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Abstract 

This Ph.D. thesis focuses on the reliable autonomous operation of multilayer optical 

networks. 

The first objective focuses on the reliability of the optical network and proposes 

methods for health analysis related to Quality of Transmission (QoT) degradation. 

Such degradation is produced by soft-failures in optical devices and fibers in core 

and metro segments of the operators’ transport networks. Here, we compare 

estimated and measured QoT in the optical transponder by using a QoT tool based 

on GNPy. We show that the changes in the values of input parameters of the QoT 

model representing optical devices can explain the deviations and degradation in 

performance of such devices. We use reverse engineering to estimate the value of 

those parameters that explain the observed QoT. We show by simulation a large 

anticipation in soft-failure detection, localization and identification of degradation 

before affecting the network. Finally, for validating our approach, we experimentally 

observe the high accuracy in the estimation of the modeling parameters. 

The second objective focuses on multilayer optical networks, where lightpaths are 

used to connect packet nodes thus creating virtual links (vLink). Specifically, we 

should study how lightpaths can be managed to provide enough capacity to the 

packet layer without detrimental effects in their Quality of Service (QoS), like added 

delays or packet losses, and at the same time minimize energy consumption. Such 

management must be as autonomous as possible to minimize human intervention. 

In addition, the relation between the packet and the optical layer should be 

considered, as it can bring global optimal solutions. We study the autonomous 

operation of optical connections based on digital subcarrier multiplexing (DSCM). 

We propose several solutions for the autonomous operation of DSCM systems. In 

particular, the combination of two modules running in the optical node and in the 
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optical transponder activate and deactivate subcarriers to adapt the capacity of the 

optical connection to the upper layer packet traffic. The module running in the 

optical node is part of our Intent-based Networking (IBN) solution and implements 

prediction to anticipate traffic changes. Our comprehensive study demonstrates the 

feasibility of DSCM autonomous operation and shows large cost savings in terms of 

energy consumption. In addition, our study provides a guideline to help vendors and 

operators to adopt the proposed solutions. 

The final objective targets at automating packet layer connections (PkC). 

Automating the capacity required by PkCs can bring further cost reduction to 

network operators, as it can limit the resources used at the optical layer. However, 

such automation requires careful design to avoid any QoS degradation, which would 

impact Service Level Agreement (SLA) in the case that the packet flow is related to 

some customer connection. We study autonomous packet flow capacity management. 

We apply RL techniques and propose a management lifecycle consisting of three 

different phases: 1) a self-tuned threshold-based approach for setting up the 

connection until enough data is collected, which enables understanding the traffic 

characteristics; 2) RL operation based on models pre-trained with generic traffic 

profiles; and 3) RL operation based on models trained with the observed traffic. We 

show that RL algorithms provide poor performance until they learn optimal policies, 

as well as when the traffic characteristics change over time. The proposed lifecycle 

provides remarkable performance from the starting of the connection and it shows 

the robustness while facing changes in traffic. Finally, we take advantage of our 

experience and revisit our proposed solutions for autonomous vLink operation 

supported by DSCM systems. The contribution is twofold: 1) and on the one hand, 

we propose a solution based on RL, which shows superior performance with respect 

to the solution based on prediction; and 2) because vLinks support packet 

connections, coordination between the intents of both layers is proposed. In this case, 

the actions taken by the individual PkCs are used by the vLink intent. The results 

show noticeable performance compared to independent vLink operation. 

 



 

 

 

 

 

 

 

 

 

 
 

 

 

Resumen 

Esta tesis doctoral se centra en la operación autónoma y confiable de redes ópticas 

multicapa. 

El primer objetivo se centra en la fiabilidad de la red óptica y propone métodos para 

el análisis del estado relacionados con la degradación de la calidad de la transmisión 

(QoT). Dicha degradación se produce por fallos en dispositivos ópticos y fibras en las 

redes de transporte de los operadores que no causan corte de la señal. Aquí, 

comparamos el QoT estimado y medido en el transpondedor óptico mediante el uso 

de una herramienta de QoT basada en GNPy. Mostramos que los cambios en los 

valores de los parámetros de entrada del modelo QoT que representan los 

dispositivos ópticos pueden explicar las desviaciones y la degradación en el 

rendimiento de dichos dispositivos. Usamos ingeniería inversa para estimar el valor 

de aquellos parámetros que explican el QoT observado. Mostramos, mediante 

simulación, una gran anticipación en la detección, localización e identificación de 

fallos leves antes de afectar la red. Finalmente, validamos nuestro método de forma 

experimental y comprobamos la alta precisión en la estimación de los parámetros de 

los modelos. 

El segundo objetivo se centra en las redes ópticas multicapa, donde se utilizan 

conexiones ópticas (lightpaths) para conectar nodos de paquetes creando así enlaces 

virtuales (vLink). Específicamente, estudiamos cómo se pueden gestionar los 

lightpaths para proporcionar suficiente capacidad a la capa de paquetes sin efectos 

perjudiciales en su calidad de servicio (QoS), como retardos adicionales o pérdidas de 

paquetes, y al mismo tiempo minimizar el consumo de energía. Dicha gestión debe 

ser lo más autónoma posible para minimizar la intervención del operador. Además, 

se debe considerar la relación entre las capas de paquetes y óptica, ya que pueden 

obtenerse soluciones óptimas globales. Estudiamos el funcionamiento autónomo de 

conexiones ópticas basadas en multiplexación de subportadoras digitales (DSCM). 
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Proponemos varias soluciones para el funcionamiento autónomo de los sistemas 

DSCM. En particular, la combinación de dos módulos que se ejecutan en el nodo 

óptico y en el transpondedor óptico activan y desactivan subportadoras para adaptar 

la capacidad de la conexión óptica al tráfico de paquetes de la capa superior. El 

módulo que se ejecuta en el nodo óptico es parte de nuestra solución de red basada 

en intención (IBN) e implementa predicción para anticipar los cambios de tráfico. 

Nuestro estudio integral demuestra la viabilidad de la operación autónoma de DSCM 

y muestra un gran ahorro de costos en términos de consumo de energía. Además, 

nuestro estudio proporciona una guía para ayudar a los proveedores y operadores a 

adoptar las soluciones propuestas. 

El objetivo final es la automatización de conexiones de capa de paquetes (PkC). La 

automatización de la capacidad requerida por las PkC puede generar una mayor 

reducción de costes para los operadores de red, ya que puede limitar los recursos 

utilizados en la capa óptica. Sin embargo, dicha automatización requiere un diseño 

cuidadoso para evitar cualquier degradación de QoS, lo que afectaría acuerdos de 

nivel de servicio (SLA) en el caso de que el flujo de paquetes esté relacionado con 

alguna conexión del cliente. Estudiamos la gestión autónoma de la capacidad del 

flujo de paquetes. Aplicamos técnicas de aprendizaje por refuerzo (RL) y proponemos 

un ciclo de vida de gestión que consta de tres fases diferentes: 1) un enfoque basado 

en umbrales auto ajustados para configurar la conexión hasta que se recopilen 

suficientes datos, lo que permite comprender las características del tráfico; 2) 

operación RL basada en modelos pre-entrenados con perfiles de tráfico genéricos; y 

3) operación de RL en base a modelos entrenados con el tráfico observado. Mostramos 

que los algoritmos de RL ofrecen un desempeño deficiente hasta que aprenden las 

políticas óptimas, así como también cuando las características del tráfico cambian 

con el tiempo. El ciclo de vida propuesto proporciona un rendimiento notable desde 

el inicio de la conexión y muestra la robustez frente a cambios en el tráfico. 

Finalmente, aprovechamos nuestra experiencia y revisamos las soluciones 

propuestas para la operación autónoma de vLink respaldada por sistemas DSCM. 

La contribución es doble: 1) por un lado, propusimos una solución basada en RL, que 

muestra un rendimiento superior con respecto a la solución basada en predicción; y 

2) debido a que los vLinks admiten conexiones de paquetes, se propone la 

coordinación entre las intenciones de ambas capas. En este caso, la intención de 

vLink utiliza las acciones realizadas por los PkC individuales. Los resultados 

muestran un rendimiento notable en comparación con la operación independiente de 

vLink. 
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Chapter 1 

Introduction 

1.1 Motivation 

The massive application of the optical technology [EON16], not only in the core 

segment of the operators’ transport networks, but also in the metro and even in the 

access segments [Ve13], is a clear consequence of its characteristic high bandwidth, 

low latency, and high reliability.  

One ingredient of the optical technology is that of the Forward Error Correction 

(FEC) techniques [Ty06] that allow to correct errors in the optical transmission. FEC 

techniques are applied in the end Optical Transponders (TRX) of optical connections 

(lightpath) to guarantee zero post-FEC Bit Error Rate (BER) transmission provided 

that pre-FEC BER is below some BER threshold; when such threshold is exceeded, 

zero post-FEC error cannot be achieved (FEC limit) and the lightpath will be 

consequently torn down. 

Although degradation of the Quality of Transmission (QoT) is related to linear and 

Non-Linear (NL) optical impairments, other effects like optical fiber and devices 

aging have a great impact as well. Aging effects are usually considered by means of 

costly system margins [Po17]; examples include the increasing fiber losses due to 

splices to repair fiber cuts, degradation of Optical Amplifiers (OA) noise factor, and 

detuning of the lasers in the TRXs leading to misalignment with filters in 

Wavelength Selective Switches (WSS). If those degradations (soft-failures) are not 

corrected (e.g., by retuning, repairing or replacing the related optical device/fiber), 

they can degenerate into hard-failures and affect a number of lightpaths supporting 

a large amount of network services; therefore, it is of paramount importance not only 
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to detect any QoT degradation as soon as possible [APV17], but also to localize the 

device/fiber causing the degradation to facilitate maintenance [APV18]. 

For such detection and localization to be possible, the control plane of the optical 

network, which based on the Software-Defined Networking (SDN) concept [Ne17], 

needs to be enriched with Monitoring and Data Analytics (MDA) capabilities 

[Ve19.1]. Once monitoring data have been collected from the data plane, data 

analytics algorithms, e.g., based on Machine Learning (ML) [Ra18.1], can analyze 

them either as soon as they are available or periodically to proactively detect the 

degradation and anticipate hard-failures before they actually happen; once detected, 

recommendations can be issued to the network controller so it can make decisions 

about rerouting and/or reconfiguring the network [Ve17], as well as to notify the 

management plane for scheduling maintenance. 

Further, a considerable effort is being payed towards disaggregating the optical layer 

to enrich the offer of available solutions and to enable the deployment of optical 

nodes that better fit optical network operators’ needs [Ve18]. Such disaggregation, 

however, tends to make network surveillance and maintenance more complex in 

general. 

From the operation perspective, the optical network is becoming more and more are 

complex, since it interacts with many other systems to provide end-to-end services. 

With localized and highly engineered operational tools, it is typical of these networks 

to take several weeks to months for any changes, upgrades or service deployments 

to take effect. However, as the dynamicity of the traffic increases, the need for self-

network operation becomes more evident. In this regard, advances in network 

automation [Ra18.1] are receiving considerable attention from the industry as the 

complexity of the network increases and the requirements from the services become 

more stringent and diverse. Autonomous network operation evolves from SDN and 

promises to reduce operational expenditures by implementing closed loops based on 

data analytics [Ve19.1], [Bo21]; network automation entails the collection of 

performance monitoring data that are analyzed, and the extracted knowledge is used 

to make decisions (control loop). Machine Learning (ML), a sub-domain of Artificial 

Intelligence (AI), is highly suitable for complex system representation [Ra18.1]. 

Using ML algorithms for network automation entails analyzing heterogeneous data 

collected from monitoring points in network devices. 

Among the large number of use cases for autonomous optical network operation, 

three major categories covering the entire lifecycle of optical connections are 

highlighted in [Ve19.1]. The first category refers to the automation of connectivity 

provisioning, when the provisioning process itself requires meeting some 

performance, e.g., achieve resource efficiency or minimize connection blocking 

[Da15], [Ch19.1]. In addition, monitoring and estimation of QoT is of paramount 

importance for both connection provisioning and reconfiguration. A second category 

is related to the dynamic network adaptation, which entails monitoring one or more 

network entities (e.g., an optical connection) and make decisions to achieve some 
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target performance. The target is to deal with situations ranging from those that 

require scaling or reallocating resources to elastically adjust to demand variations 

in volume and direction, to those that require healing and recovery. Examples 

include QoT degradation and connection rerouting [Ve18.2], in-operation network 

planning [Ve17], dynamic capacity allocation of virtual links supported by one or 

more optical connections or even reconfigure a virtual network topology [Mo17], 

[Ve18.1]. Finally, as a third category, degradation detection can be used also for 

failure localization [Sh19]. Here, the performance to be achieved is related, e.g., to 

availability metrics. 

However, the drawback is the proliferation of individual control loops, which brings 

also complexity to network management. In addition, defining how to achieve 

operational goals is very complex. To address some of these issues, Intent-Based 

Networking (IBN) [Cl21], [Ve21] allows the definition of operational objectives that 

a network entity, e.g., a lightpath or a traffic flow, has to meet without specifying 

how to meet them. IBN implements and enforces those objectives, often with the help 

of ML. This strategy reduces human intervention and paves the way to the 

application of AI/ML techniques.  

Another issue is that of data availability, since AI/ML usually require a large dataset 

for training purposes, which is difficult to obtain. The lack of data can be 

compensated with the use of tools that include analytic models to explain the data 

plane, e.g., GNPy [Fi18] for the optical and CURSA-SQ [Ru18] to generate packet 

traffic and measure Quality of Service (QoS) related performance. Such tools can run 

in sandbox domains [Ru20.1] and used for training AI/ML algorithms (see [ITU20]). 

1.2 Goals of the thesis 

In light of the above, this Ph.D. thesis focuses on the reliable autonomous operation 

of multilayer optical networks. Specifically, the following goals are defined to achieve 

this main objective: 

G.1 – Optical Network Health Analysis 

This first objective focuses on the reliability on the optical network and proposes 

methods for health analysis related to QoT degradation. Such degradation is 

produced by soft-failures in optical devices and fibers in core and metro segments of 

the operators’ transport networks. This goal targets at several aspects related to QoT 

degradation, including: 

• Detecting and localizing soft-failures that impact on the optical layer. 

• Finding the likely configuration of the optical devices and fibers that are the 

cause of a soft-failure, while minimizing both the computation requirements 

and the time needed for that. 
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• Estimating the severity of the soft-failure, defined as the time when some 

threshold value will be exceeded. The intention is to evaluate the urgency for 

making the proper decision to avoid disruption, including re-tuning, re-

routing, maintenance, etc. 

• Comparing estimation results to real test bed measurement for validating the 

accuracy of the proposed methods. 

G.2 – Reliable vLink Autonomous Operation 

This goal focuses on multilayer optical networks, where lightpaths are used to 

connect packet nodes thus, creating virtual links (vLink). Specifically, we should 

study how lightpaths can be managed to provide enough capacity to the packet layer 

without detrimental effects in their QoS, like added delays or packet losses, and at 

the same time minimize energy consumption. Such management must be as 

autonomous as possible to minimize human intervention. In addition, the relation 

between the packet and the optical layer should be considered, as it can bring global 

optimal solutions. 

G.3 – Autonomous Packet Flow Capacity Management 

This final goal targets at automating packet layer connections (PkC). Automating 

the capacity required by PkCs can bring further costs reduction to network 

operators, as it can limit the resources used at the optical layer. However, such 

automation requires careful design to avoid any QoS degradation, which would 

impact Service Level Agreement (SLA) in the case that the packet flow is related to 

some customer connection. 

A summary of the goals of the Ph.D. thesis is presented in Table 1-1. 

Table 1-1: Thesis goals 

Goals 

G.1 

Optical Network Health Analysis 

G.2 

Reliable vLink Autonomous Operation 

G.3 

Autonomous Packet Flow Capacity Management 

1.3 Methodology 

This Ph.D. thesis assumes the architecture in Figure 1-1, where the optical layer 

consists of a disaggregated set of ROADMs and TRXs, and a set of optical links 
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interconnecting ROADMs with a number of OAs. On top of the optical layer, a packet 

layer is configured, where the packet nodes are connected through the optical layer. 

The control plane includes: 

i) a Network Controller to program the network devices; 

ii) an MDA system [Ve19.1] that collates measurements from the data plane, 

analyses the data and issues recommendations to the network controller; 

iii) a QoT tool that estimates the SNR of the lightpaths and it is used for connection 

provisioning, as well as for diagnosis and failure localization. 

Monitoring and Data 
Analytics (MDA)

Network Controller
(SDN)

QoT tool

Data

Multilayer Optical
Transport Network

SNR EstimationRecommendations

TRX OA

ROADM

Measurements

TRX

SNR Estimation

Configuration

 

Figure 1-1: Overview of the proposed architecture 

To carry out the studies needed to meet the goals of this thesis, the methodology in 

Figure 1-2 will be followed. 

As the starting point of every study, one or more topologies and scenarios will be 

conceived. Then, due to the nature of this Ph.D. thesis’ goals, performance data will 

be generated, where configuration parameters of the optical devices and fibers or the 

packet traffic itself will be varied. Such initial data set will be the input for a data 

generator that will produce performance or traffic data that evolved with the time 

following some predefined profile. 
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Figure 1-2: Methodology to be followed in this Ph.D. thesis 

The main algorithms developed in this Ph.D. thesis will concentrate on the 

surveillance, localization and estimation on the one hand, and on the other, on the 

capacity management for autonomous operation. The former algorithms will receive 

the evolution of the performance and use an external QoT for estimating the likely 

configuration parameters of the optical devices and fibers, whereas the latter, will 

receive the packet traffic and compute the capacity of the lightpath or packet flow to 

guarantee the committed performance. 

Finally, the results obtained in the previous steps will be evaluated through 

experiments carried out in a real test bed. Such evaluation will help the 

improvement of the algorithms. 

The results will be disseminated and considered as the conception of new ideas 

requiring further research. 

1.4 Thesis outline 

The remainder of this Ph.D. thesis is organized as follows. 

Chapter 2 provides the needed background on AI/ML methods, SDN and IBN 

concepts. 

Chapter 3 briefly reviews the state-of-the-art related to the objectives of this Ph.D. 

thesis such as optical network health analysis and Autonomous Operation in 

multilayer optical networks and highlighting the niches to be covered. 

Chapter 4 focuses on goal G.1 and covers optical network health analysis. This 

chapter is based on the journal publication [TNSM21]. 
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Chapter 5 relates to goal G.2 and investigates vLink autonomous operation based on 

predefined policies and simple ML techniques. This chapter is based on one journal 

publication [JSAC21]. 

Chapter 6 concentrates on goal G.3 and is devoted to the application of apply 

Reinforcement Learning (RL) for the autonomous packet flow capacity management. 

This chapter is based on the journal publication [SENSORS21]. 

Chapter 7 aims the complete achievement of goal G.2, where we apply RL for reliable 

vLink autonomous operation. In addition, cooperation between PkC and vLink 

intents is proposed. This chapter is based on the journal papers [JSAC21] and 

[JOCN22]. 

Finally, Chapter 8 concludes this Ph.D. thesis. 

1.5 Contributions and References from the 

Literature 

For the sake of clarity and readability, references contributing to this Ph.D. thesis 

are labelled using the following criteria: [<conference/journal> 

<Year(yy)[.autonum]>], e.g., [ECOC20] or [JSAC21]; in case of more than one 

contribution with the same label, a sequence number is added. 

The rest of the references to papers or books, both auto references not included in 

this Ph.D. thesis and other references from literature are labelled with the initials 

of the first author’s surname together with its publication year, e.g., [Ve17]. 

 



 

 

 

 

 

 

 

 

 

 

 

Chapter 2 

Background 

In this chapter, we introduce the needed background on the IBN paradigm. IBN 

targets at defining high-level abstractions, so network operators can define what are 

their desired outcomes without specifying how they would be achieved. The latter 

can be achieved by leveraging network programmability, monitoring and data 

analytics, as well as the key assurance component.  

IBN relates to AI/ML techniques and those need large datasets for training purposes. 

In this chapter, we cover the AI/ML techniques that we consider for the solutions 

proposed in this Ph.D. thesis, as well as some challenges and solutions for the 

generation of accurate synthetic data. 

2.1 Toward Network Automation 

 Previous Architectures 

Network automation has been long time envisioned. In fact, the Telecommunications 

Management Network (TMN), defined by the International Telecommunication 

Union in [ITU00], is a hierarchy of management layers (network element, network, 

service, and business management), where high-level operational goals propagate 

from upper to lower layers. 

In the way toward autonomic adaptation to changes, while hiding intrinsic 

complexity to operators and users, the Internet Engineering Task Force developed 

the concept of Policy-Based Network Management (PBNM) [St04]. PBNM separates 

the rules governing the behavior of a system from its functionality. In PBNM, high-



Chapter 2 – Background 9 

level management policies are broken down into low-level configurations and control 

logic (policy rules) to ensure that the network provides the required services. Policies 

can be defined as a set of simple control loops; each policy rule consists of a set of 

events and conditions and a corresponding set of actions, where each condition 

defines when the policy rule is applicable. 

The most extended PBNM architecture consists of four systems (Figure 2-1): i) the 

policy management tool allows operators to define and update policies and it 

translates and validates policy rules; ii) the policy repository that stores the policies; 

iii) a set of policy decision points, which interprets the policies, translates them into 

a device-specific representation, and triggers the execution of the related actions 

whenever they satisfy the specified conditions; and iv) the policy enforcement points 

running on a policy-aware node that executes the policies. The drawback of PBNM 

is solving conflicts that might arise within or among policies; conflict resolution 

requires some external system or iterations with operators and/or users. 

Policy Management Tool

• Policy Editing

• Rule Translation

• Rule Validation

• Conflict Resolution 

Policy Decision Point

• Policy Trigger

• Rule Locator

• Device Adapter

• Resource Validation

Policy Enforcement 

Points

Policy Repository

Policy Decision Point

Communicate 

RuleControl

Loops

 

Figure 2-1 Policy-Based Network Management 

 Software-Defined Networking (SDN) 

The network management architecture has evolved with the development of the 

Software-Defined Networking (SDN) [Ne17] concept. SDN brings programmability 

to simplify configuration (it breaks down high-level service abstraction into lower-

level device abstractions), orchestrates operation, and automatically reacts to 

changes or events. SDN defines a centralized control plane architecture with global 

network vision, which can achieve optimal routing at provisioning time and during 

reconfiguration [Ve14]. Placed besides the SDN controller, a Monitoring and Data 
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Analytics (MDA) system was proposed in [Gi18] and [Ve19.1] to collect monitoring 

data, analyze such data, and make decisions (control loop) (Figure 2-2). Such data 

analysis can be based on AI / ML algorithms [Ra18.1], which enable network 

automation solutions, aiming at reducing operational costs. 

Programmability

(SDN)

Analytics

(MDA)

Orchestrate 

and configure 

systems

Collect 

Measurements

Reports Expected future 

conditions and 

recommendations

Requests

Network Management System

(NMS)

 

Figure 2-2 Software-Defined Networking and Monitoring and Data Analytics 

The MDA complements the SDN controller, so the network becomes proactive. Being 

proactive is of paramount importance, as the analytics system could anticipate 

anomalies and degradations (soft-failures) before they cause major problems or 

become hard-failures. Upon the detection, the analytics system can issue proper 

recommendations to the SDN controller, which can take the most appropriate action. 

Additionally, such analysis can be extended to forecasting network conditions that 

can be used to improve resource efficiency. In this architecture, control loops can be 

defined at various levels, from the device [APV17.2] to the network, depending on 

the use case [APV18], [APV17.1], as monitoring is collected and can be analyzed 

locally and/or network-wide. 

The drawback of this architecture is that the analytics system needs to combine 

information about services and the network itself, which, in practice, requires 

redesigning that and other control and management systems. 

 Intent-Based Networking 

Another approach for network automation is IBN [Cl21], [Ve21]. In IBN intents are 

defined as high-level abstractions that allow network operators to define what are 

their desired outcomes, without specifying how they would be achieved. 
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In an IBN environment thus, operators provide intents as inputs to guide content-

based systems to implement them without human intervention. Intents allow to 

define the goals and outcomes and provide: i) data abstraction to avoid users and 

operators to take care of specific device configuration; and ii) functional abstraction 

to avoid users and operators being concerned with how to achieve the goals. 

IBN complements SDN control and orchestration by allowing a declarative syntax 

while abstracting the operational process and focusing on behavior. Service 

definition can be based on templates to define resources and relationships for the 

service and allow specifying the Intent in terms of policy rules that guide the service 

behavior, specifying the applications, analytics and closed control loop events needed 

for the elastic management of the service. 
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Figure 2-3 Intent-Based Networking 

A translation mechanism is needed to convert the intent into a network configuration 

to be automatically deployed within the network infrastructure and a set of policies 

that the IBN needs to verify that such policies can be executed (Figure 2-3). During 

the service lifecycle, the service assurance system makes sure that the network 

continues to deliver on that intent based on the specified design, analytics, and 

policies and with the help of ML algorithms. Intent-Based ML algorithms find the 

right knowledge and data to identify conditions with significant semantic value 

(insights) from raw telemetry, without being explicitly programmed. Actionable 

insights and rich context together with policy-driven closed loops can take automated 

actions whenever the network deviates from the intent. Reporting is intended to 

generate descriptive outputs, e.g., statistical summaries, as well as knowledge 

transfer of main key performance indicators of the service. Differentiated reports can 
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be generated, so applications can reconfigure policies to adjust to service 

requirements and the network management can gather knowledge transferred for 

different services and processed jointly to improve actions [Ch21], [Ru20.2], [Ta21]. 

Finally, the IBN architecture can be complemented with sandbox domains, where 

model training will be performed with data from a data lake populated from 

heterogeneous data and context sources, including network, applications, and other 

systems, and augmented with data from simulation [Ve19.2], [Be20]. 

2.2 Advanced ML Techniques 

Many intent-based solutions need from ML techniques as a way to implement 

proactive approaches. In this section, we give some background on advanced ML 

techniques that are used in the applications that are presented in the next sections. 

Note that simpler (but not necessarily less effective) ML techniques for network 

automation can be found in [Ra19]. 

 Regression for Time Series 

Time series forecasting covers those methodologies that predict future events as a 

function of previous observations, as well as some additional features that may or 

not depend on time. Traditionally, Autoregressive Integrated Moving Average 

(ARIMA) models [ShSt17] have been proposed for time series forecasting, due to 

several key characteristics, such as easiness of interpretability and the ability to 

provide probability distributions of the predicted events. They assume linearity 

between features and need some data pre-processing to remove important 

components out of the model (such as trend or heteroscedasticity), which reduces 

their applicability for more complex time series events. 

Deep learning techniques can be applied to predict complex future events without 

considering strongly limiting assumptions. In particular, the use of feed-forward 

neural networks (FFNN) [ZhQi05] allows considering complex nonlinear relations 

among input features and the predicted future event. Moreover, they facilitate 

working with a mix of numerical and categorical inputs, as well as making 

predictions for several steps ahead, i.e., multi-step prediction. 

In general, FFNNs work better with pre-processed features that summarize the 

input information to be considered for prediction, e.g., some statistics and trend of 

the last observed events. This can be a limiting factor if features are not well 

designed. Another approach is to use raw data, e.g., all data observed in a large past 

window. In this regard, convolutional neural networks (CNN) have the inherent 

ability to learn and automatically extract features from raw input data [Ag18]. By 
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means of hidden convolutional layers, automatic identification and extraction of 

relevant features is produced in an unsupervised manner. 

Although both FFNN and CNN can be designed and trained to predict time series 

events, they were devised for applications that do not depend on time. On the 

contrary, Recurrent Neural Networks (RNN) [MaCh01] have been proposed 

specifically to deal with time series events, since they can explicitly manage the 

ordering among inputs. RNNs implement knowledge persistence, so it can be used 

for predictions. However, in general, this memory is short and knowledge vanishes 

with time. To improve RNNs, Long Short-Term Memory (LSTM) networks [MaCh01] 

were proposed to expand temporal dependence learning. LSTM units consist of a set 

of different complex gates, namely input, output, and forget gates and the coefficients 

of the network are dynamically managed to keep long term memory. LSTMs provide 

accurate prediction of time series with complex temporal correlation, e.g., periodical 

sharp changes [GuTh19]. 

 Reinforcement Learning 

Reinforcement Learning (RL) considers the paradigm of an intelligent agent that 

takes actions in an environment. At every discrete time step t, with a given state s, 

the agent selects action a with respect to a policy, and it receives from the 

environment a reward r and the new state s’. The objective is to find the optimal 

policy that maximizes a cumulative reward function. RL fits perfectly as part of 

intent agents, as the related problems can be usually stated in the form of a Markov 

decision process and they can be solved RL using dynamic programming techniques. 

In addition, in contrast to supervised learning, RL does not need labeled datasets 

and it can correct sub-optimal actions through exploration. 

The simplest RL is Q-learning [SuBa18], which is a model-free discrete RL method 

that uses a Q-table to represent the learned policy, where every pair <s, a> contains 

a q value. Being at state s, the action a to be taken is the one with the highest q value 

(or it is chosen randomly). Once the action is implemented and the new state s’ and 

the gained reward r are received from the environment, the agent updates the 

corresponding q value in the Q-table. Q-learning works efficiently for problems 

where both states and actions are discrete and finite. However, it usually introduces 

overestimation, which leads to suboptimal policies, and the Q-table grows with the 

number of states. 

Deep Q-learning (DQN) substitutes the Q-table by a FFNN that receives a 

continuous representation of the state and returns the expected q value for each 

discrete action [SuBa18]. However, the FFNN tends to make learning unstable, so a 

replay buffer can be used to retrain the FFNN. Double DQN [Ha16] uses two 

different FFNNs (learning and target) to avoid overestimation, which happens when 

a non-optimal action is quickly biased (due to noise or exploration) with a high q 

value that makes it preferably selected. The learning model is updated using the q 
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values retrieved from the target model, which is just a simple copy of the learning 

model and it is periodically updated. Finally, D3QN [Wa16] uses two different 

estimators to compute the q value of a pair <s, a>: i) the value estimator, an average 

q value of any action taken at state s; and ii) the advantage estimator, which is the 

specific state-action dependent component. The sum of both components returns 

expected q values. 

DQN-based methods assume a finite discrete action space. Nonetheless, other 

approaches, such as Actor-Critic methods [Fu18], use continuous state and action 

spaces. Actor-Critic methods train two different types of models separately: i) actors, 

which compute actions based on states, and ii) critics that evaluate the actions taken 

by actors, i.e., compute q values. Both actor and critic models can be implemented by 

means of FFNNs. Aiming at reducing overestimation, the TD3 method [Fu18] 

considers one single actor and two different critic models, where the minimum value 

from the two critics is used for learning the optimal policy. 

2.3 Examples of Autonomous Network Operation 

Autonomous network operation can be reactive (i.e., in response to events) or 

proactive (i.e., acting ahead of time). Let us illustrate the difference with an example, 

where a packet connection (PkC) is established and conveys a traffic flow with 

unknown traffic characteristics. Our target here is to allocate just enough capacity 

to ensure the required performance, which would optimize resource utilization. 

However, every different PkC supports services with different operational goals in 

terms of delay and throughput (e.g., keeping the total delay below a given maximum, 

or minimizing the capacity while ensuring zero packet losses, etc.), and so, the 

tailored capacity dimensioning is required. 

Imagine that a policy-based management based on a fixed threshold (e.g., defined in 

terms of the ratio traffic volume over capacity) is set to operate the capacity of a PkC. 

Note that such operation can be highly reliable and it is based on a specific rule that 

is easily understood by human operators. However, deciding the value of the 

threshold requires knowledge of the traffic: i) a high threshold value (e.g., 90%) 

would result into poor performance coming from high delay, and it can be worse when 

the variability of the traffic is high; and ii) a low threshold value (e.g., 60%) would 

result into poor resource utilization. Therefore, some traffic analysis would be 

required. Further, since traffic characteristics can change over time, such analysis 

need to be continuously performed to change the operating model, when needed. 

When PkCs are routed on top of virtual networks, where vLink are supported by the 

optical layer, capacity might not be instantly allocated. Let us illustrate this problem 

with an example. Figure 2-4a shows two PkCs (DC1-DC4 and DC2-DC3) that are 

established on top of a virtual network. Packet nodes are connected through vLinks, 

each supported by lightpaths on the optical layer. To minimize overprovisioning, 
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such capacity is dynamically adjusted, thus enabling the dynamic vLink capacity 

management, e.g., by establishing and releasing parallel lightpaths between the end 

packet nodes or activating and deactivating subcarriers in DSCM systems. 

Note that modifying the capacity of a PkC entails programming some rules in packet 

nodes and new capacity becomes immediately available. In contrast, adding more 

capacity to the vLink entails establishing a new lightpath, which requires some time 

(e.g., one minute). Therefore, vLink intents must make decisions with enough time 

to guarantee capacity availability. Such time depends, among others, of the packet 

traffic variation and thus, the value of the configured threshold could result into high 

delay and packet loss.  
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Figure 2-4 Capacity operation of PkCs and vLinks 

The inner graph for PkC DC2-DC3 in Figure 2-4a shows the capacity adjustments 

performed assuming that the operational goal of the PkC is to minimize the allocated 

capacity to reduce connectivity costs, by following as close as possible the input 

traffic, while avoiding traffic loss. Figure 2-4b-c present two alternative approaches 

to operate the capacity of the PkCs, based on a simple threshold rule or based on an 

intelligent ML-based algorithm, in this case, RL. Every connection (PkC or vLink) 

intent agent collects the amount of input traffic that is injected to the connection, as 

well as some other measurements, like packet loss and delay, and it determines the 

capacity of the connection that will be needed to meet the given operational goals for 

the next period (e.g., one minute). Such capacity can be used to program some rules 
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in the packet nodes not only to increment the capacity but also, e.g., to adjust the 

amount of buffer at the input of the connection. 

2.4 Digital Subcarrier Multiplexing (DSCM) 

DSCM systems, based on advanced digital signal processing (DSP) modules, 

represent a key technology to transparently route heterogenous data in an efficient 

and cost-effective way [Zh11], [Ra16]. The key-aspect of DSCM with respect to single 

wavelength transmission is the usage of one single laser to digitally generate 

multiple Nyquist SC, e.g., 4, 8 or more, instead of a single one [Kr17], [Su20].  

One of the major advantages of using DSCM in optical transport networks is to keep 

high data-rates (e.g., 400 Gb/s) while using lower symbol rates (SR) per SC (e.g., 8 or 

11 GBaud). As an example, a 32 GBaud system can be implemented using 4×8 

GBaud SCs, multiplexed at near Nyquist sub-carrier spacing. This lowers the 

penalties caused by fiber propagation impairment, such as dispersion and nonlinear 

Kerr effects [Qi14]. The DSCM is realized at the transmitter (Tx) side and each SC 

is individually detected and post-processed at the coherent receivers (Rx); SCs with 

different modulation format (MF), SR, and FEC overhead can coexist. Figure 2-5 

illustrates a DSCM system with 4 SCs, where each Sc can be independently 

modulated using Quadrature Phase-Shift Keying (QPSK) and Quadrature 

Amplitude Modulation (QAM). For an introduction to DSCM, we refer the reader to 

[Su20] and the guide in [Infinera].  
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Figure 2-5 Example of a DSCM system 

The flexibility provided by DSCM systems can be used to substantially reduce the 

energy consumption; for example, in case the actual amount of traffic that the 

lightpath needs to transport is low, the number of SCs that are active can be reduced. 

This represents a step further in terms of flexibility with respect to the sliceable-

bandwidth variable transponder proposed in [Sa15], by achieving a higher 

granularity and increasing the flexibility thanks to the digital generation of the SCs; 

this might be useful, especially for metro applications [Ve13]. 
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2.5 Generation of Reliable and Accurate Synthetic 

Data 

How to gather data for training ML algorithms is one of the main challenges that 

need to be solved for the deployment of network automation solutions. The objectives 

to be achieved include not only the quality of such dataset, which is directly related 

to the final accuracy of the prediction for network operation, but also the time needed 

for that collection. Note that in many cases, performance-related data heavily 

depends on the actual characteristics of the network entity of interest and are only 

available when such entity is set-up. For instance, QoT measurements depend on 

the actual routing and spectrum allocation of an optical connection; in consequence, 

real measurements can only be available after such optical connection is established, 

and might change due to the provisioning of neighboring connections. However, ML 

algorithms need to be ready to be deployed at connection set-up time and thus, 

special techniques are needed to train accurate ML algorithms before data for that 

specific network entity is available. Further, the inherent prediction ability of ML 

algorithms can be used during the lifetime of the network entity to elastically 

allocate resources to the optimality. 

Synthetic data generation is one of the solutions that can be implemented for the 

identified challenges and can run in a sandbox domain. However, for the generated 

data to be reliable and accurate, they must be generated using techniques that 

rigorously reproduce the real scenario, thus creating a digital twin. Such a digital 

twin can be based on a combination of analytics and simulation models, which need 

to be tuned using the characteristics of the real entity, as well as with real 

measurements collected before or during operation. 

In this context, some open-source projects, like GNPy, are considering the specific 

characteristics of the different optical devices that participate in the optical layer, 

like Reconfigurable Optical Add / Drop Multiplexers (ROADM), TRXs, and In-Line 

OAs, e.g., Erbium Doped Fiber Amplifier (EDFA). The GNPy library is being 

developed within the Telecom InfraProject [TIP] for physical layer -aware 

networking [Fi18]. The core of GNPy is the QoT estimator calculating the 

Generalized Signal to Noise Ratio (GSNR), considering both the ASE noise and NL 

Interference (NLI) accumulation; GSNR is the accepted parameter as performance 

meter for optical data transport, corresponding to the error vector magnitude (EVM) 

[Ch12]. For the NLI evaluation, the current version of GNPy is using the generalized 

Gaussian-noise model [Ca18]. In order to derive the GSNR, a series of parameters is 

provided as input to the GNPy, together with the network topology, which includes 

the characteristics of the ROADMs, fiber types, span length, and EDFAs gain, power, 

and Noise Figure (NF). GNPy can be used as a tool to estimate the expected QoT for 

a set of lightpaths for several purposes, from off-line and in-operation network 
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planning [VeRu17] to performance measurements dataset generation for ML 

algorithm training purposes [Ve19.2]. 

For the packet layer, a digital twin can be based on the CURSA-SQ methodology 

[Ru18]. CURSA-SQ’s includes a continuous G/G/1/k queue model with a first-in-first-

out discipline based on the logistic function, which enables solving the model in near-

real time. 

To illustrate accurate data generation, Figure 2-6 presents two examples of digital 

twins for the packet (Figure 2-6a-b) and the optical layer (Figure 2-6c-d). For the 

packet layer, Figure 2-6a presents an example of a network with four nodes 

interconnecting four data centers (DC), where DC1-3 exchange data with DC4 (flows 

are also represented). Let us assume that traffic is monitored at the input interfaces, 

so a number of observation points have been activated. A digital twin is represented 

in Figure 2-6b based on the CURSA-SQ methodology. To accurately reproduce the 

real scenario, however, parameter tuning for the queues is required. To that end, the 

dynamic configuration module is in charge of defining the traffic to be generated and 

consumed by every DC, as well as the entities configuration, which evaluates the 

accuracy of the estimation by comparing it against the real traffic conditions 

measured from the observation points in the network. 
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Figure 2-6 Examples of digital twins for the packet (a-b) and the optical (c-d) 

layers. 
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In the case of the optical layer, Figure 2-6c reproduces an example of optical 

connection established between two locations A and Z; optical transponders in the 

remote locations, cross-connects and intermediate amplifiers are represented. As for 

the optical layer, a digital twin is represented in Figure 2-6d, based on the GNPy 

tool [Fi18] to estimate the expected SNR of the optical connections. In this case, the 

dynamic configuration module finds the most likely value of modeling parameters 

based on the monitoring data received from the network. 

 



 

 

 

 

 

 

 

 

 

 

 

Chapter 3 

State-of-the-Art 

In this chapter, we present a review of the state-of-the-art of the different goals 

defined for this Ph.D. thesis with the twofold objective of ensuring that these goals 

have not yet been covered in the literature and for serving as a starting point for this 

research work. 

3.1 Optical Network Health Analysis 

 Failure Detection and Localization 

Network performance monitoring is a key enabler for failure identification and 

localization, which can greatly bring down both, the repair time and operational cost 

of optical networks. Many research efforts have been dedicated to develop failure 

localization techniques for hard failures, i.e., unexpected events that suddenly 

interrupt the established connections. Nonetheless, although some works can be 

found in the literature focused on the identification and localization of soft failures, 

i.e., events that progressively degrade the QoT, this topic remains rather unexplored. 

Owing to the fact that soft failures might eventually evolve to hard failures, it is of 

paramount importance not only to detect them a priori before connections disruption, 

but also to localize their cause in order to take proper action, e.g., finding a 

restoration path. Such monitoring data can be used by data analytics applications, 

especially those based on ML [Ra18.1]. 

Recently, the authors in [APV17] proposed several solutions to monitor the 

performance of lightpaths at the transponders side to verify their proper operation, 

as well as to detect BER degradations. The authors studied several soft-failure 
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causes affecting signal QoT, such as Filter Shift (FS) and Filter Tightening (FT), and 

proposed algorithms to detect and identify the most probable failure. Some of these 

failures happen in the optical switching intermediate nodes, so monitoring the signal 

solely at the egress node (or even ingress) does not allow their localization. Hence, 

monitoring techniques to evaluate QoT in-line are required. 

As the abovementioned failures noticeably affect the optical spectrum of the 

lightpaths, Optical Spectrum Analyzers (OSA) can be used to monitor the spectrum 

along the transmission line aiming at detecting and localizing that type of failures. 

Practically speaking, the realization of such solutions become possible with the 

emergence of a new generation of compact cost-effective OSAs with sub-GHz 

resolution in the form of optical components [FINISAR] allowing real-time 

monitoring of the optical spectrum of the lightpaths. 

Considering the optical spectrum of a lightpath, when a signal is properly configured, 

its central frequency should be around the center of the assigned frequency slot to 

avoid filtering effects, and it should be symmetrical with respect to its central 

frequency. The authors in [APV18], presented several descriptive features to 

characterize the optical spectrum of a lightpath. Such features were used to train a 

set of ML algorithms to detect and identify failures. The most common filtering 

related failures are FS and FT; the optical spectrum becomes asymmetrical in the 

case of FS, and its edges get noticeably rounded in the case of FT. These 

irregularities allow distinguishing optical spectra suffering from such failures from 

the properly configured ones. 

Authors in [Sh19] extended the work in [APV18] and studied different feature-based 

approaches that use optical spectrum features for classification, as well as the 

residual-based approach, in which the received signal is pre-processed using a 

theoretically-calculated expected signal. Note that one single filter type was 

considered in [APV18] and [Sh19], which limits the deployment of ML approaches in 

real operator networks that usually consist of equipment from different vendors. The 

most straightforward solution to overcome this limitation is to have different models 

being trained upon various types of filters that might be available in the network. 

Nonetheless, it makes the training phase very complex and data-hungry. Yet, it will 

not be easy to comprehend the sequence of filters a priori and the responses of a 

slightly non-identical filters in the network might not be well detected, necessitating 

even more combination of models to have an appropriate generic model. The 

application of out-of-field model training and in-field adaptation [Ve19.2] leads to a 

robust, yet feasible, solution for networks with heterogeneous filtering; just one type 

of filter is used for ML training and adaptation of the optical spectrum acquired from 

OSA that have passed through several type of different filters is developed. 

In fact, to the best of our knowledge, no works in the literature have focused on the 

analysis of the QoT degradation produced by soft-failures in the optical devices and 

fibers and the estimation of the evolution of the values of its working parameters 

that are causing the observed effects in the QoT. Therefore, our work will be focused 
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on addressing the latter by implementing techniques to localize soft-failures and 

device parameters estimation and study their SNR measurement based on the value 

of working parameters. 

 Feasible Configuration of Optical Devices and Fibers 

Several approximate non-linear fiber propagation models have been proposed over 

the years. Recent re-consideration and extension of earlier modeling efforts has led 

to the formalization of the so-called Gaussian-noise (GN) model. The evidence 

collected so far hints at the GN-model as being a relatively simple and, at the same 

time, sufficiently reliable tool for performance prediction of uncompensated coherent 

systems, characterized by a favorable accuracy versus complexity trade-off. Authors 

in [Po14] tried to gather the recent results regarding the GN-model definition, 

understanding, relations versus other models, validation, limitations, closed form 

solutions, approximations and, in general, its applications and implications in link 

analysis and optimization, also within a network environment.  

Authors in [Po12] focused on the GN model which describes non-linear propagation 

in uncompensated coherent transmission systems. They reviewed similar models 

and validation efforts and then the main equations of GN model were presented. The 

features of equations and the main characteristics of the NLI noise spectra that the 

GN model produces were discussed. To speed up the numerical integration, they 

proposed a new formulation in hyperbolic coordinates. Also, for distributed-

amplification scenarios, an extension of GN model was introduced. They studied 

about NLI noise accumulation vs distance and band-width and the concept of GN 

model for optimization and design of networks and system were discussed. 

In conclusion, considering the previous works, it is obvious that the GN model 

appears as a useful tool for system and network analysis design and control and is 

suitable to focus on to further study in deep to propose methods to use the GN model 

as an accurate source. 

 Severity Estimation 

Optical connections support virtual links in MPLS-over-optical multilayer networks 

and therefore, errors in the optical layer impact on the quality of the services 

deployed on such networks. Monitoring the performance of the physical layer allows 

verifying the proper operation of optical connections, as well as detecting BER 

degradations and anticipating connection disruption. Authors in [APV17] used 

linear extrapolation in three different time instants for max BER anticipation. 

Simulation results in this work showed that maximum BER violation was 

anticipated several days before the connection was disrupted, which allows planning 

a network reconfiguration to be per-formed on low activity hours. 
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Authors in [Sh18] used the prediction to anticipate a potential anomaly, when a 

signal’s CF shifts and might impacting neighboring signals. They proposed an 

algorithm that periodically scans the whole C-band and compares the found signal 

against the list of lightpaths received from the network controller. By using this scan 

process, three different anomalies can be identified. The detection of any of these 

anomalies triggers a notification with critical severity level to the controller. 

In compare to previous works’ methods, we can use polynomial extrapolation in our 

estimation because it fits a nonlinear model to data and we can make better 

prediction in our research. 

 Experimental Validation 

The key-operation to enabling an effective data transport abstraction in open optical 

line systems (OLS) is the capability to predict the QoT, that is given by the GSNR, 

including both the effects of the ASE noise and the nonlinear interference NLI 

accumulation. Among the two impairing effects, the estimation of the ASE noise is 

the most challenging task, because of the spectrally resolved working point of the 

EDFA depending on the spectral load, given the overall gain. While, the computation 

of the NLI is well addressed by mathematical models based on the knowledge of 

parameters and spectral load of fiber spans. So, the NLI prediction is mainly 

impaired by the uncertainties on insertion losses a spectral tilting. An accurate and 

spectrally resolved GSNR estimation enables to optimize the power control and to 

reliably and automatically deploy lightpaths with minimum margin, consequently 

maximizing the transmission capacity. Authors in [Cu19] addressed the 

potentialities of ML methods combined with analytic models for the NLI 

computation to improve the accuracy in the QoT estimation. They also analyzed an 

experimental data-set showing the main uncertainties and addressing the use of ML 

to predict their effect on the QoT estimation. 

We can conclude that, although some previous works have proposed algorithms and 

different methods for failures detection and localization at the optical layer, many 

improvements can still be made, where finding the actual configuration of optical 

devices and fibers can be used to improve the performance of the network. 

As summarized in Table 3-1, in this Ph.D. thesis we assume that modulation formats 

used in the metro segment are 16QAM and QPSK and devices that will be suffering 

from soft-failure are the TRX, WSS and Fiber; in the other side modulation format 

in the core segment will be limited to just QPSK and devices that will be suffering 

from soft-failure are the optical TRX, A/D WSS and Optical Amplifier. This advanced 

network performance analysis procedure supported by GNPy tool facilitates 

diagnosis and network maintenance. 
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Table 3-1: Study scenarios 

Metro scenarios Core scenarios 

Modulation formats 

QPSK and QAM-16 QPSK 

Degradations (Soft-failures) 

WSS, TRX, and Fiber Optical Amplifier, TRX, and WSS 

3.2 Reliable vLink Autonomous Operation 

Over 38% of the total power consumption of a coherent optical transponder comes 

from subsystems that could be switched off in case a SC can be de-activated [Fl20]. 

The authors in [Fr17] show power increments of ~28% for an optical transponder 

when increasing the order of the QAM over QPSK and about the same ratio when 

increasing the symbol rate from 32 to 43 GBaud. Therefore, a proper dynamic 

configuration of the SCs in terms of MF and SR to adapt the capacity of the lightpath 

to the actual traffic can lead to non-negligible energy savings, since the power 

consumption of several subsystems, including those that are always active, depends 

on the actual configuration of the SCs.  

Some works can be found in the literature exploiting the inherent capability of 

Elastic Optical Networks (EON) [EON16] to adapt lightpaths as a function of the 

actual traffic, and to create multiple parallel lightpaths to offer a combined capacity 

as seen from the virtual link (vlink) perspective in the packet layer (see e.g., [Kl13], 

[Pa14]). In this work, we target at extending EON capabilities by adopting dynamic 

capacity management of SC-operated lightpaths. To implement such dynamic 

configuration of the SCs, both the Tx and the Rx sides must be synchronized to 

properly encode and decode the optical signals of every SC. To that end, the SDN 

controller can be in charge of configuring each SC of every lightpath by programming 

both sides with the specific configuration. However, this would significantly increase 

the number of tasks to be performed within the centralized controller (i.e., analyzing 

measured traffic, finding optimal SC configuration, and re-tuning Tx and Rx when 

needed for every single lightpath) and, because it requires near real-time operation, 

it would introduce more complexity in the whole network. 

However, a key issue remains to be addressed; i.e., how the lightpath can be 

managed to provide enough capacity to the packet layer without detrimental effects, 

like added delays or packet losses, and at the same time minimize energy 

consumption. 
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3.3 Autonomous Packet Flow Capacity 

Management 

Several works have proposed the application of RL algorithms for autonomous 

network operation. In the context of optical networking, the authors in [Ch19.1] 

proposed the use of Actor–Critic-based algorithms running in the SDN controller for 

dynamic lightpath provisioning. They showed that changes in the traffic profile 

impact the obtained performance. The authors of [Ch19.2] extend their work from 

[Ch19.1] to multi-domain scenarios where multiple RL agents improve their learning 

by transferring knowledge. The authors of [Tr21] studied the application of several 

deep RL algorithms (including DQN) and reward functions to increase network 

availability in SDN-controlled wide area networks. Finally, the work in [Pa19] 

proposed an RL algorithm for autonomous bandwidth allocation in the context of 

multilayer optical networks. They proposed a centralized algorithm running in the 

SDN controller that supervises the network performance. When the network 

performance degrades, the centralized algorithm tunes parameters in the RL 

algorithms. 

One of the key issues in the previous works is the time needed to learn optimal 

policies, as exploration entails low-reward decision making (i.e., far from optimal 

operation), as shown in [Ch19.1]. In view of this, the performance of RL methods is 

typically evaluated after some training phase, i.e., when reward achieves a 

stationary behavior. However, a subject that is poorly or not even considered in the 

literature is when RL algorithms need to operate before they are properly trained. 

Note that this happens in our case, as the actual characteristics of the traffic flow 

are unknown until it is provisioned. Moreover, it is not realistic to assume, in 

general, the same conditions during training and operation phases, due to mid/long-

term traffic evolution, which makes it difficult to reproduce highly accurate 

operation conditions during training. To solve these issues, the authors of [Ve19.2] 

proposed a general learning lifecycle that included both offline training (e.g., in a 

sandbox domain [Ru20.1]) and online learning, in the context of supervised ML. The 

objective of that work was to accelerate autonomous operation by deploying accurate 

models that are firstly trained offline and fine-tuned while in operation, thus 

adapting pre-trained models to actual in-field operation conditions. 

Although some previous works have proposed algorithms and different methods for 

autonomic PkC capacity management, they have not considered realistic network 

scenarios where RL approaches can be deployed without a major impact on the 

performance of the PkC until the optimal policies are learned. 
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3.4 Conclusions 

In this chapter, we have reviewed the state-of-the-art of relevant works related to 

the goals of this thesis. Table 3-2 summarizes the study.  

Table 3-2: State-of-the-art summary 

Goals References 

G1 - Optical Network Health 

Analysis 

Failures detection and localization 

[Ra18.2], [APV17], [FINISAR], [APV18], [Sh19], 

[Ve19.2] 

Feasible configuration of optical devices and 

fibers 

[Po14], [Po12] 

Severity Estimation 

[APV17], [Sh18] 

Experimental Validation 

[Cu19] 

G2 - Reliable vLink 

Autonomous Operation [Fl20], [Fr17], [EON16], [Kl13], [Pa14] 

G3 - Autonomous Packet 

Flow Capacity Management 
[Ch19.1], [Ch19.2], [Tr21], [Pa19], [Ve19.2], 

[Ru20.1] 

 

In view of this study, although some previous works have presented proposals 

related to degradation detection and localization and autonomous operation, the 

challenges defined as objectives for this Ph.D. thesis remain still open. In the 

following chapters, we present the essence and contributions of this Ph.D. thesis for 

the defined objectives. 

 



 

 

 

 

 

 

 

 

 
 

 

 

 

Chapter 4 

Optical Network Health Analysis 

In the previous chapters, we have reviewed the state-of-the-art and the background 

concepts needed to fully understand this work. In this chapter, we focus on analyzing 

the health of the optical network. 

The performance of optical devices can degrade because of aging and external causes 

like, for example, temperature variations. Such degradation might start with a low 

impact on the QoT of the supported lightpaths (soft-failure). However, it can 

degenerate into a hard-failure if the device itself is not repaired or replaced, or if an 

external cause responsible for the degradation is not properly addressed. In this 

chapter, we propose comparing the QoT measured in the transponders with the one 

estimated using a QoT tool. Those deviations can be explained by changes in the 

value of input parameters of the QoT model representing the optical devices, like 

noise figure in optical amplifiers and reduced Optical SNR (OSNR) in the WSS. By 

applying reverse engineering, the value of those modeling parameters can be 

estimated as a function of the observed QoT of the lightpaths. Experiments reveal 

high accuracy estimation of modeling parameters, and results obtained by 

simulation show large anticipation of soft-failure detection and localization, as well 

as accurate identification of degradations before they have a major impact on the 

network. 
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4.1 Introduction 

The massive application of the optical technology [EON16] in the core, metro, and 

access segments [Ve13], is a clear consequence of its high bandwidth, low latency, 

and high reliability, which enables the deployment of 5G and beyond. Because of the 

growing complexity of optical systems, it is critical to assess the QoT of optical 

connections (lightpath). This can be quantified in terms of Signal to Noise Ratio 

(SNR) and measured within Optical TRX. 

The QoT is related to the linear and nonlinear (NL) optical noise, and it can be 

estimated based on a model describing the physics of propagation, e.g., the 

generalized Gaussian Noise (GN) model [Ca18]. Additionally, effects such as aging 

of optical devices might severely affect the QoT. Aging effects are usually considered 

by means of costly system margins [Po17]. Examples include: i) the degradation of 

OA, which can be quantified as increased NF; and ii) detuning of the lasers in the 

TRXs or frequency drift of the filters in WSSs, which can lead to misalignments. If 

those degradations (soft-failures) are not properly handled (e.g., by retuning, 

repairing, or replacing the related optical device), they can degenerate into hard-

failures when the SNR reduces, and zero post- FEC error cannot be achieved (FEC 

limit); this could affect a large portion of network services. Therefore, it is of 

paramount importance not only to detect any QoT degradation, but also to identify 

the cause and localize the device causing the degradation. 

Further, a considerable effort is being paid towards disaggregating the optical layer 

to enrich the offer of available solutions and to enable the deployment of solutions 

that better fit optical network operators’ needs [Ve18.2]. Such disaggregation, 

however, tends to make network surveillance and maintenance more complex in 

general, due to the absence of vendors providing support of vertically integrated 

network equipment. 

To support failure management, the control plane of the optical network needs to be 

enriched with MDA capabilities [Ve19.1], [Gi18]. Once monitoring data, 

notifications, and alarms have been collected from the data plane, data analytics 

algorithms (e.g., based on ML techniques [Ra18.1]) can analyze them to proactively 

detect the degradation, identify and localize the cause, and anticipate hard-failures 

before they occur. Once detected, identified, and localized, recommendations can be 

issued to the network controller so it can decide about rerouting and/or reconfiguring 

the network [Ve17], as well as notifying the management plane for maintenance. 

Note that ML-based approaches require training and validation datasets, which 

makes their practical application difficult due to key drawbacks, namely: i) limited 

data availability; ii) long duration of the training and validation phases until 

obtaining robust and reliable ML models (this could be accelerated by using 

simulation tools in sandbox domains [FGML19], [Ru20.1]); iii) poor adaptability in 
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the event of physical layer changes; and iv) reduced exportability to other scenarios/ 

conditions different than those used for training. 

The topic of failure management in optical networks (including anticipated 

detection, identification, and localization) has been extensively explored and several 

related works can be found in the literature, in particular using ML techniques (see 

the tutorial in [Mu19]). For soft-failure detection and identification, the authors in 

[APV17.1] proposed to analyze the evolution of the BER in the transponders and 

issue notifications when the BER increases; an algorithm running in the centralized 

network manager anticipates degradations and identifies the most probable cause of 

failure and its probability. The work in [Sh19] focused on detecting and identifying 

filter-related failures by analyzing the spectrum of optical signals at the receiver. An 

autoencoder-based solution to detect and identify soft-failures in optical links was 

proposed in [Va20], while in [Lu20] the authors proposed a convolutional neural 

network running in the TRXs that estimates the probabilities for four types of soft-

failures with good performance for single failure scenarios. The work in [Zh20] 

presented a solution for failure prediction that scores the features related to failures 

based on their importance. The authors in [Pa18] proposed a classifier to predict the 

failure probability of optical links complemented with a heuristic for failure 

localization under the single link-failure assumption. Methods for localization of 

filter-related failures were proposed in [APV18] by analyzing the optical spectrum 

in intermediate locations. Finally, a method based on graph neural networks was 

proposed in [Li20] that analyzes the alarms received to identify the root alarm and 

localize the failure. 

Apart from alarm correlation, several of these works centered on analyzing the QoT 

represented by the measured BER, spectrum, etc. for detecting failures, or 

correlating alarms for localization. In contrast, the status of optical devices was 

analyzed in [Ra18.2] through measures related to device parameters like optical 

power, gain, temperature, etc. to proactively detect and localize potential faults and 

determining the likely root-cause. This approach to failure detection, derived from 

the analysis of devices’ parameters, is key to really identify and localize the failure 

itself. 

However, it is not always possible to obtain the right value of those devices’ 

parameters that can be related to the QoT, in particular in disaggregated scenarios. 

Note that any QoT model uses a set of input parameters to describe the specific 

characteristics of the different optical devices that participate in the optical layer, 

like WSSs as building blocks of ROADM, TRXs, and In-Line OAs, e.g., EDFA. The 

authors in [Se18], [Bo18] proposed ML methods for finding the right value of such 

QoT model’s parameters aiming at improving the QoT estimation. Our approach 

applies reverse engineering from the real QoT values—collected periodically from 

the TRXs—to derive the evolution of the value of QoT model’s parameters (referred 

to as modeling parameters in the rest of the chapter) that explain such QoT 
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observations. We believe that, by analyzing such evolution, it is possible to anticipate 

more precisely future degradations, and enable failure localization. 

This chapter proposes the MESARTHIM methodology that targets at: i) detecting 

and localizing the optical device responsible for the soft-failure; ii) identifying the 

modeling parameters that explain the observed effects in the QoT; and iii) estimating 

the evolution of the value of such parameters to find whether the soft-failure will 

degenerate into a hard-failure. This advanced network performance analysis 

procedure facilitates diagnosis and network maintenance. Furthermore, because the 

relation between monitored SNR and modeling parameters is not linear, the analysis 

carried out in the later space (i.e., modeling parameters) can accelerate soft-failure 

detection, identification, and localization. 

The rest of the chapter is organized as follows. MESARTHIM methodology for soft-

failure detection, identification, and localization, modeling parameter estimation 

and severity estimation. Section 4.2 details its building blocks. Network surveillance 

and soft-failure localization based on device modeling parameter estimation, which 

is a key part of the MESARTHIM methodology. Soft-failure localization and device 

working parameters estimation in disaggregated scenarios algorithms based on the 

analysis of the SNR and optical device modeling parameters are detailed in Section 

6.2. Moreover, this section presents a procedure that combines the analysis of SNR 

values with the expected ones, obtained with the open source GNPy QoT tool [Fi18], 

to find the most likely value of modeling parameters. Procedures for identification 

and severity estimation, once a soft-failure has been detected and localized. Section 

6.2 applies time series forecasting techniques to provide answers to critical 

questions, such as whether and when an SNR threshold will be violated for a given 

soft-failure. 

The discussion is supported by the experiments and numerical results presented in 

Section 4.5. 

4.2 The MESARTHIM methodology 

Among the effects degrading the QoT within optical systems, in this chapter, we 

consider degradations arising from ROADMs and In-Line OAs, where a ROADM 

consists of WSSs and OAs. Both building blocks face aging and non-ideal conditions. 

For example, although OAs are considered robust devices, they also suffer time-

varying effects like NF which might increase over time due to the aging of the 

amplifier building blocks. The NF is also frequency dependent and, as the allocation 

of the spectrum might become time-dependent. Therefore, the NF can be modeled as 

a time-frequency variation. The pump lasers of the EDFAs also present degradation, 

which can be adjusted thanks to internal control loops, but which still reduces the 

EDFA efficiency. For what concerns the WSSs, they might suffer temperature-

dependent variations, which might lead to frequency shift over time; furthermore, 
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individual channels can drift as well, and both effects can be highly detrimental in 

terms of QoT. In the context of this chapter, we consider gradual time-varying device 

degradations on OA and add/drop (A/D) WSSs in the ROADMs. Specifically, we 

consider that soft-failures can be explained by one of the following events in the 

modeling parameters: a) NF increase; b) maximum optical output power (P-max) 

decrease; and c) OSNR degradation caused by frequency drifts of the WSSs due to 

temperature fluctuation. Our proposed architecture for soft-failure analysis is based 

on that in Figure 1-1, where the QoT tool is based on GNPy. 
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Figure 4-1 Overview of the proposed MESARTHIM methodology 

The MDA system stores a replica of the operational databases (DB) that are 

synchronized from the network controller. In addition, it collects measurements from 

the optical devices with a given periodicity and stores them in a Monitoring DB; in 

this chapter, we assume that the MDA collects SNR samples from the TRXs every 

15 minutes. These measurements are used by MESARTHIM to: i) estimate those 

modeling parameters related to optical devices (resources); ii) analyze the evolution 

of the measured SNR and that of the modeling parameters to detect any degradation 

as soon as it appears; and iii) determine the severity of the degradation based on the 

foreseen impact on the performance of the lightpaths. 

Figure 4-1 sketches the MESARTHIM methodology implemented in the MDA 

system. Specifically, the following building blocks can be identified: (1) the 

Surveillance block that analyzes the SNR measurements and the value of modeling 

parameters to detect any meaningful degradation (e.g., by threshold crossing); (2) 

the Localization block that localizes the soft-failure; (3) the Find Modeling 

Configuration block that finds the most likely value of the modeling parameters of a 

given resource, so it results into SNR values of the lightpaths being supported by 

such resources similar to those that have been actually measured; (4) the soft-failure 

Identification block that, assuming a resource has been localized as the source of the 

soft-failure, finds what is the modeling parameter responsible for such failure; and 

(5) the Severity Estimation block that estimates whether and when the soft-failure 

will degenerate into a hard-failure. In addition, two internal repositories are used: i) 

the Device Modeling Config DB with the evolution of the value of modeling 
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parameters along time for every resource; and ii) the Network Diagnosis DB that 

stores historical data for analysis purposes. The MESARTHIM manager coordinates 

those blocks to achieve intelligent QoT analysis, as well as manages the interface 

with the QoT tool. The main procedures for the different blocks of MESARTHIM are 

detailed next. 

4.3 Surveillance and Localization 

In this section, we describe two different approaches for the surveillance block, 

named SNR-wise that analyzes the evolution of the SNR, and Modeling-wise that 

analyzes the evolution of the value of modeling parameters. Resources affected by a 

soft-failure procedure are localized. Additionally, the main procedure for the Find 

Modeling Configuration block is presented. Table 4-1 introduces the used notation. 

We assume that surveillance is carried out periodically, e.g., after at least one new 

SNR measurement has been collected for every lightpath in the network. Both 

algorithms return the resources with the found likely modeling configuration, each 

with a subset of lightpaths, indicating that some soft-failure has been detected. 

Table 4-1: Notation 

G Graph representing the network topology. 

P Set of all lightpaths 

P’ Subset of lightpaths (P’⊆P) 

R Set of optical devices, index r. 

C Set of clusters of lightpaths with found same behavior ({<behavior, P’>}) 

SR Set of resources suspicious. Each element identifies the resource r and the 

lightpaths that it supports (SR = {<r, P’>}). 

SF Set of Soft-Failures. (SF = {<r, P’>}) 

 SNR-wise Surveillance 

This approach focuses on the analysis of SNR measurements and compares them to 

the SNR estimated by the QoT tool for every lightpath, to detect any meaningful 

deviation (exceeding a differential threshold). The lightpaths that exceed the 

differential threshold are considered degraded and are further analyzed in terms of 

the behavior of the measured SNR evolution to find a correlation among them; 

behavior is the result of stationarity analysis [Sh05] of the SNR evolution. Non-

stationary patterns (e.g., trend, periodicity), if found, are quantified (e.g., a period 

interval in case of seasonality) to compose the behavior. For illustrative purposes, 

Figure 4-2 shows three examples of behavior: a) stationary (typical for lightpaths 

that do not exceed the differential SNR threshold); b) gradual decay; and c) cyclic. In 
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the case of finding groups of lightpaths with similar behavior, common underlying 

resources are analyzed to localize the responsible for such degradation. It is worth 

highlighting that grouping lightpaths with similar behavior enables localizing 

multiple soft-failures. In such a case, the likely configuration parameters are 

estimated using the Find Modeling Configuration block with all lightpaths 

supported by that resource. 

(a) stationary

(b) gradual

(c) cyclic

S
N

R

Time

 

Figure 4-2 Three examples of behavior. 

Algorithm 4-1 describes the procedure used to find the behavior of the evolution in 

time of a time series data. The algorithm receives an object x, which includes: i) the 

time series to be analyzed (e.g., the SNR of a path p); ii) a window size w used for 

smoothing purposes; and iii) a threshold thr used to detect a significant non-

stationary behavior. 

Algorithm 4-1. Find Behavior Procedure 

INPUT: x OUTPUT: hasBehavior 

1: 

2: 

3: 

4: 

5: 

6: 

7: 

8: 

9: 

10: 

11: 

Y ← x.<time series>        # snr OR evol 

Ỹ ← nonOverlappingMovingAverage(Y, x.w) 

if max(Ỹ) - min(Ỹ) < x.thr then return False 

if isMonotonic(Ỹ) then 

trendline ← computeFittestTrendline(Ỹ) 

x.behaviour ← <“gradual”, trendline> 

else 

period ← findPeriodicity(Ỹ) 

if period then x.behaviour ← <“cyclic”, period> 

else x.behaviour ← <“other”, ∅> 

return True 

 

The data series (Y) is smoothed (Ỹ) by computing a moving average in non-overlapped 

windows of size w (lines 1-2 in Algorithm 4-1). Then, the difference between 

maximum and minimum in Ỹ is computed and compared with the threshold; if it is 

lower than the threshold, no behavior is returned (line 3). Otherwise, the algorithm 

carries out an analysis to characterize the type of behavior by clearly distinguishing 

between gradual degradation (gradual) and cyclic fluctuation (cyclic), as well as any 
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other undefined evolution (e.g., random peaks). Specifically, if Ỹ presents an 

incremental or decremental monotonic evolution, the fittest trendline (in terms of 

Pearson correlation coefficient) among linear, polynomial, exponential, and 

logarithmic trends is computed and returned as a parameter of the identified gradual 

degradation (lines 4-6). Otherwise, the periodicity of Ỹ is computed based on the 

results of automated periodogram power spectral density analysis [Sh05]. In case 

that a significant period is found, cyclic fluctuation with that period is returned (lines 

8-9), whereas other behavior is returned if neither gradual nor cyclic behavior is 

found (line 10). 

Algorithm 4-2 details the pseudocode of the SNR-wise Surveillance algorithm; it 

receives as input the network graph G, the list P of lightpaths currently established 

in the network, the number T of historical monitoring samples to be considered, and 

the current time (current_t).  

Algorithm 4-2 SNR-Wise Surveillance Algorithm 

INPUT: G, P, T, current_t OUTPUT: SR 

1: 

2: 

3: 

4: 

5: 

6: 

7: 

8: 

9: 

10: 

11: 

12: 

13: 

14: 

15: 

16: 

17: 

18: 

P’ ← ∅ 

for p in P do 

if getMonitoringData(p, current_t) < SNR_threshold(p) then 

P’ ← P’ ∪ {p} 

if P’ = ∅ then return ∅ 

C = {<behavior, P’>} ← ∅ 

for each p in P’ do 

p.snr ← getMonitoringData(p, T) 

hasBehavior ← findBehavior(p) 

if hasBehavior then addByBehaviorSimilarity(C, p) 

if C = ∅ then return ∅ else SR ← ∅ 

for each c in C do 

R = {<resource, P’>} ← FindCommonResources(G, c.P’) 

SR ← SR ∪ R 

for each r in R do 

r.evol ← ∅ 

for each t in T do findLikelyModelingConfig (r, t) 

return SR 

 

The algorithm first retrieves and examines the last monitoring data available for 

every lightpath looking for those with degraded SNR (lines 1-5 in Algorithm 4-2). In 

case some SNR degradation is found, SNR-wise Surveillance proceeds with an in-

depth SNR analysis carried out in two steps. During the first step, the set of clusters 

C, capturing the behavior observed in the lightpaths, is found (lines 6-10); for this 

analysis, the last T monitoring samples are considered. Note that by considering the 

evolution of lightpaths’ SNR, spurious measurements in one lightpath can be 

detected and ignored. In the case that, at least, one set of lightpaths presents a 

similar behavior, e.g., decay or periodicity (as in Figure 4-2), the algorithm continues 
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with the second step. The common resources supporting the lightpaths in each 

cluster c are computed and added to the set SR of resources that are suspicious of 

being affected by a soft-failure (lines 12-14). Moreover, for each common resource, a 

likely evolution of the input parameters is found (lines 15-17); the estimated 

configuration is stored in the Device Modeling Config DB for further analysis. The 

resources with the found likely configuration, each with a subset of lightpaths, are 

eventually returned (line 18). 

 Modeling-wise Surveillance 

This surveillance approach analyses the evolution of the value of modeling 

parameters of the resources. In this case, the SNR measurements of all the 

lightpaths in the network supported by a resource are used to estimate the most 

likely modeling configuration of such resource using the Find Modeling Config block. 

The found modeling configuration is stored and its evolution is analyzed to detect 

any meaningful degradation, e.g., a significant trend and/or variation. 

Algorithm 4-3 Modeling-Wise Surveillance Algorithm 

INPUT: G, P, T, current_t OUTPUT: SR 

1: 

2: 

3: 

4: 

5: 

6: 

7: 

8: 

9: 

10: 

SR ← ∅ 

R = {<resource, P’>} ← GroupPathsByResources(G, P) 

for each r in R do 

for each p in r.P do 

p.snr ← getMonitoringData(p, current_t) 

findLikelyModelingConfig(r, current_t) 

r.evol ← configDB.SELECT(r, T) 

hasBehavior ← findBehavior(r) 

if hasBehavior then SR ← SR ∪ {r} 

return SR 

 

Algorithm 4-3 details the pseudocode of the Modeling-wise Surveillance algorithm; 

it first initializes the SR data structure (line 1 in Algorithm 4-3) and creates the set 

of resources with the lightpaths that each one supports (line 2). Next, for every single 

resource, the algorithm uses the last SNR measurements to find the current value 

of the parameters modeling the resource, which are stored in the Device Modeling 

Config DB by the Find Modeling Configuration block (lines 3-6). The behavior of the 

modeling parameters evolution is analyzed (by calling Algorithm 4-1) and, if a non-

stationary pattern is found, the resource is added to the SR set (lines 7-9). It is worth 

noting that this analysis could detect soft-failures that have not yet had a relevant 

impact on the lightpaths (i.e., the SNR degradation threshold has not been exceeded 

yet), as parameters and SNR are not linearly related. 
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 Soft-Failure Localization 

In case that the surveillance phase has identified a set of suspicious resources, 

Algorithm 4-4 localizes the soft-failures. The algorithm first removes the suspicious 

resources that explain the very same set of lightpaths (lines 1-6 in Algorithm 4-4), 

as localization is not yet possible in those cases. Next, the resources that explain the 

SNR of complete subsets of lightpaths are localized and classified as independent 

soft-failures, iSF (lines 6-10). The rest of the suspicious resources are related to soft-

failures that affect common subsets of lightpaths, so a given lightpath can be affected 

by more than one soft-failure.  

Algorithm 4-4 Soft-Failure Localization Algorithm 

INPUT: SR OUTPUT: iSF, mSF 

1: 

2: 

3: 

4: 

5: 

6: 

7: 

8: 

9: 

10: 

11: 

for each r in SR do 

Rr ← ∅ 

for each r’ in SR | r ≠ r’ do 

if r.P = r’.P then Rr ← Rr ∪ {r, r’} 

SR ← SR - Rr 

iSF ← ∅ 

for each r in SR do 

if r.P ∩ r’.P = ∅ ∀r’ SR | r ≠ r’ then  

iSF ← iSF ∪{r} 

SR ← SR - {r} 

return iSF, SR 

 Finding the Most Likely Modeling Configuration 

The above surveillance approaches use the FindModeling Configuration block, which 

estimates the most likely modeling configuration of a given resource r. Given the 

ranges of feasible configuration values 𝕍 of r, the configuration estimation problem 

consists in finding the most likely values v, by minimizing the error (computed as 

mean squared error -MSE) between the measured (S) and the estimated (Ŝ) SNR for 

the set of lightpaths being supported by r, P(r), i.e.: 

min
𝑣∈𝕍

𝑀𝑆𝐸 (𝑆(𝑃(𝑟)), �̂�(𝑃(𝑟)|𝑣)) (4-1) 

The SNR estimation Ŝ(·) is obtained by calling the QoT tool and thus, the 

optimization problem in (4-1) cannot be solved by traditional methods like Steepest 

Descent, which are based on computing the gradient of the function to be minimized. 

In view of that, the findLikelyModelingConfig() procedure uses the 

modelingConfigSearch() one (Algorithm 4-5) to solve the optimization problem in 

(4-1). The algorithm interrogates the QoT tool with different values of the 

parameters and the configuration entailing the lowest error with respect to the SNR 

values measured is returned. The procedure assumes that: i) the function is convex 

in 𝕍, i.e., there is just one minimum that is the global minimum (tests supporting 
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this assumption will be carried out); and ii) there is just one of the modeling 

parameters of r with a value different than the initially found. The procedure fixes 

the value(s) of the parameter(s) and requests the QoT tool to compute, with such 

configuration, the SNR values of the lightpaths being supported by r. By computing 

the mse(·) function, the procedure determines if such configuration is likely enough 

or if more queries to the QoT tool are needed. 

As calls to the QoT tool are time consuming, modelingConfigSearch() targets at 

minimizing them; instead of using the brute force and request the estimation of the 

SNR for the whole range of possible values, the procedure uses the projection of two 

points to determine the next value of the parameters to be used for the estimation. 

As parameters typically evolve smoothly in time when devices are affected by a soft-

failure, it also stores the last configuration(s) in the Device Modeling Config DB; 

every time it is called, it uses such configurations as starting points for the search 

aiming at finding the optimal solution fast. 

Algorithm 4-5 Modeling Config Search 

INPUT: P, r, vmin, vmax OUTPUT: <v, m> 

1: 

2: 

3: 

4: 

5: 

6: 

7: 

8: 

9: 

10: 

11: 

12: 

13: 

14: 

15: 

16: 

17: 

<v, m> ← configDB.getMin(); numIters ← 0 

while m > epsilon AND numIters++ < MaxIters do 

<vl, ml>, <vr, mr> ← configDB.getNeigbours(v) 

va ← intersect(v, m, vl, ml, vmin, vmax) 

vb ← intersect(v, m, vr, mr, vmin, vmax) 

if va = vl then va ← (v + vl) / 2 

if vb = vr then vb ← (v + vr) / 2 

ma ← configDB.getConfig(va) 

if ma = None then 

ma ← MSE(P.SNR, QTool(P, r, va)) 

configDB.addConfig(<va, ma>) 

mb ← configDB.getConfig(vb) 

if mb = None then 

mb ← MSE(P.SNR, QTool(P, r, vb)) 

configDB.addConfig(<vb, mb>) 

<v, m> ← configDB.getMin() 

return <v, m> 

4.4 Soft-Failure Identification and Severity 

Estimation 

Let us now focus on the Soft-Failure Identification and the Severity Estimation 

blocks, which are assumed to be executed as soon as degradation is detected and 

localized (via SNR and/or device configuration analysis). These blocks make 

MESARTHIM able to generate notifications to the network controller containing not 
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only the list of degraded lightpaths, but also their expected evolution and the 

estimated time for the soft-failure to degrade into a hard-failure. 

Let us imagine that the surveillance and localization analysis in Section 4.3 detected 

some degradation at time t and therefore, non-empty ISR and/or MSF sets were 

found. In addition, let us define state as the combination of the estimated modeling 

configuration of the resources that are involved, and the SNR experienced by the 

supported lightpaths. With the aim of an accurate diagnosis, it is interesting not only 

to analyze the current state but also to predict its future evolution. It is for this very 

reason that historical data (within a pre-defined time window) are gathered from 

monitoring and device config DBs and stored in the Network Diagnosis DB. The 

evolution of each parameter (lightpaths’ SNR and device modeling config 

parameters) is analyzed individually using time series forecasting techniques. By 

using different techniques with different parametrization, several expected 

evolutions can be obtained as a practical way to generate different likely projections 

for parameter degradation. 

For illustrative purposes, let us analyze an example of the evolution of three 

parameters selected from a hypothetical state: the SNR of a given lightpath affected 

by an SNR degradation, as well as the NF and P-max parameters modeling an OA 

traversed by that lightpath. Figure 4-3 presents three time-evolutions of the OA 

modeling parameters and SNR, and their analysis at current time t. At this time, 

the failure has been correctly localized in the selected OA; however, the cause of the 

degradation (either NF or P-max) is still unclear. This is the reason behind 

performing the estimation and evolution analysis for all modeling parameters; such 

analysis is carried out following forecasting techniques. Three curves representing 

the upper (fu), centered (fc), and lower (fl) projected possible evolutions are depicted 

for each parameter. Based on such projections, monitored data are evaluated and an 

indicator (φ) is computed and used to discard modeling parameters while identifying 

the one that is the most likely to be the real cause of the observed performance 

degradation. Hence, the indicator provides large values when the modeling 

parameter is far from the expected behavior of an affected parameter. The obtained 

indicator is accumulated with the values obtained in the previous computations, and 

identification is positive when the parameter with the lowest accumulated indicator 

is far from all the rest of the parameters with a significantly higher accumulated 

one. This evidence can be easily observed by setting up a threshold allowing the 

discrimination of low and high accumulated indicator modeling parameters. 

Once the Soft-Failure Identification block has found enough evidence of the modeling 

parameter explaining the soft-failure, the Severity Estimation block uses the 

centered projection of the evolution of such modeling parameter to estimate the 

likely evolution of the SNR for the affected lightpaths (i.e., those being supported by 

the localized resource). Analyzing such evolution, it is easy to check whether any 

lightpath would exceed a given threshold. For instance, the minimum SNR defined 



Chapter 4 – Optical Network Health Analysis 39 

by its modulation format and bit rate. The next subsections detail these two 

MESARTHIM blocks. 
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Figure 4-3. Example of identification and severity estimation at time t. 

 Soft-failure Identification 

Algorithm 4-6 is used to identify the most likely modeling parameter(s) explaining 

the observed performance degradation; it receives as input the resource responsible 

for the soft-failure and the number T of historical monitoring samples, and, if 

sufficient evidence is found, it returns the modeling parameter identified as a 

potential failure. 

The algorithm starts by retrieving the modeling parameters v that characterize the 

state of the resource, as well as the evolution of each modeling parameter in the last 

T measurements (lines 1-2 in Algorithm 4-6). Then, each parameter i in v is 

evaluated independently to compute a score indicating how likely is that such 

parameter is responsible for the resource failure. Specifically, the time series of the 

parameter i is selected and split into two portions: one with the first T-δ data points 

(Yfit) used for fitting and a second one (Yeval), with the last δ measurements, used for 

evaluation and indicator computation (lines 3-6) (dark grey area in Figure 4-3). 

Using the Yfit segment, a set of time-dependent functions F, where the parameter 
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value is modeled as a function of time, is obtained by applying Holt-Winters 

exponentially-based modeling and polynomial fitting in a wide range of degrees (e.g., 

from 1 to 7) [30] (line 7). The set F contains all functions with similar goodness-of-

fit, i.e., +/- 5% of variation in terms of Pearson correlation coefficient. Moreover, 

functions are evaluated in the time interval of Y to verify that trend is always 

monotonic; otherwise, the function is discarded. Then, three of those functions are 

selected to be the likely projections illustrated in Figure 4-3 (line 8). This selection 

contains: i) fl (lower) and fu (upper), with the functions with the lowest and highest 

value at the current time, respectively; and ii) fc (centered), with the function with 

the smallest number of coefficients providing maximum Pearson correlation 

coefficient (+/- 5%), which is assumed to be the most likely parameter evolution. 

Algorithm 4-6 Soft Failure Identification 

INPUT: r, T OUTPUT: param 

1: 

2: 

3: 

4: 

5: 

6: 

7: 

8: 

9: 

10: 

11: 

12: 

13: 

14: 

15: 

v ← getModelingParameters(r) 

r.evol ← configDB.SELECT(r, T) 

for each i in v do 

Y ← getTimeSeries(r.evol, i) 

Yfit ← Y[1..T-δ] 

Yeval ← Y[T-δ+1..T] 

F ← fitTimeDependentFunctions(Yfit, δ) 

F*=<fl, fc, fu>←selectLikelyEvolution(F,T) 

r.φ[i]← φ(F*,Yeval) (Eq. (4-2)) 

v* ←selectHighIndicatorParameters(r) 

for each i in v* do 

r.accumφ[i]+=r.φ[i] 

if r.accumφ[i]>thr then v← v\i 

if |v| = 1 then return v.getFirst() 

return ∅ 

 

After obtaining the likely projections, they are compared with the trendline 

(computed using the same methodology of fc) in Yeval. This comparison is carried out 

using an additive multi-factorial indicator (φ) that combines several Boolean and 

continuous variables according to Eq. (4-2), where xi represents a variable and bi the 

weighting coefficient for that variable.  

𝜑 = ∑ 𝑏𝑖
𝑖=1..𝑛

· 𝑥𝑖 (4-2) 

Table 4-2 briefly describes the considered variables, sorted in the descendent degree 

of importance. Two Boolean functions are used: x1 returns True if there is no evidence 

of degradation in the parameter, whereas x4 checks if any of the upper and lower 

projections is the same function as the centered one. In addition, two continuous 

variables are defined: x2 accounts for the relative Mean Square Error (rMSE) of the 

data in the evaluation portion with respect to the centered projection, whereas x3 
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returns the minimum rMSE of the data with one of the projections. Note that if 

measurements in the evaluation portion follow a trend showing a parameter 

degradation similar to the projections (preferably, the centered one), the indicator 

remains low; otherwise, the indicator increases indicating that the observed 

behavior differs from the expected one and therefore, the likelihood of the parameter 

not to be the cause of the failure increases. 

Table 4-2 Indicator function components 

i Description (xi) 

1 [boolean] Projections fl, fc, fu do not show parameter degradation 

2 [continuous] rMSE(Yeval, fc) 

3 [continuous] min(rMSE(Yeval, fi)) | i = {l,c,u} 

4 [boolean] fl = fc OR fu = fc 

 

Once the indicator is computed for all modeling parameters characterizing the state 

of the resource, the selection of parameters, whose indicator is significantly higher 

than the rest, is conducted (line 10). Thus, considering φmin as the minimum indicator 

value of a parameter, the limit φmin+∆φ is defined as the reasonable limit for 

parameters with low indicator, being all parameters above φmin+∆φ selected as those 

with high indicator. For the resultant set of parameters (if not empty), the 

cumulative indicator is updated by adding the current one (lines 11-12). Finally, the 

cumulative indicator is compared with an identification threshold thr and, if 

exceeded, the parameter is removed from the candidate parameter set (line 13). The 

identification is considered positive when just one parameter remains as a candidate 

and it is eventually returned (line 14). Otherwise, the algorithm returns no 

identification (line 15). It is worth noting that the value of thr needs to be high 

enough to clearly identify the parameter without false positives. 

 Severity Estimation 

Once a modeling parameter has been identified as the cause of the observed 

degradation, the severity estimation algorithm is executed. This method uses the 

projection of the modeling parameters to estimate when some affected lightpath will 

cross the FEC limit.  

Although the severity estimation could be based on the projected evolution of the 

modeling parameters, defining a threshold for each one is not easy as different 

lightpaths are impacted differently by its degradation. 

Algorithm 4-7 details the pseudocode; it receives as input the resource responsible 

for the soft-failure, the list of lightpaths supported by such device, the number T of 

historical monitoring samples, and the identified modeling parameter, and it returns 
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the estimated time that the soft-failure will cause a major impact on, at least, one of 

the lightpaths. The algorithm first retrieves the last T configuration values from the 

Device Modeling Config DB, which are used to compute the centered projection fc for 

the considered input parameter on a given time window (lines 1-2 in Algorithm 4-7). 

The projection fc is used as the input parameter to estimate the SNR for the list of 

lightpaths; in case that the estimated QoT for any of the lightpaths falls behind the 

minimum SNR, the algorithm returns the estimated time of this event to happen 

(lines 3-6); otherwise, it returns a large value that exceeds the considered time 

window (line 7). 

Algorithm 4-7 Severity Estimation 

INPUT: r, P, T, param OUTPUT: estimatedTime 

1: 

2: 

3: 

4: 

5: 

6: 

7: 

r.evol ← modelingConfigDB.SELECT(r, T) 

fc←getCenteredProjection(r.evol[param],timeWindow) 

for t in [1, timeWindow] do 

SNR ← Ŝ(P | fc(t)) 

for each p in P do 

if SNR[p] < p.minSNR then return t 

return INF 

4.5 Results 

 Experimental assessment 

Being the basis of the MESARTHIM methodology, the Find Modeling Configuration 

has been evaluated experimentally in the testbed depicted in Figure 4-4. Two 

commercial coherent transponders (labeled TRX-1 and TRX-2), with optical line 

interface at 100G (32-GBd Quadrature Phase-Shift Keying -QPSK), have been 

connected using an optical multi-span link. The pair of transponders has been 

equipped with a specifically designed driver enabling both the configuration and the 

real-time monitoring of the SNR; the generated signal is filtered by a WSS Wave 

Shaper device. The optical link consists of 4 spans, each realized by an 80 km single-

mode-fiber spool, for a total distance of 320 km. Five EDFAs have been used to 

compensate for the power attenuation; all being the single stage with gain in the 

range 15-25 dB. OA1 was configured with a constant 17.5 dB gain to compensate for 

the filter insertion losses and the other OAs with a constant gain of 16 dB to 

compensate entirely for the fiber losses within the span. 

Two different experiments were carried out. In the first, we reproduced the effect of 

a filter detuning. We configured the TRXs at 193.9 THz and the WSS with a 

bandwidth of 50 GHz, collecting the estimated SNR at TRX-2. Then, we reconfigured 

the WSS filter, reducing the bandwidth with steps of 2 GHz, until the operational 

status of TRX-2 card was down. GNPy was used as a tool to estimate the expected 
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QoT for the lightpath. In order to estimate the QoT, together with the scenario that 

includes fiber types and span length, modeling parameters of the WSS, OAs and the 

TRXs are provided as input to GNPy; it estimates the QoT using the generalized GN 

model [Ca18], which considers both the ASE noise and NLI accumulation. 

TRX-1 TRX-2

1 2 3 4 5 AA

Att=5dB

G=17.5dB G=16dB G=16dB G=16dB G=16dB

WSS

Att=10dB

span 1
L=80km

span 2
L=80km
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L=80km

span 4
L=80km

0 dBm

 

Figure 4-4 Experimental testbed 

Assuming that the device responsible for the SNR measured in TRX-2 is unknown, 

we run the Find Modeling Configuration block of MESARTHIM to estimate the most 

likely modeling configuration of the WSS and one of the OAs in the optical link. 

Figure 4-5 presents the results obtained when the observed SNR is explained by a 

reduction in the OSNR of the A/D WSS (Figure 4-5a) and by an increased value of 

the NF in one of the OAs (Figure 4-5b). We observe that changes in both modeling 

parameters could explain the evolution of the observed SNR in the lightpath with 

minimal error, being the resulting values of the modeling parameters within a 

feasible range. Note that with just one lightpath in this experiment, it is not possible 

to make any localization, as any of the devices could be responsible for the observed 

reduction in the SNR. 

In the second experiment, we slightly changed the multi-span link scenario with 

respect to that in Figure 4-4, by adding 5 dB attenuators before spans 2-4 emulating 

an additional 25 km in each span. Therefore, the gain of OAs 3-5 had to increase to 

21 dB to compensate for the increased losses that also affected the NF of our 

amplifiers (which is inversely proportional to the configured gain). The experiment 

was carried out in three steps, where one span was modified at a time. For each step, 

we continuously collected the estimated SNR at TRX-2, detecting the variation of the 

transmission metrics during the testbed evolution. Figure 4-6 presents the results 

from the Find Modeling Configuration block when the length of the spans 2-4 was 

increased to an equivalent of 105 km and consequently, the gain of OAs 3-5. At each 

step, the module was able to explain the increment in the SNR of the lightpath by a 

reduction in the NF of the related OA. For illustrative purposes, the estimated SNR 

of the lightpath that would be obtained by keeping the NF constant is also 

represented in Figure 4-6. These two experiments assess the high accuracy of the 

Modeling Config Search for estimating the modeling parameters of the devices.  
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Figure 4-5 Modeling parameter value vs. bandwidth for A/D WSS OSNR (a) and 
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Figure 4-6 SNR vs. link length 

The next subsections evaluate the MESARTHIM methodology through simulation. 
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 Simulation environment 

For the simulation, we selected a German-like network topology with 17 nodes and 

26 bidirectional links (see Figure 4-7). 136 bidirectional lightpaths, representing all 

the origin-destination pairs, were established through the shortest route in terms of 

hops. Figure 4-8 plots the number of lightpaths that every link in the network is 

supporting (which is particularly important for failure localization). For the sake of 

simplicity in the analysis of the results, we assume that all signals use the QPSK 

modulation format. 
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Figure 4-7 Optical network topology considered in this chapter. 

The optical data plane was simulated by a GNPy instance. We generated SNR 

measurements for every lightpath by varying every modeling parameter of every 

intermediate OAs and A/D WSSs in the ROADMs in the network, independently. 

With these measurements, a set of realistic types of failures (use cases) affecting 

optical devices were reproduced by forcing the modeling parameters of the selected 

devices (NF and P-max in the OAs and OSNR in the WSSs) to vary over time. From 

the different variations that might happen, we focus on gradual variations, i.e., those 

soft-failures that can eventually degenerate into hard-failures. Among all possible 

gradual degradations, we focus on the exponential increase (NF) and logarithmic 

decay (P- max and OSNR), since both types of degradations accelerate in time and 

hence, it is crucial to anticipate their detection and localization as much as possible. 

Finally, variability to the SNR samples was added in the form of random noise. 
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Figure 4-8 Number of distinct routes per link and max number of routes for 

localization. 

The resulting samples were stored in the simulated control plane and fed the module 

implementing the MESARTHIM methodology. In the case of the SNR- wise 

Surveillance algorithm, the SNR_threshold (line 3 in Algorithm 4-2) was set to the 

expected SNR for each given lightpath minus a fixed value that exceeds the random 

variations introduced by the monitoring generator. 

The next subsections present the obtained results for the different procedures of the 

MESARTHIM methodology based on this simulation setup. 

 Surveillance and Device Configuration Estimation 

Let us first illustrate the convergence of the Modeling Config Search algorithm with 

an example entailing two sets of lightpaths. We are interested in finding the most 

likely modeling config for the OSNR of an A/D WSS and for the NF of an OA (each 

supporting one of the sets of lightpaths), given its monitored SNR. Figure 4-9 plots 

the MSE as a function of the configuration value, as well as those values explored by 

the algorithm for the two optical devices. The inset tables specify the MSE values, 

where the configuration that gives the minimum MSE is finally selected. From these 

results, as well as from those in the experimental assessment, we conclude that the 

algorithm converges in the whole range of the true soft-failure origin, regardless of 

the selected QoT parameter. 
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Figure 4-9 Modeling Config Search 

We now focus on the evolution of the SNR over time for the defined use cases. The 

graphs in the upper row in Figure 4-10 (P-max gradual), Figure 4-11 (NF-gradual), 

and Figure 4-12 (A/D WSS gradual) present such evolution, where, for the sake of 

clarity, we plot only one sample of the affected lightpath. Note that only the 

lightpaths affected by the failure will experience an evolution in their SNR, whereas 

the rest of the lightpaths will show no variation over time other than a random one 

plus some uncorrelated spurious measurements introduced by the monitoring 

generator. The time in the graphs is normalized, as the time-scales for the considered 

soft-failures are different, ranging from days to months or even years. The evolution 

of the modeling parameters is shown in the bottom-row graphs, where the actually 

programmed value and the interval of values [max, min] estimated by the Find 

Configuration block is plotted. 



48 Autonomous and Reliable Operation of Multilayer Optical Networks 

10

12

14

16

18

20

P
-m

ax
 (

d
B

m
)

SN
R

 (
d

B
)

13

14

15

16

17

18

19

P-max gradual

13

20

0 0.2 0.4 0.6 0.8 1

0.92

15%

0.78

Time  
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Figure 4-11 Evolution of monitored SNR and estimation of modeling parameters. 
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Figure 4-12 Evolution of monitored SNR and estimation of modeling parameters. 

We observe that the range of possible values of the modeling parameters is tighter 

when the value of the parameter deviates from its nominal one. In addition, the 

range of possible values for the modeling parameters is different for the different 

parameters, being the P-max of the OAs the one with the largest range. This might 

have a clear impact if the detection of the soft-failure is performed by tracking the 

evolution of that parameter. Figure 4-13 complements the previous study by plotting 

the maximum and average error in the estimation of the modeling parameters as a 

function of the magnitude of the degradation. We observe in Figure 4-13a that both 

maximum and average P-max estimation errors are high for low degradation 

magnitudes (15.6% and 7.8%, respectively). In contrast, the average error for NF and 

A/D WSS (Figure 4-13b.c) are remarkably low and almost constant for the 

degradation magnitudes studied. Figure 4-13 also confirms the observation 

regarding the error in the estimation of the value of the modeling parameters greatly 

reduces with the magnitude of the degradation, which is a very promising result and 

it can be exploited for soft-failure localization and identification. 

Some conclusions can be drawn from the results obtained so far: 1) the proposed 

method for estimating the value of modeling parameters of the devices has shown 

remarkable accuracy in the experimental tests, which has been confirmed by 

simulation for all failure use cases; 2) in general, the estimation interval is tighter 

when the impact of the value of the parameter on the observed SNR is higher; 3) in 

the specific case of the maximum power of the OAs, the range of values that result 
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in the SNR values observed is large when the observed SNR remains around the 

nominal value. However, when SNR degrades with evident trend, the correlation 

between P-max and SNR becomes larger. 
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Figure 4-13 Absolute and relative modeling parameter estimation error. 

To help developing intuition about the differences that can be expected by analyzing 

the SNR of the lightpaths and the value of the modeling parameters of optical 

devices, Figure 4-10, Figure 4-11, and Figure 4-12 compare the time to detect a 
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degradation by analyzing the measured SNR and the value of the modeling 

parameters. For the sake of simplicity, let us assume that degradation detection is 

performed by threshold crossing; the threshold was set to 1 dB below the nominal 

SNR value for the lightpaths, not below a minimum SNR resulting in a pre-FEC 

BER over 4∙10-3 for QPSK signals. The thresholds related to modeling parameters 

were defined as a percentage of the variation range given by the nominal value and 

the extreme value. Values are selected to reduce detecting false degradations: i) for 

P-max it was set to 40% in the interval between the nominal value (20 dBm) and the 

extreme value (10 dBm) due to the large range of variation observed; ii) for NF of the 

OAs, the percentage was set to 20% in the interval between the nominal (5 dB) and 

the extreme value (15 dB); and iii) for the OSNR of the A/D WSSs, the percentage 

was set also to 20% in the interval between the nominal (38 dB) and the extreme 

value (20 dB). 

With these values, the detection of the degradation in the case of the SNR of the 

lightpath happened at normalized times 0.92, 0.86, and 0.86 for the P-max, NF, and 

A/D WSS OSNR gradual soft-failure use cases, respectively. This contrasts with the 

detection at times 0.78, 0.47, and 0.63 when the analysis was in the value of the P-

max, NF, and OSNR of the A/D WSSs, respectively, which results in anticipation 

between 15% and 45%. Note that such anticipation is enabled by the different 

evolution of modeling parameters and their non-linear impact on the SNR of the 

lightpaths. 

 Soft-Failure Localization 

The above discussion considered the time for the detection only. Note that soft-

failure location (Algorithm 4-4 in Section 4.3.2) requires several lightpaths to find 

the common resources in the network topology. When the evolution of the monitored 

SNR changes suddenly, SNR-wise surveillance (Algorithm 4-2) collects enough 

lightpaths to easily localize the failure; however, under a gradual degradation, the 

lightpaths exceeding the threshold might be not enough for the localization. 

Figure 4-8 includes a study of the maximum number of distinct routes that need to 

be considered to unambiguously identify every link as responsible for a soft-failure, 

considering that longer lightpaths will be more affected by device degradations. For 

the study, we selected all the links in the network, together with an incremental 

number of lightpaths selected by their total length, and fed Algorithm 4-4 for the 

(multiple) soft-failure localization (i.e., 26 soft-failures were localized with a single 

execution of Algorithm 4-4). For the localization, not only the number of lightpaths 

is important, but also their routes. We repeated the experiments with the lightpaths 

sorted in inverse order, i.e., assuming that shorter lightpaths would exceed the 

(relative) threshold first. The results showed that all soft-failures could be perfectly 

localized when the resources of the two shortest lightpaths were analyzed. 



52 Autonomous and Reliable Operation of Multilayer Optical Networks 

With the above in mind, let us now show how the SNR-wise surveillance and 

localization evolves over time. Table 4-3 presents the results from two different 

failures. The first failure was in an OA in the link Frankfurt-Mannheim (supporting 

41 distinct lightpaths), and the second in the A/D WSS in the Dusseldorf ROADM 

(supporting 16 distinct lightpaths). For each failure, each row shows the detection 

time when the measured SNR of some new lightpaths is below the threshold (bear 

in mind that the threshold is relative to the expected SNR for that specific lightpath). 

However, the localization of the soft-failure is not successful until just one resource 

(assuming that it is responsible for the failure) can be identified. Such identification 

happens at normalized times 0.93 and 0.91 for the failures in the OA and the A/D 

WSS, respectively. Note that the number of lightpaths needed to localize the soft-

failure, although small, adds some extra time that could be of paramount importance 

for the impact on the network. 

Table 4-3 Examples of Soft-Failure Localization 

Failure in OA in link Frankfurt-Mannheim 

Time Degraded paths Common Resources 

0.86 1 2 TRXs, 2 A/Ds, 1 Link 

0.90 2 2 Links 

0.93 4 1 Link (Failure in Frankfurt-Mannheim) 

Failure in A/D WSS Dusseldorf 

0.86 1 2 TRXs, 2 A/Ds, 1 Link 

0.91 2 1 A/D WSS (Failure in Dusseldorf) 

 

In contrast, soft-failure localization under the Modeling-wise approach considers all 

the lightpaths supported by such resource, as it analyzes the estimated evolution of 

the modeling parameters by resource. In consequence, Algorithm 4-4 under the 

Modeling-wise approach can localize the cause of degradations in their very early 

stages (between 31% and 49% with respect to the SNR-wise approach). 

As a final remark, it should be noted that even though the Modeling-wise approach 

considers all the lightpaths supporting a given resource, unambiguous localization 

might still not be possible if few lightpaths with distinct routes are established. 

Figure 4-8 shows that, for some links in the considered scenario, unambiguous 

localization of a soft-failure is only possible when all supported lightpaths are 

analyzed. Therefore, in case that not all these paths are established, the localization 

procedure (Algorithm 4-4) would be unable to localize the failure. E.g., let us consider 

the soft-failure in the link Frankfurt-Mannheim in Table 4-3 and imagine that only 

one lightpath is supported by such link. Then, a degradation in that lightpath can 

be explained by degradation in more than one resource. This highlights the need for 
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additional procedures to be applied for those scenarios which result in ambiguous 

localization. 

 Identification and Severity Estimation 

Once the degradation has been localized, let us focus on the identification of the 

modeling parameter responsible for such degradation. We assume that the device 

explaining the observed degradation is an OA. According to the notation in Section 

4.4.1, identification performance is clearly dependent on the configuration of all 

coefficients related to indicator φ. Several configurations were tested to find the one 

giving the desired importance to every component, ensuring that parameters with a 

high indicator are correctly selected, while guaranteeing no false positives. Such 

configuration is <b1, b2, b3, b4, ∆φ, thr> = <20, 10, 2, 1, 5, 30>, which will be used 

hereafter.  

Figure 4-14 shows the obtained results for a gradual degradation caused by NF, 

whereas Figure 4-15 shows the results for a gradual degradation caused by P-max. 

In both cases, Figure 4-14a and Figure 4-15a plot the evolution of the accumulative 

indicator with time, and the decision threshold thr. Both indicators remain clearly 

under the threshold until time around 0.32, where enough evidence of the cause of 

the degradation is found. Note that the time of such identification represents 32% of 

anticipation compared to the earliest time obtained for degradation detection (at 

time 0.47) using a threshold on the evolution of the input parameter and 64% 

compared to the earliest detection time using a threshold on the evolution of the 

SNR. Figure 4-14b-c and Figure 4-15b-c show the computed projections for the two 

modeling parameters under study and for both failures; note that such figures are 

similar to Figure 4-3. The projections are plotted for a long window (around 0.25 time 

units) for clarity purposes, although the value used for fitting and evaluation was δ 

=0.03 normalized time units. 

In the case that the failure is a consequence of the NF degradation (Figure 4-14b-c), 

we observe that the centered projection fc for the NF parameter is highly accurate 

and clearly between the upper and lower ones, which results in the minimum 

indicator parameter. On the contrary, P-max indicates an evident but less accurate 

projection and moreover, fc overlaps with fu, which increases its indicator above 5 

units from the one of NF. As a consequence of this, P-max is selected as a parameter 

with a high indicator, so its accumulative indicator increased. Conversely, in Figure 

4-15b-c the minimum indicator is that of P-max, where there is an evident 

degradation for fl. Note that this indicator is much lower than that computed for NF, 

where no degradation is observed, thus exceeding by far the indicator limit. In 

conclusion, we see how the proposed methodology allows discriminating the actual 

failing parameter and perform a fine failure identification. 
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Figure 4-14 NF Gradual Soft-Failure Identification. 
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Figure 4-15 P-max Gradual Soft-Failure Identification. 

We can take advantage of the identification method to implement an alternative 

localization method that can be applied when not enough lightpaths with distinct 

routes are established in the network. This allows the unambiguous localization of a 

soft-failure, as motivated at the end of Section 4.5.4. In this case, we assume that 

only lightpaths between the two end ROADMs of the link Frankfurt-Mannheim are 

established and have considered soft-failures in one of the supporting devices (OA, 

TRX or A/D WSS), in line with Table 4-3. In this case, we execute Algorithm 4-6 
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considering a single virtual resource that abstracts the supporting optical device 

types. The algorithm returns the most probable modeling parameter among those of 

OA, TRX and A/D WSS, which helps to reduce the number of devices to be analyzed 

manually. 
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Figure 4-16 Localization by identifying the Soft-Failure. 

Figure 4-16 shows the performance of the identification procedure for soft-failure 

localization. Three scenarios are considered for the real cause of the soft-failure: i) 

gradual NF degradation in an OA (Figure 4-16a), ii) gradual OSNR degradation in 
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an A/D WSS (Figure 4-16b), and iii) gradual OSNR degradation in a TRX (Figure 

4-16c). We observe that the accumulated score clearly increases for the two types of 

devices that are not the real cause of the failure for all the analyzed scenarios. This 

happens at time 0.3 in all the cases. 
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Figure 4-17 Severity Estimation. 

Finally, Figure 4-17 presents the obtained results for severity estimation for gradual 

degradation of P-max, NF and A/D WSS OSNR as a function of the time. The plots 
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show the evolution of the estimated time with the real-time, where the area in grey 

color highlights the real-time when the soft-failure degenerates into a hard-failure 

±5%. We observe that the estimated time takes a large value when the estimation 

does not observe a major impact in the selected timeWindow for any of the affected 

lightpaths, and rapidly converges to the real degeneration time. In fact, assuming 

that the severity is accurately estimated after two consecutive executions returning 

estimated times close enough one to the other, anticipation over 42% to the 

degeneration time are obtained, which leave enough time to plan the adequate 

maintenance operations. 

4.6 Concluding Remarks 

QoT estimation is typically carried out during the provisioning phase and in-

operation planning to ensure that computed lightpaths will provide zero post-FEC 

errors, assuming some values for the QoT model input parameters related to the 

optical devices in the network. In this chapter, QoT estimation was used for the 

reverse process, i.e., given the real measured QoT of a set of lightpaths, we were 

interested in estimating the value of the modeling parameters of the optical devices. 

Because of the non-linear relation between lightpaths QoT and the value of the 

modeling parameters, the ability to estimate the value of such parameters opens the 

opportunity to analyze its evolution, which can be as a result of, e.g., aging, 

temperature variations, etc. The proposed MESARTHIM methodology combines 

analysis of the evolution of the monitoring QoT and their transformation into the 

estimated modeling parameters space, not only for the degradation detection, but 

also for its localization, identification, and severity estimation. 

After the experimental assessment of the method for estimating the modeling 

parameters of the devices, the MESARTHIM methodology was evaluated through 

simulation. The methodology demonstrated remarkable anticipation in failure 

detection and localization by analyzing the estimation of the value of the modeling 

parameters of the devices. A simple example showed the reason behind such 

potentials in the different evolution of the modeling parameters and the lightpaths 

SNR. In addition, accurate cause identification based on the analysis of the projected 

evolution of the modeling parameters was demonstrated, which enabled the 

estimation of the severity in terms of the time when the soft-failure degrades into a 

hard-failure. Such severity estimation allows planning maintenance, as it largely 

anticipates degradation. 

Table 4-4 summarizes the main characteristics with pros and cons of the 

MESARTHIM methodology. 
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Table 4-4 Summary of the MESARTHIM Methodology 

Method 
Degradation Detection and 

Failure Localization 

Cause Identification and 

Severity Estimation 

Analysis in 

the 

lightpaths’ 

SNR space 

• SNR-wise surveillance finds 

common resources in sets of affected 

lightpaths by analyzing its SNR.  

• Analyzes all lightpaths. For failure 

localization, the algorithm needs 

that several lightpaths to be 

affected. 

• No cause can be identified. 

• QoT can be estimated based on 

the projected evolution of the 

SNR.  

Analysis in 

the 

devices’ 

modeling 

parameters 

space  

• Modeling-wise surveillance analyzes 

the value of the modeling 

parameters for all network devices. 

• The algorithm detects degradations 

and localizes their sources very 

ahead in time. 

• Cause identification based on 

the projected evolution of the 

modeling parameter of the 

device where the failure is 

localized. 

• Severity estimation difficult to 

estimate by analyzing the 

evolution of the input 

parameters. 

 



 

 

 

 

 

 

 

 

 

 

 

Chapter 5 

Towards Autonomous vLink 

Capacity Management 

The massive deployment of 5G and beyond will require high capacity and low latency 

connectivity services, so network operators will have either to overprovision capacity 

in their transport networks or to upgrade the optical network controllers to make 

decisions nearly in real time; both solutions entail high capital and operational 

expenditures. A different approach could be to move the decision making toward the 

nodes and subsystems, so they can adapt dynamically the capacity to the actual 

needs and thus reduce operational costs in terms of energy consumption. To achieve 

this, several technological challenges need to be addressed. In this chapter, we focus 

on the autonomous operation of DSCM systems, which enable the transmission of 

multiple and independent subcarriers (SC). Herein, we present several solutions 

enabling the autonomous DSCM operation, including: i) SC quality of transmission 

estimation; ii) autonomous SC operation at the transmitter side and blind SC 

configuration recognition at the receiver side. We provide useful guidelines for the 

application of autonomous SC management supported by the extensive results 

presented. 

5.1 Introduction 

In this chapter, we propose a decentralized approach where the intelligence is 

distributed [APV17.2]; the Tx decides autonomously the SC configurations, i.e., the 

SC’s MF and SR, and the Rx can detect and recognize such configurations. 

Nevertheless, the role of the SDN controller is of paramount importance as it solves 
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the routing and spectrum allocation (RSA) [Ve12] for the request, thus providing a 

lightpath in the optical network topology that satisfies not only the needed capacity 

but also the required QoT for every SC. Note that individual SCs are impaired 

differently when they cross WSSs, which are part of ROADM. To this end, software 

tools like the open source GNPy [Fe20], can be used but need to be upgraded to 

properly consider the filter penalties. 

The remainder of the chapter is organized as follows. Section 5.2 introduces the 

proposed solution for autonomous SC operation, where an intent, with the 

operational objective to allocate enough capacity, is in charge of autonomously 

making decisions to configure and activate or deactivate SCs at the Tx side. Section  

5.3 focuses on lightpath provisioning and includes an estimation of per-SC QoT, 

which is later used to solve the RSA with SC (RSA-SC) configuration problem. 

Section 5.3 proposes algorithms to manage the SC at the Tx and Rx sides; the 

Transponder Agent at the Tx side is in charge of managing the capacity of the 

lightpath by properly configuring the different SCs to minimize energy consumption, 

whereas the agent at the Rx side needs to recognize the configuration of each SC. 

Section 5.3.2 is devoted to our intent-based solution and the approach is proposed to 

anticipate future traffic conditions thus minimizing or totally eliminating 

undesirable effects at the packet layer. This solution uses a short-term traffic 

forecast. Section 5.3.2 is devoted to our intent-based solution and our approach is 

proposed to anticipate future traffic conditions thus minimizing or totally 

eliminating undesirable effects at the packet layer. This solution uses a short-term 

traffic forecast. The discussion is supported by extensive illustrative results in 

Section 5.4, including exhaustive simulations over realistic scenarios. Finally, 

Section 5.5 draws the main conclusions of our work. 

5.2 Autonomous Capacity Management 

As previously stated, we propose the autonomous operation of the vlinks performed 

locally at their end nodes and being able to recognize in one end the decisions made 

at the remote end. This is particularly important at the optical layer, as the Rx 

optical transponder of the lightpath supporting the vlink needs to realize the actual 

configuration of the signal that was transmitted. From the packet layer perspective, 

it is also desirable to devise solutions that: i) do not introduce delays and traffic 

losses; and ii) minimize the changes in the capacity of the vlink to facilitate the 

management of such capacity at the packet nodes. 

Figure 5-2 presents the key elements in the control and data planes and overviews 

the envisioned workflow of vlinks. At the set-up time, the SDN controller receives a 

request to create a vlink between two end nodes with a given maximum capacity. 

The SDN controller computes the best route of the underlying lightpath and 

estimates the QoT. Based on such estimation, the SDN controller determines the 
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number of SCs and a configuration map with the set of feasible configurations for 

each SC s in terms of pairs <MFs, SRs> that can be used; this would allow the 

autonomous SC operation and will support the given maximum capacity (step 1 in 

Figure 5-2). Then, the SDN controller establishes the lightpath by allocating the 

needed optical spectrum along the path connecting Tx and Rx, and sends the 

configuration map to the vlink intent in charge of the autonomous vlink operation 

(step 2). The SDN then relies on the vlink intent to manage the capacity of the vlink 

as a function of the input traffic (step 3). An illustrative example of such capacity 

management is displayed in the inset in Figure 5-2, where the capacity of the vlink 

(orange line) increases and decreases to serve the input traffic (blue area). The vlink 

intent communicates the desired capacity of the vlink to the Transponder Agent, 

which activates or deactivates SCs in the underlying optical signal. Such decision 

making is performed within the Tx and consequently, a mechanism is needed for the 

Rx to detect and configure SCs’ MF and SR, as well as to detect the absence of a SC 

(step 4). Finally, notifications are sent to the SDN controller informing about 

changes in the vlink and the optical signal (step 5). 

vlink capacity

traffic

Metro Network

Tx
Rx

SDN

Controller

vlink

Lightpath

2
5

Node 

Agent

Node 

Agent
4

3

QoT

Estimation

1

 

Figure 5-1 Vlink workflow overview. 

Figure 5-2 presents an example of the evolution over time of the input traffic and the 

active configuration of the optical signal, as decided by the Tx, to meet the capacity 

requirements of the vlink intent. Once the connection is set up by the SDN controller 

at time t0, the vlink intent observes the amount of input traffic and makes decisions 

consequently. For instance, based on required capacity, the transponder agent 

within the Tx configures the first 8 GBaud QPSK SC (SC1) at t0, which entails that 

the connection capacity is 25 Gb/s, considering a FEC overhead of 20%. Based on 

periodical capacity updates, received from the vlink intent, the Tx increases 

connection’s capacity to 50 Gb/s at t1 by activating SC4 with the same configuration 

as for SC1. The capacity is increased to 100 Gb/s at time t2 by activating SC2 

configured as 11 GBaud 8QAM. If the input traffic would continue increasing, the 
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last SC (SC3) would be activated, e.g., with an 11 GBaud 16QAM configuration to 

increase capacity up to 170 Gb/s. On the contrary, if the capacity requirements would 

decrease (as in t3), one or more SCs could be turned off, thus saving energy. 

Note that the decisions made in the SC configuration can limit the maximum 

capacity of the vlink. For instance, if all SCs can be configured with QPSK, 8QAM 

or 16QAM MFs and 8 or 11 GBaud, the maximum capacity of the vlink would lie in 

the range [100-280] Gb/s depending on the selected configuration. Therefore, 

assuming that SCs cannot be reconfigured (i.e., to change the configuration of a SC, 

the SC needs to be deactivated and then activated again with a different 

configuration, which would cause packet losses if the SC is supporting traffic), such 

decision-making process need to be intelligently carried out to maximize the 

potential capacity of the connection without traffic disruption, while saving as much 

energy as possible. For instance, in view of the evolution of the traffic at t1, the vlink 

intent could have requested a capacity of 75 Gb/s, so that the Tx would have 

configured SC2 as a 11 GBaud 16QAM signal and then, deactivated SC4, thus 

resulting in the same performance but with lower total energy and configuration 

changes. In addition, note that not all SCs can support all different configurations, 

as this depends on the expected SNR at the receiver. For example, a cascade of filters 

will affect the “external” SCs more severely than the inner ones, thus limiting the 

MF order of the former to just QPSK. This introduces additional complexity in the 

decision-making process. 
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Figure 5-2 Intent-based autonomous vlink operation to allocate capacity for the 

input traffic. 

The modules that make possible the envisioned autonomous vlink operation are 

presented next. 
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5.3 Capacity Management  

When the lightpath is established, the actual capacity that is provided by the 

connection can be managed by activating and configuring each SC independently as 

a function of the traffic to be conveyed. In this section, we first present the procedures 

for the Tx to select the configuration of the optical connection, including which SCs 

are active and their configuration to provide the needed capacity. Then, we propose 

a solution to predict the traffic evolution. We assume that the SC definition contains 

a SC configuration map with all possible options, from those allowed by the 

transponder, that do not exceed the maximum configuration received from the 

controller. 

 Transponder Agent 

We propose two different policies for the autonomous management of the optical 

connection at the transponder agent: 

• the maxSC connection management policy, which allocates the SC with 

maximum possible capacity, thus potentially minimizing the changes in the 

connection’s configuration;  

• the adaptive connection management policy, which allocates the minimum 

capacity to satisfy the input traffic needs, targeting at minimizing the excess 

of capacity with respect to the actual traffic with the goal of eventually 

minimizing the total energy consumption. 

Both algorithms return one single SC change in the connection configuration. 

Therefore, they must be executed within an outer loop until they cannot perform 

more changes (i.e., returning <s=∅, config=∅>). 

The pseudocode for maxSC connection management policy is presented in Algorithm 

5-1. The algorithm receives as input the state of the connection in terms of the 

configuration of the SCs, the map of feasible configurations for each SC, and the 

target capacity for the connection. It returns the SC to be activated/deactivated, if 

any, and its target configuration. The algorithm computes the difference of capacity 

between the current and the requested ones (line 1). In case the capacity of the 

connection needs to be increased, the SC providing the largest capacity among those 

not yet active is selected (lines 2-3). On the other hand, the capacity of the connection 

is reduced by selecting the active SC with the lowest capacity, whose deactivation 

leaves enough capacity in the connection (lines 4-6). Finally, the selected SC, if any, 

and the target configuration are returned (line 7). 

This policy enables minimizing the number of configurations to be supported thus 

potentially reducing the cost of the transponders. It selects the SC with the largest 

capacity among the non-active ones; this minimizes the number of changes in the 
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capacity of the connection, which facilitates its management at the packet layer. 

Nonetheless, this policy might lead to large energy consumption due to the 

overprovisioning, since the selection of the SC to be activated does not depend on the 

actual capacity needs. 

Algorithm 5-1 maxSC Capacity Management 

Input: conn, configMap, targetCapacity 

Output: s, config 

1: 

2: 

3: 

 

4: 

5: 

6: 

7: 

diffCap ← targetCapacity - conn.capacity 

if diffCap > 0 then 

<s, config> ← argmax{s.getMaxConfig(configMap) 

∀ s ∈ conn | NOT s.isActive()} 

return <s, config> 

config ← ∅ 

s ← argmin{s.capacity ∀ s ∈ conn | s.isActive() AND s.capacity < -diffCap} 

return <s, config> 

 

Algorithm 5-2 presents the adaptive connection management policy, which targets 

at minimizing the energy consumption by configuring the connection capacity as 

close as possible to the actual needs.  

Algorithm 5-2 Adaptive Capacity Management 

Input: conn, configMap, targetCapacity 

Output: s, config 

1: 

2: 

3: 

 

 

4: 

5: 

 

6: 

7: 

8: 

9: 

10: 

11: 

12: 

 

13: 

14: 

15: 

diffCap ← targetCapacity - conn.capacity 

if diffCap > 0 then 

activeSC ← argmax{sc.upgradability ∀ s ∈ SC | 

sc.upgradability = sc.getMaxConfig(configMap) - diffCap} 

if activeSC ≠ ∅ then 

<s, config> ← findNonActiveSC(conn, configMap, 

activeSC.capacity + diffCap) 

if s ≠ ∅ then return <s, config > 

<s, config> ← findNonActiveSC (conn, configMap, diffCap) 

if s ≠ ∅ then return <s, config > 

<s, config> ← argmax{s.getMaxConfig(configMap) 

∀ s ∈ conn | NOT s.isActive()} 

return <s, config > 

config ← ∅ 

s ← argmax{s.capacity ∀ s ∈ conn | 

s.isActive() AND c.capacity < -diffCap} 

if s = ∅ AND conn.numActiveSCs = 1 then 

<s, config> ← findNonActiveSC (conn, configMap, targetCapacity) 

return <s, config > 

 

In case that an increment of capacity is requested, the algorithm identifies the active 

SC with the largest potential capacity increase (lines 2-3 in Algorithm 5-2), so 

another SC can be activated supporting the requested capacity plus the identified 
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active SC (lines 4-6). In that case, a consecutive execution of the algorithm will find 

that the first SC can be deactivated. If any active SC is identified, a non-active SC 

needs to be activated, which is configured to support the requested increment of 

capacity (lines 7-8). In case that the increment of capacity cannot be supported by 

just one single SC, the non-active SC with the maximum capacity is returned (lines 

9-10). In the case of reducing capacity, a target SC is identified, so the total capacity 

of the connection still supports the requested one (lines 11-12). If no SC can be 

deactivated and there is just one single SC activated, the algorithm tries to activate 

one SC so all target capacity can be served (lines 13-14). Again, a consecutive 

execution of the algorithm will find that the first SC can be deactivated, so just one 

single SC will remain active. 

The algorithm for the adaptive connection management policy calls the 

findNonActiveSC() function. This identifies the non-active SC providing the 

minimum overprovisioning (line 1 in Algorithm 5-3) and among them, the one that 

will be closer to its maximum capacity (line 2). The configuration that better fits the 

required capacity is returned, except if there is just one single non-active SC, where 

the maximum configuration is returned (lines 4-6). 

Algorithm 5-3 FindNonACtiveSC() Function 

Input: conn, configMap, capacity 

Output: s, config 

1: 

 

 

2: 

3: 

 

4: 

5: 

6: 

SC={s} ← argmin{s.overProvision ∀ s ∈ conn | 

NOT s.isActive() AND s.overProvision = 

s.getMinConfig(configMap, capacity) - capacity} 

<s, config> ← argmin{s.upgradability ∀ s ∈ SC | 

s.upgradability = s.getMaxConfig(configMap) - 

s.getMinConfig(configMap, capacity)} 

if s ≠ ∅ AND conn.numNonActiveSCs = 1 then 

return <s, s.getMaxConfig(configMap)> 

return <s, config> 

 Virtual Link Intent-Based Capacity Management 

The capacity management algorithms, introduced in the previous section, require 

measuring the input traffic to determine the capacity that needs to be ensured. 

However, such monitoring reflects the capacity that was needed at the time the 

measurement was performed, so in case that the target capacity exceeded the one of 

the optical connections, some traffic might need to be queued waiting for more 

capacity to be available; this is at the cost of introducing delay or even traffic losses 

in case the queue capacity is exceeded. In addition, this approach is purely reactive, 

as if the traffic volume reduces, the capacity of the connection reduces as well, which 

can derive into capacity oscillations making difficult for the packet nodes managing 

it. Therefore, it is desirable to devise solutions that not only reduce the energy 
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consumption by managing the configuration of the SCs, but also predict: i) how to 

configure the SCs before the capacity is exhausted to avoid introducing delays and 

traffic losses; and ii) how to reduce the changes in the vlink capacity. To this end, we 

propose a capacity management to be carried out at the vlink level and keep the 

capacity management at the transponders as a back-up in case the prediction fails 

and the current capacity is exhausted, so that the measured traffic volume is always 

ensured provided that is under the maximum capacity to be guaranteed. 

A solution is to use short-term traffic forecasts, instead of the actual measured traffic, 

to predict future capacity needs. This short-term prediction can be obtained by 

projecting forward the last monitored traffic samples, i.e., interpolating traffic in the 

last w measurements and extrapolating for next δ time units [Is02]. Although this 

approach can help to anticipate potential capacity exhaustion by allocating capacity 

in advance, when the traffic volume decreases, the reduction of capacity can lead to 

undesired capacity fluctuations and to increase queuing. 

5.4 Illustrative Results 

In this section, we first introduce the power model used for comparing the proposed 

SC management solutions, and then we study the performance of different SC 

configurations and the QoT estimation, with the aim of finding the operational limits 

of DSCM for autonomous capacity management. Next, we analyze the performance 

of the capacity management performed at the transponder or by the vlink intent. 

 Power Model 

The results in the following subsections present power savings that have been 

computed assuming a power model aiming to abstract the actual realization of a 

DSCM transponder. The power model is based on the conclusions from [Fl20] and 

[Fr17] that can be summarized as follows: i) the power consumption of a transponder 

is related to its actual configuration in terms of MF and SR, and ii) the architecture 

of a DSCM transponder contains subsystems that are always active independently 

of the number and configuration of active SCs (e.g., DAC / ADC), and others that can 

be switched off in case a SC is not active. 

With the above considerations, the power consumption of a DSCM transponder can 

be modeled as Eq. (5-1), where Pbase is the minimum power consumption and β(∙) is a 

multiplier that depends on the actual configuration of the SCs. Eq. (5-2) defines β(∙) 

as the summation of two components, those coming from always active subsystems 

and those from subsystems that are associated to a particular SC and thus, can be 

switched off if that SC is not active. The ratio R(∙), defined in Eq. (5-3), computes the 

proportion of power from subsystems in each group, and α(∙) computes the 

incremental power as a function of the MF and SR configured in a given SC, being 0 
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if the SC is not active. Then, from Eq. (5-2), the power consumption of always active 

subsystems starts from a minimum one given by the minimum configuration 

supported (e.g., <QPSK,8>) and increases depending on the actual configuration, 

whereas that of the subsystems associated to a particular SC can be 0 if that 

particular SC is not active. 

𝑃 = 𝑃𝑏𝑎𝑠𝑒 ∗∑ 𝛽(𝑀𝐹𝑆𝐶 , 𝑆𝑅𝑆𝐶)
𝑆𝐶

 (5-1) 

 

𝛽(𝑀𝐹𝑆𝐶 , 𝑆𝑅𝑆𝐶) =  𝑅(𝑎𝑙𝑤𝑎𝑦𝑠 𝑜𝑛) ∗ 𝑚𝑎 𝑥(𝛼𝑚𝑖𝑛,𝛼(𝑀𝐹𝑆𝐶 , 𝑆𝑅𝑆𝐶)) +  𝑅(𝑝𝑒𝑟 𝑆𝐶)

∗ 𝛼(𝑀𝐹𝑆𝐶 , 𝑆𝑅𝑆𝐶) 
(5-2) 

𝑅(∙) =
𝑃𝑏𝑎𝑠𝑒(∙)

𝑃𝑏𝑎𝑠𝑒
 (5-3) 

In this chapter, we assume: R(always on) = 62%, and the values of α(∙) in Table 5-1. 

This leads to energy savings in the range [56.6%-46.8%] when only one SC is active. 

 Transponder Agent Capacity Management 

From the viewpoint of the pure optical layer, all the configurations studied can be 

used, especially for 50 and 62 GHz slot widths. However, transponders not 

supporting all such configurations might be more cost effective. With this in mind, 

we now focus on the capacity management and study whether reducing the number 

of configurations available would be also convenient from the packet layer 

perspective. In this subsection, we consider that the transponder agent at the Tx side 

adapts the configuration of the optical connection to provide enough capacity for the 

input traffic, by running the algorithms in Section 5.3.1. 

For this analysis, we define three configuration sets for the transponders (see Table 

5-1): i) all: transponders implement all possible configurations; ii) selected: 

transponders implement some configurations with the maximum diversity in 

capacity and lightpath scenarios; and iii) 16QAM: transponders implement only 

16QAM for all SRs. The normalized power consumption and capacity (assuming 20% 

FEC overhead) of every configuration are detailed in Table 5-1. Besides the power 

related to the SCs, another 15% of the maximum configuration supported by the 

transponder for each SC (active or not) needs to be accounted. 

Two different policies have been carefully selected to concentrate numerical 

evaluation under relevant conditions: i) the maxSC with only the 16QAM 

configuration set; and ii) the adaptive connection management with the three 

configuration sets. Two traffic profiles lasting for 2.5 days are used to compare the 

aforementioned policies, namely High Traffic and Low Traffic. In the High Traffic 

profile, the traffic varies from 20 to 240 Gb/s, whereas in the Low Traffic case it is 

limited to 60 Gb/s. The traffic profiles have been especially tailored to induce many 

configuration changes, as they contain traffic variations around the values of the 
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capacity of the SC configurations, as well as sudden trend changes that might cause 

poor performance at the packet layer. 

Table 5-1 Configurations, Power, and Sets 

Config. 

(<MF, SR>) 
α(<MF, SR>) 

Capacity  

[Gb/s] 

Config. Set 

all sel 16QAM 

QPSK, 8 1.00 25.6 x x  

QPSK, 11 1.29 38.4 x   

8QAM, 8 1.14 35.2 x x  

8QAM, 11 1.47 51.2 x   

16QAM, 8 1.28 52.8 x x x 

16QAM, 11 1.65 70.4 x x x 

 

A simulation environment based on CURSA-SQ was used to study the impact of the 

vlink capacity management of the packet layer. The results in Figure 5-3 have been 

obtained for a connection with a configuration map where the external SC can be 

configured with any MF but only with 8 GBaud, whereas the internal ones could be 

configured with all possible configurations supported by the transponder. 

Figure 5-3 shows the input traffic and the allocated capacity (upper row), and the 

active capacity per SC (lower row) for the two profiles and for all four combinations 

of policies and configuration sets. In the case of the High Traffic profile, we observe 

that although all four combinations manage the capacity of the connection as a 

function of the input traffic, the maxSC policy needs a lower number of changes at 

the cost of a larger capacity overprovisioning and energy consumption (Figure 5-3a). 

On the opposite, the adaptive policy adapts the capacity almost perfectly (Figure 

5-3b-d) independently of the configuration set, at the cost of a larger number of 

changes. We also observe that the reactive nature of the algorithms might result in 

capacity exhaustion as some SCs are not configured to their maximum capacity 

(Figure 5-3d). 

This is more evident for the Low Traffic profile, where although all different 

combinations keep active just one single SC simultaneously, the adaptive policy 

performs many changes targeting a perfect adaptation of the capacity of the 

connection to the input traffic to minimize overprovisioning; the maxSC policy keeps 

the SC configuration constant at the cost of a larger overprovisioning. Table 5-2 

summarizes the results, where we observe that all combinations result in virtually 

the same energy consumption and reach energy savings higher than 28% under the 

High Traffic profile and 47% under the Low Traffic one. 

Although in general, the different combinations achieve a noticeable capacity 

adaptation and large energy savings, two main disadvantages can be observed from 

this solution: i) it is purely reactive, so the capacity is allocated or released as a 
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function of the current input traffic, without considering any requirement (e.g., time) 

to properly configure the connection, and consequently induces packet loss and 

added delay as a result of the time packets spent in the vlink queue; and ii) it does 

not consider the traffic evolution, so it produces unnecessary fluctuations in the 

configuration of the connections. 
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Figure 5-3 Optical connection managed by the Transponder Agent. Total and SCs 

capacity vs time for two traffic profiles. 

Table 5-2 Summary of Results for Optical Connection Configuration Managed by 

the Transponder Agent 

 High Traffic Profile 

 maxSC adapt-all adapt-sel adapt-16Q 

#Changes per day 8.8 51.2 51.2 23.2 

Energy savings [%] 28 30 31 32 

Packet Loss [MB] 4.8 14.9 11.4 14.9 

Queue (max) [MB] 16 16 16 16 

Queue (avg) [MB] 0.3 1.4 1.4 1 
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 Low Traffic Profile 

 maxSC adapt-all adapt-sel adapt-16Q 

#Changes per day 0 68 82.4 44 

Energy savings [%] 47 51 53 51 

Packet Loss [MB] 0 0 0 0 

Queue (max) [MB] 0 9 8 8 

Queue (avg) [MB] 0 1.2 1 0.7 

 Intent-based vlink operation 

Let us now consider the architecture depicted in Figure 5-3, where the vlink intent 

takes the role of client to manage the capacity of the vlink and the Transponder 

Agent serves such capacity by properly managing the configuration of the SCs. In 

view of the results obtained in the last subsection, for this study we consider the two 

policies with only the 16QAM configuration set for the transponders. 

For the predictive solution, we exhaustively explored configurations of δ and w 

ranging between 1 and 20 minutes. The obtained results for the configuration with 

best performance (6 and 10 min for δ and w, respectively) are presented in Table 5-3. 

We observe that no packet loss has been produced and the time in the vlink queue 

has been drastically reduced by using a short-term prediction of the evolution of the 

traffic. Such queue is produced as a result of the no perfect accuracy of the prediction, 

which produces some capacity exhaustion, and thus the capacity of the vlink is 

increased automatically by the transponder agent. Besides, we observe a slight 

reduction in the number of configuration changes and on the energy savings, that 

are now over 26% and 45% for the High and Low Traffic profiles, respectively. 

Table 5-3 Summary of Results for Optical Connection Configuration Managed by 

vlink Intent 

 High Traffic Profile Low Traffic Profile 

 maxSC adapt-16Q maxSC adapt-16Q 

#Changes per day 7.2 18.8 1.6 20.8 

Energy savings [%] 26 28 45 49 

Packet Loss [MB] 0 0 0 0 

Queue (max) [MB] 4.5 10.3 0 5 

Queue (avg) [MB] 0 0.2 0 0.1 

Cap. Exhaust. per day 1 5 0 4 
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5.5 Concluding Remarks 

The autonomous operation of SCs has been presented in this chapter from a holistic 

perspective, with the objective to reduce energy consumption at the optical layer, 

motivated by the fact that SCs can be configured independently with the desired MF 

and SR. This, together with the possibility to switch off parts of the transponder 

directly related to each of the SC and the fact that the power consumption of a 

transponder is related to its actual configuration in terms of MF and SR, opened an 

opportunity to save energy by activating only those SCs which are needed to support 

the upper layer packet traffic. 

The need to perform a per-SC QoT estimation was introduced, which considering the 

path and the specific SC configuration. Such QoT estimation can be used to define 

the SC configuration map that will be used afterwards for the autonomous capacity 

management. 

The autonomous capacity management problem was faced following an incremental 

approach. First, the algorithms in the transponder agent were built with the 

objective to provide the required capacity for the lightpath and reduce energy 

consumption by activating SCs when their capacity is needed, while not adding 

detrimental effect neither for the packet traffic (packet loss and time spent in the 

vlink queue) nor for the packet nodes (excessive changes in the capacity of the vlink). 

At the Tx side, two policies for capacity management were discussed and the 

required algorithms designed. Specifically, the maxSC targeting at minimizing the 

changes in the SC configuration and the adaptive focuses on minimizing the energy 

consumption by adjusting the capacity of the lightpath to the input traffic as much 

as possible. 

The capacity management implemented in the transponder agent is purely reactive, 

which would impact on the operation and performance of the packet layer. To solve 

that, an intent-based solution was proposed to manage the vlink capacity at the 

packet layer, where such capacity is actually used. The intent-based solution targets 

to ensure the packet layer performance indicators, like packet loss, time in queue, 

and configuration changes, while relying on the transponder agent for the SC 

configuration management targeting at minimizing energy consumption. A solution 

based on short-term prediction was developed. 

Table IX summarizes the main lessons learnt in this work, which we believe that 

might help telecom operators and system vendors to introduce autonomous SC 

management in their networks and portfolios. 
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Table 5-4 Main Lessons Learnt 

Features Main observations 

Set of 

supported SC 

configurations 

Having a large variety of SC configurations might increase 

the cost of the transponders unnecessarily, as they do not 

show additional energy savings and their use might result 

in variations in the capacity of the vlink, which might add 

additional complexity at the packet layer. 

Capacity 

management 

at the Tx side 

Algorithms that try to tightly adapt the capacity of the vlink 

to the current or near future input traffic, did not show large 

energy savings. Increments in capacity of one SC configured 

to the maximum capacity resulted in effective alternatives, 

which also simplifies the algorithms. 

Capacity management uniquely at the optical layer, resulted 

in poor performance at the packet layer. 

 



 

 

 

 

 

 

 

 

 

 

 

 

Chapter 6 

Autonomous Packet Flow 

Capacity Management 

One of the solutions that might bring cost savings to network operators is the 

dynamic capacity management of large packet flows, especially in the context of 

packet over optical networks. However, managing packet flows requires meeting 

strict performance (e.g., delay, packet loss, and capacity overprovisioning) and 

therefore, is of paramount importance to develop solutions that guarantee them. 

Machine Learning, particularly Reinforcement Learning, seems to be an enabler for 

autonomicity as a result of its inherent capacity to learn from experience. However, 

precisely because of that, RL methods might not be able to provide the required 

performance when managing the capacity of packet flows, until they learn the 

optimal policy. In view of that, we propose a management lifecycle with three phases: 

1) a self-tuned threshold-based approach operating just after the packet flow is set 

up and until enough data on the traffic characteristics are available; 2) an RL 

operation based on models pre-trained with a generic traffic profile; and 3) an RL 

operation with models trained for real traffic. 

Exhaustive simulation results confirm the poor performance of RL algorithms until 

the optimal policy is learnt and when traffic characteristics change over time, which 

prevents deploying such methods in operators’ networks. In contrast, the proposed 

lifecycle outperforms benchmarking approaches, achieving noticeable performance 

from the beginning of operation while showing robustness against traffic changes. 
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6.1 Introduction 

Control loops can be put into practice based on policies that specify the action to be 

taken under some circumstance (policy-based management), e.g., allocate the 

capacity of a packet flow so that the ratio traffic volume over capacity is under 80%. 

In packet flows, this ratio is related to the average delay that the packets in the flow 

will experience because of queuing, and thus to the SLA in the case that the packet 

flow is related to some customer connection. Although such policies can be modified, 

they are purely reactive. Under high traffic variations, they might entail either poor 

QoS (e.g., high delay or even traffic loss) and SLA breaches or poor resource 

utilization, which in both cases represent large costs for network operators. Note 

that policy-based management does not define the desired performance and thus, 

agents implementing those policies are unable to learn the best actions to be taken. 

Although many ML techniques could be potentially applied for the autonomous 

capacity operation of traffic flows, in this chapter, we rely on RL and consider several 

methods of different complexity and analyze their performance, in particular: (i) Q-

learning; (ii) D3QN, and (iii) TD3 (see [Fu18]). 

With the deployment of network slicing [Ve18.1] and the support to time-sensitive 

applications [Ve20], the flow capacity autonomous operation (hereafter referred to 

as CRUX) focuses on answering a major problem that network operators are facing 

nowadays: how to allocate the right capacity to every traffic flow, so as to provide the 

desired QoS (e.g., by preventing traffic loss and ensuring a given maximum average 

delay), while minimizing overprovisioning (i.e., capacity–traffic). 

In this chapter, we apply the main lessons learnt from the previous chapter to IBN 

agents based on RL. We assume that a packet flow (alternatively, referred as traffic 

flow or simply flow) conveying traffic with unknown characteristics is established 

and the allocated capacity needs to be set to ensure the required QoS (from the set-

up time), while minimizing resource utilization. To this end, a policy-based 

management is used at the set-up time to start operating the capacity of the flow; 

meanwhile, traffic measurements are collected to characterize the traffic. Note that 

policy-based operation can be highly re-liable, as it is based on specific rules that can 

be defined and understood by human operators. However, such an operation usually 

obtains poor resource utilization. Therefore, it would be useful to substitute policy-

based operation by an RL model as soon as possible. To that end, pre-trained 

generally applicable models for the partly observed traffic characteristics are loaded 

and the RL algorithm starts operating. A per-flow algorithm supervises the 

performance of the RL algorithm and tunes model parameters to ensure the re-

quired QoS. Once enough traffic measurements are available, offline training is 

carried out in a sandbox domain to produce a specific model well-suited for that 

particular traffic flow, which then substitutes the generic one. Since the traffic 

characteristics can change over time, analysis must be continuously performed to 

detect them and change the operating model when needed. By iterating that cycle, 
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the proposed RL agent will be able to adapt to traffic changes that would otherwise 

degrade performance. 

The rest of the chapter is organized as follows. The pros and cons of applying RL to 

real network operation is highlighted in Section 6.2, which include poor performance 

during the initial set-up and during changes in the traffic flow. The CRUX problem 

and the pro-posed approach are as follows: it targets operating a traffic flow and 

ensuring the required QoS from set-up time without previous knowledge of the 

traffic characteristics. The motivation behind the different phases of operation and 

the proposed lifecycle is presented, where pre-trained models and offline–online RL 

cycles aim at solving the identified is-sues. The CRUX problem is formally defined 

in Section 6.3. Several RL approaches can be used to solve CRUX, and each one 

requires different settings of states and actions. A methodological approach is 

provided to model the problem with different RL algorithms, and how the QoS 

targets are related to parameters in the reward function. Section 6.4 presents the 

algorithms that analyze the traffic characteristics, supervise the performance, and 

make decisions regarding the model and parameters to be used for operation. The 

discussion is supported by the results presented in Section 6.5. Finally, Section 6.6 

concludes this chapter. 

6.2 The Flow Capacity Autonomous Operation 

(CRUX) Problem 

 Flow Capacity Autonomous Operation 

Let us start by analyzing the result of the autonomous capacity operation of a traffic 

flow. Similar to the transponder agent defined in Chapter 5, a flow manager might 

collect monitoring data from the network and expose some interface, so a flow intent 

based on RL can take an action. For illustrative purposes, Figure 6-1 shows a typical 

RL framework, where the learning agent is separated into two different blocks, the 

learner and the agent. 

Let us assume that the monitoring data include the byte count since the last 

monitoring sample (amount of traffic) and the actual capacity allocated to the flow. 

The actions to be taken are related to the actual capacity allocated to the flow, which 

can be increased or decreased as needed with some granularity to meet the required 

QoS. For instance, a customer connection can manage the capacity of the flow with 

granularity 1 Gb/s by configuring some packet node, whereas in a virtual link 

supported by the optical layer, the capacity can be increased/decreased by 

establishing or tearing down parallel lightpaths, each with a capacity of 100 s Gb/s. 

It seems clear that the time to change the capacity is also different, ranging from 

seconds to minutes. The RL algorithm should then decide the capacity to be allocated 

to the flow to absorb variation in the traffic from one monitoring sample to the next, 
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plus the time to increase the allocated capacity, with the objective to avoid any traffic 

loss and ensure some additional QoS metric. Then, the traffic variation becomes a 

major feature for a flow, together with the traffic pattern, i.e., the evolution of the 

mean traffic with time. 
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Required CapacityTraffic, 
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Figure 6-1 Flow capacity autonomous operation. RL framework with learner, 

agent, and environment. 

This approach can provide excellent performance once the policies that avoid traffic 

losses meet the desired QoS, and minimize overprovisioning are learned; however, 

online learning of such policies requires time. In addition, there are several issues 

that can impact the aforementioned online learning performance, e.g., (1) changes in 

traffic variability might produce loss before new policies are learned; (2) smooth 

model fine tuning could not be enough to mitigate persistent errors in taking some 

specific actions; and (3) online learning tends to forget valuable learning in the long 

run, thus reducing the model’s accuracy [SuBa18]. 

Figure 6-2a represents a possible evolution of the traffic variation (the traffic pattern 

is omitted here for simplicity) and the obtained performance—overprovisioning, 

traffic loss, and some other QoS metric. The path supporting the flow is established 

at time t0 and the desired QoS is specified, so the RL algorithm needs time to learn 

the traffic variation (and the traffic pattern); meanwhile (until ta in Figure 6-2a), 

poor performance, including traffic loss, can be expected. Once a good model is 

obtained, it is expected that an RL algorithm can provide the target performance. 

However, a steep change in the variation of the traffic (times t1 to t2) can impact the 

performance until the new variation is learned. Nonetheless, it might happen that 

the performance does not converge to the desire level even after learning the new 

traffic variation. 
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Figure 6-2 Operation lifecycle. (a) Online learning RL operation. (b) Offline 

training with online fine tuning RL operation. 

It seems clear that the above behavior is unacceptable for network operators, as it 

would provide poor performance and might incur penalties due to SLA breaches. 

Specifically, it seems of paramount importance to start the operation with already 

trained models. To that end, an initial model can be trained offline using a network 

simulator in a sandbox domain. Once in operation, the model will be improved by 

the online learner. However, there are traffic characteristics, e.g., traffic pattern, 

that are observed after a long period of time, e.g., several days. Therefore, some 

alternatives are needed to operate the flow during that initial time. 
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Our solutions go beyond training offline and propose implementing offline–online 

learning cycles to deal with large changes in traffic flow, i.e., to provide guaranteed 

performance during the whole lifetime of the traffic flow (Figure 6-2b). Specifically, 

(i) a policy-based management implemented as a self-tuned threshold-based 

algorithm is in charge of managing the flow capacity during the time immediately 

after the path is set up (Phase I: time interval [t0, ta’], where ta’-t0 should be short, 

e.g., 1 h). That algorithm tunes a threshold for the flow capacity and accurately 

determines the traffic variation. This approach enables dynamic flow capacity 

allocation by fixing the right values for the threshold that minimize 

overprovisioning. However, avoiding traffic loss and guaranteeing that the required 

QoS is met is not a straightforward task, as it depends on the variance in the traffic 

flow—defined as the difference between maximum and minimum amount of traffic 

during some period. Therefore, during this period, the threshold is set conservatively 

to avoid underprovisioning (i.e., traffic exceeds capacity, and some traffic is loss) at 

the expense of large overprovisioning. (ii) Once the variation of the traffic has been 

determined, a pre-trained generic model can be used for flow operation (Phase II: 

time interval [ta’, tb’]). The model is general as it has been pre-trained assuming a 

given traffic pattern, e.g., sinusoidal with daily periodicity, but supporting the 

measured traffic variation. Once in operation, the pre-trained model starts to fine 

tune with the observed samples. (iii) Once enough measurements are available to 

determine the characteristics of the flow, including the traffic pattern, a specific 

model can be trained in a sandbox domain by using a simulator set to operate at time 

tb’ (Phase III). That model should improve the performance or be easier to operate 

than the pre-trained one. (iv) Assuming that the traffic pattern does not change, any 

change in the traffic variation that cannot be absorbed by the current model can 

trigger returning to Phase II for more intensive parameter tuning for the new traffic 

variation, while a new specific model is trained and is set to operate at time tc’ (Phase 

II-Phase III cycle). 

 Proposed Architecture 

This work extends the basic RL-based flow capacity operation (Figure 6-1) and 

proposes a scheme based on (Figure 6-3): (i) analyzing the traffic to obtain 

meaningful traffic characteristics; (ii) making decisions regarding the allocated 

capacity when no model is in operation (Phase I); (iii) selecting pre-trained models 

that fit with the observed traffic characteristics; (iv) training new models in a 

sandbox domain (offline learning), where real traffic measurements are used to 

generate traffic in a simulation environment and the QoS can be realistically 

estimated; a replica of the RL algorithm in operation is used here for training new 

models; and (v) once accurate models are obtained, they are used for flow operation 

and will be progressively fine-tuned online. As in Figure 6-1, a Flow Manager collects 

monitoring data from the forwarding plane and enforces flow capacity. 
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Figure 6-3 Extended architecture for flow capacity autonomous operation with 

offline learning. 

The models include some parameters that need to be tuned as a function of the 

traffic, to provide the desired performance while meeting the required QoS. Such 

parameter tuning can be carried out during offline learning, as well as during online 

operation to deal with small traffic changes. Based on the analysis of the traffic and 

the reward, the Analyzer block decides when to tune parameters and when to update 

the model with an offline learned one (labeled Set() in Figure 6-3) to meet the given 

QoS. Note that both parameter tuning and the offline–online cycle can be completed 

several times during the operation to improve the learned models, which will also 

enable adaptability to changes. 

The next section details the RL approaches used to solve the autonomous flow 

capacity management problem, CRUX. 

6.3 CRUX Problem Definition and RL 

Methodology 

This section formally defines the CRUX problem, and introduces the main 

parameters and variables used hereafter. Next, it introduces the methodology to 

solve the problem using RL, and finally defines the different RL approaches under 

study. The used notation is summarized in Table 6-1, where parameters and 

variables are defined. 

Table 6-1: Notation 

Capacity and QoS Params for the Flow 

zmax Maximum capacity (Gb/s) 

dmax Target maximum delay (s) 
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l* Optimal load (unleashing dmax) ∊ [0, 100]% 

qa QoS Assurance (%) 

Traffic and Capacity 

xmax(t) Maximum traffic at time t (Gb/s) 

xvar(t) Traffic variation at time t (Gb/s) 

z(t) Capacity allocated at time t (Gb/s) 

o(t) Capacity slack/surplus at time t (Gb/s) 

y(t) Overprovisioning margin (Gb/s) 

ρ Traffic variance multiplier 

b Granularity of capacity allocation (Gb/s) 

w(t) Traffic loss margin (Gb/s) 

Autonomous Capacity Allocation 

a(t) Action time t (b/s) 

na Number of discrete actions 

s(t) State at time t 

ns Number of discrete states 

r(t) Reward at time t 

k Threshold-based scaling factor 

βi Reward function coefficients (≥0) 

 Problem Definition and Basic Modeling 

Let us consider that the autonomous flow capacity management problem is solved 

periodically, when a new set of measurements, statistics, and parameters for the 

traffic flow x are collected and computed. Along this section and the following, we 

adopt the informational representation of time, where t represents a point in time 

that refers to the time interval [t - 1, t) [Po11]. Specifically, x(t) represents the traffic 

measurements collected in [t - 1, t), and statistics, such as the maximum (xmax(t)) and 

variation (xvar(t)), summarize traffic dynamicity during that time interval. 

Additionally, decisions made at time t, e.g., the capacity to be allocated (z(t)), consider 

data that arrived up to time t. 

The main objective of the CRUX problem is to find the optimal (minimum) capacity 

z(t) at time t that satisfies a desired QoS. In this work, we assume that that the QoS 

is defined by a desirable maximum end-to-end delay dmax; this also entails that 

packet loss is not tolerated during flow operation. 
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Without loss of generality, we assume that the delay can be modeled as a function of 

the traffic volume, the allocated capacity for the flow, the load (ratio traffic/capacity), 

and other components such as the transmission delay (load–delay models). Such 

load–delay models can be obtained during the commissioning testing phase using, 

e.g., active monitoring techniques [Ru20.1]. Once the model is available, a target 

load l* unleashing the target maximum delay dmax can be selected. Figure 6-4 

illustrates an example of a load–delay model, where dmax has been selected to a value 

where queueing delay becomes the predominant delay component, e.g., for l* = 80%. 

load (l)

d
el

ay

dmax

l*0 1
 

Figure 6-4 Delay model example. 

A policy (threshold)-based approach can be used to make decisions from the currently 

available monitoring data, as defined in Eq. (6-1), where k is a constant factor that 

is related to the traffic dynamicity and variability; k needs to be tuned to guarantee 

the required QoS. However, finding the proper value of k is not a straightforward 

task: if the value of k is high, QoS is ensured at the cost of high overprovisioning, 

whereas if the value of k is low, QoS requirements might be not met. In addition, 

decisions are reactive, so altogether, sub-optimal solutions are usually obtained. 

𝑧(𝑡) = 𝑘 · 𝑥𝑚𝑎𝑥(𝑡) 𝑙
∗⁄  (6-1) 

The optimal capacity allocation to the CRUX problem requires knowledge of the 

expected traffic to allocate the capacity of the flow at time t - 1 to the value that fits 

the expected maximum load for the period [t - 1, t) (proactive decision making): 

𝑧∗(𝑡 − 1) = 𝑥𝑚𝑎𝑥(𝑡) 𝑙
∗⁄  (6-2) 

In the case that the capacity allocation is not optimal, some capacity slack/surplus 

(o) will exist, which can be formally computed at time (t) as follows: 

𝑜(𝑡) = 𝑧(𝑡 − 1) − 𝑥𝑚𝑎𝑥(𝑡) 𝑙
∗⁄  (6-3) 

Figure 6-5 sketches an example of a traffic flow x(t) for which some capacity 

allocation z(t) is required. In the figure, the optimal capacity z*(t) that should be 

allocated at time ti−1 is shown. The different colors provide a visual representation of 

the values of o(t). In particular, two different sub-optimal capacity allocations can be 

distinguished (see labels in Figure 6-6a): (i) if z(t) > z*(t) (i.e., o(t) > 0), QoS 
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requirements are met at the expense of an excess of overprovisioning; (ii) if z(t) < 

z*(t) (i.e., o(t) < 0), QoS requirements are violated. 
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Figure 6-5 Capacity allocation definition (a) and evolution (b). 

The width w(t) of the high delay area is formally defined as a function of the 

maximum traffic in Eq. (6-4). Therefore, traffic loss appears if o(t) ≤ -w(t). 

𝑤(𝑡) = 𝑥𝑚𝑎𝑥(𝑡) ∗
1 − 𝑙∗

𝑙∗
 (6-4) 

It is worth noting that the quality of a solution taken at time t - 1 can only be 

evaluated at time t, which motivates the use of RL to learn the optimal policy that 

allocates the minimum value of z(t) to meet the QoS requirements. The details of the 

RL-based methodology are presented in next subsections. 

 Generic RL-Based Methodology 

Figure 6-6 illustrates the RL workflow, where the main three elements involved are 

represented, namely: (i) the learner in charge of learning the optimal policy; (ii) the 

agent in charge of taking actions to adjust the capacity allocated to the flow; (iii) the 

environment adaptation module in charge of implementing and evaluating the 

actions taken; and (iv) the flow manager, which enforces the capacity and collects 

traffic measurements. Three time periods are specified, from t0 to t2; let us assume 

that some initial policy model has been set in the agent before operation starts at 

time t0, when the agent applies the first action a(t0). 
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Figure 6-6 General RL workflow. 

For the sake of simplification and to reduce complexity, action a(t) is defined in Eq. 

(6-5) as the differential capacity with regard to the current one. Actions are processed 

by the environment, which computes the new capacity z(t) to be allocated. 

𝑎(𝑡) = 𝑧(𝑡) − 𝑧(𝑡 − 1) (6-5) 

The flow manager periodically sends traffic monitoring data to the environment, 

which processes them at the end of every time interval to compute state s(ti) and 

reward r(ti). Upon receiving the state, the agent finds the action a(ti) to be taken with 

the current policy. In addition, the learning process uses state, reward, and action to 

improve the model, which is updated in the next time interval. The state function 

s(t) is defined in terms of o(t) normalized by a parameter y(t) (Eq. (6-6)), which is 

conveniently set up using parameter ρ to absorb the traffic variation observed in the 

flow (Eq. (6-7)). 

𝑠(𝑡) = 𝑜(𝑡)/𝑦(𝑡) (6-6) 

𝑦(𝑡) = 𝜌 ∙ 𝑥𝑣𝑎𝑟(𝑡) 
(6-7) 

As for the reward r(t), the objective is to minimize overprovisioning, without 

providing high delay. To ensure that, the higher delay must be obtained by producing 

some overprovisioning. To that end, we have defined a piece-wise function with four 

different regions in the range of o(t), representing the sub-optimal cases. Such 

division allows for individual modes of operation that correspond to an adequate 

reward in each case. The reward function r(t) is formally expressed in Eq. (6-8) and 

illustrated in Figure 6-7. The first and second components of r(t) penalize traffic loss 

and high delay, respectively. Both components are linear functions of o(t), where 

coefficients β1 and β2 can be tuned to penalize traffic loss and high delay. The third 

component gives the maximum reward, which is slightly shifted to the positive 
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values of o(t) to reduce the risk of QoS violation. This segment is concave quadratic 

with regard to the relation o(t)/y(t), with the maximum value weighted by coefficient 

β3. Finally, overprovisioning above y(t) is linearly penalized by coefficient β4. 

𝑟(𝑡) =

{
 
 

 
 
𝛽1 · (𝑜(𝑡) − 𝑤(𝑡)) + 𝛽2 · 𝑤(𝑡), 𝑜(𝑡) < −𝑤(𝑡)

𝛽2 · 𝑜(𝑡), −𝑤(𝑡) ≤ 𝑜(𝑡) < 0  

𝛽3 · (1 −
𝑜(𝑡)

𝑦(𝑡)
) ·
𝑜(𝑡)

𝑦(𝑡)
, 0 ≤ 𝑜(𝑡) < 𝑦(𝑡)

−𝛽4 · (𝑜(𝑡) − 𝑦(𝑡)), 𝑜(𝑡) ≥ 𝑦(𝑡)

 

(6-8) 
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Figure 6-7 Reward function vs. capacity slack/surplus. 

 Specific Adaption of RL Approaches 

As introduced in Section 6.2.1, three RL methods are considered to solve the CRUX 

problem, namely: (i) Q-learning, (ii) D3QN, and (iii) TD3. 

For each method, the main adaptation of the generic problem definition is to 

discretize state and action spaces. Q-learning requires discretizing the continuous 

state function s(t) in Eq. (6-6) into a number of discrete states (ns). Such discrete 

state function s’(t) can be formally expressed as Eq. (6-9). Discrete states 0 and ns - 1 

indicate underprovisioning and overprovisioning above margin y(t), respectively, 

whereas the rest states ns - 2 are used to evenly discretize the overprovisioning below 

margin y(t). 

𝑠′(𝑡) = {

0, 𝑠(𝑡) < 0
⌈(𝑛𝑠 − 2) · 𝑠(𝑡)⌉, 𝑠(𝑡) ∈ [0,1]

𝑛𝑠 − 1, 𝑠(𝑡) > 1

 

(6-9) 

In addition, Q-learning and all DQN variants require a discrete space of na actions. 

Let us define a’(t) as the set of discrete actions, where a discrete action is defined by 

an integer number of units of capacity b to update (add or subtract) the current 

capacity. The discrete set of actions that depend on both na ∊ 2 * ℕ - 1 (natural odd 

number) and b can be formally defined as: 



86 Autonomous and Reliable Operation of Multilayer Optical Networks 

𝑎′(𝑡) ∈ {𝑏 · 𝑖, 𝑖 ∈ [−
𝑛𝑎 − 1

2
,
𝑛𝑎 − 1

2
]} 

(6-10) 

Table 6-2 summarizes the main characteristics and parameters to be configured for 

each method. 

Table 6-2: Summary of RL approaches 

Approach State Space Action Space Parameters 

Q-learning 
Discrete 

Equation (6-9) 

Discrete 

Equation (6-10) 
ns, na, b 

D3QN 
Continuous 

Equation (6-6) 

Discrete 

Equation (6-10) 

na, b, DNN config, Replay 

buffer 

TD3 
Continuous 

Equation (6-6) 

Continuous 

Equation (6-10) 

Actor/critic DNN config 

Replay buffer 

6.4 Cycles for Robust RL 

This section is devoted to the details of the operation lifecycle presented in Figure 

6-2b. Let us assume that when a new path for a flow is set up, an instance of every 

element in the architecture in Figure 6-3 is instantiated. The characteristics of the 

instances depend on the flow requirements, e.g., pre-trained generic models loaded 

in the Offline Learning block are those that were trained with similar QoS 

requirements (dmax and qa) to those of the current flow. When the operation starts, 

no online RL models exist and the maximum capacity for the flow zmax is allocated. 

All the algorithms presented next run in the Analyzer block (see Figure 6-3), which 

makes decisions and orchestrates the rest of the blocks based on some analysis 

results. 

Algorithm 6-1: Analyzer Initialization 

INPUT: offlineLearn, onlineRL, flowMgr 

OUTPUT: - 

1: 

2: 

3: 

 

 

4: 

store(offlineLearn, onlineRL, flowMgr) 

initialize DB 

params ← [<l*, zmax, k, eps>, // Phase I 

<qa, cfl, ∆ρ>, // Phase II 

<var_l, var_h, r_l, m>] // Phase III 

phase ← PhaseI 

 

Algorithm 6-1 shows the Analyzer initialization that receives the pointers to external 

modules that interact with the Analyzer, i.e., offline learner, online RL, and flow 
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manager, and stores them (line 1 in Algorithm 6-1), and initializes the main 

variables used by the rest of the procedures. In particular, DB contains the needed 

traffic-related data for the analysis carried out at every phase (line 2), params is a 

vector with the parameters that characterize flow’s requirements and some 

configuration and that are used during the different phases (line 3), and phase 

records the current phase, which is initialized to Phase I (line 4). 

Before describing the algorithms for the different phases, let us present a specific 

procedure for traffic variance analysis. Algorithm 6-2 is applied to the set of observed 

traffic-related measurements, stored in DB, with the objective of characterizing and 

quantifying the fluctuation of the traffic around its observed average. After 

retrieving data time series contained in DB, the average pattern on the given traffic 

time series X is computed (lines 1–2 in Algorithm 6-2). Note that the result of this 

operation produces time series Xavg, with the smoothed average that better fits X. 

Without loss of generality, we assume that a combination of regression techniques 

including polynomial fitting, spline cubic regression, and sum-of-sin regression is 

applied, returning the best result in terms of accuracy and model complexity [Ma21]. 

The relative residuals are computed (line 3) and the difference between maximum 

and minimum of these residuals (var) is considered as the traffic variance 

measurement (line 4). This value together with the previous var measurements 

stored in DB (time series Y) are used to compute the derivative drv of var in time, 

i.e., the first-order difference [Br16] (lines 5). The last value in drv denotes the 

current derivative, which is later used for the identification of the traffic variance 

(line 6). In addition, a variance score is computed as the maximum absolute 

derivative value normalized by the observed variance (line 7). The score approaches 

1 if the traffic fluctuates around its maximum range between two consecutive time 

measurements. This score will be used later for generic model tuning purposes. The 

computed variance results are eventually returned (line 8). 

Algorithm 6-2: varianceAnalysis() 

INPUT: DB 

OUTPUT: V 

1: 

2: 

3: 

4: 

5: 

6: 

7: 

8: 

<X,Y > ← < DB.traffic, DB.var> 

Xavg ← computeAveragePattern(X) 

Xres ← (X—Xavg) ⨀ X−1 

var ← max(Xres)—min(Xres) 

Y.append(var) 

drv ← computeDerivative(Y) 

score ← max(|drv|)/var 

return <var = var, curdrv = drv[-1], score = score > 

 

Algorithm 6-3 specifies the main procedure running in the Analyzer block and it is 

called periodically every time t. First, new traffic monitoring data are gathered from 

the flow manager (line 1 in Algorithm 6-3). Then, the specific procedure for each 
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phase is called with the current time and the collected data, and the phase changes 

only when the called procedure returns True (lines 2-10); DB is initialized every time 

phase changes (line 11). 

Algorithm 6-3: Main Analyzer Procedure 

INPUT: t 

OUTPUT: - 

1: 

2: 

3: 

4: 

5: 

6: 

7: 

8: 

9: 

10: 

11: 

x(t)←flowMgr.getMonitoringData(t) 

if phase = PhaseI then 

changePhase ← thresholdBased(t, x(t)) 

if changePhase then phase ← PhaseII 

else if phase = PhaseII then 

changePhase ← modelSelectionAndTuning(t, x(t)) 

if changePhase then phase ← PhaseIII 

else // phase = PhaseIII 

changePhase ← specificModel(t, x(t)) 

if changePhase then phase ← PhaseII 

if changePhase then initialize DB 

 

Algorithm 6-4 defines the operation of the Analyzer block during Phase I. Recall that 

during this phase, flow capacity allocation is managed following a threshold-based 

procedure, defined by Eq. (6-1). First of all, DB is updated with the new monitoring 

data and the variance analysis described in Algorithm 6-2 is executed, storing the 

result in variable V (lines 1–2 in Algorithm 6-4). Then, the absolute value of the 

current derivative is compared with a small epsilon value (param eps) to decide 

whether enough traffic data have been already analyzed to estimate variance with 

high accuracy (line 3). If so, a generic pre-trained model f0 for the computed variance 

is retrieved from the offline learner and factor ρ0 is scaled with the ratio of scores 

between the generic model and the observed traffic (lines 4–5); the scaled factor 

increases (decreases) if the computed score is higher (lower) than the score of the 

generic model. The rationale behind such factor correction is to achieve a more robust 

and conservative operation of the generic model under the actual traffic variance 

behavior. Then, the online RL module is updated with new model f0 and scaled factor 

ρ1 and Phase I ends (lines 6–7). 

In case the current derivative is still high, the threshold-based capacity allocation 

procedure continues. Here, factor k in Eq. (6-1) is adapted from its input value as 

soon as more traffic data are available and traffic variance is better estimated. With 

the estimated variance and target load l*, factor k(t) is computed. Then, k is updated 

in two different ways: (i) reducing by half between k and k(t) if k is larger than 

needed; or (ii) replaced by k(t) if is k is lower than needed (lines 8–10). The flow 

manager is requested to modify the flow capacity to the computed z(t), which is 

bounded by the maximum capacity zmax (line 11) and Phase I continues (line 12). 
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Algorithm 6-4: thresholdBased() (Phase I) 

INPUT: t, x(t) 

OUTPUT: changePhase 

1: 

2: 

3: 

4: 

5: 

6: 

7: 

8: 

9: 

10: 

11: 

12: 

DB.traffic.append(x(t)) 

V ←varianceAnalysis(DB) 

if |V.curdrv| < eps then 

<f0, ρ0, sc0>← offlineLearn.getGenericModel(V.var) 

ρ1←ρ0·(sc0 / V.score) 

onlineRL.setModel(f0, ρ1) 

return True 

DB.var.append(V.var) 

k(t)←max(1, V.var / (1-l*)) 

if k(t)>k then k←k(t) else k←k - (k(t)-k)/2 

flowMgr.setupCapacity(max(k · max(x)/l*, zmax)) 

return False 

 

Algorithm 6-5: ModelSelectionAndTuning() (Phase II) 

INPUT: t, x(t) 

OUTPUT: changePhase 

1: 

2: 

3: 

4: 

5: 

6: 

7: 

8: 

9: 

10: 

11: 

12: 

13: 

14: 

15: 

16: 

17: 

18: 

offlrn.updateTrafficDB(x(t)) 

if offlineLearn.newModelAvailable() then 

<f, ρ>← offlineLearn.getModel() 

onlineRL.setModel(f, ρ) 

return True 

xmax(t)=max(x) 

z(t-1)← flowMgr.getCurrentCapacity(t) 

o(t)←computeSlackSurplus(xmax(t), z(t-1)) // Eq. (6-3)  

if o(t)<0 then DB.QA.append(0) 

else DB.QA.append(1) 

pobs←avg(DB.QA) 

pval_l←BinomialTest1(“pobs<qa”) 

pval_g←BinomialTest2(“pobs>qa”) 

if min(pval_g, pval_l)>cfl then 

DB.QA←∅ 

if pval_l<cfl then onlineRL.tuneParam(‘ρ’, ∆ρ) 

else onlineRL.tuneParam(‘ρ’, -∆ρ) 

return False 

 

Algorithm 6-5 details the procedure during Phase II. Traffic data collected from the 

flow manager are sent to the offline learner block for updating a historical traffic 

database used to train RL models offline in the sandbox (line 1 in Algorithm 6-5). 

The offline model training procedure runs in parallel in the sandbox domain. When 

enough traffic measurements are collected and processed and an accurate and robust 
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offline-trained RL model is available, it is sent to the online RL block to be used for 

flow capacity operation; this ends Phase II (lines 2–5). Otherwise, Phase II continues, 

aiming to identify whether the RL model currently in operation needs some 

parameter tuning (in addition to model updates that the RL algorithm performs 

during operation). In particular, this procedure aims to supervise the degree of QoS 

assurance (as compared with the target value, qa) obtained by the current model and 

modifying factor ρ when needed to achieve the target performance. Note that low 

overprovisioning is the secondary objective and therefore, QoS assurance analysis 

requires computing whether the current capacity violated maximum delay (o(t) < 0) 

or not (o(t) ≥ 0). The result is stored in DB (lines 6–10). Next, two different one-

sample proportion binomial hypothesis tests [Ca02] are conducted to detect whether 

the observed degree of QoS assurance is significantly below (test 1) or above (test 2) 

the target value qa (lines 11–13). In the case that some of the hypotheses can be 

confirmed (on the contrary, it is assumed that QoS assurance is in the target), ρ 

needs to be tuned. If hypothesis test 1 is confirmed, some extra capacity allocation is 

needed, which is achieved by increasing ρ with a given step size ∆ρ. On the contrary, 

if hypothesis test 2 is confirmed, allocated capacity can be reduced, so ρ is decreased 

by the same step size. 

Algorithm 6-6: specificModel() (Phase III) 

INPUT: t, x(t) 

OUTPUT: changePhase 

1: 

2: 

3: 

4: 

5: 

6: 

7: 

rw(t) ← onlineRL.getReward(t) 

DB.traffic.append(x(t)) 

DB.reward.append(r(t)) 

if |DB.traffic|>m then DB.traffic.pop(0) 

if |DB.reward|>m then DB.reward.pop(0) 

V←varianceAnalysis(DB) 

return V.var NOT IN [var_l, var_h] OR rw(t) < rw_l  

 

Finally, Algorithm 6-6 describes the procedure running in the Analyzer during Phase 

III. This algorithm analyzes the last m traffic measurements and the reward 

obtained by the online RL (lines 1–6 in Algorithm 6-6). The objective of this analysis 

is to check whether both the current traffic and reward follow the expected behavior 

(line 7). Let us assume that an extended estimation of the working variance with 

range [var_l, var_h] is found during the offline training phase—with a minimum and 

maximum variance that the RL model can support without losing either robustness 

or desired performance. Bear in mind that operating a traffic flow with more 

variance than what is supported by the model can lead to poor QoS assurance and 

even traffic loss. On the contrary, a traffic flow with less variance can produce large 

overprovisioning, which the online RL can hardly decrease with its fine adaption 

configuration. In fact, online RL continuously adapts the model to smooth traffic 

changes with controlled reward fluctuations, so that a minimum reward (rw_l) can 
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be considered as the reasonable limit of a normal RL operation. Therefore, Phase II 

is triggered back when traffic variance leaves the working range of the RL model or 

the observed reward goes below that limit; otherwise, Phase III continues. 

6.5 Illustrative Results 

For the ongoing evaluation, a Python-based simulator reproducing the modules 

described in Figure 6-3 was implemented. Realistic traffic flow behavior was 

accurately emulated using a simulator based on CURSA-SQ [Ru18]. CURSA-SQ 

combines statistically based traffic flow generation and continuous G/G/1/k queue 

model based on the logistic function; multiple queuing systems can be numerically 

analyzed and related statistics, such as traffic magnitude, queuing delay, and packet 

loss, be computed. CURSA-SQ was validated with the experimental measurements 

in [Ru20.1] and was used to successfully reproduce realistic packet scenarios 

[Ve20.2], [Be20]. In the context of this work, CURSA-SQ is used as: (i) a lightweight 

network simulator to emulate a flow manager and the forwarding plane; and (ii) a 

flow simulator running in the ML sandbox domain for offline RL training purposes. 

It is worth highlighting that both CURSA-SQ instances have been independently 

configured and managed in order to reproduce the actual separation between the 

physical network and the sandbox domain. 

Traffic was randomly generated according to different traffic configurations. Each 

traffic configuration is the combination of traffic pattern and variance. Two different 

daily patterns were considered: a simple sinusoidal pattern for offline training 

purposes, and a realistic pattern to emulate the real traffic in the forwarding plane. 

In both cases, traffic fluctuates between 5 Gb/s (valley) and 40 Gb/s (peak) 

throughout the day. Regarding variance, it is defined as a percentage of the mean, 

so the magnitude of traffic oscillations changes in time (heteroscedasticity). For the 

sake of a wider analysis, we considered five different variance values: 1%, 3%, 6%, 

12%, and 25%.  

RL algorithms running in the RL-based operation and offline learning modules have 

been implemented in Python3 using libraries such as pytorch. A general epsilon 

decay strategy was implemented in all the RL methods for balancing between 

exploration and exploitation [SuBa18], with decay factor equal to 0.00125. Moreover, 

a discount factor equal to 0.95 was set up. Q-learning was configured with ns = 14 

states and na = 3 actions, as well as capacity allocation granularity b = 1 Gb/s. In the 

case of D3QN and TD3, every DNN consisted of two hidden layers with 100 neurons 

each implementing the Rectified Linear Unit activation function. All DNNs were 

trained by means of the Adam replacement optimizer with learning rate equal to 

0.001 and maximum replay buffer equal to 1e6 samples. 

Finally, the capacity and QoS parameters for the flow under study are maximum 

capacity zmax = 100 Gb/s, optimal load l* = 80%, and QoS assurance qa = 99%. 
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In the next two subsections, we first focus on comparing the different RL methods 

for the scenario where the pure online learning RL-based operation is performed (see 

Figure 6-2a). Next, we evaluate the offline leaning + online RL-based operation 

(Figure 6-2b), including the three proposed phases. 

 Online RL-Based Operation 

Let us first analyze the reliability of the RL operation under real traffic; we focus 

specifically on the traffic loss. For this study, low (1%) and high (25%) variances were 

considered. Figure 6-8 plots the traffic loss as a function of time from the path set-

up time. We observe extremely poor performance (high loss) at the beginning of 

operation, as it was anticipated in Figure 6-2a. Interestingly, we observe that the 

simplest Q-learning method provides the fastest convergence time to achieve zero 

loss, although it needs more than one day to achieve zero loss operation when traffic 

variance is high. Note that D3QN is the most sensitive to traffic configuration (zero 

loss operation time increases three times from low to high variance). TD3 is the 

method with the slowest convergence (around 4 days). 
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Figure 6-8. Achieving zero loss operation 

As all the RL methods have achieved zero loss operation, the rest of the results 

analyze the performance after 5 days of operation. As an illustrative example of the 

RL-based operation, Figure 6-9 shows one day of real traffic x(t) and variance from 

low to high, as well as the capacity z(t) allocated using Q-learning; optimal ρ for each 

variance is configured. The optimal capacity allocation (o(t) = 0) and the margin for 

overprovisioning y(t) are also plotted. We observe that the allocated capacity is close 

to the optimal one, absorbing fluctuations with enough margin to meet the target 

QoS. 
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Figure 6-9. Q-Learning operation. Traffic and allocated capacity for low (a), 

moderated (b), and high (c) traffic variance. 

Let us now analyze the impact of the margin multiplier ρ to achieve the desired QoS. 

Figure 6-10 shows the obtained QoS assurance as a function of ρ. For the sake of a 

comprehensive study, all traffic configurations for sinusoidal (Figure 6-10a-c) and 

real (Figure 6-10d-f) traffic patterns have been analyzed. The minimum ρ value has 

been set to 1. The ρ values for which the target QoS of 99% is achieved are 
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highlighted with a round marker. We observe in the results that ρ depends not only 

on the traffic characteristics, but also on the RL method. 
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Figure 6-10 QoS as a function of ρ models trained with a sinusoidal traffic pattern 

(a–c) and real traffic (d–f). 

Interestingly, Q-learning needs the widest range of values for all traffic 

configurations, requiring a smaller ρ as soon as variation increases. It is worth 

noting that the large range of values ([1.9, 6.4]) makes it more difficult to adjust ρ 

for different traffic configurations. Conversely, D3QN and TD3 show a smaller ρ 

range and opposite behavior as ρ increases with the traffic variance. 
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Figure 6-11. Optimal margin multiplier (a) and overprovisioning (b). 
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Figure 6-12 Relative extra overprovisioning. 

The detailed evolution of the optimal ρ with respect to the traffic variation is plotted 

in Figure 6-11a, and Figure 6-11b shows the total overprovisioning introduced by 

every RL method operating with the optimal ρ. We observe that overprovisioning 

increases with traffic variation, with a slightly different trend depending on the 

traffic pattern (sinusoidal and real). Moreover, every RL method introduces different 

amounts of overprovisioning as shown in Figure 6-12, where the relative 
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overprovisioning per RL method with respect to the minimum one for every traffic 

configuration is represented. Q-learning is the method that requires larger 

overprovisioning in general terms, whereas D3QN and TD3 show better 

performance. Interestingly, the differences are proportionally larger when traffic 

variation is small. 

Let us analyze the effect in terms of extra-overprovisioning when ρ is fixed to a 

constant value, high enough to assure reliable QoS performance in online RL 

operation under traffics with a wide range of characteristics. The squared purple 

markers in Figure 6-10a indicate the QoS that could be achieved under different 

traffic characteristics for the largest ρ. Table 6-3 summarizes the relative and 

absolute increment of overprovisioning (computed in total Tb per day of operation) 

produced with the most conservative ρ configuration for all traffic configurations and 

RL methods. When the fixed ρ happens to be the optimal one for the traffic and RL 

method, no additional overprovisioning is set up (values in boldface); otherwise, 

additional overprovisioning is introduced. Q-learning is the method that adds the 

largest extra overprovisioning (exceeding 200% and 30 Tb/day). In any case, it is 

worth highlighting that achieving optimal performance in terms of QoS assurance 

while achieving efficient capacity allocation requires some method to find the 

optimal ρ for the traffic characteristics. 

Table 6-3: Additional overprovisioning when fixing ρ 

Traffic  

Pattern 

Traffic 

Variance 

Q-Learning D3QN TD3 

% Tb/day % Tb/Day % Tb/Day 

Sinusoidal 

1% 0.00% 0 0.88% 0.02 2.49% 0.05 

3% 19.18% 0.67 6.04% 0.16 20.67% 0.51 

6% 38.71% 1.85 5.21% 0.21 15.38% 0.63 

12% 44.15% 3.56 0.00% 0.00 4.01% 0.32 

25% 60.40% 8.29 0.00% 0.00 0.00% 0.00 

Real 

1% 0.00% 0 0.05% 0.00 4.95% 0.11 

3% 106.68% 3.94 9.52% 0.28 0.39% 0.01 

6% 192.50% 9.52 12.72% 0.60 2.90% 0.14 

12% 200.69% 18.37 0.00% 0.00 0.00% 0.00 

25% 219.35% 34.46 0.00% 0.00 0.00% 0.00 

 

To conclude this section, we can highlight (i) that the CRUX problem proposed in 

Section 6.2 can be tackled using RL; under different traffic characteristics and RL 

methods, the target QoS is assured with reduced overprovisioning; (ii) online RL 

operation leads to traffic loss at the beginning of flow capacity operation; this fact 

prevents us from using RL until online learning has come up with a robust and 
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reliable model to guarantee autonomous flow operation; and (iii) the comparison of 

the RL methods shows interesting differences among them. While Q-learning learns 

fast, it also produces larger overprovisioning. D3QN and TD3 need more time to 

ensure zero loss and adjust QoS at the benefit of reducing overprovisioning. 

 Offline Leaning + Online RL-Based Operation 

Let us now focus on evaluating the operational approach detailed in Section 6.4 

(Figure 6-2b), which consists of three phases. Before emulating flow operation, we 

generated synthetic data for all the traffic variances following the sinusoidal traffic 

pattern and used them to pre-train generic models independently for each traffic 

configuration and RL method. We ran every offline RL training for 14,400 episodes 

to guarantee QoS assurance with minimum overprovisioning. 
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Figure 6-13. Phase I: Self-tuned threshold (a) and traffic variance analysis (b). 

Starting with the analysis of Phase I, Figure 6-13a shows an illustrative example of 

the evolution of the capacity during the operation of the threshold-based algorithm 

(Algorithm 6-4) for the real traffic pattern and variation 12%. Actual traffic x(t), 

allocated capacity z(t), and the evolution of the self-tuned k parameter are also 
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shown. Note that k quickly evolves from its initial value (k = 4) to reach a capacity 

closer to actual traffic. However, as soon as the load exceeds the optimal one l*, k is 

increased until reaching a stable value (1.47), which happens after 60 minutes of 

operation. The inset table in Figure 6-13a details the values of k after one hour of 

operation for all traffic configurations. It is worth noting that the self-tuned 

threshold-based algorithm operates with zero traffic loss for all the cases. 

Parallel to the threshold-based operation, traffic variance analysis (Algorithm 6-2) 

is conducted in order to compute the true variance of the traffic. Figure 6-13b shows 

the computed traffic variation as a function of time for all traffic configurations. 

Round markers highlight when the derivative of traffic variance reached a small eps 

= 0.01 and labels show the final computed variance value. The low error between 

computed and true variances is noticeable. Such estimation is achieved within two 

hours in all the cases. 

After two hours of operation, Phase II (Algorithm 6-5) can start and an RL method 

with a generic pre-trained model for the true traffic variance is set to operate. The 

tuning of parameter ρ (∆ρ = 0.1) and the resulting QoS are shown in Figure 6-14a 

and b, respectively, for traffic variance equal to 12%. To detect whether the measured 

QoS is considerably below or above the desired qa value, a significance level cfl = 

0.05 was used to be compared against the obtained p-value from the binomial tests. 

We observe that ρ decreases up to a magnitude that produces QoS below 99%; just 

after that, ρ increases and remains stable from that point on. As shown in Figure 

6-14a, the time to converge to the best ρ is 3960, 1440, and 3600 min (2.75, 1, and 

2.5 days) for Q-learning, D3QN, and TD3, respectively. 
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Figure 6-14 Phase II: QoS (a) and ρ (b) evolution. 

The above analysis, however, needs to be complemented with the overprovisioning 

to extract meaningful conclusions. Figure 6-15 presents the overprovisioning 

obtained by every RL method before and after tuning ρ in Phase II. For reference 
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purposes, the overprovisioning introduced by the threshold-based algorithm during 

Phase I is also included as a dotted line. The large benefits in terms of 

overprovisioning reduction for the RL-based operation with regard to the threshold-

based algorithm are remarkable—up to 45% of capacity allocation reduction and 11 

Tb/day of total capacity savings for one single flow. After ρ tuning, D3QN shows the 

worst performance, as Q-learning and TD3 achieved significantly lower 

overprovisioning (24%, ~3 Tb/day). Figure 6-15 also shows the obtained 

overprovisioning when the specific model (trained offline with the collected traffic) 

is loaded in Phase III after 10 days of operation. We observe that Q-learning and 

TD3 reduce overprovisioning slightly, whereas a larger reduction is achieved with 

D3QN; we conclude that the former RL methods are less dependent on an accurate 

model of the specific traffic to achieve optimal capacity allocation. 
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Figure 6-16 Phase III: Traffic variance change scenarios. Gradual increase (a) and 

sudden increase (b). 

Finally, let us analyze the performance of Algorithm 6-6 to detect traffic changes 

while flow is operated in Phase III; recall that such detection immediately triggers 
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Phase II. To this end, we generated four different scenarios, combining two different 

types of changes in traffic variance while keeping traffic profile unchanged. We 

evaluate gradual and sudden/increase or decrease traffic variance changes. Figure 

6-16 illustrates two out of four scenarios: gradual increase (variance gradually 

increases from 1% to 25% along 5 days) and sudden increasing (from 1% to 25% in 

just one minute); an inverse trend is configured for gradual and sudden decrease 

scenarios.  

Table 6-4 details the time to detect the traffic change when the variance range was 

configured as [var_l, var_h] = [−10%, +10%]; the current traffic variance and 

minimum reward rw_l was set to 5% of the minimum observed reward (see 

Algorithm 6-6). We observe that the proposed mechanism ensures prompt reaction 

under any of the studied changes—immediate detection is achieved when a sudden 

change happens, and no more than one hour is required for gradual change detection. 

Table 6-4: Phase III: Analysis under traffic changes  

Traffic Change 

Scenario 

Detection 

Time (min) 

QoS at Detection Time 

(%) 

Reward Degradation 

(Min from Detection) 

Q-L D3QN TD3 Q-L D3QN TD3 

Gradual increase 45 99.30 100 100 419 595 585 

Gradual decrease 650 99.86 99.44 99.72 3,354 2,440 2,233 

Step increase 1 99.17 99.86 99.86 332 413 433 

Step decrease 1 99.03 99.44 99.44 494 683 212 

 

To evaluate the promptness of detection, Table 6-4 considers the observed QoS at the 

detection time, as well as the elapsed time between detection time and the time when 

reward begins to degrade (reveals whether the RL module is working properly). Note 

that the detection happens when the QoS is still above the target value in all the 

cases. This is proof of anticipation of the change detection, which is key to guarantee 

robust and reliable RL-based operation. 

6.6 Concluding Remarks 

The Flow Capacity Autonomous Operation (CRUX) problem has been introduced to 

deal with online capacity allocation of traffic flows subject to dynamic traffic changes; 

it guarantees precise QoS requirement assurance and minimizes capacity 

overprovisioning. RL-based operation was proposed to learn the best policy for the 

traffic characteristics and QoS requirements of a given flow. RL allows adaptive and 

proactive capacity allocation once the optimal policy is learnt. However, pure RL 

operation lacks robustness during online learning (e.g., at the beginning of flow 
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operation and in the event of traffic changes) and might result in undesirable traffic 

loss. However, this can be avoided using simpler reactive threshold-based capacity 

allocation. 

In view of the above, an offline + online learning lifecycle was proposed, aiming at 

providing guaranteed performance during the entire lifetime of the traffic flow. The 

proposed management lifecycle consists of three phases. Firstly, a self-tuned 

threshold-based approach was proposed to operate just after the flow is set up and 

until enough evidence of the traffic characteristics are available (Phase I). Secondly, 

an RL operation based on models with a pre-trained generic traffic profile but 

meeting specific traffic variance that was measured during Phase I was executed 

(Phase II). Lastly, an RL operation with models trained for the real measured traffic, 

while allowing an online RL to adapt to smooth traffic changes (Phase III). In 

addition, during Phase III online traffic analysis and RL performance tracking was 

conducted to detect sharper traffic changes that might require moving back to Phase 

II to keep high reliability. 

The proposed lifecycle was implemented under three different RL models, namely, 

Q-learning, D3QN, and TD3. While Q-learning allows for simple and easy-to-learn 

definition of policies under discrete spaces of states and actions, D3QN and TD3 

enable the application of more complex policies based on deep learning models with 

continuous state space (D3QN) and continuous action space (TD3). 

Numerical evaluation of the proposed offline + online lifecycle under different RL 

techniques was carried out, reproducing realistic traffic flows in a simulation 

environment. For benchmarking purposes, comparative results against basic 

threshold-based operation and online RL operation were also presented. The main 

conclusions extracted from the numerical evaluation are summarized in Table 5, 

where colors are used to highlight the results. As expected, online RL produces 

moderate to high loss (reaching peaks of 1–10 Gb/s) at the beginning of the network 

operation. Among the different methods, Q-learning reached the required QoS 

operation earlier (up to 6 times faster than TD3) at the expense of moderate to large 

overprovisioning (up to 40% larger than TD3). On the other hand, D3QN and TD3 

needed more time to converge to the required QoS operation but resulted in 

considerably better capacity allocation efficiency. 

The analysis of the numerical results of the proposed lifecycle leads to several 

conclusions. Firstly, zero traffic loss and QoS assurance is guaranteed from path set-

up regardless of the chosen RL method. Secondly, Phase II allows a very efficient 

and robust operation based on pre-trained generic models that were tuned with 

specific traffic characteristics. Phase II clearly outperformed threshold-based 

operation in terms of capacity utilization since it remarkably reduced 

overprovisioning (up to 45%). Thirdly, all the methods reached outstanding capacity 

efficiency (more than 50% of capacity reduction with respect to threshold-based 

operation) without losing QoS performance in Phase III; Q-learning and TD3 

behaved slightly better than D3QN. Finally, the continuous analysis and tracking 



102 Autonomous and Reliable Operation of Multilayer Optical Networks 

conducted during Phase III to detect traffic changes allowed a prompt detection of 

sharp changes (between 1 and 650 minutes), triggering Phase II from several hours 

to days before online RL operation suffered any significant degradation. 

 

Table 6-5: Summary of results for policy-based and RL operation with and without 

offline learning 

Approach Concept 
Threshold-

based 
Q-Learning D3QN TD3 

Policy-

based 

Traffic loss 
Zero traffic 

loss 
   

QoS assurance 
Since path set-

up 
   

Over-provisioning Very large    

Online RL 

Operation 

Traffic loss 
 Moderated 

loss 

Moderated 

loss 
High loss 

QoS assurance  After 2 days After 2 days After 5 days 

ρ range for QoS assurance  Wide Narrow Narrow 

Over-

provisioning 

conservative ρ  Large Small Small 

optimal ρ  Moderate Small Small 

Offline +  

Online RL 

Operation 

Traffic loss 
Zero traffic 

loss 

Zero traffic 

loss 

Zero traffic 

loss 

Zero traffic 

loss 

QoS assurance 
Since path set-

up 

Since path 

set-up 

Since path 

set-up 

Since path 

set-up 

ρ fine tuning effectiveness   Large Moderated Large 

Over-

provisioning 

Gain 

Phase I None    

Phase I-> 

Phase II 

 
Moderated Large Large 

Phase II  Large Small Large 

Phase II-> 

Phase III 

 
Small Large Small 

Reliability (Phase III-> Phase 

II) 

 
High High High 

 



 

 

 

 

 

 

 

 

 

 

 

Chapter 7 

Revisiting Autonomous vLink 

Capacity Operation 

In this chapter, we revisit the scenario described in Chapter 5 for vLink capacity 

management when the vLink was supported by a lightpath based on the DSCM. 

Specifically, in view of the results obtained in Chapter 5 for vLink capacity 

management, here we propose a RL model for vlink capacity management. We next 

go a step beyond and consider intent cooperation, where the intents deployed for the 

individual PkCs take actions based on the traffic in the connection (as in Chapter 6) 

and cooperate with the vLink intent, which aggregates the capacity of the individual 

PkCs to decide the capacity of the vLink. 

7.1 Introduction 

Recall that in Chapter 5 the vLink intent was based on short-term traffic forecasts 

to predict future capacity needs. Although this approach can help to anticipate 

potential capacity exhaustion by allocating capacity in advance, when the traffic 

volume decreases, the reduction of capacity can lead to undesired capacity 

fluctuations and to increase queuing. In this chapter, we propose a vLink intent 

based on RL to manage the capacity of the vLink. As demonstrated in Chapter 6, RL 

fits well with IBN as it entails learning on how to map situations to actions to 

maximize rewards, without specifically programming the learner. In turn, the 

algorithm in the transponder, making decisions on the configuration of the SCs, can 

be based on policies received from the SDN controller. This approach aims at 

managing the capacity of the vLink as a function of the current and predicted traffic 
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volume, while avoiding queuing (and traffic losses) and keeping moderated SC 

configuration changes by removing oscillating capacity allocation actions. 

Recall that the vLink intent targets at making decisions proactively to reach some 

performance defined for the vLink. A related concept is that of independent operation 

vs coordinated operation. Independent operation occurs when the decisions that are 

made on a network entity (in this case the vLink) are based on measurements 

collected for the same entity. However, since in a network infrastructure many 

entities are sharing the set of common resources, pure independent operation is rare, 

as it can lead to overall suboptimal resource utilization and even to result in poor 

performance because of the natural competence for resources. Therefore, some kind 

of coordination among entities should be devised. 

Although PkCs and related vLinks can work independently making decisions based 

on the observed input traffic, some coordination might facilitate the overall 

operation. For instance, as a result of the capacity required by the PkCs, the capacity 

of the vLink needs to be reconfigured. Nonetheless, if the available capacity of the 

vLink is exhausted, competition for the available capacity of the vLink would lead to 

poor performance for both PkCs. A possible solution to avoid conflicts and 

countereffects between intent agents competing for common resources is to consider 

cooperation among them to ensure that they can achieve their operational goals. 

The rest of the chapter is organized as follows. Section 7.2 extends the intent agent 

proposed in Chapter 5 and adapt it, so the intent can be based on RL. In addition, 

details of the definition of the reward function for the definition of the RL solutions 

are given. In Section 7.3, we propose a cooperative intent operation approach 

between PkC and vLink intents. The discussion is supported by the experiments and 

numerical results presented in Section 7.4. Finally, Section 7.5 draws the main 

conclusions of our work. 

7.2 Autonomic vLink Capacity Adaptation 

In this section, we extend the intent agent in Figure 5-2 with the architecture in 

Figure 7-1; note the similarities with the architecture in Figure 6-1 for flow capacity 

autonomous operation. In Figure 7-1, a RL-based vLink intent analyzes monitoring 

data, specifically input traffic x(t) and current vLink capacity z(t), that is collected 

periodically (e.g., every minute). Based on such analysis, the vLink intent agent 

determines the target capacity z’(t+1) that should be allocated for the next period by 

using the learned optimal policy. With such capacity, an agent running at the optical 

transponder (Tx side) decides the actual capacity z(t+1) to be allocated, which will 

depend on the characteristics of the optical layer. The operation can be based on 

policies and other parameters received from the SDN controller. 
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Figure 7-1 RL-based Autonomous vLink Operation Architecture. 

The goal is to adjust the vLink capacity to guarantee that the vLink load l(t) (defined 

as x(t) / z(t)) does not exceed but is close to a given maximum lmax; this will minimize 

over-provisioning (defined as z(t)-x(t)) while limiting the average maximum delay for 

the traffic. In this scenario, the learning process can be focus on the traffic variation 

and its evolution with time, which is key for a tight load adjustment and for avoiding 

high delay and traffic loss due to insufficient capacity allocation. 

The environment in the intent agent is in charge of computing the state s(t), whereas 

s(t) is obtained as a function of both l(t) and lmax. Given s(t), the RL agent selects the 

action a(t) with highest total reward with probability 1-ε (exploitation) or randomly 

with probability ε (exploration) [SuBa98], where exploration is encouraged during 

an initial learning phase and a decay strategy is implemented. Action a(t) consists 

in a capacity volume ∆z to be added to or subtracted from the current vLink capacity. 

The reward function r(t) is a linear function with three penalty components (ordered 

by importance): i) traffic loss (x(t) > z(t)), ii) lmax violation (l(t) > lmax), and iii) over-

provisioning (z(t) - x(t)). Thus, the maximum reward is achieved when neither loss 

nor lmax violation is observed, and over-provisioning is minimized. 

7.3 Cooperative Intent Operation 

Let us imagine now the case where the traffic that the vLink is supporting comes 

from a number of PkCs, which capacity is being managed by specific PkC intents. In 

this case, the capacity to be ensured in the vLink can be easily computed as the 

summation of the capacity required by every PkC. Therefore, in this section, we 
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extend the previous stand-alone intent-based vLink capacity adaptation and focus 

on evaluating the potential benefits of a hierarchical cooperation with PkC intents. 

Figure 7-2 shows the architecture, where PkC intent agents implement a RL-based 

method similarly to the previously used for the vLink. The aggregation of the target 

capacity requested for every PkC is used as target capacity for the vLink.  
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z1' (t+1)

z1'(t+1)

+

Packet Connection Intent 1

z1 (t)

x1 (t)

RL agent 

Environment

s(t), r(t) a(t)

zn'(t+1)

Target Capacity 

Analysis z’(t+1)

Manage 

SC config

z(t+1)

Tx

vLink intent

Packet Connection Intent n

zn' (t+1)

zn (t)

xn (t)

 

Figure 7-2 Extended architecture with hierarchical intent cooperation. 

For PkCs specifically, let us consider different operational goals than those used for 

the vLink; every PkC has a different requirement in terms of maximum delay budget 

dmax that needs to be guaranteed. This entails changes in the reward function r(t), 

where a new component adds a large penalty if the measured delay in the packet 

connection exceeds the required dmax. Moreover, no penalty for maximum load 

violation is considered.  

7.4 Illustrative Intent-Based Applications 

In this section, we first present the results obtained assuming a RL-based vlink 

intent and then, the results assuming cooperation between the vLink and the PkC 

intents.  

 Autonomous vLink Capacity Operation 

A Python-based simulator reproducing the architecture in Figure 7-1 has been 

implemented for evaluation purposes. As in Chapter 5, realistic vLink input traffic 

was generated using the flow simulator and parameters described in [Ru18]. The 

target load lmax was set to 80%. 

Q-learning, D3QN, and TD3 RL methods were implemented, adapting state and 

action spaces to either discrete or continuous space depending on the method (see 
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Chapter 2). The FFNNs for D3QN and TD3 methods were configured with 2 layers 

each with 100 neurons implementing ReLU activation function [ZhQi05]. For the 

sake of fairness, ∆z was setup to 10 Gb/s in all the methods. In addition, a threshold-

based approach was implemented for benchmarking purposes, which reactively adds 

or releases capacity to keep l(t) in the range [0.7-0.8]. 
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Figure 7-3 Optical connection managed by the vLink intent. Total capacity vs time 

for the High Traffic profile. 

To facilitate comparison with the results the obtained in Chapter 5, let us first 

assume that the RL-based vlink intent was based on Q-learning. The obtained 

results are presented in Figure 7-3a-b and Table 5-3 (down). Initial exploration 

probability ε was set to 1, reducing every episode by a multiplicative factor of 0.98. 

The Q-learning algorithm was configured with a learning rate of 0.05 and a discount 

factor of 0.95.  

Table 7-1: Summary of results for Optical Connection Configuration Managed by 

vlink Intent based on Q-learning 

 Q-Learning 

 High Traffic Profile Low Traffic Profile 

 maxSC adapt-16Q maxSC adapt-16Q 

#Changes per day 7.2 5.6 0 1.6 

Energy savings [%] 31 26 47 46 

Packet Loss [MB] 0 0 0 0 

Queue (max) [MB] 0 0 0 0 

Queue (avg) [MB] 0 0 0 0 

Cap. Exhaust. per day 0 0 0 0 
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The results confirm that intent-based vlink capacity management based on RL 

results in a good solution for smooth capacity evolution, eliminating completely 

packet loss and time in vlink queue, while energy savings are still over 26% and 46% 

for the High and Low Traffic profiles, respectively. 

Let us now compare the performance of the different RL methods. Figure 7-4 shows 

the performance of the threshold-based approach and RL-based methods (note that 

latter ones need a sufficiently large number of episodes to guarantee robust and 

efficient operation).  
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Figure 7-4 Autonomic vLink Capacity Adaptation (a) and obtained delay (b). 

The measured input traffic x(t), target capacity z’(t) in the case of RL-based methods, 

and allocated capacity z(t) are plotted for a typical day. We observe that the 

threshold-based method with an a priori good configuration produces poor 
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performance (traffic loss and high delay) as a result of its reactive nature. In 

contrast, all RL-based methods learned policies to avoid losses and they adapt better 

to the traffic characteristics. Specifically, D3QN achieves low maximum delay (at 

least, half of the other RL methods). However, the main conclusions to be extracted 

from delay analysis is that although the reward function explicitly controls the load, 

which is closely related to delay performance, a finer delay control (e.g., keeping 

delay below a target maximum) requires ad-hoc delay analysis components to be 

considered in the reward function. Table 7-2 summarizes the results. In general, RL 

methods require higher overprovisioning than the threshold-based approach, but 

such overprovisioning is necessary to achieve the target performance. Therefore, 

these results validate the usefulness of RL for the proposed vLink operation use case.  

Table 7-2 vLink Capacity Adaptation Summary 

Method 
Loss 

(Gb/s) 

Over- 

Provisioning 

(Tb/day) 

Num SC 

Changes 

Delay (μs) 

min avg max 

Thr-based 4.05 19.2 18 45 129 1629 

Q-Learning 0 21.6 54 23 95 603 

D3QN 0 22.6 34 19 82 267 

TD3 0 20.8 70 21 96 512 

 

The drawbacks rely on the need for a larger number of SC changes (activations and 

deactivations) compared to the threshold-based approach. E.g., among the RL-based 

methods, the lowest overprovisioning is achieved by TD3 at the expense of doubling 

the number of SC changes with respect to D3QN, which requires double number of 

SC changes than the threshold-based approach. Hence, the selection of the RL 

method is not trivial and it might depend on limitations of the hardware, e.g., the 

SC activation time. 

Finally, it is worth noting that RL-based operation at the vLink level cannot provide 

differentiated delay performance for the different PkCs supported by the vLink. On 

the contrary, implementing the RL-based operation at the PkC would provide 

specific performance to the individual PkC but would require from specific 

cooperation between PkC and vLink intent agents. 

 Cooperative Intent Operation 

Let us assume the numerical evaluation scenario detailed in the previous section 

where phree PkCs A, B, C with maximum traffic 120, 60, and 60 Gb/s and different 

delay budgets generate the same aggregated vLink traffic as in Figure 7-4. We focus 

on the TD3 RL method and similarly as for vLink intent operation, we run it until 

achieving a robust and accurate operation. 
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The accuracy of the proposed cooperative scheme to predict vLink traffic is 

illustrated in Figure 7-5a. The vLink traffic is compared against the prediction from 

the PkC intents; the models learned by different PkCs intent agents for the short 1-

min scope can be aggregated and used by the vLink for a much longer time scope 

with remarkable accuracy. Figure 7-5b shows the delay at the source node for all 

PkCs, assuming that PkCs leave through 100/200 Gb/s interfaces. We observe that 

RL-based operation at the PkC level allows achieving the targeted differentiated 

delay performance. From Figure 7-5, we observe that the requested target capacity 

for every PkC is accurate and well-fitted so, the sum of all target capacities to be 

considered by the vLink intent agent results into an overall capacity that meets PkCs 

needs. 
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Figure 7-5 PKC-vLink intent cooperation performance. 

Figure 7-6 and Table 7-3 compare hierarchical cooperation named hierarchical and 

vLink model. Results of the vLink allocated capacity and introduced delay are 

presented. 
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Figure 7-6 Comparative results 
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Table 7-3 Cooperative IBN summary 

Method 

Over- 

Provisioning 

(Tb/day) 

Num SC 

Changes 

Delay (ns) 

min avg max 

vLink 20.8 70 21 96 512 

Hierarchical 29.8 50 15 54 233 

 

In view of the graphs, the requirements from the PkCs to achieve differentiated delay 

performance result in a higher capacity that cannot be successfully learnt by the 

vLink intent. Interestingly, when PkC operation is intent-based, the number of SC 

changes at the optical layer reduces noticeably. This fact points out the benefits of 

hierarchical intent cooperation to simplify multilayer operation. Moreover, the delay 

contribution introduced by the vLink is greatly reduced. We can conclude that 

hierarchical intent cooperation is the option that provides the best trade-off between 

the achievement of the operational goals and resource utilization and management. 

7.5 Concluding Remarks 

In this final chapter, intent agents based on RL were proposed to adjust the capacity 

of a vLink as a function of the input traffic. Next, cooperative intent operation 

between pkC and vLinks was proposed, where the capacity required by the vLink 

comes directly from the capacity of the supported PkCs. Numerical results were 

presented and discussed. The solutions presented extended the ones in Chapter 5 for 

vLink autonomous operation. 

 





 

 

 

 

 

 

 

 

 

 

 

 

Chapter 8 

Closing Discussion  

8.1 Main Contributions 

This Ph. D. thesis focuses on applying ML techniques for the autonomous and 

reliable operation of multilayer optical networks. The main contributions are 

summarized as following:  

• First, in Chapter 4, we compared estimated and measured QoT in the optical 

transponder by using a QoT tool based on GNPy. We showed that the changes 

in the values of input parameters of the QoT model representing optical 

devices can explain the deviations and degradation in performance of such 

devices. we used reverse engineering to estimate the value of those 

parameters tat explain the observed QoT. We showed by simulation a large 

anticipation in soft-failure detection, localization and identification of 

degradation before effecting the network. Finally, for validating our 

approach, we experimentally observed the high accuracy in the estimation of 

the modeling parameters. 

• In Chapter 5, we studied the autonomous operation of optical connections 

based on digital subcarrier multiplexing. We proposed several solutions for 

the autonomous operation of DSCM systems. In particular, the combination 

of two modules running in the optical node and in the optical transponder 

activate and deactivate subcarriers to adapt the capacity of the optical 

connection to the upper layer packet traffic. The module running in the 

optical node is part of our IBN solution and implements prediction to 

anticipate traffic changes. Our comprehensive study demonstrated the 
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feasibility of DSCM autonomous operation and showed large cost savings in 

terms of energy consumption. In addition, Chapter 5 provides a guideline to 

help vendors and operators to adopt the proposed solutions. 

• Chapter 6 is devoted to the autonomous packet flow capacity management. 

In this chapter we applied RL techniques and proposed a management 

lifecycle consisting of three different phases: 1) a self-tuned threshold-based 

approach for setting up the connection until enough data is collected, which 

enables understanding the traffic characteristics; 2) RL operation based on 

models pre-trained with generic traffic profiles; and 3) RL operation based on 

models trained with the observed traffic. We showed that RL algorithms 

provide poor performance until they learn optimal policies, as well as when 

the traffic characteristics change over time. The proposed lifecycle provides 

remarkable performance from the starting of the connection and it shows the 

robustness while facing changes in traffic. 

• In Chapter 7 we took advantage of the experience from Chapter 6 and 

revisited the solutions proposed in Chapter 5 for autonomous vLink operation 

supported by DSCM systems. The contributions of this chapter are twofold: 

1) and the one hand, we proposed a solution based on RL, which showed 

superior performance with respect to the solution based on prediction; and 2) 

because vLinks support packet connections, coordination between the intents 

of both layers was proposed. In this case, the actions taken by the individual 

PkCs are used by the vLink intent. The results showed noticeable 

performance compared to independent vLink operation. 

8.2 List of Publications 

 Publications in Journals 

[JOCN22] L. Velasco, S. Barzegar, F. Tabatabaeimehr, and M. Ruiz, “Intent-Based 

Networking for Optical Networks [Invited Tutorial],” IEEE/OSA Journal 

of Optical Communications and Networking, vol.14, pp. A11-A22, 2022. 

[SENSORS21] S. Barzegar, M. Ruiz, and L. Velasco, “Packet Flow Capacity 

Autonomous Operation based on Reinforcement Learning,” MDPI 

Sensors, vol. 21, pp. 8306, 2021. 

[TNSM21] S. Barzegar, M. Ruiz, A. Sgambelluri, F. Cugini, A. Napoli, and L. 

Velasco, “Soft-Failure Detection, Localization, Identification, and 

Severity Prediction by Estimating QoT Model Input Parameters,” IEEE 

Transactions on Network and Service Management, vol. 18, pp. 2627-

2640, 2021. 
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[JSAC21] L. Velasco, S. Barzegar, D. Sequeira, A. Ferrari, N. Costa, V. Curri, J. 

Pedro, A. Napoli, and M. Ruiz, “Autonomous and Energy Efficient 

Lightpath Operation based on Digital Subcarrier Multiplexing,” IEEE 

Journal on Selected Areas in Communications, vol. 39, pp. 2864-2877, 

2021. 

 Publications in Conferences 

[OFC21.1] S. Barzegar, M. Ruiz and L. Velasco, “Reliable and Accurate Autonomous 

Flow Operation based on Off-line Trained Reinforcement Learning,” in Proc. 

IEEE/OSA Optical Fiber Communication Conference (OFC), 2021. 

[OFC21.2] F. Tabatabaeimehr, S. Barzegar, M. Ruiz and L. Velasco, “Combining Long-

Short Term Memory and Reinforcement Learning for Improved Autonomous 

Network Operation,” in Proc. IEEE/OSA Optical Fiber Communication 

Conference (OFC), 2021. 

[ECOC20] S. Barzegar, M. Ruiz and L. Velasco, “Reinforcement Learning -based 

Autonomous Multilayer Network Operation,” in Proc. European Conference 

on Optical Communication (ECOC), 2020. 

[ICTON20] S. Barzegar, Marc Ruiz, and Luis Velasco, “Soft-Failure Localization and 

Time-Dependent Degradation Detection for Network Diagnosis,” in Proc. 

IEEE International Conference on Transparent Optical Networks (ICTON), 

2020. 

[OFC20] S. Barzegar, E. Virgillito, M. Ruiz, A. Ferrari, A. Napoli, V. Curri, and L. 

Velasco, “Soft-Failure Localization and Device Working Parameters 

Estimation in Disaggregated Scenarios,” in Proc. IEEE/OSA Optical Fiber 

Communication Conference (OFC), 2020. 

[ICTON19] S. Barzegar, M. Ruiz, and L. Velasco, “Adaptation of the residual signal for 

filter failure detection in scenarios with multiple filter types,” in Proc. IEEE 

International Conference on Transparent Optical Networks (ICTON), 2019. 

8.3 List of Research Projects 

 European Funded Projects 

• B5G-OPEN: Beyond 5G - OPtical nEtwork continuum, H2020-ICT-2020-2 

(G.A. 101016663). 

• METRO-HAUL: METRO High bandwidth, 5G Application-aware optical 

network, with edge storage, compute and low Latency, H2020-ICT-2016-2 

(G.A. 761727). 
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 National Funded Projects 

• IBON: AI-Powered Intent-Based Packet and Optical Transport Networks 

and Edge and Cloud Computing for Beyond 5G, Ref: PID2020-114135RB-I00, 

2021-2024. 

• TWINS: cogniTive 5G application-aware optical metro netWorks Integrating 

moNitoring, data analyticS and optimization, Ref: TEC2017-90097-R, 2018-

2020. 

 Pre-doctoral Scholarship 

• Pre-doctoral scholarship related to ICREA Academia 2015-2020 and 2021-

2025 awards. 

8.4 Collaborations 

I had the opportunity to collaborate with: 

• OPTCOM group at Politecnico di Torino on the estimation of configuration 

parameters for QoT (G.1). 

• Infinera on the application of Reinforcement Learning to DSCM systems 

(G.2). 

• Consorzio Nazionale Interuniversitario per le Telecomunicazioni (CNIT) and 

Universidad de la República on the application of Reinforcement Learning to 

packet networks (G.3). 

8.5 Topics for Further Research 

First, some of the algorithms and architectures devised in this Ph. D. thesis are being 

implemented experimentally in the framework of the B5G-OPEN project. 

In addition, we are working on distributed decision-making following the concept of 

Multi-Agent Systems (MAS) [MAS]. MAS is a subfield of AI and it can be defined as 

a set of individual agents that share knowledge and communicate with each other in 

order to solve a problem that is beyond the scope of a single agent. In the scope of 

networking, we proposed that agent nodes make autonomous decisions real-time 

based on guidelines received from the SDN controller. Such decision-making will be 

performed based on its own observed data, as well as on the data and models received 

from other nodes. To illustrate this concept, we have first focused on flow routing. As 

in Chapter 6, we are assuming packet flows carrying traffic with unknown 
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characteristics entering in a packet node. However, in this work, flows need to be 

routed to the destination though several output interfaces, while ensuring some 

given QoS, e.g., in terms of end-to-end delay, and optimizing resource utilization.  

Figure 8-1 represents an example of flow routing operation in a node in the targeted 

multilayer scenario. The packet node agent has received from the SDN controller 

three possible routes for a given traffic flow and it has to decide which one or 

combination of several are the allow to reach some QoS performance (in this case, 

the end-to-end delay), while minimizing some cost function. In this case, we use RL 

to implement a service agent for the traffic flow. In such a figure, the traffic of the 

flow is routed through two different interfaces (in this case both supported by the 

optical layer) among the three available ones for the flow. Here, we assume that the 

traffic flow actually consists of multiple sub-flows, which are routed independently 

so the packets belonging to each sub-flow follow the same route. In the destination, 

the end-to-end delay is measured (e.g., using in-band telemetry) and some statistics 

are computed (e.g., maximum and weighted average) and sent to the node agents 

participating in the routing of the flow. 
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Figure 8-1 Example of distributed flow routing based on RL 

Initial results show promising results of the proposed approach 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

List of Acronyms  

PLC 

FEC 

Packet Layer Connections 

Forward Error Correction 

TRX Transponders 

BER Bit Error Rate 

QoT Quality of Transmission 

NL Non-Linear 

OA Optical Amplifier 

WSS Wavelength Selective Switch 

MDA Monitoring and Data Analytics 

ROADM Reconfigurable Optical Add / Drop Multiplexer 

GSNR Generalized Signal to Noise Ratio 

ASE Amplified Spontaneous Emission 

NLI NL Interference 

EDFA Erbium Doped Fiber Amplifier 

NF Noise Figure 

ML Machine Learning 

SNR Signal to Noise Ratio 

OSNR Optical Signal to Noise Ratio 

FS Filter Shift 

FT Filter Tightening 
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OSA Optical Spectrum Analyzer 

GN Gaussian-noise 

OLS optical line system 

A/D WSS Add/Drop Wavelength Selective Switch 

QAM Quadrature Amplitude Modulation 

QPSK Quadrature Phase-Shift Keying 

RL Reinforcement Learning 

DQN Deep Q-Network 

DNN Deep Neural Network 

D3QN Dueling Double DQN 

TD3 Twin Delayed Deep Deterministic Policy Gradient 

SDN Software-Defined Networking 

IBN Intent-Based Networking 

DB database 

rMSE relative Mean Square Error 

DSCM Digital Subcarrier Multiplexing 

SC subcarriers 

DSP Digital Signal Processing 

SR Symbol Rates 

Tx Transmitter 

Rx Receiver 

MF Modulation Format 

EON Elastic Optical Networks 

vLink virtual Link 

RSA Routing and Spectrum Allocation 

AI Artificial Intelligence 

RMSA Routing, Modulation and Slot Assignment 

SLA Service Level Agreement 

VIO Virtual Infrastructure Orchestrator 

MLFO ML Function Orchestrator 

TMN Telecommunications Management Network 
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PBNM Policy-Based Network Management 

UI User Interface 

PLD ML Pipeline Deployment 

NBI Northbound Interface 

WF1 Deployment Workflow 

ARIMA Autoregressive Integrated Moving Average 

FFNN Feed-forward Neural Networks 

CNN Convolutional Neural Networks 

RNN Recurrent Neural Networks 

LSTM Long Short-Term Memory 

DC Data Center 

PkC Packet Connection 
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