40 research outputs found

    Autoregressive Kernels For Time Series

    Full text link
    We propose in this work a new family of kernels for variable-length time series. Our work builds upon the vector autoregressive (VAR) model for multivariate stochastic processes: given a multivariate time series x, we consider the likelihood function p_{\theta}(x) of different parameters \theta in the VAR model as features to describe x. To compare two time series x and x', we form the product of their features p_{\theta}(x) p_{\theta}(x') which is integrated out w.r.t \theta using a matrix normal-inverse Wishart prior. Among other properties, this kernel can be easily computed when the dimension d of the time series is much larger than the lengths of the considered time series x and x'. It can also be generalized to time series taking values in arbitrary state spaces, as long as the state space itself is endowed with a kernel \kappa. In that case, the kernel between x and x' is a a function of the Gram matrices produced by \kappa on observations and subsequences of observations enumerated in x and x'. We describe a computationally efficient implementation of this generalization that uses low-rank matrix factorization techniques. These kernels are compared to other known kernels using a set of benchmark classification tasks carried out with support vector machines

    Time Series Cluster Kernel for Learning Similarities between Multivariate Time Series with Missing Data

    Get PDF
    Similarity-based approaches represent a promising direction for time series analysis. However, many such methods rely on parameter tuning, and some have shortcomings if the time series are multivariate (MTS), due to dependencies between attributes, or the time series contain missing data. In this paper, we address these challenges within the powerful context of kernel methods by proposing the robust \emph{time series cluster kernel} (TCK). The approach taken leverages the missing data handling properties of Gaussian mixture models (GMM) augmented with informative prior distributions. An ensemble learning approach is exploited to ensure robustness to parameters by combining the clustering results of many GMM to form the final kernel. We evaluate the TCK on synthetic and real data and compare to other state-of-the-art techniques. The experimental results demonstrate that the TCK is robust to parameter choices, provides competitive results for MTS without missing data and outstanding results for missing data.Comment: 23 pages, 6 figure

    A nested alignment graph kernel through the dynamic time warping framework

    Get PDF
    In this paper, we propose a novel nested alignment graph kernel drawing on depth-based complexity traces and the dynamic time warping framework. Specifically, for a pair of graphs, we commence by computing the depth-based complexity traces rooted at the centroid vertices. The resulting kernel for the graphs is defined by measuring the global alignment kernel, which is developed through the dynamic time warping framework, between the complexity traces. We show that the proposed kernel simultaneously considers the local and global graph characteristics in terms of the complexity traces, but also provides richer statistic measures by incorporating the whole spectrum of alignment costs between these traces. Our experiments demonstrate the effectiveness and efficiency of the proposed kernel
    corecore