12 research outputs found

    How to Integrate Machine-Learning Probabilistic Output in Integer Linear Programming: a case for RSA

    Get PDF
    We integrate machine-learning-based QoT estimation in reach constraints of an integer linear program (ILP) for routing and spectrum assignment (RSA), and develop an iterative solution for QoT-aware RSA. Results show above 30% spectrum savings compared to solving RSA with ILP using traditional margined reach computation

    Engineering Practices of Determining Transmission Capacity and Delay of Interconnecting Line Taking into Account its Configuration and Cost

    Get PDF
    This article contains information on engineering practice of determining transmission capacity of computer network line. The article presents a variant of engineering synthesis of computer network, which is a combined process of mathematical and heuristic methods combining. The engineering synthesis is offered as vector and global, because it must result in network development, optimal in terms of its practical use. All the significant network quality indicators, including economic and practical, are taken into consideration. In case of engineering synthesis, it is not possible that only one quality indicator is significant: there are always at least two significant indicators – a cost and an indicator that characterizes the main effect that is achieved in case of network use (efficacy). If at least one of the quality indicators significant for practical use is not taken into account, such network cannot be considered optimal. Computer network synthesis usually consists of structure synthesis, parameters optimization and discrete network selection. If network topology is maintained unchanged, it is possible to formulate an optimization task for line transmission capacity. The solution of transmission capacity task, which is constantly changing, may be chosen as a starting point for the selection of discrete indicator of transmission capacity

    Supply Chain Network Design: A Case Study In a Dairy Company

    Get PDF
    This research seeks the development of a supply chain network design, aiming to determine the optimal location of a dairy distribution center and its ideal inventory capacity, considering the location of a company’s facilities as a key factor for financial success, since costs such as inventory and transportation are influenced by network projects. Variables such as logistical costs, taxes, inventories, etc., are considered during the execution of the network design. This study contributes to the area of network design in the supply chain, having a quantitative and exploratory nature. A single case study was carried out in the dairy company, analyzing documents and financial information to decide on the most advantageous place for the distribution center. The Supply Chain Guru software for network optimization, developed by Llamasoft, was used to support this project. This tool has been previously studied and analyzed for this use, since it can bring relevant and complex outcomes. The result was that the optimal location for the new distribution center would be at one of the company’s existing plants, which would bring an economy close to R$ 100,000 in one year of operation

    An Overview on Application of Machine Learning Techniques in Optical Networks

    Get PDF
    Today's telecommunication networks have become sources of enormous amounts of widely heterogeneous data. This information can be retrieved from network traffic traces, network alarms, signal quality indicators, users' behavioral data, etc. Advanced mathematical tools are required to extract meaningful information from these data and take decisions pertaining to the proper functioning of the networks from the network-generated data. Among these mathematical tools, Machine Learning (ML) is regarded as one of the most promising methodological approaches to perform network-data analysis and enable automated network self-configuration and fault management. The adoption of ML techniques in the field of optical communication networks is motivated by the unprecedented growth of network complexity faced by optical networks in the last few years. Such complexity increase is due to the introduction of a huge number of adjustable and interdependent system parameters (e.g., routing configurations, modulation format, symbol rate, coding schemes, etc.) that are enabled by the usage of coherent transmission/reception technologies, advanced digital signal processing and compensation of nonlinear effects in optical fiber propagation. In this paper we provide an overview of the application of ML to optical communications and networking. We classify and survey relevant literature dealing with the topic, and we also provide an introductory tutorial on ML for researchers and practitioners interested in this field. Although a good number of research papers have recently appeared, the application of ML to optical networks is still in its infancy: to stimulate further work in this area, we conclude the paper proposing new possible research directions

    Quality of transmission estimator retraining for dynamic optimization in optical networks

    Get PDF
    Optical network optimization involves an algorithm and a physical layer model (PLM) to estimate the quality of transmission of connections while examining candidate optimization operations. In particular, the algorithm typically calculates intermediate solutions until it reaches the optimum, which is then configured to the network. If it uses a PLM that was aligned once to reflect the starting network configuration, then the algorithm within its intermediate calculations can project the network into states where the PLM suffers from low accuracy, resulting in a suboptimal optimization. In this paper, we propose to solve dynamic multivariable optimization problems with an iterative closed control loop process, where after certain algorithm steps we configure the intermediate solution so that we monitor and realign/retrain the PLM to follow the projected network states. The PLM is used as a digital twin, a digital representation of the real system, which is realigned during the dynamic optimization process. Specifically, we study the dynamic launch power optimization problem, where we have a set of established connections, and we optimize their launch powers while the network operates. We observed substantial improvements in the sum and the lowest margin when optimizing the launch powers with the proposed approach over optimization using a one-time trained PLM. The proposed approach achieved near-to-optimum solutions as found by optimizing and continuously probing and monitoring the network, but with a substantial lower optimization time.Funding: Horizon 2020 Framework Programme (765275). This work is a part of the Future Optical Networks for Innovation, Research and Experimentation (ONFIRE) project (https://h2020-onfire.eu/), supported by the European Union’s Horizon 2020 Research and Innovation Programme under the Marie Skłodowska-Curie Actions.Peer ReviewedPostprint (author's final draft

    Machine-learning method for quality of transmission prediction of unestablished lightpaths

    Get PDF
    Predicting the quality of transmission (QoT) of a lightpath prior to its deployment is a step of capital importance for an optimized design of optical networks. Due to the continuous advances in optical transmission, the number of design parameters available to system engineers (e.g., modulation formats, baud rate, code rate, etc.) is growing dramatically, thus significantly increasing the alternative scenarios for lightpath deployment. As of today, existing (pre-deployment) estimation techniques for lightpath QoT belong to two categories: "exact" analytical models estimating physical-layer impairments, which provide accurate results but incur heavy computational requirements, and margined formulas, which are computationally faster but typically introduce high link margins that lead to underutilization of network resources. In this paper, we explore a third option, i.e., machine learning (ML), as ML techniques have already been successfully applied for optimization and performance prediction of complex systems where analytical models are hard to derive and/ or numerical procedures impose high computational burden. We investigate a ML classifier that predicts whether the bit error rate of unestablished lightpaths meets the required system threshold based on traffic volume, desired route, and modulation format. The classifier is trained and tested on synthetic data and its performance is assessed over different network topologies and for various combinations of classification features. Results in terms of classifier accuracy are promising and motivate further investigation over real field data

    Autonomous and reliable operation of multilayer optical networks

    Get PDF
    This Ph.D. thesis focuses on the reliable autonomous operation of multilayer optical networks. The first objective focuses on the reliability of the optical network and proposes methods for health analysis related to Quality of Transmission (QoT) degradation. Such degradation is produced by soft-failures in optical devices and fibers in core and metro segments of the operators’ transport networks. Here, we compare estimated and measured QoT in the optical transponder by using a QoT tool based on GNPy. We show that the changes in the values of input parameters of the QoT model representing optical devices can explain the deviations and degradation in performance of such devices. We use reverse engineering to estimate the value of those parameters that explain the observed QoT. We show by simulation a large anticipation in soft-failure detection, localization and identification of degradation before affecting the network. Finally, for validating our approach, we experimentally observe the high accuracy in the estimation of the modeling parameters. The second objective focuses on multilayer optical networks, where lightpaths are used to connect packet nodes thus creating virtual links (vLink). Specifically, we study how lightpaths can be managed to provide enough capacity to the packet layer without detrimental effects in their Quality of Service (QoS), like added delays or packet losses, and at the same time minimize energy consumption. Such management must be as autonomous as possible to minimize human intervention. We study the autonomous operation of optical connections based on digital subcarrier multiplexing (DSCM). We propose several solutions for the autonomous operation of DSCM systems. In particular, the combination of two modules running in the optical node and in the optical transponder activate and deactivate subcarriers to adapt the capacity of the optical connection to the upper layer packet traffic. The module running in the optical node is part of our Intent-based Networking (IBN) solution and implements prediction to anticipate traffic changes. Our comprehensive study demonstrates the feasibility of DSCM autonomous operation and shows large cost savings in terms of energy consumption. In addition, our study provides a guideline to help vendors and operators to adopt the proposed solutions. The final objective targets at automating packet layer connections (PkC). Automating the capacity required by PkCs can bring further cost reduction to network operators, as it can limit the resources used at the optical layer. However, such automation requires careful design to avoid any QoS degradation, which would impact Service Level Agreement (SLA) in the case that the packet flow is related to some customer connection. We study autonomous packet flow capacity management. We apply RL techniques and propose a management lifecycle consisting of three different phases: 1) a self-tuned threshold-based approach for setting up the connection until enough data is collected, which enables understanding the traffic characteristics; 2) RL operation based on models pre-trained with generic traffic profiles; and 3) RL operation based on models trained with the observed traffic. We show that RL algorithms provide poor performance until they learn optimal policies, as well as when the traffic characteristics change over time. The proposed lifecycle provides remarkable performance from the starting of the connection and it shows the robustness while facing changes in traffic. The contribution is twofold: 1) and on the one hand, we propose a solution based on RL, which shows superior performance with respect to the solution based on prediction; and 2) because vLinks support packet connections, coordination between the intents of both layers is proposed. In this case, the actions taken by the individual PkCs are used by the vLink intent. The results show noticeable performance compared to independent vLink operation.Esta tesis doctoral se centra en la operación autónoma y confiable de redes ópticas multicapa. El primer objetivo se centra en la fiabilidad de la red óptica y propone métodos para el análisis del estado relacionados con la degradación de la calidad de la transmisión (QoT). Dicha degradación se produce por fallos en dispositivos ópticos y fibras en las redes de transporte de los operadores que no causan el corte de la señal. Comparamos el QoT estimado y medido en el transpondedor óptico mediante el uso de una herramienta de QoT basada en GNPy. Mostramos que los cambios en los valores de los parámetros de entrada del modelo QoT que representan los dispositivos ópticos pueden explicar las desviaciones y la degradación en el rendimiento de dichos dispositivos. Usamos ingeniería inversa para estimar el valor de aquellos parámetros que explican el QoT observado. Mostramos, mediante simulación, una gran anticipación en la detección, localización e identificación de fallas leves antes de afectar la red. Finalmente, validamos nuestro método de forma experimental y comprobamos la alta precisión en la estimación de los parámetros de los modelos. El segundo objetivo se centra en las redes ópticas multicapa, donde se utilizan conexiones ópticas (lightpaths) para conectar nodos de paquetes creando así enlaces virtuales (vLink). Específicamente, estudiamos cómo se pueden gestionar los lightpaths para proporcionar suficiente capacidad a la capa de paquetes sin efectos perjudiciales en su calidad de servicio (QoS), como retrasos adicionales o pérdidas de paquetes, y al mismo tiempo minimizar el consumo de energía. Estudiamos el funcionamiento autónomo de conexiones ópticas basadas en multiplexación de subportadoras digitales (DSCM) y proponemos soluciones para su funcionamiento autónomo. En particular, la combinación de dos módulos que se ejecutan en el nodo óptico y en el transpondedor óptico activan y desactivan subportadoras para adaptar la capacidad de la conexión óptica al tráfico de paquetes. El módulo que se ejecuta en el nodo óptico implementa la predicción para anticipar los cambios de tráfico. Nuestro estudio demuestra la viabilidad de la operación autónoma de DSCM y muestra un gran ahorro de consumo de energía. El objetivo final es la automatización de conexiones de capa de paquete (PkC). La automatización de la capacidad requerida por las PkC puede generar una mayor reducción de costes, ya que puede limitar los recursos utilizados en la capa óptica. Sin embargo, dicha automatización requiere un diseño cuidadoso para evitar cualquier degradación de QoS, lo que afectaría acuerdos de nivel de servicio (SLA) en el caso de que el flujo de paquetes esté relacionado con alguna conexión del cliente. Estudiamos la gestión autónoma de la capacidad del flujo de paquetes. Aplicamos RL y proponemos un ciclo de vida de gestión con tres fases: 1) un enfoque basado en umbrales auto ajustados para configurar la conexión hasta que se recopilen suficientes datos, lo que permite comprender las características del tráfico; 2) operación RL basada en modelos pre-entrenados con perfiles de tráfico genéricos; y 3) operación de RL en base a modelos entrenados con el tránsito observado. Mostramos que los algoritmos de RL ofrecen un desempeño deficiente hasta que aprenden las políticas óptimas, así cuando las características del tráfico cambian con el tiempo. El ciclo de vida propuesto proporciona un rendimiento notable desde el inicio de la conexión y muestra la robustez frente a cambios en el tráfico. La contribución es doble: 1) proponemos una solución basada en RL que muestra un rendimiento superior que la solución basada en predicción; y 2) debido a que los vLinks admiten conexiones de paquetes, se propone la coordinación entre las intenciones de ambas capas. En este caso, la intención de vLink utiliza las acciones realizadas por los PkC individuales. Los resultados muestran un rendimiento notable en comparación con la operación independiente de vLink.Postprint (published version
    corecore