69,325 research outputs found

    Learning relevant eye movement feature spaces across users

    No full text
    In this paper we predict the relevance of images based on a lowdimensional feature space found using several users’ eye movements. Each user is given an image-based search task, during which their eye movements are extracted using a Tobii eye tracker. The users also provide us with explicit feedback regarding the relevance of images. We demonstrate that by using a greedy Nystrom algorithm on the eye movement features of different users, we can find a suitable low-dimensional feature space for learning. We validate the suitability of this feature space by projecting the eye movement features of a new user into this space, training an online learning algorithm using these features, and showing that the number of mistakes (regret over time) made in predicting relevant images is lower than when using the original eye movement features. We also plot Recall-Precision and ROC curves, and use a sign test to verify the statistical significance of our results

    Unobtrusive and pervasive video-based eye-gaze tracking

    Get PDF
    Eye-gaze tracking has long been considered a desktop technology that finds its use inside the traditional office setting, where the operating conditions may be controlled. Nonetheless, recent advancements in mobile technology and a growing interest in capturing natural human behaviour have motivated an emerging interest in tracking eye movements within unconstrained real-life conditions, referred to as pervasive eye-gaze tracking. This critical review focuses on emerging passive and unobtrusive video-based eye-gaze tracking methods in recent literature, with the aim to identify different research avenues that are being followed in response to the challenges of pervasive eye-gaze tracking. Different eye-gaze tracking approaches are discussed in order to bring out their strengths and weaknesses, and to identify any limitations, within the context of pervasive eye-gaze tracking, that have yet to be considered by the computer vision community.peer-reviewe

    Pervasive and standalone computing: The perceptual effects of variable multimedia quality.

    Get PDF
    The introduction of multimedia on pervasive and mobile communication devices raises a number of perceptual quality issues, however, limited work has been done examining the 3-way interaction between use of equipment, quality of perception and quality of service. Our work measures levels of informational transfer (objective) and user satisfaction (subjective)when users are presented with multimedia video clips at three different frame rates, using four different display devices, simulating variation in participant mobility. Our results will show that variation in frame-rate does not impact a user’s level of information assimilation, however, does impact a users’ perception of multimedia video ‘quality’. Additionally, increased visual immersion can be used to increase transfer of video information, but can negatively affect the users’ perception of ‘quality’. Finally, we illustrate the significant affect of clip-content on the transfer of video, audio and textual information, placing into doubt the use of purely objective quality definitions when considering multimedia presentations

    Machine Understanding of Human Behavior

    Get PDF
    A widely accepted prediction is that computing will move to the background, weaving itself into the fabric of our everyday living spaces and projecting the human user into the foreground. If this prediction is to come true, then next generation computing, which we will call human computing, should be about anticipatory user interfaces that should be human-centered, built for humans based on human models. They should transcend the traditional keyboard and mouse to include natural, human-like interactive functions including understanding and emulating certain human behaviors such as affective and social signaling. This article discusses a number of components of human behavior, how they might be integrated into computers, and how far we are from realizing the front end of human computing, that is, how far are we from enabling computers to understand human behavior

    Diverse perceptions of smart spaces

    No full text
    This is the era of smart technology and of ‘smart’ as a meme, so we have run three workshops to examine the ‘smart’ meme and the exploitation of smart environments. The literature relating to smart spaces focuses primarily on technologies and their capabilities. Our three workshops demonstrated that we require a stronger user focus if we are advantageously to exploit spaces ascribed as smart: we examined the concept of smartness from a variety of perspectives, in collaboration with a broad range of contributors. We have prepared this monograph mainly to report on the third workshop, held at Bournemouth University in April 2012, but do also consider the lessons learned from all three. We conclude with a roadmap for a fourth (and final) workshop, which is intended to emphasise the overarching importance of the humans using the spac

    Eavesdropping Whilst You're Shopping: Balancing Personalisation and Privacy in Connected Retail Spaces

    Get PDF
    Physical retailers, who once led the way in tracking with loyalty cards and `reverse appends', now lag behind online competitors. Yet we might be seeing these tables turn, as many increasingly deploy technologies ranging from simple sensors to advanced emotion detection systems, even enabling them to tailor prices and shopping experiences on a per-customer basis. Here, we examine these in-store tracking technologies in the retail context, and evaluate them from both technical and regulatory standpoints. We first introduce the relevant technologies in context, before considering privacy impacts, the current remedies individuals might seek through technology and the law, and those remedies' limitations. To illustrate challenging tensions in this space we consider the feasibility of technical and legal approaches to both a) the recent `Go' store concept from Amazon which requires fine-grained, multi-modal tracking to function as a shop, and b) current challenges in opting in or out of increasingly pervasive passive Wi-Fi tracking. The `Go' store presents significant challenges with its legality in Europe significantly unclear and unilateral, technical measures to avoid biometric tracking likely ineffective. In the case of MAC addresses, we see a difficult-to-reconcile clash between privacy-as-confidentiality and privacy-as-control, and suggest a technical framework which might help balance the two. Significant challenges exist when seeking to balance personalisation with privacy, and researchers must work together, including across the boundaries of preferred privacy definitions, to come up with solutions that draw on both technology and the legal frameworks to provide effective and proportionate protection. Retailers, simultaneously, must ensure that their tracking is not just legal, but worthy of the trust of concerned data subjects.Comment: 10 pages, 1 figure, Proceedings of the PETRAS/IoTUK/IET Living in the Internet of Things Conference, London, United Kingdom, 28-29 March 201

    The Cat Is On the Mat. Or Is It a Dog? Dynamic Competition in Perceptual Decision Making

    Get PDF
    Recent neurobiological findings suggest that the brain solves simple perceptual decision-making tasks by means of a dynamic competition in which evidence is accumulated in favor of the alternatives. However, it is unclear if and how the same process applies in more complex, real-world tasks, such as the categorization of ambiguous visual scenes and what elements are considered as evidence in this case. Furthermore, dynamic decision models typically consider evidence accumulation as a passive process disregarding the role of active perception strategies. In this paper, we adopt the principles of dynamic competition and active vision for the realization of a biologically- motivated computational model, which we test in a visual catego- rization task. Moreover, our system uses predictive power of the features as the main dimension for both evidence accumulation and the guidance of active vision. Comparison of human and synthetic data in a common experimental setup suggests that the proposed model captures essential aspects of how the brain solves perceptual ambiguities in time. Our results point to the importance of the proposed principles of dynamic competi- tion, parallel specification, and selection of multiple alternatives through prediction, as well as active guidance of perceptual strategies for perceptual decision-making and the resolution of perceptual ambiguities. These principles could apply to both the simple perceptual decision problems studied in neuroscience and the more complex ones addressed by vision research.Peer reviewe
    • 

    corecore