching a peak in intensity around an NDVI p80Apr value of 0.75 (figure 

4.7a). 
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 Total broad-leaved woodland edge length greater than 1000m and edge density greater 

than 10m/ha contribute positively towards richness, reaching peak intensity around 6000m 

and 60m/ha respectively, and flattening out thereafter (figure 4.7b and 4.7c). This may 

indicate that the presence of more, smaller patches of broad-leaved woodland or patches 

with more complex shapes helps to promote high richness. 

 

Figure 4.7: Feature contribution plots for the woodland bird richness estimation model. The y-axis 

represents the change of estimated bird richness for a given variable value, measured with the cross-

validated feature contribution. The x-axis represents the studied variable. The fitted line is based on 

the k-nearest neighbour (knn) estimations. The red line indicates the point of zero feature 

contribution. 

 

4.3.2.4 Woodland Bird Diversity 

 From the feature contribution analysis (figure 4.8) it appears that for woodland bird 

diversity: 

 The presence of high productivity broad-leaved woodland in September (NDVI maxSep > 0.8) 

and high productivity grassland in April (NDVI p80Apr > 0.6) both have a positive effect on 

diversity (figure 4.8a and 4.8b). The intensity of the effect of broad-leaved woodland 

productivity increases continuously, while for the grassland the intensity peaks around an 

NDVI p80Apr value of 0.7 and then decreases slightly.  

 High connectivity between semi-natural habitats does not appear to promote high diversity, 

with COHESION values greater than 90 having a strong negative effect; values below 90 have 

a comparatively weak positive effect (figure 4.8c).  
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 As the percentage of the landscape composed of the largest semi-natural patch (LPI) 

increases the effect becomes increasingly negative (figure 4.8d). Although there is some 

fluctuation up until LPI of 60%, the highest positive effects are seen for LPI of 20%. 

 

Figure 4.8: Feature contribution plots for the woodland bird diversity estimation model. The y-axis 

represents the change of estimated bird diversity for a given variable value, measured with the cross-

validated feature contribution. The x-axis represents the studied variable. The fitted line is based on 

the k-nearest neighbour (knn) estimations. The red line indicates the point of zero feature 

contribution.  

 

4.4 Discussion 

4.4.1 Comparison to Other Studies 

The results presented here compare favourably to previous studies which have explored the 

estimation of bird species diversity using satellite data. Bonthoux et al. (2018), for example, 

managed to explain 35% and 45% of the variation in farmland and woodland bird species richness in 

France respectively by combining MODIS-derived single-date NDVIs with climate data in Generalised 

Additive Models (GAM). This study was conducted on a similar scale to the present study (4km2 cf. 

1km2 sample squares) suggesting the factors important for species richness may be similar. The fact 

that the present study explained a higher percentage of variation (72% for farmland birds; 67% for 

woodland birds) may be due to the higher resolution of the Landsat data used (30m cf. 250m). The 

higher resolution data may allow for better discrimination of habitat composition and heterogeneity 

variation across the landscape, meaning relationships between species richness and landscape 
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factors such as resource availability can be better detected. The difference in model accuracy may 

also result from differences in the training data, both in terms of how it was collected (sampling 

method, distribution, etc.) and which species were classified as farmland and woodland birds in each 

case.  

Carrasco et al. (2018) explored the relationships between bird species richness and a variety 

of environmental heterogeneity variables based on data from the UK Countryside Survey 2000. The 

RF model created explained 71% of the variance in bird species richness. To produce a map of bird 

richness for GB at 1km resolution, the top-ranked environmental heterogeneity variables were up-

scaled using data from the Landsat-derived Land Cover Map 2000 (Fuller et al., 2002) and the ITE 

Land Classification (Bunce et al., 1991). These modelled variables were used to feed the national 

scale estimative RF models. The present study builds on this, incorporating not only measures of 

environmental heterogeneity but also habitat productivity. The results of this study demonstrate 

that it is possible to obtain similar levels of accuracy using satellite-derived measures of habitat 

heterogeneity and productivity without the need for upscaling of environmental heterogeneity 

variables derived from field data. Removing the need for the up-scaling technique used in Carrasco 

et al. (2018) simplifies processing and reduces field data requirements for model training; reduced 

requirements for training data could reduce costs of future data collection.  

4.4.2 Influence of the Landscape on Bird Diversity 

Woodland bird richness was higher in areas with higher woodland edge. These results 

support previous studies that showed that bird richness and diversity was greatly enhance by the 

presence of open habitats within woodlands, and by increased woodland hedges (Fuller et al., 2007; 

Terraube et al., 2016). Higher plant diversity and composition and habitat structural diversity at 

woodland edges have been pointed out as possible drivers of diversity for birds living within these 

habitats (Terraube et al., 2016).   
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This study indicates that the presence of high amounts of arable land increased farmland 

bird richness, although the positive effect of arable land percentage stabilized after 70%. Because 

the presence of grassland was another important estimator of farmland species richness, it is 

reasonable to infer that a combination of high coverage of arable land with other habitat patches 

that increase the landscape heterogeneity might be optimal for maintaining a high number of 

farmland species. However, these associations might be strongly dependent on the surrounding 

areas. For instance, high percentages of arable land could be enhancing farmland bird richness 

where arable lands are less abundant in nearby landscapes, while areas with low percentages might 

still be supporting high richness in areas surrounded by intensively cultivated regions (Robinson et 

al., 2001).   

The results also showed that the presence of highly productive grasslands was an important 

estimator for farmland and woodland richness and diversity. Although an intense management of 

grasslands can reduce the suitability of these habitats to provide breeding and foraging resources for 

birds (Vickery et al., 2001), the presence of these grasslands could be a key component to increase 

the heterogeneity of British landscapes (Fuller et al., 2004). For areas with high coverage of arable 

land or woodland, the presence of improved grasslands could be providing extra ecological niches 

for farmland and woodland birds, respectively.  

4.4.3 Contribution of Satellite Data to Biodiversity Monitoring 

Knowledge of species richness and distribution, and relationships between species and their 

habitats, is essential to guide conservation and land management actions aimed at preventing 

biodiversity loss. Field-based methods, while providing indispensable information, are typically 

limited in coverage and spatial/temporal resolution due to the time and cost associated with data 

collection. Integration of field data with satellite data has the potential to provide wall-to-wall 

continuous mapping and therefore more suitable information to guide conservation actions on both 

local and national scales. As this study demonstrates, satellite data can be used not only to estimate 
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species richness, but also to provide insight into the factors affecting species richness. This 

information can inform the creation of more comprehensive conservation schemes which can be 

tailored to specific areas.  

Used alongside field-based data, satellite data can also offer a cost effective method for 

large-scale, long term monitoring to ensure that conservation plans are meeting their intended 

goals. The availability of long-term data (30-40 years from Landsat data archive) allows the 

establishment of a baseline against which long-term and short-term changes can be monitored, 

facilitated by repeat satellite measurements. The introduction of cloud computing platforms such as 

Google Earth Engine (Gorelick et al., 2017) provides access to greater computing power and global-

scale satellite datasets, allowing species richness to be monitored at higher temporal resolutions at a 

lower cost. Greater availability and frequency of species richness data on a range of scales would 

allow more accurate monitoring of short-term changes in biodiversity allowing more rapid responses 

to any observed changes.  

Field data of course retains an essential role in the monitoring of biodiversity, providing 

essential training and validation data for estimation models. Moving forward, the integration of field 

data and satellite data into a biodiversity monitoring framework could provide essential information 

to help reduce predicted biodiversity losses as a result of anthropogenic drivers such as land use 

change and changing climate.  

4.4.4 Future Developments  

In this study, Landsat data was used to derive a range of metrics designed to detect spatial 

variation in habitat productivity and habitat heterogeneity. However, there are other metrics, which 

are important for determining bird species richness, that were not captured due to the nature and 

resolution of the data used. For example, Goetz et al. (2007) demonstrated the value of LiDAR-

derived measures of canopy structural diversity for estimating species richness. Additionally, the 



95 
 

resolution of Landsat data (30m) meant it was not possible to detect linear landscape features such 

as hedgerow habitats. Previous studies (Aue et al., 2014; Carrasco et al., 2018; Hinsley and Bellamy, 

2000; Morelli et al., 2014; Rhodes et al., 2015) have demonstrated the importance of such features 

for some species (e.g. woodland generalists), particularly in open landscapes, by increasing the 

number of ecological niches. Sullivan et al. (2017) found that the inclusion of a national-scale model 

of linear features created using airborne SAR improved estimates of bird species abundance. Future 

work should explore how the incorporation of additional measures of habitat heterogeneity and 

structure affects the accuracy of bird diversity estimation.  

Exploration of how the relationships between response and estimator variables vary with 

spatial and temporal scale and landscape context would also be useful. Bonthoux et al. (2018), for 

example, noted that the results of their study, which found single-date NDVIs to be more effective 

than the Dynamic Habitat Index (DHI), did not agree with previous studies conducted using larger 

sample units of investigation (e.g. Coops et al., 2009a; Hobi et al., 2017) that found the cumulative 

DHI had the highest estimative capability. Relationships have also been found to vary between 

different landscape types (e.g. upland and lowland) and in different ecoregions. For example, Petit et 

al. (2004) found that in lowland areas linear features are crucial for promoting species diversity, 

while in upland ecosystems quality may be more important. Exploration of the variability in 

relationships at different spatial and temporal scales, and in different landscape contexts, would 

allow a more comprehensive understanding of the factors affecting bird species richness. This would 

allow more accurate estimations to be made at scales relevant to specific monitoring schemes and 

conservation management needs. An understanding of how these relationships vary across time and 

space would also allow an assessment to be made as to the applicability/transferability of empirical 

approaches, such as the one used in this study, to other areas and time periods.  
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4.5 Conclusion 

In conclusion, this study demonstrates that it is possible to estimate farmland and woodland 

bird richness and diversity relatively accurately (R2 0.64 to 0.72) using just a few satellite-derived 

measures of habitat productivity and heterogeneity. The variable selection and feature contribution 

analysis highlight a number of important spatial drivers of species richness/diversity including arable 

land area for farmland birds, woodland patch edge length for woodland birds, and high productivity 

grassland during spring for both groups. Work such as this, which integrates satellite-derived metrics 

with species diversity field data, has the potential to provide important insights for monitoring and 

conservation. Further work could explore the spatial and temporal variation in the effect of these 

individual spatial drivers and whether inclusion of additional datasets would allow variation in 

important environmental characteristics to be better detected.   
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5. Towards Monitoring the Sustainable Intensification of Arable Agriculture 

Using Satellite-derived Indicators of Farm Performance  

Merryn L. Hunt, George Alan Blackburn, Luis Carrasco, Gavin Siriwardena, John W. Redhead & Clare 

S. Rowland 

Abstract 

Global population increases are driving the demand for food and leading farmers to intensify 

their agricultural practices. Appropriate monitoring methods are important to ensure that this 

intensification is sustainably achieved. Current reliance on traditional data collection methods, which 

produce agricultural intensity and environmental quality data of limited spatial and temporal 

resolution, hampers our ability to meet this need. Earth Observation has the potential to improve 

our monitoring capabilities, providing a readily accessible, long-term dataset with global coverage at 

various spatial and temporal resolutions. However, so far no one has attempted to explore this 

potential. 

This study uses satellite-derived indicators of agricultural intensity and environmental 

quality to assess the relative performance of arable farming. Wheat yield is used as a measure of 

agricultural intensity, with farmland bird richness used as a proxy for environmental quality. The 

satellite-derived indicators are produced from in situ data on wheat yield and farmland bird richness, 

Landsat-8 and Sentinel-2 satellite data and empirical modelling techniques (Random Forest 

regression). The agricultural intensity and environmental quality data are then combined to produce 

a novel feature space which provides a relative assessment of agricultural performance on a 

landscape scale. This feature space allows areas of differing agricultural intensity and environmental 

quality to be identified, making it possible to see how individual arable areas are performing relative 

to the surrounding landscape. Such knowledge of farm performance could be used to monitor the 

impacts of different management practices and could help identify the optimum practices in specific 

areas. This would help a range of stakeholders, including farmers moving towards sustainable 

agricultural intensification. As this assessment of farm performance is derived from EO data, there is 
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considerable potential for using the approach to guide sustainable intensification in arable 

landscapes across the globe. This unique assessment of relative agricultural performance 

demonstrates that Earth Observation has a significant role to play in monitoring sustainable 

intensification and ensuring it meets our future needs.  
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5.1 Introduction 

Global food production must increase by 70% by 2050 to meet the demands of a growing 

population with shifting food consumption patterns and increases in income (Dillon et al., 2016; 

FAO, 2009). Competition for land means intensification of production on current agricultural land 

will play a key role in this, alongside reductions in food waste and shifts in diet. However, previous 

intensification endeavours, for example through increased cropping intensity and agrochemical 

inputs, are now recognised as having a detrimental impact on the environment (Pretty et al., 2018; C 

Stoate et al., 2001; Tilman et al., 2001; Tscharntke et al., 2005). The increased emission of pollution 

and waste, over exploitation of natural resources for inputs and the associated negative 

environmental feedbacks, call into question the ability to maintain such intensive agricultural 

practices for sustained crop productivity (Bommarco et al., 2013b; Foley et al., 2005).  

Sustainable intensification has been proposed as a way to address the conflicting 

requirements of preserving environmental quality and meeting projected increases in food demand. 

Sustainable intensification involves achieving higher agricultural outputs with the same or fewer 

inputs through increased production efficiency on the same amount of agricultural land, while 

simultaneously reducing or eliminating environmental degradation (Dillon et al., 2016; Garnett et al., 

2013). Unfortunately, due to the situation-specific success of different approaches, resulting from 

the spatial and temporal variability in environmental variables, there are no definitive mechanisms 

to achieve sustainable intensification. To ensure any attempts at sustainable intensification are 

successful, it is therefore essential that suitable methods are in place to efficiently assess the 

sustainability of intensification on a long-term basis over diverse landscapes and spatial scales.  

 Currently, assessments of sustainable intensification rely on traditional data sources such as 

farm surveys, field data and national government statistics (e.g. Dillon et al., 2010; Firbank et al., 

2013; Rasul and Thapa, 2004). However, such data are typically costly and time consuming to collect, 

resulting in data of limited spatial and temporal scale and extent. The inherent constraints of such 
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data sources affect our ability to provide accurate assessments of productivity and environmental 

performance for all agricultural areas in a timely manner. Earth Observation (EO) may offer a 

solution to this data problem. EO provides a readily accessible, long-term dataset with global 

coverage at various spatial and temporal resolutions. Incorporation of these data into assessments 

of agricultural productivity and environmental performance could help to provide more accurate, 

spatially explicit results at lower costs. 

EO has been used for agricultural monitoring since the launch of the first terrestrial satellites 

(Anuta and MacDonald, 1971; Draeger and Benson, 1972). With the advent of readily accessible 

cloud computing platforms like Google Earth Engine (Gorelick et al., 2017), the launch of the Sentinel 

satellites (Drusch et al., 2012; Torres et al., 2012) and the opening of the Landsat archives (Wulder et 

al., 2012), EO systems are increasingly able to generate operational data products to support 

agricultural management. The use of EO to monitor various measures of agricultural intensity such 

as crop yield (e.g. Becker-Reshef et al., 2010; Doraiswamy et al., 2005) and cropping intensity (e.g. 

Jain et al., 2013; L. Li et al., 2014) in a range of countries over various scales is fairly common 

practice; although additional work is required to make this routine and operational. The use of EO to 

assess environmental quality is currently less established, but there is a clear opportunity to monitor 

indicators including vegetation health (e.g. crop condition) and ecosystem health (e.g. net primary 

productivity), soil quality (e.g. soil organic carbon), water quality (e.g. water clarity), and biodiversity 

(e.g. species diversity). A full review of this potential can be found in Hunt et al. (2019b, Chapter 2).  

EO data are already being used in several international agricultural monitoring systems for 

crop condition monitoring and yield forecasting over regional, national and global scales; such 

systems include the Group on Earth Observations Global Agricultural Monitoring System (GEOGLAM) 

(Parihar et al., 2012). While these systems demonstrate the value of EO for agricultural monitoring, 

currently they are not explicitly being used to monitor agricultural intensity, and no attempts have 

been made to routinely monitor environmental quality. Hence, the aim of this paper is to combine 
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satellite-derived measures of agricultural intensity and environmental quality to provide a relative 

assessment of the performance of arable agriculture on a landscape scale.  

In this study, wheat yield is used as an indicator of agricultural intensity and farmland bird 

species richness is used as a proxy for environmental quality. While wheat is not the only crop grown 

in the study area, it has the largest planted area of all cereal crops, covering 1.8Mha in 2016 (DEFRA, 

2019). As such, wheat yield is used as an indicator of general intensity in a given area as it maximises 

the sample size for assessing intensity. The choice of farmland bird species richness as a proxy for 

environmental quality recognises the utility of birds as an indicator of general biodiversity (Furness 

and Greenwood, 2013) and environmental quality (Butler et al., 2012). Therefore, to fulfil the aim of 

the study, to provide a relative assessment of agricultural performance, the following objectives 

were addressed: 

1. Estimate wheat yield and farmland bird richness across the 20,000 km2 study area for 2016 

from satellite data using Random Forest regression models trained on in situ observations. 

2. Identify the potential (maximum) yield and richness within individual environmental zones 

and calculate the gap between potential and actual values for all 1km squares across the 

study area. 

3. Create a performance feature space by plotting values for the yield and richness gaps 

against one another. 

 

5.2 Method 

The focus of this study is on an area covering 20,000km2 (100 x 200km) in the east of 

England, bounded by Lincolnshire to the northeast, London to the southeast, Oxfordshire to the 

southwest and Derbyshire to the northwest (figure 5.1). This site was selected based on the 

availability of high resolution crop yield data within this area (see section 5.2.1) and the coverage of 

the appropriate Sentinel-2 tiles (see section 5.2.2.1). The average total monthly rainfall for the area 

from December 2015 to July 2016, the period covered in this study, ranged from 25.4 to 95.4mm, 
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and average monthly mean temperature ranged from 5.0 to 17.4°C (Met-Office, 2017). This area is 

dominated by agriculture with climatic conditions suitable for growing wheat, among other crops. 

Agriculture within this area falls into two broad categories: (1) large scale industrialised farms in 

flatter areas, and (2) smaller-scale farms in upland areas. 

 

 

Figure 5.1: Study area location. The rectangular area shows the extent of the study area.  

 

 

Figure 5.2 provides an overview of the method used in this study, outlining how the wheat 

yield and farmland bird richness maps were produced and then used to assess relative agricultural 

performance in the study area. Details of the data used are outlined in sections 5.2.1-5.2.2 (wheat 

yield) and 5.2.3-5.2.4 (farmland bird richness); the analysis techniques along with production and 

use of the performance feature space are outlined in sections 5.2.5-5.2.8. 
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Figure 5.2: Overview of the method used to create the feature space to assess relative farm 

performance.  
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5.2.1 Training Data for Wheat Yield Modelling 

High resolution wheat yield data, collected during the 2016 harvest period between 6th 

August and 9th September by combine harvesters equipped with GPS and optical yield monitors, 

were downloaded from CLAAS telematics (CLAAS, 2018). The methods for processing these data are 

described here, but additional details are given in Hunt et al. (2019a, Chapter 3). The data were 

spread over two different regions, with 28 fields in Lincolnshire and 11 fields in Oxfordshire, marking 

the north-east and south-west extent of the study area. A series of simple and threshold-based 

cleaning steps were applied to the raw data to remove inaccurate grain yield measurements 

resulting, for example, from when the combine was turning (AHDB, 2016; Hunt et al., 2019a, 

Chapter 3; Lyle et al., 2014). 

A 20m buffer was applied to the cleaned data around the inward edge of each field to avoid 

areas of the field where the satellite pixels would span field boundaries (mixed pixels). Gaps 

occurring in the dataset due to the data collection and cleaning process were then removed using 

additional manual masking. These gaps typically appeared at the edge of the fields and in areas 

where the combine harvesters turned.  

An Inverse Distance Weighting function was applied to the cleaned and buffered point data 

to convert it to 10m resolution raster data to align with the Sentinel-2 data (see section 5.2.2.1). The 

impact of auto-correlation between pixels was reduced by using only alternate pixels, producing 

8794 data points which were randomly split into training (70%) and validation (30%) datasets.  

5.2.2 Estimator Variables for Wheat Yield Modelling 

Previous work (Hunt et al., 2019a, Chapter 3), found that using a combination of satellite 

data and environmental data, such as precipitation and temperature, provided a more accurate 

estimate of yield than using satellite data on its own. Hence, in this study a combination of such data 

were used to estimate wheat yield across the landscape. Details of these data are outlined in the 

following sections (5.2.2.1-5.2.2.4).  
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5.2.2.1 Sentinel-2 Data  

The Sentinel-2 images (Level 1C Top-of-Atmosphere reflectance product; see 

Claverie et al., 2018; Drusch et al., 2012) for tiles 30UXC and 30UXD for the 6th June 2016 

were downloaded from the Copernicus Open Access Hub (ESA, 2018). The decision to use 

the image for June was based on its high estimative capability compared to available images 

from other months (Hunt et al., 2019a, Chapter 3) and the fact that it offered maximum 

coverage of the study site, not hampered by cloud cover or missing data. In this study only 

Sentinel-2 bands at 10 or 20m resolution were used; details of these bands can be found in 

table 5.1. These bands were atmospherically corrected using the Sen2Cor processor and 

bands at 20m resolution were resampled to 10m prior to stacking.  

 

Table 5.1: Details of the Sentinel-2 bands used in this study (Drusch et al., 2012). 

Spectral band Central wavelength (nm) Spatial resolution (m) 

Band 2 blue 490 10 
Band 3 green 560 10 
Band 4 red 665 10 
Band 5 vegetation red edge 705 20 
Band 6 vegetation red edge 740 20 
Band 7 vegetation red edge 783 20 
Band 8 NIR 842 10 
Band 8a narrow NIR 865 20 
Band 11 SWIR 1610 20 
Band 12 SWIR 2190 20 

 

5.2.2.2 Precipitation and Temperature 

 Monthly total rainfall (mm) and mean air temperature (°C) 5km gridded UKCP09 

datasets for December 2015 to July 2016 were downloaded from the UK Met Office (Met-

Office, 2017). This time period was chosen to cover the main 2016 growing season.  

5.2.2.3 Soil Water Index 

Soil Water Index (SWI) values, indicating the soil moisture profile, were obtained 

from the SCAT-SAR SWI T01 dataset created by TU Wien Department of Geodesy and 
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Geoinformation (Bauer-Marschallinger et al., 2018). SWI images have a pixel spacing of 

500m, which correspond to a resolution of 1km. The data are derived from the Sentinel-1 

SAT and MetOp-A/B ASCAT satellite sensors. Data for December 2015 to July 2016 were 

used to calculate monthly mean values, giving a percentage ranging from 0% (completely dry 

soil) to 100% (completely saturated soil).  

5.2.2.4 Topographic Variables 

The 10m resolution NEXTMap Britain digital terrain model (DTM), created by 

Intermap Technologies Inc., was used to calculate aspect and slope variables at 10m 

resolution. These data are based on airborne radar data collected during 2002 and 2003 

(Intermap-Technologies, 2009).  

5.2.3 Training Data for Farmland Bird Richness Modelling 

Bird count data from the 2016 Breeding Bird Survey (BBS) were obtained from the British 

Trust for Ornithology (BTO) (Harris et al., 2017). These surveys are conducted by volunteers who 

record all bird species encountered while walking two 1km transects across their square during two 

early-morning visits in the April-June Survey period. The locations of the 1km BBS survey squares are 

selected through stratified random sampling, with 1km squares from the National Grid assigned 

randomly within BTO regions (Harris et al., 2017). The focus of this study was on farmland bird 

species due to their reliance on arable land, making them good indicators of the environmental 

quality of these areas. Farmland bird species were identified using the groupings from the 

BTO/JNCC/RSPB wild bird population indicators for the UK and England (Eaton and Noble, 2019); a 

list of these farmland species can be seen in table 5.2. In this study, species richness was used as a 

measure of farmland bird species diversity; this was calculated by counting all the different farmland 

species recorded within each square.  
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Table 5.2: Farmland bird species groupings based on the BTO/JNCC/RSPB wild bird indicators for the 

UK and England (Eaton and Noble, 2019).  

Farmland Birds Species 

Corn Bunting  
Goldfinch 
Greenfinch 
Grey partridge 
Jackdaw 
Kestrel 
Lapwing 
Linnet 
Reed Bunting 
Rook 
 

Emberiza calandra 
Carduelis carduelis 
Carduelis chloris 
Perdix perdix 
Corvus monedula 
Falco tinnunculus 
Vanellus vanellus 
Linaria cannabina 
Emberiza schoeniclus 
Corvus frugilegus 

Skylark 
Starling 
Stock Dove 
Tree Sparrow 
Turtle Dove 
Yellow Wagtail 
Yellowhammer 
Whitethroat 
Woodpigeon 

Alauda arvensis 
Sturnus vulgaris 
Columba oenas 
Passer montanus 
Streptopelia turtur 
Motacilla flava 
Emberiza citronella 
Sylvia communis 
Columba palumbus 

 

This study used data for 3695 squares spread across England, Wales and Scotland; of these 

squares, 616 fall within the study area. Unlike the yield data, the bird data were not split into 

separate training and validation datasets due to the lower number of available data points. To 

maximise the amount of data available for training, the full dataset of 3695 squares was used to 

train Random Forest to create a map of farmland bird richness for the whole of Great Britain (details 

about the Random Forest modelling are given in section 5.2.5).  

5.2.4 Estimator Variables for Farmland Bird Richness Modelling 

Previous studies have used satellite-derived measures of two key factors affecting bird 

species diversity to map its spatial variation: (1) habitat heterogeneity, including measures of spatial 

distribution and habitat connectivity (e.g. Carrasco et al., 2018; Coops et al., 2009b); (2) habitat 

productivity measured, for example, using gross and net primary productivity (Phillips et al., 2010) 

and normalised difference vegetation index (NDVI) (e.g. Duro et al., 2014; Foody, 2005; Seto et al., 

2004). In this study, land cover heterogeneity was used as a measure of habitat heterogeneity (Stein 

et al., 2014), as it can be readily measured using satellite-derived land cover maps; section 5.2.4.1 

outlines the methods used to extract these data. The NDVI was used as a proxy for habitat 

productivity; section 5.2.4.2 details the methods used to derive these data. Studies have 

demonstrated a strong positive correlation between net primary producitivty (NPP) and the NDVI in 
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habitat types and latitudes similar to those found in Britain (e.g. Boelman et al., 2003; Evans et al., 

2005; Kerr and Ostrovsky, 2003; Tebbs et al., 2017).  

5.2.4.1 Habitat Heterogeneity 

The UK Land Cover Map 2015 (LCM2015; Rowland et al., 2017b) was used to derive 

a range of measures of habitat heterogeneity within each 1km square in the UK using 

FRAGSTATS v4 (McGarigal et al., 2012). The 26 LCM subclasses of the LCM2015 were 

aggregated into a smaller set of broader land cover classes (details of the groupings can be 

found in table 5.3) to characterise the main habitat types in the study area. The various 

FRAGSTATS metrics were calculated for the arable, broadleaved, coniferous, grassland and 

semi-natural broader land cover classes; the urban, water and coastal classes were excluded 

as they are less connected with agricultural practices. Details of all 17 class-level area, edge, 

shape and aggregation metrics calculated for each land cover class can be found in table 5.4. 

 

Table 5.3: Broad land cover classes used in this study and the corresponding original LCM2015 

subclasses. 

LC class LCM Subclasses 

Arable Arable cereals, arable horticulture, non-rotational horticulture 
 

Broad-leaved Broad-leaved/mixed woodland 
 

Coniferous Coniferous woodland 
 

Grassland Improved grassland, set-aside grassland, neutral grassland, 
calcareous 
 

Semi-natural Acid grassland, bracken, dense and open dwarf shrub heath, fen, 
marsh, swamp, bogs (deep peat), montane habitats, inland bare 
ground, saltmarsh 
 

Urban Continuous urban, suburban/rural developed 
 

Water Water (inland) 
 

Coast Supra-littoral rock, supra-littoral sediment, littoral rock, littoral 
sediment 
 

Sea Sea/estuary 
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Table 5.4: Details of the habitat structure metrics derived from LCM2015 using FRAGSTATS. Metric 

descriptions based on McGarigal (2015). 

Variable Abbreviation 
(Unit) 

Description 

Area & Edge Metrics 

Area AREAAM/CV/MN 
(ha) 

Area of each patch comprising a landscape mosaic given as mean (MN), 
coefficient of variation (CV) or area-weighted mean (AM) per class.  
 

Percentage of 
landscape 
 

PLAND (%) Percentage of the landscape comprised of a particular patch type 

Edge Density ED (m/ha) Edge length of a particular patch type standardised to a per unit area basis.  
 

Radius of 
Gyration 

GYRATEAM/CV/MN 
(m) 

Measure of patch extent given as mean (MN), coefficient of variation (CV) 
or area-weighted mean (AM) per class.  
 

Largest Patch 
Index  

LPI (%) Quantifies the percentage of the total landscape area comprised by the 
largest patch.  
 

Total Edge TE (m) Absolute measure of total edge length of a particular patch type.  

Shape Metrics 

Related 
Circumscribing 
Circle 

CIRCLEAM/CV/MN Measure of overall patch elongation using the ratio of patch area to the 
ratio of the smallest circumscribing circle given as mean (MN), coefficient 
of variation (CV) or area-weighted mean (AM) per class.  
 

Contiguity Index CONTIGAM/CV/MN Measure of spatial connectedness/contiguity of cells within a grid-cell 
given as the mean (MN), coefficient of variation (CV) or area-weighted 
mean (AM) per class.  
 

Fractal Dimension 
Index  

FRACAM/CV/MN Measure of shape complexity given as a mean (MN), coefficient of 
variation (CV) or area-weighted mean (AM) per class. 
 

Perimeter-Area 
Ratio 

PARAAM/CV/MN Ratio of patch perimeter to area given as mean (MN), coefficient of 
variation (CV) or area-weighted mean (AM) per class, providing a measure 
of shape complexity. 
 

Shape Index SHAPEAM/CV/MN Measures the complexity of patch shape compared to a standard shape 
(square) of the same size. Values are given as mean (MN), coefficient of 
variation (CV) or area-weighted mean (AM) per class.  

Aggregation Metrics 

Patch Cohesion COHESION Provides a measure of the physical connectedness of the corresponding 
patch types.   
 

Landscape 
Division Index 

DIVISION 
(proportion) 

Probability that 2 randomly chosen pixels in the landscape are not situated 
in the same undissected patch of the corresponding patch type.  
 

Effective Mesh 
Size  

MESH (ha) Quantifies habitat fragmentation based on the probability that two 
randomly chosen points in the region under interest are located in the 
same non-fragmented patch (Jaeger, 2000). The probability is multiplied by 
the total area of the landscape unit.  
 

Number of 
Patches 

NP Number of patches of a particular patch type 
 

Patch Density  PD (number of 

patches per 100 ha) 
 

Number of patches of the corresponding patch type standardised on a per 
unit area basis 

Splitting Index SPLIT SPLIT is 1 when the landscape consists of a single patch, increasing in value 
as the focal patch type is increasingly reduced in area and subdivided into 
smaller patches.   
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5.2.4.2 Habitat Productivity 

Google Earth Engine (Gorelick et al., 2017) was used to calculate the NDVI-based 

habitat productivity metrics using data from Landsat 8 Surface Reflectance Tier 1 collection 

(Wulder et al., 2019). Monthly greenest pixel composites were produced for March to 

September using images from 2014 to 2016 to minimise cloud, cloud shadow and haze not 

removed by the cloud masking (Van Leeuwen et al., 1999). The monthly composites were 

created by taking the highest NDVI value for each pixel in all images obtained from 2014 to 

2016 for each month. Images from March to September were used as this forms the main 

vegetation growing season in the UK. From these monthly composites individual NVDI 

metrics were calculated for the area covered by each land cover class within each 1km 

square in GB, for each month and for the main vegetation growing period (March-

September) as a whole; the land cover classes derived from LCM2015 (table 5.3) were used 

to identify the areas of different land cover classes within each square. The metrics chosen 

were mean, standard deviation, coefficient of variation, minimum, maximum, range, 

median, 20th and 80th percentiles, interquartile range and sum (growing season only) of the 

NDVI values. These metrics were only calculated for the arable, broadleaved, coniferous, 

grassland and semi-natural land cover classes. An example of the Google Earth Engine script 

used to extract the NDVI metrics can be found in Appendix 2.  

5.2.5 Random Forest Regression 

Random Forest (RF) regression (Breiman, 2001) was used to produce the maps of wheat 

yield and farmland bird richness using the data described in sections 5.2.1-5.2.4. RF is a machine 

learning algorithm that can be used to estimate a continuous response variable using regression 

analysis. In this study the randomForest R package (Liaw and Wiener, 2002) was used to build 

models with 1000 trees. Further details on Random Forest and its implementation can be found in 

Appendix 2.  The decision to use RF was made based on its ability to handle complex interactions 

between variables and non-linear responses (Breiman, 2001; A. M. Prasad et al., 2006). RF has been 
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used in previous studies to successfully estimate both bird species richness (Carrasco et al., 2018; 

Hunt et al., 2020, Chapter 4) and wheat yield (Hunt et al., 2019a, Chapter 3) from remotely-sensed 

variables.  

The performance of the models built were assessed using R2 and RMSE values calculated in 

two different ways: (i) internal validation carried out by the randomForest package, and (ii) separate 

10-fold cross-validation using the training dataset. For the wheat yield model, an additional 

validation was carried out using the separate validation dataset.  

To produce the wheat yield map, fields containing wheat were identified using the 2016 

Land Cover Plus ®: Crops map. Mixed boundary pixels were removed from the dataset by buffering in 

the field boundaries in the crop map by 20m. Farmland bird richness was estimated for all squares in 

the study area covering agricultural areas. The wheat yield and farmland bird richness maps were 

created at resolutions of 10m and 1km respectively, according to the differing resolutions of the 

training data. To allow further analysis of these two datasets the average wheat yield per 1km 

square was calculated, to match the farmland bird richness map, producing two spatially equivalent 

datasets. The focus of this study is the sustainable intensification of arable agriculture, therefore 

only areas under this type of agriculture or areas potentially influenced by it were included. As such, 

only squares which contained at least 20% crop cover were included in the subsequent analysis to 

exclude squares which did not contain much arable land; these squares were identified using the 

2016 Land Cover Plus ®: Crops map. 

5.2.6 Gap Calculation 

The aim of this study is to assess the relative performance of arable areas within the 

landscape based on wheat yield as a measure of agricultural intensity and farmland bird richness as 

a proxy for environmental quality. The goal of sustainable intensification is to maximise yield without 

harming the environment. As such, it is important to know what is possible for a specific location. 

Potential yield and potential bird richness will be affected by environmental conditions, as well as 
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environmental management. Directly comparing wheat yield and farmland bird richness for different 

areas without taking into account differences in environmental conditions could be misleading.  

One way to account for this underlying variability is through gap analysis. The idea of a yield 

gap has been widely used in agricultural intensity studies (Lobell et al., 2009; Van Ittersum and 

Rabbinge, 1997). Yield potential can be defined as the potential yield of a crop when grown under 

favourable conditions without growth limitations (Lobell et al., 2009). Various methods exist to 

determine the yield potential including crop model simulation, field experiments and taking the 

maximum yield of a sample of farmers in a region of interest (Lobell et al., 2009). In this study, the 

gap concept is applied to both wheat yield and farmland bird richness, comparing the yield and 

richness values at a specific location to potential values. The aim is to normalise the differences in 

yield and richness, due to the variable environmental conditions across the study area, so that the 

remaining variability is due to management. Thus, enabling direct comparison of different locations 

across the study area.  

In this study, the potential wheat yield and farmland bird richness for each 1km square were 

calculated by spatially stratifying the study area according to the ITE Land Classification of Great 

Britain (Bunce et al., 1996); a map showing the distribution of the ITE land classes can be found in 

figure A8 in Appendix 5. The ITE Land Classification splits Great Britain into environmental strata 

based on 75 environmental variables including climatic data, topographic data and geology data. The 

environmental strata provide regions with similar characteristics and environmental qualities. This 

makes the ITE land classes good spatial units to calculate potential against, as they account for the 

environmental variability in the study area better than simply using a moving window or assuming a 

maximum value for the entire study area. The potential value for a given 1km square was taken to 

be the maximum value found across all squares falling within the same ITE land class. The gap was 

then calculated as the difference between the potential and actual value for each square. This 

method was applied to both the wheat yield and farmland bird richness datasets. 
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5.2.7 Performance Feature Space 

 To assess the performance of arable agriculture, the wheat yield and farmland bird richness 

gap values for each 1km square were plotted against one another to create a feature space in which 

relative performance could be plotted. A colour blending approach was adopted to create a 

continuous performance colour scale by overlaying two separate graphs, the first with points 

assigned colour based on their yield gap value, the second with colour assigned based on the 

richness gap value. Overlaying these two graphs creates a continuous colour scale of relative 

agricultural performance. To explore how farm performance varies in space, a map was created by 

overlaying the 1km yield gap and richness gap maps, using the same colour schemes as were used to 

create the feature space.  

5.3 Results 

5.3.1 Wheat Yield and Farmland Bird Richness Gap Data 

The RF models created to estimate wheat yield and farmland bird richness performed 

relatively well (table 5.5). Wheat yield was estimated with an R2 value of 0.91 and an RMSE of 0.60 

from the cross-validation, while farmland bird richness was estimated with a cross-validation R2
 

value of 0.54 and an RMSE of 2.22 (table 5.5). The outputs showed that in the study area, wheat 

yield ranges from 6.13 to 11.93 tonnes/ha and farmland bird richness ranges from 2.91 to 15.73. The 

wheat yield map (figure 5.3a) reveals a cluster of high yielding squares to the north east of the 

image, which is associated with the high quality agricultural land of the Lincolnshire fenlands. The 

yield values across the rest of the map are more variable and less clustered. In terms of farmland 

bird richness (figure 5.3c), the northeast also performs well, while clusters of lower richness can be 

seen in the southeast and northwest, with a more varied picture across the rest of the region. 
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Table 5.5: RMSE and R-squared values for the wheat yield and farmland bird richness Random Forest 

models calculated from (i) the training dataset, (ii) 10-fold cross-validation with the training data 

(values in the brackets represent the standard deviation for these cross-validation values), and (iii) 

the validation dataset (wheat yield only). 

 
Estimated Variable 

Training data Cross-Validation Validation data 

RMSE R2 RMSE R2 RMSE R2 

Wheat yield 
 

0.61 0.91 0.60 (0.04) 0.91 (0.01) 0.62 0.90 

Farmland Bird Richness 2.26 0.56 2.22 (0.1) 0.54 (0.04) -- -- 
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Gap values represent the difference between the potential values and the actual values, with potential 

values based on the maximum value within in each ITE land class. The colour scale for the gap maps has 

been inverted to aid comparison as, when considering performance, the ideal scenario is high actual 

yield/richness values, but low gap values. The white areas represent the 1km squares that contain less 

than 20% arable land. A map of counties within the study area is provided for spatial context.  

Figure 5.3: (a) Average wheat 

yield per 1km square 

calculated from wheat yield 

(10m) estimated using 

Random Forest regression, (b) 

wheat yield gap, (c) farmland 

bird richness estimated using 

Random Forest regression, and 

(d) farmland bird richness gap.  
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To minimise the variability due to location and maximise the variability due to management 

practices, actual yield and richness values were transformed to gap values. These gap values 

represent the difference between what is attainable in a given area (potential values) and what is 

observed (actual values). The potential values were based on the maximum values in each ITE land 

class, ranging from 8.66 to 11.93 tonnes/ha for wheat yield and 6.84 to 15.73 for farmland bird 

richness. When considering gap values, it is important to remember that low values indicate better 

performance, as they suggest areas are closer to reaching their full potential.   

The resulting yield and richness gaps indicate different spatial distributions, in terms of 

performance, compared to the actual yield and richness values. The area of high performance for 

yield in the north east of the region becomes less well defined when looking at the yield gap, while 

areas in the south perform better (figure 5.3b). The loss of spatial pattern is to be expected when we 

normalise for environmental conditions, whilst the variability due to the management practices is 

retained. Looking at the richness gap reveals a more clearly defined area of high performance in the 

north east and an improved performance to the north west, compared to the actual farmland bird 

richness (figure 5.3d). However, generally the richness gap varies unsystematically across the 

landscape. The yield gap values range from 0 to 5.27 tonnes/ha across the landscape, while richness 

gap values range from 0 to 12.35. 

5.3.2 Performance Feature Space and Map 

The performance feature space created in this study is a novel feature space formed by 

plotting the wheat yield gap against the farmland bird richness gap. A continuous colour scale, 

representing relative performance, was created by assigning points two colours, one based on the 

yield gap value and one on the richness gap value (figure 5.4). From the spread of points within the 

feature space, it is clear that most arable areas have the potential for some improvement in terms of 

both richness and yield to equal the best performing arable areas in the landscape. However, it is 
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possible to make some broad distinctions between points, in terms of whether improving richness or 

yield should be prioritised, based on their relative position within the feature space.  

In general terms, points in the lower left section of the feature space represent arable areas 

with the largest yield and richness gap, indicating there is room for improvement in terms of both 

yield (intensity) and richness (environmental quality). Points that fall in the upper left section 

represent arable areas with a small richness gap, but large yield gap, indicating these areas need to 

focus mostly on improving yield, rather than richness. Points located in the lower right section, 

represent arable areas with large richness gap, but small yield gap, indicating these areas need to 

focus mostly on improving richness. And finally, points in the upper right section represent arable 

areas which are performing best (small yield and richness gaps), indicating there is little or no room 

for improvement, relative to the other arable areas in the landscape.  

These broad classifications are given to demonstrate how this feature space should be 

interpreted, but, as the feature space represents a continuous scale of agricultural performance, for 

the majority of arable areas there appears to be the potential to improve both richness and yield. It 

is important to remember that this feature space provides a relative, not absolute, measure of 

performance. As such it should not be interpreted as indicating that certain locations are definitively 

sustainable or unsustainable, rather it provides an indicator of the relative performance of arable 

areas compared to the landscape as a whole. 

Future work could explore the benefits (to interpretation) of splitting the data into more 

distinct categories (e.g. quadrants) to aid farmers in their interpretation of the feature space and 

therefore help them identify where they should be focusing their efforts to maximise agricultural 

performance in terms of both intensity and environmental quality. 
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Figure 5.4: Performance feature space created by plotting values for the yield and richness gap for 

each 1km square. Points have been coloured with two different colour schemes one for yield and one 

for richness gap (shown in the bottom graphs) to produce a continuous scale to provide an indication 

of the variable performance level within the feature space.  
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To explore how farm performance varies in space, a map was created by overlaying the 1km 

yield gap and richness gap maps, using the same colour schemes as in figure 5.4. From this map, a 

number of spatial patterns were revealed (figure 5.5). Two main clusters of low performance (pink) 

squares can be seen, one located to the north, in the western part of Lincolnshire, the other in the 

southeast in Hertfordshire; these correspond to the squares with relatively large richness and yield 

gaps. Squares with large richness gaps, but small yield gaps (grey/green squares) are less clearly 

clustered, but can be found mostly in the southeast, north of London. Squares with small richness 

gap, but a large yield gap (blue/brown squares), can be found in two main clusters, the largest in the 

east around Cambridgeshire, with a smaller cluster in the west/northwest. Finally, there are two 

main clusters of high performance squares (pale green squares), those with small yield and richness 

gaps. These clusters are located in the northeast, east of Lincolnshire, and in the southwest around 

Oxfordshire and Buckinghamshire. While it is possible to identify these broad patterns of 

performance, there is still a lot of localised variability in over- or under-performance. This highlights 

how this methodology could be used to identify specific areas requiring further investigation or 

intervention to ensure they reach their potential. 
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Figure 5.5: Map indicating the relative performance of 1km squares within the landscape. This map 

was created by overlaying the 1km yield gap and richness gap maps using the same colour schemes 

as shown in figure 5.4.  The legend provided shows 8 distinct colours to make it easier to distinguish 

squares with different performance properties, in reality this is a continuous scale. White squares are 

those that contain less than 20% arable land. A map of counties within the study area is provided for 

spatial context.  

 

5.4 Discussion 

 Being able to efficiently monitor the sustainable intensification of agriculture is critical for 

ensuring future food demands are met without detrimental environmental impacts, however 

suitable methods need to be developed. Reliance on traditional data sources such as field and farm 
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surveys limits the spatial and temporal resolution and coverage of current assessment attempts, 

affecting their reliability. However, as this study demonstrates, there is significant potential for using 

satellite data to enhance these assessments. Studies conducted using field data typically focus on a 

number of individual farms for which data are available (e.g. Elliott et al., 2013; Firbank et al., 2013). 

The availability of satellite data for all locations, recorded at regular intervals at a range of 

resolutions and spatial scales, means that farm-scale assessments can be scaled up to the landscape-

scale. This allows us, as this study demonstrates, to assess agricultural performance not just for 

individual farms but for entire landscapes. Combining satellite data with appropriate in situ data as 

demonstrated would allow agricultural performance to be assessed anywhere in the world.   

 The novel feature space and map presented in this paper provides an effective way of 

assessing the relative performance of arable areas within a landscape. Using this feature space it is 

possible to identify arable areas where there appears to be potential for improvement in terms of 

intensity of the agriculture (i.e. increasing yield), the quality of the surrounding environment, or 

both. In terms of sustainable intensification, the goal would be for all arable areas to move towards 

the upper right section of the feature space, where the maximum potential yield and farmland bird 

richness for each location are achieved. The ability to assess performance of individual arable areas 

and the landscape in general means that a feature space such as this could provide useful 

information to multiple stakeholders to ensure progress towards sustainable intensification. 

Individual farmers, for example, could use this feature space to identify potential areas for 

improvement to help them to determine where investments and changes to practices should be 

targeted. It could also allow them to see how their performance compares to that of their 

neighbours and the wider landscape. Crucially, because we use yield values and bird richness values, 

farmers could identify where their farms fall in the feature spaces presented above without needed 

to use EO data, using their own observations of bird richness and their own yield measurements.  
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 Researchers, in collaboration with other stakeholders, could use this feature space to assist 

in identifying the most effective means of improving performance in specific locations. The feature 

space could be used to identify the best and worst performing farms in an area to develop best 

practice guidelines or to understand the impact of different management practices or agri-

environment schemes. It could also help to identify the areas/countries where there is the biggest 

room for improvement both in terms of agricultural production and environmental quality, 

therefore guiding national and international policies/strategies. 

 The feature space could also prove useful to governments, aiding them in managing farming 

subsidy schemes. The new farming subsidy bill for England, for example, has an emphasis on 

delivering environmentally friendly outcomes, such as habitat enhancement, as well as cultivating 

land (Stokstad, 2020). A feature space such as the one presented here could help the government to 

monitor the outcomes of practices implemented by individual farmers, ensuring that farms 

producing the biggest environmental benefits and meeting requirements of these schemes are 

rewarded appropriately. The success of specific management techniques, in terms of environmental 

benefits, will be location dependent. It is therefore important for governments to be able to assess 

the outcome of the techniques implemented to make sure they are actually providing a benefit, 

rather than assuming a ‘one size fits all’ approach to farming.  

 At present the current feature space assesses performance for 2016. However, 

intensification is a process rather than an end state, hence it must be monitored over time. EO data 

could make a significant contribution in this respect, with the availability of regular, repeat satellite 

imagery allowing change over time to be assessed at various temporal scales. The ability to monitor 

the performance trajectory of individual farms and countries as a whole will help to ensure we are 

progressing towards sustainable intensification. The availability of long-term data (e.g. 30-40 years 

from Landsat data archive) will also allow the establishment of a baseline against which changes 

over the long- and short-term can be assessed. This will make it easier to identify the impact farming 
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has had in the past and therefore determine which management techniques should be phased out 

and which should be maintained/prioritised.  

 It is important to note that in its current state, the feature space presented here allows a 

relative, rather than absolute, assessment of performance to be made. While this undoubtedly 

provides useful information, to ensure we are moving towards sustainable intensification we need to 

be able to say definitively whether different areas/farms are sustainable or unsustainable. To be able 

to determine where agricultural performance sits in terms of true sustainability, additional 

information is required to calibrate the performance feature space to provide an absolute 

assessment of sustainable intensification. Calibration will require a global data collection campaign 

alongside consultation/collaboration with international agricultural and environmental experts to 

determine locally appropriate sustainability criteria and thresholds. Data collection would be 

required on multiple scales with intensive data collection on a small number of farms monitoring a 

large number of indicators, and extensive data collection with a smaller number of measurements 

conducted on a large number of farms. The ground data required to train satellite data-based 

models will be of interest to multiple research areas, not simply sustainable intensification. Soil 

carbon, for example, is of considerable interest to climate change scientists because of its role in 

minimising the impact of climate change. This property, as an indicator of soil quality, would also 

prove useful in indicating the impact of agricultural management on environmental quality. Some of 

this data may already exist, so part of the challenge would involve discovering and integrating 

existing data. Collection of in situ data for these indicators could therefore be conducted in 

collaboration with other schemes focussed on tackling the big environmental issues affecting 

humanity.  

 Part of this calibration/data collection process will require consideration of the types of 

indicators which should be monitored, and the spatial and temporal scales over which these vary 

and should therefore be assessed. The present study utilises one indicator of agricultural intensity 
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and one indicator of environmental quality. However, these issues are multi-faceted and many 

potential indicators exist. From satellite data it is possible to derive multiple indicators of both 

agricultural intensity and environmental quality, with the latter covering aspects of vegetation and 

ecosystem health, soil and water quality, and biodiversity (see Hunt et al. (2019b, Chapter 2) for a 

review). Inclusion of multiple satellite-derived indicators could allow more in depth, reliable 

assessments to be made.  

 Future work should explore the application of the method presented here to produce 

performance feature spaces for other areas. This is feasible because multiple countries, such as the 

United States and France, conduct national surveys similar to that of the British Breeding Bird 

Survey. Within developed countries the use of yield monitor-equipped combine harvesters are also 

common. The global coverage and consistent nature of satellite data (e.g. image resolution, data 

quality) mean that with access to these training datasets, performance feature spaces could be 

created. Such work would allow us to assess the efficacy of this approach in other countries, with 

different environmental conditions and agricultural management approaches. Meeting future food 

demand is a global issue. Being able to assess agricultural performance globally, on multiple scales 

and compare between countries is therefore crucial to allow us to identify the areas locally and 

globally where there is the most potential for improvement in terms of both agricultural production 

and environmental quality. This ability to monitor agricultural performance across multiple scales 

and diverse agricultural locations, at various temporal resolutions, could facilitate the creation of an 

operational sustainable intensification monitoring system combining satellite and in situ data.  

5.5 Conclusion 

 This study presents an innovative new feature space that can be used to assess the relative 

performance of arable areas on a landscape-scale, created by combining two novel satellite-derived 

indicators of agricultural intensity and environmental quality. The creation of this feature space 

demonstrates how integrating satellite data with in situ data can efficiently scale up field 
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observations to provide performance assessments over large areas which could not be obtained 

with field data alone. This feature space can be used to assess the relative performance of individual 

farms relative to their surrounding landscape and identify locations where there is most room for 

improvement in terms of both agricultural intensity and environmental quality. This information will 

prove useful to individual farmers, governments and researchers alike as we seek to progress 

towards a more sustainable form of intensive agriculture.  
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6. Research Outcomes 

Before summarising the key research contributions from this thesis, it is important to note 

that this research would not have been possible even a few years ago. Advances in cloud computing 

platforms facilitated much more efficient data access and data processing. Extraction of the habitat 

productivity measures for every 1km square within Great Britain was carried out using Google Earth 

Engine (Gorelick et al., 2017). In the past, such a process would have been incredibly time 

consuming, with the need to download and process each image individually. This would have 

restricted the area and timescale that could be covered, and the number of metrics that could have 

been derived, thus limiting the accuracy with which bird richness could be estimated. With Google 

Earth Engine, however, all processing can be conducted using an internet browser and cloud-

processing, meaning only the results need to be downloaded, significantly expanding the potential of 

the area, timescale and variables that can be explored.  

Additionally, the move to free access to all Landsat data (Wulder et al., 2012) meant that 

sufficient data was available to allow the explanatory variables to be derived for the whole of Great 

Britain for multiple months across multiple years. The launch of the Sentinel-2 satellites (Drusch et 

al., 2012), starting in 2015, also played a key role, providing data of high resolution to assess within-

field yield variability. Without these freely available sources of data, the bird richness and wheat 

yield data products could not have been created to allow agricultural performance to be assessed on 

a landscape scale. With EO data increasing exponentially and cloud computer power increasing, it is 

becoming more realistic to do regular large-scale land surface monitoring (Woodcock et al., 2020) 

opening up the potential to monitor sustainable intensification globally. The approach developed in 

this thesis provides conceptual and analytical foundations for doing this. 

6.1 Key Contributions of Thesis 

While there are many useful outcomes of this research project, there are a number of key 

contributions that should be highlighted. Firstly, the literature review presented in chapter 2 is the 
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first paper to consider the use of EO for monitoring sustainable intensification, demonstrating the 

wide variety of measures of agricultural intensity and environmental quality that could be derived 

from satellite data. Bringing together this information in one place creates a useful reference article 

for researchers of multiple disciplines, not only those interested specifically in sustainable 

intensification. For example, the potential to monitor variables such as soil organic carbon using EO 

would be of interest to climate change scientists, while variables such as species richness would be 

of interest to ecologists. This chapter presents a general overview of the capabilities and benefits of 

remote sensing, making it accessible to both remote sensing scientists and non-remote sensing 

scientists alike. It also presents a set of recommendations, including the development of a 

comprehensive new set of Essential Sustainable Intensification Variables, for the creation of an 

operational EO-based assessment system which could facilitate global monitoring of sustainable 

intensification. Creating the ESIVs forms a key step in the creation of this system, ensuring the major 

dimensions of agricultural and environmental change are captured, allowing sustainable 

intensification to be monitored.  

 Chapter 3 demonstrates how high resolution yield data from a small number of fields can be 

scaled up using satellite data to provide an assessment of within-field yield variability on a landscape 

scale. While previous efforts had been made to assess within-field yield variability using satellite 

data (e.g. Burke and Lobell, 2017; Lambert et al., 2017), these studies typically lacked field data of 

sufficient resolution to be able to assess the accuracy of the maps produced. With its inclusion of 

combine harvester data, this work demonstrates that yield variability can be estimated with a high 

degree of accuracy using both Sentinel-2 data on its own and by combining it with environmental 

data. The use of Random Forest regression in this study demonstrated the value of this user friendly 

approach to model building. With Random Forest, all potentially important variables can be added 

and the algorithm assesses the order and way in which variables should be used, dealing internally 

with the complex interactions and relationships between variables. This reduces the input required 

by the user, helping to make it a more accessible and transferable approach.  
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One criticism of Random Forest, and similar algorithms, is the black box nature of the 

modelling approach, which makes it hard to understand exactly what the model is doing. Chapter 4, 

however, goes beyond simple estimation to begin to investigate the models created by Random 

Forest. This highlights how using variable importance and feature contribution analysis techniques 

allows us to gain an understanding of the strength and nature of the relationships between 

individual explanatory variables and the response variable. In this case, the work demonstrated the 

non-linearity of the relationships between key habitat productivity and heterogeneity variables, and 

bird species richness and diversity. Being able to break down these models allows better 

interpretation of what is going on in the model, providing information that can be applied in the real 

world. For example, details of the nature of the variables impacting bird species richness can be used 

to identify the environmental elements that are most important for promoting high richness, which 

can inform management practices. Such analysis techniques help to turn these black box models 

into more open, interpretable and useful white box models.  

The culmination of this work, the EO-based assessment of relative agricultural performance, 

is the first demonstration of this application of EO. Being able to monitor agricultural performance is 

crucial for ensuring that attempts to sustainably intensify agriculture are successful. Reliance solely 

on traditional data collection techniques, such as farm surveys, to provide data, results in 

performance assessments of limited spatial and temporal coverage. With long-term, consistent data 

coverage across the globe, there is the potential for EO to play a key role in monitoring agricultural 

intensification building on international efforts such as GeoGLAM. Chapter 5 provides proof of this 

potential, demonstrating how EO can monitor relative agricultural performance over large areas. 

More work is needed to create a system to routinely assess sustainable intensification, requiring, for 

example, monitoring to be conducted over multiple years to track changes. However, the research 

presented in this thesis represents the first important step in the process of creating an operational 

EO-based sustainable intensification monitoring system. 
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6.2 Estimation Uncertainty 

Based on the R2 and RMSE values (chapters 3-5), wheat yield and farmland bird richness are 

predicted with relatively high accuracy. However, there are of course a number of sources of 

uncertainty which must be considered. With the yield data there are uncertainties relating to the 

way in which the data are collected; these include harvest lag time, GPS positional accuracy, and the 

use of different equipment between fields. Harvest lag time is the delay between the crop being 

harvested and it actually being measured at the yield monitor. This delay means that the yield 

measurement recorded may not match the actual harvest position. The length of this delay varies 

depending on the specific combine harvester model, yield monitor and GPS receiver used. Various 

estimates of this delay time have been made such as 6-18s (Ping and Dobermann, 2005) and 8-24s 

(Griffin et al., 2007). Many manufacturers recommend assuming a delay time of 12s (Lyle et al., 

2014) when correcting for positional errors. However, the appropriateness of this assumption will 

vary depending on the equipment used. Hence, whilst harvest time lag can be corrected to some 

extent, as was done in chapter 3, some uncertainty remains.  

The GPS positional accuracy attainable with agricultural grade receivers has been 

determined by several studies to vary between 1 to 3m (Lyle et al., 2014). In some cases, positional 

errors may affect all points, leading to measurements offset from the field boundary; this can be 

solved with by simply applying a positional offset to the whole dataset. In other cases, errors may 

apply to only a small number of points, which can manifest itself as a false representation of the 

actual harvest path. The correct harvest path can be identified, for example through use of simple 

geometrical adjustments, but this relies on the assumption that certain points are correctly 

positioned, while others are erroneous (Lyle et al., 2014). Therefore, while corrections can be 

applied to address positional accuracy, there will still be some uncertainty in the resulting datasets.   

Due to the large geographical area covered by the sample fields, different equipment will 

have been used for the yield data collection. As such, the accuracy of the yield monitor and GPS are 
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likely to differ, even between the same make and model. In this work, when applying corrections to 

the data, the same criteria were applied to each field. The potential variation in the accuracy of the 

data collection sensors, means that the appropriateness of the thresholds used for correction may 

differ slightly between fields. This means that the corrected data presented for some fields may be 

more reliable than for others. With information on the specific sensors used for data collection, it 

may be possible to tailor the corrections applied to each field to improve accuracy. However, in this 

case this information was not available, so this potential source of uncertainty must be taken into 

consideration when comparing the yield values between individual pixels.  

Similarly, the model does not explicitly account for differences in management practices, the 

start of the growing season or growth condition across the wider landscape. It is assumed that these 

are, to some extent, captured in the training data, but at present independent data is not available 

to assess this assumption.  

As well as the potential uncertainties that exist in the response variable training data (yield 

and bird data), there are also some potential sources of uncertainty within the input feature variable 

data sets. Within the satellite data, for example, there are various potential sources of uncertainty 

such as possible sensor glitches and atmospheric disturbance (e.g. haze) within the images. Using an 

empirical model will account for some of this uncertainty, as sources of noise such as haze in the 

satellite image will be taken into consideration when building the model. However, it will not 

account for all of the uncertainty. 

Another source of uncertainty comes from the accuracy of the land cover and crop maps. 

Misclassification of the land cover contained within each pixel would lead to inaccuracies in the 

derivation of the habitat heterogeneity variables, affecting the accuracy of the random forest 

models. Errors in crop type identification could lead to the yield estimation model being applied to 

fields which do not contain wheat. As different crops have different characteristics and growth 
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patterns, applying a model built using wheat yield data to other crops would likely lead to inaccurate 

yield measurements. 

The Met Office climate data used for yield estimation was derived from a set of daily 

observations of temperature and rainfall interpolated to a uniform 5km grid (Met Office, 2017). The 

reliability of these data will depend on the accuracy of the interpolation. While the interpolation 

process is designed to account for effects such as latitude, longitude, altitude and coastal influence, 

there are likely to be some inaccuracies which will be propagated through the model.  

In addition, there is clearly a discrepancy between the resolution at which the climate data is 

available (5km) and the resolution at which yield is being estimated (10m). The comparably low 

resolution of the climate data will mean that the data will not be able to fully reflect the micro-

climate variations affecting crop growth in different locations. The inability to accurately determine 

small-scale climate variations will obviously introduce some uncertainty into the yield estimation 

process. In the absence of higher resolution data that could possibly reduce uncertainty, the Met 

Office data still appears to contribute valuable information to the yield estimation model, as 

demonstrated in chapter 3.  

Availability of suitable data may not only introduce uncertainty into the modelling process, it 

also affects our ability to evaluate this uncertainty. While the final yield map was validated using 

data not used to train the Random Forest model, it would have been beneficial to perform further 

validation using data from an independent source to provide an independent assessment of the 

accuracy of the map. However, at present there are no suitable datasets available to carry out such a 

validation. Defra, for example, does collect yield data, however the spatial aspect of this dataset is 

insufficient for validation, with yield values assigned to postcodes rather than specific fields. High 

resolution spatially defined data does exist, however the commercially sensitive nature of this data 

means that it is not made readily available by the farmers collecting it.  
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The bird richness/diversity models were unable to explain around 30% of the variation, 

which may seem high. However, when interpreting this performance it is important to consider the 

wider research context of these results. Within ecological and biological studies, randomness and 

noise in data can lead to a significant reduction in the amount of variance that can be explained 

(Møller and Jennions, 2002). When attempting to predict bird richness/diversity, we are dealing with 

living organisms that are affected by a vast array of biotic and abiotic factors. The complexity and 

dynamic nature of these interactions significantly reduce the amount of variance that it is possible to 

explain. Møller and Jennions (2002), for example, found that from 43 published ecological studies 

the mean amount of variance explained (r2) was 2.51-5.42%. As such while the bird 

richness/diversity models do not explain as much variance as might typically be expected from a 

model that is performing well, in terms of ecological modelling, these models are performing 

remarkably well. 

While these bird richness/diversity models do appear to be performing well, there are of 

course various sources of uncertainty which must be taken into consideration. One source of 

uncertainty within the BBS data results from the process of field data collection. The BBS involves 

volunteers conducting bird counts on two occasions during the survey period (Harris et al., 2019). 

The number of each species recorded on each day will be affected by elements other than whether 

birds are actually present. For example, bird numbers will be affected by the weather conditions on 

the survey day and the time of day that the count is carried out. Additionally, the experience of the 

volunteer may affect their ability to correctly identify and record different species (Eglington et al., 

2010). As such, the data within the BBS, while an incredibly valuable and carefully managed data set, 

is likely to contain a relatively high level of noise. The relatively large uncertainty in this data is likely 

to limit the extent to which a model will be able to explain the variance in the data, limiting the 

maximum achievable R2 value. It is in this context that the values of R2 between 0.64 and 0.72 

achieved here should be viewed.  
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Additionally, the relationship between the explanatory variables and individual species is 

likely to differ, based on the differing habitat requirements of these species. In chapter 4, all 

farmland birds were grouped to provide an estimate of species richness. As a result, while the 

observed richness in two squares may be the same, the species making up this richness value may 

differ. Different species will require different elements in the landscape to support their presence. 

As such, while two squares may have the same richness, the landscape elements observed may be 

different. Therefore, attempting to directly estimate species richness may make it harder for 

Random Forest to accurately determine the relationships between the explanatory variables and 

farmland bird richness, leading to uncertainty in the estimated values. To address this issue, future 

work could use satellite data to model the presence of individual species within each square, 

building species-specific Random Forest models to ensure the presence of all species is estimated for 

each 1km square with the highest possible accuracy. From this presence data, richness could then be 

calculated to provide the required biodiversity measure to give an indication of wider environmental 

quality.  

6.3 Performance Assessment Scale 

If we are to meet future food demands, we need to maximise the agricultural performance 

of all fields and farms. To do this, we need to be able to accurately assess the performance of 

individual fields and farms. This thesis demonstrates that it is possible to estimate the relative 

performance of arable areas at 1km resolution. However, as each 1km square may contain multiple 

fields/farms, these squares represent the cumulative performance of these fields. If fields within 

these squares are managed in different ways this will make it harder to determine the relative 

performance of each individual field. To improve the accuracy of field-/farm-scale performance 

assessments, we therefore need to be able to produce a higher resolution performance map. As this 

thesis demonstrates, EO can be used to assess yield at a relatively high resolution (10m). Bird 

richness, however, can only be estimated at a resolution of 1km, due to the resolution of the training 
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data. Therefore, to provide a higher resolution estimate of overall agricultural performance, the 

resolution at which environmental quality is estimated would need be to be improved.  

One option would be to further explore the relationships between bird richness and the 

satellite-derived measures of habitat productivity and heterogeneity. In this thesis a preliminary 

assessment of variable importance and feature contribution of the different explanatory variables 

was made. Further exploration of this may allow a better understanding of the factors affecting 

species richness and the scales over which they are relevant. With this information, it may be 

possible to focus on the factors affecting richness, rather than richness itself, to provide an indicator 

of environmental quality within an area. In other words, by identifying the characteristics that make 

an area suitable for birds, we can obtain an indication of the characteristics that reflect high or low 

environmental quality. This may allow environmental quality to be assessed at higher resolutions, 

being no longer constrained by the resolution of the richness data, providing greater flexibility to 

explore the impacts of specific farms on the environment.  Part of this work could involve exploring 

the relationships for individual species, rather than groups of species, as the exact nature of 

relationships are likely to vary between species.  

Another option to address the issue of scale would be to explore the possibility of utilising 

alternative measures of environmental quality. Bird richness was used in this study as the indicator 

of environmental quality largely due to the availability of the BBS data for multiple years. Bird 

richness is recognised as an important indicator of wider biodiversity (Furness and Greenwood, 

2013), and therefore environmental quality, hence this decision is justified. However, as chapter 2 

demonstrates, there are multiple potential EO-based indicators of environmental quality, such as 

soil carbon content and vegetation health. The nature of these indicators, with training data 

collected at finer scales than the bird data, mean that they lend themselves to being assessed at a 

higher resolution. With access to suitable training and validation data, the methods presented in this 

thesis (i.e. Random Forest regression) could be used to create a range of environmental quality 
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indicators at a higher resolution. This would subsequently allow environmental quality, and 

therefore agricultural performance, to be assessed at a higher resolution, providing more accurate 

assessments of individual farm and field performances.  

6.4 Realising the Potential of EO to Assess Sustainable Intensification  

This thesis demonstrates how EO can be used to provide an assessment of relative 

agricultural performance on a landscape scale. While at this stage this does not translate into an 

actual assessment of the sustainability of agricultural intensification, this work forms an important 

step on the road to delivering an operational EO-based monitoring system. Moving towards the 

creation of such as system will require a number of steps. These include:  

 Performance Map Validation. While the data sets used to create the performance feature 

space (i.e. farmland bird richness and wheat yield) can be validated using the BBS data and 

combine harvester yield data, it is currently not possible to validate the final performance 

feature space or map. Validation will require additional ground data to assess the 

agricultural performance in the landscape. This ground data must include multiple 

indicators, as agricultural intensity and environmental quality are both multi-faceted 

elements, as highlighted in chapter 2 of this thesis. Information regarding specific 

management practices applied to individual fields and farms will be required to allow an 

assessment as to how the performance map relates to what is actually happening on the 

ground. This need for ground data emphasises the fact the satellite data alone will not 

provide a solution to the issue of monitoring agricultural performance, and therefore 

monitoring sustainable intensification. Rather, satellite data will form one element of a 

larger monitoring system including intensive and extensive in situ data collection to ensure 

reliable assessments over diverse landscapes can be made on a global scale.  

 Application of the method to the whole of GB. In this thesis, agricultural performance is 

assessed for an area covering 20,000km2. This area was selected largely due to the coverage 
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offered by the 2016 combine harvester yield data at the time this study was conducted. 

Since this time, additional data for other years has become available covering a larger area. 

As such, future work should explore the potential for estimating wheat yield for the entirety 

of Great Britain. Since bird richness has already been estimated for this entire area (chapter 

4), scaling up the yield data would allow agricultural performance to be assessed for the 

whole of Great Britain.  

 Assessment of agricultural performance over time. As intensification is a process rather 

than an end state, assessments of agricultural performance must be conducted over time. 

Therefore, an important next step will be to apply the methods presented here to other time 

periods to track change over time. In GB, the high resolution combine harvester data is 

available from 2015 onwards, while the BBS has been going since 1994. While this means it 

will not be possible to assess the impact of past changes in management practices, it will 

allow changes going forward to be monitored. This will help to ensure current practices are 

having the desired impacts in terms of both agricultural intensity and environmental quality. 

Also, applying the methods to other years will help to assess the temporal transferability of 

these methods and assess their effectiveness for tracking change. 

 Application of the method in other countries. While the methods presented in this thesis 

were successful in GB, future work must explore their suitability in other areas, with 

different landscape characteristics and agricultural management practices. To be able to 

meet future food demands, we need to sustainably intensifying agriculture globally, not just 

in GB, hence we must ensure that we are able to reliably assess progress in all places.  

 Identification of the most suitable indicators. In this thesis, wheat yield and farmland bird 

richness are used as indicators of agricultural intensity and environmental quality 

respectively. These variables were chosen partly due to the availability of suitable in situ 

data for training and validation. As chapter 2 demonstrates there are, however, a wide range 

of potential indicators that can be derived from EO that could be used to assess agricultural 
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performance, and therefore sustainable intensification. Consultation with experts from 

diverse disciplines is required to ensure the most appropriate and widely measurable 

indicators are chosen. This consultation could result in the creation of a set of Essential 

Sustainable Intensification Variables (ESIVs) as suggested in chapter 2, to ensure a consistent 

and efficient approach to monitoring sustainable intensification can be adopted globally. 

 

6.5 Summary 

The aim of this thesis was to explore the role of EO in assessing the sustainable 

intensification of agriculture. The use of satellite data to scale up in situ data demonstrates how EO 

can be used to estimate within-field yield variability and bird richness using an accessible and 

transferable modelling approach. By combining these two datasets, a novel performance feature 

space was created demonstrating how EO can be used alongside in situ data to provide an 

assessment of relative agricultural performance on a landscape scale. This information would allow 

the identification of the best and worst performing farms, helping to identify the best management 

practices in different areas to inform future decisions. The demonstration of these methods to 

assess agricultural performance constitutes an important first step in the creation of an operational 

EO-based monitoring system to assess sustainable intensification and ensure we are able to meet 

future food demands.  
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Figure A1: Some of the key environmental impacts of various mechanisms of agricultural intensification with references. Reference 

numbers correspond to the list on pages 157-159. 
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Figure A2: Theoretical model of Sustainable Intensification (Agriculture For Impact, 2013). 
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Table A1: Examples of data sources and indicators used by various authors to investigate agricultural intensity. 

Study Area Data sources Indicator(s) 

Beijing mountainous region  
     (Zhang and Li, 2016) 
 

• Statistical Yearbook 2013 • Emergy analysis of agricultural inputs 

Northern Spain        
     (Armengot et al., 2011) 
 
 

• Interviews • Mean annual inputs of exogenous nitrogen  
       • Weed control intensity • Cereal ratio  
       • Crop diversity • Seed origin  
 

Germany 
     (Egorov et al., 2014) 

• Yearly interviews with farmers and land-owners • Land Use Intensity Index (LUI): summation of 
fertilization level, mowing frequency and grazing 
intensity 

 

France  
     (Teillard et al., 2012) 
 

• French FADN (Farm Accountancy Data Network) • Datasets from agricultural social 
security, CAP declarations, national bovine identification • Topo-climatic data 

• Input cost/ha 

India  
     (Biradar and Xiao, 2011) 
 

• MODIS (EVI, NDVI, LSWI) • Government agricultural census data • Field ground-
truth data inc. crop types and cropping pattern 

• Cropping intensity 

India  
     (Jain et al., 2013) 
 

• Landsat 5 TM & Landsat 7 ETM+ • MODIS (EVI) • Ground-truth data: Landsat, 
Quickbird, Worldview & Google Earth Imagery 

• Cropping intensity • Multi-cropping 

India  
     (Singh et al., 2002) 
 

• Crop cutting experiments • Crop yield estimation surveys • IRS-1B LISS-II • Crop yield 

Northern China  
     (Mingwei et al., 2008)   
 

• MODIS (NDVI) • Crop acreage  

China  
     (Yan et al., 2014)   
 

• Agricultural meteorological stations – crop calendar/crop phenological data 
•MODIS (EVI) • National LU/LC dataset 

• Multi-cropping  

China  
     (L. Li et al., 2014) 
 

• MODIS (EVI) • National survey data  • Cropping intensity 

China       
     (Xie et al., 2014) 
 

• Secondary agricultural statistics e.g. China Rural Statistical Yearbook • Emergy analysis of inputs to arable land per ha 

United States  
     (Johnson, 2013)  
 

• Cropland Data Layer LC classifications (derived from Landsat TM by Agricultural 
Statistics Service) • NASS Census of Agriculture & June Acreage Survey 

• Area of annually tilled cropland 

US Central Great Plains  
     (Wardlow and Egbert, 2008) 
 

• MODIS (NDVI) • Cropping area 

Canada  
     (Kerr and Cihlar, 2003) 

• Canadian Census of Agriculture • SPOT 4 VEG • Agricultural pollution 
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Table A1 continued   

Study area Data sources Indicator(s) 

Belgium, France, the 
Netherlands and Switzerland 
     (Le Féon et al., 2010) 

 

• Standardised interviews with farmers • Global Intensity Index: based on nitrogen input, 
livestock density and pesticide input 

Europe  
     (Donald et al., 2001) 
 

•FAOSTAT database • PCA analysis based on political & economic 
differences  

Europe  
     (Herzog et al., 2006) 
 

• Interviews • Geo-referenced aerial photographs • European Fourier-Adjusted & 
Interpolated NDVI dataset (Stockli & Vidale, 2004) 

• Nitrogen output • Density of livestock units  
       • Number of pesticide applications 

European Union  
     (Reidsma et al., 2006) 
 

• FADN survey • Input costs • Irrigation use • Organic or not? 

European Union 
     (Temme and Verburg, 2011) 
 

• Agricultural statistics & census data • CORINE land cover map • Land Use/Cover 
Area frame statistical Survey (LUCAS) dataset 

• Total nitrogen input 

Europe & Turkey 
     (Estel et al., 2016) 
 

• MODIS NDVI (Terra & Aqua satellites) • GlobCorine LC Map • Annual fallow/active 
crop maps 

• Cropping frequency • Multi-cropping • Fallow cycles      
• Crop duration ratio 

Russia  
     (de Beurs and Ioffe, 2014) 
 

•Landsat 5 • MODIS • All-Russia Agricultural Census • Field Observations • Cropping intensity 

Asia  
     (Gray et al., 2014) 
 

• MODIS (EVI) • Multi-cropping 

World  
     (Johnston et al., 2011) 
 

• Global census data from FAOSTAT database – M3 cropland datasets  • Yield gap analysis 

World  
     (Niedertscheider et al., 2016) 
 

• Earthstat gridded maps of crop yields & crop area • Human appropriation of net primary productivity 
(HANPP) 

World  
     (Potter et al., 2010) 
 
 

• National level fertiliser data – based on questionnaires • Global maps of harvested 
Area (from Monfreda et al. 2008) • FAO Gridded Livestock of the World maps  

• Fertiliser inputs of N & P  

World  
     (Siebert et al., 2010) 
 

• MIRCA2000 dataset – monthly growing areas of 26 irrigated & rain-fed crop classes  • Cropping intensity • Crop duration ratio  
       • Extent of fallow land 

World  
     (Thenkabail et al., 2009) 
 

• AVHRR • SPOT • JERS-1 • CRU rainfall time series (1961-2000) • Global Elevation 
dataset • Global Tree Cover data • Google Earth • Groundtruth data  

• Irrigated area 
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Table A2: Example EO-based methods used by researchers to assess agricultural intensity. 

Indicator Example Methods 

Crop yield  
 
 

NB: A brief review of crop yield estimation techniques can be found in the introduction 
to Doraiswamy et al. (2005, 2004, 2003) and Kasampalis et al. (2018) provide an 
overview of crop growth models. 

 

• Empirical regression-based modelling linking satellite-derived data (e.g. NDVI) to 
detailed official crop statistics (Becker-Reshef et al., 2010; Lobell et al., 2013; 
Salazar et al., 2007) or ground survey data (Ferencz et al., 2004; Ren et al., 2008; 
Yang et al., 2006); supplementary data may be included as additional explanatory 
variables (Balaghi et al., 2008; Prasad et al., 2006) 

• Estimate yield using regression models based on seasonal growth profiles from 
satellite-derived VIs (Kalubarme et al., 2003; Lai et al., 2018; Nagy et al., 2018; Son 
et al., 2014) 

• Crop yield simulation models incorporating satellite-derived data as either direct 
inputs or for calibration (Doraiswamy et al., 2005; Lobell et al., 2013; Moriondo et 
al., 2007) 

• Derive crop biomass using the Monteith light use efficiency approach (Awad, 2019; 
Leblon et al., 1991; Liu et al., 2010; Monteith, 1972; Morel et al., 2014; Pan et al., 
2009; Patel et al., 2006)  

Cropping area  
 
 

NB: Gallego (2004) provides a review of some common EO-based land cover area 
estimation techniques. 

 

• Pixel counting & sub-pixel analysis (spectral unmixing, linear mixing models, mixture 
modelling) applied to classified satellite images; ground data used as an 
auxiliary/validation tool (Gallego, 2004; Gallego et al., 2014; Gumma et al., 2014; 
Vibhute and Gawali, 2013)  

• Regression analysis combining satellite-derived information with an accurate 
sample (e.g. ground survey data) (Gallego, 2004; Gallego et al., 2014; Vibhute and 
Gawali, 2013) 

• Derive a cropland probability layer using a combination of classified images and 
satellite-derived land surface phenology metrics (de Beurs and Ioffe, 2014) 

• SAR time-series decomposition (Canisius et al., 2018; Ponnurangam and Rao, 2018; 
Xu et al., 2019); SAR data may be integrated with multispectral data to assist crop 
classification (Gao et al., 2018; Shuai et al., 2019) 

 

Cropping intensity 
– number of years 
a field is sown with 
crops and actually 
reaches harvest (de 
Beurs and Ioffe, 
2014) 
 

Cropping 
frequency – 
number of years a 
pixel was cropped 
over an 
observation period 
(Estel et al., 2016) 

Jain et al. (2013) provide a comparison of different methods to map cropping 
intensity. Methods included are:  

• NDVI threshold method – define threshold for cropped land for a particular season 
based on satellite-derived NDVI, training data and regression tree analysis; use to 
classify pixels as cropped or uncropped agriculture for all seasons of interest  

• EVI peak method: (1) define threshold based on satellite-derived EVI and training 
data for cropped and non-cropped areas; (2) identify peaks in EVI time series; if 
peak exceeds threshold then classify it as cropped agriculture  

• Hierarchical training technique (using EVI): (1) define the percent of each pixel 
cropped using higher resolution ground-truth imagery; (2) use this to calibrate EVI 
to quantify the percent of each pixel that was cropped in each season  

• Apply a series of simple decision rules to satellite-derived phenology metrics 
(phenology model) to distinguish cropped pixels from fallow lands. Example rules 
in de Beurs & Ioffe (2014).  
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Table A2 continued  

Indicator Example Methods 

Multi-cropping – 
number of harvests 
within a single year 
(i.e. growing 
season) (Estel et 
al., 2016) 
 
Cropping intensity 
– number of 
cropping cycles per 
year (L. Li et al., 
2014) 

• Use Temporal Mixture Analysis of end-member phenologies to determine whether a 
pixel is single, double or triple cropped (Jain et al., 2013) 

• Use a satellite-based phenology algorithm (e.g. Biradar and Xiao, 2011) to delineate 
the number of cropping cycles in a year 

• Apply time-series segmentation/iterative moving-window methodology to 
(smoothed) EVI time series to identify greening and browning phases and 
therefore cropping cycles; use to determine number of cropping cycles per year 
(Gray et al., 2014)  

• Use TIMESAT computer software to count the number of vegetation peaks in NDVI 
per growing season (Jönsson and Eklundh, 2004 in L. Li et al., 2014; Z. Li et al., 
2014) 

• Determine the number of growth cycles in a year by counting the number of peaks 
(using thresholding techniques) on a crop growth curve based on satellite derived 
VI (e.g. EVI) (Yan et al., 2014)  

 

Crop duration ratio Ratio of the time period (during the growing season) for which a pixel was cropped 
and the total length of the growing season (Estel et al., 2016) 
 

Fallow cycles –
recurring periods 
of fallow cropland  

To identify fallow cycles: (1) Map active/fallow farmland based on NDVI time series 
(Estel et al., 2015); (2) Filter time series for ‘chain segments’ i.e. certain number of 
consecutive fallow years; (3) count chain occurrence per pixel across entire time 
series; (4) summarise all chain segments using a weighting scheme (see Estel et 
al., 2016 for details).  
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Table A3: Example EO-based methods used by researchers to assess vegetation health. 

 Indicator Example EO-based Methods 

Crop condition NB: A review of remote sensing methods for assessing crop condition can be found in 
Vibhute and Gawali (2013).  

 

• Vegetation indices e.g. NDVI, NDWI, SAVI etc. – assume the higher the indices, the 
better the crop condition (Ali and Pelkey, 2013; Vibhute and Gawali, 2013)  

• Same-period comparing – compare EO-derived data (e.g. NDVI, LAI, VCI) of a 
specific period with data from period in history to determine areas of 
deterioration, no-change & improvement (Vibhute and Gawali, 2013; Wu et al., 
2015, 2014; Zhang et al., 2014)  

• Crop growth profile monitoring (Jiang et al., 2003; Vibhute and Gawali, 2013; Wu 
et al., 2015, 2014; Zhang et al., 2014)  

 

Plant Trait Mapping NB: Homolova et al. (2013) and Andrew et al. (2014) provide reviews of remote 
sensing techniques for mapping various plant traits.  

Biophysical traits inc. 
biomass,  
fAPAR, 
photosynthetic 
capacity 

• Empirical models (e.g. simple linear regression) relating limited field trait 
observations to EO-derived data such as vegetation indices (e.g. NDVI, EVI) & 
classified images (Baret and Guyot, 1991; Chen et al., 2010; Homolová et al., 
2013; Jackson et al., 2004; Karnieli et al., 2013; Sakowska et al., 2016; Schino et 
al., 2003; Sibanda et al., 2015; Turner et al., 1999)  

• Radiative Transfer Models (RTM) (Homolová et al., 2013; Myneni et al., 1997)  
• Estimate fAPAR using Neural Networks (Baghdadi et al., 2016) 
• Hyperspectral methods such as partial least squares regression (Hansen and 

Schjoerring, 2003)  
 

Structural traits inc. 
crop/canopy height, 
leaf area index (LAI), 
biomass, canopy 
morphology  

NB: The introduction to Atzberger (2010) provides a brief overview of methods used 
to estimate LAI. 

 

• Empirical models using spectral data, VIs or image texture metrics (Andrew et al., 
2014; Baret and Guyot, 1991; Clevers et al., 2017; Delegido et al., 2011; Z. Li et 
al., 2014; Wulder et al., 2004) 

• RTM-based approaches e.g. SAIL (Atzberger, 2010; Doraiswamy et al., 2004; 
Frampton et al., 2013; Homolová et al., 2013; Jackson et al., 2004; Myneni et al., 
1997; Verhoef, 1984) 

• Estimate using correlation between surface properties and backscatter from active 
sensors (Andrew et al., 2014; Z. Li et al., 2014) e.g. LiDAR (Drake et al., 2002; van 
Leeuwen and Nieuwenhuis, 2010) & Radar (Brisco and Brown, 1998; Kasischke et 
al., 1997)  

 

Biochemical traits 
inc. chlorophyll (Ch) 
& water content, 
nitrogen (N) & 
phosphorous (P) 
status 

• Empirical methods using vegetation indices (VIs) (Andrew et al., 2014; Khanna et 
al., 2007; Sakowska et al., 2016) for example: Double-peak Canopy Nitrogen 
Index (DCNI) (Chen et al., 2010); Modified triangle vegetation index 2 (Bagheri et 
al., 2013); NDVI (Cheng et al., 2008); Narrowband Green NDVI (NGNDVI) (Bausch 
and Khosla, 2010); Normalised Difference Water Index (NDWI) (Gao, 1996); 
Short-wave Infrared Water Stress Index (SIWSI) (Briant et al., 2010; Fensholt and 
Sandholt, 2003); Triangular Greenness Index (TGI) (Hunt et al., 2013); MERIS 
Terrestrial Chlorophyll Index (MTCI) (Dash and Curran, 2007)  

• RTM inversion e.g. REGFLEC (Andrew et al., 2014; Boegh et al., 2013; Frampton et 
al., 2013; Homolová et al., 2013; Houborg and Boegh, 2008; Jackson et al., 2004; 
Trombetti et al., 2008) 

• Estimate chlorophyll content using the red edge position (REP) (Z. Li et al., 2014) 
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Table A4: Example EO-based methods used by researchers to assess soil quality and soil 

erosion/protection. 

Indicator Example EO-based Methods 

Soil Quality NB: Shoshany et al. (2013) provide a review of EO methods for monitoring agricultural    
soil degradation 

Soil carbon (C) & 
organic matter 
(OM) 

• Empirical modelling (e.g. partial least squares regression, random forest) (Andrew et al., 
2014; Castaldi et al., 2019, 2016; Gholizadeh et al., 2018; Stevens et al., 2010) 

• Quantify using particular absorption features in the VIS-NIR-SWIR region (Ben Dor et al., 
1999 in Shoshany et al., 2013) or the degree of concavity of the reflectance spectrum in 
VIS wavelengths (Andrew et al., 2014; Palacios-Orueta and Ustin, 1998) 

 

Crop residue/ 
conservation 
tillage density 

• Map organic residue (or non-photosynthetic vegetation) cover using spectral unmixing 
approaches (Andrew et al., 2014; Pacheco and McNairn, 2010) 

• Spectral indices designed for detecting crop residues include: Normalised Difference 
Tillage Index (NDTI) and Normalised Difference Senescent Vegetation Index (NDSVI) 
(Daughtry et al., 2006, 2005) 

• Map crop residue using a multiband reflectance algorithm e.g. Crop Residue Index 
Multiband (CRIM) (Biard and Baret, 1997) 

Nitrogen (N) 
status/ 
availability 

• Assess based on two premises: (1) N mineralisation & subsequent availability to growing 
crop will be proportional to OM content i.e. darker soil implies high soil nitrate levels 
(Scharf et al., 2002); (2) N stress increases canopy reflectance over all visible 
wavelengths (Beatty et al., 2000 in Scharf et al., 2002) – indices combining VIS & NIR 
regions may maximise sensitivity to N stress (Eitel et al., 2011; Scharf et al., 2002; Tilling 
et al., 2007) 

• Assess nitrogen status using surface indicators of subsurface nutrient conditions using 
multispectral and hyperspectral techniques (Shoshany et al., 2013) 

 

Soil salinity NB: A review of the potentials and constraints of remote sensing-based soil salinity 
mapping can be found in Metternicht & Zinck (2003). 

 

• Machine learning and regression-based models e.g. Multilayer Perception Neural 
Networks, Artificial Neural Networks, Gaussian Processes, Partial Least Square 
Regression, Support Vector Regression and Random Forest (Farifteh et al., 2007; Hoa et 
al., 2019; Taghadosi et al., 2019) 

• Categorical mapping of regions of differing soil salinity (e.g. high, medium, low) using 
hyperspectral satellite data and image classification (e.g. minimum distance, maximum 
likelihood) and spectral unmixing techniques (Ghosh et al., 2012; Hamzeh et al., 2016) 

• Quantitative mapping of soil salinity using indices derived from hyperspectral data and 
regression techniques (e.g. partial least squares regression, linear regression) (Bai et al., 
2018; Hamzeh et al., 2013; Kumar et al., 2015; Mashimbye et al., 2012; Qian et al., 
2019; Weng et al., 2008) 

• Distinguish ‘normal’ soil from moderately or severely salt-affected soils using brightness 
approach (Koshal 2010 in Shoshany et al., 2013) 

• Use spectral indices including Salinity Index (SI), Normalised Differential Salinity Index 
(NDSI) & Brightness Index (BI) (Asfaw et al., 2018; Dehni and Lounis, 2012; Khan et al., 
2005; Shoshany et al., 2013)  

• Detect salinisation-related surface roughness features (e.g. crusting) using variation in 
radar backscattering & InSAR coherence signals (C,P & R wavelengths) (Metternicht and 
Zinck, 2003; Shoshany et al., 2013; Taylor et al., 1996) 

Soil moisture (SM) 
content 
 
 
 
 
 

NB: Srivastava (2017) provides a review of satellite-based methods for monitoring soil 
moisture, while Petropoulos et al. (2018) provide an overview of the state of the art of 
EO techniques to derive operational estimates of soil moisture. 

 

• Empirical & semi-empirical models relating backscattering coefficient to soil water 
content (& soil surface roughness) (Attarzadeh et al., 2018; Bao et al., 2018; Bousbih et 
al., 2018; Dubois et al., 1995; Genis et al., 2013; Hajj et al., 2017; Hosseini et al., 2015; 
Huang et al., 2019; Zhang et al., 2017) 
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Table A4 continued 

Indicator Example EO-based Methods 

Soil moisture (SM) 
content continued 
 

• RTM-based approaches relating soil dielectric constant to soil moisture (Bablet et al., 
2018; Dubois et al., 1995; Hosseini et al., 2015; Jackson, 2002; Wagner et al., 2007) 

• Spectral indices e.g. Normalised Multiband Drought Index (NMDI) (Shoshany et al., 2013; 
Wang and Qu, 2009)  

• Retrieval from thermal data using apparent thermal inertia (ATI) (Shoshany et al., 2013; 
Verstraeten et al., 2006; Wang and Qu, 2009) 

• Map surface roughness & SM in sparsely vegetated landscapes using a multi-angle (radar-
based) approach & an Integral Equation Model retrieval algorithm (Rahman et al., 2008) 

 

Soil erosion/ 
protection   

NB: Vrielling (2006) provide a review of satellite-based techniques for assessing erosion 

Vegetation cover • Assess degree of protection based on amount of vegetation cover e.g. percentage ground 
cover, LAI (Cyr et al., 1995; Dwivedi et al., 1997; Fadul et al., 1999; Metternicht and 
Zinck, 1998; Wang et al., 2013) 

Erosion feature 
detection 

• Visual interpretation of high resolution images (Dwivedi et al., 1997; Fadul et al., 1999; 
Wang et al., 2013) 

•Estimate metric dimensions & volume of individual patches of sheet, rill & gully erosion & 
densities (Metternicht and Zinck, 1998; Shoshany et al., 2013)  

• Potential to use InSAR multi-temporal interferometric coherence change technique 
(Shoshany et al., 2013) 

 

Erosion modelling • Erosion Potential Index (EPI) (Shoshany et al., 2013)  
• Integrate EO-derived data into soil loss/erosion models (Cyr et al., 1995) such as USLE 

(Universal Soil Loss Equation), ANSWERS (Areal Non-Point Source Watershed 
Environment Response Simulation), SEMMED (Soil Erosion Model for Mediterranean 
Regions) (De Jong, 1994; De Jong et al., 1999; Ganasri and Ramesh, 2016; Shoshany et 
al., 2013). EO derived-data includes: land use/land cover map (Baban and Yusof, 2001; 
De Jong et al., 1999; Ganasri and Ramesh, 2016; Sharma and Singh, 1995), interception 
or total vegetation cover (De Jong, 1994), and soil parameter data (Baban and Yusof, 
2001; De Jong et al., 1999; Sharma and Singh, 1995) 
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Table A5: Example EO-based methods used by researchers to assess water quality and 

water availability. 

Indicator Example EO-based Methods 

Water Quality NB: Reviews of various EO-based techniques for assessing various water quality 
parameters can be found in Gholizadeh et al. (2016a, 2016b); Dornhofer & 
Oppelt (2016) and Chang et al. (2015) 

Water Quality Indices • Water Quality indices derived from different combinations of spectral bands 
(Vignolo et al., 2006; Wen and Yang, 2010) 

 

Physical water quality 
parameters: total suspended 
solids (TSS), turbidity,  
suspended sediment 
concentration (SSC), 
chlorophyll concentration, 
temperature & water clarity  
 

• Empirical (simple or multiple regression) modelling – relate field data (or water 
quality indices derived from field data) to satellite data (e.g. band ratios) to 
estimate water quality parameters (Blix et al., 2018; Carpenter and 
Carpenter, 1983; Chen et al., 2007; Ha et al., 2017; Hu et al., 2004; Kloiber et 
al., 2002; Lavery et al., 1993; Liu et al., 2017; Pereira-Sandoval et al., 2018; 
Ritchie and Cooper, 2001; Sòria-perpinyà et al., 2019)  

• Spectral unmixing-based approach – end-member spectra related to physical 
water quality parameters such as SSC (Martinez et al., 2008) 

 

Chemical water quality 
parameters: concentration 
of total nitrogen (TN), NO3-N 
(nitrate as nitrogen) & total 
phosphorous (TP) 

• Empirical (regression) modelling – relate field data to satellite data to estimate 
water quality parameters (Chen and Quan, 2012; Wu et al., 2010) 

• Use neural network modelling (e.g. back-propagation neural network model) 
to establish a retrieval model for concentrations of TN & TP on the basis of 
satellite data (Xiao et al., 2015) 

 

Water quality proxy • Assess health of vegetation alongside water bodies as a proxy for water 
quality, using vegetation indices (e.g. NDVI, EVI) (Trivero et al., 2013) 

• Identification and mapping of submergent aquatic vegetation using image 
interpretation and classification techniques (Ackleson and Klemas, 1987; 
Dogan et al., 2009; Wolter et al., 2005; Yang, 2005) 

 

Water Availability 

Water body area & 
configuration 

• Detect/classify water bodies using optical data (NIR & SWIR regions) or 
spectral indices (e.g. NDVI & NDWI) (Andrew et al., 2014; Frazier and Page, 
2000; Mueller et al., 2016; Smith, 1997; Tulbure and Broich, 2013) 

• WiPE water body classification algorithm (Ngoc et al., 2019) 
• Determine water body area using pixel counting & vector-based GIS methods 

(Verpoorter et al., 2012) 
• Quantify the spatial configuration of water bodies (e.g. number of water 

bodies, mean surface water body area) based on classified satellite images 
using FRAGSTATS software (v4) (McGarigal et al., 2012; Tulbure and Broich, 
2013) 

NB: Detection of water bodies may be enhanced through use of techniques such 
as Principal Component Analysis (PCA) (Verpoorter et al., 2012) 

 

Water level & volume • Estimate water level using satellite altimetry (Guo et al., 2009; Koblinsky et al., 
1993; Michailovsky et al., 2012; Smith, 1997; Sulistioadi et al., 2015) 

• Use satellite-derived LC data as an input into models to estimate the volume of 
water yield available for consumptive purposes (Crossman et al., 2013)  

 

Water use efficiency & crop 
water stress 

• Use satellite-derived data including VIs , NIR & TIR data as inputs into 
evapotranspiration models such as SEBAL (Surface Energy Balance for Land) 
(Bastiaanssen, 2000; Bastiaanssen et al., 1998; Mutiga et al., 2010), METRIC 
(Allen et al., 2007) and ALEXI/DisALEXI (Anderson et al., 2011) to predict 
actual evapotranspiration as an indicator of crop water stress and whether 
water is being used as intended (Gonzalez-Dugo et al., 2009; Mutiga et al., 
2010) 

• Use TIR satellite data to calculate Evaporative Stress Index (ESI) to detect 
drought conditions and to infer crop health (Anderson and Kustas, 2008) 
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Table A6: Example EO-based methods used by researchers to assess biodiversity.  

Indicator Example EO-based Methods 

 NB: EO-based techniques for monitoring biodiversity have been review by a number of 
authors including Gillespie et al. (2008), Kerr and Ostrovsky (2003), Kuenzer et al. (2014), 
Mairota et al. (2015), Nagendra (2001), Rocchini et al. (2010), Turner et al. (2003) and 
Wang et al. (2010) 

Direct 
mapping of 
individuals 
and 
associations 

• Map individual plants or associations of single species by applying pixel- or object-based 
classification procedures to high spatial resolution data (Ban, 2003; Clark et al., 2001; 
Crossman et al., 2013; Feng et al., 2010; Gillespie et al., 2008; Lauver, 1997; Nagendra 
and Gadgil, 1999; Turner et al., 2003; Vibhute and Gawali, 2013). Species differentiation 
aided by differences in size, shape and vertical structure of canopies in active RS (e.g. 
LiDAR) or hyperspectral data (Andrew et al., 2014) 

• Extract unique multi-temporal signature for different crops from VIs (e.g. NDVI & EVI) 
(Wardlow et al., 2007) 

• Harmonic (Fourier) analysis of NDVI time series (Jakubauskas et al., 2002; Mingwei et al., 
2008) 

• Classify vegetation types using visual and digital interpretation of false colour composites 
and SAR images based on derived characteristics including size, shape and texture (Blaes 
et al., 2005; Ravan et al., 1995) 

 

Plant (and 
animal) 
species 
diversity  

• Assess species diversity and distribution patterns by examining direct relationships 
between EO-derived spectral radiance values and species distribution patterns recorded 
from field observations (Feng et al., 2010; Nagendra, 2001) 

• Use satellite-based land use and landscape complexity indices (e.g. patch shape indices) to 
predict regional plant species diversity (Honnay et al., 2003) 

• Predict distribution or probability of occurrence of individual species and species 
assemblages using multiple regression analysis and EO-based data such as land cover 
maps (Jennings, 2000; Kerr et al., 2001; Kerr and Ostrovsky, 2003; Luoto et al., 2002a; 
Saveraid et al., 2001); supplementary material such as climate and topography data may 
be incorporated (Cumming, 2000; Nagendra, 2001)  

Habitat 
suitability  

• Model distribution and abundance of single species using detailed information about 
known habitat requirements and EO-derived land cover, habitat maps and landscape 
metrics (Amici et al., 2010; Feng et al., 2010; Kerr et al., 2001; Kerr and Ostrovsky, 2003; 
Z. Li et al., 2014; Luoto et al., 2002b; Mairota et al., 2015; Nagendra, 2001; Weiers et al., 
2004) 

• Habitat suitability parameters include: spectral and textural indexes (Muñoz and Felicísimo, 
2004; Stickler and Southworth, 2008); canopy cover (Davis et al., 2007); NPP (Meynard 
and Quinn, 2007); existence of suitable water bodies (Weiers et al., 2004); and hedgerow 
networks (Vannier et al., 2011) 

 

Landscape 
structure 

• Derive quantitative measures of landscape structure (e.g. composition, isolation and 
complexity) from land cover classifications (Gustafson, 1998; Kuenzer et al., 2014; Luoto 
et al., 2002a; Rocchini et al., 2010)  

• Landscape metrics can be computed by software products including FRAGSTATS (v4) using 
raster or vector data (McGarigal et al., 2012) 

• Landscape diversity may be represented using diversity indices combining richness 
(number of classes present) and evenness (distribution of area among classes) 
(Gustafson, 1998). Examples include Shannon’s and Simpson’s diversity indices (Shannon 
and Weaver, 1948 and Simpson, 1949 in Gustafson, 1998). 

• Use image classification to map landscape connectivity elements (e.g. hedgerows) (Vannier 
et al., 2011) 

• Quantify landscape fragmentation using pattern indices (Saura, 2004) such as number of 
patches and mean patch size (Turner and Ruscher, 1988 in Saura, 2004) and patch 
cohesion index (Schumaker, 1996)  
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Table A6 continued 

Indicator Example EO-based Methods 

Species 
richness 

•Species-Energy Theory – species richness is proportional to NPP, derived from e.g. NDVI 
(Currie, 1991; Kerr and Ostrovsky, 2003; Z. Li et al., 2014; Nagendra, 2001) 

• Spectral Variation Hypothesis – assume higher variation in spectra implies higher habitat 
heterogeneity, allowing coexistence of more species and consequently higher species 
richness (Diamond, 1988 in Fairbanks and McGwire, 2004; Z. Li et al., 2014; Palmer et al., 
2002; Rocchini et al., 2007) 

• Estimate spatial variation in species richness based on NDVI variability, vegetation 
classification map & multiple regression analysis (Bawa et al., 2002; Bino et al., 2008; 
Bonthoux et al., 2018; Carrasco et al., 2018; Fairbanks and McGwire, 2004; Gould, 2000)  

 

Invasive 
species 

NB: Bradley et al. (2014) provide a review of remote sensing-based techniques for detecting 
invasive species 

 

• Identify invasive species using visual interpretation, pixel-based & object-based 
classification, & spectral mixing/unmixing approaches (Huang and Asner, 2009; Z. Li et 
al., 2014; Walsh et al., 2008) 

• Map vegetation species from spectral and textural data using image classification 
techniques (e.g. maximum likelihood classification) (Kimothi and Dasari, 2010; Laba et 
al., 2010, 2008; Mirik and Ansley, 2012), neural networks (Fuller, 2005) and principal 
component analysis (Tsai et al., 2007) 

• Texture-augmented image analysis (Tsai and Chou, 2006) 
• Maximum Entropy Model (Evangelista et al., 2009) 
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Table A7: Example EO-based methods used by researchers to assess ecosystem health.  

Indicator Example EO-based Methods 

NB: EO-based techniques for monitoring ecosystem health have been 
reviewed by a number of authors including Andrew et al. (2014), Feng 
et al. (2010) and Z. Li et al. (2014) 

Vigour Net Primary 
Productivity 
(NPP) & Gross 
Primary 
Productivity 
(GPP) 

• Model based on Light Use Efficiency (LUE) Concept (Feng et al., 2010; 
Monteith, 1972 and Prince 1991 in Z. Li et al., 2014; Ruimy and 
Saugier, 1994) 

• Statistical empirical model of GPP or NPP & a vegetation indices such as 
NDVI or EVI (Feng et al., 2010; Z. Li et al., 2014; Olofsson et al., 2008; 
Xu et al., 2012) 

• Estimate GPP based on photosynthetic capacity quantified using 
satellite-based leaf Ch content estimates e.g. from CIgreen  index 
(Gitelson et al., 2008; Houborg et al., 2013) 

 

 Fractional cover 
of green 
vegetation, non-
photosynthetic 
vegetation 
(NPV) & bare 
soil 
 

• Spectral mixing approach (Asner and Heidebrecht, 2002; Gill and Phinn, 
2009; Gitelson, 2013; Z. Li et al., 2014; Pacheco and McNairn, 2010) 

• Empirical model of fractional vegetation cover & vegetation indices 
(Carlson and Ripley, 1997; Gitelson, 2013; Guerschman et al., 2009; Z. 
Li et al., 2014; Wang et al., 2018) 

• Estimate using a neural network based on NIR & red reflectances (Baret 
et al., 1995; Gitelson, 2013) 

 

 Biochemical 
properties inc. 
N, P & 
chlorophyll 

• Empirical modelling (based on biochemical spectra features) inc. simple 
linear regression, partial least-squares regression (PLSR) & stepwise 
linear regression (SMLR) (Homolová et al., 2013; Z. Li et al., 2014) 

 

Organisation Species richness 
& biodiversity 

See table A6 
 

Structural traits See table A3 
 

Resilience  • Assessed based on a ratio of a given ES health indicator, e.g. 
aboveground biomass, measured pre- & post-disturbance (Z. Li et al., 
2014) 

• Vegetation indices e.g. NDVI time series frequently used to 
assess/monitor variation in vegetation health & deviation from 
normal conditions over time or in response to specific disturbances 
(Z. Li et al., 2014) such as climate change (Li and Guo, 2012), wildfires 
(Díaz-Delgado et al., 2002) & grazing intensity (Numata et al., 2007)  

 

Ecosystem Services as a Proxy 
for Ecosystem Health   

• Use EO data (e.g. land cover) as an input for Ecosystem Services Models 
e.g. InVEST, ARIES, SolVES, GUMBO to assess the ability of an 
ecosystem to provide various ESS  

• Indirect modelling techniques include deriving empirical models of ESS 
or their providers based on spatial environmental covariates, and 
using maps of biophysical drivers of ESS supply to parameterise 
mechanistic models (Andrew et al., 2014). 
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Appendix 2: A basic introduction to Random Forest and its implementation 

Random Forest Regression 

Random Forest is a supervised learning algorithm that uses an ensemble learning method 

for both classification and regression analysis (Boehmke and Greenwell, 2020; Breiman, 2001; Liaw 

and Wiener, 2002; A. M. Prasad et al., 2006). Random Forest builds a large number of individual 

decision trees that are merged together to provide a more accurate and stable prediction.  

As a supervised machine learning model, Random Forest learns to map input variables (input 

features) to outputs (target feature) during the training phase of model building. During this phase, 

the model learns any relationships between the input features and target feature. Bootstrap 

aggregation, or bagging, is used to add an element of randomness during training to prevent 

overfitting. Bagging allows each tree to draw a random sample from the original training data set 

using replacement, resulting in different trees.  

Random Forest adds additional randomness into the tree-growing process. While growing a 

decision tree, Random Forests perform split-variable randomisation, so each time a split is to be 

performed, the search for the split variable is limited to a random subset of the original target 

features. Of this subset, the feature chosen to split the data is determined using the best split 

approach; the feature chosen at each splitting node is the one than minimises the Gini impurity (in 

the case of classification) and the Sum of Squared Error (in the case of regression). This ensures that 

the ensemble model, once all trees are combined, makes fair use of all potentially predictive 

features, and does not rely too heavily on any individual feature.  

The individual trees within Random Forest are therefore not only trained using different sets 

of data, but also using different input features to make decisions. The result is a series of 

uncorrelated trees that, when combined, produce a more accurate prediction than that of any 

individual tree. 

Prediction is performed using the trained Random Forest algorithm by passing the same 

input features used for training through the rules of each of the randomly created decision trees. 

Once each tree is fully grown, the results from the individual trees are aggregated through averaging 

for regression and using majority vote for classification. Combining these multiple decision trees 

creates a single ensemble model which outperforms any of the individual decision trees.  

In this project, the Random Forest algorithm was implemented using the randomForest 

package available within R. The randomForestSRC package was used alongside the forestFloor 

package in subsequent analysis to unpick the relationships between individual input features and 

the target features (see chapter 4). An example of the script used to estimate crop yield (chapters 3 

and 5) using Random Forest is given below, with the code in black/blue and comments in green. The 

same basic process was used to build the Random Forest models to estimate bird diversity in 

chapters 4 and 5. 
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Example RStudio Script to run Random Forest Regression Analysis 

Step 1: Set input and output file names and locations 

# Name and path of the observed wheat yield data 

outFile <- ‘...’ # CSV file containing the wheat yield for each 

point in the training dataset 

 

# Name and path of the input image that will be used for predictions  

inPredImage <- ‘...’ # TIFF file comprising the stacked raster bands 

of the input feature variables (e.g. Sentinel-2 

bands, precipitation data) 

 

# Name and path of the output GeoTiff predicted image 

outImage <- ‘...’ 

 

Step 2: Load training data and extract corresponding input feature variables for each point 

# Read training data 

pointTable <- read.csv(outFile, header=TRUE) 

# Identify which columns contain XY coordinates  

xy <- SpatialPoints(pointTable[,1:2]) # The xy coordinates are 

needed to extract the input 

feature variables for each 

yield data point 

 

# Identify the column containing the response variable (yield data) 

response <- as.numeric(pointTable[,3]) 

 

# Load the image containing the input feature variables 

satImage <- stack(inPredImage) 

 

# Set no data value 

for (b in 1:nlayers(satImage)) {NAvalue(satImage@layers[[b]]) <- nd} 

 

# Extract values for input feature variable values for the corresponding 

yield data points 

trainvals <- cbind(response, extract(satImage, xy)) # The resulting 

database 

contains the 

data used to 

train Random 

Forest 

# Remove NA values from the training data 

trainvals_no_na <- na.omit(trainvals) 
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Step 3: Build the Random Forest model 

# Run Random Forest 

randfor <- randomForest(response ~ . , data = trainvals_no_na, 

importance=TRUE) 

# Using “response ~.” uses all available input feature variables 

to build the Random Forest model. To include only specific 

variables an equation must be define e.g. “response ~ variable_1 + 

variable_2 +...+ variable_n” 

 

Step 4: Predict yield  

# Use the randomForest model to estimate yield across the full study 

area 

predict(satImage, randfor, filename = outImage, progress = ‘text’, 

format = ‘GTiff’, datatype = ‘FLT4S’, type = ‘response’, overwrite=TRUE) 

# “satImage” is the stacked raster containing the input feature 

variables; “randfor” is the Random Forest model built in the 

previous step; and “outImage” identifies the name and location of 

the prediction image 

 

Step 5: Accuracy Assessment 

Internal validation 

# Print models OOB error 

print(paste(“Variance explained by the RF model =”, randfor$rsq[500], 

sep= “”)) 

 

External Validation 

# Create empty data frame for rmse and rsquared values 

rmse <- () 

rsquared <- () 

# Perform 10-fold cross-validation 

for (i in 1:10){ 

  # Set size of sample for validation 

val_samp <- sample(c(1:nrow(trainvals_no_na)), 

round(nrow(trainvals_no_na)/10)) 

# Build Random Forest model (excluding the data for validation) 

randfor <- randomForest(response ~. , data=trainvals_no_na[-

val_samp,]) 

# Use randfor model to predict yield values for the validation 

data sample 

   pred <- predict(randfor, trainvals_no_na[val_samp,]) 

# Identify the observed values for validation data sample 

   obs <- trainvals_no_na[val_samp,1] 

# Calculate RMSE value and add it to the data frame 

   rmse <- c(rmse,sqrt(mean((pred-obs)^2))) 

# Calculate r-squared value and add it to the data frame 

  rsquared <- c(rsquared,cor(pred,obs)^2) 

} 
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# Calculate the average rmse and rsquared values for the 10 iterations 

rmseMEAN <- mean(rmse) 

rsquaredMEAN <- mean(rsquared) 

 

# Print mean values 

print(paste(“Ten-fold cross validation RMSE mean =”, rmseMEAN)) 

print(paste(“Ten-fold cross validation r-squared mean =”, rsquaredMEAN)) 

 

Random Forest Input Feature Variables Preparation 

The input feature variables used to build the various Random Forest models used 

throughout this thesis were extracted from satellite data and environmental data (e.g. temperature 

and precipitation) using a variety of software depending on the nature of the variables being 

extracted and the scale/coverage required.  

Input feature variables used to estimate crop yield (chapter 3) consisted of Sentinel-2 

satellite data and a series of environmental data (e.g. precipitation and temperature data). For the 

most part these data required only a limited amount of basic pre-processing (clipping to the study 

area, stacking layers into single raster file, resampling to 10m resolution, etc.) which was conducted 

using ArcMap10. In addition to this, a series of vegetation indices were derived from the Sentinel-2 

data using a combination of Erdas Imagine and ArcMap10.  

The habitat productivity and heterogeneity input feature variables used to estimate bird 

diversity (chapter 4 & chapter 5) required more extensive processing prior to being used to build the 

Random Forest models. The habitat heterogeneity metrics were derived using FRAGSTATS, a 

computer software program that is designed to compute a variety of landscape metrics for 

categorical map patterns (McGarigal et al., 2012b). FRAGSTATS was used to derive a series of class-

level metrics from LCM2000 (Fuller et al., 2002) and LCM2015 (Rowland et al., 2017) for chapters 4 

and 5 respectively, using a sampling strategy of uniform 1km tiles designed to line up with the 

Countryside Survey and BBS data. Details of the metrics derived can be found in table A10 (Appendix 

4). 

The habitat productivity variables were derived in Google Earth Engine (GEE), a cloud-based 

platform that provides access to high-performance computing resources allowing planetary-scale 

geospatial analysis (Gorelick et al., 2017). Without GEE calculating these metrics would not have 

been possible due to the volume of data involved and the processing power required. An example of 

the script used to calculate and extract the various NDVI metrics from Landsat 5 and Landsat 7 data, 

for analysis in chapter 4, can be seen below. The same basic process was used to extract data from 

Landsat 8 for the analysis in chapter 5, with some slight alterations to account for differences 

between the sensors.   
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Example Google Earth Engine script to extract Habitat Productivity Variables (NDVI metrics) for 

each broad land class within each Countryside Survey square. Green text shows comments, other 

colours of text show the javascript code used by GEE. 

Step 1: Create collection of cloud free Landsat 7 images for each month 
// Load Landsat 7 ImageCollection. 

var L7collection = ee.ImageCollection('LANDSAT/LE07/C01/T1_SR') 

// Filter collection to obtain all images from 1999-2002 

  .filter(ee.Filter.calendarRange(1999,2002,'year')) 

// Filter collection using to obtain only images for GB 

.filterBounds(geometry) // “geometry” must be digitised prior to 

running script 

// Map function over the image collection to mask out cloud 

  .map(function(img){ 

    var mask = img.select(['pixel_qa']).bitwiseAnd(32).eq(0); 

    return img.updateMask(mask) 

  //Add NDVI to each image in the collection 

    .addBands(img.normalizedDifference(['B4', 'B3'])) 

  // Add image capture time to each image 

    

.addBands(img.metadata('system:time_start').subtract(1167609600000).divide(

86400000)); 

    }); 

 

// Separate collection by month and reproject each image to British 

National Grid projection 

var L7mar = L7collection.filter(ee.Filter.calendarRange(3,3,'month')) 

                        .map(function(img){ 

                          return img.reproject('EPSG:4326',null,30); 

                        }); 

var L7apr = L7collection.filter(ee.Filter.calendarRange(4,4,'month')) 

                        .map(function(img){ 

                          return img.reproject('EPSG:4326',null,30); 

                        }); 

var L7may = L7collection.filter(ee.Filter.calendarRange(5,5,'month')) 

                        .map(function(img){ 

                          return img.reproject('EPSG:4326',null,30); 

                        }); 

var L7jun = L7collection.filter(ee.Filter.calendarRange(6,6,'month')) 

                        .map(function(img){ 

                          return img.reproject('EPSG:4326',null,30); 

                        }); 

var L7jul = L7collection.filter(ee.Filter.calendarRange(7,7,'month')) 

                        .map(function(img){ 

                          return img.reproject('EPSG:4326',null,30); 

                        }); 

var L7aug = L7collection.filter(ee.Filter.calendarRange(8,8,'month')) 

                        .map(function(img){ 

                          return img.reproject('EPSG:4326',null,30); 

                        }); 

var L7sep = L7collection.filter(ee.Filter.calendarRange(9,9,'month')) 

                        .map(function(img){ 

                          return img.reproject('EPSG:4326',null,30); 

                        }); 
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Step 2: Create Maximum Value Composite for each month from Landsat 7 images 
// Create a greenest pixel composite for each month 

var L7mar_gPC = L7mar.qualityMosaic('nd'); 

var L7apr_gPC = L7apr.qualityMosaic('nd'); 

var L7may_gPC = L7may.qualityMosaic('nd'); 

var L7jun_gPC = L7jun.qualityMosaic('nd'); 

var L7jul_gPC = L7jul.qualityMosaic('nd'); 

var L7aug_gPC = L7aug.qualityMosaic('nd'); 

var L7sep_gPC = L7sep.qualityMosaic('nd'); 

 

// Define RED band for NDVI calculation for each greenest pixel composite 

var L7mar_red = L7mar_gPC.select('B3'); 

var L7apr_red = L7apr_gPC.select('B3'); 

var L7may_red = L7may_gPC.select('B3'); 

var L7jun_red = L7jun_gPC.select('B3'); 

var L7jul_red = L7jul_gPC.select('B3'); 

var L7aug_red = L7aug_gPC.select('B3'); 

var L7sep_red = L7sep_gPC.select('B3'); 

 

// Define NIR band for NDVI calculation for each greenest pixel composite 

var L7mar_nir = L7mar_gPC.select('B4'); 

var L7apr_nir = L7apr_gPC.select('B4'); 

var L7may_nir = L7may_gPC.select('B4'); 

var L7jun_nir = L7jun_gPC.select('B4'); 

var L7jul_nir = L7jul_gPC.select('B4'); 

var L7aug_nir = L7aug_gPC.select('B4'); 

var L7sep_nir = L7sep_gPC.select('B4'); 

 

// Calculate NDVI band for each greenest pixel composite 

var L7mar_ndvi = 

L7mar_nir.subtract(L7mar_red).divide(L7mar_nir.add(L7mar_red)); 

var L7apr_ndvi = 

L7apr_nir.subtract(L7apr_red).divide(L7apr_nir.add(L7apr_red)); 

var L7may_ndvi = 

L7may_nir.subtract(L7may_red).divide(L7may_nir.add(L7may_red)); 

var L7jun_ndvi = 

L7jun_nir.subtract(L7jun_red).divide(L7jun_nir.add(L7jun_red)); 

var L7jul_ndvi = 

L7jul_nir.subtract(L7jul_red).divide(L7jul_nir.add(L7jul_red)); 

var L7aug_ndvi = 

L7aug_nir.subtract(L7aug_red).divide(L7aug_nir.add(L7aug_red)); 

var L7sep_ndvi = 

L7sep_nir.subtract(L7sep_red).divide(L7sep_nir.add(L7sep_red)); 

 

// Rename NDVI band 

var L7mar_ndvi = L7mar_ndvi.select('B4').rename('ndvi'); 

var L7apr_ndvi = L7apr_ndvi.select('B4').rename('ndvi'); 

var L7may_ndvi = L7may_ndvi.select('B4').rename('ndvi'); 

var L7jun_ndvi = L7jun_ndvi.select('B4').rename('ndvi'); 

var L7jul_ndvi = L7jul_ndvi.select('B4').rename('ndvi'); 

var L7aug_ndvi = L7aug_ndvi.select('B4').rename('ndvi'); 

var L7sep_ndvi = L7sep_ndvi.select('B4').rename('ndvi'); 
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Step 3: Create collection of cloud free Landsat 5 images for each month 
// Load Landsat 5 ImageCollection. 

var L5collection = ee.ImageCollection('LANDSAT/LT05/C01/T1_SR') 

// Filter collection to obtain all images from 1999-2002 

  .filter(ee.Filter.calendarRange(1999,2002,'year')) 

// Filter collection using to obtain only images for GB 

.filterBounds(geometry) // “geometry” must be digitised prior to 

running script 

 

// Map function over the image collection to mask out cloud 

  .map(function(img){ 

    var mask = img.select(['pixel_qa']).bitwiseAnd(32).eq(0); 

    return img.updateMask(mask) 

  //Add NDVI to each image in the collection 

    .addBands(img.normalizedDifference(['B4', 'B3'])) 

  // Add image capture time to each image 

    

.addBands(img.metadata('system:time_start').subtract(1167609600000).divide(

86400000)); 

    }); 

 

// Separate collection by month and reproject each image to British 

National Grid projection  

var L5mar = L5collection.filter(ee.Filter.calendarRange(3,3,'month')) 

                        .map(function(img){ 

                          return img.reproject('EPSG:4326',null,30); 

                        }); 

var L5apr = L5collection.filter(ee.Filter.calendarRange(4,4,'month')) 

                        .map(function(img){ 

                          return img.reproject('EPSG:4326',null,30); 

                        }); 

var L5may = L5collection.filter(ee.Filter.calendarRange(5,5,'month')) 

                        .map(function(img){ 

                          return img.reproject('EPSG:4326',null,30); 

                        }); 

var L5jun = L5collection.filter(ee.Filter.calendarRange(6,6,'month')) 

                        .map(function(img){ 

                          return img.reproject('EPSG:4326',null,30); 

                        }); 

var L5jul = L5collection.filter(ee.Filter.calendarRange(7,7,'month')) 

                        .map(function(img){ 

                          return img.reproject('EPSG:4326',null,30); 

                        }); 

var L5aug = L5collection.filter(ee.Filter.calendarRange(8,8,'month')) 

                        .map(function(img){ 

                          return img.reproject('EPSG:4326',null,30); 

                        }); 

var L5sep = L5collection.filter(ee.Filter.calendarRange(9,9,'month')) 

                        .map(function(img){ 

                          return img.reproject('EPSG:4326',null,30); 

                        }); 

 
Step 4: Create Maximum Value Composite for each month from Landsat 7 images 

// Create a greenest pixel composite for each month 

var L5mar_gPC = L5mar.qualityMosaic('nd'); 

var L5apr_gPC = L5apr.qualityMosaic('nd'); 

var L5may_gPC = L5may.qualityMosaic('nd'); 

var L5jun_gPC = L5jun.qualityMosaic('nd'); 

var L5jul_gPC = L5jul.qualityMosaic('nd'); 

var L5aug_gPC = L5aug.qualityMosaic('nd'); 

var L5sep_gPC = L5sep.qualityMosaic('nd'); 
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// Define RED band for NDVI calculation for each greenest pixel composite 

var L5mar_red = L5mar_gPC.select('B3'); 

var L5apr_red = L5apr_gPC.select('B3'); 

var L5may_red = L5may_gPC.select('B3'); 

var L5jun_red = L5jun_gPC.select('B3'); 

var L5jul_red = L5jul_gPC.select('B3'); 

var L5aug_red = L5aug_gPC.select('B3'); 

var L5sep_red = L5sep_gPC.select('B3'); 

 

// Define NIR band for NDVI calculation for each greenest pixel composite 

var L5mar_nir = L5mar_gPC.select('B4'); 

var L5apr_nir = L5apr_gPC.select('B4'); 

var L5may_nir = L5may_gPC.select('B4'); 

var L5jun_nir = L5jun_gPC.select('B4'); 

var L5jul_nir = L5jul_gPC.select('B4'); 

var L5aug_nir = L5aug_gPC.select('B4'); 

var L5sep_nir = L5sep_gPC.select('B4'); 

 

// Calculate NDVI band for each greenest pixel composite 

var L5mar_ndvi = 

L5mar_nir.subtract(L5mar_red).divide(L5mar_nir.add(L5mar_red)); 

var L5apr_ndvi = 

L5apr_nir.subtract(L5apr_red).divide(L5apr_nir.add(L5apr_red)); 

var L5may_ndvi = 

L5may_nir.subtract(L5may_red).divide(L5may_nir.add(L5may_red)); 

var L5jun_ndvi = 

L5jun_nir.subtract(L5jun_red).divide(L5jun_nir.add(L5jun_red)); 

var L5jul_ndvi = 

L5jul_nir.subtract(L5jul_red).divide(L5jul_nir.add(L5jul_red)); 

var L5aug_ndvi = 

L5aug_nir.subtract(L5aug_red).divide(L5aug_nir.add(L5aug_red)); 

var L5sep_ndvi = 

L5sep_nir.subtract(L5sep_red).divide(L5sep_nir.add(L5sep_red)); 

 

// Rename NDVI band 

var L5mar_ndvi = L5mar_ndvi.select('B4').rename('ndvi'); 

var L5apr_ndvi = L5apr_ndvi.select('B4').rename('ndvi'); 

var L5may_ndvi = L5may_ndvi.select('B4').rename('ndvi'); 

var L5jun_ndvi = L5jun_ndvi.select('B4').rename('ndvi'); 

var L5jul_ndvi = L5jul_ndvi.select('B4').rename('ndvi'); 

var L5aug_ndvi = L5aug_ndvi.select('B4').rename('ndvi'); 

var L5sep_ndvi = L5sep_ndvi.select('B4').rename('ndvi'); 

 

// Join greenest pixel composites from L5 & L7 to form single image 

collection for each month 

var mar_ndvi = ee.ImageCollection.fromImages([L5mar_ndvi,L7mar_ndvi]); 

var apr_ndvi = ee.ImageCollection.fromImages([L5apr_ndvi,L7apr_ndvi]); 

var may_ndvi = ee.ImageCollection.fromImages([L5may_ndvi,L7may_ndvi]); 

var jun_ndvi = ee.ImageCollection.fromImages([L5jun_ndvi,L7jun_ndvi]); 

var jul_ndvi = ee.ImageCollection.fromImages([L5jul_ndvi,L7jul_ndvi]); 

var aug_ndvi = ee.ImageCollection.fromImages([L5aug_ndvi,L7aug_ndvi]); 

var sep_ndvi = ee.ImageCollection.fromImages([L5sep_ndvi,L7sep_ndvi]); 

 

 

// Function to mask out NDVI values above 1 & below -1 (i.e. unrealistic 

values) 

var maskNDVI = function(image){ 

  var ndvi_gt1_mask = image.select('ndvi').lte(1); 

  var ndvi_lt1_mask = image.select('ndvi').gte(-1); 

  var ndvi_gt1 = image.select('ndvi').updateMask(ndvi_gt1_mask); 

  var ndvi_lt1 = ndvi_gt1.select('ndvi').updateMask(ndvi_lt1_mask); 

  return ndvi_lt1; 

}; 
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// Map maskNDVI function over the image collections to mask out odd values 

var mar_ndvimasked = mar_ndvi.map(maskNDVI); 

var apr_ndvimasked = apr_ndvi.map(maskNDVI); 

var may_ndvimasked = may_ndvi.map(maskNDVI); 

var jun_ndvimasked = jun_ndvi.map(maskNDVI); 

var jul_ndvimasked = jul_ndvi.map(maskNDVI); 

var aug_ndvimasked = aug_ndvi.map(maskNDVI); 

var sep_ndvimasked = sep_ndvi.map(maskNDVI); 

 

// Create Maximum Value Composite (MVC) for each month by taking the 

highest NDVI value for each pixel between Landsat 5 and Landsat 7 

var mar_ndvimax = mar_ndvimasked.reduce(ee.Reducer.max()); 

var apr_ndvimax = apr_ndvimasked.reduce(ee.Reducer.max()); 

var may_ndvimax = may_ndvimasked.reduce(ee.Reducer.max()); 

var jun_ndvimax = jun_ndvimasked.reduce(ee.Reducer.max()); 

var jul_ndvimax = jul_ndvimasked.reduce(ee.Reducer.max()); 

var aug_ndvimax = aug_ndvimasked.reduce(ee.Reducer.max()); 

var sep_ndvimax = sep_ndvimasked.reduce(ee.Reducer.max()); 

 

// Rename the MVC band 

var mar_ndvimax = mar_ndvimax.select(‘ndvi_max’).rename(‘ndvi’); 

var apr_ndvimax = apr_ndvimax.select(‘ndvi_max’).rename(‘ndvi’); 

var may_ndvimax = may_ndvimax.select(‘ndvi_max’).rename(‘ndvi’); 

var jun_ndvimax = jun_ndvimax.select(‘ndvi_max’).rename(‘ndvi’); 

var jul_ndvimax = jul_ndvimax.select(‘ndvi_max’).rename(‘ndvi’); 

var aug_ndvimax = aug_ndvimax.select(‘ndvi_max’).rename(‘ndvi’); 

var sep_ndvimax = sep_ndvimax.select(‘ndvi_max’).rename(‘ndvi’); 

 

 

// Create single collection of all the MVCs 

var ndviCollection = ee.ImageCollection.fromImages([mar_ndvimax, 

apr_ndvimax, may_ndvimax, jun_ndvimax, jul_ndvimax, aug_ndvimax, 

sep_ndvimax]); 

 
 
Step 5: Calculate and export the average of each NDVI metric for each land cover type within each 
1km Countryside Survey square. The method for arable land is provided below as an example, this 
process was repeated for each broad land cover class.  
 

// Create arable landcover mask 

var arable_mask = LCMArableWGS.select('b1').eq(1); // “LCMArableWGS” is a 

single band raster image where arable land has a value of 1, non-arable 

land has a value of 0 

 

// Apply arable mask to each NDVI metric image to mask out all pixels which 

do not contain arable land 

var ar_mar = mar_ndvimax.select('ndvi').updateMask(arable_mask); 

var ar_apr = apr_ndvimax.select('ndvi').updateMask(arable_mask); 

var ar_may = may_ndvimax.select('ndvi').updateMask(arable_mask); 

var ar_jun = jun_ndvimax.select('ndvi').updateMask(arable_mask); 

var ar_jul = jul_ndvimax.select('ndvi').updateMask(arable_mask); 

var ar_aug = aug_ndvimax.select('ndvi').updateMask(arable_mask); 

var ar_sep = sep_ndvimax.select('ndvi').updateMask(arable_mask); 

 

// Calculate the average of each NDVI metric (e.g. minimum NDVI) per 1km CS 

square 

// “ar_mean” is provided as an example, repeat process substituting in each 

NDVI metric 
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var arable = ar_mar.reduceRegions({ // Replace “ar_mar” with the month 

of interest 

collection: CS_bird_squaresWGS, // Shapefile containing outlines 

of 1km Countryside Survey squares    

reducer: ee.Reducer.mean(), // Change reducer depending on 

metric of interest     

    scale: 30 

  }); 

   }); // Creates a feature collection with the average value of the specified 

NDVI metric for each CS square, which can be exported as a CSV file 

 

 

//Export 'arable' table to Google Drive 

Export.table.toDrive({ 

collection: arable,  // Table to export 

   description:'ar_mean_mar', // File name 

   fileFormat: 'CSV',   // Export as CSV file 

folder: 'NDVI_per_month',  // Set Google Drive folder to export file 

into 

    

}); 

 

// Repeat this process for each month and NDVI metric combination 
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Appendix 3: Supplementary Material for Chapter 3 

Figure A3: Timing of the Sentinel-2 images used for yield estimation relative to the key wheat growth stages. Wheat growth stages taken 

from (AHDB, 2018). 
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Appendix 4: Supplementary Material for Chapter 4 

Table A8: Farmland and woodland bird species groupings based on the BTO/JNCC/RSPB 

wild bird indicators for the UK and England (Eaton & Noble, 2018). Italicised text indicates 

species for which no data was available in the CS2000 data.  

 

Farmland Birds Species Woodland Birds Species 

Corn Bunting 
Goldfinch 
Greenfinch 
Grey partridge 
Jackdaw 
Kestrel 
Lapwing 
Linnet 
Reed Bunting 
Rook 
Skylark 
Starling 
Stock Dove 
Tree Sparrow 
Turtle Dove 
Yellow Wagtail 
Yellowhammer 
Whitethroat 
Woodpigeon 

Blackbird 
Blackcap 
Blue Tit 
Bullfinch 
Capercaille 
Chaffinch  
Chiffchaff 
Coal Tit 
Common Crossbill 
Dunnock  
Garden Warbler 
Goldcrest 
Great Tit 
Green Woodpecker 
Great Spotted 
Woodpecker 
Jay 
Lesser Redpoll 
Lesser Spotted 
Woodpecker 
Lesser Whitethroat 
 

Long-tailed Tit 
Marsh Tit 
Nightingale  
Nuthatch 
Pied Flycatcher 
Redstart 
Robin  
Siskin 
Song Thrush 
Sparrowhawk 
Spotted 
Flycatcher 
Tawny Owl 
Treecreeper 
Tree Pipit 
Willow Tit 
Willow Warbler 
Wood Warbler 
Wren 
 

 

 

Table A9: Broader land cover class groups and the original LCM2000 subclasses. 

LC group LCM Subclass 

Arable Arable cereals, arable horticulture, non-rotational horticulture 
 

Broad-leaved Broad-leaved/mixed woodland 
 

Coniferous Coniferous woodland 
 

Grassland Improved grassland, set-aside grassland, neutral grassland, 
calcareous 
 

Semi-natural Acid grassland, bracken, dense and open dwarf shrub heath, fen, 
marsh, swamp, bogs (deep peat), montane habitats, inland bare 
ground, saltmarsh 
 

Urban Continuous urban, suburban/rural developed 
 

Water Water (inland) 
 

Coast Supra-littoral rock, supra-littoral sediment, littoral rock, littoral 
sediment 
 

Sea Sea/estuary 
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Table A10: Details of the habitat structure metrics derived from LCM2000 using 

FRAGSTATS. Information based on the McGarigal (2015). 

Variable Abbreviation 
(Unit) 

Description 

Area & Edge Metrics 

Area AREAAM/CV/MN 
(ha) 

Area of each patch comprising a landscape mosaic given as mean 
(MN), coefficient of variation (CV) or area-weighted mean (AM) per 
class. Measured in hectares (ha). 
 

Percentage of 
landscape 
 

PLAND (%) Percentage of the landscape comprised of a particular patch type 

Edge Density ED (m/ha) Edge length of a particular patch type standardised to a per unit area 
basis. Measured in metres per hectare (m/ha). 
 

Radius of 
Gyration 

GYRATEAM/CV/MN 
(m) 

Measure of patch extent given as mean (MN), coefficient of 
variation (CV) or area-weighted mean (AM) per class. GYRATE 
increases as the patch increases in extent. Measured in metres (m) 
 

Largest Patch 
Index  

LPI (%) Quantifies the percentage of the total landscape area comprised by 
the largest patch. The LPI approaches 0 when the largest patch of 
the corresponding type is increasingly small. An LPI value of 100 
indicates the entire landscape is made up of a single patch of the 
corresponding patch type. Measured in percent (%). 
 

Total Edge TE (m) Absolute measure of total edge length of a particular patch type. 
Measured in metres (m) 

Shape Metrics 

Related 
Circumscribing 
Circle 

CIRCLEAM/CV/MN Measure of overall patch elongation using the ratio of patch area to 
the ratio of the smallest circumscribing circle given as mean (MN), 
coefficient of variation (CV) or area-weighted mean (AM) per class. 
Highly convoluted but narrow patches give a low index value, while 
narrow and elongated patches have a high index value. 
 

Contiguity Index CONTIGAM/CV/MN Measure of spatial connectedness/contiguity of cells within a grid-
cell given as the mean (MN), coefficient of variation (CV) or area-
weighted mean (AM) per class. An index value of 0 represents a one-
pixel patch, increasing to a limit of 1 as connectedness increases.  
 

Fractal Dimension 
Index  

FRACAM/CV/MN Measure of shape complexity which approaches 1 for shapes with 
simple perimeters (e.g. squares) and 2 for shapes with highly 
convoluted, plane-filling perimeters. Values are given as a mean 
(MN), coefficient of variation (CV) or area-weighted mean (AM) per 
class. 
 

Perimeter-Area 
Ratio 

PARAAM/CV/MN Ratio of patch perimeter to area given as mean (MN), coefficient of 
variation (CV) or area-weighted mean (AM) per class, providing a 
measure of shape complexity. 
 

Shape Index SHAPEAM/CV/MN Measures the complexity of patch shape compared to a standard 
shape (square) of the same size. Values are given as mean (MN), 
coefficient of variation (CV) or area-weighted mean (AM) per class. 
Higher values indicate more complex patch shapes. 
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Table A10 continued 

Variable Abbreviation 
(Unit) 

Description 

Aggregation Metrics 

Patch Cohesion COHESION Provides a measure of the physical connectedness of the 
corresponding patch types. COHESION approaches 0 as the 
proportion of the focal class decreases and becomes increasingly 
subdivided, and therefore less physically connected.   
 

Landscape 
Division Index 

DIVISION 
(proportion) 

Probability that 2 randomly chosen pixels in the landscape are not 
situated in the same undissected patch of the corresponding patch 
type. DIVISION is 0 when the landscape consists of a single patch, 
approaching 1 as the proportion of the landscape comprised of the 
focal patch type decrease and those patches decrease in size.  
 

Effective Mesh 
Size  

MESH (ha) Size of patches one gets when dividing the total landscape into 
patches of equal size in such a way that the new configuration leads 
to the same degree of landscape division as obtained by for the 
observed cumulative area distribution. Quantifies habitat 
fragmentation based on the probability that two randomly chosen 
points in the region under interest are located in the same non-
fragmented patch (Jaeger, 2000). The probability is multiplied by the 
total area of the landscape unit. The more barriers (e.g. roads, 
railroads) in the landscape, the lower the probability that the two 
locations will be located in the same patch, and the lower the 
effective mesh size 
 

Number of 
Patches 

NP Number of patches of a particular patch type 
 

Patch Density  PD (number of 

patches per 100 ha) 
 

Number of patches of the corresponding patch type standardised on 
a per unit area basis 

Splitting Index SPLIT Number of patches one gets when dividing the total landscape into 
patches of equal size in such a way that the new configuration leads 
to the same degree of landscape division as obtained by for the 
observed cumulative area distribution. SPLIT is 1 when the 
landscape consists of a single patch, increasing in value as the focal 
patch type is increasingly reduced in area and subdivided into 
smaller patches.   
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Figure A4: Number of cloud-free images available for each pixel for each month. 

 

Average number of cloud 

free images per pixel: 

March: 5.7 

April: 5.1 

May: 7.6 
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August: 6.8 
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Figure A5: Monthly Maximum NDVI Value Composites created by merging Landsat 5 and 

Landsat 7 to produce near-complete coverage for the whole of GB. 
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Table A11: R-squared values for Random Forest models built using individual habitat 

productivity and heterogeneity variables. For each model, the variable of interest was 

calculated for each land cover class separately. For example, the model for March NDVI 

Mean contains the individual mean March NDVIs calculated for the arable, broadleaved 

woodland, coniferous woodland, grassland and semi-natural land cover classes.   

 R-squared value 

 Farmland birds Woodland birds 

Habitat Productivity Variables Richness Diversity Richness Diversity 

Growing season (March-September) 

NDVI Sum 0.61 0.59 0.59 0.70 

NDVI Coefficient of variation 0.61 0.56 0.55 0.67 

NDVI Mean 0.62 0.59 0.61 0.73 

NDVI Median 0.58 0.57 0.60 0.72 

NDVI Minimum 0.58 0.55 0.57 0.68 

NDVI Standard deviation 0.61 0.55 0.54 0.65 

NDVI Maximum 0.61 0.56 0.58 0.71 

NDVI Range 0.60 0.55 0.55 0.66 

NDVI 20th percentile 0.62 0.59 0.60 0.72 

NDVI 80th percentile 0.60 0.56 0.58 0.70 

NDVI Interquartile range 0.61 0.56 0.56 0.66 

March 

NDVI Mean 0.60 0.58 0.58 0.69 

NDVI Median 0.60 0.57 0.57 0.67 

NDVI Maximum 0.65 0.61 0.58 0.71 

NDVI Minimum 0.58 0.54 0.53 0.65 

NDVI Range 0.65 0.58 0.59 0.68 

NDVI Standard Deviation 0.63 0.57 0.56 0.67 

NDVI 20th percentile 0.58 0.55 0.57 0.68 

NDVI 80th percentile 0.62 0.58 0.60 0.71 

NDVI Interquartile range 0.63 0.57 0.58 0.70 

All NDVI metrics 0.63 0.61 0.63 0.73 

April 

NDVI Mean 0.60 0.57 0.58 0.69 

NDVI Median 0.60 0.57 0.57 0.67 

NDVI Maximum 0.65 0.62 0.60 0.72 

NDVI Minimum 0.59 0.54 0.53 0.64 

NDVI Range 0.66 0.59 0.60 0.71 

NDVI Standard Deviation 0.64 0.57 0.61 0.71 

NDVI 20th percentile 0.58 0.55 0.58 0.66 

NDVI 80th percentile 0.63 0.60 0.58 0.70 

NDVI Interquartile range 0.63 0.58 0.58 0.69 

All NDVI metrics 0.66 0.62 0.65 0.73 
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Table A11 continued R-squared value 

 Farmland birds Woodland birds 

Habitat Productivity Variables Richness Diversity Richness Diversity 

May 

NDVI Mean 0.60 0.56 0.54 0.65 

NDVI Median 0.60 0.56 0.55 0.66 

NDVI Maximum 0.65 0.60 0.55 0.66 

NDVI Minimum 0.58 0.53 0.52 0.62 

NDVI Range 0.63 0.58 0.57 0.67 

NDVI Standard Deviation 0.61 0.57 0.55 0.66 

NDVI 20th percentile 0.60 0.56 0.53 0.64 

NDVI 80th percentile 0.61 0.57 0.55 0.66 

NDVI Interquartile range 0.57 0.55 0.55 0.65 

All NDVI metrics 0.64 0.61 0.57 0.68 

June 

NDVI Mean 0.57 0.51 0.55 0.61 

NDVI Median 0.58 0.52 0.57 0.62 

NDVI Maximum 0.63 0.56 0.59 0.65 

NDVI Minimum 0.57 0.52 0.53 0.62 

NDVI Range 0.61 0.54 0.53 0.62 

NDVI Standard Deviation 0.58 0.53 0.50 0.60 

NDVI 20th percentile 0.57 0.54 0.56 0.66 

NDVI 80th percentile 0.61 0.59 0.60 0.67 

NDVI Interquartile range 0.57 0.55 0.51 0.60 

All NDVI metrics 0.63 0.61 0.61 0.70 

July 

NDVI Mean 0.57 0.52 0.54 0.65 

NDVI Median 0.57 0.52 0.55 0.66 

NDVI Maximum 0.63 0.57 0.60 0.69 

NDVI Minimum 0.58 0.54 0.54 0.64 

NDVI Range 0.65 0.60 0.56 0.65 

NDVI Standard Deviation 0.62 0.58 0.55 0.65 

NDVI 20th percentile 0.57 0.53 0.56 0.66 

NDVI 80th percentile 0.59 0.54 0.59 0.68 

NDVI Interquartile range 0.62 0.57 0.54 0.64 

All NDVI metrics 0.64 0.59 0.61 0.68 

August 

NDVI Mean 0.61 0.55 0.60 0.68 

NDVI Median 0.61 0.54 0.60 0.68 

NDVI Maximum 0.60 0.54 0.62 0.70 

NDVI Minimum 0.62 0.55 0.53 0.65 

NDVI Range 0.65 0.58 0.57 0.66 

NDVI Standard Deviation 0.63 0.56 0.55 0.65 

NDVI 20th percentile 0.62 0.55 0.57 0.66 

NDVI 80th percentile 0.61 0.56 0.59 0.69 

NDVI Interquartile range 0.63 0.56 0.56 0.65 

All NDVI metrics 0.66 0.60 0.65 0.71 
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Table A11 continued R-squared value 

 Farmland birds Woodland birds 

Habitat Productivity Variables Richness Diversity Richness Diversity 

September 

NDVI Mean 0.64 0.60 0.61 0.71 

NDVI Median 0.64 0.60 0.61 0.71 

NDVI Maximum 0.63 0.58 0.64 0.72 

NDVI Minimum 0.63 0.60 0.55 0.66 

NDVI Range 0.66 0.61 0.60 0.68 

NDVI Standard Deviation 0.64 0.59 0.56 0.66 

NDVI 20th percentile 0.63 0.57 0.60 0.71 

NDVI 80th percentile 0.64 0.60 0.62 0.72 

NDVI Interquartile range 0.63 0.57 0.58 0.67 

All NDVI metrics 0.68 0.64 0.68 0.74 

Habitat Heterogeneity Variables     

AREA_AM  0.70 0.61 0.64 0.72 

AREA_MN  0.68 0.61 0.64 0.71 

PLAND  0.71 0.63 0.67 0.73 

ED  0.71 0.62 0.65 0.70 

GYRATE_AM  0.70 0.62 0.63 0.72 

GYRATE_MN  0.69 0.61 0.60 0.70 

LPI  0.70 0.62 0.65 0.72 

TE  0.71 0.62 0.65 0.71 

CIRCLE_AM  0.60 0.56 0.58 0.69 

CIRCLE_MN  0.61 0.55 0.55 0.66 

CONTIG_AM  0.69 0.62 0.62 0.71 

CONTIG_MN  0.65 0.60 0.58 0.67 

FRAC_AM  0.62 0.57 0.57 0.68 

FRAC_MN  0.61 0.54 0.57 0.68 

PARA_AM  0.66 0.59 0.61 0.70 

PARA_MN  0.62 0.58 0.56 0.67 

SHAPE_AM  0.64 0.57 0.58 0.68 

SHAPE_MN  0.65 0.55 0.59 0.68 

COHESION  0.69 0.62 0.65 0.72 

DIVISION  0.64 0.57 0.62 0.69 

MESH  0.70 0.62 0.66 0.72 

NP  0.60 0.53 0.57 0.66 

PD  0.60 0.54 0.57 0.67 

SPLIT 0.67 0.59 0.63 0.70 
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Figure A6: Difference between the observed and predicted values for farmland bird and 

woodland bird richness and diversity. 
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Figure A7: Absolute difference between the observed and predicted values for farmland 

bird and woodland bird richness and diversity. 
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Appendix 5: Supplementary Material for Chapter 5 

 

 

Figure A8: ITE Land Classification of Great Britain 

(2007). 


