4,692 research outputs found

    A bank of unscented Kalman filters for multimodal human perception with mobile service robots

    Get PDF
    A new generation of mobile service robots could be ready soon to operate in human environments if they can robustly estimate position and identity of surrounding people. Researchers in this field face a number of challenging problems, among which sensor uncertainties and real-time constraints. In this paper, we propose a novel and efficient solution for simultaneous tracking and recognition of people within the observation range of a mobile robot. Multisensor techniques for legs and face detection are fused in a robust probabilistic framework to height, clothes and face recognition algorithms. The system is based on an efficient bank of Unscented Kalman Filters that keeps a multi-hypothesis estimate of the person being tracked, including the case where the latter is unknown to the robot. Several experiments with real mobile robots are presented to validate the proposed approach. They show that our solutions can improve the robot's perception and recognition of humans, providing a useful contribution for the future application of service robotics

    Laser-Based Detection and Tracking of Moving Obstacles to Improve Perception of Unmanned Ground Vehicles

    Get PDF
    El objetivo de esta tesis es desarrollar un sistema que mejore la etapa de percepción de vehículos terrestres no tripulados (UGVs) heterogéneos, consiguiendo con ello una navegación robusta en términos de seguridad y ahorro energético en diferentes entornos reales, tanto interiores como exteriores. La percepción debe tratar con obstáculos estáticos y dinámicos empleando sensores heterogéneos, tales como, odometría, sensor de distancia láser (LIDAR), unidad de medida inercial (IMU) y sistema de posicionamiento global (GPS), para obtener la información del entorno con la precisión más alta, permitiendo mejorar las etapas de planificación y evitación de obstáculos. Para conseguir este objetivo, se propone una etapa de mapeado de obstáculos dinámicos (DOMap) que contiene la información de los obstáculos estáticos y dinámicos. La propuesta se basa en una extensión del filtro de ocupación bayesiana (BOF) incluyendo velocidades no discretizadas. La detección de velocidades se obtiene con Flujo Óptico sobre una rejilla de medidas LIDAR discretizadas. Además, se gestionan las oclusiones entre obstáculos y se añade una etapa de seguimiento multi-hipótesis, mejorando la robustez de la propuesta (iDOMap). La propuesta ha sido probada en entornos simulados y reales con diferentes plataformas robóticas, incluyendo plataformas comerciales y la plataforma (PROPINA) desarrollada en esta tesis para mejorar la colaboración entre equipos de humanos y robots dentro del proyecto ABSYNTHE. Finalmente, se han propuesto métodos para calibrar la posición del LIDAR y mejorar la odometría con una IMU

    Multisensor-based human detection and tracking for mobile service robots

    Get PDF
    The one of fundamental issues for service robots is human-robot interaction. In order to perform such a task and provide the desired services, these robots need to detect and track people in the surroundings. In the present paper, we propose a solution for human tracking with a mobile robot that implements multisensor data fusion techniques. The system utilizes a new algorithm for laser-based legs detection using the on-board LRF. The approach is based on the recognition of typical leg patterns extracted from laser scans, which are shown to be very discriminative also in cluttered environments. These patterns can be used to localize both static and walking persons, even when the robot moves. Furthermore, faces are detected using the robot's camera and the information is fused to the legs position using a sequential implementation of Unscented Kalman Filter. The proposed solution is feasible for service robots with a similar device configuration and has been successfully implemented on two different mobile platforms. Several experiments illustrate the effectiveness of our approach, showing that robust human tracking can be performed within complex indoor environments

    2D laser-based probabilistic motion tracking in urban-like environments

    Get PDF
    All over the world traffic injuries and fatality rates are increasing every year. The combination of negligent and imprudent drivers, adverse road and weather conditions produces tragic results with dramatic loss of life. In this scenario, the use of mobile robotics technology onboard vehicles could reduce casualties. Obstacle motion tracking is an essential ability for car-like mobile robots. However, this task is not trivial in urban environments where a great quantity and variety of obstacles may induce the vehicle to take erroneous decisions. Unfortunately, obstacles close to its sensors frequently cause blind zones behind them where other obstacles could be hidden. In this situation, the robot may lose vital information about these obstructed obstacles that can provoke collisions. In order to overcome this problem, an obstacle motion tracking module based only on 2D laser scan data was developed. Its main parts consist of obstacle detection, obstacle classification, and obstacle tracking algorithms. A motion detection module using scan matching was developed aiming to improve the data quality for navigation purposes; a probabilistic grid representation of the environment was also implemented. The research was initially conducted using a MatLab simulator that reproduces a simple 2D urban-like environment. Then the algorithms were validated using data samplings in real urban environments. On average, the results proved the usefulness of considering obstacle paths and velocities while navigating at reasonable computational costs. This, undoubtedly, will allow future controllers to obtain a better performance in highly dynamic environments.Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES

    Uncertainty and social considerations for mobile assistive robot navigation

    Get PDF
    An increased interest in mobile robots has been seen over the past years. The wide range of possible applications, from vacuum cleaners to assistant robots, makes such robots an interesting solution to many everyday problems. A key requirement for the mass deployment of such robots is to ensure they can safely navigate around our daily living environments. A robot colliding with or bumping into a person may be, in some contexts, unacceptable. For example, if a robot working around elderly people collides with one of them, it may cause serious injuries. This thesis explores four major components required for effective robot navigation: sensing the static environment, detection and tracking of moving people, obstacle and people avoidance with uncertainty measurement, and basic social navigation considerations. First, to guarantee adherence to basic safety constraints, sensors and algorithms required to measure the complex structure of our daily living environments are explored. Not only do the static components of the environment have to be measured, but so do any people present. A people detection and tracking algorithm, aimed for a crowded environment is proposed, thus enhancing the robot's perception capabilities. Our daily living environments present many inherent sources of uncertainty for robots, one of them arising due to the robot's inability to know people's intentions as they move. To solve this problem, a motion model that assumes unknown long-term intentions is proposed. This is used in conjunction with a novel uncertainty aware local planner to create feasible trajectories. In social situations, the presence of groups of people cannot be neglected when navigating. To avoid the robot interrupting groups of people, it first needs to be able to detect such groups. A group detector is proposed which relies on a set of gaze- and geometric-based features. Avoiding group disruption is finally incorporated into the navigation algorithm by means of taking into account the probability of disrupting a group's activities. The effectiveness of the four different components is evaluated using real world and simulated data, demonstrating the benefits for mobile robot navigation.Open Acces
    corecore