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Multisensor-Based Human Detection and
Tracking for Mobile Service Robots

Nicola Bellotto, Student Member, IEEE, and Huosheng Hu, Senior Member, IEEE

Abstract—One of fundamental issues for service robots is
human–robot interaction. In order to perform such a task and
provide the desired services, these robots need to detect and track
people in the surroundings. In this paper, we propose a solution for
human tracking with a mobile robot that implements multisensor
data fusion techniques. The system utilizes a new algorithm for
laser-based leg detection using the onboard laser range finder
(LRF). The approach is based on the recognition of typical leg
patterns extracted from laser scans, which are shown to also
be very discriminative in cluttered environments. These patterns
can be used to localize both static and walking persons, even
when the robot moves. Furthermore, faces are detected using the
robot’s camera, and the information is fused to the legs’ position
using a sequential implementation of unscented Kalman filter.
The proposed solution is feasible for service robots with a similar
device configuration and has been successfully implemented on
two different mobile platforms. Several experiments illustrate the
effectiveness of our approach, showing that robust human track-
ing can be performed within complex indoor environments.

Index Terms—Leg detection, people tracking, sensor fusion,
service robotics, unscented Kalman filter (UKF).

I. INTRODUCTION

IN RECENT years, the social aspect of service robots has
made it clear that these are not only expected to navigate

within the environment they have been placed in but they also
have to interact with people to provide useful services and show
good communication skills. The study of the so-called human-
centered robotics and human–robot interaction aims to achieve
such tasks and are currently some of the most fascinating
research fields in mobile robotics. In general, a service robot
has to focus its attention on humans and be aware of their
presence. It is necessary, therefore, to have a tracking system
that returns the current position, with respect to the robot, of
the adjacent persons. This is a very challenging task, as people’s
behaviors are often completely unpredictable. Researchers have
been using different methods to deal with this problem, in many
cases, with solutions subjected to strong limitations, such as
tracking in rather simple situations with a static robot or using
some additional distributed sensors in the environment.
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Service robotics has become one of the research areas at-
tracting major attention for over a decade. The necessity of fast
and reliable systems for tracking people with mobile robots
is evidenced in the literature by the growing number of real-
world applications. Human tracking can help service robots
plan and adapt their movements according to the motion of
the adjacent people or follow an instructor across different
areas of a building. For example, the tour-guide robot of
Burgard et al. [1] adopts laser-based people tracking both for
interacting with users and for mapping the environment, dis-
carding human occlusions. Another field of application is auto-
matic or remote surveillance with security robots, which can
be used to monitor wide areas of interest that are otherwise
difficult to cover with fixed sensors. An example is the system
implemented by Liu et al. [2], where a mobile robot tracks
possible intruders in a restricted area and signals their presence
to the security personnel.

The most common devices used for people tracking are laser
sensors and cameras. For instance, Lindström and Eklundh [3]
propose a laser-based approach to track a walking person with a
mobile robot. The system detects only moving objects, keeping
track of them with a heuristic algorithm, and needs the robot to
be static or move very slowly. Zajdel et al. [4] illustrate a vision-
based tracking and identification system which makes use of
a dynamic Bayesian network for handling multiple targets.
Even in this case, targets can be detected only when moving.
Moreover, the working range is limited by the camera’s angle
of view; hence, it is difficult to track more than two subjects
at the same time. The robot described by Luo et al. [5] uses
a tilting laser to extract body features, which are fused then
with the face detected by a camera. The solution is useful for
pursuing a person in front of the robot; however, the complexity
of feature extraction limits its application to multiple people
tracking. Other implementations also use a combination of
face detection and laser-based leg detection [6], [7]. In all
these cases, however, since they do not rely on any motion
model, situations in which a person is temporarily occluded are
difficult to handle. Schulz et al. [8] describe a robot equipped
with two laser range sensors that can track several people,
using a combination of particle filters and probabilistic data
association. Many other recent approaches make also use of
particle filters, sometimes combining visual and laser data [9] to
track from a fixed position or using other kind of devices such
as thermal cameras [10].

The solution presented in this paper adopts multisensor data
fusion techniques for tracking people from a mobile robot using
a laser scanner and a monocular camera. A new detection
algorithm has been implemented to find human legs by using
laser scans, which works either in large empty environments
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Fig. 1. Pioneer robot with laser and camera for legs and face detection.

or small cluttered rooms. Different from other approaches, our
system is also able to distinguish among different leg postures,
improving the discrimination of false positives. Vision is then
used for face detection, and robust human tracking is performed
with a sequential unscented Kalman filter (UKF) fusing the
two different sensor data. The solution is feasible for several
applications of mobile service robots with a similar device
configuration, although the computational efficiency makes it
particularly indicated for robots with limited processing power.
The system has been tested in cluttered indoor environments,
where human detection is made difficult by the presence of
furniture or by the small size of a room, and proved to be robust
enough to track people constantly even while the robot moves
at a normal walking speed.

This paper is organized as follows. Section II explains, in
detail, the algorithm for leg detection and also introduces the
face-detection module. The tracking system, including UKF,
sensor fusion, and data association, is described in Section III.
Then, Section IV presents several experiments and analyzes the
results. Finally, conclusions and future work are illustrated in
Section V.

II. DETECTION

The human-tracking algorithm adopts multisensor data fu-
sion techniques to integrate the following two different sources
of information: the first one is leg detection, based on the
laser scans of a Sick LRF, and the other one is face detection,
which uses a monocular camera. The devices and their location
are shown in Fig. 1 for one of our mobile robots. Next, we
describe, in detail, the principles underlying these two detection
algorithms.

A. Leg Detection

In the literature, there are several systems using laser scans to
detect human legs. However, most of them are simply based on
the search of local minima [6], [11], which, in general, works
well only for rather simple environments such as empty rooms

Fig. 2. Leg patterns extracted from a laser scan. Most of the time,
(left) LA and (center) FS patterns can be easily distinguished from other
objects; however, (right) SL patterns can be very ambiguous in some
environments.

and corridors. In [12], it is reported that at least a single leg
(SL) must always be well distinguishable, whereas attempts
of using more general solutions showed to be not very robust
in cluttered environments [13]. Many other approaches can
only detect moving persons [3], [9], normally searching for
differences between two or more scans. Aside from the problem
of missing static humans, these methods are often unreliable for
mobile robots due to the difficulty of compensating for the ego
motion.

The algorithm for leg detection presented here extracts the
necessary features from a single laser scan, independently then
from the human or robot motion. However, in contrast with the
local minima approach, we identify typical patterns (relative to
particular leg postures) that, in most of the cases, are well dis-
tinguishable from the other objects in the environment. These
patterns are shown with an example in Fig. 2 and correspond
to the following three typical situations: two legs apart (LA),
forward straddle (FS), and two legs together or SL. The first
pattern is usually very common in case the person is standing in
front of the robot. The second, however, is most likely to happen
when the person is walking. The last pattern covers most of the
remaining postures; often, however, it can also be generated by
other objects in the environment.

As also shown in the schematic representation of Fig. 3, the
algorithm is divided in three main parts:

1) data preprocessing;
2) detection of vertical edges;
3) extraction of leg patterns.

Suppose the angular step between two consecutive laser
scans is constant and that the readings are stored in an array
S = [r1, . . . , ri, . . . , rM ], where ri is the range measured on the
direction θi and M is the total number of readings. Initially, the
laser data are preprocessed by applying a local minimization
operator [3], in order to remove possible spikes due to reflec-
tions on sloped surfaces, and a local maximization operator, in
order to discard thin objects such as table legs.

From the resulting array Ŝ of preprocessed data, the recog-
nition of the three different leg patterns can be done efficiently
using the following method based on vertical edges features. If
we represent Ŝ on a Cartesian graph, with the angle (indexed
by i) on the abscissa and the range on the ordinate, we can
identify a sequence of vertical edges defined as follows. The
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Fig. 3. Schematic representation of the leg-detection algorithm. The laser scan
S is preprocessed to reduce measurement noise. From the resulting data Ŝ, the
set of vertical edges E is then extracted. Finally, the algorithm detects, in order,
the LA, FS, and SL patterns, based also on some constraints on the measures a,
b, and c.

doublet {r̂i, r̂i+1} can be considered an almost vertical edge
if the distance |r̂i+1 − r̂i| is greater than a given threshold.
Moreover, we can distinguish a left edge, when r̂i > r̂i+1, from
a right edge, when r̂i < r̂i+1, and refer to them as Li and Ri,
respectively (hereafter, for simplicity, we omit the index i).
The resulting vertical edges are initially queued into a list
E = {e1, . . . , en, . . .}, where each element en can be either an
L or R edge. If they are very close and almost aligned, adjacent
edges of the same type are connected to form a longer one.

After that, from the updated list of connected edges, we
extract all the subsets that might belong to one of the three
leg patterns described before. In particular, according to some
constraints and spatial relations between edges, including max-
imum distance between legs and limits on their size, the ordered
sequences of left/right edges we look for are the following.

1) The LA pattern is a quadruplet {L,R,L,R}.
2) The FS pattern is a triplet {L,L,R} or {L,R,R}.
3) The SL pattern is a doublet {L,R}.

Every edge is removed from E as soon as it contributes to form
one of the aforementioned sequences. Therefore, all the LA
patterns, which are normally the most reliable, are extracted
first, while the SL patterns, which are the easiest to misinterpret,
are left at the end.

With reference to Fig. 3, some dimensional constraints are
fixed for the measures a, b, and c, which are, respectively, the
leg’s width, the maximum step length, and the width of two
legs together. These are used by the algorithm’s procedures to
recognize LA, FS, and SL patterns, described in detail in Table I
(to simplify the pseudocode and make it more readable, some
checks on the indexes are omitted). Finally, the distance and
direction of the detected legs are calculated from the midpoint
of each pattern. Fig. 4 shows the leg detection of three persons
in different postures.

TABLE I
ROUTINES FOR THE DETECTION OF LEG PATTERNS

B. Face Detection

In order to improve the human-detection performance when
in proximity of people, the robot is provided with a camera
for face localization. One of the classic methods to accomplish
this task in real time is based on the color segmentation of skin
regions, as in the case reported by Fritsch et al. [6]. However,
this kind of solution is prone to many errors due to light
variations and shadows, as well as limitations in the detection
of different skin tones.

The approach adopted in our system, instead, is based on
the work of Viola and Jones [14] and is a further extension of
[15]. The detection algorithm uses a set of simple but important
visual features, the prototypes of which are shown in Fig. 5. The
value of a feature is calculated subtracting the weighted sum of
the pixels within the white rectangles from the weighted sum
of the pixels within the black rectangles. The prototypes can be
scaled independently in a horizontal or vertical direction, thus
to generate an overcomplete set of features F far larger than the
number of pixel in the considered subimage. For example, the
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Fig. 4. Example of face and leg detections. From left to right, all the three leg
patterns, LA, FS, and SL, are detected.

Fig. 5. Set of features used for face detection [15].

total number of features for a window size of 24 × 24 pixels is
117 941 [15].

Thus, the detection system consists of a cascade of weak
classifiers, each one relative to a particular feature of F . A
modified version of the Adaboost algorithm [16] is used both
to determine a small number of salient features and to train
the relative classifiers. Every weak classifier is trained to detect
faces, with a high hit rate, from subregions of the image. A
pattern can be rejected by the current classifier or passed to
the following one, as shown in Fig. 6. For a certain number
of trained classifiers, the final false alarm will be very low
yet keeping a total hit rate close to 100%. For example, if the
number of classifiers is N = 10, with each one trained so that
the hit rate is 99.8% and the false alarm is 50%, the resulting
cascade will still have a high hit rate of 0.99810 � 0.98 but with
a very small false alarm of 0.510 � 0.001.

Aside from being very fast, an important characteristic of this
face detection is that it is color independent and, therefore, not
constrained by the skin tone of a person. As reported by Viola
and Jones [14] and as also tested with our robot under different
conditions, this algorithm is quite robust to varying illumination
and to facial details such as beard or glasses. An example is
shown in Fig. 4.

The position of the face on the image can be used to calculate
its bearing and elevation with respect to the camera’s location
and orientation. For our purpose, a simple pinhole camera

Fig. 6. Cascade of classifiers for face detection.

Fig. 7. Face-detection algorithm calculates bearing and elevation of the face
center based on its position on the image plane and the focal length of the
camera. (a) Face detection from camera image. The values u and v give the
position, in pixels, of the face center. The coordinates of the bounding box
around the face are also available. (b) Bearing α and elevation β of a point P
(face center) captured by the camera with focal length f .

model can be adopted, and the distortion introduced by the
camera lens can be ignored. We then derive the following
transformations [17]:

α = tan−1

(
W/2 − u

f

)
β = tan−1

(
v − H/2

f

)
(1)

where (u, v) is the face’s center on an image W × H and
f is the focal length in pixel units, as also shown in Fig. 7.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 17, 2009 at 11:14 from IEEE Xplore.  Restrictions apply.



BELLOTTO AND HU: MULTISENSOR-BASED HUMAN DETECTION AND TRACKING FOR MOBILE SERVICE ROBOTS 171

Fig. 8. Location of the robot sensors and detection measurements.

Furthermore, considering that the bounding box of the detected
face is also available, we can get an additional measure from
the elevation of the lower (or upper) bound. This can be useful,
for example, for distinguishing different faces, considering
that their size on the image varies with the distance from the
camera.

III. TRACKING

Tracking a walking person is a very challenging task. There
are many factors which may influence the human trajectories,
such as the environment, the number of people, or the interac-
tions among them. The unpredictability of such behaviors have
been modeled by some researchers as Brownian motion [18],
although a constant velocity model seems to be a better choice
in order to deal with clutters [8], [19]. This section describes
the methodology used in our tracking system.

A. State and Observation Models

We adopt the state model as in [19], which is an extension of
the constant velocity model. The equations are as follows:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

xk = xk−1 + vk−1Δtk cos φk−1

yk = yk−1 + vk−1Δtk sin φk−1

zk = zk−1 + nz
k−1

φk = φk−1 + nφ
k−1

vk = |vk−1| + nv
k−1

(2)

where Δtk = tk − tk−1 and the state is given by the position
(xk, yk), the height zk, the orientation φk, and the velocity vk

of the human target. The noises nz
k−1, nφ

k−1, and nv
k−1 are zero-

mean Gaussians with standard deviations σz = 0.01 m, σφ =
π/9 rad, and σv = 0.1 m/s.

With reference to Fig. 8, the absolute 2-D position (xL
k , yL

k )
and orientation φL

k of the laser depend on the current location

(xR
k , yR

k ) and heading φR
k of the robot, as given by the odometry,

and are calculated as follows:

xL
k =xR

k + Lx cos φR
k

yL
k = yR

k + Lx sin φR
k

φL
k =φR

k (3)

where the constant Lx is the horizontal distance of the laser
from the robot’s center (Ly is null). The observation model for
the laser, which includes the bearing bk and distance rk of the
detected legs, can therefore be written as follows:

⎧⎨
⎩

bk = tan−1
(

yk−yL
k

xk−xL
k

)
− φL

k + nb
k

rk =
√(

xk − xL
k

)2 +
(
yk − yL

k

)2 + nr
k

(4)

where the noises nb
k and nr

k are zero-mean Gaussians with
standard deviations σb = π/60 rad and σr = 0.1 m.

Aside from the odometry, the absolute 3-D position
(xC

k , yC
k , zC

k ) and orientation (φC
k , θC

k ) of the camera take into
account the horizontal distance Cx from the robot’s center (Cy

is null), the height Cz , the pan Cφ, and the tilt Cθ

xC
k = xR

k + Cx cos φR
k

yC
k = yR

k + Cx sin φR
k

zC
k = Cz

φC
k = φR

k + Cφ

θC
k = Cθ. (5)

The following observation model for the face detection calcu-
lates the bearing αk and elevation βk of the face’s center, as
well as the elevation γk of the chin:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

αk = tan−1
(

yk−yC
k

xk−xC
k

)
− φC

k + nα
k

βk = − tan−1

[
zk−zC

k√
(xk−xC

k )2
+(yk−yC

k )2

]
− θC + nβ

k

γk = − tan−1

[
μzk−zC

k√
(xk−xC

k )2
+(yk−yC

k )2

]
− θC + nγ

k .

(6)

In the third equation of (6), the constant μ is chosen so that
the product μzk corresponds to the height of the lower face’s
bound (i.e., approximately the chin). Again, the noises nα

k , nβ
k ,

and nγ
k are zero-mean Gaussians with σα = σβ = π/45 rad and

σγ = π/30 rad.
Please note that in order to estimate the real absolute position

of a human in the environment, the position and heading of the
robot used in (3) and (5) should be provided by an accurate
localization system. However, considering that our objective
is only to track humans relative to the robot’s position, the
cumulative error of the odometry is not an issue. Furthermore,
the odometry error between two consecutive estimations is very
small and can be safely included in the noises of the observation
models.
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B. Multisensor Estimation With UKF

Kalman filtering is a well-known technique for multisensor
tracking [20], which is also proved to be optimal for linear
systems in case of Gaussian distributions. When the system
is not linear, such as in our case, an extended Kalman filter
(EKF) could be adopted; however, better performance is, in
general, achieved by using a UKF [21]. The main difference
is that the first-order linearization of the EKF is substituted in
the latter with an unscented transformation (UT), which cap-
tures the mean and covariance of the probability distributions
with carefully chosen weighted points, called “sigma points.”
In contrast with particle filters, the small number of points
used by the UKF makes this estimator particularly appealing
for real-time applications with limited computational power.
Moreover, the advantage of the UKF with respect to the EKF
is that the absence of linearization improves the estimation
performance and avoids the calculus of Jacobian matrices. Most
of the approaches found in the literature for tracking persons
with a mobile robot are based on the EKF [22], [23] or on
particle filters [8], [9], [18]. However, system nonlinearities and
hardware constraints suggest the application of the UKF for our
tracking system.

1) UT: Given the current state mean x̄, which is of size n,
and its covariance matrix Pxx, the 2n + 1 sigma points X i

and associated weights Wi of the relative UT are calculated as
follows:

X 0 = x̄

W0 = ρ/(n + ρ)

X i = x̄ +
[√

(n + ρ)Pxx

]
i

Wi = 1/ {2(n + ρ)}

X i+n = x̄ −
[√

(n + ρ)Pxx

]
i

Wi+n = 1/ {2(n + ρ)} (7)

where i = 1, . . . , n and ρ is a parameter for tuning the higher
order moments of the approximation, normally set so that n +
ρ = 3 for Gaussian distributions. The term [

√
(n + ρ)Pxx]i is

the ith column or row of the matrix square root of Pxx.
Using these points, the mean and covariance of a generic

(nonlinear) transformation y = g(x) are calculated as follows:

Yi =g(X i) (8)

ȳ =
2n∑
i=0

WiYi (9)

Pyy =
2n∑
i=0

Wi[Yi − ȳ][Y i − ȳ]T. (10)

As shown in [21], this procedure yields to a projected mean and
covariance, which is correct up to the second order and is better
than the linearization used by the EKF; however, it still keeps
the same computational complexity.

2) UKF Estimation: The estimation procedure of the UKF,
applied to our system, is the following. First of all, given the

state vector xk = [xk, yk, zk, φk, vk]T of size n = 5, a UT is
performed. This takes the last estimate x̂k−1 and its relative
covariance Pk−1 to generate, using (7), the 2n + 1 = 11 sigma
points X ik−1. Note that in this case, the tuning parameter
assumes a negative value ρ = 3 − n = −2. Julier et al. [24]
showed that ρ < 0 can lead to a nonpositive semidefinite matrix
when the state covariance is calculated with (10), and this was
indeed a problem in our first implementation. As suggested by
the authors, a modified version can be used, which consists in
adding a term [Y0 − ŷ][Y0 − ŷ]T to the sum in (10).

Therefore, with our prediction model f(xk−1) defined in (2),
the a priori estimate x̂−

k and covariance P−
k are computed as

follows:

X i−
k

= f(X ik−1), for i = 0, . . . , 10 (11)

x̂−
k =

10∑
i=0

WiX i−
k

(12)

P−
k =

10∑
i=0

Wi

[
X i−

k
− x̂−

k

] [
X i−

k
− x̂−

k

]T

+
[
X 0−

k
− x̂−

k

] [
X 0−

k
− x̂−

k

]T

+ Q (13)

where Q is the covariance of the (additive) process noise

Q =

⎡
⎢⎢⎢⎢⎣

0 0 0 0 0
0 0 0 0 0
0 0 σ2

z 0 0
0 0 0 σ2

φ 0
0 0 0 0 σ2

v

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

0 0 0 0 0
0 0 0 0 0
0 0 10−4 0 0
0 0 0 π2

81 0
0 0 0 0 10−2

⎤
⎥⎥⎥⎦ . (14)

The next step is to generate the expected observation for the
legs’ measurement zk = [bk, rk]T and face measurement zk =
[αk, βk, γk]T. Using the observation model h(xk), defined,
respectively, in (4) and (6), and the sigma points predicted in
(11), the UT is applied again as follows:

Zik =h
(
X−

ik

)
, for i = 0, . . . , 10 (15)

ẑk =
10∑

i=0

WiZik (16)

Pννk =
10∑

i=0

Wi[Zik − ẑk][Zik − ẑk]T

+ [Z0k − ẑk][Z0k − ẑk]T + R (17)

where ẑk is the predicted observation, Pννk is the innovation
covariance, and R is the covariance of the observation noise. In
case of laser readings, the latter is set as follows:

R ≡ RL =
[

σ2
b 0
0 σ2

r

]
=

[
π2

3600 0
0 10−2

]
. (18)
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For the camera, however, the following matrix is used:

R ≡ RC =

⎡
⎣σ2

α 0 0
0 σ2

β 0
0 0 σ2

γ

⎤
⎦ =

⎡
⎣

π2

2025 0 0
0 π2

2025 0
0 0 π2

900

⎤
⎦ .

(19)

The cross correlation Pxzk and the gain Kk are then computed
using the following:

Pxzk =
10∑

i=0

Wi

[
X−

ik
− x̂−

k

]
[Zik − ẑk]T (20)

Kk =PxzkP−1
ννk. (21)

Finally, given the innovation νk = (ẑk − zk), which is the
difference between the predicted and real measurements pro-
vided either by the laser or the camera, the a posteriori estimate
x̂k and its covariance Pk are calculated as follows:

x̂k = x̂−
k + Kkνk (22)

Pk =P−
k − KkPννkKT

k . (23)

3) Sequential Update: In case of asynchronous uncorrelated
measurements, the correction step of a Kalman filter can be per-
formed sequentially using only the data of the sensors available
at the considered instant [20], [25]. Furthermore, even when
all the measurements are synchronized, the sequential update,
starting from the most to the least precise sensor data, gives a
better estimation for nonlinear systems and is computationally
more efficient.

Under the same assumptions, i.e., the measurements pro-
vided by the robot’s laser and camera are independent, the
UKF can also be updated sequentially with the same benefits.
In case both the measurements are available at the same time
step, the filter is updated first using the laser data, which is
more accurate, and then the camera. The procedure is shown
schematically in Fig. 9 for a single iteration. After the predic-
tion step, the UKF is initially updated by the laser, provided
that some legs have been actually detected. Then, in case a face
observation is also available, the estimate is further corrected.
This assures that all the available measurements are processed
in order to get always the best possible estimate. The modularity
of the approach also permits an easy integration of future
extensions such as motion detection, sound detection, etc.

C. Data Association

To handle multiple targets, we adopted a nearest neighbor
(NN) data association [20], which is a reasonable compromise
between performance and computational cost, giving good
results in most of the cases where the set of entities to track
is not too dense [18], [19].

For each candidate track, the observations are predicted using
the relative models. Then, after a gating procedure, a measure
of similarity between predicted and real observations is used
to fill an association matrix SM×N , where M is the number of
sensor measurements and N is the number of tracks. Finally, the
elements of SM×N with the highest similarities are chosen, and

Fig. 9. Sensor data fusion with sequential UKF estimation.

each measurement m is used to update the associated track n.
Note that NN is a one-to-one association, i.e., only one mea-
surement is assigned to one track and vice versa.

We adopt a common gating approach, excluding all the
measurements ym outside a validation region. This region is
constructed around the predicted observation ẑn according to
the relation dmn ≤ λ, where λ is a threshold and dmn is the
Mahalanobis distance

dmn =
√

(ym − ẑn)TΣ−1
mn(ym − ẑn) (24)

with Σmn as the covariance matrix of the innovation (ym −
ẑn). The value of λ can be determined from tables of the χ2

distribution. In order to have a probability PG = 0.99 that a
measurement generated by a human target falls inside the vali-
dation region, we chose λL = 3.03 for the legs’ measurements
and λC = 3.37 for faces.

To create the association matrices, one for legs and one for
faces, we make use of the following similarity measure [26]:

smn =
1√

(2π)η|Σmn|
exp

(
−d2

mn

2

)
(25)

where η is the size of the observation vector (η = 2 for legs and
η = 3 for faces). It is clear that the bigger the value of smn, the
higher the similarity between ym and ẑn.
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D. Creating and Removing Tracks

The sensor readings discarded by the gating or the assign-
ment procedure are used to create new tracks. Different criteria
can be adopted in order to discriminate false positives, which
would otherwise generate nonexisting tracks. The most reliable
solution would be to consider a new person only when both
legs and face are detected. However, it would not be possible
to create tracks out of the camera’s field of view, which is
a big limitation in many applications (e.g., when the robot
looks for someone to interact with or when it needs to avoid
people walking nearby). Instead, we prefer to use mainly the
legs detected by the laser, exploiting the differences among leg
patterns. In particular, only LA and FS patterns are selective
enough to be considered reliable for the task. The remaining
SL pattern, instead, can contribute to the creation of new tracks
only when a face is also detected on the same direction of
the legs.

The whole procedure, then, is implemented as follows. Paral-
lel to the human tracks database, we keep another list containing
all the possible candidates. Each one of these is generated by
a sequence of laser readings, which can be either LA, FS, or
SL legs (the latter is validated by faces). The readings have to
fall inside a certain region, delimited by the distance covered
by a person when moving at the maximum speed of 1.5 m/s.
Each candidate is also assigned a maximum lifetime. If during
this interval there are enough readings falling inside its region,
the candidate is promoted to human track; otherwise, it is
considered a false positive and removed.

Of course, proper tracks can be updated with any of the leg
patterns or faces. They are eventually deleted from the database
if not updated for more than 2 s or if the uncertainty of their
2-D position is too big, i.e., the sum of the variances in x and y
is greater than 2 m2.

IV. EXPERIMENTAL RESULTS

To test the performance and the portability of the proposed
solution, the system has been implemented on two different
mobile robots. The first one is a Pioneer 2, shown in Fig. 1,
which is provided with a Sick laser and a Pan-Tilt-Zoom (PTZ)
camera. This is mounted on a special support at approximately
1.5 m from the floor in order to facilitate the face detection. The
onboard PC is a Pentium III 800 MHz with 128 MB of RAM.
The second one is an interactive service robot based on a Scitos
G5 platform, as shown in Fig. 10. This is also provided with a
laser and a camera, the latter being embedded in the robotic
head. The onboard computer is a Core Duo 1.66 GHz with
1 GB of RAM. A touch screen is also available for interaction.
Both robots run on a Linux operating system.

The whole software has been written in C++ and runs in
real time on the robot PCs, although it is possible to use an
external client, connected via wireless, for remote control and
debug. The resolution of the laser devices is ±1 cm, with a scan
every 0.5◦ at 5 Hz for the Pioneer and 32 Hz for the Scitos,
whereas the cameras provide images with a resolution of
320 × 240 pixels at 10 and 25 Hz, respectively. The updating
frequency of our program, which includes other functionalities

Fig. 10. Scitos robot with laser and embedded camera in the robotic head.

Fig. 11. Floor plan of the test environment.

for motion control and data logging, is approximately 4 Hz for
the Pioneer and 16 Hz for the Scitos.

The dimensional constraints of the leg detection have been
empirically determined after analyzing many recorded data of
different people walking in typical indoor environments. The
best results have been obtained setting the width of a leg to
10 < a < 20 cm, the maximum step length to b < 40 cm, and
the width of two adjacent legs to 10 < c < 40 cm. These values
are still valid for small changes of the laser’s position, as is the
case with our robots.

The experiments have been conducted in our laboratory, a
robot arena, and adjacent offices, as shown in Fig. 11, mov-
ing between different rooms and, often, crossing doorways
or narrow corridors. During the experiments, the robots were
controlled remotely to follow the persons being tracked, often
moving faster than 0.5 m/s and with a turn rate of up to 45◦/s.
The performance of the system is also documented by several
videos in the multimedia appendix. This will be available at
http://ieeexplore.ieee.org.
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Fig. 12. Cluttered environment for leg-detection experiment.

A. Leg Detection

To evaluate the performance of the leg-detection algorithm,
two other techniques frequently found in the literature have
been implemented for comparison. The first one is a procedure
adopted in [6] and [11], which finds the distance minima in
a laser scan and then keeps those points possibly generated
by legs, discarding all the others. The minima are extracted
from sequences of (at least four) adjacent laser readings with
a gradient lower than 0.1 m/◦. Legs in this case must be at
30 cm or more from any background object, and pairs are
grouped if the inner gap is less than 0.5 m.

The second procedure implemented is the motion-detection
algorithm described in [3], which is similar to other variants
that can be found in the literature [27], [28]. The basic idea
consists in detecting entities that violate a “free space,” which is
the union of empty regions built from past laser scans, using the
odometry to compensate the ego motion of the robot. If a certain
number of readings fall inside a region that was previously
unoccupied, then these readings are supposed to belong to a
moving object. The implementation used for our comparison
considers the last three laser scans and a margin difference of
0.2 m between consecutive free spaces.

The algorithms for leg detection have been tested on data
recorded in the following two different situations: 1) pioneer
robot in a static position, pointing the laser toward a cluttered
area of the laboratory, with up to three people walking around,
and 2) robot moving together with some persons, following one
of them inside a cluttered office and between different rooms.
The environment of the first case is shown in Fig. 12, with a
picture taken from the top of the robot. As can be seen, several
objects, such as tables, chairs, bags, etc., contributed to make
the detection more difficult. The second case is represented by
some snapshots taken with the robot’s camera, which are shown
in Figs. 15 and 16. Aside from the laboratory, this test scenario
also included a cluttered office, a corridor, and the robot arena.

The total number of laser scans recorded from the static
position was 813, from which we manually counted 1067
“detectable” persons, i.e., with legs not occluded by other
objects. An example of detection with the three different ap-
proaches is shown in Fig. 13. Our algorithm, looking for all
the three patterns of LA, FS, and SL, confused only one wrong

Fig. 13. Example of leg detection with the following three different algo-
rithms: minima on the left, motion in the middle, and patterns on the right.
In this case, the person on the right is missed by the first two algorithms.

Fig. 14. Comparison of leg-detection errors using algorithms based on dis-
tance minima, motion detection, and leg patterns (with and without SL). Errors
are expressed as ratios of false positives versus total leg detections and as false
negatives versus total detectable persons.

object as a leg (false positive) out of 798 detections and totally
missed 270 legs (false negatives) during the experiment. The
performance of the detection is compared with the other two
algorithms, which are the minima and motion detection, and
with a modified version of our procedure that does not consider
SL patterns. The results are shown in Fig. 14, which reports the
ratio (in percentage) between the number of false positives and
total detections. It also reports the ratio between the number of
false negatives and total number of actual legs. As the first graph
shows, the percentage of false positives is almost null for all but
the minima case, where some false positives were occasionally
generated by a moving chair or a bag. Our algorithm performed
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considerably better than the motion detection in the number of
false negatives, considering that the latter obviously missed all
the cases where a person was standing still.

Probably more significant are the results from the experiment
with the robot moving and shown by the second graph in
Fig. 14. The laser scans recorded in this case were 619, which
contained, totally, 802 persons. As expected, the number of
false positives increased considerably because of the dynamic
nature of the experiment, where almost each laser scan differs
from the next one. For our detection algorithm, using all the
three leg patterns, the percentage of false positives was 49.97%,
bigger than the 28.37% of the motion-detection procedure.
However, compared with the latter, our algorithm had a much
lower percentage of false negatives, which is 8.48%, against
the 72.82% of the motion detection. The latter indeed failed
very often during the “following” behavior, considering that
a person moving away from the robot does not violate the
free space and, therefore, cannot be detected. Note also that
by using our algorithm without considering the SL patterns,
the false positives were reduce to very little, still keeping the
percentage of false negatives much lower than that for the
minima and motion detection. Usually, the best solution would
be a balance between false positives and false negatives, which,
in this case, could be further modified by adjusting the dimen-
sional constraints of the leg patterns. However, in the next ex-
periments, we found it more appropriate, for a robust tracking,
to keep the current settings and consider all the three patterns,
relying instead on the gating procedure to discard possible false
positives.

B. Tracking in Cluttered Environments

A challenging task for mobile robots is following and track-
ing a person inside furnished rooms. The following experiment
was conducted with the Pioneer robot in office 1. Inside, there
were several desks, chairs, metallic shelves, one of which was
located in the middle of the room, and many other objects,
such as trash bins and school bags, lying on the floor. We
wanted to represent a situation in which an instructor shows
the environment to the robot, walking at normal speed and
slowing down from time to time to give some indications. The
person walked around the room twice, always followed by the
robot at approximately 1.5 m, and each turn took about 30 s.
A few snapshots of the experiment are shown in Fig. 15
(see also the attached Video 1, and this will be available at
http://ieeexplore.ieee.org).

During the experiment, the face was detected only for 30%
of the whole time; thus, the track estimate was mainly based on
the laser. As reported in Table II (experiment “clutters”), which
shows the ratios between the number of detected legs and faces
versus the total tracking steps, the person’s legs were indeed
detected for 92% of the total tracking time. In particular, 49% of
these legs were LA patterns, 13% were FS, and 30% were SL.

C. Following Across Different Rooms

Another difficult situation is when the robot has to move
between different rooms, keeping track of a human along

Fig. 15. Person walking around the room followed by the robot. Face and leg
detections are shown on the right side of each figure. The left part illustrates the
track and the robot “R,” also highlighting the raw laser scan and the camera’s
field of view. (a) Both face and LA legs of the person are detected. (b) Detection
of the FS leg pattern, together with some false positives caused by the furniture.
Nevertheless, the tracking is always performed correctly.

TABLE II
OBSERVATION/TRACKING TIME RATIO

narrow corridors or door passages. This would be the case,
for example, when a robot has to follow an instructor in the
environment for map building.

In the experiments described next, one or more persons were
followed by the Pioneer robot while moving from office 1 to
the robot arena shown in Fig. 11. Along the path, two doors
and two other rooms had to be crossed. A short sequence
of images taken during the trials are shown in Figs. 16 and
17 (see also Videos 2 and 3, and these will be available at
http://ieeexplore.ieee.org).

Initially, the robot started tracking a couple of persons in
office 1 and then followed one of them to the robot arena. The
first part of the path included a door passage and a narrow
corridor, with some objects on the floor and a column that made
the leg detection more difficult. As shown in Fig. 16(a), a sign
on the wall also generated a false positive on the face detection.
Nevertheless, the human tracking continued successfully; the
robot entered the door in Fig. 16(b), where the person was out
of the camera’s view, and crossed the laboratory in Fig. 16(c)
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Fig. 16. Tracking one person between different rooms. (a) False positive of
the face detection, correctly discarded. (b) Door passage with the target outside
the camera’s field of view. (c) Crossing the laboratory toward the robot arena.

to finally reach the robot arena. Eventually, some other people
joined the previous person in the same room.

A similar experiment was also conducted to test the perfor-
mance of the tracking system in case the robot follows more
than one person at the same time. The situation was particularly
challenging because, walking very close, people occlude each
other very often and the data-association problem becomes
really difficult.

Fig. 17(a) shows the initial tracking of two persons, in
office 1, who were walking toward the corridor to reach the
robot arena. During the initial path, the person closest to the
robot (target 1) was often occluding the other one, whose track
was therefore lost several times. However, once they reached
the laboratory, the robot could finally detect both and keep two
distinct tracks, as shown in Fig. 17(b), until the final destination.

Although the tracking was generally correct most of the time,
we have to note that inside the robot arena, a data-association
error caused a swap between the tracks. This happened because

Fig. 17. Two persons being tracked from office 1 to the robot arena. (a) Initial
tracks of two persons walking out of office 1. (b) Both the persons being tracked
in the laboratory. (c) Track swap due to data-association error.

the two persons were walking very close to each other, with
similar orientation and speed and without facing the robot’s
camera. The error is clear when comparing Fig. 17(b) with
Fig. 17(c), where the track of the tall subject (target 1) swapped
with the other one’s (target 5). In situations like this, a more so-
phisticated data-association algorithm would probably perform
better but at a higher computational cost. Moreover, the integra-
tion of an additional visual tracker, such as the histogram-based
solution of Comaniciu et al. [29], could help in keeping the
tracks apart even when the faces are not detectable.

Compared with the previous cases, the results in Table II
(experiment “follow 2”) also show a different contribution of
the detected leg patterns to the tracking. Indeed, this time,
the LA pattern was that one giving the smaller contribution
to the estimation. This was because the experiment has been
performed almost exclusively with people in motion, when
most of the postures detected by the laser are therefore FS or SL
patterns. In addition, considering that the persons were almost
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Fig. 18. Pioneer robot is introduced to some people in different rooms.
(a) Tracking in office 2, where one of the persons is initially seated. (b) Only
the face is used to update the track of target 3. (c) Track swap error, out of the
camera’s view.

always heading forward, very few faces were detected during
the trial.

D. Application to Human-Robot Interaction

This experiment replicates a possible case where a service
robot is introduced to several people, which interacts with them
in various locations. Considering that our research also includes
people recognition, this part is very important for the objective.
Indeed, situations similar to that one described in this paper
could be used to train the robot with different individuals and
recognize them under different conditions.

The trial started in office 2, with the Pioneer robot following
the two people shown in Fig. 18(a) (see also Video 4, and
this will be available at http://ieeexplore.ieee.org). Considering
that the legs of the left person were promptly detected, he
was tracked almost immediately, even if he was still sitting

Fig. 19. Percentages of false positives for leg and face detections versus total
number of human detections.

on a chair. Then, always following and keeping track of one
person (target 1), the robot moved to the laboratory, reaching
the desk of another colleague. Fig. 18(b) shows a case where
one estimate (target 3) was updated only by the face detection,
which also increased the robustness of the tracking in several
other occasions.

The experiment terminated on another side of the laboratory,
where the robot had to track up to three people at the same
time. During this part, there was an error, considering that the
tracks of the two persons shown in Fig. 18(c) (targets 1 and
4) swapped once when they got too close to each other. The
main reasons for this problem were the temporary misdetection
of one target and the low update frequency of the program.
Indeed, a time step of 0.25 s (i.e., 4-Hz update) can sometimes
be too high for a good estimation, particularly when both robot
and persons are moving fast. Compared with the previous error
in Section IV-C, this one differs in that it happened out of the
camera’s field of view; therefore, vision could not help avoiding
it. With the future integration of a human-recognition system,
the track labels could be corrected as soon as the subject is
captured by the camera again.

E. Evaluation of Human Detection and Tracking

To evaluate the accuracy of the human detection, Fig. 19
shows the ratios between the number of false positives versus
the total number of leg and face detections for all the tracking
experiments described so far (Sections IV-B, -C, and -D) with
the Pioneer robot. As expected, we can notice that faces and
LA patterns had very few false positives (9.0% and 6.8%,
respectively). However, the number of false positives for the
SL patterns was very high, although this was correctly handled
by the gating procedure. Nevertheless, the contribution given
by these patterns was also very important. Indeed, in repeating
the experiments with the same data but without using SL legs,
the tracks were sometimes lost. When considering all the three
patterns, however, the tracks were constantly maintained as
long as they were in the detection range.
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Fig. 20. Comparison of tracking errors with different filters.

With the same data recorded during the previous experi-
ments, for a total of 1180 time steps, we also repeated the
tracking using a classic EKF and a sampling importance re-
sampling (SIR) particle filter, which are both very common in
the literature, and compared the performance with our solu-
tion. The Jacobian matrices for the EKF have been calculated
from the state and observation models in (2), (4), and (6).
The estimation was performed using the well-known Kalman
equations [30] and adopting the same noise covariances de-
fined in (14), (18), and (19). The SIR particle filter [31] was
implemented using the models and noises cited earlier. In
particular, the prior distribution p(xk|xk−1) and the likelihood
p(zk|xk) were, respectively, the Gaussians N [xk; f(xk−1),Q]
and N [zk;h(xk),R], using the same quantities already defined
in Section III-B2. The number of samples used was 1000,
similar to other existing solutions.

We measured the robustness of the different techniques in
terms of tracking errors, considering only the 2-D coordinates
(x, y) for the sake of simplicity. Each one of the following
situations was counted as an error: 1) the track deviates from the
correct trajectory of the human target and is eventually deleted
by the system; 2) the track “jumps” to a static object, adjacent
to the path of the person, due to a false positive (gating error);
and 3) the track switches to another person close to the original
one (data-association error). All these cases, indeed, are strictly
related to the estimate of the filter and to the distribution of its
uncertainty. The graph in Fig. 20 clearly shows that the result
obtained with the UKF is better than that with the EKF. The
nonlinearity of the system, in fact, made the latter filter fail
in several occasions, particularly when both the robot and the
person being tracked were moving. The performance of the
UKF was instead similar to the SIR estimation in terms of error
number; however, it differs on the type of error. Despite an
occasional error due to a false positive in the cluttered office 1,
the major accuracy of the particle filter in representing the prob-
ability distribution of the estimate seemed to be an advantage
for the data association; thus, the previous errors shown in
Figs. 17(c) and 18(c) did not take place. Note, however, that a
solution based on particle filters was not feasible for our Pioneer
robot, as, unfortunately, it could not run in real time (even when
using just a few hundreds samples) and, particularly, when two
or more persons were tracked at the same time.

Fig. 21. Tracking with and without face detection. The real trajectory of
person 1 is shown with the solid line; the UKF estimation, including face
detection, is shown with the dashed line, and the one without face is represented
by the dotted line. The start point of each line is highlighted by a circle.

Fig. 20 also shows the number of errors that occurred when
using the same sensor data and applying the UKF without face
detection. As already said before, legs were the most useful
features during the experiments; hence, the tracking perfor-
mance in the last case did not decrease excessively. However,
aside from providing height information (that might be useful
for human recognition), face detection improved the tracking
robustness when people were facing the robot. An example of
tracking with and without face detection is shown in Fig. 21
and is relative to the first part of the interaction experiment in
Section IV-D, which is also shown in Fig. 18(a). The real path
of the person (target 1), plotted in Fig. 21 for comparison, is
manually extracted from a sequence of 30 time steps. It can
be noticed that the original UKF followed the correct path
quite well; however, the estimation without face detection failed
when the person turned back toward the initial position.

F. Portability to Different Robot Platforms

The experiments reported so far have been carried out with
a Pioneer robot. In order to test also the portability of the
tracking system to different platforms, we performed several
other tests with the Scitos robot shown in Fig. 10. One of
these is shown in Fig. 22 (see also Video 5, and this will
be available at http://ieeexplore.ieee.org), which shows a few
moments of the robot following and tracking up to three people
between the robot arena and the elevator. In some cases, one
person was occluding the others, such as in the situation shown
in Fig. 22(a). The tracking, however, continued successfully,
and the robot eventually reached and entered the elevator with
the two persons shown in Fig. 22(b). Note that even in this
case, the track of the person on the right would have been lost
without face detection because his legs are very close to the
elevator’s wall.
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Fig. 22. Scitos robot tracking people in different locations. (a) Tracking three
people simultaneously with occlusions. (b) Entering the elevator with two
persons.

Despite the fact that the laser was positioned a few centime-
ters higher than on the Pioneer, the leg detection did not need
any change in its parameters. The algorithm indeed showed
to be quite robust and not too sensitive to those settings. The
tracking performance was generally similar or better, thanks,
particularly, to the faster update of the estimation. The approach
seems, therefore, to be feasible for any mobile robot similar to
ours, equipped with a laser and a camera.

V. CONCLUSION AND FUTURE WORK

In this paper, we have presented a multisensor-based human-
detection and tracking system for mobile service robots. The
proposed approach is a practical and effective solution for real-
time applications of interactive robots in populated environ-
ments. A hybrid approach to human tracking was adopted,
which is based on a new algorithm for leg detection and a robust
face detection. More precisely, the leg information extracted
from a single laser scan has been fused to the face detected
with a camera using a sequential implementation of UKF. This
has demonstrated to be a good alternative to standard EKF,
considering that it does not need linearization, and to particle
filters, as it is computationally more efficient.

Several experiments have been presented to illustrate the
good performance and the benefits of our solution. It has
been shown that a mobile robot can perform accurate human
detection, following one or more persons between different
rooms and tracking users for possible human-robot interaction.
Our approach works well even in challenging situations, where
clutters and the size of the environment make human detection

a difficult task. The portability of the proposed solution has also
been verified successfully on different mobile platforms.

The current solution could be further improved increasing
the success ratio of the leg-detection algorithm, for which other
geometric features or pattern recognition techniques should
be investigated and possibly integrated. Aside from this, our
future research will focus on the data-association part for a
more robust tracking of multiple people, particularly when they
gather in front of the robot. We are also currently integrating a
vision-based recognition system in order to identify users and
perform dedicated human-robot interactions.
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