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Abstract. In this paper, we propose a novel nested alignment graph kernel draw-
ing on depth-based complexity traces and the dynamic time warping framework.
Specifically, for a pair of graphs, we commence by computing the depth-based
complexity traces rooted at the centroid vertices. The resulting kernel for the
graphs is defined by measuring the global alignment kernel, which is developed
through the dynamic time warping framework, between the complexity traces.
We show that the proposed kernel simultaneously considers the local and global
graph characteristics in terms of the complexity traces, but also provides richer
statistic measures by incorporating the whole spectrum of alignment costs be-
tween these traces. Our experiments demonstrate the effectiveness and efficiency
of the proposed kernel.

1 Introduction

In pattern recognition, graph kernels are powerful tools for applying standard machine
learning techniques to graph datasets [24]. These kernels are typically used in conjuc-
tion with kernel methods such as Support Vector Machines (SVM) and kernel Principle
Component Analysis (kPCA) for the purposes of classification or clustering [4, 21].

The idea underpinning most existing graph kernels is that of decomposing graph-
s into substructures and comparing pairs of specific isomorphic substructures. Some
examples are graph kernels based on counting pairs of isomorphic a) walks [27], b)
paths [1], and c) restricted subgraph or subtree substructures [14]. Other examples in-
clude the work of Bach [2], who proposed a family of kernels for comparing point
clouds. These kernels are based on a local tree-walk kernel between subtrees, which is
defined by a factorization on suitably defined graphical models of the subtrees. Wang
and Sahbi [28], on the other hand, defined a graph kernel for action recognition. They
first describe actions in the videos using directed acyclic graphs (DAGs). The result-
ing kernel is defined as an extending random walk kernel by counting the number of
isomorphic walks of DAGs. Harchaoui and Bath [18] proposed a segmentation graph
kernel for images by counting the inexact isomorphic subtree patterns between image
segmentation graphs. Other state-of-the-art graph kernels include the subtree-based hy-
pergraph kernel [7], the Lovász graph kernel [19], the aligned subgraph kernel [10], the
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subgraph matching kernel [21], the fast depth-based subgraph kernel [6], the optimal
assignment kernel [22], and the aligned Jensen-Shannon subgraph kernel [11].

Unfortunately, all the aforementioned graph kernels tend to capture only local char-
acteristics of graphs, since they usually use substructures of limited sizes. As a result,
these kernels may fail to reflect global graph characteristics. To overcome this short-
coming, Johansson et al. [19] developed a family of global graph kernels using geomet-
ric embeddings. Specifically, they use the Lovász number and its associated orthonor-
mal representation to capture global graph characteristics. Bai et al. and Rossi et al. [4,
9, 26, 25] developed a family of graph kernels based on the classical Jensen-Shannon
divergence, as well as its quantum analogue. Specifically, they use either the classical
or the quantum walk together with quantum information theoretical measures to probe
the global structure of the graph.

The aim of this work is to overcome the gap between local kernels (i.e., kernels
based on local substructures of limited sizes) and the global kernels (i.e., global ker-
nels and quantum or classical Jensen-Shannon kernels), by proposing a novel nested
alignment kernel for graphs based on their depth-based complexity traces [5] and the
dynamic time warping framework [15]. For a pair of graphs, we commence by com-
puting the depth-based complexity traces rooted at the centroid vertices. The resulting
kernel is defined by measuring the global alignment kernel [15] between the complex-
ity traces. Recall that the depth-based complexity trace of a graph is based on a family
of expansion subgraphs that form a nested sequence which gradually expands from the
centroid vertex to the global graph structure. As a consequence, this sequence of sub-
graphs can reflect both local and global structure information of a graph. Furthermore,
we show that the associated global alignment kernel encapsulates the whole spectrum of
the alignment cost between the complexity traces. As a result, the proposed kernel can
not only simultaneously consider both local and global graph characteristics in terms of
the nested depth-based complexity traces, but also provide richer statistic measures by
incorporating the whole spectrum of alignment costs between these traces. Experiments
demonstrate the effectiveness and efficiency of the proposed kernel.

The remainder of this paper is organized as follows. Section 2 reviews the pre-
liminary concepts that will be used in this work. Specifically, we introduce the global
alignment kernel through the dynamic time warping framework and the depth-based
complexity trace. Section 3 defines the proposed nested alignment kernel. Section 4
provides the experimental evaluation. Section 6 concludes this work.

2 Preliminary Concepts

In this section, we review some preliminary concepts that will be used in this work.
We commence by reviewing the dynamic time warping framework. Specifically, we
introduce the global alignment kernel based on this framework. Finally, we review the
concept of depth-based complexity trace of a graph.

2.1 Global Alignment Kernels from the Dynamic Time Warping Framework

In this subsection, we review the global alignment kernel based on the dynamic time
warping framework proposed in [15]. Let T be a set of discrete time series that take
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values in a space X . For a pair of discrete time series P = (p1, . . . , pm) ∈ T and
Q = (q1, . . . , qn) ∈ T with lengths m and n respectively, the alignment π between P
and Q is defined as a pair of increasing integral vectors (πp, πq) of length l ≤ m+n−1,
where

1 = πp(1) ≤ · · · ≤ πp(l) = m

and
1 = πq(1) ≤ · · · ≤ πq(l) = n

such that (πp, πq) is defined to have unitary increments and no simultaneous repetitions.
For any index 1 ≤ i ≤ l − 1, the increment vector of π = (πp, πq) satisfies(

πp(i+ 1)− πp(i)
πq(i+ 1)− πq(i)

)
∈
{(

0
1

)
,

(
1
0

)
,

(
1
1

)}
. (1)

In the dynamic time warping framework [15], the coordinates πp and πq of the align-
ment π define the warping function. Let A(m,n) be the set of all possible alignments
between P and Q. The dynamic time warping distance between P and Q is defined as

DTW(P,Q) = minπ∈A(m,n)DP,Q(π), (2)

where the cost

DP,Q(π) =

|π|∑
i=1

φ(pπp(i), qπq(i)), (3)

is defined by a local divergence φ that measures the discrepancy between any pair of
elements pi ∈ P and qi ∈ Q. Generally, φ can be defined as the squared Euclidean
distance, i.e., φ(p, q) = ∥p− q∥2.

Based on the dynamic time warping distance defined in Eq.(2), a dynamic time
warping kernel kDTW [17] between P and Q can be defined as

kDTW(P,Q) = e−DTW(P,Q). (4)

Unfortunately, this kernel is not positive definite. This is because the optimal alignment
required by the dynamic time warping cannot guarantee transitivity. To overcome the
shortcoming, Cuturi [15] considers all possible alignments in A(m,n) and proposes
another dynamic time warping inspired kernel, i.e., the global alignment kernel, as

kGA(P,Q) =
∑

π∈A(m,n)

e−DP,Q(π), (5)

where kGA is positive definite, since it quantifies the quality of both the optimal align-
ment and all other alignments π ∈ A(m,n). The kernel kGA elaborates on the dynamic
time warping distance by considering the same set of elementary operations [16]. How-
ever kGA not only generalizes the dynamic time warping kernel kDTW, but also pro-
vides richer statistic measures by incorporating the whole spectrum of alignment costs
{DP,Q(π), π ∈ A(m,n)}.

Intuitively, the global alignment kernel kGA allows one to define a new graph ker-
nel, by measuring the warping alignment π between any types of graph characteristic
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sequences (or graph embedding vectors [13])) that have certain element orders with in-
creasing structural variables, e.g, the depth-based complexity traces [5] from expansion
subgraphs of increasing sizes, or cycle characteristics with increasing lengths identified
from the Ihara zeta function [23].

2.2 Centroid Depth-based Complexity Traces

We review the concept of the depth-based complexity trace of a graph rooted at the
centroid vertex [5]. Let G(V,E) be an undirected graph with vertex set V and edge
set E. Based on Dijkstra’s algorithm, we commence by computing the shortest path
matrix SG, where each element SG(v, u) of SG represents the length of the shortest
path between vertices v ∈ V and u ∈ V . For each vertex v ∈ V , let S(v) be the
average length of the shortest paths from v to the remaining vertices, i.e.,

S(v) =
1

|V |
∑
u∈V

SG(v, u). (6)

As discussed in [5], the centroid vertex v̂C of G(V,E) can be identified by selecting the
vertex that has the minimum variance of shortest path lengths to the remaining vertices,
i.e., the index of v̂C is

v̂C = argmin
v

∑
u∈V

[SG(v, u)− SV (v)]
2. (7)

Let NK
v̂C

be a vertex subset of G(V,E) satisfying

NK
v̂C = {u ∈ V | SG(v̂C , u) ≤ K}. (8)

For G(V,E) and its centroid vertex v̂C , we construct a family of K-layer expansion
subgraphs GK(VK ; EK) as{

VK = {u ∈ NK
v̂C

};
EK = {(u, v) ⊂ NK

v̂C
×NK

v̂C
| (u, v) ∈ E}. (9)

Note that the number expansion subgraphs is equal to the greatest length L of the short-
est paths from the centroid vertex to the remaining vertices of G(V,E). Moreover, the
L-layer expansion subgraph is the graph G(V,E) itself. An example of constructing a
K-layer subgraph is shown in Fig.1.
Definition (Depth-based complexity traces): For a sample undirected graph G(V,E),
let {G1, · · · ,GK , · · · ,GL} be the family of K-layer expansion subgraphs rooted at the
centroid vertex of G(V,E). Then the depth-based complexity trace DB(G) of G(V,E)
is computed by measuring the entropies of the subgraphs [5], i.e.,

DB(G) = {HS(G1), · · · ,HS(GK), · · · ,HS(GL)}, (10)

where · · · , HS(GK) is the Shannon entropy associated with the steady state random
walk on the K-layer centroid expansion subgraph GK [4]. 2
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Fig. 1. The left-most figure shows the determination of K-layer centroid expansion subgraphs
for a graph G(V,E) which hold |N1

v̂C
| = 6 and |N2

v̂C
| = 10 vertices. While the middle and the

right-most figure show the corresponding 1-layer and 2-layer subgraphs regarding the centroid
vertex v̂C , and are depicted by red-colored edges. In this example, the vertices of different K-
layer subgraphs regarding the centroid vertex v̂C are calculated by Eq.(7), and pairwise vertices
possess the same connection information in the original graph G(V,E).

The depth-based complexity trace has a number of interesting properties [5]. First, it
encapsulates the entropy-based information content flow through the family of K-layer
expansion subgraphs rooted at the centroid vertex, and thus reflects rich intrinsic depth
topology information of a graph. Second, it can be efficiently computed also on large
graphs. This is because it is computed on a small set of expansion subgraphs rooted
at the centroid vertex, and the computational complexity is polynomial. Furthermore,
based on Eq.(9), we can also observe that the family of K-layer expansion subgraphs
rooted at the centroid vertex v̂C of the graph G constructs a nested sequence. This is
because the family of the expansion subgraphs satisfies

v̂C ∈ G1 · · · ⊆ GK ⊆ · · · ⊆ GL ⊆ G.

In other words, it represents a sequence of subgraphs that gradually expand from the
centroid vertex to the global graph. As a result of it nested nature, the depth-based
complexity trace can reflecs both the local and global structure information of a graph.
In summary, the depth-based complexity trace provides an elegant way of developing
novel fast graph kernels that simultaneously consider local and global graph structures.

3 The Proposed Kernel

In this section, we introduce a novel nested alignment graph kernel through the dynamic
time warping framework and the depth-based complexity trace.

3.1 A Nest Aligned Kernel from the Dynamic Time Warping Framework

Let GP (VP , EP ) and GQ(VQ, EQ) be a pair of graphs, from a graph set G. We com-
mence by computing the depth-based complexity traces of GP and GQ as

DB(GP ) = {HS(GP ;1), · · · ,HS(GP ;K), · · · ,HS(GP ;Lmax)}
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and
DB(GQ) = {HS(GQ;1), · · · , HS(GQ;K), · · · ,HS(GQ;Lmax)},

respectively. Here GP ;K and GQ;K are the K-layer expansion subgraphs rooted at the
centroid vertices of GP and GQ, and Lmax is the greatest length of the shortest paths
rooted at the centroid vertices over all graphs in G. Note that, for GP and GQ and the
greatest lengths M and N of the shortest paths rooted at their centroid vertices, if K ≥
M and K ≥ M their K-layer expansion subgraphs are themselves, i.e., their global
structures. Based on the global alignment kernel defined in Section 2.1, we develop a
new nested alignment graph kernel kNA between GP and GQ as

kNA(GP , GQ) = kGA(DB(GP ),DB(GQ))

=
∑

π∈A(Lmax,Lmax)

e−DP,Q(π), (11)

where π denotes the warping alignment between DB(GP ) and DB(GQ), A(Lmax, Lmax)
denotes all possible alignments, and DP,Q(π) is the alignment cost defined in Eq.(3).
Note that we cannot prove that the the proposed kernel kNA is positive definite. Al-
though our kernel is based on the global alignment kernel kGA, which is a positive
definite kernel, the time series compared by kNA are not defined over the same un-
derlying space but on two different graphs. Future work will explore the possibility of
creating a positive definite kernel by computing the depth-based complexity traces over
a common structure obtained by combining the input graphs.

As we have observed, the depth-based complexity trace reflects the nested entropy-
based information and thus simultaneously considers the local and global graph struc-
tures. Furthermore, the proposed kernel kNA(GP , GQ) is based on all possible warping
alignments between depth-based complexity traces of the input graphs. As a result,
kNA(GP , GQ) can simultaneously capture richer local and global graph characteristics
in terms of all possible alignments between the nested depth-based complexity traces.

3.2 Computational Analysis

For a pair of graphs both having n vertices, computing the nested alignment kernel kGA

has time complexity O(n3). This is because computing the depth-based complexity
trace of a graph relies on the computation of the shortest path matrix and thus has time
complexity O(n3). Furthermore, computing all possible alignments between the depth-
based complexity traces has time complexity O((Lmax)2), where Lmax is the greatest
length of the shortest paths rooted at the centroid vertices of the two graphs and is lower
than the vertex number n. As a result, the proposed kernel kGA has polynomial time
complexity O(n3).

4 Experimental Evaluations

4.1 Graph Datasets

We evaluate our kernels on standard graph datasets. These datasets include: MUTAG,
PTC, COIL5, Shock and CATH2. Details of these datasets are shown in Table 1.
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Table 1. Information on the selected graph based bioninformatics datasets

Datasets MUTAG PTC COIL Shock CATH2
Max # vertices 28 109 241 33 568

Min # vertices 10 2 72 4 143

Mean # vertices 17.93 25.60 144.90 109.63 308.03

# graphs 188 344 360 150 190

# classes 2 2 5 5 2

MUTAG: The MUTAG dataset consists of graphs representing 188 chemical com-
pounds labeled according to whether or not they affect the frequency of genetic mu-
tations in the bacterium Salmonella typhimuriums and aims to predict whether each
compound is associated with mutagenicity.
PTC: The PTC (The Predictive Toxicology Challenge) dataset records the carcino-
genicity of several hundred chemical compounds for male rats (MR), female rats (FR),
male mice (MM) and female mice (FM). These graphs are very small, i.e., 20 − 30
vertices, and sparsem, i.e., 25 − 40 edges. We select the graphs of male rats (MR) for
evaluation. There are 344 test graphs in the MR class.
COIL5: The COIL5 dataset is abstracted from the COIL image database. The COIL
database consists of images of 100 3D objects. In our experiments, we use the images
for the first five objects. For each of these objects we employ 72 images captured from
different viewpoints. For each image we first extract corner points using the Harris de-
tector, and then establish Delaunay graphs based on the corner points as vertices. Each
vertex is used as the seed of a Voronoi region, which expands radially with a constant
speed. The linear collision fronts of the regions delineate the image plane into polygons,
and the Delaunay graph is the region adjacency graph for the Voronoi polygons.
Shock: The Shock dataset consists of graphs from the Shock 2D shape database. Each
graph is a skeletal-based representation of the differential structure of the boundary of
a 2D shape. There are 150 graphs divided into 10 classes.
CATH2: The CATH2 dataset is harder to classify, since the proteins in the same topol-
ogy class are structurally similar. The protein graphs are 10 times larger in size than
chemical compounds, with 200 . 300 vertices. There is 190 testing graphs in the dataset.

5 Experiments on Standard Graph Datasets

We evaluate the performance of the nested alignment graph kernel (NAGK) on a number
of graph classification tasks. Furthermore, we also compare our kernel with three state-
of-the-art kernels, including 1) the Jensen-Shannon graph kernel (JSGK) [4], 2) the
random walk graph kernel (RWGK) [20], 3) the unaligned quantum Jensen-Shannon
graph kernel (QJSK) [9], and 4) the Lovász graph kernel (LGK) [19].

We compute the kernel matrix associated with each kernel on each dataset. We per-
form 10-fold cross-validation using a C-Support Vector Machine (C-SVM) to compute
the classification accuracies, using LIBSVM software library [12]. We use nine sam-
ples for training and one for testing. The parameters of the C-SVMs are optimized on
each training set using cross-validation. We report the average classification accuracy
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and the runtime for each kernel in Table 2 and Table 3. The runtime is measured under
Matlab R2015a running on a 2.5GHz Intel 2-Core processor (i.e., i5-3210m).

Table 2. Classification Accuracy (In % ± Standard Error) Runtime in Second.

Datasets MUTAG PTC COIL5 Shock CATH2
NAGK 84.22 ± .50 58.00 ± .64 69.75± .65 37.60± .62 74.00 ± .83

JSGK 83.11± .80 57.29± .41 69.13± .79 21.73± .76 72.26± .76

RWGK 80.77± .75 53.97± .31 14.21± .65 0.33± .37 −
QJSK 82.72± .44 56.70± .49 70.11 ± .61 40.60 ± .92 71.11± .88

LGK 80.83± .43 56.29± .47 − 31.80± .89 −

Table 3. Runtime for Various Kernels.

Datasets MUTAG PTC COIL5 Shock CATH2
NAGK 8.6 · 102 2.3 · 103 3.3 · 103 3.8 · 102 9.4 · 102
JSGK 1.0 · 100 1.0 · 100 1.0 · 100 1.0 · 100 1.0 · 100

RWGK 4.6 · 101 6.7 · 101 1.1 · 103 2.3 · 101 −
QJSK 2.0 · 101 1.0 · 102 1.0 · 103 1.4 · 101 4.4 · 103
LGK 1.0 · 103 7.4 · 103 − 1.0 · 103 −

In terms of classification accuracy, Table 2 indicates that the proposed NAGK ker-
nel can significantly outperform the alternative state-of-the-art graph kernels, excluding
the QJSK kernel on the COIL5 and Shock datasets. However, the proposed NAGK k-
ernel is still competitive to the QJSK kernel on the COIL5 dataset and outperforms the
QJSK kernel on the MUTAG, PTC and CATH2 datasets. The reasons for this effective-
ness are twofold. First, as we have stated, the depth-based complexity traces used by
the proposed NAGK kernel encapsulate nested entropy-based information that extend
from the centroid vertex to the global graph structure. As a consequence, the proposed
NAGK kernel can simultaneously consider the local and global graph characteristics.
By contrast, the the QJSK and JSGK kernels can only reflect global graph characteris-
tics, whereas the LGK and RWGK can only reflect local graph characteristics. Second,
the proposed NAGK kernel is based on all possible alignments between the complexi-
ty traces, and thus reflects rich statistic measures by incorporating the whole spectrum
of alignment costs. On the other hand, we observe that the QJSK kernel based on the
global von Neumann entropy from the continuous-time quantum walk is the most com-
petitive kernel to the proposed NAGK kernel, though the QJSK kernel can only reflect
global characteristics. This is because the entropy measure from the quantum walk can
reflect richer intrinsic topology information than that from the classical steady state
random walk (for the proposed NAGK kernel). This in turn suggest the possibility of
further extending the NAGK kernel using quantum walks to extract an analogous of the
depth-based complexity trace used in this study.

In terms of runtime, the proposed the NAGK kernel is not the fastest kernel, when
compared to the other graph kernels. However, we can observe that the proposed NAGK
kernel can always complete the computation of the kernel matrices, unlike some alter-
native graph kernels (e.g., the LGK and RWGK kernels), which failed complete the
computation in a reasonable time.
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6 Conclusion

In this paper, we have proposed a novel nested alignment graph kernel. The kernel is an
adaptation of the dynamic time warping framework based kernel (i.e., the global align-
ment kernel) to graphs. To this end, we made use of the depth-based complexity traces
of graphs, a powerful and fast to compute graph descriptor. Unlike most existing graph
kernels that only probe local or global graph characteristics, the proposed kernel simul-
taneously considers local and global graph characteristics and thus reflects the presence
of richer structural patterns. The experiments have demonstrated the effectiveness and
efficiency of the proposed kernel.

Our future work is to extend the proposed kernel to attributed graphs that encap-
sulate vertex and edge labels. Moreover, we would also like to further develop nov-
el graph kernels through the dynamic time warping framework associated with oth-
er types of (hyper)graph characteristic sequences, e.g., the cycle numbers identified
by the Ihara zeta function, the time-varying entropies computed from the continuous-
time or discrete-time quantum walk [9, 8], and the depth-based hypergraph complexity
traces [3]. Finally, we are also interested in developing novel graph kernels for time-
varying financial market networks [29], using the dynamic time warping framework.
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