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Abstract

We investigate a variety of methods to first discover and then understand

genetic interactions. Beginning with pairwise interactions, we propose

a method for inferring pairwise gene interactions en masse from short-

interfering RNA screens. We use the siRNA off-target effects to form a

matrix of knocked-down genes, and consider the observed fitness to be a

linear combination of individual and pairwise effects in this matrix. These

effects can then be inferred using a variety of statistical learning meth-

ods. We evaluate two such methods for this task, xyz and glinternet.

Using either method, we are able to find interactions in small simulated

data sets. Neither method scales to genome-scale data sets, however. In

our larger simulations both methods suffer from scalability problems, either

with their accuracy or running time.
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We overcome these limitations by developing our own lasso-based regres-

sion method, which takes into account the binary nature of our perturbation

screens. Using a compressed sparse representation of the pairwise interac-

tion matrix, and parallelising updates, we are able to run this method on

exome-scale data. Generalising from pairwise interactions we then consider

network models, in which pairwise gene interactions form edges of a graph.

Such networks are often understood in terms of functional modules, groups

of genes that act together to perform a task. We develop a method that

combines pairwise interaction and gene expression data to effectively find

functional modules in simulated data.

Introduction

Genetic interactions, in which the cumulative effect of genes differs from the sum of their
individual effects, can be modelled in a variety of ways, including as pairwise epistatic
effects [15], and interaction networks [84]. We investigate a variety of methods to first
discover and then understand such interactions. Starting with the simplest approach,
we assume that fitness can be modelled as a linear combination of the effects genes
and their combinations. We further assume that individual and pairwise effects are
the most significant, and leave out higher order effects. In Chapter 1, we propose a
method for inferring pairwise gene-interactions en masse from short-interfering RNA
screens by exploiting their many off-target effects using this model. These effects
can then be inferred using a variety of statistical learning methods, and we evaluate
two such methods for this task, xyz [89] and glinternet [53]. Using data simulations
based on real siRNA libraries, we evaluate both methods on data sets ranging from 100
to 1, 000 genes, and conclude that the general approach works well at a small scale,
particularly for glinternet. We aim to use this approach on human genome-scale
data sets, however, and in our larger simulations both methods suffer from scalability
problems with either their accuracy or running time.

We overcome these limitations in Chapter 2 by developing our own lasso-based
regression method, which takes into account the binary nature of our perturbation
screens. We begin with an existing fast approach to lasso regression based on cyclic
coordinate descent, and investigate a number of potential improvements. Since the
main barrier to parallelisation is overlap in columns of the input matrix, we first con-
sider parallel parameter updates where columns do not overlap, then where columns
only overlap to a small degree. Finally we update parameters at random, finding that
this outperforms both earlier methods. To account for the sparse binary nature of
our data, we store columns of the matrix as a list of entry positions. These offsets
are delta encoded, and then compressed. After comparing a number of state of the
art integer compression methods, we use Simple-8b [1], concluding that it provides the
best balance between hardware requirements and performance. We are then able to
run this method on genome-scale data.
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Generalising from pairwise interactions, we then consider network models in which
pairwise gene interactions form edges of a graph. Such networks are often understood
in terms of functional modules, groups of genes that act together to perform a task,
and we focus on extracting these functional modules via graph clustering. In Chapter 3
we develop a method to do so, combining pairwise networks with gene expression data.
The gene expression data is first converted into a graph of correlations, with small
correlations filtered out. Both the gene expression and pairwise interaction graphs are
then simultaneously clustered with the SLPA algorithm. Finally, only proposed clusters
with a sufficiently high modularity density score are kept. We find this combination
produces more accurate results than clustering either data set alone, and our approach
is able to effectively find functional modules in simulated data.

Chapter 1 is a modified form of the work in Elmes et al. [21], co-authored by Fabian
Schmich, Ewa Szczurek, Jeremy Jenkins, Niko Beerenwinkel, and Alex Gavryushkin.
The research plan for the use of xyz, analysis of real and larger data, and scalability
was conceived collaboratively, and carried out by the author. Discussion is primarily
the author’s own. The siRNA matrix simulations, use of glinternet, and analysis
of small data in this chapter were initially developed by co-authors, and subsequently
modified by the author. Chapters 2 and 3 are entirely the author’s own.
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Chapter 1

Learning Epistatic Gene
Interactions from Perturbation
Screens
Co-authored By: Fabian Schmich, Ewa Szczurek, Jeremy Jenkins, Niko
Beerenwinkel, and Alex Gavryushkin

1.1 Introduction

Genetic interactions are also referred to as epistasis, a term that originates from the field
of statistical genetics and describes genetic contributions to the phenotype that are not
linear in the effects of single genes [98, 16]. Considering two genes at a time, positive
and negative epistasis refer to a greater and smaller effect, respectively, of the double
mutant genotype than expected from the two single mutant genotypes relative to the
wild type. In genetics, the phenotype of primary interest is the reproductive success
of a cell, which is commonly termed fitness [65]. In this context, a fitness landscape
is the mapping of each combination of possible configurations of gene mutations to a
fitness phenotype [18].
The knowledge of fitness landscapes is highly relevant for personalized disease treat-
ment [42]. In cancer, for example, genetic aberrations result in cells with increased
somatic fitness, for instance, by evading apoptosis or gaining the ability to metasta-
sise. This increase subsequently promotes post-metastatic tumour development [29].
A major challenge in cancer therapy is the fact that many genes with driving muta-
tions cannot be adequately targeted for inhibition due to toxic side effects and rapid
development of drug resistance [22, 32]. To overcome this challenge, a strategy based
on the inhibition of genes that interact with genes with cancer driving alterations was
proposed [3]. This strategy is based on the principle of synthetic lethality [42, 38, 64],
the extreme case of negative epistasis, where single mutants are compatible with cell
viability but the double mutant results in cell death. Identifying synthetic lethal gene
interactions allows targeting cancer cells in which one of the two genes is mutated, by
using drugs that affect the other. In the presence of this drug, the cancer cell lineage
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will no longer be viable [10].
The identification of fitness landscapes is however a very challenging task, simply due
to the exponential growth of the space of interactions. For yeast, for example, it has
been shown to be feasible to experimentally perform 75% of all pairwise knockouts
[17]. However, in humans, with approximately 20,000 protein-coding genes, this would
constitute to almost 200 million experiments to test all pairwise interactions. An
approach that has been successfully applied to identify synthetic lethality in vitro is
large-scale perturbation screening of human cancer cell lines using RNA interference
[83, 48, 58, 19]. However, this strategy only allows cataloguing synthetic lethal gene
pairs where one gene is always specific to the screened cell line. While these methods
may be sufficient for the identification of a few promising targets for cancer therapy,
they do not allow us to estimate general pairwise gene interactions at the human exome
scale.
Short-interfering RNAs (siRNAs), the reagents used in RNAi perturbation screening,
exhibit strong off-target effects, which results in high numbers of false positives ren-
dering the perturbations hard to interpret [35]. While this is usually conceived as a
problem, here we take advantage of this property for the estimation of genetic inter-
actions [78, 82, 91]. We propose a novel approach for the second order approximation
of a human fitness landscape by inferring the fitness of single gene perturbations and
their pairwise interactions from RNAi screening data (Figure 1.1). Our approach is
not restricted to interactions with mutant genes of a specific cell line or explicit double
knockdowns. We leverage the combinatorial nature of sequence-dependent off-target
effects of siRNAs, where each siRNA in addition to the intended on-target knocks down
hundreds of additional genes simultaneously. Not distinguishing between on- and off-
targeted genes, we consider each siRNA knockdown as a combinatorial knockdown of
multiple genes. Hence, every large-scale RNAi screen, though unintended, contains
large numbers of observations of high-order combinatorial knockdowns and provides a
rich source for the extraction of pairwise epistasis. These off-target effects have previ-
ously been used to improve inference of signalling pathways among a small number (on
the order of a dozen) genes [82, 91]. Here, however, we attempt to use it to discover
epistatic gene pairs in a genome-wide fashion (i.e. among tens of thousands of genes).
Our approach is formulated as a regularised regression model. It can also be deployed
for the estimation of epistasis from phenotypes other than fitness, such as for instance
phenotypes that measure the activity of disease-relevant pathways, e.g. for pathogen
entry [74], TGFβ-signalling [79], or WNT-signalling [88]. Long term, the identification
of disease-relevant epistatic gene pairs may allow the design or re-purposing of agents
for combinatorial therapy with the potential to improve the efficacy of drugs.
In solving this model, we adapt two recent statistical learning methods, namely glin-

ternet [53] and xyz [89] to select genes and gene-pairs with non-zero effects on fitness,
and evaluate both models on simulated data from real RNAi libraries. We vary the
signal-to-noise ratios, number of true gene–gene interactions, number of observations
per double knockdown and effect size for epistasis. We find that, within ranges that
are realistic to real RNAi data, both approaches are capable of inferring pairwise epis-
tasis with favourable precision and sensitivity when only a small number of genes are
involved in interactions. In several tests glinternet continued to infer correct inter-
actions up to several thousand genes, however the run time prohibits more thorough
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1.2. METHODS CHAPTER 1. LEARNING INTERACTIONS

testing. To demonstrate the model on a real data set, we use the perturbation data
from [74]. Using glinternet, we search for interactions between kinases, and report
the most significant results.
Our simulations are performed using R, and the source code is available at: https:

//github.com/bioDS/xyz-simulation.
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Figure 1.1: RNAi fitness landscape model. Black arrows indicate
outputs that are actually produced. Red arrows indicate theoretical
output.

1.2 Methods

We fix the binary alphabet Σ = {0, 1} representing the two possible states in a pertur-
bation experiment. The value zero denotes the normal state of the gene (unperturbed
wild type), whereas the value one indicates knockdown of the gene (perturbed). For
p genes we denote by Σp the set of binary sequences of length p, indicating the per-
turbation status of each gene. Any subset P ⊆ Σp is called a perturbation space and
its elements are called perturbation types. If the perturbations are genetic mutations,
then the perturbation types are genotypes.
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1.2.1 Fitness landscapes and epistasis

In the following, we focus on fitness landscapes, but would like to note that the theory
also holds for any mapping of perturbation type to phenotype. A fitness landscape is
a mapping f : P → R+ from perturbation type space to non-negative fitness values.
Genetic interactions are a property of the underlying fitness landscape [5]. For p = 2
genes, the perturbation type space P = {0, 1}2 contains the wild-type 00, two single
perturbations 01 and 10, and the double perturbation 11. The fitness landscape f :
{0, 1}2 → R+ can be written as

f(0, 0) = β0

f(1, 0) = β0 + β1

f(0, 1) = β0 + β2

f(1, 1) = β0 + β1 + β2 + β1,2

for parameters βi ∈ R. β0 is called the bias, β1 and β2 main effects, and β1,2 the
interaction. Epistasis is defined as

ε = f(0, 0) + f(1, 1)− f(0, 1)− f(1, 0) (1.1)

It measures the deviation of the fitness of the double knockdown from the expectation
under a linear fitness model in the main effects. We see that ε = β1,2.

Fitness landscape model

It is challenging to generalise the notion of epistasis (Equation 1.1), because in higher
dimensions, many more types of genetic interactions exist [5], even when restricting
to pairwise interactions. In general, it will be impossible to estimate all interactions
encoded in the fitness landscape reliably from data. In the following, we show how to
assess marginal and conditional pairwise epistasis. For p ≥ 1 genes, we consider the
Taylor expansion of the fitness landscape

f(x1, . . . , xp) = β0 +
∑
i

xiβi +
∑
i<j

xixjβi,j +
∑
i<j<k

xixjxkβi,j,k + . . . (1.2)

Ignoring interactions of order 3 and higher we obtain the more computationally tractable
approximation:

f(x1, . . . , xp) ≈ β0 +
∑
i

xiβi +
∑
i<j

xixjβi,j (1.3)

Conditional epistasis

For two genes i and j and a fixed set of background perturbations b = (x1, . . . , xi−1,
xi+1, . . . , xj−1, xj+1, . . . , xp) ∈ Rp−2

+ we define conditional epistasis between gene i and
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j given b as

εi,j|b = f(x1, . . . , xi−1, 0, xi+1, . . . , xj−1, 0, xj+1, . . . , xn)

+ f(x1, . . . , xi−1, 1, xi+1, . . . , xj−1, 1, xj+1, . . . , xp)

− f(x1, . . . , xi−1, 1, xi+1, . . . , xj−1, 0, xj+1, . . . , xp)

− f(x1, . . . , xi−1, 0, xi+1, . . . , xj−1, 1, xj+1, . . . , xp) (1.4)

Proposition 1. For the fitness landscape model (1.3), the interaction terms βi,j are

independent of b and equal to conditional epistasis, that is, εi,j|b = βi,j.

Proof. Without loss of generality, we can consider (i, j) = (1, 2). Let b = (x3, . . . , xp).

In model (1.3) we have

ε1,2|b = f(0, 0, x3, . . . , xp) + f(1, 1, x3, . . . , xp) (1.5)

−f(1, 0, x3, . . . , xp)− f(0, 1, x3, . . . , xp)

= β0 +

(
β0 + β1 + β2 + β1,2 +

∑
i>2

xiβ1,i +
∑
i>2

xiβ2,i

)

−

(
β0 + β1 +

∑
i>2

xiβ1,i

)
−

(
β0 + β2 +

∑
i>2

xiβ2,i

)

All terms except the interaction β1,2 cancel out, therefore ε1,2|b = β1,2.

Marginal epistasis

The marginal fitness landscape of genes i and j is

fi,j(xi, xj) =
∑

{xk∈{0,1}|k 6=i,j}

f(x1, . . . , xp) (1.6)

and marginal epistasis between genes i and j is the epistasis of the marginal fitness
landscape,

εi,j = fi,j(0, 0) + fi,j(1, 1)− fi,j(1, 0)− fi,j(0, 1) (1.7)

For example, for p = 3 genes, marginal epistasis between gene 1 and 2 is

ε1,2 = [f(0, 0, 0) + f(0, 0, 1)] + [f(1, 1, 0) + f(1, 1, 1)]

− [f(1, 0, 0) + f(1, 0, 1)]− [f(0, 1, 0) + f(0, 1, 1)] (1.8)

Corollary 1. For the fitness landscape model (1.3), the interaction terms βi,j are related

to marginal epistasis via εi,j = 2p−2 βi,j.

Proof. From Proposition 1 we have that conditional epistasis for a pair of genes (i, j)

and a fixed genetic background of the remaining p−2 genes equals βi,j. There are 2p−2

9
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such genetic backgrounds, and the conditional epistasis is the same for all of them.

Thus, in the fitness landscape model (1.3), which contains all main effects and pair-
wise interactions, but no interactions of higher order, the interaction terms βi,j alone
determine conditional and marginal epistasis of the fitness landscape.

1.2.2 Estimation of epistasis from RNAi perturbation screens

In in vitro RNAi experiments cells are perturbed by reagents, such as siRNA, shRNA,
and dsRNA [80], each targeting a specific gene for knockdown. In recent years, it has
been shown [35] that siRNAs exhibit strong sequence-dependent off-target effects, such
that, in addition to the intended target gene, hundreds of other genes are knocked down.
Thus, we can regard siRNA perturbation experiments as combinatorial knockdowns
affecting multiple genes simultaneously. On the basis of the fitness landscape model
(1.3), we propose a regression model for the estimation of epistasis from RNAi data.
This inference is only feasible because of the unintended combinatorial nature of siRNA
knockdowns.

Perturbation type space

For an RNAi-based perturbation screen, the perturbation type space P = {g1, . . . , gn}
is represented as the n×p matrix X that contains gi in row i. Based on the nucleotide
sequences of the reagents, perturbations can be predicted by models for micro RNA
(miRNA) target prediction [50]. We use X1, . . . , Xp to denote the p column vectors
of X for genes 1, . . . , p and denote by Xi ◦Xj the column vector consisting of the
element-wise products of the entries of Xi and Xj. As a measure of fitness, we use the
vector Y ∈ Rn

+, denoting the number of cells present after siRNA knockdown.

Regression model

We aim to estimate the conditional epistasis βi,j between the
(
p
2

)
pairs of genes (i, j) ∈

{1, . . . , p}2 from all combinatorial gene perturbations in the screen represented in the
n × p matrix X, and the n × 1 vector of fitness phenotypes Y . Based on (1.3) we
regress phenotype Y on perturbations X,

E [Y |X] = β0 +
∑
i

Xiβi +
∑
i<j

(Xi ◦Xj)βi,j (1.9)

The estimated βi,j are interpreted as the expected change in the response variable
Y per unit change in the predictor variable (Xi ◦Xj) with all other predictors held
fixed [60]. From Corollary 1 it follows that estimates for marginal epistasis εi,j can be
obtained by multiplication of βi,j with the constant 2p−2.

Inference

We aim to infer the regression parameters β =
(
β0,β{i:i>0},β{i,j:i<j}

)
. Since it is

infeasible to directly perform least squares linear regression on the matrix containing

10



1.2. METHODS CHAPTER 1. LEARNING INTERACTIONS

all
(
p
2

)
interactions, we use a two-stage process. First, we use either the group lasso

regularisation package glinternet [53], or the xyz interaction search algorithm [89]
to select non-zero interactions. This variable selection step is the main computational
challenge.
When using glinternet, we infer parameters β =

(
β0,β{i:i>0},β{i,j:i<j}

)
by minimising

the squared-error loss function

L(Y , X;β) =
1

2

∥∥∥∥∥Y −
(
β0 +

∑
i

Xiβi +
∑
i<j

(Xi ◦Xj)βi,j

)∥∥∥∥∥
2

2

(1.10)

under the strong hierarchy constraint

βi,j 6= 0⇒ βi 6= 0 and βj 6= 0. (1.11)

This constraint allows conditional epistasis between gene i and j, i.e., βi,j 6= 0, only
if both single-gene effects βi and βj are present and constrains the search space. Lim
and Hastie (2015) show that this model can be formulated as a linear regression model
with overlapped group lasso (OGL) penalty [36], where, in contrast to the group lasso
[102], each predictor can be present in multiple groups.
To perform the variable selection, xyz searches for pairs (i, j) that maximise YTXiXj.
These are the interaction effects that account for the largest component of the re-
sponse Y . While xyz can be used directly to find the largest interactions, we used
xyz_regression to estimate all interactions. xyz_regression solves the following
elastic-net problem [89]

min
(β0,β)∈Rp+1,θ∈Rp(p+1)/2

[
1

2n

N∑
i=1

(yi − β0 −XT
i β − wTi θ)2 + λ(Pα(β) + Pα(θ))

]
, (1.12)

where

W ∈ Rn×p(p+1)/2 = (X1 ◦X1, X1 ◦X2, . . . , X1 ◦Xp, X2 ◦X2, . . . , Xp ◦Xp) (1.13)

is the matrix of interactions, and

Pα(β) = (1− α)
1

2
||β||2`2 + α||β||`1 (1.14)

is the elastic-net penalty.
The parameter α decides the compromise between the ridge-regression penalty (α = 0)
and the lasso penalty (α = 1). We left the default value of α = 0.9. The solution is
found iteratively, with only a particular set of beta values are allowed to be non-zero at
each iteration. In every iteration, the beta values that violate the Karush–Kuhn–Tucker
conditions are added to this set. Rather than being computed directly, these beta values
are found using the xyz algorithm. We followed the recommendation in [89] and used
L =

√
p projections to find the strong interactions. Our own tests in Appendix A.3

also suggest that further projections do not improve performance.
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Second, once the non-zero effects have been estimated using either glinternet or xyz,
we construct a matrix X ′ with all elements of the set {Xi|Xi 6= 0}∪{Xi◦Xj|Xi ·Xj 6=
0} as columns, in an arbitrary order. We then fit Y ∼ X ′β using R’s lm least squares
linear regression to calculate the coefficient estimates and corresponding p-values. We
adjust the p-value to control the false discovery rate with the method of Benjamini
and Hochberg [6], and refer to this adjusted value as the q-value. Given this two-step
procedure, we do not expect these values to be the same as if they were calculated
using the complete interaction matrix. We are nonetheless able to distinguish between
more and less significant effects, with the caveat that the p < 0.05 cut-off is completely
arbitrary.

1.2.3 Software

The overlapped group lasso for strongly hierarchical interaction terms is implemented
in the R-package glinternet 1.0.10 by Lim and Hastie [53] and available through
the Comprehensive R Archive Network (CRAN) at https://cran.r-project.org/

web/packages/glinternet/. The xyz algorithm is implemented in xyz 0.2 by Gian-
Andrea Thanei [89] available at https://cran.r-project.org/web/packages/xyz/.
The simulations are run using a version of this software that also contains a trivial
bug fix, available at https://github.com/bioDS/xyz-simulation. For the data sim-
ulation, analysis and visualisation, we used the R-packages Matrix 1.2.6, dplyr 0.4.3,
tidyr 0.4.1 and ggplot2 2.1.0. All simulations are performed using R 3.2.4.

1.2.4 Simulation of RNAi data

The data simulation followed a three-step procedure. First, we simulate the siRNA–
gene perturbation matrix X based on real siRNA libraries. Second, main effects βi
and conditional epistasis between pairs of genes βi,j are sampled. Based on X and β,
we then sample fitness phenotypes Y from our model (1.3) and add noise to match
specific signal-to-noise ratios [31]

SNR =
Var (E [Y |X])

Var (Y − E [Y |X])
. (1.15)

Details for each step including parameter ranges are as follows.
We simulate siRNA–gene perturbation matrices based on four commercially available
genome–wide libraries for 20 822 human genes from Qiagen with an overall size of 90 000
siRNAs. First, we predict sequence dependent off-targets using TargetScan [27] for each
siRNA as described in [78]. We threshold all predictions to be 1 if larger than zero and
0 otherwise. Then, we sample n = 1 000 siRNAs from {1, . . . , 90 000} and p = 100
genes from {1, . . . , 20 822} without replacement and construct the n×p binary matrix
X. Hence, each row i of X then contained the perturbation type gi = (xi,1, . . . , xi,p).
We simulate q ∈ {5, 20, 50, 100} non-zero conditional epistasis terms βi,j between genes
i and j from all observed combinatorial knockdowns, i.e. if the simulated screen con-
tained siRNAs that target both genes. This is a necessary condition for the identifi-
ability of βi,j, as otherwise, according to the model (1.9), βi,j will be multiplied by a
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zero vector Xi ◦Xj = 0. The effect size of the βi,j is sampled from Norm(0, 2). In order
to maintain a strong hierarchy, we subsequently simulate for each interaction βi,j both
main effects βi and βj. Further, we add r ∈ {0, 20, 50, 100} additional main effects.
The effect sizes of the main effects are sampled from Norm(0, 1), so that the variance
in the response fitness phenotypes are split in a ratio of 1:2 between main effects and
interactions.
In order to model synthetic lethal pairs, interactions with effect strength of −1000
(on log scale) are added to the simulated data. Since lethal interactions may occur
with little or no main effect present [38], we allow these pairs to violate the strong
hierarchy and do not add main effects. This is done both for biological plausibility,
and to evaluate the performance of xyz and glinternet under less ideal circumstances.
Since only glinternet assumes the strong hierarchy, this scenario might favour xyz.
Based on simulated perturbation matrices X, simulated main effects βi and interaction
terms βi,j, we sampled fitness values with β0 = 0 according to the fitness landscape
model (1.3)

Y ∼ Norm
(∑

iXiβi +
∑

i<j(Xi ◦Xj)βi,j, σ
2I
)
,

where we chose σ2 for fixed SNRs s ∈ {2, 5, 10}.

1.2.5 Evaluation criteria

We focus the evaluation on the estimated parameters of the model, specifically the
conditional epistasis terms, β̂{i,j:i<j}, rather than the model’s performance in predicting
the fitness phenotypes Y . Given the ground truth of true conditional epistasis between
gene i and j, β{i,j:i<j}, we assess the performance of the model to identify epistasis, i.e.,

estimated non-zero coefficients β̂i,j, by computing the number of true positives (TPs),
false positives (FPs) and false negatives (FN). Here, TPs represent the number of gene
pairs (i, j) such that βi,j 6= 0 and β̂i,j 6= 0, FPs the number of gene pairs (i, j) : βi,j = 0

and β̂i,j 6= 0 and FNs the number of gene pairs (i, j) : βi,j 6= 0 and β̂i,j = 0. The
performance is then summarised using the following measures

precision =
TP

TP + FP

recall =
TP

TP + FN

F1 = 2
precision× recall

precision + recall

Furthermore, we investigate whether estimates β̂i,j have the same sign as the ground
truth conditional epistasis and we quantify the deviation of the magnitude from the
truth. Where applicable, we also evaluate the effect of selection of only those βi,j which
significantly deviate from zero on the model’s performance.

13
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1.3 Results

First, we evaluate the proposed approach to estimating epistatic effects from off-target
perturbations on simulated data. The approach depends on a model able to detect
non-zero pairwise interactions (Figure 1.1). Here, we evaluate the approach using two
such alternative models, glinternet and xyz.
We evaluate the ability of both xyz and glinternet to identify epistasis between pairs
of genes from RNAi screens on simulated data with p = 100 genes and n = 1 000
siRNAs. Only for xyz, we also test larger data sets, with p = 1 000 and n = 10 000.
We use off-target information from real siRNAs and investigate the performance for
varying signal-to-noise ratios, number of true interactions, number of observations per
double knockdown, and effect sizes for epistasis.
We perform a separate set of tests where we specifically assess the performance of
the two methods to identify synthetic lethal interactions, the strongest negative inter-
actions. For this purpose, we simulate a separate data set that contains additional
synthetic lethal pairs of genes. In this test, we attempt to identify only lethal interac-
tions using xyz and glinternet, given increasingly large numbers of genes.

1.3.1 Identification of epistasis under varying conditions

Both xyz and glinternet are tested on a series of small simulated data sets. For each
combination of parameters q ∈ {5, 20, 50, 100}, r ∈ {0, 20, 50, 100} and s ∈ {2, 5, 10},
controlling the number of true interactions, the number of additional main effects, and
the SNRs of the fitness phenotypes, respectively, we sample 50 independent data sets.
xyz is tested on a series of larger data sets, with parameters q ∈ {50, 200, 500, 1000},
r ∈ {0, 200, 500, 1000} and s ∈ {2, 5, 10}. Only 10 independent data sets are sampled
in these cases. Each data set consists of the perturbation matrix X, phenotypes Y ,
true conditional epistasis βi,j and main effects βi.
The distribution of the number of observations for pairwise knockdowns of gene i and j
is shown in Appendix, Figure A.1 for an exemplary perturbation matrixX. While only
a few genes have many observations, 87% of gene pairs are simultaneously perturbed by
at least one siRNA. We also find that number of additional main effects has relatively
little impact on detecting interactions (Section A.1), and this value is kept constant
during our tests. We select only estimates β̂i,j with a magnitude significantly different
from zero (q-value < 0.05). This significantly improves precision, at a slight cost to
recall, using both glinternet and xyz (Appendix, Figure A.4).

Number of double knockdowns per gene pair

We fixed the number of additional main effects to 20 and investigated performance
with respect to the number of double knockdowns per epistatic gene pair, i.e. siRNAs
that target both genes (Figure 1.2). The results are largely similar for both xyz and
glinternet. As expected, for increasing numbers of observations, we observe an in-
crease in precision and recall with a steeper increase of precision compared to recall
and decreased performance for higher number of true interactions. The number of
true epistatic gene pairs primarily affects recall, which decreases for higher numbers

14
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of true non-zero βi,j. For gene pairs with more than 80 observations of the double
knockdown, glinternet shows strong performance with F1 values between 0.68− 0.9
across all tested numbers of true interactions and an SNR larger than or equal to 5
(Figure 1.2a).
xyz shows significantly improved performance for gene pairs with more than 40 ob-
servations, with F1 values almost all above 0.25. Small numbers of true interactions
are particularly accurate, with F1 > 0.5 when there are also only 5 such effects (Fig-
ure 1.2b).
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Figure 1.2: Identification of epistasis for increasing numbers of obser-
vations of the pairwise double knockdown. The number of additional
main effects not overlapping with the set of interacting genes is fixed
to 20. Results using (a) glinternet and (b) xyz.

The number of times each pair of genes is observed is shown in Figure 1.3. We see that
in the large simulation, in which all parameters are multiplied by ten, the number of
observations of each pair of genes is similarly scaled. As a result, the overall distribution
is similar to the smaller simulation.
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Figure 1.3: The distribution of the fraction of gene pairs stratified by
ranges of observed double knockdowns. Gene pairs with zero observa-
tions are not shown. (a) p = 100, n = 1000; (b) p = 1000, n = 10000.

Epistatic effect size

We observe that, for both xyz and glinternet, the performance of the model increases
with the absolute value of the magnitude of the conditional epistasis between pairs of
genes |βi,j| (Figure 1.4). Both for negative and positive epistasis, recall and precision
steeply increase with increasing effect size. For pairs of genes with |βi,j| > 1 and SNRs
≥ 10, the model performs favourably with F1 values of 0.6 and higher in glinternet,
and at least 0.25 in xyz. Overall performance also marginally improves for glinter-

net at SNR = 5, but no clear effect is seen for xyz or SNR = 10. With both xyz

and glinternet, we observe exceptions to the general pattern of the overall V-shape
for precision and recall, where strongly negative and positive epistasis and weak epis-
tasis lead to high and low performance of the model, respectively. This effect can be
explained by the fact that, after the significance test, an extremely small number of
interactions are reported in these ranges (most often only one), with no false positives.
The fact that the model’s performance notably decreases for small effect sizes around
zero explains why we observe a trend of decreasing performance for increasing numbers
of true interactions, when we average over all effect sizes. This is because sampling
true epistatic effect sizes from Norm(0, 2) for increasing numbers of true interactions
increases the fraction of interactions with small effects around zero.
Notably, we can see in Figure 1.4b that even when the overall performance is poor, xyz
is still able to find a small number of strong interactions relatively accurately. This is
particularly promising, since synthetic lethal pairs would be such interactions.
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Figure 1.4: Identification of epistasis for varying effect size. Using (a)
glinternet and (b) xyz.

Direction

We evaluate the ability of each method to distinguish between negative and positive
epistasis among epistatic gene pairs identified as true positives (Figure 1.5). For both
glinternet and xyz, the fraction of incorrect estimates of direction (positive vs. nega-
tive) is higher for decreasing effect size and increasing number of true interactions. For
epistatic effects with an absolute value > 1, we observe at most 3% incorrect predic-
tions with glinternet, and 8% with xyz. We observe at most 9% and 15% incorrect
predictions for smaller effect sizes for glinternet and xyz respectively. Furthermore,
we observe that increasing SNRs leads to a subtle decrease of incorrectly predicted
direction.
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Figure 1.5: Concordance between the sign of true and estimated epis-
tasis. The fraction of incorrectly identified signs between true and
estimated epistasis for (a) glinternet and (b) xyz.
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Magnitude

We evaluate the deviation of the magnitude of estimates for epistasis from the ground
truth as a function of observed double knockdowns (Appendix, Figures A.5 and A.12).

The deviation in magnitude is computed as
|βi,j |−|β̂i,j|
|βi,j | , i.e. the percent relative change

in deviation with respect to the true epistasis. We observe that across varying numbers
of observations the model predicts the magnitude of epistasis between pairs of genes
with high accuracy using both xyz and glinternet.

1.3.2 Scalability

Running glinternet until it has converged takes a prohibitively long time on larger
data sets. While we are able to run our p = 100, n = 1, 000 simulations in slightly
under two minutes, increasing to p = 1, 000, n = 10, 000 takes over two days using ten
cores. Since fitting with small lambda values takes the majority of the time, we can
improve this by changing the minimum value of lambda that gets used. Adjusting this
from lambdaMax

100
to lambdaMax

4
, and fitting only five lambdas in this range rather than fifty,

glinternet still takes over an hour. This makes the repeated simulations from Sub-
section 1.3.1 impractical at a larger scale with glinternet, although we do investigate
some larger data sets in Subsection 1.3.3.
Since xyz has significantly shorter run time than glinternet, here we more thoroughly
investigate performance on larger data sets. Repeating the earlier simulations with
every parameter increased by a factor of 10 (Figure 1.6), we find that the overall
trends remain the same. The fraction of incorrectly identified signs is omitted, as in
this test there are no such results.
There is a significant drop in both precision and recall, and now only effects with a
magnitude greater than 3 are found a significant amount of the time (Figure 1.6b).
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Figure 1.6: Simulations repeated using xyz and larger data sets. (a)
number of observations of double knockdown. (b) Precision/recall/f1
by actual effect strength.
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1.3.3 Synthetic Lethal Pairs

Synthetic lethal pairs are of particular interest, and given that xyz is able to somewhat
reliably find extremely strong interactions, it is natural to ask whether it can be used
to quickly find lethal pairs, despite its poor performance on weaker interactions. We
fix the number of main effects to 10, and simulated 10 000 siRNAs on 1 000 genes.
Synthetic lethal pairs are created as interaction effects of magnitude −1000 (log scale).
Since lethal pairs often do not have strong main effects (i.e. do not follow the strong
hierarchy assumption), the components of the interaction are not used as main effects
in this case.
Increasing the number of lethal interactions significantly reduces recall, but does not
have a clear effect on precision. At this scale, xyz is often able to correctly identify
some lethal interactions (Figure 1.7), particularly when there are only a few to find.
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Figure 1.7: Precision, recall, and F1 performance for varying numbers
of synthetic lethal pairs, with additional background interactions, us-
ing xyz. Neither side of the lethal interactions are used as main
effects, and as far as lethal interactions are concerned, there is no
hierarchy present.

Synthetic lethality detection in larger matrices

While we could not run a significant number of tests at this scale using glinternet,
we could investigate how well its accuracy scales compared to xyz. To do this, we
simulated sets of up to p = 4000 genes, and measured the performance of both xyz

and glinternet. In this case, both to avoid allocating more elements to a matrix than
R allows, and to keep the run time of glinternet low, only n = 2 × p siRNAs are
simulated. The ratio of siRNAs, genes, main effects, interactions, and lethals, is fixed
to: n = 200 siRNAs, p = 100 genes, bi = 1 main effect, bij = 20 interaction effects,
l = 5 lethal interactions. Data sets are then generated with these values multiplied by
5, 10, 20, and 40. As in the previous simulation, components of lethal interactions are
not added as main effects. The strong hierarchy assumption is not valid in this case.
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Interactions are then found with both xyz and glinternet. Here we focus specifically
on synthetic lethal detection, and only correct lethal pairs are considered true positives,
Any other pair (including a true interaction that is not a lethal) is considered a false
positive.
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Figure 1.8: The performance of (a) glinternet and (b) xyz on in-
creasingly large data sets.

We can see in Figure 1.8a that precision with glinternet remains fairly consistent as
p increases. There is a roughly proportional reduction in recall as the number of lethal
interactions increases. After a slight increase from 500 to 100 genes, the actual number
of significant interactions found remains fairly consistent. Beyond p = 2000, we found
that xyz typically fails to find any of the lethal pairs (Figure 1.8b)

(a)

●

●

●

●

0

20000

40000

60000

1000 2000 3000 4000
Genes

T
im

e 
to

 d
is

co
ve

r 
in

te
ra

ct
io

ns
 (

se
co

nd
s)

(b)

●

●

●

●

0

20

40

60

1000 2000 3000 4000
Genes

T
im

e 
to

 d
is

co
ve

r 
in

te
ra

ct
io

ns
 (

se
co

nd
s)

Figure 1.9: Run time in seconds to find interactions on increasingly
large data set. 1.9a: glinternet. 1.9b: xyz. We compiled glinter-

net with OpenMP and ran with numCores = 10.
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Figure 1.9 shows that neither xyz nor glinternet quite demonstrate a linear run time,
but the run time for glinternet increases sharply beyond p = 2000. It is possible that
this is simply the result of less efficient cache use with larger data, but it is nonetheless
worth noting.

1.3.4 Violations to model assumptions

For the regularised regression model (1.9) we assume strong hierarchy (1.11) between
main effects βi and interaction terms βi,j in order to reduce the search space of all
possible non-zero coefficients p +

(
p
2

)
during inference. We refer the reader to [53],

where Lim and Hastie show how violations to this assumption affect the performance.
For instance, the performance of the model is evaluated when the ground truth only
obeys weak hierarchy, i.e. only one main effect present, no hierarchy, or anti-hierarchy.
Additionally, approximately 2.5% of simulations failed to run using xyz, because the
estimated interaction frequency of non interacting pairs was too low. These were fairly
evenly distributed across all combinations of parameters (Figure A.7), and are not
believed to have substantially affected the results.

1.3.5 Summary recommendation

After simulating siRNA knockdown data sets of various sizes, and under various con-
ditions, and attempting to reconstruct the interacting pairs using both xyz and glin-

ternet, we arrive at the following recommendations. For data sets containing less than
4,000 genes (assuming between 2 and 10 experiments per gene), we recommend using
glinternet to find interactions. Where glinternet would have a prohibitively long
run time (data sets larger than those mentioned above), xyz continues to run quickly,
and may still identify some useful results (Figure 1.7). Particularly when one expects a
small number of significant interactions, increasing the number of projections beyond√
n may improve performance here (see Appendix, Figure A.6c).

1.3.6 Effects in real data

Following the recommendation we have arrived at in Section 1.3.5, we apply glinter-

net (followed by a linear regression analysis) to estimate epistatic effects from a real
data set. We use the perturbation data from [74], containing siRNA screens targeting
kinases of five bacterial pathogens and two viruses, and apply the routine as described
in Section 1.2.2 to identify pairwise kinase-kinase interactions. Specifically, we restrict
the data to siRNAs that target kinases from the Qiagen Human Kinase siRNA Set
V4.1, and the off-target effects within this set, resulting in an input matrix containing
11 214 perturbations × 667 genes. Using f = log2( Cells after

Cells before
) as a fitness measure, we

found 1662 effects, 116 of which had a p-value less than 0.05. Since we have assumed
that perturbations are binary in our simulations, we continue to do so here. As a result,
all non-zero predicted off-target effects are given a value of 1. The ten most significant
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predicted effects are shown in Table 1.1. 1 Interestingly, the most significantly associ-
ated pair of genes, CDK5R1 and RPS6KA2, are both related to a common pathway.
Specifically, CDK5R1 activates CDK5, which, along with RPS6KA2, is part of the
IL-6 signalling pathway [44]. Searching both the ConsensusPathDB database [43], and
STRING database [86] for relations between the found pairs, we find that a number of
the interactions suggested here could be the result of existing known interactions. We
each of the identified pairs of genes, we searched for common neighbours (a third gene
with which both interact), shared pathways, and whether the produced proteins are
found in the same protein complexes, and found the following known relationships:
CDK5R1 and RPS6KA2 share a common neighbour, and are present in four of the same
enriched pathway-based sets. TTK and RPS6KA2 share nine common neighbours.
RIPK4 and GRK3 share one neighbour,and homologs were found interacting in other
species. TNIK and PANK4 share one neighbour, as do MAPK4 and TRPM7, MAP2K6
and UCK1, and HIPK1 and NUAK2. As we could not locate the other identified pairs
in the database, we hypothesise that they might constitute novel interactions.

Gene i Gene j Type Estimated Effect P-value

CDK5R1 RPS6KA2 interaction 12.52 0.0047

RIPK4 GRK3 interaction -3.24 0.0056

PHKB GUK1 interaction -7.47 0.0061

MAP2K6 UCK1 interaction -40.89 0.0094

TNIK PANK4 interaction -37.41 0.0115

RPS6KB2 TTK interaction 172.04 0.0118

MAPK4 TRPM7 interaction 9.49 0.0120

HIPK1 NUAK2 interaction -13.17 0.0126

CDK19 NA main 3.80 0.0136

C17orf75 MAPK8IP3 interaction 21.74 0.0136

Table 1.1: Ten most significant predicted effects of siRNA perturba-
tion screens, targeting all human kinases.

For comparison we also fit a linear model including all genes, but no interactions.
Comparing the R2 values for each, we find that individual gene effects explain ≈ 15%
of the variance (R2 = 0.150) Including the interactions chosen by glinternet, and
removing the main effects it sets to zero, we have R2 = 0.392, more than doubling
the fraction of explained variance. This highlights the importance of accounting for
interactions in large-scale genotype-phenotype analyses, and relevance of bioinformatic
tools with this capability.

1The full set of results, significant or otherwise, can be found at https://github.com/bioDS/

xyz-simulation/blob/master/real_data_results_sorted.csv
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1.4 Discussion

To the best of our knowledge, the presented model is the first approach that leverages
the combinatorial nature of RNAi knockdown data resulting from sequence-dependent
off-target effects for the large-scale prediction of epistasis between pairs of genes. To
do this, we take the second-order approximation of the fitness landscape, including
only individual and pairwise effects, and attempt to infer the parameters of this model.
Since glinternet is able to find pairwise interactions among p = 1, 000 genes, we
speculate that searching for three-way interactions is feasible among

3
√

1, 0002 = 100
genes. We are not aware of any software currently able to do this, however.
For the majority of our tests, we simulate the presence of a strong hierarchy. This
constraint would imply that for the inference of non-zero epistatic effects between gene
i and j, βi,j, we penalise cases where the main effects for both single genes, βi and
βj, are zero. This constraint significantly decreases the complexity of the search space
of interactions. However, in biology there are many examples of epistasis where the
marginal effects of individual genes are very small, for instance if both genes redun-
dantly execute the same function within the cell [71]. Costanzo et al. [17] found in their
study of experimental double knockouts in yeast that single mutants with decreasing
fitness phenotypes tended to exhibit an increasing number of genetic interactions. This
observation is reassuring for glinternet, which can pick up the interaction as long as
the true single-mutant effects are not exactly zero. Moreover, Lim and Hastie showed
in a simulation study that the model is in fact flexible enough to also identify pair-
wise interactions violating the strong hierarchy constraint [53]. For the detection of
strong interactions, specifically synthetic lethal pairs, we have also demonstrated that
the strong hierarchy constraint is not required.
In a simulation study, we sampled perturbations for n = 1000 siRNAs and p = 100
genes, and n = 10000 siRNAs with p = 1000 genes. As a consequence of high-
throughput genome-wide screening platforms, the setting of n = 10 × p, i.e. ten per-
turbations with different siRNAs per gene, is realistic even for higher order organisms
with tens of thousands of genes [74, 78]. Sampling the perturbations directly from
commercially available RNAi libraries allows us to translate results from the simula-
tion study to applications on real data. We observe that increasing SNRs, as expected,
results in an overall increase of the number of successfully identified gene pairs with
true epistasis.
Nevertheless, we found that even for a moderate SNR of only 2, the model identifies
interactions with acceptable performance using glinternet (F1 > 0.5 for 50 true in-
teractions), when we observed each double knockdown over 40 times (Figure 1.2a) or
the effect size of epistasis is larger than 1, i.e. |βi,j| > 1 (Figure 1.4a). For an SNR of
5 and across all tested numbers of additional gene pairs and epistatic effect sizes, the
performance of the model is approximately constant at around F1 = 0.5, independent
of the number of true epistatic gene pairs (Figure A.2b).

Performance in our simulations also suggests that xyz is unable to accurately iden-
tify interactions in large data sets. Although xyz has a consistently short run time,
and appears capable of running on genome-scale data, we see a significant drop in all
other performance measures beyond p = 1000 genes.
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The results when using glinternet, however, suggest that the general approach is
able to accurately identify pairwise epistasis from large-scale RNAi data sets, given
that the SNR of measured fitness phenotypes is larger than 2 and the effect size of
epistasis is larger than 1. It is challenging to compare the performance of these models
to approaches that estimate genetic interactions from other data, such as for instance
from double knockout experiments [17], due to different scales of the epistatic effect
size, however, the high precision of glinternet seems quite competitive. Moreover,
our simulations demonstrated that if true epistatic effects between pairs of genes are
identified, the model identifies both the direction of epistasis (positive and negative) as
well as the magnitude of the epistatic effect with high accuracy (Figures 1.5 and A.5).
In detecting lethal interactions specifically, the high precision of glinternet after
testing for significant deviations is particularly promising. Using this as a method
to detect likely synthetic lethal interactions from RNAi data sets, we could propose
candidates for further investigation as anticancer drug targets [10][3]. While the run
time may prevent glinternet from being used as such a method in genome-scale
applications, we can recommend it for use with smaller data sets, or where the number
of potential interactions can be significantly reduced prior to running glinternet.
As the precision does not appear to suffer with larger input, only the run time, we
believe combining linear regression with a perturbation matrix is a promising method
for further investigation, and work to improve the performance sufficiently for use in
genome-scale applications is ongoing.
Finally, it is worth noting that this approach is not limited to siRNA perturbation
matrices, or to synthetic lethal detection. Any method of suppressing gene expression,
combined with an affected proxy for fitness, could be used to find likely candidates for
epistasis.
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Chapter 2

A More Scalable Lasso-based

Method and Software for Inferring

Pairwise Interactions from

Perturbation Screens

We saw in Chapter 1 that a lasso-based approach to inferring interactions from an
siRNA perturbation matrix is a feasible method for large-scale interaction detection.
Attempting to use glinternet at such a scale, we run into scalability problems due
to the running time, however. Finding interactions in an siRNA screen of 1, 000 genes
with ten siRNAs per gene takes several days using ten cores on an Opteron 6276. Our
aim is to fit an even larger model, including all p u 20, 000 human protein-coding
genes, with as many as n = 200, 000 siRNAs. Doing so requires the development of
new methods and software. Our aim in this chapter is to develop a method able to
fit such a model in under three days, maintaining performance without requiring more
than one Terabyte of memory,
We have developed an R-package that is able to perform lasso regression on all pairwise
interactions on the same one thousand gene screen in twenty seconds, and is able to fit
a genome-scale data set with 27, 000 genes and 30, 000 siRNAs in several hours. This is
made possible by taking into account some details of our input data, specifically, that
our input matrixX is both sparse and strictly binary. To perform lasso-based regression
on this matrix, we begin with an existing fast algorithm, parallelise it, and adapt it
for use on our binary perturbation matrices. In this chapter we provide a detailed
explanation of this implementation, followed by some analysis of its scalability.
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2.1 Lasso-based Method for Inferring Pairwise In-

teractions

2.1.1 Input Data

The input to our package is the same as in Chapter 1. We take a as our input a
perturbation matrix X and fitness vector Y. X ∈ {0, 1}n×p is a binary matrix, where
xij = 1 if gene j is knocked down by siRNA i, 0 otherwise. The entry yi of Y ∈ Rn is
the approximation of fitness in the presence of siRNA i. For each column Xj of X we
attempt to find a value βj that best explains the effect gene j has on fitness. Ideally,
for every row i of X, the sum of these values

∑p
j=1 xijβj would be exactly the measured

fitness effect yi (see Figure 2.1 for an example). Given X and Y, we aim to find effect
sizes β that minimise the errors E shown in the formulas of Figures 2.1, 2.2. Note that
in at this point we do not consider interactions.

β1x1,1 + β2x1,2 + . . .+ βpx1,p + E = y1

Gene 1 Gene 2 Gene p

Effect of Gene 1 . . . p being knocked down

Fitness measure after siRNA knockdown

Figure 2.1: Single siRNA effects

β1x1,1 + β2x1,2 + . . .+ βpx1,p + E1 = y1

β1x2,1 + β2x2,2 + . . .+ βpx2,p + E2 = y2

β1xn,1 + β2xn,2 + . . .+ βpxn,p + En = yn

...

Gene 1 Gene 2 Gene p

Effect of Gene 1 . . . p being knocked down

Fitness measure for siRNA 1 . . . n

Figure 2.2: Matrix of siRNA effects

As in the previous chapter, our goal is to estimate both the effects β1, . . . , βp of knocking
down each gene, and the effects β1,2, . . . , βp−1,p of knocking down pairs of genes simul-
taneously. To do this, we add a column for each pair of genes, converting the siRNA
matrix X ∈ {0, 1}n×p into the pairwise matrix X2 ∈ {0, 1}n×p

′
, where p′ = p(p+1)

2
. This

model includes all pairwise interactions, and fitting it is equivalent to finding pairwise
epistasis in Chapter 1.
We construct the matrix X2 as follows. For every column i from 0 to n, we take every
further column j from i + 1 to n, and form a new column by taking the bit-wise and
over all elements of the columns i and j (Figure 2.3).
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1
0
0
0
1

1
0
1
0
1

1
1
0
0
1

∧ →

Figure 2.3: Creation of pairwise siRNA effect columns

This gives us the complete pairwise matrix X2, as shown in Figure 2.4.

β1x1,1 + . . .+ βpx1,p + β1,2x1,1∧2 + . . .+ β1,px1,1∧p + . . .+ βp−1,px1,p−1∧p + E1 = y1

β1x2,1 + . . .+ βpx1,p + β1,2x2,1∧2 + . . .+ β1,px2,1∧p + . . .+ βp−1,px2,p−1∧p + E2 = y2

β1xn,1 + . . .+ βpxn,p + β1,2xn,1∧2 + . . .+ β1,pxn,1∧p + . . .+ βp−1,pxn,p−1∧p + En = yn

...

Gene 1 Gene p Genes 1 and 2 Genes 1 and p Genes p− 1 and p

Figure 2.4: Matrix of Pairwise siRNA effects

2.1.2 Cyclic Linear Regression

Our approach to lasso regression is based on a cyclic coordinate descent algorithm from
Fu [26], as described in Wu and Lange [100]. This method begins with βj = 0 for all j,
and updates the beta values sequentially, with each update attempting to minimise the
current total error. Here this total error is the difference between the effects we have
estimated and the fitness we observe, given the genes that have been knocked down.
Where yi is the ith element of Y, βj is the jth element of β, and xij is the entry in the
matrix X2 at column j of row i, the error is the following.

n∑
i=1

|yi −
p′∑
j=1

xij · βj| (2.1)

Note that we assume that the fitness vector Y is already centred around 0, and omit the
offset u present in Wu and Lange [100]. In the context of pairwise genetic interactions
we would rather have a smaller number of definitely relevant effects, than a large
number of marginally relevant ones. To this end, we add the lasso penalty to the error
in Equation 2.1. This penalises large beta values according to a parameter λ, and
results in a smaller set of, typically larger, non-zero beta values [90]. With this added
penalty we minimise the value:

n∑
i=1

|yi −
p′∑
j=1

xij · βj|+ λ

p′∑
j=1

|βj| (2.2)

We do this by minimising the component of this error that each βj is able to account
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for. For a particular βk, the component of this error that we can minimise by changing
this value is:

f(βk) =
n∑
i=1

|xik · (yi −
p′∑
j=1

xij · βj)|+ λ|βk| (2.3)

This error comes from the non-zero entries in column k of X. Since in our case all
entries are either 1 or 0, this is simply the sum of errors of rows where column k has
an entry, with a penalty imposed for large beta values.
To minimise this component f(βk) alone, we define ri and Sk:

ri =

p′∑
j=1

xij · βj

Sk =
n∑
i=1

xik

The error affected by a single beta value (Equation 2.3) can then be minimised by
increasing βk by the following:

∆βk =

{
min(0, βk +

∑n
i=1(xik(yi−ri))

Sk
− λ) for βk +

∑n
i=1(xik(yi−ri))

Sk
> 0

max(0, βk +
∑n

i=1(xik(yi−ri))
Sk

+ λ) for βk +
∑n

i=1(xik(yi−ri))
Sk

< 0
(2.4)

This is equivalent to the solution from Wu and Lange [100], as we will now show. Their
solution is defined separately for positive and negative βk:

βk− = min{0, βk −
δ
δβk
g(θ)− λ∑n
i=1 x

2
ik

}

βk+ = min{0, βk −
δ
δβk
g(θ) + λ∑n
i=1 x

2
ik

}

Where
δ

δβk
g(θ) = −

n∑
i=1

qixik,

and qi = yi − u−
p′∑
j=1

xijβj

Note that we assume the intercept term u = 0, because Y is centred around 0, and u can
therefore be omitted. We shall first focus on proving the equivalence of our construction
for βk−. Since xik ∈ {0, 1}, it follows xik = x2

ik, and therefore
∑n

i=1 x
2
ik = Sk. This
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gives us

βk− = min{0, βk −
δ
δβk
g(θ)− λ
Sk

}

Also substituting δ
δβk
g(θ), we have:

βk− = min{0, βk −
−
∑n

i=1 xik(yi − ri)− λ
Sk

}

= min{0, βk +

∑n
i=1 xik(yi − ri) + λ

Sk
}

= min{0, Skβk +
∑n

i=1(yi − ri) + λ

Sk
}

This is equivalent to Equation 2.4 for βk < 0. The positive solution is equivalent,
substituting min for max and subtracting λ. Iteratively minimising beta values until
the solution converges, we have Algorithm 1. We consider the algorithm to have
converged when eprev

eafter
< t for some threshold t, where eprev is the error before the

iteration and eafter the error after the iteration. We arbitrarily choose t = 1.0001 as
the default in our software.

Algorithm 1: Sequential Cyclic Algorithm

while not converged do

foreach βk do

∆βk ←
∑n

i=1(xik(yi−ri))
Sk

;

if |βk + ∆βk| > λ then

if βk + ∆βk > 0 then

βk ← βk + ∆βk − λ;

end

else

if βk + ∆βk < 0 then

βk ← βk + ∆βk + λ;

end

end

end

end

end

A naive implementation would read every entry of the X2 matrix, and every value in
the vector Y, every iteration, for every beta update. With X2 ∈ {0, 1}n×p

′
, β ∈ Rp′

and Y ∈ Rn, this is Θ(np4) operations per iteration. Since xij and yi are constant,
ri =

∑p
j=1 xijβj only changes when βj changes. Updating this value every iteration,

rather than re-calculating it, we only need to perform n operations per β update. This
brings the number of operations for an iteration down to np2. To update βj, we now
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read a single column, Xj, and the values of ri and Yi for each non-zero entry xij. By
including Y in R such that ri = yi−

∑p
j=1 xijβj for all i, we no longer need to read Y.

We can further reduce the work that needs to be done by storing a sparse representation
of X2. While X is a sparse matrix, X2 is an extremely sparse matrix. In a typical
simulated data set from Chapter 1, we go from, on average, 112 out of 1, 000 entries
per column in the X matrix to 16 out of 1, 000 on average in X2. We therefore store
X2 in the following format. Each column is a list of the positions of its non-zero entries
(Figure 2.5). Since these are one by definition, we don’t store their value. We store
the matrix column-wise to ensure the column Xj can be read quickly when updating
βj. Each column is therefore stored as a separate array of integers.

0 0 1 0
0 1 0 0
0 0 1 1
1 0 0 0



3 1 0 2

2

X :

Figure 2.5: Simple sparse matrix representation

As a result of the memory and run time requirements, this implementation is usable up
to p = 1, 000 but not for values as large as p = 20, 000. To overcome this, we compress
the matrix, and parallelise the beta updates.

2.1.3 Compression

To reduce memory usage and the time taken to read each column with larger input
data, we compress the columns of X2. Because we read the columns sequentially, we
replace each entry with the offset from the previous entry. This reduces the average
entry to a relatively small number, rather than the mean of the entire row. These small
integers can then be efficiently compressed with any of a range of integer compression
techniques (Figure 2.6), a subject that has been heavily developed for Information
Retrieval. We compare a number of such methods, including the Simple-8b algorithm
from Schlegel, Gemulla, and Lehner [77] which we implement and use in our software.
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0 0 1 0 . . .
0 1 0 0 . . .
0 0 1 1 . . .
1 0 0 0 . . .
...



3 1 0 2 . . .
... ... 2 ...

X :


3 1 0 2 . . .
4 6 2 33 . . .
21 12 19 45 . . .
... ... ... ...

9523 9954 9895 9971 . . .



3 1 0 2 . . .
1 5 2 31 . . .
17 6 17 12 . . .
... ... ... ...
60 26 25 13 . . .


+1

+17

+3

}
Encode each column with Simple-8b

Figure 2.6: Compression of the sparse X2 matrix.

Simple-8b

Simple-8b is a non-SIMD compression scheme, with performance comparable to other
state of the art methods [77, 57, 92]. While SIMD-based compression schemes can offer
significantly improved compression and decompression speed [49] [77], their implemen-
tation is architecture dependant. Simple-8b only requires a CPU be able to efficiently
handle 64-bit arithmetic. This amounts to requiring a modern CPU, which we assume
is already a requirement for processing large data sets.
Simple-8b is a 64-bit variation of the Simple-9 encoding scheme [2], and stores a se-
quence of integers in a single 64 bit word. The number of integers stored depends on
the size of the largest one, and is indicated by a four bit ‘selector’. The remaining
60 bits are divided into integers of size 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 15, 20, 30 or 60, with
between 240 (only possible if all values are zero) and one integer stored. As seen in
Figure 2.7, this considerably reduces the size of X2 in our test data (two sets from
Chapter 1, one with p = 100, n = 1, 000, another with p = 1, 000, n = 10, 000). In
the larger p = 1, 000 set, total memory use is reduced by over 85%.
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Figure 2.7: Compression effect on memory use. Note that this is the
total peak memory use of the program, not solely the memory used
by the matrix X2. In both cases n = 10 · p.

It is worth noting that this compression works well even for non-sparse sections of the
matrix, since the offsets are extremely small. In an extreme case, we can store up
to 240 sequential 1’s in a single 64-bit word. That is to say that, while the earlier
offset-based format (Figure 2.5) relies on the sparsity of the matrix for its efficiency,
compression works well regardless.

Comparing Compression Methods

While Simple-8b allows our implementation to be used on any 64-bit CPU, we could
also take advantage of SIMD-based methods where the such CPU instructions are
available. To determine whether this is a worthwhile improvement, we compare our
Simple-8b implementation to a number of state of the art alternatives.
Recent work suggests TurboPFor [70] has a particularly high compression ratio [92].
We therefore compare the best performing methods from TurboPFor against our imple-
mentation of Simple-8b (Figure 2.8). The tests are performed using 32 threads across
two eight-core (16 SMT threads) Intel(R) Xeon(R) Gold 6244 CPUs in a NUMA sys-
tem.
To compare these methods, we perform 50 regression iterations on a test data set of
p = 1, 000 genes and n = 10, 000 siRNAs. We examine the total time taken for the
process, as well as the total memory used and time for the regression function alone
(excluding calculating and compressing the interaction matrix).
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Figure 2.8: Comparison of Compression Methods. (a) Total memory
used, compressing the sparse X2 matrix with each method. (b) Total
time taken and time taken (including compressing X2) and time taken
for lasso regression alone, using each method.

We see that both the time to produce the compressed matrix (seen in Figure 2.8 as the
difference between total time and lasso-only time), and the run time are comparable
for all TurboPFor methods.1 While every TurboPFor method we tested improved
the compression ratio compared to Simple-8b (Figure 2.8a), we consistently found
that the run time was longer (Figure 2.8b). It is possible that this is a result of
the way the columns are being read in each method. Using TurboPFor, we compress
and decompress entire columns at a time. With our Simple-8b implementation, we
process each 64-bit word separately. This allows us to use the column as it is being
decompressed. Avoiding re-reading the column after decompression also allows the
entries to be evicted from the cache earlier.
While it is also possible to process compressed words as they are read using the tested
TurboPFor methods, there does not appear to be a significant enough difference in
compression to justify the restriction to SIMD-capable CPUs, or the complications in
the build system that arise using a separate compression library.

2.2 Choosing Lambda

The lasso penalty includes a parameter, lambda. This parameter determines the extent
to which we penalise large beta values, and can range from allowing all values (λ = 0)
to allowing only zero, (λ → ∞). Choosing the correct value of lambda is essential if
we want to include only the significant effects. This is typically done by choosing an

1The compression time is not comparable for all methods. Our Simple-8b implementation com-
presses columns in parallel, whereas TurboPFor does not. Regression is done in parallel using all
cases, using the method described in Subsection 2.4.4.
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initial value sufficiently large that all beta values will be zero, and gradually reducing
lambda, fitting the model for each value [25]. At each new lambda value we can carry
over the beta values from the previous iteration. This way, only the effects that are
now allowed, but were not before, need to be found. The time taken to fit a decreasing
sequence of lambda values in this way is not much more than it would take to fit the
smallest on its own, and in some cases is even faster [25].
Choosing the stopping point, the lowest value of lambda, is often done by placing a limit
on the number of values that will be used (50 or 100 are typical), and choosing the best
among these with cross-validation [100, 25]. In our case, we do not rely on lambda alone
to decide which effects are significant. Instead we only use lasso regression to choose
the non-zero beta values, and then perform Ordinary Least Squares (OLS) regression,
including only the columns of X2 corresponding to these values. The p-values from
OLS regression are used to determine whether an effect is significant. It suffices then
to continue decreasing lambda until a predefined arbitrary small lambda value, relying
on OLS regression to filter for significant results. With many non-zero beta values,
a result of sufficiently small lambda, the OLS regression step can take longer than
the initial lasso regression, however. The small values of lambda also account for the
majority of the lasso run time, and if we can stop the lambda sequence early, this can
be significantly improved.
We provide two options for choosing lambda in our package. First, we choose lambda
such that the number of non-zero effects is small enough for OLS regression. Second,
we implement a fast method for empirically choosing a reasonable stopping point. More
specifically, we choose lambda in the following way. We begin with lambda sufficiently
large that all beta values will be zero. Lambda is then gradually decreased, setting the
new value at each step to λnew = 0.9 ·λprev. We decrease lambda until we reach or pass
the minimum value (0.05 by default). After fitting with each lambda, we optionally
check two stopping conditions. First, we check if a maximum number of non-zero beta
values is set, and whether we have reached this value. Second, if enabled, we perform
the adaptive calibration test [13], stopping if the conditions are met.
We use the adaptive calibration lambda selection method from Chichignoud, Lederer,
and Wainwright [13] instead of the standard K-fold cross-validation because cross-
validation requires fitting each lambda value K times, and this increase to the run time
is unacceptable for large data. Adaptive calibration only requires a single relatively
small calculation for each lambda. It aims to choose the minimum value of lambda
that is sufficient to control fluctuations. Assuming X2 satisfies the design condition
from Van de Geer [93], the value chosen is within a constant factor of this ideal value,
and precision and recall are comparable to cross-validation [13].
We compare precision, recall, and running time when using the adaptive calibration
stopping condition to running as many iterations as we can, on small and large simu-
lated data sets from Chapter 1. In all cases, we then perform the OLS regression step
and filter out results with a q-value ≥ 0.05. Using the smaller set (p = 100, n = 1, 000),
we run until reaching our lower limit of λ = 0.05. With the larger data set this may
include too many columns for OLS regression, so we limit the number of non-zero beta
values to 2, 000. The results of this test can be seen in Figure 2.9 and Figure 2.10.
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Figure 2.9: Adaptive calibration effect on small sets. ‘Exhaustive
Lasso’ runs until the predefined minumim lambda value of 0.05 is
reached. ‘Lasso w/ Adcal’ halts once adaptive calibration conditions
are met, continuing until the cutoff otherwise.
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Figure 2.10: Adaptive calibration effect on large sets. ‘Limited-β
Lasso’ runs until 2, 000 beta values are non-zero, continuing until the
cutoff otherwise. ‘Lasso w/ Adcal’ halts once adaptive calibration
conditions are met, continuing until the cutoff otherwise.

We see significantly higher recall when running until a very small cutoff, and filtering
the results with ordinary least squares afterwards. The number of variables included in
the latter regression limits the usefulness of this approach, however. We find that for
large data sets there are often too many non-zero betas, all of which must be included
when performing OLS regression. We therefore include the option to halt regression
after a certain number of non-zero betas have been set.
Both the adaptive calibration option and limiting non-zero betas can prevent the al-
gorithm from finding small effects. This is in many cases beneficial, as it is the small
values of lambda, and therefore the small effects, that are computationally expensive.
Moreover, our previous benchmarks (Chapter 1) show that small effects are also the
least likely to be correctly identified. With that in mind, we do not consider ignoring
these effects to be a problem.
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2.3 Fault Tolerance

There are between 20 and 30 thousand protein coding genes [14], and running our
method on matrices with this many columns can take over 20 hours. If the job is
interrupted, fails for some reason, or needs to be repeated, we can avoid repeating the
entire process by keeping a log of the running job. We do this in the following way:
Either every iteration, every lambda change, or never (depending on the user’s choice),
we save the current lambda values to a log. The log format is shown in Figure 2.11,
with an example in Figure 2.12

1 [status]

2 [run args]

3 [human-readable format explanation]

4 [n, p, num_beta]

5 [w/ ][current iteration] [current lambda]

6 [current beta values]

7 [w/ ][current iteration] [current lambda]

8 [current beta values]

Figure 2.11: Log file format

1 finished

2 ./build/utils/src/lasso_exe testX.csv testY.csv int F 100

1000 100 -1 1 t l↪→

3 lasso log file. metadata follows on the next few lines.

4 The remaining log is {[ ]done/[w]ip} $current_iter,

$current_lambda\n $beta_1, $beta_2 ... $beta_knum_rows,

num_cols, num_betas

↪→

↪→

5 1000, 100, 5050

6 00051, 00050, +5.726417e-01

Figure 2.12: Example log file

The entries of the log are as follows.

• status: Current status of this run of the program. Either still running or
finished. We only resume from a log if it is still running (i.e. the run did not
complete) and the arguments are identical in the log and the current run.

• run args: The arguments the program was given for this run. This is used to de-
cide whether the log represents a previous attempt to run on the same matrices.
If these arguments are identical to the those of the currently running program,
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and the log indicates it did not complete, then we attempt to resume from the
last entry in the log.

• human-readable format explanation: A brief explanation of the format for the
sake of a user inspecting the log.

• n, p, num-beta: In order, the number of rows in the matrix, number of columns,
and number of beta values we are trying to solve for. num-beta will either be p
or p·(p+1)

2
, depending on whether we are solving for main effects or interactions

respectively.

• w/: The beginning of an entry into the log, either after an iteration, or finishing
a lambda, depending on settings. Either `w' or ` ', depending on whether this
entry is currently being written, or is a complete entry. If the value is `w', we
should not attempt to restore from this entry, as it may be incomplete. In par-
ticular, since the entry is written over a previous one at the same point in the
file, later sections may be leftover from such an entry, rather than being part of
this one.

• current iteration: The number of the iteration (of the current lambda) saved in
this entry. This is always a five digit integer, with leading zeros as necessary.

• current lambda: The lambda value being processed as of this entry. This is al-
ways a seven significant figure number in scientific notation, with a leading `+'

or `-' sign. This guarantees every entry will be exactly 13 characters.

• current beta values: A comma separated list of the current beta values, also as
seven significant figure scientific notation numbers. Since each entry is 13 charac-
ters, a comma, and a space, and ends with a newline character, we can guarantee
the length of the line to be 15 · |β|+ 1.

In case an entry is interrupted while being written, we should also keep a copy of the
previous entry. The log will always include exactly two entries (once it has run long
enough to save at least twice), and we alternate which one is written each time we
save to the log. This avoids creating an excessively large log, with entries from every
previous iteration or lambda value, while still guaranteeing we can restore from the
previous entry in case the process is interrupted while writing. Since there is no way to
distinguish between the old and new characters in the entry if writing is interrupted,
we need the beginning 'w'.
Note that regardless of the current iteration, lambda, or beta values, every entry will
be the exact same number of characters. This is to guarantee that the second entry
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always begins after the same number of bytes. We can then overwrite only the second
entry.

2.4 Parallelisation

So far we have only used a single thread. Given the large multi-core and multi-CPU
systems available, it would be a substantial improvement if we were able to run the
algorithm in parallel.
We refer to an update of a βj corresponding to column Xj as a column update. Within
a column update, there are no barriers to running in parallel (i.e. parallelising over
rows). We can iterate through the elements of the column in parallel using openMP,
and calculate the sums with a reduction. The contents of a single column are stored
sequentially in memory, which limits the effectiveness of such an approach. The con-
tents of the columns are only read, and not written, in this process, so there is no
overhead in maintaining cache coherency. Once a single value has been read on one
core, an entire cache-line will be available from its local cache, however. Since these
have been read from memory already, there is no advantage to reading them into an-
other core’s cache for parallel processing. We could attempt to offset the work of each
core, so that each will be working on a separate cache line within the same column
of the matrix. Such an approach, however, assumes that the column contains at least
k = cache line size

entry size
· (num cores) entries, which is unlikely. There is also considerable over-

head in thread barriers [62], and the work done must be enough to justify this. To
solve these problems, and avoid having threads idle when their component of the work
is finished, we would need to have several times k entries. In our test set of n = 10, 000
siRNAs, the mean number of non-zero entries in a column is only 150, or seven com-
pressed 64-bit words. The L1 data cache of our test CPU2 has a 64 byte cache line size,
enough for eight entries. Even with hundreds of thousands of siRNAs, each column
could only be expected to be a few cache lines. Running the iterations over columns
in parallel, rather than rows, is therefore the focus of our parallelisation attempts.

2.4.1 Overlap Error

We cannot simply perform column updates in parallel. Each column update both reads
and writes ri values for every non-zero entry in the column. If two columns are updated
in parallel, and they both have non-zero entries in a common row, there is a time-of-
check to time-of-use problem. An update can occur in an ri after that value has been
read by another thread. While the cached ri themselves will never be incorrect, as the
updates are atomic and always the result of real changes to a beta value, both columns
will be updated based on the old value. Both columns are partially responsible for the
difference between the current fit,

∑p′

i=1 xijβj, and observed fitness, yi, of this common
row. Each of these updates will attempt to minimise this as much as possible, without
taking the other update into account. This can result in overcorrecting for the error
in the common row, potentially increasing the overall error. To compensate for the

2A Xeon Gold 6244.
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increased error, the next update may make an even larger change to β (Figure 2.13a).
In the worst case, if two or more updates repeatedly overcorrect for each other, this
can prevent convergence entirely (Figure 2.13b).
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Figure 2.13: Effect of repeated overcorrection. (a) Repeated over-
corrections lead to increasingly large changes to error. (b) Effect of
repeated overcorrection on fit. This example is the result of fitting
a 50× 20 random binary X2 matrix, with random Y values between
−1 and 1.

Deriving Overcorrection Error

Simultaneous updates may result in overcorrection, but we can analytically determine
exactly how much. Using the definitions from Subsection 2.1.2, ignoring the lasso
penalty for the moment, we update a single βk by ∆βk as follows.

∆βk =

∑n
i=1(xik(yi − ri))

Sk

Let us define ∆̂βk to be the value that ∆βk would take if, for every j < k, the update
to βj, had already been performed. If we perform all updates strictly sequentially, then

∆βk = ∆̂βk. Similarly, we define
∧k
ri to be the value of ri after all updates prior to k

have been performed.

∧k
ri =

p′∑
j=1

(xijβj) +
k−1∑
j=1

(xij∆̂βj)

Since the only difference between ∆̂βk and ∆βk is the change in ri caused by previous
beta updates, it follows:
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∆̂βk =

∑n
i=1(xik(yi −

∧k
ri)

Sk

=

∑n
i=1(xik(yi −

∑p′

j=1(xijβj)−
∑k−1

j=1(xij∆̂βj)))

Sk

=

∑n
i=1 xik(yi − ri)

Sk
−
∑n

i=1 xik
∑k−1

j=1 xij∆̂βj

Sk

= ∆βk −
∑n

i=1 xik
∑k−1

j=1 xij∆̂βj

Sk

= ∆βk −
∑k−1

j=1 ∆̂βj
∑n

i=1 xijxik

Sk

Note that
∑n

i=1 xijxik is constant with respect to changes in β and R. We can compute
these values once after the input has been read, and re-use them in every iteration. If
we define the overlap between columns j and k of X2 to be γjk =

∑n
i=1 xijxik, we have

the following.

∆̂βk = ∆βk −
∑k−1

j=1 γjk∆̂βj

Sk

Remark 1. ∆̂βk 6= ∆βk if and only if γjk 6= 0 for some j < k.

For λ 6= 0 we define the soft threshold function fλ(x).

fλ(x) =

{
min(0, x+ λ) for x < 0

max(0, x− λ) for x > 0

We find that the value of ∆̂βk for λ 6= 0 is the following, and use this definition in our
package.

∆̂βkλ = fλ(βk + ∆̂βk)− βk

= fλ(βk + ∆βk −
∑k−1

j=1 γjk∆̂βj

Sk
)− βk

We now consider a concrete example of Remark 1. Let each residual ri be fixed (for the
moment), and update first β1, then β2, the intended sequential update effect is then:
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∆β1 =

∑
i|xi,1=1 yi − ri∑n

i=1 xi,1

∆β2 =

∑
i|xi,2=1 yi − ri + γ12∆β1∑n

i=1 xi,2

When both updates are instead performed at the same time we get:

∆β1 =

∑
i|xi,1=1 yi − ri∑n

i=1 xi,1

∆β2 =

∑
i|xi,2=1 yi − ri∑n

i=1 xi,2

Updating in parallel, the effect of β2 is estimated based on the original R, rather
than those that account for the changes made to β1. We can easily calculate the
expected overcorrection in this case, γ1,2∆β1. Note that we are atomically updating
the residuals ri that are affected by both updates. If we fail to do this, overcorrection
becomes difficult to predict.
For example, β1 and β2 correspond to the columns in Figure 2.14a, and suppose these
columns of X2 are chosen for simultaneous updates. We can calculate the changes ∆β1

and ∆β2 in parallel and update the residuals safely, because there are no shared values
being updated by both threads. In Figure 2.14b, we find that both the update to β1

and the update to β2 affect residual r3. While atomic updates to the actual value of
r3 will guarantee that we finish with the value r3 + ∆β1 + ∆β2, we have not taken
the changed value of r3 into account when calculating ∆β2. The correct update would
have been r3 + ∆β1 + ∆β2 − ∆β1
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(b) Overlapping updates

Figure 2.14:

Given that we can safely perform updates for columns that have no overlap, and we
can explicitly compensate for the error of sets of columns, we investigate three ap-
proaches for parallelisation: compensating for the error of pre-determined sets (Sub-
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section 2.4.2), simultaneously updating non-overlapping sets (Subsection 2.4.3), and
randomly updating shuffled columns (Subsection 2.4.4).

2.4.2 Explicit error compensation

To update βa and βb at the same time, we need to subtract the overcorrection from one
of them (arbitrarily chosen) afterwards. The final value is then the same as if we had
updated the values sequentially. Subtracting the overcorrection from ∆βa we update
βa as follows:

βa = βa + fλ(βb + ∆βk −
γab∆̂βb
Sk

)− βa

Similarly, we can update any subset of the beta values {β1, . . . , βp′} simultaneously,
as long as we account for overcorrection in each update. For every βk in the subset
{β1, . . . , βl}, we make the following correction:

βk = βk + fλ(βk + ∆βk −
∑k−1

j=1 γjk∆̂βj

Sk
)− βk

This method has been implemented in the error_comp branch of our repository3, and
is marginally faster than sequential updating with the right parameters. It does not
scale well enough that we can recommend its use, however.
To understand the scalability of this approach, we begin by noting that the time taken
to correct C simultaneous beta updates is on the order of C2. This is because each
update 0 ≤ i ≤ C requires reading the i − 1 previous corrected values, resulting in
(i−1)(i−2)

2
reads. If we were to attempt to update the entire interaction matrix in parallel,

followed by correcting errors, there would be on the order of p′2 corrections. Since a
sequential iteration requires only p′µ steps, where µ is the mean number of non-zero
entries per column, we would spend more time on corrections than updates. Even if
corrections were run in parallel, this would be slower than sequential updates.
We do not, however, have to update the entire matrix at once. If we restrict ourselves
to updating small sets, where ‘small’ is some function of the number of threads we are
able to effectively use, the problem becomes tractable. Performing C parallel updates,
where C is some constant multiple of the number of available threads, we have in total
p′

C
sets to update, resulting in p′µ

C
+ p′C update operations on the main thread.4 For

C2

C−1
< µ this is an improvement, even with single-threaded correction.5

Remark 2. Ahmdahl’s Law implies a best-case improvement of:

p′µ

p′( µ
C

+ C)
3https://github.com/bioDS/lasso_testing/tree/error_comp
4Assuming that the column updates are done in parallel, and the overcorrection adjustments are

done on the main thread.
5Note that C2

C−1 ≈ C for sufficiently large C
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Parallel correction does not scale

To improve upon Remark 2, we have to correct beta updates in parallel. This re-
quires calculating ∆̂βk without using any previously corrected values, ∆̂βj for j < k.

Substituting ∆̂βj, a corrected update ∆̂βk then becomes the following:

∆̂βk = ∆βk −
∑k−1

j=1 γjk∆βj −
∑j−1

j′=1 γj′j∆βj ′−Γ

Sj

Sk

Where Γ is a nested sum containing a further (k − 4)! additions. Even for very small
sets, computing this is not feasible. We must therefore fix overcorrection sequentially,
and accept the limit in Remark 2.

OpenMP barrier overhead requires large C

To achieve the improvement in Remark 2, we would need a set of eight columns,
updated on eight CPUs, to finish eight times faster. This is in practice not the case.
We demonstrate this by running a single iteration on the same test set with varying
parallel update set sizes C. Using sets of size m times the number of available cores
we gradually increase m and measure the time taken to perform all p′ column updates,
without compensating for overcorrection. As we can see in Figure 2.15, we require
blocks of 64 to 128 times as many columns as there are cores to achieve speed-ups
close to the theoretical limit, and at least eight times as many for any significant
improvement.
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Figure 2.15: Set size multiplier effect on parallelisation speed-up. Sets
contain (number of cores) · C columns.

We find that for small block sizes, the majority of the time all threads are handling an
openMP barrier at the end of a parallelised loop.6 There are two likely causes. First,
when running a small number of column updates in parallel, some of these will often
finish before others. If there are no further columns in the set, the thread will then

6Note that it is not the case that one thread is still updating while the others are waiting.
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have to wait for the set to finish updating. Secondly, updating columns with entries
in nearby rows will mean accessing nearby memory locations to update the residuals.
Since these are both being read and written to, maintaining cache coherency across
CPU cores is likely to affect performance. The barrier at the end of each parallel section
may also take a significant amount of CPU time, as it requires some communication
between threads.
Memory access is also less efficient with multiple threads. When a single thread per-
forms a sequence of column updates, these columns are stored in memory sequentially,
and each column may be as little as a single word. The core will read in an entire cache-
line at once, and this may contain part of the following column, if not the following
several. In this case, additional updates for these columns may be performed without
any extra memory reads. If, on the other hand, we have eight columns shared between
eight threads, they will each still need to read in these values. In our case the eight
cores have a shared L3 cache, individual L1 and L2 caches, and 64 byte cache lines.
Since one Simple-8b word is 64 bits, we have eight such words in a single cache line. In
the worst case, this is eight separate columns. Supposing this is the case, a single read
from memory will bring all eight columns into the shared L3 cache. It will then take
eight separate reads into various L1 caches, for eight separate cores to perform updates
for these columns, whereas a single core would require only one read from L3. With
larger data sets, and hence larger columns, this becomes less of a problem. The fact
remains though, that cache use is significantly better when each core updates several
sequential columns.
All of these issues are mitigated by increasing the size of sets, and updating several
sequential columns on each thread. Figure 2.15 suggests sets should be at least sixteen
times the number of available threads in size. This increases the time required to
compensate for overcorrection.

There is no effective value of C

21 23 25 27 29

Multiplier (m)

0

2

4

6

8

Ti
m

e 
Ta

ke
n 

(s
)

single thread, total time
eight threads, total time
eight threads, correction-only time

Figure 2.16: Total time taken (in seconds) for various block size mul-
tipliers. Time spent in parallel section is highlighted. Single-threaded
time is included for comparison.
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The results in Section 2.4.2 require us to perform error correction sequentially, i.e. on
a single core. As we saw in Remark 2, for sufficiently small sets this is not a serious
limitation. However Section 2.4.2 also suggests that we may need large sets.
We first note that we can’t significantly reduce the time taken in the error correction
step. Updating R and calculating corrections take approximately half the time each.
While updating R can be parallelised, there is so little work here that the thread
barriers again result in worse performance. In the overlap matrix, containing the
overlap between columns in the set (γij for columns i, j), around 50% of the entries
are non-zero. Removing these or using a sparse compressed matrix to store overlap is
therefore unlikely to be a significant improvement.
Figure 2.16 shows the amount of time spent in error correction increases quadratically
with the block size. At a multiplier of 256 this overtakes the entire update time on a
single core, and we see that the multi-threaded implementation becomes slower than the
single-threaded. The best multi-threaded result we see is at a multiplier of thirty-two,
where the parallel version achieves a 44% improvement in iterations per second. Even
with improvements to the error correction routine, it is unlikely that this approach to
parallelisation can achieve more than double the performance of the sequential version.
We therefore arrive at the conclusion:

Remark 3. Parallel updates of sets, followed by error correction on those sets, is not a

feasible approach for parallelisation.

2.4.3 Limiting overlap

While we cannot compensate for overcorrection after the fact, Figure 2.15 nonetheless
suggests that there is some hope for performing a block of updates in parallel. Rather
than allowing these blocks to be arbitrary, we now consider restricting updates to
blocks of non-overlapping columns of X2. Again, we first divide the matrix into sets of
columns for which we can perform updates simultaneously, then update these sets one
at a time. Here, these sets will be collections of columns that either do not overlap, or
overlap very little.

Sets of no overlap

Since the columns of X are relatively sparse, and the columns of X2 particularly so, it
is plausible that we could find sets of a few non-overlapping columns purely by chance.
In our test set of 1, 000 columns and 10, 000 rows the mean number of non-zero entries
in a column is 0.58%. In this case, we would expect the fraction of entries in common
between two randomly chosen columns to be (0.58%)2, or 0.34 entries per column. If we
choose two random columns we can reasonably expect them not to overlap. Extending
this we find sets of non-overlapping columns using the following method.
We start by randomly shuffling the columns. We then compare every second column
with its neighbour, recording a set of two non-overlapping columns where possible
(Figure 2.17b). Smaller sets are then repeatedly merged to form larger sets, where no
overlap exists between columns (Algorithm 2). The algorithm described in Algorithm 1
is then run, updating beta in parallel for each set of non overlapping columns.
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Figure 2.17: (a) Completely non-overlapping updates affect different
residual values and can be done safely in parallel. (b) Attempting to
merge neighbouring columns.

Algorithm 2: Mergesets Algorithm

Input: X ∈ {0, 1}n×p
Result: Sets of non-overlapping columns

Initialise all columns as one element sets

Merge neighbouring sets where no overlap exists

Place sets in appropriate bin (bin 1: sets of size 1, bin 2: sets of size 2, . . . )

for small bin in bins do

for large bin in bins s.t. large bin > small bin do

n ← min(sizeof(small bin), sizeof(large bin));

for offset in 0, . . . , 50 do
Attempt to merge the first n elements of small bin with the first n

elements of large bin, starting at offset.
end

end

Attempt to merge the first half of small bin with the second half.
end

Performance of Overlap Method

We compare run time on one and four cores, using simulated sets of 1000 siRNAs and
100 genes (i.e. pairwise interactions on a 1000× 100 matrix) in Figure 2.18. Once sets
of non-overlapping columns have been found, updating non-overlapping sets in parallel
improves run time compared to the single-threaded version (Figure 2.18b).
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Figure 2.18: (a) Mean non-overlapping set sizes. (b) Run time af-
ter finding mergesets on four vs one core. (c) Run time after finding
mergesets on 64 vs one core. Note that the 64 core system has con-
siderably slower memory than the four core system.

As the size of input data increases, however, finding sets with absolutely no overlap
becomes more difficult. Since, as explained in Subsection 2.4.2, efficiently using more
threads requires larger set sizes than those in Figure 2.18a, we aim to improve on
these. Running more comparisons with our current implementation is not feasible,
finding sets already takes as long as the regression step. Instead, we relax the criteria
from no overlap to very little overlap.

Partial Overlap

We can find much larger sets of simultaneously updateable columns if we allow a
small amount of overlap between these columns. While this does allow some error
to be introduced in the calculation of beta updates, we expect that by limiting the
overlap this error will remain small, and not result in the drastic overcorrection seen
in Figure 2.13.
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Figure 2.19: (a) Mean set size, (b) run time, and (c) final mean
squared error on 64 cores as allowed overlap increases from 1% to
100%.
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In small test sets (n = 1000, p = 100), increasing the available overlap significantly
increases the found set size (Figure 2.19a), also improving the run time. Interestingly,
increasing the allowed overlap to 100% does not harm the run time (Figure 2.19b) or
the mean squared error of the final fit (Figure 2.19c). We would expect both of these to
suffer when the columns significantly overlap, as either further iterations are required
to correct for the introduced error, or overcorrection error is allowed to remain. It
appears that even allowing 100% overlap, there is a negligible amount of overcorrection
occurring.

2.4.4 Random Overlap

Performance with 100% overlap allowed suggests that we can avoid finding simultane-
ously updateable sets entirely, relying instead on the relatively small overlap between
randomly chosen columns. This was shown to work by Bradley et al. [8] for their lasso
implementation, with up to p

ρ
+ 1 parallel updates, where ρ is the spectral radius of

XTX, so long as the columns being updated simultaneously were chosen at random.
In our case, using the matrix of pairwise interactions, this allows p(p+1)

ρ
+ 1 parallel up-

dates, where ρ is the magnitude of the largest eigenvalue of XT
2 X2. In our smallest test

case (n = 1, 000, p = 100), this would allow 222 simultaneous updates. This number
increases with larger input data. Given the significant cost of finding sets, this is the
approach we take from here on. To ensure the columns being updated simultaneously
are always chosen at random, we shuffle the column order in every iteration of the
regression. Combining this with the beta updates from Equation 2.4, and the lambda
sequence from Section 2.2, we have our final lasso algorithm, Algorithm 3.

Algorithm 3: Shuffled Lasso Algorithm

Input: X ∈ {0, 1}n×p, Y ∈ Rn, error cutoff

Result: beta values

for lambda in lambda sequence do

while old error
new error

> error cutoff do

for column in columns do
βcolumn ← βcolumn + ∆βk

end

error ←
∑n

i=1 yi −
∑p′

j=1 xijβj

end

if adaptive calibration conditions met OR maximum non-zero betas found

then
Stop after current lambda

end

else
λ← λ× 0.9

end

end
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Figure 2.20: Relative speedup as the number of cores used increases.
(a), (b) Running on a dual 8 core/16 thread NUMA system. (c)
Running on an eight CPU NUMA system without SMT. Each CPU
has 8 cores, and memory is divided among four packages of two CPUs,
where memory is shared within packages.

Running this shuffled version (Algorithm 3) on a 16-core NUMA system, we see a
reasonable speedup using up to eight cores. The ninth core, however, sees a significant
drop in performance (Figure 2.20b). Given that this is the first core of the second
CPU, this can be explained by the need to keep a second L3 cache coherent and
significantly slower memory access from the second NUMA node. We see continued
improvement when increasing the number of cores on the second node, but never enough
to outperform using only the first node. Using multiple SMT threads also improves
performance, and the best speedup we are able to obtain (3.2 times) is using all 16
threads on a single NUMA node. Increasing SMT threads beyond a single NUMA node
also harms performance. We see a similar situation in Figure 2.20c, where performance
increases up to the number of cores in the first package. Although this is actually two
NUMA nodes, they share the same memory.

2.5 Limited Interaction Neighbourhoods

When searching for strong negative interactions within a sequence of genes, it may be
acceptable to limit the search to pairs that are relatively close on the gene sequence. In
a study of epistatic interactions in yeast by Puchta et al. [72] the strength of negative
interactions decreases as distance between gene positions on the sequence increases. In
fact, the median distance between pairs in the hundred strongest interactions was only
eighteen nucleotides.
Limiting interactions to those within some distance d drastically reduces both the
time and space requirements. Instead of Θ(p2n), the size of the interaction matrix
becomes Θ(pdn). Similarly, an iteration of Algorithm 3 would require only Θ(pdn)
operations. For d << p this is a significant reduction. Limiting the interaction search
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distance to 100 positions, we could process a set of 30, 000 genes and 200, 000 siRNAs
using approximately 4GB of memory, assuming a comparable density of interactions
to our testing data. Such a search could be performed directly on a laptop, without
requiring access to a large server. The biological implications of this restriction should
be carefully considered before its use, however.

2.6 Discussion

2.6.1 Performance Comparison

We compare our method to glinternet [53], the method demonstrated to effectively
find interactions in small data sets in Chapter 1. Since we achieved the best results
only using glinternet for variable-selection, then fitting the non-zero beta values with
ordinary least squares regression, we do the same here. We use our parallel lasso in
the same way and restrict to the first 2, 000 non-zero beta values, rather than using
adaptive calibration, which returns too few columns for the OLS regression step.
Testing with the same data as in Chapter 1, our method is able to identify significantly
more correct interactions than glinternet (Figure 2.21). Precision is largely compa-
rable, with a few outliers in which we see significantly more false positives with our
method (Figure 2.21a). The run time is orders of magnitude faster than glinternet,
typically taking 20 to 30 seconds rather than several hours (Table 2.1, Figure 2.21c).
To test the scalability of our implementation, we also run it with the same 2, 000 effect
limit on a much larger data set. With p ≈ 27, 000, n ≈ 30, 000, using 16 SMT threads
on a single eight core CPU, we propose 97 main effects and 236 interactions in one and
a half hours.

X matrix size glinternet time (s) compressed lasso time (s)

n = 100, p = 1, 000 178 2.00

n = 1, 000, p = 10, 000 4807 27.6

n = 30, 000, p = 27, 000 . . . 5889

Table 2.1: Runtime comparison between our method and glinter-

net.
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Figure 2.21: Searching for interactions with glinternet vs. our shuf-
fled compressed lasso, using p = 1, 000, n = 10, 000 data from Chap-
ter 1. (a) Precision. (b) Recall. (c) Time taken.

2.6.2 Limitations and Future Work

If the original X matrix is sparse, and the pairwise interaction matrix X2 is very sparse,
we would expect three-way interaction columns of an X3 matrix to be extremely sparse.
If there are few enough non-zeros in such a matrix, it may be possible to extend our
method beyond pairwise interactions. While there would be p3 columns in a three-way
interaction matrix, if the vast majority contain only zeros we may still be able to store
it. The indices of non-zero three-way interaction columns could themselves be stored
in a compressed list of offsets. Any column whose index is not in this list could then be
presumed to be zero and left out of beta updates. If the number of non-zero columns
does not drastically increase, this may be feasible.
Accessing randomly shuffled columns on NUMA systems, when columns are moved
across CPU memory boundaries, is very inefficient. It is only necessary to share changes
to R between nodes every iteration, and it would be significantly more efficient to divide
the matrix between nodes, and shuffle only the component local to each node at each
iteration. The significantly higher memory throughput available to such a system could
then be used efficiently, rather than slowing the program down. This will not work in
the extreme case where every node has only a single column, but we expect a significant
number of nodes could be efficiently used for large (exome-scale) input. Shuffling the
columns every iteration is currently done on a single thread, and fast algorithms to do
this in parallel exist[47]. Running this in parallel would avoid any part of the algorithm
being single threaded, leaving no limit imposed by Ahmdal’s Law.

2.7 Conclusion

Beginning with an efficient serial algorithm for lasso regression, we investigated a vari-
ety of methods for parallelisation. As long as there is no overlap between columns, we
can perform parallel updates. We investigated guaranteeing this restriction by finding
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sets of non-overlapping columns, limiting overcorrection by using sets of mostly non-
overlapping columns, and relying on the sparsity of the matrix by randomly shuffling
columns. While all three methods improved performance over the serial algorithm,
random shuffling requires no preprocessing of the interaction matrix, and has the best
performance overall. By using an efficient representation of the interaction matrix this
can be done on a sufficiently large shared memory system, without requiring a GPU,
in a matter of hours. If interactions are restricted to those within 100 positions of each
other, we could search n = 200, 000 siRNAs and p = 30, 000 genes using only 4GB of
memory. Comparing our shuffled implementation to glinternet, we are able to achieve
marginally better prediction of genetic interactions in several orders of magnitude less
time. Given a sufficiently sparse matrix, we are able to perform lasso-regularised linear
regression on all pairwise interactions between human protein-coding genes.
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Chapter 3

Discovering Functional Modules

from Pairwise Interactions and

Expression Data

In Chapter 2 we presented a method improving on the state of the art methods for
identifying pairwise interactions, using a second-order Taylor approximation of inter-
actions. This method assumed that interactions beyond two genes were unimportant,
and that fitness is a linear combination of gene effects. While this is sufficient for iden-
tifying epistasis, it is an extreme simplification of genetic interactions. In this chapter
we discuss a more general model, in which genes interact in functional modules, and
consider how our earlier results may best be integrated into such a model.
To better organise and understand the complex data that arises, a variety of biological
processes are modelled as networks [4]. Common examples include protein interactions
[84], metabolic pathways [23], and transcription regulation [97]. Many of these networks
are believed to contain functional modules, groups whose members are involved in
performing a common task, where there are many strong connections within the group,
and few connections outside [81]. Identifying these modules is a common goal in
systems biology [39, 54, 55]. The meaning of edges in these networks varies significantly,
edges can for example represent known physical interactions [66] or association in
text-mining [67]. Nonetheless, these networks are often believed to contain the same
modules, and many recent efforts have focused on combining several sets of data [20,
7, 68].
We propose a clustering method to do so that combines a network of pairwise inter-
actions associated with genes, protein-protein interactions or epistatic interactions for
example, with a normalised set of expression data. Our method uses the expression
data to add edges to the pairwise interaction graph, clusters the result using the SLPA
algorithm [101], and selecting the best clusters using an extension of modularity density
[12]. In our simulations, using the expression data to add edges to the pairwise inter-
action graph, we are able to improve the accuracy of detected clusters over clustering
the pairwise interaction graph alone. We evaluate our method’s ability to provide a
broad overview of gene activity by comparing cluster activity between different tissues.
Our simulation and clustering package is developed in Rust, and will be available at
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https://github.com/biods/gene_clustering.
We integrate pairwise interactions of the form discussed in chapters 1 and 2 with gene
expression data to discover functional modules of genes. Pairwise interactions may be
from any source, not only our earlier regression model (Chapter 1). In particular, we
intend our method to also work with protein-protein interactions, as several databases
of known and suspected protein interactions already exist [85, 43]. Our aim is to com-
bine a graph of such interactions with experimental measurements of gene expression
to produce a more accurate clustering than we could achieve with the pairwise inter-
action graph alone. Doing so, we aim to provide a more interpretable overview of gene
activity in terms of clusters.
We investigate clustering a combined graph in which weighted co-expression edges are
added to pairwise interactions, and conclude that such a method requires filtering out
many of the co-expression edges beforehand. Once this has been done, we find that the
combination significantly improves the accuracy of proposed clusters in our simulations.
We first cluster the genes using both the expression-correlation and protein-protein in-
teraction (PPI) graphs, scoring these clusters with modularity to identify those that fit
best. Secondly, we consider filtering out the majority of the co-expression edges, leav-
ing only those that represent significant correlation. Finally we present the expression
data in terms of these clusters. There are a number of common difficulties that we do
not attempt to address here, and we do not include these in our simulations. Protein-
protein interactions, for example, are known to often contain false positives [59], as
well as missing many previously known interactions [34]. Furthermore gene expression
is difficult to reliably measure [75], and expression measurements require normalisation
[33]. We assume that gene expression measurements have been normalised, and that
measurement errors have been accounted for outside of our program. While we recog-
nise that data in this field often contains errors, addressing this is beyond the scope of
this project.

3.1 Background

Graph clustering, identifying densely connected subgraphs, is a well studied problem,
and many general techniques exist [76]. Recently, attention has focused on extracting
information from biological networks, including using protein interactions to discover
protein complexes [99] [96] and functional modules [95] [40]. Clustering gene expression
data can be used to identify biologically significant groups [41]. To improve accuracy,
multiple sources of data have been combined in a number of cases. Keretsu and Sarmah
[45] for example used gene expression data to add weights to protein interaction graphs.
Multiple biological graphs may be clustered simultaneously to discover their common
clusters as in Ma, Sun, and Zhang [56]. Moreover, expression data can be added to
filter out the best clusters from a protein interaction graph [103]. Recently, protein
interactions and gene expression have also been combined using multiplex clustering
techniques. Liang et al. [52] used gene expression and text-mining to produce two
differently weighted versions of the PPI graph, and R. and Nazeer [73] combined a
variety of graphs to form a weighted consensus. Both of these methods focus on
reducing the clusters to those that all data sets agree on.
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We combine an arbitrary network of pairwise interactions (of which protein interactions
are a typical example) with gene expression data in a way that will not only find
clusters present in all sets, but also allow clusters strongly supported by only one set
to be found. To that end, we focus on adding edges based on the expression data,
rather than weighting existing ones or filtering out clusters.

3.2 Input Data

The two inputs we consider are a pairwise interaction network, and a set of gene ex-
pression data, across various tissues (Figure 3.1b). We model the pairwise interactions
as undirected edges on a graph of genes. As typical examples of a pairwise network we
consider protein-protein interactions and epistatic interactions. A variety of methods
exist for constructing protein interaction networks, ranging from measuring protein
complexes with mass spectrometry [28] to text-mining [67]. Regardless of the method
used to find protein interactions, we can produce a list of pairs of genes that are ei-
ther known or suspected to interact. We construct an unweighted undirected graph
by placing an edge between every pair of genes that encode the interacting proteins
(Figure 3.1a). If we were to use epistatic interactions instead, we would place an edge
between any pair of genes believed to interact. Gene expression is typically measured
by taking a gene product, for example a produced RNA, and using this as a proxy of
the level of activity [61, 94]. To turn this into a usable co-expression graph, we take
the Pearson correlation, across all sets of measurements, of every pair of genes, and
make these the edge weights in a complete weighted graph. The pairwise interaction
and the co-expression graphs have significant topological differences, making a single
clustering technique difficult to apply to both. The pairwise interaction graph is an
unweighted graph with clusters defined by its topology. The co-expression correlation
graph on the other hand is a complete weighted graph, in which clusters are defined
by the shared weights.
To provide a known true set of clusters for evaluating our method, we simulate both
the pairwise network and the co-expression data. Simulations also allow us to precisely
describe the noise in both the network and expression data.
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gene 1 0.99 0.12 0.76 0.21 0.33 0.66

gene 2 0.92 0.09 0.55 0.15 0.23 0.55

gene 3 0.21 0.54 0.22 0.92 0.67 0.89

gene 4 0.22 0.65 0.15 0.78 0.56 0.76

gene 5 0.96 0.11 0.81 0.18 0.21 0.33

(b)

Figure 3.1: (a) Example protein-protein interaction network. (b)
Example expression Data.

3.2.1 Simulation

We simulate data with known clusters by first defining the clusters, and then producing
two sets of data. First, a pairwise interaction network in which the clusters are more
densely connected than the rest of the graph. Second, a set of simulated expression
measurements, in which genes present in the same cluster have correlated expression.
We use a stochastic block model to simulate interaction networks with known clusters.
This model has also been used as an approximation for protein interaction networks
[20]. The parameters used in our simulation are chosen arbitrarily. While it would be
more informative to test our method using data simulated with a variety of parameters,
and identifying those for which our method works well, this is beyond the scope of our
project. A more thorough evaluation of different networks would be a worthwhile
subject for future investigation.

Pairwise Network

Protein interaction graphs commonly exhibit the small-world effect [4], in which any
two vertices can be connected with a relatively short path. They have also been
observed to follow a power law [37], and be scale-free [4], although not in all cases [87].
The presence of hub proteins, connected to a large number of other proteins, is also
common [69]. Simulation of realistic protein interactions is therefore a challenging task,
and as we do not intend our method to be restricted solely to protein interactions, it
is not one that we attempt to undertake here.
Instead, a network of n genes is generated using Algorithms 4 and 5. First, we take
a graph with n vertices and no edges. The vertices are then randomly assigned to
clusters. Edges are added within clusters at random with a certain probability, and
between clusters with a lower probability. Finally, several edges between clusters are
chosen at random, and vertices at both ends are merged into the cluster at the other
end, producing overlapping clusters.
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Algorithm 4: Generate Partition Algorithm

Input: Mean set size, number of vertices n
Result: Graph G = (V,E), clusters C = {c1, . . . , cj ⊂ V n}, expression

Kv ∈ Rn, Kc ∈ Rj

V ← ∅;
Vunassigned ← {1, . . . , n};
E ← ∅;
while |Vunassigned| > 0 do

new cluster size ← min(Binomial(10, 0.7));
new cluster c← {v1, . . . , vsize} at random from Vunassigned;
C ← C ∪ {c};
V ← V ∪ {c};
Vunassigned ← V \ {c};
kc ← 0 or 1 at random;

end
for v ∈ V do

connect v to Binomial(10, 0.1) other vertices at random;
for v′ in the same cluster as v do

connect v, v′ with probability 0.3;
end

end
G← (V,E);
K ← {k1, . . . , kj};

Algorithm 5: Generate Melted Partition Algorithm

Input: Graph G = (V,E), clusters C = {c1, . . . , ck : ∀i ci ⊆ V }
Result: overlapping clusters C ′

for v ∈ V do
neighbours← {c ∈ C such that ∃v′ ∈ c : (v, v′) ∈ E, v /∈ c};
foreach neighbour c in neighbours do

with a 20% chance: c← c ∪ {v};
end

end
C ′ ← {c1, . . . , ck};

Expression

Once these overlapping clusters have been produced, we simulate expression sets for
t separate tissues. To do this, we set each cluster to be either active or inhibited at
random with equal probability. We then iterate through each of the t separate tissues,
randomly changing the state of each cluster at the current tissue with a low probability.
In each tissue, the expression value for each gene is then sampled from one of two
distributions, depending on the state of its cluster (Figure 3.2). For genes present in
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multiple clusters this expression is additive, on the assumption that genes that are
involved in multiple processes will be expressed more than those that are not. This
produces a table of expression data where changes in clusters are correlated across
different tissues (such as Figure 3.1b).
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{
1− |N (0, 0.25)| for x = 1

|N (0, 0.25)| for x = 0

Where we retry if f(x) < 0 or f(x) > 1.

Figure 3.2: Observed distribution of gene expression values given clus-
ter state on the left. Simulated distributions on the right, where x is
the cluster activity.

3.3 Clustering Method

From a set of pairwise interactions and several sets of gene expression data, we first
calculate the Pearson correlation between each gene in the expression data sets. Us-
ing this we create a weighted undirected graph with edges weighted by the Pearson
correlation for each pair of genes.
Given this and the pairwise interaction graph, there are a number of clustering methods
that could be used. We use the SLPA algorithm [101], originally intended for clustering
social networks. This is a recent method with a remarkably short run time. While the
algorithm was not developed specifically for biological data, it performs well compared
to state of the art alternatives in general graph clustering problems [30], and can be
parallelised [46]. Given the short run time and potential for parallelisation, we expect
this method to perform well with large data sets, allowing genome-wide clustering. We
allow clusters to overlap, such that vertices may be in multiple clusters. Vertices may
be present in different clusters to varying degrees, and we say that vertex v is in cluster
c with weight av,c. We use the following definitions in our benchmarking:
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C = set of found clusters

CT = set of true clusters

Fc =
∑
v∈c

∑
v′∈c

∑
c′∈CT :
v,v′∈c′

av,c′ · av′,c′ correctly found shared weight in cluster c

Tc =
∑
v∈c

∑
v′∈c

∑
c′∈C:
v,v′∈c′

av,c′ · av′,c′ total shared weight for all genes in cluster c

Ec =
∑
v∈c

∑
v′∈V

∑
c′∈CT :
v,v′∈c′

av,c′ · av′,c′ number of pairs of genes in cluster c

precision =
Fc
Tc

recall =
Fc
Ec

F1 =
2 · precision · recall
precision+ recall

SLPA

The Speaker-listener Label Propagation Algorithm (SLPA) [101] is as follows.

Algorithm 6: SLPA Algorithm

Input: G = (V,E)

Result: List of clusters with membership scores for each node

Each node has a memory of labels that it has heard.

Initially this will include only the unique label of that node.

for iter ∈ (1, . . . , 20) do

foreach node do

foreach neighbour of node do

neighbour chooses a label from its memory.

This is added to the set of spoken labels

end

From this set of spoken labels, we take the most common one and add

it to node’s memory.

end

end

To cluster multiple graphs, we make several minor changes to this algorithm. We choose
labels from those spoken by neighbours across every graph instead of just one. Rather
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than counting every neighbour’s choice of label equally, they are weighted by the weight
of the edge between the speaker and listener. When the expression measurements for
a pair of genes are negatively correlated, they can have a negative weight in the co-
expression graph. We consider edges with a negative weight to be a sign that these
vertices should not be clustered together. This is because we assume they are not part
of the same functional module, as negative correlation implies that they are not active
at the same time. Labels spoken along negative edges are therefore allowed to reduce
the cumulative weight of these labels.
To avoid proposing an excessive number of clusters, a node belongs to a cluster only if
that cluster’s label takes more than a particular fraction of the node’s memory, which
we call the membership threshold. Once we remove the labels that do not meet this
cutoff, every remaining label represents a cluster the node belongs to. The membership
weight for the node in each of these clusters is the fraction of the node’s remaining
memory occupied by the cluster’s label.

3.4 Including correlation

Our method is intended to include both pairwise interactions and expression data. To
see whether our current method does this, we compare the effectiveness of clustering
both graphs to that of either graph individually. We simulate ten sets of 500 genes using
the parameters from Subsection 3.2.1. Comparing the F1 scores, we find that clustering
both the PPI graph and co-expression graph is drastically less accurate than the PPI
graph alone (Figure 3.3). Given the poor accuracy of clustering the co-expression graph
alone, this is unsurprising. In fact, the clustering using both graphs is almost identical
to using co-expression alone (Figure 3.3a).
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Figure 3.3: Clustering the pairwise interaction graph only, co-
expression graph only, and both pairwise and co-expression graphs:
(a) F1 score distribution. (b) Number of clusters returned depending
on F1 score.

60



3.4. INCLUDING CORRELATION CHAPTER 3. DISCOVERING FUNCTIONAL MODULES

Compared to the PPI graph (Figure 3.1a), the co-expression graph is a complete graph,
and therefore includes significantly more edges along which SLPA labels can travel. It is
also possible that many of these correlations are spurious, and do not accurately reflect
the functional modules present in the simulation. With that in mind, we conclude that
the co-expression graph is a poorer source of information than the PPI graph. Every
edge in the graph gives an opportunity for a label to travel at each iteration of SLPA.
Given its larger number of edges, the co-expression graph also has more influence on
the outcome of SLPA than the PPI graph. We attempt to solve this first by adjusting
the weights in the co-expression graph (Subsection 3.4.1). Afterwards, we filter out
many of the edges in the co-expression graph (Subsection 3.4.2). Finally, accuracy
is improved by filtering out clusters that appear to be poor fits after running SLPA
(Subsection 3.4.3).

3.4.1 Weighted co-expression

We assume that expression of genes that are part of the same functional module will
significantly change when the activity of the module changes. With this in mind, highly
correlated small changes are likely to be spurious. To avoid giving a significant amount
of weight to such changes in our graph, we adjust the co-expression weight according
to the standard deviation of the expression of genes involved. The adjusted weight
between genes i and j is wadjusted(i, j) = correlationpearson(i, j) ·min(σ2(i), σ2(j)). The
distribution of adjusted and unadjusted co-expression weights is shown in Figure 3.4.
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Figure 3.4: Distribution of (a) unadjusted, and (b) adjusted co-
expression edge weights.

After adjusting the co-expression edge weights, we do not see a significant improve-
ment (Figure 3.5). This suggests that the problem is not highly weighted spurious
correlations, and we focus instead on reducing the density of the co-expression graph.
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Figure 3.5: F1 score after clustering the pairwise graph alone, both
the pairwise and co-expression graphs, and both graphs with adjusted
co-expression weights.

3.4.2 Filtered Multigraph Method

Including every correlation edge significantly harms performance, perhaps because
SLPA is not effective when clustering such a dense graph, even when the weights
are mostly small. To make use of the co-expression graph, responsible for the majority
of edges, we attempt to remove all but the most significant edges.
Rather than clustering the PPI network directly (Figure 3.6a) or including the com-
plete graph, we include only the significant edges and cluster the resulting graph
(Figure 3.6b). We consider an edge between genes i and j to be significant when
min(variance(i), variance(j)) ·correlation(i, j) is greater than some predefined cutoff.
If adding many low weight edges between clusters is the cause of the significant drop
in performance in Section 3.4, including only those most likely to be within a clus-
ter should eliminate this problem. By only including an edge between i and j when
min(variance(i), variance(j)) is high, we only allow edges that represent correlated
significant changes. These will be genes whose expression has not just changed in the
same direction, but by a significant amount. Since a module becoming active or inac-
tive is expected to result in a significant change in expression, we expect genes in the
same module to have such significant correlated changes whenever the activity of the
module changes.
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(a)

Changing activity

(b)

Figure 3.6: Intended effect of including only significant co-expression
edges. Black edges represent pairwise interactions, red edges signifi-
cant co-expression edges.

Choosing cutoff

We evaluate the effectiveness of our clustering algorithm as a method for detecting
functional modules using the number of correct pairings present in each found cluster.
Each cluster is scored in terms of:

• precision: Fraction of common cluster members that are correct out of the total
number found, summed over all genes in the cluster.

• recall : Fraction of common cluster members that are correct out of number
expected, adjusted for membership scores.

• F1 score: 2 · precision·recall
precision+recall

.

We simulated ten sets of 500 genes, using the parameters from Subsection 3.2.1, for
cutoff values ranging between zero and one. Given these parameters, each simulated
data set has ≈ 70 partially overlapping clusters with these parameters. We have run
this simulation and benchmark with 15,000 genes on an Intel Core i7-6600U CPU in
≈ 1 minute. The results are shown in Figure 3.7.
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Figure 3.7: Effect of correlation weight cutoff. (a) F1 score for
gradually increasing cutoff, using unadjusted weights above and ad-
justed weights below. (b) Distribution of F1 scores for the best case
(weighted cutoff of 0.06) with (PPI + sig.) and without (PPI) the
adjusted-weight co-expression graph.

We find that including only significant edges only marginally improves F1 scores com-
pared to pairwise-only. While the majority of the distribution is the same, there
are more clusters in the tails of the distribution (although this is difficult to see in
Figure 3.7b). Looking at only clusters with F1 ≥ 0.5, we find 37 more when the co-
expression edges are added, and 23 more when F1 ≥ 0.6. To remove the poor scoring
clusters while preserving the high scoring ones, we now consider filtering the produced
clusters by their modularity score.

3.4.3 Modularity Method

SLPA is able to propose many overlapping clusters, some of which may be subgraphs of
a better cluster. We attempt to filter out only the best-fitting clusters using modularity
density, a variation of modularity.
Modularity [63] is a measure of the extent to which a cluster is more connected inter-
nally than externally, commonly used as an indication of the quality of a clustering
[11, 9, 51]. Modularity suffers from the resolution limit, however [24], in which the size
of modules with high scores is limited by the overall size of the graph. To overcome
this, and allow scoring of overlapping clusters, we use a modified version, modularity
density [12].
We use the following terms to define modularity and modularity density. Given a
weighted adjacency matrix A ∈ Rn×n, clusters C = {c1, c2, . . . , c|C|} and membership
weights ai,ck , measuring the extent to which node i belongs to cluster ck, we define the
following.
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|E in
c | =

1

2

∑
i,j∈c

(ai,c · aj,c)Aij Total weight inside cluster

|E out
c | =

∑
i∈c

∑
c′∈C
c′ 6=c
j∈c′

(ai,c · aj,c)Aij Weight leaving cluster

|Ec,c′| =
∑

i∈c,j∈c′
(ai,c · aj,c′)Aij Weight between clusters c and c′

|E | = 1

2

∑
i,j∈V

Aij Total weight in graph

dc =
2|E in

c |
|c|(|c| − 1)

cluster density - prevents favouring large clusters

dc,c′ =
2|Ec,c′|
|c||c′|

pairwise density between clusters

We then define modularity and modularity density as the following:

(modularity) Q(C) =
∑
c∈C

[
|E in

c |
|E |

−
(

2|E in
c |+ |E out

c |
2|E |

)2
]

(modularity density) Qov
ds(C) =

∑
c∈C

 |E in
c |
|E |

dc −
(

2 |E in
c |+ |E out

c |
2 |E |

dc

)2

−
∑
c′∈C
c′6=c

|Ec,c′|
2 |E |

dc,c′


Modularity density consists of the following three components.

|E in
c |
|E |

dc scaled weight inside clusters(
2 |E in

c |+ |E out
c |

2 |E |
dc

)2

Expected weight leaving clusters∑
c′∈C
c′6=c

|Ec,c′|
2 |E |

dc,c′ ‘Split Penalty’

In terms of these components, the modularity density score represents the degree to
which weight inside the clusters exceed expectations, with a penalty for connections
between clusters. When using multiple graphs, a cluster’s score is the sum of its scores
in each graph. We refer to this simply as modularity for the remainder of this chapter.
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Modularity Accuracy

To determine whether modularity is a reasonable filter for SLPA-produced clusters, we
run repeated simulations and compare the accuracy of the found clusters with their
modularity scores.

Score Distribution We run simulations of 500 genes with an SLPA membership
threshold of 0.2. We include only co-expression edges with an adjusted weight greater
than or equal to 0.06, adding the unadjusted edge weight to the graph. Repeating this
simulation ten times, we calculate the mean F1 score of clusters. The relation between
F1 score and modularity, as well as the number of clusters with each modularity score,
is shown in Figure 3.8. In our simulations we find that the average F1 score of clusters
with high modularity is extremely good (Figure 3.8a) The scores are somewhat scat-
tered, however (Figure 3.8c), and as a result there is no cutoff that guarantees a good
F1 score. We can largely rule out clusters with modularity density scores below 0.5
while still retaining a significant number of clusters.
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Figure 3.8: Modularity scores of proposed clusters. (a) Median F1
score. (b) Distribution of modularity scores (red line emphasises x =
0). (c) Modularity vs F1 score.

While the average F1 score is very good for clusters with positive modularity, the
scores are nonetheless very scattered (Figure 3.8c). We often find clusters with an F1
score of 1.0 are assigned a negative modularity score. Despite the possibility of correct
clusters being removed, filtering by modularity is largely beneficial, and we implement
it as an option in our package. While a modularity cutoff can be specified manually, a
reasonable automatic value would be ideal. Simply removing all clusters with negative
scores seems natural, but we find that this does not drastically improve the quality of
the clustering (Figure 3.9).
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Figure 3.9: After excluding all clusters with a modularity score below
the median + n standard deviations: (a) F1 score. (b) Number of
clusters.

We instead include only the clusters with a score greater than median +kσ, where σ is
the standard deviation of the scores of proposed clusters. We find that using k = 0.5
provides a good balance in our simulations, although some tuning may be required for
other data sets. In ten repeated simulations of 500 genes we find 19 clusters on average,
out of 73. While this is a relatively small number of clusters, they are largely correct,
with a median F1 score of 0.55.
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Figure 3.10: Effect of introducing highly correlated co-expression
edges. (a) Distribution of modularity scores. (b) Varying adjusted-
weight co-expression cutoff.

Since adding co-expression edges increases the number of high scoring clusters found
by SLPA, it is natural to wonder whether there is an effect on the distribution of
modularity scores. Repeating the test from Section 3.4.2 we find that modularity is
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generally reduced when co-expression is added (Figure 3.10a). After filtering out all
clusters with modularity less than median+ σ

2
we are left with a better selection than

if we only use the pairwise interaction graph (Figure 3.10b). It is worth noting that
the additional edges affect not only the clusters found by SLPA, but the modularity
scores clusters are given. Based on these results, we use co-expression edges with an
adjusted weight cutoff of 0.06 for our simulated data in the remainder of this section.

Modularity filtering combines well with co-ex filtering Modularity filtering
reduces the number of poor scoring clusters we find with and without co-expression
edges (Figure 3.11). While adding co-expression edges is not a clear improvement over
pairwise only, combining co-expression edges with modularity filtering we are able to
remove many inaccurate clusters, significantly improving performance.
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Figure 3.11: Significant-only co-expression edges vs. modularity filter.
Median values for two highest scoring sets are shown as dashed lines.

3.5 Active Module Detection

The clustering method we have developed is intended to accurately summarise differ-
ences in gene activity across tissues, by presenting that activity in terms of clusters. To
do so, we return a list of clusters that are active for each tissue present in the expression
data. This is shown for one of our simulated data sets in Figure 3.12. The reconstructed
set of active clusters is reasonably accurate, there are only seven mis-classified genes
out of 100 across both graphs.
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Figure 3.12: Ground truth vs. found cluster activity in two different
tissues. Combined pairwise interaction and significant co-expression
graph is present in grey. Active clusters are highlighted in red in both
cases. Inactive clusters are not shown.

For a given tissue we say a found cluster is active if the mean activity of its nodes is
greater than 0.5. We say a node is truly active if the sum of the activity of the true
simulated clusters it is in, adjusted for its membership in each cluster, is greater than
0.5: ∑

c:v∈c

activityc · av,c > 0.5

, where activityc is zero if cluster c is inactive, and one if cluster c is active.
Again simulating ten sets of 500 genes, we find that the vast majority of clusters are
classified as either active or inactive correctly. We looked at the fraction of genes within
each cluster that were correctly classified, and show the distribution in Figure 3.13.
Out of 17, 750 clusters we find that 71.9% have correctly classified over 90% of their
genes.

0.0 0.2 0.4 0.6 0.8 1.0
Mean Correct Activity

Figure 3.13: Activity accuracy of each cluster
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3.6 Discussion

We present a method for detecting functional modules, using an arbitrary pairwise
interaction graph, and normalised co-expression data. To effectively use co-expression
edges with SLPA, we first need to filter out the majority of low weight edges. We
achieve the best performance when we remove any that have a low adjusted weight,
which is the product of the Pearson correlation and minimum variance of the two
connected genes. Once this is done, SLPA appears to work in our simulations as a
method of functional module detection, and has an exceptionally quick run time.
Performance is further improved when we filter out many of the less accurate clusters
proposed by SLPA, by removing those with a low modularity density score. We specifi-
cally propose removing those with a score less than the median plus half of one standard
deviation, a cutoff that performs well in our simulations. Once these measures are in
place, we are able to identify underlying clusters present in both the pairwise network
and expression data. Classifying clusters as either active or inactive, the particular
focus of this method, is achieved with particularly high accuracy. The vast majority
of genes are placed into a cluster with the correct activity.

3.6.1 Limitations and Future Work

We used two methods to improve the quality of the clustering over the one SLPA
produces on the pairwise interaction graph. Both of these, including co-expression
edges above a certain weight·variance, and filtering out clusters with a low modularity
score, require some tuning. The default modularity cutoff is chosen according to the
standard deviation of modularity scores present, and may be reasonable for other data
sets. This value does not reliably produce clusters that cover the entire graph, even
when they are present, and may still need manual tuning. It might be possible to solve
this by automatically reducing the cutoff until a certain fraction of nodes, 80% for
example, are included. This way we could guarantee that the clustering summarises
the majority of the data, while still using only the best clusters available. Similarly, the
co-expression cutoff requires manual tuning. In this case, we have used a cutoff that
is specific to our data, and a more general method is required to use this effectively in
other cases. It may be possible to solve this by choosing a value that is again based
on the standard deviation of adjusted co-expression weights, or one that maximises
modularity with cross-validation.
We frequently find clusters with our method that are correct components of a larger
cluster. It may be possible to detect and merge these automatically, by merging ad-
jacent clusters whenever this improves the total modularity score of the graph. All of
our simulations were performed with the same parameters, and many of the proper-
ties known to be present in biological networks were not present in our simulations.
It would be informative to generate a wide variety of graphs, particularly including
those with a similar structure to real biological networks, and compare performance
as parameters are changed. The general method can also be extended for an arbitrary
number of pairwise interaction graphs, as long as they represent the same clusters. For
example, it may be beneficial to include both protein interactions, and epistatic pairs.
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We have not attempted to implement any of these proposals, as they go beyond the
scope of this thesis. They may be worthwhile subjects for future research.
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Summary

Exploiting the large number of off-target effects typically present in siRNA screens,
we presented a model for large-scale prediction of epistasis between pairs of genes
in Chapter 1. This model was evaluated using two different statistical methods for
selecting non-zero effects, xyz and glinternet. We found that, while glinternet is
able to accurately infer interactions, its run time does not scale well to siRNA screens
of more than 1, 000 genes, including off-targets. Our alternative method xyz is able
to run quickly on much larger data, but suffers from a loss of accuracy beyond 1, 000
genes.
We introduced a new lasso-based method in Chapter 2 that has accuracy comparable
to glinternet, and is able to process exome-scale data. Beginning with an efficient
serial algorithm for lasso regression, we investigated a variety of methods for paralleli-
sation. This was based on the idea that parameters for non-overlapping columns can
be updated in parallel. We investigated guaranteeing this restriction by finding sets of
non-overlapping columns, limiting simultaneous updates to parameters of mostly non-
overlapping columns, and relying on the sparsity of the matrix by randomly shuffling
columns. While all three methods improved performance over the serial algorithm,
random shuffling requires no preprocessing of the interaction matrix, and has the best
performance overall. Substantial performance improvements were obtained by using a
sparse offset based representation of the input pairwise interaction matrix, in which
columns were delta encoded and compressed with Simple-8b. This allows exome-scale
data analysis on a sufficiently large shared memory system, without requiring a GPU,
in a matter of hours. This can be further improved by restricting the allowed distance
between interacting genes along the gene sequence. If interactions are restricted to
those within 100 positions of each other, we could search n = 200, 000 siRNAs and
p = 30, 000 genes using only 4GB of memory. Comparing our shuffled implementa-
tion to glinternet, we were able to achieve marginally better prediction of genetic
interactions in several orders of magnitude less time.
Finally, in Chapter 3 we considered a more general model of interactions, interaction
networks, and developed a method for inferring functional modules from a combination
of pairwise interaction and gene expression data. Our method formed a correlated
expression graph containing edges between only highly correlated and significantly
varying genes. This graph and the graph of pairwise interactions were simultaneously
clustered using the SLPA algorithm, removing all clusters with a low modularity density
score afterwards. The resulting method was able to effectively find functional modules
in our simulated data, and was particularly accurate in placing active or inactive genes
into active or inactive clusters.
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[74] Pauli Rämö et al. “Simultaneous Analysis of Large-Scale RNAi Screens for

Pathogen Entry”. In: BMC Genomics 15.1 (Dec. 2014), p. 1162. issn: 1471-

2164. doi: 10.1186/1471-2164-15-1162.

[75] Rebecca Sanders et al. “Considerations for Accurate Gene Expression Mea-

surement by Reverse Transcription Quantitative PCR When Analysing Clinical

Samples”. en. In: Analytical and Bioanalytical Chemistry 406.26 (Oct. 2014),

pp. 6471–6483. issn: 1618-2650. doi: 10.1007/s00216-014-7857-x.

[76] Satu Elisa Schaeffer. “Graph Clustering”. In: Computer Science Review 1.1

(Aug. 2007), pp. 27–64. issn: 1574-0137. doi: 10.1016/j.cosrev.2007.05.

001.

[77] Benjamin Schlegel, Rainer Gemulla, and Wolfgang Lehner. “Fast Integer Com-

pression Using SIMD Instructions”. In: Proceedings of the Sixth International

Workshop on Data Management on New Hardware - DaMoN ’10. The Sixth In-

ternational Workshop. Indianapolis, Indiana: ACM Press, 2010, pp. 34–40. isbn:

978-1-4503-0189-3. doi: 10.1145/1869389.1869394. url: http://portal.

acm.org/citation.cfm?doid=1869389.1869394 (visited on 07/13/2020).

[78] Fabian Schmich et al. “gespeR: A Statistical Model for Deconvoluting off-Target-

Confounded RNA Interference Screens.” In: Genome Biology (2015).

[79] Nikolaus Schultz et al. “Off-Target Effects Dominate a Large-Scale RNAi Screen

for Modulators of the TGF-β Pathway and Reveal microRNA Regulation of

TGFBR2.” In: Silence (2011).

80

https://arxiv.org/abs/1904.05330
https://doi.org/10.3390/ijms11041930
https://github.com/powturbo/TurboPFor-Integer-Compression
https://github.com/powturbo/TurboPFor-Integer-Compression
https://doi.org/10.1126/science.aaf0965
27080103
https://science.sciencemag.org/content/352/6287/840
https://science.sciencemag.org/content/352/6287/840
https://doi.org/10.1016/j.gene.2019.02.007
https://doi.org/10.1186/1471-2164-15-1162
https://doi.org/10.1007/s00216-014-7857-x
https://doi.org/10.1016/j.cosrev.2007.05.001
https://doi.org/10.1016/j.cosrev.2007.05.001
https://doi.org/10.1145/1869389.1869394
http://portal.acm.org/citation.cfm?doid=1869389.1869394
http://portal.acm.org/citation.cfm?doid=1869389.1869394


BIBLIOGRAPHY BIBLIOGRAPHY

[80] Saurabh Singh, Ajit S. Narang, and Ram I. Mahato. “Subcellular Fate and Off-

Target Effects of siRNA, shRNA, and miRNA”. In: Pharmaceutical Research

28.12 (Dec. 2011), pp. 2996–3015. issn: 1573-904X. doi: 10.1007/s11095-

011-0608-1.

[81] Victor Spirin and Leonid A. Mirny. “Protein Complexes and Functional Modules

in Molecular Networks”. en. In: Proceedings of the National Academy of Sciences

100.21 (Oct. 2003), pp. 12123–12128. issn: 0027-8424, 1091-6490. doi: 10.1073/

pnas.2032324100.

[82] Sumana Srivatsa et al. “Improved Pathway Reconstruction from RNA Interfer-

ence Screens by Exploiting Off-Target Effects”. In: Bioinformatics 34.13 (July

2018), pp. i519–i527. issn: 1367-4803. doi: 10.1093/bioinformatics/bty240.

[83] Michael Steckel et al. “Determination of Synthetic Lethal Interactions in KRAS

Oncogene-Dependent Cancer Cells Reveals Novel Therapeutic Targeting Strate-

gies.” In: Cell Research (2012).

[84] Ulrich Stelzl et al. “A Human Protein-Protein Interaction Network: A Resource

for Annotating the Proteome”. en. In: Cell 122.6 (Sept. 2005), pp. 957–968.

issn: 0092-8674. doi: 10.1016/j.cell.2005.08.029.

[85] STRING: Functional Protein Association Networks. url: https://string-

db.org/cgi/about.pl (visited on 07/22/2020).

[86] Damian Szklarczyk et al. “The STRING Database in 2017: Quality-Controlled

Protein–Protein Association Networks, Made Broadly Accessible”. In: Nucleic

Acids Research 45.D1 (Jan. 4, 2017), pp. D362–D368. issn: 0305-1048. doi:

10.1093/nar/gkw937. url: https://academic.oup.com/nar/article/45/

D1/D362/2290901 (visited on 07/22/2020).

[87] Reiko Tanaka, Tau-Mu Yi, and John Doyle. “Some Protein Interaction Data Do

Not Exhibit Power Law Statistics”. en. In: FEBS Letters 579.23 (Sept. 2005),

pp. 5140–5144. issn: 0014-5793. doi: 10.1016/j.febslet.2005.08.024.

[88] Wei Tang et al. “A Genome-Wide RNAi Screen for Wnt/Beta-Catenin Path-

way Components Identifies Unexpected Roles for TCF Transcription Factors in

Cancer.” In: Proceedings of The National Academy Of Sciences Of The United

States Of America (2008).

[89] Gian-Andrea Thanei, Nicolai Meinshausen, and Rajen D Shah. “The Xyz Al-

gorithm for Fast Interaction Search in High-Dimensional Data”. In: Journal of

Machine Learning Research 19.1 (Jan. 2018), pp. 1343–1384.

[90] Robert Tibshirani. “Regression Shrinkage and Selection Via the Lasso”. In:

Journal of the Royal Statistical Society: Series B (Methodological) 58.1 (1996),

pp. 267–288. issn: 2517-6161. doi: 10.1111/j.2517-6161.1996.tb02080.x.

url: https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-

6161.1996.tb02080.x (visited on 08/29/2020).

81

https://doi.org/10.1007/s11095-011-0608-1
https://doi.org/10.1007/s11095-011-0608-1
https://doi.org/10.1073/pnas.2032324100
https://doi.org/10.1073/pnas.2032324100
https://doi.org/10.1093/bioinformatics/bty240
https://doi.org/10.1016/j.cell.2005.08.029
https://string-db.org/cgi/about.pl
https://string-db.org/cgi/about.pl
https://doi.org/10.1093/nar/gkw937
https://academic.oup.com/nar/article/45/D1/D362/2290901
https://academic.oup.com/nar/article/45/D1/D362/2290901
https://doi.org/10.1016/j.febslet.2005.08.024
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1996.tb02080.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1996.tb02080.x


BIBLIOGRAPHY BIBLIOGRAPHY

[91] Jerzy Tiuryn and Ewa Szczurek. “Learning Signaling Networks from Combi-

natorial Perturbations by Exploiting siRNA Off-Target Effects”. en. In: Bioin-

formatics 35.14 (July 2019), pp. i605–i614. issn: 1367-4803. doi: 10.1093/

bioinformatics/btz334.

[92] Andrew Trotman and Jimmy Lin. “In Vacuo and In Situ Evaluation of SIMD

Codecs”. In: Proceedings of the 21st Australasian Document Computing Sympo-

sium. ADCS ’16. Caulfield, VIC, Australia: Association for Computing Machin-

ery, Dec. 5, 2016, pp. 1–8. isbn: 978-1-4503-4865-2. doi: 10.1145/3015022.

3015023. url: https://doi.org/10.1145/3015022.3015023 (visited on

07/08/2020).

[93] Sara Van de Geer. “The Deterministic Lasso”. In: 2007.

[94] Heather D. VanGuilder, Kent E. Vrana, and Willard M. Freeman. “Twenty-Five

Years of Quantitative PCR for Gene Expression Analysis”. In: BioTechniques

44.5 (Apr. 2008), pp. 619–626. issn: 0736-6205. doi: 10.2144/000112776.

[95] Jianxin Wang et al. “A Fast Hierarchical Clustering Algorithm for Functional

Modules Discovery in Protein Interaction Networks”. In: IEEE/ACM Trans.

Comput. Biol. Bioinformatics 8.3 (May 2011), pp. 607–620. issn: 1545-5963.

doi: 10.1109/TCBB.2010.75.

[96] Rongquan Wang et al. “Predicting Overlapping Protein Complexes Based on

Core-Attachment and a Local Modularity Structure”. eng. In: BMC bioinfor-

matics 19.1 (Aug. 2018), p. 305. issn: 1471-2105. doi: 10.1186/s12859-018-

2309-9.

[97] D. C. Weaver, C. T. Workman, and G. D. Stormo. “Modeling Regulatory Net-

works with Weight Matrices”. In: Biocomputing ’99. WORLD SCIENTIFIC,

Dec. 1998, pp. 112–123. isbn: 978-981-02-3624-3. doi: 10.1142/9789814447300_

0011.

[98] S Wright. “The Roles of Mutation, Inbreeding, Crossbreeding, and Selection in

Evolution”. In: Proc 6th Int. Cong. Genet. 1 (1932), pp. 356–366.

[99] Min Wu et al. “A Core-Attachment Based Method to Detect Protein Complexes

in PPI Networks”. In: BMC Bioinformatics 10.1 (June 2009), p. 169. issn: 1471-

2105. doi: 10.1186/1471-2105-10-169.

[100] Tong Tong Wu and Kenneth Lange. “Coordinate Descent Algorithms for Lasso

Penalized Regression”. In: The Annals of Applied Statistics 2.1 (Mar. 2008),

pp. 224–244. issn: 1932-6157. doi: 10.1214/07-AOAS147. arXiv: 0803.3876.

url: http://arxiv.org/abs/0803.3876 (visited on 07/14/2019).

[101] J. Xie, B. K. Szymanski, and X. Liu. “SLPA: Uncovering Overlapping Commu-

nities in Social Networks via a Speaker-Listener Interaction Dynamic Process”.

In: 2011 IEEE 11th International Conference on Data Mining Workshops. Dec.

2011, pp. 344–349. doi: 10.1109/ICDMW.2011.154.

82

https://doi.org/10.1093/bioinformatics/btz334
https://doi.org/10.1093/bioinformatics/btz334
https://doi.org/10.1145/3015022.3015023
https://doi.org/10.1145/3015022.3015023
https://doi.org/10.1145/3015022.3015023
https://doi.org/10.2144/000112776
https://doi.org/10.1109/TCBB.2010.75
https://doi.org/10.1186/s12859-018-2309-9
https://doi.org/10.1186/s12859-018-2309-9
https://doi.org/10.1142/9789814447300_0011
https://doi.org/10.1142/9789814447300_0011
https://doi.org/10.1186/1471-2105-10-169
https://doi.org/10.1214/07-AOAS147
https://arxiv.org/abs/0803.3876
http://arxiv.org/abs/0803.3876
https://doi.org/10.1109/ICDMW.2011.154


APPENDIX APPENDIX

[102] M Yuan and Y Lin. “Model Selection and Estimation in Regression with Grouped

Variables”. In: J R Stat Soc Series B Stat Methodol (2006).

[103] Zehua Zhang et al. “Detecting Complexes from Edge-Weighted PPI Networks

via Genes Expression Analysis”. In: BMC Systems Biology 12.4 (Apr. 2018),

p. 40. issn: 1752-0509. doi: 10.1186/s12918-018-0565-y.

83

https://doi.org/10.1186/s12918-018-0565-y


Appendix A

Learning Interactions

A.1 Number of epistatic gene pairs

For n = 10 × p = 1000 siRNAs, 87% of the
(
p
2

)
= 4950 gene pairs are simultaneously

perturbed by at least one siRNA.
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Figure A.1: Simulation of perturbation matrices for n = 1000 siRNAs
and p = 100 genes based on four commercial genome-wide siRNA
libraries from Qiagen. (A) The number of times each pair of genes is
simultaneously perturbed in the simulated matrix. (B) Heat map of
the number of simultaneous perturbations for each gene pair. Darker
colour indicates higher numbers of observations. 87% of the

(
p
2

)
pairs

are simultaneously perturbed at least once.

An increase in the number of pairs of genes (i, j) : βi,j > 0, i.e. pairs of genes with
true conditional epistasis greater than zero, generally leads to an increase in precision
and decrease in recall which results in a subtle increase in F1 when searching with
glinternet (Figure A.2a). The only exception being when there are no additional
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main effects, in which case interactions are more reliably found from among a small set
(between 5 and 20 depending on the SNR) than a large one (50 or more). When we
select estimates β̂i,j with a magnitude significantly different from zero (Figure A.2b),
we observe a more than 3-fold increase of precision but steeper decrease of recall for
increasing numbers of pairs of genes with true conditional epistasis. This results in
approximately 2-fold increase of the F1 measure, which in addition shows a weaker
dependency on the number of gene pairs with true conditional epistasis. With an
increasing number of additional main effects, the performance generally decreases. The
effect is more subtle for high numbers of true epistatic gene pairs, both with and without
selecting β̂i,j significantly different from zero. As expected, higher SNRs leads to better
performance, where this effect is stronger when we perform the significance test. The
trade-off between precision and recall resulting from the significance test is shown in
Figure A.4a. The increase in precision and decrease of recall is stronger for higher
number of true epistatic gene pairs. For small numbers of true epistatic gene pairs (5,
20) we observe a dependency of the strength of increase of precision and decrease of
recall to the number of additional main effects. Overall, the ratio of increase in precision
and decrease of recall is approximately 3, suggesting that the test in general led to an
increase in performance. Figures without this test may be found in Section A.4.
It should be noted that the expected precision of random guessing of interactions is

q
p(p−1)

. This is at most ≈ 1%, when q = 100, p = 100, as in our simulations.
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Figure A.2: Identification of epistasis for increasing numbers of true
interactions using glinternet. Panel rows show precision, recall,
and the F1 measure and panel columns depict results for signal-to-
noise ratios (SNR) 2, 5, and 10. Colour indicates the number of
additional main effects not overlapping with the set of interacting
genes. (a) Results for all conditional epistasis βi,j > 0; (b) Results for
the subset of conditional epistasis βi,j that significantly deviate from
zero (q-value < 0.05).

Using the same number of genes and main effects and searching with xyz, we see similar
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precision, albeit with significantly lower recall (Figure A.3). As with glinternet,
performance improved with higher SNRs. Selecting estimates that significantly deviate
from zero (q-value < 0.05) results in as much as a 2-fold improvement in precision in the
best case, however improvements are generally smaller with xyz than with glinternet.
In this case, the effect on recall is minimal, the trade-off is shown in Figure A.4b.
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Figure A.3: Results for xyz as in Figure A.2. Note that this format
is reused in all such figures. (a) Without significance test. (b) With
significance test.
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Figure A.4: Trade-off between precision and recall for selecting the
subset of interactions significantly deviating from zero versus all in-
teractions. Top and bottom panels depict gain of precision and loss
of recall, respectively. (a) glinternet; (b) xyz.
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A.2 Magnitude

Comparing the estimated magnitude of epistasis to the ground truth, we find the
glinternet results typically deviate less than 5%, and are only larger with a large
number of true interactions, and a low signal to noise ratio. Using xyz we can see some
significant variation in accuracy. The deviation is, however, typically below 10%.
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Figure A.5: Concordance between the magnitude of true and esti-
mated epistasis. The fraction of incorrectly identified signs between
true and estimated epistasis for (a) glinternet and (b) xyz. Results
are for the subset of interactions that significantly deviate from zero
(q-value < 0.05).

A.3 Number of xyz Projections

To ensure the correct xyz parameters are chosen, we compare precision, recall, and F1
for varying numbers of projections. Fixing the signal to noise ration to SNR = 5, and
using the same parameters as the main p = 1000 simulations above, we run xyz with
L = 10, 100, and 1000.

While there is a clear advantage to running at least L =
√

(n) = 100 projections,
there are no significant gains in overall performance, as indicated by F1, beyond that.
In fact, we can see in Figure A.6c that increasing the number of projections beyond
that merely reduces the number of interactions returned, without improving accuracy.
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Figure A.6: Precision, recall, and F1 as a result of increasing the num-
ber of projections. We use p = 1000 genes with a signal to noise ratio
of five. A.6a: Results considering all identified conditional epista-
sis. A.6b: Results considering only the subset of conditional epistasis
that significantly deviate from zero. A.6c: Number of interactions
reported, note that the scale above differs from the one below for
readability.
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A.4 Results without Significance Test

The results used above are using R’s lm linear regression, including only those with
significant q-values (q < 0.05). Here we perform the same tests with all found effects
included, significant or otherwise, or comparison.
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Figure A.8: Precision, recall, and F1 performance measures for xyz.
A.8a: Results for all identified epistasis on p = 100, n = 100 sim-
ulation using glinternet. A.8b: Results for all identified epistasis
on p = 100, n = 100 simulation using xyz. A.8c: Results for all
identified epistasis on p = 1000, n = 10000 simulation using xyz.
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Figure A.9: Identification of epistasis for increasing numbers of ob-
servations of the pairwise double knockdown. Results are for all iden-
tified conditional epistasis βi,j > 0. (a) Results using glinternet.
(b) Results using xyz on small (p = 100, n = 1000) simulations. (c)
Results using xyz on large (p = 1000, n = 10000) simulations.
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Figure A.10: Identification of epistasis for varying effect size. Re-
sults are for all identified conditional epistasis βi,j > 0. (b) Small
(p = 100, n = 1000) simulations, using glinternet. (b) Small (p =
100, n = 1000) simulations, using xyz. (c) Large p = 1000, n = 10000
simulations, using xyz.
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Figure A.11: Identification of epistasis for varying effect size. Re-
sults are for all identified conditional epistasis βi,j > 0. (b) Small
(p = 100, n = 1000) simulations, using glinternet. (b) Small (p =
100, n = 1000) simulations, using xyz. (c) Large p = 1000, n = 10000
simulations, using xyz. Note that in this test there are no incorrect
results
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Figure A.12: Concordance between the magnitude of true and es-
timated epistasis. Results are for all identified conditional epistasis
βi,j > 0. (a) Small (p = 100, n = 1000) simulations, using glinter-

net. (b) Small (p = 100, n = 1000) simulations, using xyz. (c) Large
p = 1000, n = 10000 simulations, using xyz.
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Figure A.13: The performance of (a) glinternet and (b) xyz on
increasingly large data sets. Results are for all identified conditional
epistasis βi,j > 0.
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