302 research outputs found

    Improved pathway reconstruction from RNA interference screens by exploiting off-target effects

    Get PDF
    Pathway reconstruction has proven to be an indispensable tool for analyzing the molecular mechanisms of signal transduction underlying cell function. Nested effects models (NEMs) are a class of probabilistic graphical models designed to reconstruct signalling pathways from high-dimensional observations resulting from perturbation experiments, such as RNA interference (RNAi). NEMs assume that the short interfering RNAs (siRNAs) designed to knockdown specific genes are always on-target. However, it has been shown that most siRNAs exhibit strong off-target effects, which further confound the data, resulting in unreliable reconstruction of networks by NEMs.; Here, we present an extension of NEMs called probabilistic combinatorial nested effects models (pc-NEMs), which capitalize on the ancillary siRNA off-target effects for network reconstruction from combinatorial gene knockdown data. Our model employs an adaptive simulated annealing search algorithm for simultaneous inference of network structure and error rates inherent to the data. Evaluation of pc-NEMs on simulated data with varying number of phenotypic effects and noise levels as well as real data demonstrates improved reconstruction compared to classical NEMs. Application to Bartonella henselae infection RNAi screening data yielded an eight node network largely in agreement with previous works, and revealed novel binary interactions of direct impact between established components.; The software used for the analysis is freely available as an R package at https://github.com/cbg-ethz/pcNEM.git.; Supplementary data are available at Bioinformatics online

    Computational design and designability of gene regulatory networks

    Full text link
    Nuestro conocimiento de las interacciones moleculares nos ha conducido hoy hacia una perspectiva ingenieril, donde diseños e implementaciones de sistemas artificiales de regulación intentan proporcionar instrucciones fundamentales para la reprogramación celular. Nosotros aquí abordamos el diseño de redes de genes como una forma de profundizar en la comprensión de las regulaciones naturales. También abordamos el problema de la diseñabilidad dada una genoteca de elementos compatibles. Con este fin, aplicamos métodos heuríticos de optimización que implementan rutinas para resolver problemas inversos, así como herramientas de análisis matemático para estudiar la dinámica de la expresión genética. Debido a que la ingeniería de redes de transcripción se ha basado principalmente en el ensamblaje de unos pocos elementos regulatorios usando principios de diseño racional, desarrollamos un marco de diseño computacional para explotar este enfoque. Modelos asociados a genotecas fueron examinados para descubrir el espacio genotípico asociado a un cierto fenotipo. Además, desarrollamos un procedimiento completamente automatizado para diseñar moleculas de ARN no codificante con capacidad regulatoria, basándonos en un modelo fisicoquímico y aprovechando la regulación alostérica. Los circuitos de ARN resultantes implementaban un mecanismo de control post-transcripcional para la expresión de proteínas que podía ser combinado con elementos transcripcionales. También aplicamos los métodos heurísticos para analizar la diseñabilidad de rutas metabólicas. Ciertamente, los métodos de diseño computacional pueden al mismo tiempo aprender de los mecanismos naturales con el fin de explotar sus principios fundamentales. Así, los estudios de estos sistemas nos permiten profundizar en la ingeniería genética. De relevancia, el control integral y las regulaciones incoherentes son estrategias generales que los organismos emplean y que aquí analizamos.Rodrigo Tarrega, G. (2011). Computational design and designability of gene regulatory networks [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/1417

    Target Inhibition Networks: Predicting Selective Combinations of Druggable Targets to Block Cancer Survival Pathways

    Get PDF
    A recent trend in drug development is to identify drug combinations or multi-target agents that effectively modify multiple nodes of disease-associated networks. Such polypharmacological effects may reduce the risk of emerging drug resistance by means of attacking the disease networks through synergistic and synthetic lethal interactions. However, due to the exponentially increasing number of potential drug and target combinations, systematic approaches are needed for prioritizing the most potent multi-target alternatives on a global network level. We took a functional systems pharmacology approach toward the identification of selective target combinations for specific cancer cells by combining large-scale screening data on drug treatment efficacies and drug-target binding affinities. Our model-based prediction approach, named TIMMA, takes advantage of the polypharmacological effects of drugs and infers combinatorial drug efficacies through system-level target inhibition networks. Case studies in MCF-7 and MDA-MB-231 breast cancer and BxPC-3 pancreatic cancer cells demonstrated how the target inhibition modeling allows systematic exploration of functional interactions between drugs and their targets to maximally inhibit multiple survival pathways in a given cancer type. The TIMMA prediction results were experimentally validated by means of systematic siRNA-mediated silencing of the selected targets and their pairwise combinations, showing increased ability to identify not only such druggable kinase targets that are essential for cancer survival either individually or in combination, but also synergistic interactions indicative of nonadditive drug efficacies. These system-level analyses were enabled by a novel model construction method utilizing maximization and minimization rules, as well as a model selection algorithm based on sequential forward floating search. Compared with an existing computational solution, TIMMA showed both enhanced prediction accuracies in cross validation as well as significant reduction in computation times. Such cost-effective computational-experimental design strategies have the potential to greatly speed-up the drug testing efforts by prioritizing those interventions and interactions warranting further study in individual cancer cases

    Learning Gene Interactions and Networks from Perturbation Screens and Expression Data

    Get PDF
    We investigate a variety of methods to first discover and then understand genetic interactions. Beginning with pairwise interactions, we propose a method for inferring pairwise gene interactions en masse from short- interfering RNA screens. We use the siRNA off-target effects to form a matrix of knocked-down genes, and consider the observed fitness to be a linear combination of individual and pairwise effects in this matrix. These effects can then be inferred using a variety of statistical learning methods. We evaluate two such methods for this task, xyz and glinternet. Using either method, we are able to find interactions in small simulated data sets. Neither method scales to genome-scale data sets, however. In our larger simulations both methods suffer from scalability problems, either with their accuracy or running time. We overcome these limitations by developing our own lasso-based regression method, which takes into account the binary nature of our perturbation screens. Using a compressed sparse representation of the pairwise interaction matrix, and parallelising updates, we are able to run this method on exome-scale data. Generalising from pairwise interactions we then consider network models, in which pairwise gene interactions form edges of a graph. Such networks are often understood in terms of functional modules, groups of genes that act together to perform a task. We develop a method that combines pairwise interaction and gene expression data to effectively find functional modules in simulated data

    Systems biology approaches to a rational drug discovery paradigm

    Full text link
    The published manuscript is available at EurekaSelect via http://www.eurekaselect.com/openurl/content.php?genre=article&doi=10.2174/1568026615666150826114524.Prathipati P., Mizuguchi K.. Systems biology approaches to a rational drug discovery paradigm. Current Topics in Medicinal Chemistry, 16, 9, 1009. https://doi.org/10.2174/1568026615666150826114524

    Developing Novel Combinatorial Treatments for Tuberous Sclerosis Complex (TSC).

    Get PDF
    The aim of this project is to identify new drug treatments for tuberous sclerosis complex (TSC). TSC is an autosomal dominant genetic disorder effecting 1 in 6000 births, it is characterised by the formation of hamartomas (benign tumours) throughout the body causing disfigurement, learning difficulties and organ failure. The development of new treatments is important because the current treatment, rapamycin, is severely limited, only showing a cytostatic effect on hamartoma development. Several drug candidates have been identified as potential TSC treatments using a network of SS/L interactions between Drosophila and preapproved drugs (Housden et al., 2017; Valvezan et al., 2017). I assessed these candidates in Drosophila mutant cells to identify which would be most promising as the basis for a combinatorial treatment. Lithium chloride proved to be the most effective of the candidates tested, exhibiting a selective cytotoxic effect in Drosophila TSC cells. Lithium chloride was then screened against a library of one hundred and fifty-four FDA targets identified by Housden et al (2017) to identify possible synergistic combinations. Fifteen possible candidates were identified in this screen. Three of the genes identified were related to purine synthesis, which has been identified as a potential candidate for TSC treatment before. Of these genes ras (analogous to IMPDH) has two approved drugs, Ribavirin and Mycophenolic acid (MPA), and one experimental drug, mizoribine. These drugs were tested in combination with lithium chloride in murine and human cells in order to identify possible synergistic interactions. The preliminary results in both human and murine cells suggest that the synergy identified in the screen is conserved. However, preliminary results in human cells were inconclusive. Further testing is needed to properly validate these results and to develop new treatments for TSC.US Department of Defens

    Sparse graphical models for cancer signalling

    Get PDF
    Protein signalling networks play a key role in cellular function, and their dysregulation is central to many diseases, including cancer. Recent advances in biochemical technology have begun to allow high-throughput, data-driven studies of signalling. In this thesis, we investigate multivariate statistical methods, rooted in sparse graphical models, aimed at probing questions in cancer signalling. First, we propose a Bayesian variable selection method for identifying subsets of proteins that jointly in uence an output of interest, such as drug response. Ancillary biological information is incorporated into inference using informative prior distributions. Prior information is selected and weighted in an automated manner using an empirical Bayes formulation. We present examples of informative pathway and network-based priors, and illustrate the proposed method on both synthetic and drug response data. Second, we use dynamic Bayesian networks to perform structure learning of context-specific signalling network topology from proteomic time-course data. We exploit a connection between variable selection and network structure learning to efficiently carry out exact inference. Existing biology is incorporated using informative network priors, weighted automatically by an empirical Bayes approach. The overall approach is computationally efficient and essentially free of user-set parameters. We show results from an empirical investigation, comparing the approach to several existing methods, and from an application to breast cancer cell line data. Hypotheses are generated regarding novel signalling links, some of which are validated by independent experiments. Third, we describe a network-based clustering approach for the discovery of cancer subtypes that differ in terms of subtype-specific signalling network structure. Model-based clustering is combined with penalised likelihood estimation of undirected graphical models to allow simultaneous learning of cluster assignments and cluster-specific network structure. Results are shown from an empirical investigation comparing several penalisation regimes, and an application to breast cancer proteomic data

    Context matters:the power of single-cell analyses in identifying context-dependent effects on gene expression in blood immune cells

    Get PDF
    The human immune system is a complex system that we still do not fully understand. No two humans react in the same way to attacks by bacteria, viruses or fungi. Factors such as genetics, the type of pathogen or previous exposure to the pathogen may explain this diversity in response. Single-cell RNA sequencing (scRNA-seq) is a new technique that enables us to study the gene expression of each cell individually, allowing us to study immune diversity in much greater detail. This increased resolution helps us discern how disease-associated genetic variants actually contribute to disease. In this thesis, I studied the relation between disease-associated genetic variants and gene expression levels in the context of different cell types and pathogen exposures in order to gain insight into the working mechanisms of these variants. For many variants we learnt in which cell types and under which pathogen exposures they affect gene expression, and we were even able to identify changes in gene co-expression, suggesting that disease-associated variants change how our genes interact with each other. With the single-cell field being so new, much of my work was showing the feasibility of using scRNA-seq to study the interplay between genetics and gene expression. To set up future research, we created guidelines for these analyses and established a consortium that brings together many major scientists in the field to enable large-scale studies across an even wider variety of contexts. This final work helps inform current and future large-scale scRNA-seq research

    Combine and conquer: challenges for targeted therapy combinations in early phase trials.

    Get PDF
    Our increasing understanding of cancer biology has led to the development of molecularly targeted anticancer drugs. The full potential of these agents has not, however, been realised, owing to the presence of de novo (intrinsic) resistance, often resulting from compensatory signalling pathways, or the development of acquired resistance in cancer cells via clonal evolution under the selective pressures of treatment. Combinations of targeted treatments can circumvent some mechanisms of resistance to yield a clinical benefit. We explore the challenges in identifying the best drug combinations and the best combination strategies, as well as the complexities of delivering these treatments to patients. Recognizing treatment-induced toxicity and the inability to use continuous pharmacodynamically effective doses of many targeted treatments necessitates creative intermittent scheduling. Serial tumour profiling and the use of parallel co-clinical trials can contribute to understanding mechanisms of resistance, and will guide the development of adaptive clinical trial designs that can accommodate hypothesis testing, in order to realize the full potential of combination therapies
    • …
    corecore