320 research outputs found

    Holistic processing of hierarchical structures in connectionist networks

    Get PDF
    Despite the success of connectionist systems to model some aspects of cognition, critics argue that the lack of symbol processing makes them inadequate for modelling high-level cognitive tasks which require the representation and processing of hierarchical structures. In this thesis we investigate four mechanisms for encoding hierarchical structures in distributed representations that are suitable for processing in connectionist systems: Tensor Product Representation, Recursive Auto-Associative Memory (RAAM), Holographic Reduced Representation (HRR), and Binary Spatter Code (BSC). In these four schemes representations of hierarchical structures are either learned in a connectionist network or constructed by means of various mathematical operations from binary or real-value vectors.It is argued that the resulting representations carry structural information without being themselves syntactically structured. The structural information about a represented object is encoded in the position of its representation in a high-dimensional representational space. We use Principal Component Analysis and constructivist networks to show that well-separated clusters consisting of representations for structurally similar hierarchical objects are formed in the representational spaces of RAAMs and HRRs. The spatial structure of HRRs and RAAM representations supports the holistic yet structure-sensitive processing of them. Holistic operations on RAAM representations can be learned by backpropagation networks. However, holistic operators over HRRs, Tensor Products, and BSCs have to be constructed by hand, which is not a desirable situation. We propose two new algorithms for learning holistic transformations of HRRs from examples. These algorithms are able to generalise the acquired knowledge to hierarchical objects of higher complexity than the training examples. Such generalisations exhibit systematicity of a degree which, to our best knowledge, has not yet been achieved by any other comparable learning method.Finally, we outline how a number of holistic transformations can be learned in parallel and applied to representations of structurally different objects. The ability to distinguish and perform a number of different structure-sensitive operations is one step towards a connectionist architecture that is capable of modelling complex high-level cognitive tasks such as natural language processing and logical inference

    A vector representation of Fluid Construction Grammar using Holographic Reduced Representations

    Get PDF
    Trabajo presentado en la EAPCogSci 2015, EuroAsianPacific Joint Conference on Cognitive Science (4th European Conference on Cognitive Science y 11th International Conference on Cognitive Science), celebrada en Turín del 25 al 27 de septiembre de 2015.The question of how symbol systems can be instantiated in neural network-like computation is still open. Many technical challenges remain and most proposals do not scale up to realistic examples of symbol processing, for example, language un- derstanding or language production. Here we use a top-down approach. We start from Fluid Construction Grammar, a well- worked out framework for language processing that is compatible with recent insights into Construction Grammar and inves- tigate how we could build a neural compiler that automatically translates grammatical constructions and grammatical processing into neural computations. We proceed in two steps. FCG is translated from symbolic processing to numeric processing using a vector symbolic architecture, and this numeric processing is then translated into neural network computation. Our experiments are still in an early stage but already show promise.Research reported in this paper was funded by the Marie Curie ESSENCE ITN and carried out at the AI lab, Vrije Universiteit Brussel and the Institut de Biologia Evolutiva (UPF-CSIC), Barcelona, financed by the FET OPEN Insight Project and the Marie Curie Integration Grant EVOLAN.Peer reviewe

    A Computational Model of Creative Design as a Sociocultural Process Involving the Evolution of Language

    Get PDF
    The aim of this research is to investigate the mechanisms of creative design within the context of an evolving language through computational modelling. Computational Creativity is a subfield of Artificial Intelligence that focuses on modelling creative behaviours. Typically, research in Computational Creativity has treated language as a medium, e.g., poetry, rather than an active component of the creative process. Previous research studying the role of language in creative design has relied on interviewing human participants, limiting opportunities for computational modelling. This thesis explores the potential for language to play an active role in computational creativity by connecting computational models of the evolution of artificial languages and creative design processes. Multi-agent simulations based on the Domain-Individual-Field-Interaction framework are employed to evolve artificial languages with features that may support creative designing including ambiguity, incongruity, exaggeration and elaboration. The simulation process consists of three steps: (1) constructing representations associating topics, meanings and utterances; (2) structured communication of utterances and meanings through the playing of “language games”; and (3) evaluation of design briefs and works. The use of individual agents with different evaluation criteria, preferences and roles enriches the scope and diversity of the simulations. The results of the experiments conducted with artificial creative language systems demonstrate the expansion of design spaces by generating compositional utterances representing novel concepts among design agents using language features and weighted context free grammars. They can be used to computationally explore the roles of language in creative design, and possibly point to computational applications. Understanding the evolution of artificial languages may provide insights into human languages, especially those features that support creativity

    Holographic Generative Memory: Neurally Inspired One-Shot Learning with Memory Augmented Neural Networks

    Get PDF
    Humans quickly parse and categorize stimuli by combining perceptual information and previously learned knowledge. We are capable of learning new information quickly with only a few observations, and sometimes even a single observation. This one-shot learning (OSL) capability is still very difficult to realize in machine learning models. Novelty is commonly thought to be the primary driver for OSL. However, neuroscience literature shows that biological OSL mechanisms are guided by uncertainty, rather than novelty, motivating us to explore this idea for machine learning. In this work, we investigate OSL for neural networks using more robust compositional knowledge representations and a biologically inspired uncertainty mechanism to modulate the rate of learning. We introduce several new neural network models that combine Holographic Reduced Representation (HRR) and Variational Autoencoders. Extending these new models culminates in the Holographic Generative Memory (HGMEM) model. HGMEM is a novel unsupervised memory augmented neural network. It offers solutions to many of the practical drawbacks associated with HRRs while also providing storage, recall, and generation of latent compositional knowledge representations. Uncertainty is measured as a native part of HGMEM operation by applying trained probabilistic dropout to fully-connected layers. During training, the learning rate is modulated using these uncertainty measurements in a manner inspired by our motivating neuroscience mechanism for OSL. Model performance is demonstrated on several image datasets with experiments that reflect our theoretical approach

    Integer Sparse Distributed Memory and Modular Composite Representation

    Get PDF
    Challenging AI applications, such as cognitive architectures, natural language understanding, and visual object recognition share some basic operations including pattern recognition, sequence learning, clustering, and association of related data. Both the representations used and the structure of a system significantly influence which tasks and problems are most readily supported. A memory model and a representation that facilitate these basic tasks would greatly improve the performance of these challenging AI applications.Sparse Distributed Memory (SDM), based on large binary vectors, has several desirable properties: auto-associativity, content addressability, distributed storage, robustness over noisy inputs that would facilitate the implementation of challenging AI applications. Here I introduce two variations on the original SDM, the Extended SDM and the Integer SDM, that significantly improve these desirable properties, as well as a new form of reduced description representation named MCR.Extended SDM, which uses word vectors of larger size than address vectors, enhances its hetero-associativity, improving the storage of sequences of vectors, as well as of other data structures. A novel sequence learning mechanism is introduced, and several experiments demonstrate the capacity and sequence learning capability of this memory.Integer SDM uses modular integer vectors rather than binary vectors, improving the representation capabilities of the memory and its noise robustness. Several experiments show its capacity and noise robustness. Theoretical analyses of its capacity and fidelity are also presented.A reduced description represents a whole hierarchy using a single high-dimensional vector, which can recover individual items and directly be used for complex calculations and procedures, such as making analogies. Furthermore, the hierarchy can be reconstructed from the single vector. Modular Composite Representation (MCR), a new reduced description model for the representation used in challenging AI applications, provides an attractive tradeoff between expressiveness and simplicity of operations. A theoretical analysis of its noise robustness, several experiments, and comparisons with similar models are presented.My implementations of these memories include an object oriented version using a RAM cache, a version for distributed and multi-threading execution, and a GPU version for fast vector processing

    Analogical Mapping with Sparse Distributed Memory: A Simple Model that Learns to Generalize from Examples

    Get PDF
    Abstract We present a computational model for the analogical mapping of compositional structures that combines two existing ideas known as holistic mapping vectors and sparse distributed memory. The model enables integration of structural and semantic constraints when learning mappings of the type x i ! y i and computing analogies x j ! y j for novel inputs x j . The model has a one-shot learning process, is randomly initialized, and has three exogenous parameters: the dimensionality D of representations, the memory size S, and the probability v for activation of the memory. After learning three examples, the model generalizes correctly to novel examples. We find minima in the probability of generalization error for certain values of v, S, and the number of different mapping examples learned. These results indicate that the optimal size of the memory scales with the number of different mapping examples learned and that the sparseness of the memory is important. The optimal dimensionality of binary representations is of the order 10 4 , which is consistent with a known analytical estimate and the synapse count for most cortical neurons. We demonstrate that the model can learn analogical mappings of generic two-place relationships, and we calculate the error probabilities for recall and generalization

    Connectionist Inference Models

    Get PDF
    The performance of symbolic inference tasks has long been a challenge to connectionists. In this paper, we present an extended survey of this area. Existing connectionist inference systems are reviewed, with particular reference to how they perform variable binding and rule-based reasoning, and whether they involve distributed or localist representations. The benefits and disadvantages of different representations and systems are outlined, and conclusions drawn regarding the capabilities of connectionist inference systems when compared with symbolic inference systems or when used for cognitive modeling

    Learning with relational knowledge in the context of cognition, quantum computing, and causality

    Get PDF

    The Cambridge Handbook of Health Research Regulation

    Get PDF
    corecore