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Abstract—The mixed pixel problem is common in remote 

sensing.  A soft classification can generate land cover class 

fraction images that illustrate the areal proportions of the various 

land cover classes within pixels. The spatial distribution of land 

cover classes within each mixed pixel is, however, not represented.  

Super-resolution land cover mapping (SRM) is a technique to 

predict the spatial distribution of land cover classes within the 

mixed pixel using fraction images as input. Spatial-temporal SRM 

(STSRM) extends the basic SRM to include a temporal dimension 

by using a finer-spatial resolution land cover map that pre- or 

post-dates the image acquisition time as ancillary data. 

Traditional STSRM methods often use one land cover map as the 

constraint, but neglect the majority of available land cover maps 

acquired at different dates and of the same scene in reconstructing 

a full state trajectory of land cover changes when applying 

STSRM to time series data. In addition, the STSRM methods 

define the temporal dependence globally, and neglect the spatial 

variation of land cover temporal dependence intensity within 

images. A novel local STSRM (LSTSRM) is proposed in this 

paper. LSTSRM incorporates more than one available land cover 

map to constrain the solution, and develops a local temporal 

dependence model, in which the temporal dependence intensity 

may vary spatially. The results show that LSTSRM can eliminate 

speckle-like artifacts and reconstruct the spatial patterns of land 

cover patches in the resulting maps, and increase the overall 

accuracy compared with other STSRM methods. 

Index Terms—Super-resolution mapping, image series, spatial 

dependence, temporal dependence 
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I. INTRODUCTION 

AND cover and its dynamic play a major role in global 

change. Understanding the distribution and dynamics of 

land cover is essential to better understand the Earth’s 

processes. Remotely sensed images are the main data source in 

mapping land cover and monitoring land cover changes at 

different spatial resolutions. However, land parcels managed at 

a local scale are often smaller than the resolution of satellite 

data, in which one pixel often represents composite spectral 

responses from multiple land cover types. Hard classification 

methods cannot accurately map the mixed pixels, because they 

assign a mixed pixel to a single land cover class. Soft 

classification can generate land cover class fraction images that 

represent the areal proportions of different land cover classes 

within a pixel. The output of a soft classification is a number of 

fraction images equal to the number of land cover classes. 

However, the spatial distribution of land cover classes within 

the mixed pixel is still unknown. By dividing the pixel into 

numerous sub-pixels and assuming the sub-pixels are pure, 

super-resolution mapping (SRM) can assign the class fractions 

spatially to sub-pixels [1]. SRM can be viewed as the post 

processing of soft classification that predicts the spatial 

distribution of land cover classes at the sub-pixel scale. The 

fraction images output from a soft classification are inputted to 

an SRM to produce a land cover map with a finer spatial 

resolution than the original remotely sensed image.  

In general, SRM is an ill-posed problem and the result 

unavoidable contains uncertainty. In order to decrease the 

uncertainty, various ancillary data such as panchromatic band 

image [2], vector boundaries [3] and LIDAR [4] have been used 

in the SRM models to provide more information. However, 

these SRM methods require that the acquisition dates of these 

remotely sensed image and ancillary data should be the same or 

closer, which restricts the use of these data in SRM. Besides the 

aforementioned ancillary data, land cover maps with finer 

spatial resolution than the remotely sensed images obtained at 

different dates are an alternative ancillary data for SRM. The 

land cover maps can be generated from remotely sensed images 

obtained from various platforms. Given that land cover map 

and remotely sensed images can be acquired at different times 

and considering that a great number of historical land cover 

maps which cover almost the entire earth may be available, 

SRM using these land cover maps is very promising.  
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The spatial-temporal super-resolution mapping (STSRM) 

first proposed by Ling et al. [5] is an approach that incorporates 

a finer-spatial resolution land cover map that pre- or post-dates 

the remotely sensed image acquisition time as ancillary data. 

Hereafter, we refer the input remotely sensed image has a 

coarse spatial resolution or coarse resolution, and the input and 

output land cover maps have fine spatial resolution or fine 

resolution in STSRM. Note that the terms ‘coarse’ and ‘fine’ do 

not mean the absolution spatial resolution of the data, but the 

relative spatial resolution of the image and the land cover map. 

STSRM is suited to monitor land cover change [6], and has 

been applied in many fields such as forest mapping [7], change 

detection [8], and land cover map updating [9].  

Various STSRM models have been proposed and can be 

generally categorized into two groups. The first group of 

STSRM models are based on the change detection analysis 

(CDA_STSRM). In CDA_STSRM models, the remotely 

sensed image pixels are unmixed to coarse resolution land 

cover fraction images from soft classification, and the fine 

resolution land cover map is spatially degraded to coarse 

resolution land cover fraction images. By comparison of these 

two kinds of fraction images, if the land cover fraction of a 

class is unchanged in a coarse resolution pixel, the fine 

resolution pixels that belong to that class in the coarse 

resolution pixel are assumed to have unchanged class label. 

Otherwise, the fine resolution pixels that belong to that class in 

the coarse resolution pixel are assumed to have changed class 

label, and the label can be determined using various algorithms 

such as the pixel-swapping algorithm [5], the Hopfield neural 

network  [10], the maximum a posteriori method [9, 11], the 

learning based model [12], the interpolation based model [13], 

the swarm intelligence theory [14], the adaptive cellular 

automata [15], and the artificial neural network [16]. Since 

error in fraction images is usually unavoidable, a threshold used 

to distinguish unchanged and changed fractions in each coarse 

resolution pixel is necessary to be incorporated in 

CDA_STSRM, and the results depend greatly on the fraction 

change detection threshold value used. However, the fraction 

error is usually spatially variable in different pixels and for 

different classes. The accurately estimation of the threshold in 

CDA_STSRM is very difficult [10, 11].  

The second group of STSRM models are based on 

spatial-temporal dependence (STD_STSRM). STD_STSRM 

assumes that fine resolution pixels are spatially dependent with 

their spatially closest fine resolution pixels, and are temporally 

dependent with the corresponding fine resolution pixels in 

images that pre- or post-date the image under analysis. Xu and 

Huang [17] proposed the spatial-temporal pixel swapping 

algorithm (STPSA) model that is applied to bi-temporal data, 

and Wang et al. [18] extended STPSA to multi-temporal data. 

Li et al. [7] proposed a Markov Random Field based model to 

map forest cover from Moderate Resolution Imaging 

Spectroradiometer (MODIS), and Zhang et al. [19] extended 

this model by using both the 240 m and 480 m spatial resolution 

MODIS bands. Generally, STD_STSRM predicts all fine pixel 

labels based on the spatial-temporal dependence model, and 

removes the need for a change detection threshold.  

Considering this advantage, this paper is focused on 

STD_STSRM.  

All STD_STSRM methods predict the fine resolution land 

cover map based on the a-priori spatial distribution and 

temporal transition information about land covers. The a-priori 

information in STD_STSRM includes the a-priori spatial 

information that is used to predict the land cover spatial 

patterns at the fine resolution pixel scale and a-priori temporal 

information that is used to model the temporal transitions 

between the class labels in the predicted and the input pre- or 

post-dated land cover maps. The a-priori spatial models have 

been studied in SRM researches including the spatial dependent 

model [20-23], the direct mapping model [24], the 

geostatistical model [25, 26], the multi-point simulation based 

model [27], the learning based model [28, 29], the adaptive 

model [30], and the linear spatial distribution model [31, 32]. In 

these models, [20-24] are suitable for predicting spatial patterns 

of patches that are larger than the coarse resolution pixel, 

[25-27] are suitable for predicting spatial patterns of patches 

that are smaller than the coarse resolution pixel, [31, 32] are 

suitable for linear patch, and [28-30] are suitable for patches 

with different spatial patterns, respectively. These a-priori 

spatial models used in SRM can be directly applied in 

STD_STSRM. In contrast, the study on the a-priori temporal 

information in STD_STSRM is very rare. Challenges in 

STD_STSRM remain, especially if seeking to use a time series 

of images. 

First, in many cases, more than one land cover map of the 

same scene is available in the area of interest. Since these land 

cover maps may record the land covers at different dates, 

incorporating as much fine resolution land cover maps as 

possible is very useful in accurately mapping land cover 

trajectories with STSRM. There are three scenarios for the 

acquisition time of the fine resolution maps and coarse 

resolution image in STSRM. The first case is that fine 

resolution maps which pre- and post-date the coarse resolution 

image are available, the second case is that only a fine 

resolution map which pre-dates the coarse resolution image is 

available, and the third case is that only a fine resolution map 

which post-dates the coarse resolution image is available. For 

the first case, two available fine resolution maps can be used as 

the a-priori temporal information to constrain STSRM. By 

contrast, for the second and third cases, only one fine resolution 

map is available as the a-priori temporal information. Existing 

STSRM methods, including both STD_STSRM and  

CDA_STSRM models, are focused on the second and third 

cases in which only one fine resolution map is available [5, 

9-18, 33-35], but  fail to explore the first case. A thorough study 

on the three cases should be developed in order that the entire 

land cover change trajectory from remotely sensed image series 

can be extracted. 

Second, the nature of the temporal dependence is often 

spatially variable. In STD_STSRM models, the temporal 

dependence is used to link the fine resolution pixels in different 

date. All existing STD_STSRM models consider the temporal 

dependence globally, and the intensity of the temporal 

dependence is, therefore fixed across the entire image. The 
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global temporal dependence model is used for its simplicity but 

may not be sufficient to model the spatial and temporal 

variation that may exist [7]. Generally, the land cover temporal 

dependence is related to the land cover transition probability. 

For instance, in the case of forest change, the transition 

probability from forest to nonforest is usually spatially variable 

depending on many physical and economic factors such as 

accessibility and land value [36]. Assuming the transition 

probability from forest to nonforest is invariant in the area 

covered by the entire image using the global temporal 

dependence model is not plausible. It is desirable to change the 

global temporal dependence to the local scale and to 

accommodate the spatial variation of its intensity. 

Third, land cover fraction errors caused by the soft 

classification procedure have to be handled in STD_STSRM. In 

general, the land cover fraction images that are spectrally 

unmixed from remotely sensed images are inputted in 

STD_STSRM. As soft classification continues to be an open 

problem, fraction images errors are often unavoidable in 

practice. The errors might lead a decrease in the accuracy for 

existing STSRM methods which constrain the result land cover 

map in a way that the class fractions within each coarse 

resolution pixel should be unchanged between the input coarse 

resolution fraction images and the output fine resolution land 

cover maps [10]. STD_STSRM should be developed not to 

strictly preserve the class fractions from the input coarse 

resolution class fraction images into the result fine resolution 

land cover map and act to eliminate fraction errors caused by 

soft classification. 

In this paper, a novel Local STD_STSRM (LSTSRM) model 

is proposed to generate fine resolution land cover maps from a 

series of coarse resolution class fraction images and a few fine 

resolution land cover maps. Unlike traditional STSRM models 

that consider only one fine resolution land cover map, 

LSTSRM can use both fine resolution maps that pre- and 

post-date the coarse resolution image to fully explore 

information in all available datasets and constrain the STSRM 

problem. In the proposed model, the temporal dependence 

intensity may vary from pixel to pixel at the fine resolution 

scale. In addition, the proposed model is developed not to 

strictly preserve the class fractions from the input class fraction 

images into the result land cover map, in order to eliminate 

fraction errors caused by the soft classification procedure. The 

remainder of this paper is organized as follows. Section II 

introduces the LSTSRM method. Section III examines the 

performance of LSTSRM using synthetic data experiment, real 

Sentinel-2 images experiment and real MODIS images 

experiment. Section IV discusses the influencing factors of the 

proposed method. Section V concludes this paper. 

II. METHOD 

A. The LSTSRM framework 

LSTSRM inputs coarse resolution class fraction images Ft at 

the observation time t (t=1,2,…,T), as well as the fine resolution 

land cover maps Xt-1 and/or Xt+1 that covers the same 

geographical region but obtained at times that pre- and/or 

post-date Ft, as input, and outputs the fine resolution land cover 

map Xt, at time of t. The coarse resolution fraction images Ft 

can be produced from remotely sensed image using various soft 

classification procedures. The fine resolution maps Xt-1 and 

Xt+1 can often be produced from fine resolution remotely 

sensed image by, for example, classification or manual 

digitization. Although a series of fine resolution land cover 

maps may be available and can be incorporated in LSTSRM, 

only those which are acquired temporally closest to and pre- or 

post-date Yt are selected as X t-1 and/or Xt+1. This is because the 

land cover datasets are temporally more dependent if they are 

obtained at temporally closer time [6, 18]. Ft contains I × J × C 

pixels (I × J is the number of coarse resolution pixels and C is 

the number of land cover classes). Xt, Xt-1 and Xt+1 each 

contains I × s × J × s pixels, where s is the scale factor and each 

coarse resolution pixel contains s × s fine resolution pixels. 

Each pixel in Xt, Xt-1 and Xt+1 has a land cover class label in C. 

In LSTSRM, the three scenarios, that is, both Xt-1 and Xt+1 are 

available (case 1), only Xt-1 is available (case 2), and only Xt+1  

is available (case 3), are considered (Fig. 1).  

Based on Bayesian theory, the optimal Xt can be expressed 

as:    

 

Fig. 1. The spatial and temporal neighborhoods for a fine resolution pixel. Case 1: Both Xt-1 and Xt+1 are available. Case 2: Xt+1 is available. Case 3: Xt+1 is available. 
The fine resolution pixel highlighted in black in Xt is the target pixel. The fine resolution pixels highlighted in blue and the coarse resolution pixels highlighted in 

yellow in Xt are the spatial neighborhood pixels. The fine resolution pixels highlighted in red in Xt-1 and Xt+1 are the temporal neighborhood pixels. 
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  1 +1arg max , ,t t t t tP X X F X X                   (1) 

where P(Xt|Ft,Xt-1,Xt+1) is the posterior probability of Xt, given 

Ft, Xt-1 and/or Xt+1. The Markov random field can model 

contextual information by characterizing the local statistical 

dependence among pixels in terms of conditional prior 

distribution [37]. The Markov random field can simplify the 

global model in (1) to a model of the local image properties, 

and largely reduces the model complexity to make the 

maximum a posteriori (MAP) model solvable. The optimal Xt, 

given Ft, Xt-1 and/or Xt+1, can be formulated by applying the 

MAP rule, i.e., by solving the maximization problem: 
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where U(Xt|Ft,Xt-1,Xt+1) is the posterior energy function of Xt 

and Z is a normalizing constant. Based on the Markov random 

field approach, the searching of the optimal Xt is equivalent to 

minimization the posterior energy function, which can be 

specified to model the spatial and temporal dependencies of 

pixel on its spatial and temporal neighborhoods. 

U(Xt|Ft,Xt-1,Xt+1) is calculated as: 

 -1 +1 -1 +1( ) ( ) ( ), , ,t t t t t t t t t

T

t

S FU UU U  X F X X X X X X F X  (3)             

 where US(Xt) and UT(Xt|Xt-1,Xt+1) are the spatial and temporal 

constraint functions, and UF(Ft|Xt) is class fraction constraint 

function that represents the inconsistency between Ft and Xt.  

B. The Spatial and Temporal Constraint Functions 

The LSTSRM spatial and temporal constraint functions are 

used to incorporate land cover a-priori spatial and temporal 

dependence model according to the spatial-temporal 

neighborhood system (Fig. 1). Each fine resolution pixel in Xt 

highlighted in black is spatially dependent on its spatial 

neighborhood fine resolution pixels marked in blue and spatial 

neighborhood coarse resolution pixels highlighted in yellow in 

Xt, and is temporally dependent on its temporal neighborhood 

fine resolution pixels highlighted in red in Xt-1 and Xt+1.  

1) Spatial Constraint Function 

The LSTSRM spatial constraint function is based on the 

spatial dependence principle which is the tendency of spatially 

proximate observations of a given property to be more similar 

than distant observations. It assumes that a fine resolution pixel 

and its neighboring fine resolution pixels have high 

probabilities to be labeled with the same class. At present, there 

are two methods to describe the spatial dependence of pixels, 

namely intra-pixel spatial dependence and inter-pixel spatial 

dependence, which are used to represent the spatial dependence 

within and between image pixels, respectively [20, 38-40]. 

Assume p
t 

ijk is the kth (k=1,…,s2) fine resolution pixel in coarse 

resolution pixel (i,j) (i=1,…,I, j=1,…,J) in Xt. D
S 

intra(c(p
t 

ijk)=c) is 

the intra-pixel spatial dependence of fine resolution pixel p
t 

ijk 

when it has a label of c (c=1,…,C), and D
S 

inter(c(p
t 

ijk)=c) is the 

inter-pixel spatial dependence of fine resolution pixel p
t 

ijk when 

it has a label of c. The spatial energy function US(Xt) can be 

written as: 

        
2

1 2

1 1 1 1

( ) 1
I J s C

S t S t

S intra ijk inter i k

i j k c

t

jU D c p c D c p c 
   

       X    

(4)
 where α1 

and
 
α2 define the weight of the intra- and inter-pixel 

spatial dependence values. In Eq. (4), -1 is multiplied because 

the LSTSRM seeks the minimum value as the optimal solution. 

The determination of intra-pixel spatial dependence and 

inter-pixel spatial dependence is explained as follows.   

1.1) Intra-pixel Spatial Dependence:   

The intra-pixel spatial dependence is computed at the 

sub-pixel/sub-pixel (fine resolution pixel/fine resolution pixel) 

scale, meaning the spatial dependence of a sub-pixel 

(highlighted in black in Fig. 1) is determined by its 

neighborhood same-class sub-pixels (highlighted in blue in Fig. 

1). The intra-pixel spatial dependence D
S 

intra (c(p
t 

ijk )=c) is 

determined by the pixel labels of its neighboring eight fine 

resolution pixels in the neighborhood  system: 

    
( )

( ), 8
t
ijk

S t t

intra ijk l

l p

D c p c c p c


  
N

          

(5) 

where N(p
t 

ijk) is the fine resolution spatial neighborhood, and p
t 

l  

is a neighborhood fine resolution pixel in N(p
t 

ijk). c(p
t 

ijk) and     

c(p
t 

l ) are the land cover class labels for fine resolution pixels p
t 

ijk 

and  p
t 

l . δ(c(p
t 

l ),c) equals 1 if c(p
t 

l ) and c are the same and 0 

otherwise. 

1.2) Inter-pixel Spatial Dependence:  

The inter-pixel spatial dependence is calculated at the 

sub-pixel/pixel scale, meaning that the inter-pixel spatial 

TABLE I 

LIST OF THE IMPORTANT VARIABLES 

Variable name Definition 

Ft 
The input coarse resolution class fraction images at 

time of t; 

Xt 
The predicted fine resolution land cover map at time 

of t; 

Xt-1 
The input fine resolution land cover map at time of 

t-1; Xt-1 pre-dates Xt; 

Xt+1 
The input fine resolution land cover map at time of 

t+1; Xt+1 post-dates Xt; 

p
t 

ijk 
The kth fine resolution pixel in coarse resolution pixel 

(i,j) in Xt; 

D
S 

intra(c(p
t 

ijk)=c) 

The intra-pixel spatial dependence of fine resolution 

pixel p
t 

ijk when it has a label of c (c=1,…,C, and C is 

the total number of classes in the image). 

D
S 

inter(c(p
t 

ijk)=c) 
The inter-pixel spatial dependence of fine resolution 

pixel p
t 

ijk when it has a label of c (c=1,…,C) ; 

D
T 

G(c(p
t 

ijk)=c) 
The global temporal dependence intensity of fine 

resolution pixel p
t 

ijk if p
t 

ijk belongs to the cth class; 

D
T 

L (c(p
t 

ijk)=c) 
The local adjust factor of fine resolution pixel p

t 

ijk if p
t 

ijk 

belongs to the cth class; 

MTSRM Mono-temporal super-resolution mapping; 

STSRM Spatial-temporal super-resolution mapping; 

LSTSRM Local temporal dependence model based STSRM; 

GSTSRM Global temporal dependence model based STSRM. 
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dependence of a sub-pixel (highlighted in black in Fig. 1) is 

determined by the same-class fine resolution pixels in the 

neighboring coarse resolution pixel (highlighted in yellow in 

Fig. 1) [39]. Spatial interpolation algorithms such as inverse 

distance weighted function or Kriging can be used to represent 

the relationship between sub-pixel and pixels [39, 41]. By 

spatially interpolating the neighborhood coarse pixel class 

fractions of each class to the sub-pixel scale, the inter-pixel 

spatial dependence D
S 

inter(c(p
t 

ijk)=c) is defined as: 

   ( )S t t

inter ijk c ijkD c p c f p                      (6) 

where fc(p
t 

ijk) is the spatially interpolated fractions of the cth class 

at sub-pixel p
t 

ijk. The value of fc(p
t 

ijk) is related to the cth class 

fractions in the neighborhood coarse pixels, the distance 

between p
t 

ijk  and the neighborhood coarse pixels, and the 

spatially interpolation method being used [42].  

2) The Spatial and Temporal Constraint Functions 

The LSTSRM fine pixel temporal dependence intensity is 

defined according to D
T 

G (c(p
t 

ijk)=c) and D
T 

L (c(p
t 

ijk)=c),where         

D
T 

G(c(p
t 

ijk)=c) is the global temporal dependence intensity of fine 

resolution pixel p
t 

ijk if p
t 

ijk belongs to the cth class, and D
T 

L (c(p
t 

ijk)=c) 

is the local adjust factor of fine resolution pixel p
t 

ijk if p
t 

ijk belongs 

to the cth class:  

       
2

1

-1 +1

1 1 1

1

,( )T

I J s C
T t T t

G ijk i

t t

L jk

i j k

t

c

U

D c p c D c p c
   

      

X X X

. (7) 

where β is the temporal constraint function weight parameter. 

The global temporal dependence intensity D
T 

G (c(p
t 

ijk )=c) is 

assigned to 1 if the kth fine resolution pixel in coarse resolution 

pixel (i,j)  belongs to the cth class in Xt-1 or Xt+1, and is assigned 

to 0 otherwise. Therefore, the fine resolution pixels in Xt and 

Xt-1 (or Xt+1) are temporally dependent if they have the same 

class label, and are temporally independent if they have 

different class labels. The local adjust factor D
T 

L (c(p
t 

ijk )=c) 

depends not only on the fine resolution class labels in Xt-1 

and/or Xt+1, but also on the coarse resolution class fractions at 

times of t-1, t and t+1. The calculation of the local adjust factor
 D

T 

L (c(p
t 

ijk)=c) according to different input data are explained as 

follows.
 

2.1) Both Xt-1 and Xt+1are Available:  

Before the calculation of the local adjust factor D
T 

L (c(p
t 

ijk)=c), 

the fine resolution pixels in coarse pixel (i,j) in Xt are grouped 

into different sets according to the spatial distribution of fine 

resolutions of the cth class in Xt-1 and Xt+1, assuming different 

set of fine pixels may have different temporal dependence and 

different local adjust factors. An example on grouping different 

fine resolution pixel sets is shown in Fig. 2. Fig. 2 (a) and (c) 

shows fine pixels that belong or not belong to cth class in the 

coarse pixel (i,j) in Xt-1 and Xt+1. By comparing Fig. 2 (a) and 

(c), four sets of fine resolution pixels in coarse resolution pixel 

(i,j), which are p
t-1&t+1 

ij,c ,  p
t-1 

ij,c, p
t+1 

ij,c  and p
non 

ij,c , are defined in Fig. 2(b). 

The detailed definitions are given in Fig. 2. 

Let f(p
t 

ij,c) be the fractions of the cth class in coarse resolution 

pixel (i,j) in Ft that is unmixed using soft classification. Let     

f(p
t-1&t+1 

ij,c ), f(p
t-1 

ij,c ) and f(p
t+1 

ij,c ) be the fractions of the cth class in 

coarse resolution pixel (i,j), which are calculated by dividing 

the number of pixels in  p
t-1&t+1 

ij,c ,  p
t-1 

ij,c and p
t+1 

ij,c  in coarse resolution 

pixel (i,j) by s2 (s is the scale factor). The local adjust factor is 

quantified by comparing f(p
t 

ij,c) with f(p
t-1&t+1 

ij,c ),  f(p
t-1 

ij,c) and f(p
t+1 

ij,c ). 

In LSTSRM, a simple rule is used in which a fine pixel that 

belongs to the cth class is more probably to be in the set p
t-1&t+1 

ij,c  

than in the sets p
t-1 

ij,c and p
t+1 

ij,c . In addition, a fine resolution pixel is 

not likely to belong to the cth class if this pixel does not belong 

to the cth class in Xt-1 and Xt+1, and the local adjust factor for 

fine resolution pixels in p
non 

ij,c  is set to 0.  Based on this rule, the 

local adjust factor according to the following cases is 

calculated.  

If f(p
t 

ij,c)≥ f(p
t-1&t+1 

ij,c )+f(p
t-1 

ij,c )+f(p
t+1 

ij,c ), then the fine resolution 

pixels in the sets p
t-1&t+1 

ij,c ,  p
t-1 

ij,c, p
t+1 

ij,c
 
are all temporally dependent. 

The fine resolution pixels in p
t-1&t+1 

ij,c , p
t-1 

ij,c  and p
t+1 

ij,c
 
should all 

belong to the cth class in Xt, and the corresponding local adjust 

 

  

Fig. 2.  An illustration of building the local adjust factor for the temporal dependence according to the fine resolution pixels labels of the cth class in pixel (i,j). (a) 

One coarse resolution pixel in Xt+1. (b) One coarse resolution pixel in Xt.  (c) One coarse resolution pixel in Xt+1. Each coarse resolution pixel contains 10×10 fine 

resolution pixels. 
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factor equals to 1, which is the maximal local adjust factor 

value. 

If f(p
t 

ij,c) is lower than f(p
t-1&t+1 

ij,c )+f(p
t-1 

ij,c)+f(p
t+1 

ij,c ) but higher than 

f(p
t-1&t+1 

ij,c ), the fine resolution pixels in p
t-1&t+1 

ij,c  should belong to the 

cth class and the corresponding local adjust factor remains to  be 

1, whereas the fine resolution pixels in p
t-1 

ij,c  and p
t+1 

ij,c
 
are not 

definitely to belong to the cth class and the corresponding local 

adjust factor is lower than 1. More specifically, the probability 

of fine resolution pixels in p
t-1 

ij,c and p
t+1 

ij,c
 
belonging to the cth class 

is proportional to the difference between f(p
t 

ij,c) and f(p
t-1&t+1 

ij,c ) in 

Eqs (8-9). In addition, the probability of fine resolution pixels 

in p
t-1 

ij,c and p
t+1 

ij,c
 
belonging to the cth class decreases with the time 

interval between Xt and Xt-1 or between Xt and Xt+1, assuming 

the temporal dependence decreases with the time interval 

between images. Let Δt(Xt-1, Xt) and Δt(Xt, Xt+1) be the time 

interval from the acquisition time from Xt-1 to Xt and from the 

acquisition time from Xt to Xt+1, respectively. The local adjust 

factor for the sets p
t-1 

ij,c and  p
t+1 

ij,c  are calculated as 

  
   
   

1& 1 -1
, ,

-1 +11 1

, ,

( , )
1

( , ) ( , )

t t t t t
ij c ij cT t

L ijk t t t tt t

ij c ij c

f p f p t
D c p c

t tf p f p

 

 

  
    

   

X X

X X X X

   (8) 

if p
t 

ijk belongs to p
t-1 

ij,c
 
and as 

  
   
   

1& 1 +1
, ,

-1 +11 1

, ,

( , )
1

( , ) ( , )

t t t t t
ij c ij cT t

L ijk t t t tt t

ij c ij c

f p f p t
D c p c

t tf p f p

 

 

  
    

   

X X

X X X X
 

(9)  

if p
t 

ijk belongs to p
t+1 

ij,c . 

If f(p
t 

ij,c) is lower than f(p
t-1&t+1 

ij,c ), the fine resolution pixels in 

the set p
t-1&t+1 

ij,c
 
are temporally dependent with the corresponding 

fine pixels in Xt-1 and Xt+1, and the probability that fine 

resolution pixels in p
t-1&t+1 

ij,c  belongs to the cth class is proportional 

to the value of f(p
t 

ij,c): 

  
 

 
,

1& 1

,

t

ij cT t

L ijk t t

ij c

f p
D c p c

f p  
  .                     (10) 

In contrast, the fine resolution pixels in the sets p
t-1 

ij,c and p
t+1 

ij,c  are 

temporally independent, and the corresponding local adjust 

factor
 
equals to 0. 

2.2) Only Xt-1 is Available: 

Only the number of fine resolution pixels of p
t-1 

ij,c  in Xt-1 is 

considered. If f(p
t 

ij,c)> f(p
t-1 

ij,c), the local adjust factor equals to 1 if 

p
t 

ijk belongs to p
t-1 

ij,c
 
and 0 otherwise. If f(p

t 

ij,c)≤ f(p
t-1 

ij,c),  the local 

adjust factor
 
is calculated as: 

 

  
 
 

,

1

,

t

ij cT t

L ijk t

ij c

f p
D c p c

f p 
                         (11) 

if p
t 

ijk belongs to p
t-1 

ij,c
 
and 0 otherwise. 

2.3) Only Xt+1 is Available: 

Only the number of fine resolution pixels of p
t+1 

ij,c  in Xt+1 is 

considered. If f(p
t 

ij,c)> f(p
t+1 

ij,c ), the local adjust factor equals to 1 if 

p
t 

ijk belongs to p
t+1 

ij,c
 
and 0 otherwise. If f(p

t 

ij,c)≤ f(p
t+1 

ij,c ),  the local 

adjust factor
 
is calculated as: 

 

  
 
 

,

1

,

t

ij cT t

L ijk t

ij c

f p
D c p c

f p 
                      (12) 

if p
t 

ijk belongs to p
t+1 

ij,c
 
and 0 otherwise. 

Although only Xt-1 or Xt+1 is considered in cases (2) and (3), 

the LSTSRM temporal dependence model is different from 

those in [7, 11, 17, 18, 43], because the local information is 

considered in LSTSRM but not in the previous studies.  

C.  Fraction Constraint Function 

The land cover fraction constraint function represents the 

difference between the class fractions in the input fraction 

images Ft and the final fine resolution map Xt: 

, ,F
2

1 1

( ) t t

I
t t t t

ij
i

ij

J

j

U
 

  F X
F X f f               (13) 

where f 
t 

ij,Ft is a C × 1 vector of different class fraction values in 

the coarse resolution pixel (i,j) in Ft. f 
t 

ij,Xt is a C × 1 vector of 

different class fraction values in the coarse resolution pixel (i,j) 

in Xt calculated by dividing the number of fine resolution pixels 

of different classes in coarse resolution pixel (i,j) by s2 in Xt. 

2
 indicates the  L2 norm.  

D. Fine Resolution Map Initialization and Updating 

The flowchart of LSTSRM is shown in Fig. 3. An initial fine 

resolution land cover map is used as input to LSTSRM at the 

outset. The initial map is produced according to the land cover 

class fraction images. The fine resolution pixels are allocated 

class labels randomly in a manner that maintains the class 

proportional information conveyed by fraction values [44]. The 

class labels in the initial fine resolution land cover map are then 

updated iteratively. The iterative conditional mode, a simple 

gradient-based optimization algorithm, was applied for 

updating the fine resolution pixel class labels.  

III. EXPERIMENT AND RESULTS 

The proposed LSTSRM model was assessed in three 

experiments. The first used the National Land Cover Database 

(NLCD) of U.S.A. [45], the second used Sentinel-2 and Google 

Earth images, and the third used MODIS and Landsat images. 

In each experiment, in order to explore the influence of input 

fine resolution map on the proposed method, LSTSRM using 

 

Fig. 4. The reference maps and change maps of the NLCD data. 

  

Fig. 3. The flowchart of LSTSRM. 
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two fine resolution maps (i.e., LSTSRMt-1&t+1, the superscripts 

‘t-1’ and ‘t+1’ indicate the fine resolution land cover maps that 

pre- and post-dates the prediction map) was compared with 

LSTSRM using only one fine resolution map (i.e., LSTSRMt-1 

and LSTSRMt+1). In addition, the proposed method using two 

fine resolution maps but using global land cover temporal 

dependence model (i.e., GSTSRMt-1&t+1) was also compared. In 

GSTSRMt-1&t+1, the local adjust factor, which may vary for 

different fine pixels and for different classes in LSTSRM, is set 

to 1 for all fine resolution pixels and for different classes in the 

entire image in Eq. (7).  

Several popular SRM algorithms were used for comparison 

including the pixel swapping algorithm based SRM (PSA) [20], 

the Kriging interpolation based SRM (KI) [41, 46, 47], the 

Hopfield neural network based SRM (HNN) [25], the 

spatial-temporal pixel swapping algorithm (STPSA) [17], the 

subpixel land cover change mapping algorithm (SLCCM) [5], 

and the SRM based on spatial–temporal dependence from a 

former map (SRM_STD) [34]. Among different methods, PSA, 

KI and HNN are applied to mono-temporal coarse resolution 

land cover fraction images, which are referred as 

mono-temporal SRM (MTSRM) methods, and STPSA, 

SLCCM and SRM_STD are applied to coarse resolution land 

cover fraction images and a fine resolution land cover map, 

which are referred as spatial-temporal SRM (STSRM) methods. 

The LSTSRM weight parameters in all experiments were set 

through trial and error. 

A. Simulated NLCD Experiment 

1)  Data Preparation 

The 30 m resolution NLCD maps were adopted in this 

experiment. NLCD is a land cover classification scheme of 

Albers Equal Area projection, which has been applied 

consistently at a spatial resolution of 30 m across the 

conterminous USA primarily on the basis of Landsat satellite 

data. The study area is located in Charlotte (33º7'00"N and 

81º3'00"W), U.S.A. The NLCD maps acquired in 2001, 2006 

and 2011, each contains 800 × 800 pixels in size, were used as 

the fine resolution land cover maps (Fig. 4(a-c)). The original 

NLCD maps contain sixteen classes according to the NLCD 

classification system modified from the Anderson Land Cover 

Classification System [45]. The original sixteen classes were 

reclassified to eight classes, namely water, developed, barren, 

forest, shrubland, herbaceous, planted/cultivated, and wetlands 

in this experiment.  

This experiment was intended to predict the NLCD 2006 

map, using coarse resolution fractions images in 2006 and fine 

resolution NLCD maps in 2001 and 2011.The coarse resolution 

fraction images in 2006 were simulated based on NLCD 2006. 

The coarse resolution fraction image of each class in the year 

2006 was produced by dividing the number of fine resolution 

pixels that belong to that class in each coarse resolution pixel in 

NLCD 2006 according to the scale factor s, which was set s=10. 

This approach can produce error-free fraction images compared 

with those produced by soft classification [20, 24].  

The input of different methods was set. For all methods, the 

coarse resolution class fraction images in the year 2006 were 

inputted. For SRM methods, STPSA, SLCCM and SRM_STD 

and LSTSRM using fraction images in the year 2006 and 

NLCD 2001 map (i.e., STPSAt-1, SLCCMt-1, SRM_STDt-1, and 

LSTSRMt-1) and using fraction images in the year 2006 and 

NLCD 2011 map (i.e., STPSAt+1, SLCCMt+1, SRM_STDt+1 and 

LSTSRMt+1) were tested. LSTSRMt-1&t+1 and GSTSRMt-1&t+1 

using both the 2001 and 2011 NLCD maps were compared. The 

accuracies of different methods were assessed using the NLCD 

2006 (Fig. 4 (b)).  

2)  Results 

The resulting maps in the zoomed area from different 

methods are shown in Fig. 5. The KI map contained 

unsmoothed boundaries because it discarded the intra-pixel 

spatial dependence which can help to generate locally 

smoothed boundaries in the result (Fig. 5(b)). The PSA map 

failed to reconstruct the holistic land cover spatial patterns 

because it discarded the land cover inter-pixel spatial 

dependence (Fig. 5(c)). The PSA map contained many land 

cover patches with small size represented as speckle-like 

artifacts. In contrast, the HNN map eliminated the speckle-like 

artifacts (Fig. 5(d)). This difference lays in the fact that KI and 

PSA must preserve class fractions in the resulting map, and the 

land covers with small area proportion or fraction in a coarse 

resolution pixel would be aggregated to small land cover 

patches represented as speckle-like artifacts. In contrast, HNN 

does not strictly preserve the class fractions from the input class 

fraction images into the result land cover map, and would 

eliminate the speckle-like artifacts due to spatial smoothing 

effect [20, 25]. However, since KI, PSA and HNN only 

considers the land cover spatial information but neglect land 

cover temporal information in the land cover map that pre- 

and/or post-dates the prediction date, the spatial details were 

not represented in the result maps.  

The STSRM methods, including STPSA, SLCCM, 

SRM_STD and LSTSRM, preserved the spatial details of land 

cover classes in Fig. 5 (Fig. 5(e-n)). All these maps were very 

similar to the reference NLCD 2006 map. The linear developed 

class was connected in these maps, and the shapes of objects 

such as herbaceous, planted/cultivated, and water were 

reconstructed. 

 

Fig. 4. The reference maps and change maps of the NLCD data. 
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Fig. 6 shows the error maps from different methods. The 

MTSRM algorithms of KI, PSA and HNN generated more error 

pixels (highlighted in red and blue in Fig. 6(b-d)) compared 

with those STSRM methods in Fig. 6(e-n). In addition, the 

MTSRM generated more wrongly-labeled unchanged pixels 

highlighted in blue than wrongly-labeled changed pixels 

highlighted in red in Fig. 6(b-d)), whereas STSRM eliminated 

most wrongly-labeled unchanged pixels highlighted in blue in 

Fig. 6(e-n), showing that incorporating temporal dependence in 

SRM can reduce the commission error especially for 

unchanged pixels. Among all the result maps, the 

LSTSRMt-1&t+1 contained the least wrongly-labeled fine pixels 

in Fig. 6(n), and the wrongly-labeled fine pixels highlighted in 

the circles in other STSRM maps (Fig. 6(e-l)) were eliminated 

in the LSTSRMt-1&t+1 map.  This result not only shows that the 

proposed LSTSRMt-1&t+1 increased the accuracy than the 

existing STSRM algorithms of STPSA, SLCCM and 

SRM_STD, but also shows that the proposed STSRM using 

two fine maps is superior to that using only one fine map, and 

the proposed STSRM using local temporal dependence model 

is superior to that using global temporal dependence model. 

The overall accuracies of different methods are shown in 

Table II. The overall accuracies of MTSRM methods were 

lower than 81%, whereas those of STSRM methods were 

 

Fig. 5. The result maps in the zoomed area from different methods. The superscripts ‘t-1’ and ‘t+1’ indicate NLCD 2001 and 2011 maps used in the methods. 

 

 

Fig. 6. The error maps in the zoomed area from different methods. The superscripts ‘t-1’ and ‘t+1’ indicate NLCD 2001 and 2011 maps used in the methods. 

TABLE II 
THE OVERALL ACCURACIES (%) OF DIFFERENT METHODS IN THE NLCD EXPERIMENT. 

KI PSA HNN STPSAt-1 STPSAt+1 SLCCMt-1 SLCCMt+1 SRM_STDt-1 SRM_STDt+1 LSTSRMt-1 LSTSRMt+1 GSTSRMt-1&t+1 LSTSRMt-1&t+1 

78.06 74.59 80.11 89.11 91.34 90.14 92.31 91.09 93.08 91.61 93.41 93.37 94.39 
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higher than 89%. The accuracies of STPSAt-1, SLCCMt-1 and 

SRM_STDt-1 were similar, and the accuracies of STPSAt+1, 

SLCCMt+1 and SRM_STDt+1 were similar, showing that the 

input fine resolution map plays a key role for STPSA, SLCCM 

and SRM_STD. In addition, the overall accuracy for 

LSTSRMt-1 was higher than those of STPSAt-1, SLCCMt-1 and 

SRM_STDt-1, and the overall accuracy for LSTSRMt+1 was 

higher than those of STPSAt+1, SLCCMt+1 and SRM_STDt+1. It 

shows that LSTSRM improves the accuracy compared with 

STPSA, SLCCM and SRM_STD when only one fine map is 

used in STSRM. LSTSRMt-1&t+1 generated the highest overall 

accuracy among all methods, showing the advantage of the 

proposed method.   

B. Sentinel-2 Experiment 

1)  Data Preparation 

The LSTSRM was tested using real Sentinel-2 remotely 

sensed images in this experiment. Sentinel-2 was launched by 

the European Space Agency in 2015, and can provide global 

acquisitions of fine resolution multi-spectral images with a fine 

revisit frequency. The Sentinel-2 image is useful in land cover 

mapping due to its appealing properties (10 days at the equator 

with one satellite, and 5 days with 2 satellites which result in 

2-3 days at mid-latitudes) and the free access. In this 

experiment, Sentinel-2 image was utilized to map land covers 

in an urban area located in Wuhan (30°27′30″N and 

114°32′30″E), Hubei province, China. The Sentinel-2 image 

acquired on September 7 2016 with four 10 m spatial resolution 

Sentinel-2 bands (blue, green, red and infrared bands) was used 

to generate land cover map in the study area (Fig. 7(d)). A 

Google Earth image acquired on September 26 2016 was 

digitized to a 2 m spatial resolution land cover map for accuracy 

assessment (Fig. 7(b)). Two fine resolution Google Earth 

images that acquired on February 20 2016 and December 20 

2017, respectively, were digitized to 2 m spatial resolution land 

cover maps as the STSRM input (Fig. 7(a),(c)). The study area 

covers 400 × 400 Sentinel-2 pixels, which correspond to 2000 × 

2000 fine resolution pixels in the input and reference maps, 

with a scale factor s = 5. There are three land cover types, which 

are water, vegetation and impervious/bareland, contained in the 

input and reference land cover maps.  

The proposed LSTSRM using both fine maps and using local 

temporal dependence model, i.e., LSTSRMt-1&t+1, was 

compared with the same methods used in the first experiments, 

including MTSRM of KI, PSA and HNN, as well as the 

STSRM methods of STPSAt-1, STPSAt+1, SLCCMt-1, 

SLCCMt+1, SRM_STDt-1, SRM_STDt+1, LSTSRMt-1, 

LSTSRMt+1 and GSTSRMt-1&t+1 (the superscripts ‘t-1’ and ‘t+1’ 

indicate the Google Earth 2016 and 2017 maps, respectively). 

For the MTSRM and STSRM methods, the multiple 

endmember spectral mixture analysis was applied to generate 

land cover class fraction images [48].  

2)  Results 

Fig. 8 shows the result maps and zoomed images from 

different methods. Different to the NLCD experiment which 

used error-free coarse spatial resolution land cover fraction 

images, this experiment used fraction images that were 

unmixed from the Sentinel-2 image which inevitably contained 

errors in Fig. 8. The zoomed image for KI (b) and PSA (c) 

contained many speckle-like artifacts which were resulted from 

soft classification error. For instance, if a coarse pixel does not 

contain pixels of water class and the unmixed water fraction is 

12% in this coarse pixel, then a total number of 52×12% =3 (5 is 

the scale factor) fine pixels are labeled as water class within this 

coarse pixel, which may be represented as speckle-like artifacts 

since these methods must preserve class fractions in the 

resulting map. KI and PSA preserved class fractions in the 

resulting map, resulting in speckle-like artifacts due to soft 

classification errors in the class fraction images. HNN 

eliminated the speckle-like artifacts because it had the spatial 

smoothing effect and did not strictly preserve the class fractions 

from the input class fraction images into the result land cover 

map. However, the impervious&bareland patch highlighted by 

the ellipse in the zoomed area in Fig. 8(d) was wrongly labeled 

as water, and the detailed spatial pattern of the linear 

impervious&bareland patch highlighted by the circle was not 

reconstructed.  

Among the STSRM results in Fig. 8, the STPSA, SLCCM 

and SRM_STD (Fig. 8(e-g),(i-k)) contained a large number of 

speckle-like artifacts due to soft classification error, whereas 

LSTSRM (Fig. 8(h),(l),(n)) and GSTSRM (Fig. 8(m)) 

eliminated these errors due to spatial smoothing effect. Similar 

to HNN, LSTSRM and GSTSRM eliminated the speckle-like 

artifacts because they have the spatial smoothing effect and do 

not to strictly preserve the class fractions from the input class 

fraction images in the result land cover map. The LSTSRM and 

GSTSRM maps in Fig. 8 (h) and (l-n) were much similar to the 

reference map than the HNN map in Fig. 8(d). This is because 

LSTSRM and GSTSRM incorporated land cover temporal 

information from the input land cover map whereas HNN did 

not. As soft classification error is usually unavoidable in real 

applications, LSTSRM and GSTSRM would be more suitable 

 

Fig.7. The reference fine resolution maps, Sentinel-2 images and change maps. 

The Sentinel-2 image uses NIR-red-green as RGB. 
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for land cover mapping of image series compared with STPSA, 

SLCCM and SRM_STD in practice.  

In the zoomed images, LSTSRMt-1, LSTSRMt+1 and 

GSTSRMt-1&t+1 failed to reconstruct the linear 

impervious&bareland patch highlighted by the circles in Fig. 

8(h),(l) and (m). LSTSRMt+1 erroneously labeled a part of 

impervious&bareland as water highlighted by the ellipse in the 

zoomed image for Fig. 8(l).  LSTSRMt-1 and GSTSRMt-1&t+1 

erroneously labeled a part of impervious&bareland as 

vegetation highlighted by the circle in the zoomed image for 

Fig. 8 (h), (m). LSTSRMt-1&t+1 correctly labeled the 

impervious&bareland patch highlighted by the ellipse and 

reconstructed most parts of the linear impervious&bareland 

patch highlighted by the circles in the zoomed image for (n), 

and was similar to the reference image.  

The overall accuracy, producer’s and user’s accuracies of 

different methods are presented in table III. The overall 

accuracies for KI, PSA, STPSA, SLCCM and SRM_STD, 

which strictly preserve the class fractions from the input class 

fraction images in the result land cover map, were lower than 

80%, showing that the soft classification error strongly affects 

these MTSRM and STSRM methods. HNN had an overall 

accuracy of about 85%, and LSTSRM and GSTSRM increased 

the overall accuracy to higher than 93%. Among LSTSRM and 

GSTSRM, for the water class, LSTSRMt+1 has the highest 

producer’s accuracy but the lowest user’s accuracy served as a 

high commission error of water. This is shown in the zoomed 

image of (l) in which some impervious&bareland pixels were 

wrongly labeled as water highlighted by the ellipse in 

LSTSRMt+1. In addition, among LSTSRM and GSTSRM and 

TABLE III 

THE ACCURACIES (%) OF DIFFERENT METHODS IN THE SENTINEL-2 IMAGE EXPERIMENT. 

  
KI PSA HNN STPSA t-1 STPSAt+1 SLCCMt-1 SLCCMt+1 SRM_STDt-1 SRM_STDt+1 LSTSRMt-1 LSTSRMt+1 GSTSRMt-1&t+1 LSTSRMt-1&t+1 

Overall accuracy 76.49 75.66 84.77 76.68 76.78 76.67 76.77 76.64 76.72 93.34 93.64 93.92 95.24 

Producer’s 

accuracy 

Water 88.78 87.36 94.25 89.32 89.29 89.29 89.24 89.29 89.28 92.73 94.53 85.60 91.58 

Vegetation 76.88 76.21 86.11 77.02 77.10 77.01 77.09 77.03 77.10 95.59 94.82 95.90 96.50 

Impervious 
/bareland 69.81 68.79 76.65 70.00 70.21 69.99 70.21 69.78 69.93 87.25 89.91 92.08 93.35 

User’s 

accuracy 

Water 43.29 42.57 59.48 43.52 43.50 43.51 43.48 43.51 43.50 90.68 85.05 94.41 94.32 

Vegetation 90.28 89.59 92.65 90.53 90.63 90.53 90.62 90.55 90.63 94.53 95.90 95.15 96.38 

 
Impervious 
/bareland 74.05 72.85 82.06 74.13 74.35 74.12 74.36 73.90 74.06 91.08 91.61 90.26 92.45 

 

 
 

 

Fig. 8. The result maps in the zoomed area from different methods in the Sentinel-2 image experiment. The superscripts ‘t-1’ and ‘t+1’ indicate Google Earth 2016 

and 2017 maps used in the methods. 
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for the water class, GSTSRMt-1&t+1 has the highest user’s 

accuracy, but the lowest producer’s accuracy served as a high 

omission error of water. For the vegetation to 

impervious&bareland class which have a large degree of land 

cover change in Fig. 7(e-f), LSTSRMt-1&t+1 has the highest 

producer’s and user’s accuracies served as the lowest omission 

and commission errors for these two classes. LSTSRMt-1&t+1 

has the highest overall accuracy, showing the advantages of the 

proposed method.  

C. MODIS Experiment 

1)  Data Preparation 

The LSTSRM was tested using real MODIS image in this 

experiment. The study area is located near Sorriso (12º33'00"S 

and 55º42'00"W) in Mato Grosso State, Brazil. This area was 

mostly covered by tropical forests but has suffered from 

deforestation in recent years [8]. Three Landsat TM images 

(path 226, row 069) acquired on July 12 2002, July 23 2003 and 

June 23 2004 were downloaded from the USGS website. Data 

in six bands (the 120 m thermal infrared band was excluded) at 

the 30 m spatial resolution with the Universal Transverse 

Mercator projection were used. The three Landsat images were 

classified at a 30 m spatial resolution (Fig. 9 (a-c)). Two land 

cover classes, forest and nonforest, were considered in this 

experiment. The endmembers of each class were manually 

selected from each Landsat image, and the maximum 

likelihood classifier was applied to generate the fine resolution 

forest/nonforest maps each year.  

A 8-day surface reflectance MODIS product (MOD09A1) 

datasets comprising seven spectral bands (620 nm - 2055 nm) 

with a spatial resolution of 463 m acquired in July 2003 was 

used (Fig. 9(d)). The MODIS image was re-projected to the 

UTM coordinate system and resampled to a spatial resolution 

of 450 m using the nearest neighbor interpolation which may 

not over-smooth the resized image. The study area covers 300 × 

300 MODIS pixels, which correspond to 4500 × 4500 Landsat 

pixels, with a scale factor s=15.  

The same MTSRM and STSRM methods that used in the 

NLCD and Sentinel-2 experiments were used in this 

experiment. The multiple endmember spectral mixture analysis 

was applied to the MODIS image to generate coarse resolution 

land cover fraction images. STSRM incorporated the 2002 

and/or 2004 land cover maps in Fig. 9(a), (c) as ancillary data. 

The accuracies of different methods were assessed using the 30 

m resolution 2003 land cover maps (Fig. 9(b)). 

2)  Results 

The zoomed areas of the result maps from different methods 

were shown in Fig. 10. Similar to the Sentinel-2 experiments, 

the KI, PSA STPSA, SLCCM and SRM_STD maps contained 

speckle-like artifacts due to soft classification errors in the class 

fraction images in Fig. 10. The HNN maps eliminated 

speckle-like artifacts due to spatial smoothing effect. However, 

HNN generated disconnected forest patches highlighted by the 

circle in Fig. 10(d), and the shape of the forest patch was 

smoothed and dissimilar to that in the reference map. By 

contrast, the LSTSRM and GSTSRM maps were similar to the 

reference map than those generated from other methods. The 

shape of the forest patch was mostly reconstructed by LSTSRM 

and GSTSRM. Both LSTSRMt-1 and LSTSRMt+1 generated 

disconnected forest patch that were highlighted by the circle in 

Fig. 10 (h) and (l), whereas GSTSRMt-1&t+1 and LSTSRMt-1&t+1 

generated more connected forest patches in Fig. 10 (m-n), 

showing incorporating two fine maps that pre- and post-dates 

the predicting time usually increase the accuracy than those 

using only one fine image. In addition, the LSTSRMt-1&t+1 was 

more similar to the reference image than GSTSRMt-1&t+1 such 

as those highlighted by the ellipse and circle.  

The accuracies of different methods are shown in table IV. 

The overall accuracies of KI, PSA, STPSA, SLCCM and 

SRM_STD were lower than 90%, whereas that of HNN, 

LSTSRM and GSTSRM were higher than 90%. It shows that 

the soft classification error has a strong effect on these MTSRM 

and STSRM methods. The overall accuracies of LSTSRM and 

GSTSRM were all higher than 95%. Among LSTSRM and 

GSTSRM, for the forest class, GSTSRMt-1&t+1 has the highest 

producer’s accuracy and the second lowest user’s accuracy 

served as commission errors of forest. Among LSTSRM and 

GSTSRM and for the nonforest class, LSTSRMt+1 has the 

highest producer’s accuracy but the lowest user’s accuracy 

served as the highest commission error of nonforest. For 

instance, the forest patch was erroneously labeled as nonforest 

highlighted by the ellipse in Fig. 10(l), resulting in a higher 

commission error of nonforest for LSTSRMt+1. In contrast, the 

small forest patch which was erroneously labeled as nonforest 

highlighted by the ellipse in LSTSRMt+1 was correctly 

predicted in LSTSRMt-1&t+1 in Fig. 10(n). LSTSRMt-1&t+1 has 

relatively high producer’s and user’s accuracies for both forest 

and nonforest, and the highest overall accuracy among all 

methods.  

IV. DISCUSSION 

In this section, the similarity and difference between STSRM 

and two popular image fusion methods, which are 

 

Fig.9. The reference fine resolution maps, MODIS images and change maps in 

the MODIS image experiment. The MODIS images use SWIR-NIR-red as 

RGB. 
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spatial-temporal image fusion and hyper-spectral image 

super-resolution, are discussed. Then the influencing factor of 

the changed and unchanged pixels to the proposed LSTSRM is 

discussed.  

A. Comparison of STSRM, Spatial-temporal Image Fusion 

(STIF), and Hyper-spectral Image (HSI) Super-resolution  

With the development of remote sensing society, a huge 

number of remotely sensors have been launched recently. The 

optical remotely sensed images usually have a tradeoff between 

the spatial, temporal, and spectral resolutions, due to technical 

limitations factors and the orbit of the platforms. Various 

methods are proposed to fuse images of the same scene, using 

complementary information provided. LSTSRM was compared 

theoretically with STIF and HSI super-resolution. 

1)  Comparison of STSRM and STIF 

STIF is an approach that generates a fine resolution image 

for the date represented by a coarse resolution image by 

integrating the spatial and temporal information in a pair of fine 

and coarse resolution images of the same region acquired at 

other dates [49-51]. Both STSRM and STIF aim to overcome 

the limitation caused by the tradeoff between spatial and 

temporal resolutions of optical remotely sensed images. The 

main difference lays in that STIF predicts fine spatial-temporal 

resolution reflectance images or indices such as Normalized 

Difference Vegetation Index (NDVI) time-series [52] which 

can be used in applications such as the monitoring of vegetation 

seasonal change [53] and in the assessment of vegetation status 

[54]. In contrast, STSRM predicts fine spatial-temporal 

resolution land cover maps which can be used in applications 

such as land cover change analysis. STIF is more appropriate in 

the analysis based on image reflectance whereas STSRM is 

more appropriate in the analysis based on land cover types.  

2)  Comparison of STSRM and HSI Super-resolution 

HSI super-resolution is an approach that fuses coarse spatial 

resolution HSI with fine spatial resolution multispectral images 

or panchromatic images in order to obtain super-resolution 

(spatial and spectral) hyperspectral images [55-57]. HSI 

super-resolution aims to overcome the limitations caused by the 

tradeoff between spatial and spectral resolutions of optical 

remotely sensed images, using the complementary 

characteristics in the inference of images with fine 

spatial-spectral resolutions. There are two main differences 

between HSI super-resolution and STSRM. First, HSI 

super-resolution usually requires the input coarse spatial 

resolution HSI and fine spatial resolution multi-spectral images 

to be acquired at the same or close date so that land cover does 

not change between the acquisition dates of these images. In 

contrast, for STSRM, the input coarse spatial resolution class 

fraction images and the fine spatial resolution land cover map 

are derived from remotely sensed images that are acquired at 

different dates. Second, HSI super-resolution is used to predict 

fine spatial-temporal resolution images whereas STSRM 

directly outputs fine spatial-temporal resolution land cover 

maps. If the aim is to extract land cover information, a 

procedure of land cover classification is still need to be applied 

to image outputted from HSI super-resolution.  

B. Influence of Changed and Unchanged Pixels on LSTSRM 

The influence of the percentage of changed and unchanged 

pixels in the land cover maps on LSTSRM is explored. Take the 

NLCD experiment for example, table V showed the percentage 

of changed pixels for each class as well as the producer's and 

 

Fig. 10. The result maps from different methods in the zoomed areas in the MODIS image experiment. The superscripts ‘t-1’ and ‘t+1’ indicate 2002 and 2004 fine 
resolution maps used in the methods. 

 
TABLE IV 

THE OVERALL ACCURACIES (%) OF DIFFERENT METHODS IN THE MODIS IMAGE EXPERIMENT. 

  
KI PSA HNN STPSAt-1 STPSAt+1 SLCCMt-1 SLCCMt+1 SRM_STDt-1 SRM_STDt+1 LSTSRMt-1 LSTSRMt+1 GSTSRMt-1&t+1 LSTSRMt-1&t+1 

Overall accuracy 86.58 86.51 92.07 88.10 87.89 87.90 87.92 88.11 87.97 96.63 95.78 96.74 97.43 

Producer’s 

accuracy 

forest 86.10 86.04 92.23 87.22 87.06 87.07 87.08 87.23 87.12 96.98 94.00 97.05 96.82 

nonforest 87.60 87.49 91.74 89.94 89.61 89.62 89.66 89.96 89.74 95.91 99.49 96.09 98.72 

User’s 

accuracy 

forest 93.54 93.48 95.88 94.76 94.58 94.59 94.61 94.77 94.65 98.02 99.74 98.10 99.37 

nonforest 75.14 75.04 85.00 77.15 76.86 76.88 76.90 77.16 76.98 93.84 88.84 93.98 93.71 
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user's accuracies. During years 2001-2006, for classes with a 

low (<=10%) percentage of changed pixels such as water, 

developed, forest, planted/cultivated and wetlands class, the 

producer's and user’s accuracies were higher than 95% for 

LSTSRMt-1. For classes with a high (>40%) percentage of 

changed pixels during 2001-2006 such as barren, shrubland and 

herbaceous classes, the producer's and user’s accuracies were 

lower than 75% for LSTSRMt-1. Similarly, for GSTSRMt-1&t+1 

and LSTSRMt-1&t+1, for classes with a low (<=5%) percentage 

of changed pixels such as developed and planted/cultivated 

during 2001-2011, the producer's and user’s accuracies were 

higher than 97%, and for classes with a high (>50%) percentage 

of changed pixels such as barren and herbaceous classes, the 

producer's and user’s accuracies were usually lower than 80%. 

This shows that the proposed method is more competent in 

predicting pixels with unchanged labels. Other land cover 

temporal models could be developed to deal with the 

complicated land cover change scenarios.  

V. CONCLUSION 

  In this paper, a novel local adaptive dependence based 

spatial-temporal super-resolution mapping model was 

proposed. Unlike traditional STSRM models using only one 

fine resolution land cover map as ancillary data, the proposed 

LSTSRM model considers the fine resolution maps pre- and/or 

post-dates the coarse resolution cases, and develops the local 

temporal dependence model, in which the dependence intensity 

may vary from fine resolution pixel to fine resolution pixel. 

LSTSRM does not to strictly preserve the class fractions from 

the input class fraction images into the result land cover map, 

and can eliminate fraction errors caused by the soft 

classification procedure to some extent. 

The LSTSRM performance was validated using NLCD data, 

real Sentinel-2 imagery and real MODIS imagery by 

comparing with several popular SRM algorithms. Results 

showed that LSTSRM resulting maps eliminated most 

speckle-like artifacts. Moreover, the LSTSRM resulting maps 

maintained the connectivity for the linear shaped patches, and 

were closer to the reference maps than other methods. The 

proposed LSTSRM generated the highest overall accuracies in 

all the experiments. In addition, the proposed method using two 

fine resolution maps and using local temporal dependence 

model improved the accuracy by comparing with that using two 

fine resolution maps but using global temporal dependence 

model, and by comparing with that using only one fine 

resolution map and using local temporal dependence model. 

The producer’s and user’s accuracies were higher for 

unchanged classes than for changed classes for different 

methods in the NLCD experiment. Research focusing on using 

more fine resolution land cover maps and improving the local 

land cover transitions for changed land cover classes in STSRM 

should be studied in the future.   
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