27,487 research outputs found

    End-to-end Audiovisual Speech Activity Detection with Bimodal Recurrent Neural Models

    Full text link
    Speech activity detection (SAD) plays an important role in current speech processing systems, including automatic speech recognition (ASR). SAD is particularly difficult in environments with acoustic noise. A practical solution is to incorporate visual information, increasing the robustness of the SAD approach. An audiovisual system has the advantage of being robust to different speech modes (e.g., whisper speech) or background noise. Recent advances in audiovisual speech processing using deep learning have opened opportunities to capture in a principled way the temporal relationships between acoustic and visual features. This study explores this idea proposing a \emph{bimodal recurrent neural network} (BRNN) framework for SAD. The approach models the temporal dynamic of the sequential audiovisual data, improving the accuracy and robustness of the proposed SAD system. Instead of estimating hand-crafted features, the study investigates an end-to-end training approach, where acoustic and visual features are directly learned from the raw data during training. The experimental evaluation considers a large audiovisual corpus with over 60.8 hours of recordings, collected from 105 speakers. The results demonstrate that the proposed framework leads to absolute improvements up to 1.2% under practical scenarios over a VAD baseline using only audio implemented with deep neural network (DNN). The proposed approach achieves 92.7% F1-score when it is evaluated using the sensors from a portable tablet under noisy acoustic environment, which is only 1.0% lower than the performance obtained under ideal conditions (e.g., clean speech obtained with a high definition camera and a close-talking microphone).Comment: Submitted to Speech Communicatio

    Semi-Supervised Speech Emotion Recognition with Ladder Networks

    Full text link
    Speech emotion recognition (SER) systems find applications in various fields such as healthcare, education, and security and defense. A major drawback of these systems is their lack of generalization across different conditions. This problem can be solved by training models on large amounts of labeled data from the target domain, which is expensive and time-consuming. Another approach is to increase the generalization of the models. An effective way to achieve this goal is by regularizing the models through multitask learning (MTL), where auxiliary tasks are learned along with the primary task. These methods often require the use of labeled data which is computationally expensive to collect for emotion recognition (gender, speaker identity, age or other emotional descriptors). This study proposes the use of ladder networks for emotion recognition, which utilizes an unsupervised auxiliary task. The primary task is a regression problem to predict emotional attributes. The auxiliary task is the reconstruction of intermediate feature representations using a denoising autoencoder. This auxiliary task does not require labels so it is possible to train the framework in a semi-supervised fashion with abundant unlabeled data from the target domain. This study shows that the proposed approach creates a powerful framework for SER, achieving superior performance than fully supervised single-task learning (STL) and MTL baselines. The approach is implemented with several acoustic features, showing that ladder networks generalize significantly better in cross-corpus settings. Compared to the STL baselines, the proposed approach achieves relative gains in concordance correlation coefficient (CCC) between 3.0% and 3.5% for within corpus evaluations, and between 16.1% and 74.1% for cross corpus evaluations, highlighting the power of the architecture

    Dialogue Act Modeling for Automatic Tagging and Recognition of Conversational Speech

    Get PDF
    We describe a statistical approach for modeling dialogue acts in conversational speech, i.e., speech-act-like units such as Statement, Question, Backchannel, Agreement, Disagreement, and Apology. Our model detects and predicts dialogue acts based on lexical, collocational, and prosodic cues, as well as on the discourse coherence of the dialogue act sequence. The dialogue model is based on treating the discourse structure of a conversation as a hidden Markov model and the individual dialogue acts as observations emanating from the model states. Constraints on the likely sequence of dialogue acts are modeled via a dialogue act n-gram. The statistical dialogue grammar is combined with word n-grams, decision trees, and neural networks modeling the idiosyncratic lexical and prosodic manifestations of each dialogue act. We develop a probabilistic integration of speech recognition with dialogue modeling, to improve both speech recognition and dialogue act classification accuracy. Models are trained and evaluated using a large hand-labeled database of 1,155 conversations from the Switchboard corpus of spontaneous human-to-human telephone speech. We achieved good dialogue act labeling accuracy (65% based on errorful, automatically recognized words and prosody, and 71% based on word transcripts, compared to a chance baseline accuracy of 35% and human accuracy of 84%) and a small reduction in word recognition error.Comment: 35 pages, 5 figures. Changes in copy editing (note title spelling changed

    Unfamiliar voice identification: effect of post-event information on accuracy and voice ratings

    Get PDF
    This study addressed the effect of misleading post-event information (PEI) on voice ratings, identification accuracy, and confidence, as well as the link between verbal recall and accuracy. Participants listened to a dialogue between male and female targets, then read misleading information about voice pitch. Participants engaged in verbal recall, rated voices on a feature checklist, and made a lineup decision. Accuracy rates were low, especially on target-absent lineups. Confidence and accuracy were unrelated, but the number of facts recalled about the voice predicted later lineup accuracy. There was a main effect of misinformation on ratings of target voice pitch, but there was no effect on identification accuracy or confidence ratings. As voice lineup evidence from earwitnesses is used in courts, the findings have potential applied relevance

    A Novel Windowing Technique for Efficient Computation of MFCC for Speaker Recognition

    Full text link
    In this paper, we propose a novel family of windowing technique to compute Mel Frequency Cepstral Coefficient (MFCC) for automatic speaker recognition from speech. The proposed method is based on fundamental property of discrete time Fourier transform (DTFT) related to differentiation in frequency domain. Classical windowing scheme such as Hamming window is modified to obtain derivatives of discrete time Fourier transform coefficients. It has been mathematically shown that the slope and phase of power spectrum are inherently incorporated in newly computed cepstrum. Speaker recognition systems based on our proposed family of window functions are shown to attain substantial and consistent performance improvement over baseline single tapered Hamming window as well as recently proposed multitaper windowing technique
    corecore