
University of Memphis University of Memphis

University of Memphis Digital Commons University of Memphis Digital Commons

Electronic Theses and Dissertations

7-17-2012

Integer Sparse Distributed Memory and Modular Composite Integer Sparse Distributed Memory and Modular Composite

Representation Representation

Javier Snaider

Follow this and additional works at: https://digitalcommons.memphis.edu/etd

Recommended Citation Recommended Citation
Snaider, Javier, "Integer Sparse Distributed Memory and Modular Composite Representation" (2012).
Electronic Theses and Dissertations. 535.
https://digitalcommons.memphis.edu/etd/535

This Dissertation is brought to you for free and open access by University of Memphis Digital Commons. It has
been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of University of
Memphis Digital Commons. For more information, please contact khggerty@memphis.edu.

https://digitalcommons.memphis.edu/
https://digitalcommons.memphis.edu/etd
https://digitalcommons.memphis.edu/etd?utm_source=digitalcommons.memphis.edu%2Fetd%2F535&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.memphis.edu/etd/535?utm_source=digitalcommons.memphis.edu%2Fetd%2F535&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:khggerty@memphis.edu

INTEGER SPARSE DISTRIBUTED MEMORY AND
MODULAR COMPOSITE REPRESENTATION

by

Javier Snaider

A Dissertation

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

Major: Computer Science

The University of Memphis

August, 2012

ii

Acknowledgements

I would like to thank my dissertation chair, Dr. Stan Franklin, for his unconditional

support and encouragement, and for having given me the opportunity to change my life.

He guided my first steps in the academic world, allowing me to work with him and his

team on elucidating the profound mystery of how the mind works.

I would also like to thank the members of my committee, Dr. Vinhthuy Phan, Dr.

King-Ip Lin, and Dr. Vasile Rus. Their comments and suggestions helped me to improve the

content of this dissertation. I am thankful to Pentti Kanerva, who introduced the seminal

ideas of my research many years ago, and for his insights and suggestions in the early stages

of this work.

I am grateful to all my colleagues at the CCRG group at the University of

Memphis, especially to Ryan McCall. Our meetings and discussions opened my mind to

new ideas. I am greatly thankful to my friend and colleague Steve Strain for our

discussions, and especially for his help editing this manuscript and patiently teaching me

to write with clarity. Without his amazing job, this dissertation would hardly be

intelligible.

I will always be in debt to Dr. Andrew Olney for his generous support during my

years in the University of Memphis, and for being my second advisor, guiding me

academically and professionally in my career. My most sincere thanks to you.

To my sons, Gaston and Adam, who have accepted having a cybernetic father for

the last two years, and for being the source of my commitment to show them that they

have to follow their dreams no matter the obstacles in the path, or the effort and energy

that they demand. I love you guys.

iii

Finally, to my wife, Ester Bruden, who has been my greatest supporter. She

believed in me long before I believed in myself. Without her unconditional love, support,

and encouragement I would have never started this life-changing journey. I am so

fortunate to share my life with her. Ester, you raise me up to more than I can be1. I love

you.

1 From “You Raise Me Up” by Brendan Graham.

iv

Abstract

Javier Snaider. Ph.D. The University of Memphis. Aug/2012. Integer Sparse
Distributed Memory and Modular Composite Representation. Major Professor: Stan P.
Franklin.

Challenging AI applications, such as cognitive architectures, natural language

understanding, and visual object recognition share some basic operations including

pattern recognition, sequence learning, clustering, and association of related data. Both

the representations used and the structure of a system significantly influence which tasks

and problems are most readily supported. A memory model and a representation that

facilitate these basic tasks would greatly improve the performance of these challenging

AI applications.

Sparse Distributed Memory (SDM), based on large binary vectors, has several

desirable properties: auto-associativity, content addressability, distributed storage,

robustness over noisy inputs that would facilitate the implementation of challenging AI

applications. Here I introduce two variations on the original SDM, the Extended SDM

and the Integer SDM, that significantly improve these desirable properties, as well as a

new form of reduced description representation named MCR.

Extended SDM, which uses word vectors of larger size than address vectors,

enhances its hetero-associativity, improving the storage of sequences of vectors, as well

as of other data structures. A novel sequence learning mechanism is introduced, and

several experiments demonstrate the capacity and sequence learning capability of this

memory.

Integer SDM uses modular integer vectors rather than binary vectors, improving

the representation capabilities of the memory and its noise robustness. Several

v

experiments show its capacity and noise robustness. Theoretical analyses of its capacity

and fidelity are also presented.

A reduced description represents a whole hierarchy using a single high-

dimensional vector, which can recover individual items and directly be used for complex

calculations and procedures, such as making analogies. Furthermore, the hierarchy can be

reconstructed from the single vector. Modular Composite Representation (MCR), a new

reduced description model for the representation used in challenging AI applications,

provides an attractive tradeoff between expressiveness and simplicity of operations. A

theoretical analysis of its noise robustness, several experiments, and comparisons with

similar models are presented.

My implementations of these memories include an object oriented version using a

RAM cache, a version for distributed and multi-threading execution, and a GPU version

for fast vector processing.

vi

Table of Contents

Page

Chapter 1: Introduction ... 1

Content Addressability.. 6

Auto-associativity and Hetero-associativity ... 6

Robustness to Noise .. 7

Generalization, Clustering, and Pattern Recognition .. 7

Sequence Learning .. 8

Resilience to Memory Damage ... 9

One-shot Learning .. 9

Incremental Learning .. 9

Forgetting, Interference, and Graceful Degradation ... 10

High Dimensionality ... 10

High Dimensional Vector Spaces ... 11

Parallel Computing Becoming Cheap ... 13

Contributions of this Work ... 14

Structure of this Dissertation .. 16

Chapter 2: Sparse Distributed Memory .. 18

Mathematical Background .. 21

Memory Description ... 28

SDM Compared with Other Models ... 38

Extensions and Improvements .. 43

Applications .. 47

vii

Chapter 3: Vector Representation ... 53

Reduced Descriptions ... 58

Basic Operations to Combine Vectors .. 61

Spatter Code .. 66

Holographic Reduced Representation... 68

Hyperdimensional Computing .. 71

Other Models .. 78

Chapter 4: Extended Sparse Distributed Memory .. 81

Sequence Learning .. 82

Extended SDM .. 88

Storing Sequences and Other Data Structures .. 90

Simulations and Experiments ... 94

Conclusions ... 104

Chapter 5: Integer Sparse Distributed Memory .. 105

Integer Sparse Distributed Memory .. 107

Radius of the Access Sphere ... 112

Fidelity and Capacity .. 113

Experiments and Results ... 123

Extensions ... 129

Conclusions ... 131

Chapter 6: Modular Composite Representation .. 133

Modular Integer Vectors ... 134

viii

Manhattan Distance in a Modular Space .. 137

Basic Operations ... 141

Hyperdimensional Computing with Modular Composite Representation 149

Normalized Distance and Similarity ... 156

Expected Value and Variance of the Similarity of Selected Expressions 158

Summary of Comparisons: MCR, HRR and Spatter Code 163

Conclusions ... 164

Chapter 7: Implementations .. 166

Object Oriented Design... 168

Cached Implementation .. 170

Parallel and Distributed Implementations ... 174

GPU Processing Support... 178

MCR Parser and Interpreter .. 180

Conclusions ... 183

Chapter 8: Conclusions ... 184

Further Directions ... 184

Limitations .. 192

Summary of Conclusions .. 193

References ... 197

Appendix A: Author’s Refereed Publications .. 209

Appendix B: MCR Scripting Language Javacc Grammar .. 211

ix

List of Tables

Page

Table 1 Simulation 1. ESDM capacity and noise robustness ... 98

Table 2 Simulation 2. ESDM capacity and noise robustness. .. 99

Table 3 Effect of k on stepping into the sequence ... 101

Table 4 Simulation 1. Integer SDM capacity and noise robustness 125

Table 5 Simulation 2. Integer SDM capacity and noise robustness 125

Table 6 Distances among some vectors of the example .. 151

Table 7 Events created using the token and role vectors of the example 152

Table 8 Distances among vectors representing the events described in Table 7 153

Table 9 Results of unbinding elements from the event vectors 154

Table 10 Means and variances of selected expressions for a MCR model

with n = 512 and r = 16 .. 159

x

List of Figures

Page

Figure 1. The sphere analogy ... 25

Figure 2. Distribution of Hamming distances in N... 26

Figure 3. Access Sphere ... 32

Figure 4. Writing hard locations ... 33

Figure 5. Critical distance ... 35

Figure 6. Realization of SDM using matrices .. 39

Figure 7. Description of SDM as an artificial neural network ... 40

Figure 8. Schematic view of cerebellar cortex ... 42

Figure 9. Reduced description .. 59

Figure 10. A word vector with its address section ... 89

Figure 11. Basic sequence representation using 2n word vectors 91

Figure 12. The percentage of retrieved vectors in each stage, the mean

number of iterations required in each stage, and the number of errors

in the address part and the whole word ... 97

Figure 13. Structure of an Integer SDM hard location ... 108

Figure 14. Euclidean distance from u to v on the surface of a sphere 109

Figure 15. Integer SDM structure ... 110

Figure 16. Pdf’s of �0 � , ���, and �0 � for a Integer SDM with 1,000,000

hard locations, r = 16, p = 0.001, and t = 400,000. ... 115

Figure 17. Fidelity of one dimension as a function of t, the number of vectors

stored in the memory .. 116

xi

Figure 18. Retrievals from Integer SDMs with different configurations 126

Figure 19. Comparison of theoretical value of φ and the measured value

for different values of t ... 127

Figure 20. Generalization and pattern formation ... 129

Figure 21. The possible values for one dimension of a modular integer vector

with r = 16 ... 135

Figure 22. Equivalent vectors and examples of grouping .. 146

Figure 23. Variance of D’ over r .. 157

Figure 24. Means and variances of the similarity between a random vector

and the same vector grouped with k – 1 other random vectors 162

Figure 25. UML class diagram of SDM main classes .. 169

Figure 26. UML class diagram of the cache’s main components 172

Figure 27. UML class diagram of some of the classes that support the

Akka actor implementation ... 176

Figure 28. Hierarchy of actors used in the SDM Akka implementation 177

Figure 29. Example of MCR scripting expressions.. 182

Figure 30. LIDA cognitive model diagram .. 187

1

Chapter 1: Introduction

Today, computers are ubiquitous. They are not only present in high technology research

facilities and complex industrial process control systems, but in everyday places and

situations. We have computers in our desks, our cars, and our cell phones. The processor

in my cell phone is probably more powerful than the computer onboard Apollo 11, and

certainly, it also has more memory capacity. Computers can perform complicated

mathematical calculations at amazing speed that was unthinkable just a few years ago.

The spectrum of computer applications is equally impressive. Applications cover assorted

disciplines such as science, medicine, business, graphics arts, media, industry, education,

military science, and so on. Most of these applications exploit the strengths of computers:

computer power, memory capacity, communication speed, among others.

Despite the power and success of computers, there are tasks that computers are

not yet able to perform well. For many tasks that humans perform almost effortlessly,

such as object and face recognition, natural language understanding, and navigation in

unknown environments, there are no efficient algorithms that perform at least as well as

humans. Interestingly, the kinds of tasks that computers perform efficiently, such as math

calculations, frequently challenge people when they are carried out by hand, as shown by

the number of errors that people incur performing these operations. On the other hand,

computers have trouble with operations that seem simple and unchallenging to humans.

Several authors (Franklin, 1995; Kanerva, 1988, 2009; Winston, 1992) have

pointed out the importance of representations to perform tasks efficiently and solve

problems. Winston (1992) defined the representation principle in these words: “Once a

problem is described using an appropriate representation, the problem is almost solved”

2

(p. 18). Franklin (1995) discussed the importance of representation for both symbolic AI

and connectionist models (p. 365). Kanerva (2009) pointed out how a representation can

facilitate certain tasks at the expense of others. A nice example from computer science

illustrates this. Usually computers represent signed integers using two’s complement

format. Addition and subtraction operations can be efficiently performed by the same

hardware. On the other hand, Binary Coded Decimal (BCD) format represents each

decimal digit of a number with its own bit sequence. BCD excels at fast and accurate

translation between machine and human readable formats. However, it requires more

complex algorithms and circuits for basic arithmetic operations, and its storage usage is

less efficient.

The structure of a system correlates with the representation used. For example,

special hardware is needed to support floating point representation efficiently. Without

this special hardware, the implementation of mathematical operations will be too slow to

be practical. Many Digital Signal Processors (DSPs) have fixed point arithmetic

implementations that speedup processing when precision is not an issue.

Both the representation and structure of a system significantly influence which

tasks and problems are most readily supported. One key factor underlying representation

is the memory mechanism. The characteristics of a system’s memory can give clues as to

what kind of tasks the system can perform efficiently. Analyzing the features of

biological memories helps to define the requirements of some applications, such as

3

cognitive architectures and robot navigation controllers, that face tasks and problems

similar to those of biological entities1.

 Biological memories, and human memory in particular, can be categorized in

numerous forms: sensory, procedural, working, declarative, episodic, semantic, long-term

memory, and perhaps others (Ramamurthy & Franklin, 2011). Here I discuss properties

that may fit in several of these categories.

Human memory is always learning. Although attention is an important component

of learning (Kruschke, 2003; Logan, 2002), humans learn effortlessly all the time. Human

memory is content addressable; for example, memory of a past event can be cued by a

similar event or by partial contents of that memory. This property is called auto-

associativity (see below). We can remember a place or a face almost instantly without

knowing where it is stored in the memory. Human memory is able to associate related

data, such as the name of a person with her face. This property, called hetero-

associativity, allows the memory to retrieve some data triggered by related data. Even

more important, human memory is particularly good for remembering sequences.

Language, motor skills, music, and planning are examples of human activities that

require one to learn, recognize and remember sequences.

The human mind handles innumerable kinds of data, including low level sensory

information, such as visual or auditory information, past events, motor skills and their

relationship with the context in which they are applied, highly abstract concepts, and so

on. Several of these types of data, such as visual information, are unlikely to appear twice

in exactly the same way. For example, when we observe a landscape or a face, there are

1 Some features described here may be implemented by functional processes other than memory.

Nevertheless, I will assume here that memory is responsible for these functionalities.

4

myriads of factors that affect the observation: the illumination, the angle of the observer,

weather conditions, etc. Human memory is able to handle these factors and recognize the

landscape or face anyway. Moreover, the human memory can combine several images

into a prototypical view.

Even if there is no certainty about the capacity of the human memory, it seems

that data stored in it smoothly degrades or decays. Two main theories about forgetting

have been proposed: interference and decay; see for example (Altmann & Gray, 2002) for

a discussion on this subject2. Interference between similar experiences and the decay of

memory affects the recall process. We can often remember a face or a place, even if not

perfectly. In contrast, when an item of data is deleted from a computer memory, it is

deleted for good.

Computers also have memory modules. However, the usual functionality of

computer memory differs from that of humans. First, the computer’s main memory

comprises an array of registers that generally store data as binary words. Each register

has a position in the memory identified by its address. Reading from these memories

requires knowing the address of the data that we want to read. Second, in general, there is

no relationship between the data and the address where it is stored. Finally, computer

memories have a predefined capacity explicitly determined by the number of records or

addresses in them.

Several AI applications, such as cognitive architectures (Foundalis, 2006;

Ramamurthy & Franklin, 2011), robot controllers (Jockel, 2009; Robertson & Laddaga,

2011), natural language processing, and visual recognition, have in common that they try

2 However, some authors claim that traces in declarative memory do not decay, but some of them

cannot be retrieved (Tulving, 1968).

5

to solve problems that are generally easy for humans, but even the most advanced

algorithms today perform poorly compared with humans. These challenging AI

applications can benefit from memory modules that share features with human memory.

Additionally, the features of these memory modules offer the potential to enhance the

power and simplify the implementation of such applications. Moreover, recent

innovations in parallel computing (see below) may improve the efficiency of such

implementations.

Challenging AI applications, such as the ones described above, must be able to

perform a very wide range of tasks: object recognition, planning, action selection,

reasoning, and so on. But is there a set of primitive tasks that is common to many of these

more high level tasks? It is difficult to give a definitive answer to this question. However,

several authors have attempted it. Ramamurthy and Franklin (2011) analyzed the

different types and requirements for memories and learning mechanisms for cognitive

agents. Jockel (2009) listed the desirable properties of the memory module for the

controller system of cognitive, autonomous robots.

In his presentation, Robertson (2011) enumerated several insightful concepts

about robot perception and navigation requirements. He defined robust pattern

recognition as one of the most important low level tasks for robot navigation controllers.

He pointed out that vectors of sensory input data are always noisy, and it is unlikely that

exactly the same data will occur twice. Thus, clustering of several similar vectors is

critical in order to recognize them as the same information. Kanerva (1988, 2009) and

Jockel (2009) discussed similar ideas. Robertson also mentioned sequence learning and

integration of similar sequences as important tasks for a robot controller. Other authors

6

identified sequence learning as a major piece of cognition (Starzyk & He, 2007; Sun &

Giles, 2001). Association of related data, or Hebbian learning, is frequently mentioned as

a fundamental process for both cognitive agents (Foundalis & Martinez, 2007) and robot

controllers (Jockel, 2009; Robertson & Laddaga, 2011). Kanerva (1988, 1993, 2009) also

described several important characteristics of representations and memory systems for

cognitive agents.

Summing up, a tentative list of some of the basic operations desirable for these

kinds of applications includes pattern recognition, including when partial and noisy cues

are used, sequence learning, generalization, also known as clustering, and association of

related data (i.e., Hebbian learning). A description of the requirements for memories and

data representation that facilitate these basic operations follows3.

Content Addressability

Biological memories are able to retrieve memories using partial or related data. For

example, the smell of a baking cake might remind us of our grandmother’s kitchen. This

is very different than how computer memories store and retrieve data: namely, the

content’s address or location is required to retrieve the information. Content addressable

memories, also called associative memories, come in two types: auto-associative and

hetero-associative.

Auto-associativity and Hetero-associativity

Auto-associative memory associates a data item with itself. This allows recovery the data

using a noisy or partial version as a cue. For example, a partial image of a person’s face

3 Some of these requirements are also described in Jockel, 2009.

7

suffices to recall the complete image. Auto-associativity plays a particularly important

role in the processing of sensory data, where inputs are often noisy or incomplete.

In hetero-associative memory, a set of data triggers the retrieval of a related set.

For example, a person’s name enables recall of his face. In a more practical scenario, a

robot controller application can relate an action and its context with its probable result

and use this information for planning.

Robustness to Noise

Robustness to noise, intimately related with auto-associativity, allows the memory to

recall stored information using noisy inputs. Sometimes memories with this property are

called cleanup memories, because they can eliminate the noise of noisy inputs.

Applications that work with real world data, such as robot controllers, are exposed

to noisy input data from sensors and proprioception from sensors monitoring actuators.

Robustness to noise is a critical feature for such applications.

Generalization, Clustering, and Pattern Recognition

Clustering, which is essentially a classification problem, consists of grouping elements

into a set according to a specific criterion. Individual experiences or patterns are grouped

into categories based on common features. Generalization, closely related to clustering,

can be defined as a distillation of the common features of the elements in a cluster.

Sometimes, this process also creates a new element that represents this generalization.

Several authors consider the recognition and classification of patterns as one of

the most fundamental properties of cognition (Foundalis, 2006; Hofstadter, 1995). There

are many algorithms for clustering data. However, several of them are not biologically

8

plausible. First, they are not incremental: adding new data requires the algorithm to

reexamine all previous elements. Moreover, many of them must predefine the number of

clusters or groups into which to divide the data and an oracle that labels the training data

set. Human memory seems to be able to recognize patterns, cluster them, and generalize

new inputs without requiring the reprocessing of all previous inputs.

Sequence Learning

Several authors, including (Starzyk & He, 2007; Sun & Giles, 2001), consider spatial and

temporal sequence learning to be one of the most important forms of learning for humans

and animals: sequences are present in procedural learning, to learn new skills, high level

planning, and problem solving.

For autonomous agents, time perception and representation are critical (Snaider,

McCall, & Franklin, 2010, 2012). Autonomous agents able to plan and foresee the result

of an action or group of actions are more likely to succeed in complex environments. The

ability to estimate the duration of these actions, or to perform time related logical

inferences, is also valuable. Sequence learning is a key component of these processes.

Robust sequence learning requires memory models with both auto-associative and

hetero-associative characteristics. The auto-associativity allows cueing the memory with

partial or noisy inputs, whereas the hetero-associativity connects one element to the next

in the sequence (Lawrence, Trappenberg, & Fine, 2006).

9

Resilience to Memory Damage

A memory system capable of recalling information even if it suffered minor damage

could be a useful feature for robots and other applications. This feature is often related to

the distribution and redundancy of the data in the memory.

Autonomous robots implemented with memories possessing this feature may still

work even if part of their memory is damaged. This is a critical feature for robots in

distant locations, such as space exploration robots.

One of the limitations in the size of integrated circuits is the number of defects per

unit of area. A memory model that is able to work even with these defects may be a good

candidate for future memory hardware implementations.

One-shot Learning

The ability to learn a particular piece of information with one or few examples is called

one-shot learning (Fei-Fei, Fergus, & Perona, 2006). Many connectionist models require

large training data sets to learn patterns. For example, feed-forward neural networks

trained with backpropagation sometimes require data sets with thousands of examples for

training. On the other hand, a young child learns several categories a day using just a few

examples (Tenenbaum, Kemp, Griffiths, & Goodman, 2011). Systems with one-shot

learning memories tend to be more adaptive and resilient to environmental changes.

Incremental Learning

Incremental learning is the ability to learn and cluster new information without the

necessity of reprocessing previously stored or classified data. Storing all the previous

10

data just to reprocess them when new input data appear is inefficient and most of the time

infeasible. See for example (Polikar, Udpa, Udpa, & Honavar, 2001).

Forgetting, Interference, and Graceful Degradation

Forgetting would seem to be a negative feature of memories. However, it possesses

significant value related to learning. Forgetting allows retaining only the most relevant or

frequent elements in the memory. The two primary theories and possible mechanisms of

forgetting are decay (Brown, 1958; Ebbinghaus, 1885; Peterson & Peterson, 1959) and

interference (Keppel & Underwood, 1962; McGeoch, 1932). Similar events interfere with

one other, affecting their retrieval. Alternatively, decay causes memory loss as a function

of time (Ramamurthy, D'Mello, & Franklin, 2006; Sims & Gray, 2004). Altmann and

Gray (2002) claim that decay and interference are functionally related and that the decay

mechanism prevents old traces from interfering with new ones.

In unsupervised learning, a forgetting mechanism helps to eliminate incorrect data

and wrong associations from the memory. For example, a wrong association is unlikely

to be frequently repeated, and the forgetting mechanism will eventually discard it from

the memory.

High Dimensionality

The input from sensors and the possible state of actuators of robots and cognitive agents

may be represented with a high-dimensional feature or state vector. Memories and

representations that directly handle these large vectors may be an advantage. However,

this is not the main reason for this requirement. High dimensional spaces have properties

11

that help implement many of the requirements listed previously. Since high

dimensionality is a critical issue for this work, the next section discusses it in more detail.

High Dimensional Vector Spaces

 The neural system of humans and of some other animals has on the order of 1010

neurons. When the activity of neurons is recorded, even for simple mental events or

tasks, a wide number of neurons are active across several regions of the brain. Even if it

is not yet clear what exactly these patterns of activation represent, we can argue that these

representations are distributed across a large number of neurons. On the other hand, in

unary representations, each unit, or neuron, represents something by itself.

High dimensional representations have useful properties that would help in

achieving the desiderata described above. In the connectionist and machine learning

literature, the problem related with high dimensional spaces is known as the curse of

dimensionality. Such spaces often involve exponential growth in the execution time of

algorithms. Because the space increases so quickly, data samples become sparsely

distributed, and methods based on statistical significance require an enormous amount of

data to be reliable. On the other hand, Kanerva (2009) refers to high dimensionality as a

blessing. The inherent noise robustness of high dimensional representations and their

potential for holistic processing (see below) can actually facilitate the implementation of

the desired processes and features of the system.

Kanerva used binary vectors with thousands of dimensions for his binary Spatter

Code representations (1994) and Sparse Distributed Memory (1988, 2009). These vectors

have a rich representation capability and are also noise robust. Plate (1995, 2003) created

the Holographic Reduced Representation (HRR), a representation based on large vectors

12

of real numbers that also exploits the properties of high dimensional spaces. Vectors of

any of these high dimensional spaces can be used to represent a complex structure, where

each vector denotes an element in the structure. However, a single vector can also

represent the same structure by implementing a reduced description, a mechanism to

encode complex hierarchical structures in vectors or connectionist models (Hinton,

1990). These reduced description vectors can be expanded to obtain the whole structure,

but may also be used as is for certain operations. This enables a holistic processing of the

structure. Kanerva’s Spatter Code and Plate’s HRR are implementations of reduced

description models.

Kanerva (2009) introduced a possible new paradigm of computing based on

distributed representations named hyperdimensional computing. He described operations

that can be performed using Spatter Code vectors, such as analogy-making and inference

reasoning. Although he discussed hyperdimensional computing using binary vectors, the

same paradigm can be extended to other reduced description models such as HRR or

Modular Composite Representation, the one that will be introduced in this dissertation.

Plate (2003) also demonstrated the power of HRR vectors to solve several tasks,

including sequence learning and logic operations, which complement the

hyperdimensional ideas. The features of these models make them good candidates for

representation in cognitive architectures and other AI applications.

Several other models are based on large vectors. Developed over the last two

decades, semantic space models exhibit success in many fields. Some of the more

prominent models are Latent Sematic Analysis (LSA) (Deerwester, Dumais, Furnas,

Landauer, & Harshman, 1990), based on statistical analysis; Random Indexing (Sahlgren,

13

2005), based on random sparse vectors and random permutations; and BEAGLE (Jones

& Mewhort, 2007), based on HRR. For recent surveys of semantic space models see

(Cohen & Widdows, 2009; Turney & Pantel, 2010). Although most of these models are

based on the similarities or distances between words, some of them were extended to

support other kinds of data (Jones & Mewhort, 2007; Sahlgren, 2005) .

Parallel Computing Becoming Cheap

Modern computers are based on the Von Neumann model, which dates to the 1940’s.

This architecture divides the computer’s structure into the central processing unit, the

memory, and the input-output unit. Computers are designed to perform logic and

mathematics based on binary representations of numbers.

Biological brains are composed of neurons. The activation of these neurons and

their interconnection play an important role in cognitive processing and memory. The

highly parallel and interconnected structure of brains seems very different than the

architecture of a computer. However, since its incipience, the latter has undergone

innumerable improvements. Nowadays, it is common to have multi-core CPUs executing

instructions in parallel. Furthermore, Graphic Processors Units (GPUs), which can

perform billions of parallel vector operations per second, are often found even in mid-

range computers.

Although these tendencies do not radically change the structure of computers,

parallel computing and connectionist models inspired by biological brains are now more

easily and more frequently implemented with highly parallel algorithms using such

technologies as GPUs. Applications that could run efficiently only on high-end

supercomputers a few years ago can now be executed on desktops or laptops. For

14

example, Leveille and colleagues (2011) have been developing MoNETA (MOdular

Neural Exploring Traveling Agent), a highly parallel cognitive architecture implemented

to run on GPU based systems or on future memristor technologies (Versace & Chandler,

2011).

The memristor is not the only new hardware technology that is promising for

parallel implemetations. Likharev (2009) developed CMOL, a hybrid CMOS-

nanoelectronic circuit, and demonstrated several neural networks implementations using

this technology. Furthermore, some authors experimented with FPGA (Field-

Programmable Gate Array) for hardware implementations of simple cognitive

architectures (Lopez, Sanz, Moreno, Salvador, & Alarcon, 2007).

Contributions of this Work

First proposed by Kanerva (1988), sparse distributed memory (SDM) is a mathematical

model of human long term memory based on large binary vectors. The previous sections

have described this memory’s desirable properties. It is distributed, auto-associative,

content addressable, and noise robust. Moreover, it exhibits one-shot learning, is resilient

to damage, and its contents degrade gracefully. It also possesses interesting psychological

characteristics as well, including interference, knowing when it does not know, and the

tip of the tongue effect. Furthermore, SDM’s structure is ideal for parallel processing or

hardware implementation.

SDM’s features make it an attractive option for modeling memory modules in

cognitive architectures and other challenging AI applications. The proposed variations on

SDM, Extended SDM and Integer SDM, further improve its features.

15

Extended SDM increases the hetero-associativity feature of the memory. Data to

be described herein will show that a novel mechanism using this extension is particularly

effective for sequence learning.

Integer SDM extends the domain of the memory to accept integer vectors, with a

range of possible values for each dimension. The benefits of this model are retained when

merged with Extended SDM into a combined SDM model that uses integer vectors, has

better hetero-associativity support, and improves sequence learning. These models can be

further expanded, for instance with the forgetting mechanism (Ramamurthy, D'Mello et

al., 2006), which would presumably improve the unsupervised learning capabilities of the

memory.

Finally, a new reduced description representation, the Modular Composite

Representation (MCR) is introduced in this work. Spatter Code uses binary vectors and

simple operations such as bitwise XOR and arithmetic sums, but has some limitations in

its representation capabilities. Data from the real world are not always Boolean, and

representations using more than two values are desirable. Moreover, the sum with

normalization operation required in Spatter Code may introduce excessive noise into the

representation, making it brittle. Holographic Reduced Representation uses real-valued

vectors, endowing it with a rich expressiveness, but it requires complex operations such

as circular convolution to combine vectors. Modular Composite Representation provides

a good tradeoff between representation expressiveness and simplicity of operations.

Each of these representational models requires a cleanup memory for retrieving

the components of a composite vector. Integer SDM is a good option for this function in

MCR.

16

This research aims to achieve several specific goals. In particular it produces the

following contributions to computer science:

- Design and implementation of a new variation of SDM, Extended SDM, that

improves the hetero-associativity and sequence learning capabilities of the

memory. (Chapter 4: Extended Sparse Distributed Memory; Chapter 7:

Implementations.)

- A new mechanism that allows the application of Extended SDM to the important

and widely studied field of sequence storage and retrieval. I compared the

sequence storage and retrieval performance of Extended SDM to the original

SDM. (Chapter 4: Extended Sparse Distributed Memory.)

- Design and implementation of a second variation of SDM, Integer SDM, that

expands the representation capability of the memory. Integration of Integer SDM

and Extended SDM into a dual-feature model. (Chapter 5: Integer Sparse

Distributed Memory; Chapter 7: Implementation.)

- Definition and empirical test of Modular Composite Representation (MCR), a

new reduced description model that balances representational expressiveness and

implementational simplicity. I also demonstrated the use of Integer SDM as

cleanup memory for MCR. (Chapter 6: Modular Composite Representation.)

- Demonstration of the implementation feasibility of these memory models in state-

of-the-art parallel and distributed technologies. (Chapter 7: Implementations.)

Structure of this Dissertation

This dissertation has the following organization. Chapter 2 introduces SDM and the

required mathematical background. Chapter 3 reviews the main concepts and models of

17

vector representations. Chapter 4 introduces Extended SDM and several experiments.

Sequence learning using Extended SDM is also covered in this chapter. Chapter 5

develops Integer SDM and its applications. Chapter 6 introduces Modular Composite

Representation and several examples of its use, as well as its integration with Integer

SDM. Chapter 7 describes several implementations of the technologies introduced herein.

Finally, Chapter 8 suggests directions for future research, and discusses the conclusions

and contributions.

18

Chapter 2: Sparse Distributed Memory

Many challenging AI applications including cognitive architectures, robot controllers,

image and speech recognition, and several others have memory requirements that are not

well fulfilled by conventional memory models. Not surprisingly these same

characteristics are also found in biological memories. All these applications require

recollection of previous memories from current data, percepts, or information. This is not

different from many other applications in computer science and software engineering, but

what make these applications special is that the current data are not exactly the same as

the stored data in the memory. A useful way to see this situation is considering the new

data as a noisy version of the old data. The memory has to be able to retrieve the stored

data using noisy cues. Along the same lines, it would be desirable if the memory were

associative and content addressable. That is, it should be capable of retrieving stored data

based on the same information, or part of it. This is different from conventional

memories, where the data are retrieved by knowing their address in the memory. Another

very important feature of the memory is the capability of recalling sequences based on a

few of its elements. For example, humans can remember a melody using a few notes as a

cue. Moreover, notice that the cue for the sequence may correspond to an inner part of it,

and even then the memory should be capable of retrieving the sequence from that point to

the end1. It is not surprising that humans and other animals have memories that exhibit

these same properties. In summary, a desirable model of memory for challenging AI

applications should be auto-associative, content addressable, noise robust, and able to

1 It is also possible that cueing with an inner part of the sequence might retrieve the sequence from

the beginning, as in the melody example, but this is a different mechanism that I am not going to discuss
here.

19

store and recall sequences. For a complete analysis of the desirable properties of these

memories, see Chapter 1.

Sparse distributed memory (SDM) is a mathematical model of human long-term

memory based on large binary vectors (Kanerva, 1988, 1993). This memory has several

desirable properties. It is distributed, auto-associative, content addressable, and noise

robust. Furthermore, it presents interesting psychological characteristics (e.g.,

interference, knowing when it does not know, and the tip of the tongue effect), that make

it an attractive option with which to model episodic memory (Baddeley, Conway, &

Aggleton, 2001; Franklin, Baars, Ramamurthy, & Ventura, 2005). SDM can also store

sequences of vectors as described by Kanerva (1988, 1993); moreover, the extension

explained in Chapter 4 is particularly well suited to store sequences and produces even

better results in this task than the original SDM.

The main idea behind SDM is based on the correspondence of the distance

between concepts in the human mind and the distance between vectors in a high-

dimensional space, that is, vectors with hundreds or thousands of dimensions. The idea of

distance between concepts is not new; actually several sematic spaces use this same idea,

such as Latent Sematic Analysis (LSA) (Deerwester et al., 1990), based on statistical

analysis, Random Indexing (Sahlgren, 2005), and BEAGLE (Jones & Mewhort, 2007).

Here we use the distance between concepts in a slightly different way, but conceptually,

it is the same idea. Kanerva defines point of interest as a general term for concepts,

percepts, events and other similar entities of the mind. The distance between concepts can

be extended and applied in a more general way to any kind of point of interest. Thus,

distances between events, or percepts are also possible.

20

There are diverse ways to represent points of interest, for instance, using nodes

and links in graphs, or data structures such as records. However, particularly for this

work, points of interest may be represented by vectors in a high-dimensional space. An

interesting property of vectors (also known as points) in a high-dimensional space is that

each point is far away from almost any other point in the space. This implies that two

randomly chosen points of the space are likely to be far away from each other. Points of

interest that are unrelated will be represented by distant vectors in the space; any vector

in the space that represents a point of interest is far away from other points of interest.

Moreover if we slightly alter the vector, it will still be closer to the original vector than to

any other point of interest. Thus, the representation of a point of interest does not need to

be an exact vector or point in the space. Noisy versions of this vector can represent the

same point of interest and they still will be far away from other points of interest. This

makes the representation noise robust, one of the most important qualities of SDM. This

representation can also be interpreted as a halo that surrounds each point of interest. Any

vector in this halo is also a representation of the point of interest. For example, if the

memory is used to recall a previous event or concept stored in the memory, the new

stimulus or cue does not need to be exactly the same as the original one, which is a

common scenario in robotics or visual recognition.

The original SDM developed by Kanerva uses high-dimensional binary vectors

with 1,000 or more dimensions. This space exhibits the important properties of high-

dimensional spaces described here. These vectors are used both as addresses of the

memory and also as words, the data stored in the memory. Normally, SDM is used as an

auto-associative memory, thus the address vector is the same as the word vector (but see

21

Chapter 4). In this case, after writing a word in the memory, the vector can be retrieved

using partial or noisy data.

The rest of this chapter describes SDM in detail. First some required

mathematical background is explained. Then the structure and functionality of the

memory is delineated. The following section analyzes the fidelity and capacity of the

memory. The final two sections compare SDM with other memory models and describe

several applications that use SDM.

Mathematical Background

This section describes the fundamental mathematical structure behind Sparse Distributed

Memory: the binary space ℤ2	 = {0,1}	. This space is composed of n-dimensional binary

vectors, that is, n-tuples of zeros and ones. For example, [1,1,0,1,0,0] represents a vector

of ℤ26.

Depending on the context, these tuples can also be called points, patterns,

addresses, or words. In this dissertation, a vector of {0, 1}n any of these terms may be

used interchangeably according to the context. For a space with n dimensions, the

number of vectors is given by N = 2n. For example, with n = 1, the space comprises {[0],

[1]} and therefore, N = 2.With n = 2 the space is composed of {[0,0], [0,1], [1,0], [1,1]},

giving N = 4. Kanerva represents the space itself also with N. For notational simplicity, I

will follow the same convention here. The points of N can be geometrically visualized as

the vertices of a hypercube of n dimensions which has its sides of length equal to 1.

It is important to notice that vectors of these spaces do not necessarily have any

particular order. They are just vectors, not binary numbers. The properties of the vectors

22

required for SDM emerges from the distribution of their distances (see below), not from

their binary number representation.

A summary of the main concepts of the space {0, 1}n follows; for a full

description of the space see (Blumenthal & Menger, 1970; Kanerva, 1988). For the

examples in the following paragraphs let us assume n = 6, x = [1,0,0,1,1,0] and y =

[1,1,0,0,0,0].

Origin 0

 The point with zero in every coordinate: 0 = [0,0,0,…,0,0]

Complement `x

The complement of a vector x is the vector that has zeros where x has ones and vice

versa. For example, `x = [0,1,1,0,0,1]

Norm |x|

The norm of a binary vector is the number of ones that the vector has. For example, |x| =

3 and |y| = 2.

Difference x - y

The difference of two vectors x and y is another vector that has ones in the dimensions

where x and y differ and zeros in the dimensions where they agree. This operation is

equivalent to the bitwise exclusive or (XOR) between x and y.

The difference is commutative in this space: x – y = y – x. In the example, x – y =

[0,1,0,1,1,0]

23

Distance d(x, y)

There are several distances that can be used in this space. The most common one, and

also the one used in SDM, is the Hamming distance. The Hamming distance between x

and y is the number of dimensions by which x and y differ. This is equivalent to the norm

of the difference between x and y: d(x, y) = |x – y|. Moreover, since (x –`x) is equal to the

vector with all ones, `x is the farthest point from x in the space.

The distance can be used as a similarity measure; two vectors of N are similar if

they are close enough. Of course, this definition is relative, and this term in general is

used in relation to other vectors; for example, if x and y are vectors, S is a set of vectors,

and � ∈ �, we can say: “vector x is the most similar to y in S.”

To implement SDM several similarity measures can be used, including other

distances such as the Euclidean one. For the following discussion, if no other measure is

explicitly indicated, wherever the term “distance” is used, the Hamming distance is

assumed.

In the example, d(x, y) = |x – y| = |[0,1,0,1,1,0]| = 3

Betweenness x : y : z

Point y is between x and y if and only if d(x, z) = d(x, y) + d(y, z).

Using Hamming distance, any dimension i of y must be equal to the same

dimension of x or z: if x : y : z then yi = xi or yi = zi

Based on this, it is easy to shown that the entire space N is between x and ̀x. In

the example, there are several points between x and y. Al points z that follows the pattern

[1,*,0,*,*,0] , where * can be either 0 or 1, are between x and y. (e.g., x : [1,1,0,0,1,0] : y.)

24

Orthogonality x ⊥ y

Two vectors are orthogonal, or indifferent, if and only if the distance between them is

half of the number of dimensions: d(x, y) = n/2.

This property is commutative, if x ⊥ y then y ⊥ x. It is easy to see that if a vector

x is orthogonal to another vector y, x is also orthogonal to `y. If x is orthogonal to y, then

x has exactly half of its dimensions equal to y. Therefore, the other half of the dimensions

of x are equal to `y. Then x ⊥ `y.

Kanerva defines the indifference distance of the space {0, 1}n to be n/2. In the

example, the indifference distance is 3 and x ⊥ [1,1,0,0,1,1].

Sphere O(r, x)

A sphere2 of radius r and center x is the set of points of N that are at most a distance r

from x.

O(r, x) = {y | d(y, x) ≤ r}. Spheres with radius n enclose the entire space N. For example,

O(1, x) = { [0,0,0,1,1,0], [1,1,0,1,1,0], [1,0,1,1,1,0], [1,0,0,0,1,0], [1,0,0,1,0,0],

[1,0,0,1,1,1]}.

I already mentioned that N can be represented as the vertices of a hypercube of n

dimensions. The distance between two points is the length of the shortest path across the

edges of the hypercube that connects the corresponding vertices to these two points.

Kanerva (1988) defines a space (any metric space, not just binary spaces) as

spherical if (1) each point x of the space has exactly one opposite `x, (2) all points of the

2 Kanerva actually used circle for this concept. However, as we shall see later, sphere is a better

name here.

25

space are between any point x and its opposite `x, and (3) each point in the space is

isometrically equivalent to any other point; that is, for any two points x and y there exists

a distance preserving transformation that maps x to y. The surface of a sphere is clearly a

spherical space, as is N.

Based on this definition, Kanerva suggested the sphere analogy. Since N is

spherical, the space is analogous to a three dimensional sphere with diameter 2n. The

points x and ̀x are in the poles of this sphere (any point of the space can be x), the entire

space lies between x and ̀x, and most of the space is in the equator (see Figure 1).

A circle on the surface of the 3-dimensional sphere with center at x is analogous

to a sphere in N. The analogy is far from perfect: N has a discrete number of elements and

the surface of the sphere is continuous, the minimal path between two points in N are not

Figure 1. The sphere analogy. The space N is analogous to the surface
of a 3-dimsional sphere. For any point x, most of the points in N are
near of the equator, which is half way between x and ̀x. Adapted from
(Jockel, 2009).

26

unique, and a sphere in N is in general not convex. Nevertheless, the analogy is excellent

for illustrating several properties of the space (Kanerva, 1988).

A very important property of N is the distribution of the distances from a

randomly chosen point to the rest of the points of the space. Since N is spherical

according to the definition above, any point could be in the origin (or translated to it), so I

will consider the distances from the origin. Kanerva (1988) proved that these distances

follow a binomial distribution, that can be approximated by a Normal distribution with

mean distance equals to n/2 and standard deviation approximately equals to √	/2.

Figure 2 summarizes this distribution for different values of n. It is easy to see that half of

the space is closer than n/2 and the other half is farther than that distance. But it is

counterintuitive that as the number of dimensions n increases, the distribution tends to

highly concentrate the points at about the indifference distance n/2. For example, for

n = 1,000, the mean distance is 500 and the standard deviation (SD) is about 15.8.

Figure 2. Distribution of Hamming distances in N. As the number of dimensions
n increases, the distribution tends to highly concentrate the points at about the
indifference distance n/2. Adapted from (Kanerva, 1988).

27

According to the Normal distribution, only one millionth of the space is closer

than 422 bits or farther than 578 bits, since 5 SD is about 78 bits. Notice that points do

not concentrate or cluster in the space, all points are isometrically equivalent, and the

distances from any point to the rest of the space are concentrated at almost the

indifference distance.

Randomly selected points of the space can represent unrelated points of interest,

and due to the large size of the space, it is almost impossible to run out of vectors.

Because of the distribution and the symmetry of the space, any two randomly chosen

points will likely be almost at the indifference distance from each other, that is, they are

almost orthogonal to each other. Kanerva named this remarkable property the tendency to

orthogonality of the space.

Kanerva (2009) described another interesting example. Suppose we have two

vectors A and B that only differ in 25% of their bits. This is unlikely to happen by

chance, but they can be constructed in this way to represent related concepts (see

Chapters 3 and 6). Based on A, we can create another vector C by changing 1/3 of the

bits of A. C is just a noisy version A. One might think that C could become closer to B

than to A, but this is very unlikely. If d = 1/4 and e = 1/3, then the distance between A

and B is d(A,B) = dn, and the expected distance between C and B it is d(C,B) = (d + e –

2de)n. Thus, d(C,B) = d(A,B) + (1 - 2d)en. It is clear that the distance between C and B

also increases. With n = 1,000, d(A,C) = 333 and d(C,B) = 416. The difference is more

than 5 SD. If the dimensionality of the space is higher the effect is even more

pronounced: with n = 10,000 the distance d(A,C) = 3,333 and d(C,B) = 4,166. In this

case the difference is more than 16 SD.

28

These properties of high dimensional spaces are the basis of Sparse Distributed

Memory. The following section describes the structure and functionality of SDM.

Memory Description

Here I present an introduction to SDM. Both leisurely descriptions (Franklin, 1995) and

highly detailed descriptions (Kanerva, 1988, 1993) are available.

Conventional computer memories are accessed using the location, or address, of

the data. A memory of this kind is just an array of fixed size registers; each register holds

a word of the memory and the size of the register is called the word size. Each register is

indexed by its address, and has a size that is known as the address size. In general, there

is no relation between the address and the word stored at that particular register.

Conversely, in SDM, a content addressable random access memory, the data in the

memory are retrieved using the same content, or part of it, as the cue. Several authors,

including Hawkins (2005), believe this is a fundamental characteristic of the human

memory. In this kind of memory, called associative memory, instead of using a fixed,

uninformative address to store the data, a meaningful vector is used as the address. In a

special case of associative memory, called auto-associative, a data word stored in the

memory is associated with itself. In other words, the data is stored using itself as an

address. This can seem useless, but is actually quite convenient because it allows a word

stored in the memory to be retrieved using an approximate or noisy version of itself

(Kanerva, 2009). See Chapter 1 for more discussion about this subject.

 We can imagine a conventional memory with an address size equal to its word

size and use the memory as an associative memory. A problem arises with large word or

the address sizes, such as the sizes described in the previous section. For example with

29

n = 1,000, Franklin (1995) compared the size of this memory with the number of atoms

in the universe. It is evident that such a memory cannot be constructed. Moreover, even if

it were possible to construct, the auto-associative characteristic could not be easily

implemented. Nevertheless, high dimensional vectors are an attractive option to model

concepts, events, and other similar entities, and SDM nicely addresses these problems.

SDM is built upon the properties of high dimensional spaces described on the

previous sections. Here I will use high dimensional binary spaces in the order of 1,000,

or 10,000 dimensions. Both addresses and words are binary vectors whose length equals

the number of dimensions of the space. As an example, I will use binary vectors of 1,000

dimensions.

To calculate distances between two vectors in this space, the Hamming distance is

used. As explained in the previous section, the distances from a point in the space to any

other point are highly concentrated around half of the maximum distance. In our

example, more than 99.9999% of the vectors lie at a distance between 422 and 578 from

a given vector of the space.

Hard Locations

Since it is impossible to construct a memory with such huge address space, SDM is built

with hard locations, the units of storage of the memory. Only hard locations can store

data, and each hard location has a fixed address. A sparse uniformly distributed sample of

all possible addresses of the space, on the order of 220 of them, is chosen. This sample

constitutes the addresses of the hard locations. The proportion of hard locations over the

number of possible addresses of the space is very small, in the example on the order of

2-980, the reason that the memory is called sparse. The number of addresses selected to

30

construct the memory is denoted by m. Hard locations are like islands in the vector space.

As in the ocean, islands are just a tiny proportion of the entire surface of the ocean. Data

storage is only possible in these islands.

To store data, each hard location has counters, one for each dimension. I denote

as ci the counter corresponding to dimension i. In the example, each hard location has

1,000 counters. A counter is just an integer register that can be incremented or

decremented in steps of size one. According to a proof by Kanerva (1988), a range of -40

to 40 provides enough capacity for a SDM with 1,000,000 hard locations, as in this

example. For other sizes this range may vary.

Each hard location can store several words but as a combination rather than

distinct entities. The reconstruction of one of these words requires the participation of

many hard locations in its storage and retrieval. For writing in an arbitrary address in

SDM, the word is stored in several hard locations. This is radically different than the way

a conventional memory works, where words are stored just in one location. To read from

an arbitrary address in SDM, the output vector is a composite of the readings of several

hard locations. This distributed storage is what makes SDM noise robust. The process of

selecting which hard locations participate in a single reading or writing operation is

called the activation of hard locations. An activated hard location is one that participates

in a reading or writing operation. Kanerva (1988) uses the access sphere to determine

which hard locations are active for a read or write operation (see below for details).

Different activation mechanisms produce interesting variations on the original SDM.

Several of these alternate activation mechanisms will be explored later in this chapter.

31

Writing and Reading Hard Locations

In order to understand how to read and write vectors in SDM, first it is necessary to know

how to read and write a vector in a hard location. To write a word vector w in a hard

location, for each dimension i, if the bit wi of this dimension i in the word is 1, the

corresponding counter ci of that hard location is incremented. If it is 0, the counter is

decremented. For example, if the word w = [1,0,0,1,0] is stored in a hard location, the

first counter c0 is incremented, c1 is decremented, c2 is decremented, and so on.

To read a word vector from a hard location, we compute a vector such that, for

each dimension i, if the corresponding counter ci in the hard location is positive, 1 is

assigned to dimension i in the vector being read, otherwise 0 is assigned. For example, if

the counters C of a hard location have the values [10,-5,11,-7,-8] the output word w is

[1,0,1,0,0]. The chance that a word datum is exactly the address of a hard location is

almost zero. However, words are written to their nearest hard locations. Next section

explains how these hard locations are chosen and how the distributed storage takes place.

SDM Storage

Since a hard location stores words as a combination of all the stored words in it, reading

it returns this combination that would be different than any of the stored words. SDM

addresses this problem by reconstructing the original word using information from

several hard locations.

32

To determine which hard locations are used to read or write, an access sphere is

defined. The access sphere for an address vector is a sphere O with center at this address.

The radius of the access sphere is defined in such a way that on average it encloses a

small proportion p of the total number of hard locations. If m is the number of hard

locations in the memory, the access sphere encloses pm hard locations. This value p is

also the probability of activation of one hard location, that is, the probability that one

hard location is in the access sphere of one particular reading or writing operation. Thus,

the probability p determines unequivocally the radius of the access sphere. For example,

for a SDM with 1,000 dimensions, and a probability of activation p = 0.1%, the radius of

the access sphere is 451. The access sphere will contain any hard location whose address

is less than 451 away from the address vector. (See Figure 3.)

 The activation of the hard locations can be achieved using other strategies; some

of them are explored in following sections. To write a word vector w in any address of

Figure 3. Access Sphere. Adapted from (Kanerva, 1993).

33

the memory, the word is written to all hard locations inside the access sphere of the

address a. Figure 4 shows the entire process.

First the distance from the address vector a to each hard location’s address is

computed. The activation vector Y is a binary vector of m dimensions, one for each hard

location in the memory. The value of each dimension j is equal to 1 if the distance from a

to the corresponding hard location j is less than the activation radius r, d(a, hdj) ≤ r. It is 0

otherwise. Finally, the word w is written to all activated hard locations, updating their

counters.

Figure 4. Writing hard locations. First the distance from the address
vector a to each hard location’s address is computed. Each dimension j of
the vector Y is equal to 1 if the hard location j is into the access sphere of
address a. The counters of activated hard locations (gray rows) are
updated. If wi is 0, the counter i of each active hard location is
decremented. If wi is 1, these counters are incremented.

34

SDM Retrieval

 Reading SDM from any address consist of reading from all hard locations in the access

sphere of the address vector, and combining them using a majority rule for each

dimension. In other words, the output vector will have, in each dimension, a value equal

to1 if the majority of the vectors read from the hard locations in the access sphere have a

1 in that dimension, and a value of 0 otherwise. An alternate procedure achieves a better

result. By summing up the counters for each dimension of all hard locations in the access

sphere, and then normalizing these sums using the mechanism explained above for

reading a single hard location, one can produce the output vector without requiring the

normalization of the readings of each hard location individually.

In general, SDM is used as an auto-associative memory, where the address vector

is the same as the word vector, enabling the retrieval of a word from the memory using

partial or noisy data as a cue. Suppose a vector v’, a partial or noisy version of a vector v

stored in the memory, lies within a critical distance of v (see next section). If v’ is used as

address with which to cue the memory, the output vector, v’’ , will be closer to v than v’.

If the process is repeated, using the vector v’’ as an address, the new reading will be even

closer to v. After a few iterations, typically fewer than 10, the readings converge to the

original vector. If the vector v’ is farther away than the critical distance, the successive

readings from the iterations will diverge. If the vector v’ is about at the critical distance

from v, the iterations yield vectors that are typically at the same critical distance from the

vector v. This behavior mimics the “tip of the tongue” effect (Franklin, 1995). Figure 5

depicts the critical distance idea.

35

Critical Distance, Fidelity, and Memory Capacity

Kanerva (1988) defined the critical distance as the distance beyond which divergence is

more likely than convergence when reading SDM. It depends on the number of vectors

already stored in the memory and on the number of hard locations that comprise the

memory. He derived the expression for the critical distance as a function of the number of

hard locations and the number of stored words. For example, a memory with one million

hard locations, 10,000 stored words and an n = 1,000, has a critical distance of about 209.

Another important concept is the fidelity P that is the probability of correctly

retrieving a bit of the output word. The memory fidelity is then the n-th power of P.

Figure 5. Critical distance. Convergence and divergence in
iterative readings. Starting from x, which is within the critical
distance, the stored word w is finally read. Starting from y, the
sequence of readings diverges. Rn(x) denotes the n-th in the
sequence of readings. Redrawn from (Kanerva, 1988, p. 70).

36

The memory capacity is defined as the number of stored words T for which the

critical distance is zero. At this point, it is not possible to retrieve the stored words, even

using the same word as the address. Kanerva calculated the SDM capacity (1988, 1993)

by setting the memory fidelity to 0.5 and solving for T:

 �������� = �
(Φ−1 (2−1))

2

(1)

where Φ is the normal distribution function and m the number of hard locations. For

example, with n = 1,000 the capacity is approximately equals to m / 10, that is 100,000

words.

Other authors studied the capacity of SDM. Jaeckel (1989a) developed an

approximate analysis that was also used also by Kanerva (1993). The most complete

analysis of SDM’s capacity was performed by Chou (1989). He derived the exact

capacity of the memory in the general case. Keeler (1988) used Shannon’s information

capacity (Shannon & Weaver, 1949). In this theoretical framework, the capacity can be

allocated to store more words or to tolerate more noise in the cues. He developed a

mathematical model of the memory that helps to analyze the memory. A simple

generalization of this mathematical model includes the binary Hopfield network

(Hopfield, 1982) as a special case. Keller used this model to compare the capacity of both

memories. He showed that both memories have the same capacity per storage element or

counter. However, SDM presents an interesting advantage over Hopfield nets. In the

former, the size of the words is independent of the number of storage elements;

conversely, in the Hopfield nets the size of the words determines the capacity of the

37

memory. Doubling the number of hard locations in SDM doubles the capacity of the

memory, independently of the dimensionality of the vectors.

Storing Sequences in SDM

When storing sequences of vectors in SDM, the address cannot be the same as the word,

as it is in the auto-associative use. The vector that represents the first element of the

sequence is used as address to read the memory. The output vector is the second element

in the sequence, which is now used in turn as an address to read the memory again in

order to retrieve the third element. This procedure is repeated until the whole sequence is

retrieved. This mechanism uses the memory in a hetero-associative way, where the output

is not necessarily similar to the cue vector. Kanerva (1988, 1993) showed that this

procedure converges to the elements of the sequence. The problem with this mechanism

for storing sequences is that it is not possible to use iterations to retrieve elements of the

sequence from noisy input cues, yielding a far less robust memory. Another problem

arises when the stored sequences have common elements, as in ABCD and FGCH. In the

example, if the two sequences are stored with the described mechanism, cueing with the

vector C will probably return an incorrect vector. Kanerva proposed the use of multiple

folds to store sequences. Each fold is an entire SDM that stores the sequence of the kth

element ahead. That is, the next element is stored in the fold1 with the current element as

the address. The element two steps ahead is stored in fold2 by using the current element

as the address. The element k steps ahead is stored in that address in foldk. The readings

of all folds are combined to predict the next element. Jockel (2009) uses this procedure to

store sequences for a robotic arm manipulation system. (See the following sections for

details.) This procedure is clumsy, difficult to implement and wastes memory resources.

38

Kanerva (2009) proposed a better solution using hyperdimensional arithmetic, but some

limitations and problems remain. In Chapter 4, I will discuss this problem in detail and

introduce Extended Sparse Distributed Memory that addresses this issue with better

results.

SDM Compared with Other Models

Matrix Notation of SDM

SDM can be described in terms of matrices and vector operations. For details see

(Kanerva, 1993). This representation is useful for comparing the memory with correlation

matrix memories, such as the Hopfield net (Hopfield, 1982) or Willshaw memories

(Willshaw, 1981).

Figure 6 depicts the realization of SDM using matrices. The m x n matrix A in the

left contains the address of one hard location in each row. The vector d, of size m,

contains the distances from the cue vector x to each hard location address. The vector y,

of size m, is the activation vector. If di < r , the activation radius, then yi is 1, and 0

otherwise.

C is an n x m matrix that contains the counters of one hard location in each row.

In order to write to the memory, the input vector is used to update the rows of the matrix

C that correspond to the active hard locations. For reading from the memory, the vector s,

of size n, has the sum of the counters corresponding to the rows in C, for the activated

hard locations. This vector can be calculated as s = CTy. Finally, the binary vector z, the

output vector, will have in dimension i a value 1 if si > 0 and 0 if si < 0. If si = 0, the

output value is chosen randomly.

39

Artificial Neural Network

Some artificial neural networks (ANNs) exhibit characteristics similar to SDM, such as

noise robustness, associativity, and so on. Kanerva described how SDM can be

interpreted as a synchronous, fully connected, three layered feedforward artificial neural

network. For details see (Kanerva, 1993). This interpretation is useful for comparing an

SDM to a feedforward network. However, it is important to notice that an SDM has a

completely different architecture and behavior than a feedforward ANN. In this view, the

input layer is just the input vector x. The hidden layer corresponds to a vector y of size m

that represents the active hard locations. The matrix A formed from the hard locations’

Figure 6. Realization of SDM using matrices. Redrawn from (Kanerva, 1993).

40

addresses corresponds to the matrix of synaptic weights between the input and hidden

layers. The output layer is the output vector z. Finally, the matrix of synaptic weights

between the hidden and output layers is determined by the matrix C of the counters of the

hard locations. Figure 7 depicts this interpretation.

However, if we compare a three layer feedforward neural network trained with

backpropagation and a SDM, they have several differences: first, SDM has the matrix A

of synapses fixed and the matrix C allows only integer values. A feedforward network

uses real values for the synaptic weights. Second, the activation function of the hidden

units is completely different from the activation of hard locations. In SDM the hard

locations are activated with a non-linear function and they only can take values 0 or 1. In

back propagation networks, linear combinations of the inputs are used to activate the

Figure 7. Description of SDM as an artificial neural network. The input layer
X, is the input vector. The hidden layer is the activation vector y and the
output layer is the output vector. The connections between X and Y are given
by the hard location address. The connections between the hidden layer and
the output layer are determined by the hard locations’ counters. Redrawn
from (Kanerva, 1993).

41

hidden units and they can take real values. Finally, due to the mechanism and

characteristics of SDM, its training is faster, compared to backpropagation trained

networks. Even learning with just one or few repetitions is possible using SDM (Kanerva,

1993). On the other hand, a network trained by back propagation requires a large training

set to learn.

Model of the Cerebellum

The functionality and features of SDM make this memory a good candidate to model

episodic memory (Baddeley et al., 2001; Franklin et al., 2005). However, Kanerva

partially modeled SDM after the structure of cortex of the cerebellum. I briefly compare

them here; for details see (Kanerva, 1988, 1993). The main types of cells in the cerebellar

cortex and its whole structure can be interpreted as parts of the SDM functionality.

Figure 8 shows a schematic view of the cerebellar cortex. There are two main

types of inputs. The climbing fibers (Cl), which receive the signals from neurons in the

brain stem, would have the same functionality as the word data input in SDM. The other

kinds of inputs are the mossy fibers (Mo), which would have the same functionality as

the address input in SDM. The granule cells (Gr), which receive inputs from the mossy

fibers, would be equivalent to the hidden units in the SDM and work as address decoders.

The Golgi cells (Go) could control the number of granule cells that fires at the same time,

and could be interpreted as the control of activation of hard locations in SDM.

The axons of Purkinje cells (Pu) are the outputs of the model, and the synapses

between the granule and the Purkinje cells would represent the counters of hard locations.

42

The comparison is far from perfect (Kanerva, 1993), but the similarities suggest

that the cerebellar cortex can be interpreted as an associative memory and SDM is a

plausible model of it.

Both Marr (1969) and Albus (1971) developed mathematical models of the

cerebellum. Albus developed CMAC, Cerebellar Model Arithmetic Computer (Albus,

1981). CMAC is a sparse coarsely-coded associative memory algorithm designed to

provide motor control for robotic manipulators. Both Marr’s model and Abus’ CMAC are

Figure 8. Schematic view of cerebellar cortex. Redrawn from (Kanerva,
1993).

43

similar to SDM. Kanerva (1993) extensively compared SDM with these two models,

showing that CMAC can be represented as a special case of the Jaeckel’s hyper plane

design (see next section for details).

Extensions and Improvements

Several authors have proposed different extensions and variations of SDM. In this section

I will discuss some of the most influential ones. One of the critical steps in SDM’s

algorithm is the activation of hard locations. Many of the extensions described here

address this issue. Others explore variations in the distribution of the hard location

addresses in the space. Data in real applications are often not uniformly distributed,

tending to cluster, which diminishes the performance of the memory. In these situations

some hard locations may not be activated at all, resulting in wasting of their capacity.

Other hard locations may be activated very frequently and again are wasted because their

contents represent mostly noise. Most of the extensions discussed here address one or

both of these issues.

Jaeckel’s Selected-Coordinate Design

Jaeckel (1989a) introduced the selected-coordinate design as an alternate mechanism to

activate hard locations. The rest of the model is exactly the same as in the original SDM.

In this model, for each hard location a small number k of dimensions are randomly

chosen, each being randomly assigned a value of zero or one with equal probability. For

example, for an address space of 1,000 dimensions, 10 dimensions are chosen. A hard

location is activated if only if the address to read or write matches all the k selected

44

dimensions values. The probability of activation p of one hard location is then (0.5)k. In

the example, it is approximately 0.001.

Jaeckel (1989a) showed that the capacity and fidelity of this model are slightly

better than the original SDM. Another advantage over the original is the simplicity of the

calculation of the activation. A hardware implementation using this model is simpler than

the one corresponding to the original SDM.

Karlsson (1995) proposed a variation of Jaeckel’s design restricting the selection

of the selected dimensions for hard locations. With this simple change and the use of a

lookup table he was able to speed up the process of activation of hard locations by several

orders of magnitude.

Jaeckel’s Hyperplane Design

In this second variation Jaeckel (1989b) dealt with skewed data, which are data with few

ones. In this case fewer dimensions are selected, for example three, and all them must be

one in the address to read or write in order to activate the hard location. By choosing the

parameter k according to the proportion of ones in the data it is possible to achieve better

results.

He also suggested intermediate designs. In these models only a fraction r of the

selected dimensions need to match the address to read or write. By carefully choosing k

and r depending on the number of ones in the data, it is possible to obtain a reasonable

value for the activation probability p. Jaeckel (1989b) showed that the original SDM

corresponds to one end of these intermediate designs and the selected-coordinate design

corresponding to the other.

45

Dynamic Allocation

Several authors suggested allocating the hard locations using different distributions.

Keller (1988) suggested choosing the addresses of the hard locations following the same

distribution as the data. Jaeckel’s hyperplane design (1989b) is inspired in this idea.

Saarinen et al. (1991) improved memory utilization by distributing the hard addresses

with Kohonen’s self-organizing algorithm.

Other authors have proposed the use of genetic algorithms to distribute the hard

location addresses. For example (Anwar, Dasgupta, & Franklin, 1999; Fan & Wang,

1997). Fan and Wang used a genetic algorithm to initialize the addresses of hard

locations. Anwar et al. used a different fitness function to maximize the distance between

hard locations. If each of these algorithms is seen as a neural network, the genetic

algorithm changes the weights in the connections between the input layer and the hidden

layer (matrix A in the ANN representation), while connections between hidden layer and

the output layer (matrix C in the ANN representation) are updated with the standard SDM

procedure.

Ratitch and Precup (2004) created the hard locations as needed, distributing the

hard locations following the distribution of the data. Their design does not require

allocating memory for hard locations that are not used, as is done in the original SDM.

When data needs to be stored, new hard locations are created in the neighborhood of the

input data if their number is less than a predefined value. If the predefined maximum

number of hard locations has already been reached, an infrequently active hard location is

first removed before creating a new one. The content of the hard location to be removed

is combined with its nearest neighbor. Using similar ideas, Sutton and Whitehead (1993)

46

slowly move rarely active hard locations towards the address of data if the number of

active hard locations for that data is below a certain value.

Helly, Willshaw, and Hayes (1997) proposed an alternative signal model that

propagates the input data through the entire memory, decreasing the signal strength

proportionately with the distance from the input. They also used a pruning mechanism

similar to Sutton and Whitehead. This mechanism eliminated the requirement of

predefining the access radius that best fit the data. They reported a notable improvement

for non-random data over the original SDM.

Other Variations

Furber and colleagues (2004) developed an SDM version using spiking neurons. They

used sparse codes, where only n of m bits are ones in the word vectors. They based their

design on Jaeckel’s hyperplane design for the activation of hard locations, using a

Willshaw memory (Willshaw, 1981; Willshaw, Buneman, & Longuet-Higgins, 1969) as

an alternative to counters for storage of the data. This design choice diminishes the

capacity and noise robustness of the memory as pointed out by Kanerva in his analysis of

SDM with one bit counters. However the most recently stored words in this model are

easily retrieved, providing a good model for short term memory (Kanerva, 1988, pp. 75 -

76). Bose, Furber, and Shapiro (2005) extended this design to store sequences.

Ramamurthy, D’Mello, and Franklin (2006) introduced forgetting as part of an

unsupervised learning mechanism. They decay the counters toward zero over time

according to a sigmoid function, with the result that only sufficiently repeated vectors are

preserved in the memory. The same authors also proposed the use of ternary vectors,

introducing a “don’t care” symbol as a third possible value for the dimensions of the

47

vectors (D'Mello, Ramamurthy, & Franklin, 2005; Ramamurthy, D’Mello, & Franklin,

2004). This latter variation increased the performance for text based applications. Finally

Anwar and Franklin (2005) introduced a model of SDM that can handle small cues, that

is, vectors with a small number of dimensions.

Applications

Several applications were created using SDM as their main component or as a part of

them. In this section, I present some representative applications in various domains. Of

course, this sample by no means limits the possible applications to only these domains.

The properties of SDM make it good candidate for a cognitive agent’s episodic

memory model (Ramamurthy & Franklin, 2011). Various authors used SDM for speech

and pattern recognition (Clarke, Prager, & Fallside, 1991; Fan & Wang, 1997; Joglekar,

1989; Meng et al., 2009). Others implemented prediction applications using SDM

(Howell & Fowler, 1990; Rogers, 1990). And still others developed memory systems,

especially procedural memory, for robot control applications (Jockel, 2009; Mendes,

Coimbra, & Crisóstomo, 2009; Mendes, Crisostomo, & Coimbra, 2008; Rao & Fuentes,

1998).

LIDA Episodic Memory

The LIDA model (Baars & Franklin, 2009; Franklin & Patterson, 2006; Ramamurthy,

Baars, D’Mello, & Franklin, 2006) is a comprehensive, conceptual and computational

model covering a large portion of human cognition. Based primarily on Global

Workspace theory (Baars, 1988) the model implements and fleshes out a number of

psychological and neuropsychological theories. The LIDA model and its ensuing

48

architecture are grounded in the LIDA cognitive cycle (Baars & Franklin, 2003; Franklin

et al., 2005). Every autonomous agent (Franklin & Graesser, 1997), be it human, animal,

or artificial, must frequently sample (sense) its environment and select an appropriate

response (action). More sophisticated agents, such as humans, process (make sense of)

the input from such sampling in order to facilitate their decision making. The agent’s

“life” can be viewed as consisting of a continual sequence of these cognitive cycles. Each

cycle constitutes a unit of sensing, attending and acting. A cognitive cycle can be thought

of as a moment of cognition, a cognitive “moment”. During each cognitive cycle the

LIDA agent first makes sense of its current situation as best as it can by updating its

representation of its current situation, both external and internal. By a competitive

process, as specified by Global Workspace Theory (Baars, 1988), it then decides what

portion of the represented situation is most in need of attention. Broadcasting this portion,

the current contents of consciousness, enables the agent to choose an appropriate action

and execute it. The different memories of the agent may also learn the broadcast content,

completing the cycle.

LIDA includes several memory modules implemented in several different

technologies. SDM exhibits interesting psychological characteristics as well

(interference, knowing when it doesn’t know, the tip of the tongue effect), that make it an

attractive option with which to model episodic memory (Baddeley et al., 2001; Franklin

et al., 2005). LIDA’s transient episodic memory and declarative memory are

implemented using variations of SDM (Ramamurthy, D'Mello et al., 2006; Ramamurthy

et al., 2004; Ramamurthy & Franklin, 2011). The forgetting and consolidation

mechanisms are interesting improvements for the episodic memory of cognitive agents

49

(Ramamurthy, D'Mello et al., 2006). When implementing the forgetting introduced in the

previous section, the counters of each hard location of the episodic memory are decayed

according to a sigmoid function. Counters with high values decay more slowly than

counters with low values. Counters with high values are a consequence of highly repeated

word vectors. Eventually, only counters with high values will remain and only these

highly repeated words will be preserved in the memory. These words that are preserved

in the episodic memory are consolidated to the declarative memory. The declarative

memory, implemented with a second SDM, has exactly the same address for each hard

location. The consolidation process is as follows: at predefined intervals the counters of

each hard location of the declarative memory is updated with the counters of the

corresponding hard location in the transient episodic memory. Declarative memory has a

slower decay rate than episodic memory, preserving its contents for longer periods.

Pattern and Speech Recognition

Prager and Fallside (1989) and Clarke et al. (1991) implemented a short word recognition

system based on continuous speech inputs. Testing the system with 133 small words, they

reached a recognition accuracy of 95% without syntactic constraints. Their model used a

variation of the original SDM that is able to represent real values. Each utterance of a

vowel was represented by a 128-dimensional vector of real numbers.

Joglekar (1989) studied phonemes recognition with NETtalk data (Sejnowski &

Rosenberg, 1986). He mapped hard locations directly to sample data to obtain the best

results. Additionally, Danforth (1990) experimented with recognition of spoken digits.

He represented the words with 240 bits. The results improved dramatically when some

50

words where used as addresses of hard locations. However his best results were achieved

using Jaeckel’s selected coordinate design.

Several authors implemented pattern recognition applications with SDM. Fan and

Wang (1997) implemented a digit-recognition application using genetic algorithms to

allocate the hard locations in the space. Meng et al. (2009) created a modified version of

SDM that allocates hard location addresses with some of the data vectors improving the

efficiency of the system. They also implemented the counters with only 2 bits but

included a tri-state (high impedance) value. This design diminished the memory

requirements and facilitated the hardware implementation while keeping the performance

relatively high.

Prediction Applications

Rogers (1990) implemented a weather forecasting application using a combination of

SDM and a genetic algorithm. He trained the system with 58,000 weather samples for the

Australian coast. Each sample included features such as temperature, air pressure or

cloud cover. The predictions using this mixed application outperform the results of the

application using only SDM. Howell and Fowler (1990) developed a simple application

that predicted academic success or failure for dental college students. They reported a

performance of 68%, higher than similar studies of that time.

 Perhaps the most promising prediction applications are related to sequence

learning, and are strongly related with robot navigation, which is explored in the next

section.

51

Robot Navigation and Manipulation

Several authors experimented with SDM as a main component of robot navigation

systems. Rao and Fuentes (1998) created a system that employed a SDM combined with

Brooks’ subsumption architecture (Brooks, 1986) to learn adaptive navigational

behaviors. They trained the system with vectors formed from the sensor data and motor

inputs from the three most recent perceptions. The SDM was modified to self-organize

the inputs in the address space.

Mendes et al. (2008, 2009) experimented with a robot vehicle that uses video

images and motor information as sensory inputs. They utilized a modified SDM to

predict the subsequent movements during autonomous navigation after training. Their

SDM uses a randomized reallocation algorithm to dynamically allocate new hard

locations as needed. The authors also compared several encoding methods for real or

integer values when they are used with SDM. I will explore this issue in more detail in

Chapter 5.

Jockel (2009) developed a robotic arm manipulation system based on the

modified SDM of Mendes (2008) and Bose (2005). The memory dynamically allocates

hard locations as needed and used buffers instead of counters. He also developed a multi-

fold memory, as suggested by Kanerva (1988), for storage of sequences. Each fold is in

fact an independent SDM, and the system can have multiple folds. The kth-fold stores a

prediction for the next element based on the element k prior steps in the sequence. The

system combines the predictions of all folds to determine the next element. I will discuss

a simpler approach for the same problem in Chapter 4.

52

In summary, Sparse Distributed Memory is an associative memory based on the

properties of high dimensional binary spaces. It is composed of hard locations, the

storage units of the memory. Its auto-associativity and noise robustness make it a good

candidate for several applications, such as episodic memory for cognitive architectures,

robot navigation controllers, and pattern recognition. Several authors developed

variations and improvements: the forgetting mechanism, dynamic allocation of hard

locations, and variations in the hard location activation mechanism are some of the

extensions described in this chapter.

53

Chapter 3: Vector Representation

In Chapter 1, I mentioned the importance of the representation chosen for a system, and

the degree to which the representation influences which task categories the system can

compute optimally. In this work, I will discuss representations that help to perform

challenging AI applications, in particular vector representations. In Chapter 1, I

extensively described some of the basic operations required for these applications, and

desirable properties of the representation and memory systems that readily support these

basic operations. Plate (2003) described the properties of representation models in

general and the ones suitable for connectionist systems in particular (pp. 2-16).

Distributed representations in connectionist models are intimately related with vector

representations. Here, I will summarize these concepts, and focus on representations

based on long vectors and their properties.

In classic AI representations, there are two main approaches: the symbolic

approach, and the connectionist approach that bases representations on the state of a

simple network of units. Another representation model is the vector representation, built

on vector spaces. Finally, some researchers claim that no representation is required at all

(or at least, its importance is not as strong as the other approaches maintain) (Brooks,

1991).

Newell and Simon (1976) define physical symbol systems as follows:

A physical symbol system consists of a set of entities, called symbols, which are
physical patterns that can occur as components of another type of entity called an
expression (or symbol structure). Thus, a symbol structure is composed of a
number of instances (or tokens) of symbols related in some physical way (such as
one token being next to another). At any instant of time the system will contain a
collection of these symbol structures. Besides these structures, the system also
contains a collection of processes that operate on expressions to produce other
expressions: processes of creation, modification, reproduction and destruction. A

54

physical symbol system is a machine that produces through time an evolving
collection of symbol structures. Such a system exists in a world of objects wider
than just these symbolic expressions themselves.

Basically, these systems are composed of entities (symbols) that can be instantiated

(tokens), and of rules to manipulate them. Symbols are attractive representations for high-

level problems such as planning or chess playing, but they seem less appropriate for other

tasks, such as those required for challenging AI applications: object recognition,

sequence learning, and so on. Further discussion of symbolic AI is beyond the scope of

this work.

Connectionist systems, such as neural networks or semantic networks, can

represent knowledge and data in several ways. The long-term knowledge (or data)

representation is often based on the weights of the links between units. The different

states or activation patterns of the units compose the short-term data representations.

The short-term representations in connectionist systems can in turn be subdivided

into localist and distributed representations. In the former, each unit represents a single

object, concept, or element of the system. The represented elements have a one-to-one

correspondence to the system’s units (Franklin, 1995, p. 132). The main advantage of a

localist approach is the explicit representation of data. An external observer can easily

interpret the activation of the units as the current representation of the system. For

example, semantic networks and similar models, such as the Perceptual Associative

Memory in the LIDA architecture (Ramamurthy & Franklin, 2011), follow this paradigm.

Passing activation among units can explicitly implement constraint rules; or reinforcing

the units’ activation based on the activation of others can model similarity and

composition of elements. Finally, localist representations are good candidates for input to

55

or output from a system. For example, in classification tasks, the output vector’s

dimensions represent the possible classification categories, where the value of each

dimension denotes the probability of the probed element belonging to the corresponding

category. Because of its explicit representation, these networks are easy to design

according to the requirements of the system. Despite its advantages, this type of

representation has several problems, mostly related to inefficiency. The one-to-one

correspondence between items and units in the system implies that representing n items

requires n units. For a system with few items, this may be reasonable, but it becomes

impractical for large number of elements. Moreover, even similar items require an

individual unit to represent each one. Something similar occurs with the connections

between elements; their number can increase geometrically, producing in many cases a

high degree of redundancy.

On the other hand, in distributed representations each item is represented by the

activation of several units, and each unit can participate in the representation of a number

of items (Franklin, 1995, p. 132; Hinton, McClelland, & Rumelhart, 1986). This

representation is more efficient than the localist one. For example, 10 units can represent

210 elements. The patterns of activation of the units comprise a vector, where each unit in

the system corresponds to a dimension. The distributed representation is more compact

and computationally efficient than the localist, but at the expense of explicitness. In an

interesting alternative, the units themselves can represent explicit features of the item

(e.g., is-red). The pattern of activation of several units distributively represents a

particular item, but each unit locally represents a microfeature (Hinton et al., 1986). This

intermediate model has some advantages. Similar elements have similar representations,

56

because they may share several features. This can lead to automatic generalization, since

similar items will activate similar patterns of units, and the system will capitalize this

reacting alike (Franklin, 1995, pp. 132-133). However, a system might require a large

number of microfeatures in order to represent all possible items, making this model

impractical.

Distributed representations can implement what Plate (2003) calls explicit

similarity: similar elements have similar representations (p. 13). Several kinds of

similarity measures can be used among vectors, e.g., the cosine, or the inverse of some

distance, such as the Hamming (for binary vectors) or Euclidean distances.

Explicit similarity becomes even more advantageous using vectors that belong to

high dimensional spaces (i.e., vector spaces with a large number of dimensions). Such

spaces offer an enormous number of possible units’ activation patterns, and the necessity

for compact representations becomes less critical. There is no need for a one to one

correspondence between patterns and items. For example, in a binary space with 1,000

dimensions, we can theoretically represent 21000 different items, but this is highly

unlikely. We can use just a fraction of the vectors in the space, say 2100 vectors

distributed in the space, which still allows a gigantic number of possible representations.

Even after adding some noise by introducing a few changes in one of these vectors, it can

still represent the same item. In other words, a region of the space, instead of just one

point, represents an item, creating a more noise robust representation that gracefully

degrades as noise increases, and produces desirable properties such as pattern

completion. (See Chapter 2 for an extended discussion on this subject.)

57

Distributed representations are generally associated with connectionist systems.

However, we can abstract the representation from the implementation. A vector itself can

represent an item without corresponding to the pattern of activation of units in a

connectionist system. In many subfields of computer science vector representations

constitute one of the main types of data structure. For example in machine learning, a

vector of features–often of different data types–represents an element in a training set. A

different approach, and closer to the focus of this work, utilizes vectors where all the

dimensions share the same data type. Even with this uniformity, the number of possible

representation models is limitless. The way to calculate or define the vector

representation for an item, and the distance or similarity measurement define the

representation and its properties. For example, in the last two decades a large number of

semantic space models have emerged that use high dimensional vectors to represent

words and texts. The most representative models include Latent Sematic Analysis (LSA)

(Deerwester et al., 1990) based on statistical analysis; Random Indexing (Sahlgren,

2005),which employs random sparse vectors and random permutations; and BEAGLE

(Jones & Mewhort, 2007), which computes vectors using circular convolution. For recent

surveys of semantic space models see (Cohen & Widdows, 2009; Turney & Pantel,

2010).

In an even more generic view, vectors can represent any concept or element of

interest: objects, features, rules, constraints, actions, etc. As explained above, when a

vector belongs to a high dimensional space, interesting properties arise. For example, two

randomly chosen points of the space are far away from each other, which Kanerva (1988)

58

defines as tendency to orthogonality, making them good candidates to represent unrelated

concepts. For a complete discussion of this subject, see Chapter 2.

Reduced Descriptions

Here, I discuss the main ideas behind reduced descriptions. For further information, see

Plate (2003).

One frequent criticism of distributed representations (or vector representations) is

the difficulty they pose in the representation of complex structures. Performing high level

cognitive tasks such as reasoning, planning, or action selection often involves structures

with multiple elements. Implementations of these tasks frequently utilize structures such

as sequences, hierarchies, and variable binding. Moreover, the elements of these

structures can in turn be complex structures themselves. Of course, we can create these

structures and use vectors as elements. But, in that case, the vectors become mere

symbols, with a significant loss of expressive power. Hinton (1990) introduced the

concept of reduced description, a method for encoding complex structures as single

vectors. The main idea is to have a dual representation: the structure can be represented

explicitly, with a vector for each component, or as a reduced description, where a single

vector represents the whole structure. When the system focuses on a particular composite

element, its constituent structure is represented in full, instantiating all the elements

(vectors) that compose it. On the other hand, when the element participates in the

structure of another element that has the current focus, it is represented with a single

vector as a reduced description. See Figure 9.

59

The reduced description is not a mere pointer to the full description, but a loosely

compressed version of the original structure. Using pointers to create data structures has a

long history in computer science. For example, a struct in the C programming language

can have several elements, where some of them may be also pointers to other structures.

Pointers help create lists, trees, or other data structures. Object oriented languages, such

as Java, hide the pointers from the programmer using objects references, but they employ

essentially the same mechanism: an object reference leads to the actual location of the

object in memory. A pointer (or object reference) does not have any direct relationship

with the data it points to. In other words, looking at the pointer rather than what it points

to reveals nothing about the data. Furthermore, given an item (or part of it), it is not

possible to locate it easily. Hash indexing is probably the traditional computer science

technique most similar to reduced descriptions. Hashing allows the location of data to be

Figure 9. Reduced description. A complex structure has a dual representation: a full
representation with an explicit structure where each element is a vector, and a reduced
description, where a single vector represents the whole structure.

60

calculated from its content. However, the hashing usually does not provide any

information about the content, and similar elements often have very dissimilar hashing

values. The reduced descriptions, on the other hand, are abbreviated representations of

the full data. Moreover, as we shall see, several operations can use directly the reduce

descriptions without needing to recover the original data.

Plate (2003) analyses reduced descriptions from four desirable characteristics:

- Representation adequacy: The reduced description must be able to reconstruct or

retrieve the full representation. Failing to this is analogous to a pointer that does

not point to its data.

- Reduction: The reduced description must be smaller than the full representation.

In general, the vectors used in vector representations are of a fixed size, and a

single vector comprises a reduced description.

- Systematicity: The construction of the reduced description should be systematic.

That is, the way to construct the reduced description must be well known and

deterministic. This facilitates the reconstruction of the full representation.

- Informativeness: The reduced description should contain some information about

the whole it represents. This allows its direct use for certain operations without

retrieving the full representation (pp. 19-20).

Defining a reduced representation model determines basic operations that

combine vectors and produce these required characteristics. The next section explores

these basic operations in general, and the following sections describe some of the most

relevant reduced description models.

61

Basic Operations to Combine Vectors

Many of the complex structures apply to AI problems pervasively; examples include

sequences, hierarchies, and predicates (i.e., rules with variable binding). These structures,

and probably others, can be constructed out of even simpler primitives such as binding

and grouping. Binding is the assignment of one element, which is called the filler, to a

particular role or position in the structure. For example, in a sentence, an element “Sue”

can be bound to the subject role. Grouping is forming a set (or collection) of elements.

For example, the structure to represent a sentence can be a collection of roles (bound to

their fillers) where each role stands for a part of the sentence. In a similar way, a

sequence can be modeled with the group of its elements, each of them bound to its

position in the sequence. To create a reduced description model, we need to define

binding and grouping operations1, and a distance or similarity measure. Kanerva (2009)

introduced more abstract names for these operations; he uses multiplication for binding,

and sum for grouping, which simplifies the operations’ notation. I will use this same

convention here. The following summarizes the Kanerva’s ideas of hyperdimensional

arithmetic (Kanerva, 2009).

In general, the multiplication and sum operations don’t necessarily correspond

with the usual arithmetic operations, but they should have several properties in common.

These properties, in turn, facilitate the achievement of the four characteristics of reduced

description models described in the previous section. For example, the multiplication

must be reversible; this allows unbinding the filler to reconstruct the original structure. I

will use the operations defined in Spatter Code (Kanerva, 1994) as examples of the more

1 Some systems can create reduced descriptions without explicitly defining these operations. For

example see RAAM (Pollack, 1990).

62

general cases. This representation model uses bitwise XOR as multiplication; integer

sum, in each dimension, followed by a normalization process, as sum; and Hamming

distance as the distance measure.

If a vector A represents an element and vector B represents a role, the binding of

A to B is given by:

 � = ! ⊗ # (2)

where ⊗ denotes the multiplication operator (e.g., XOR in Spatter Code). Multiplication

by the inverse vector reverses this operation. The definition of the inverse vector depends

on the multiplication operator used. In the XOR case, it is the same vector, but in other

reduced description models (with a different multiplication operation) the inverse could

be another vector2:

 ! = � ⊗ #−1 (3)

In the binary case using XOR, #−1 = #.

The multiplication must be commutative and associative:

 ! ⊗ # = # ⊗ ! (4)

 (! ⊗ #) ⊗ � = ! ⊗ (# ⊗ �) (5)

Bitwise XOR fulfills these two properties. In some cases, a non-commutative

multiplication becomes handy. Applying a random permutation by changing the order of

2 Some versions of multiplication may not have an inverse for all possible vectors. This is

analogous to 0 in the real numbers, which has no inverse.

63

the dimensions of one of the operands before computing the XOR produces an alternate

non-commutative multiplication. This technique applies to binary spaces as well as other

vector spaces; for more details, see (Kanerva, 2009; Plate, 2003). In general, a particular

system employs a single random permutation that does not change for that particular

system after its creation. Random permutations allow modeling other data structures such

as sequences efficiently. See Chapter 4 for further details.

The multiplication also preserves distances:

 &(!, #) = &(! ⊗ �, # ⊗ �) (6)

This is easily verified for the XOR operation. The Hamming distance is the number of

bits by which A and B differ. For example, if dimension i of vector C is 0, !�'() �� =
!�. Similarly, #�'() �� = #�. If dimension i of C is 1, !�'() �� = ¬!�; and,

 #�'() �� = ¬#�. In both cases, the XOR operation preserves the difference between Ai

and Bi, thus the distance between A and B is the same as the distance between A XOR C

and B XOR C.

Interestingly, the multiplication in general produces a vector that is dissimilar to

its operands:

 ! ⊗ # ≉ ! �	& ! ⊗ # ≉ # (7)

where ≉ denotes dissimilarity.

The sum must also be associative and commutative:

 ! + # = # + ! (8)

64

 (! + #) + � = ! + (# + �) (9)

In Spatter Code, the sum is defined as the integer sum for each dimension of the

vectors after they have been transformed into bipolar vectors with the zeros replaced by

minus ones. A normalization function (e.g., a simple threshold function) yields a binary

vector again. For each dimension, if the integer sum is positive, a one is assigned to that

dimension, or zero otherwise. Actually, the sum defined in this way is not strictly

associative, due to the normalization. But we can define a multi-operand sum that first

computes the integer sum of all the operands for each dimension, and normalizes it

(denoted by […]) at the end.

 �-�(!, #, �, …) = [! + # + � + ⋯] (10)

The resulting vector of the sum is similar to its operands:

 ! + # ≈ ! �	& ! + # ≈ # (11)

Finally, multiplication has to distribute over sum:

 ! ⊗ (# + �) = ! ⊗ # + ! ⊗ � (12)

Random permutations (denoted by capital Greek letters: Π, Γ, etc.) can be used as

a kind of multiplication. It is not a real multiplication, because one of the operands is not

a vector, but different permutations can represent different roles. In this case, applying a

permutation to a vector binds the vector to the role represented by the permutation. For

example, if Π and Γ represent color and shape respectively,

65

 ! = Π(45&) + Γ(78-�45) (13)

then A represents a red square.

 Permutations also preserve distances, are commutative, associative, and

distributive over the sum. Moreover, they have an interesting advantage over other

multiplications: they preserve the vectors’ density, defined as the relative number of

zeros and ones. Some associative memories (e.g., Willshaw et al., 1969) and some

representation models (e.g., Rachkovskij & Kussul, 2001) perform better with sparse

vectors (i.e., vectors with few ones). Permutations work well for both sparse vectors and

dense vectors, which have an equal number of zeros and ones (see Rachkovskij &

Kussul, 2001 for further discussion on this subject).

Summing up, to create a reduced description we have to define multiplication and

sum operations, as well as a distance measure in a vector space. The multiplication must

be associative, commutative, and distributive over the sum. It must also preserve

distance, and produce vectors dissimilar to its operands. The sum has to be associative

(with some license) and commutative, and must produce vectors similar to its operands.

These properties of the multiplication and the sum allow creating reduced description

vectors, and performing the operations described later in the hyperdimensional section. A

discussion about these properties can be found in (Kanerva, 2009; Plate, 2003).

Combining random permutations with some multiplications yields a non-

commutative multiplication that is useful to model some structures. Permutations can be

used as multiplications by themselves to model some bindings. Although it is not a hard

66

requirement, using high dimensional vectors enhances some of these properties. See

Chapter 2 for details.

Spatter Code

Kanerva developed Spatter Code (1994, 2009) as a reduced description model based on

large binary vectors. Vectors of high dimensional spaces tend to be orthogonal; making

them good candidates for representing unrelated concepts (see Chapter 2 for details).

Spatter Code defines the sum operation, also called superposition, as an integer sum in

each dimension followed by a normalization process (in general, a threshold function).

Bitwise XOR is the multiplication, or binding operation, and it employs the Hamming

distance as a similarity measure.

Spatter Code can encode a set of elements using the sum operation. For example,

three binary vectors J, M, and T, representing John, Mary, and talk respectively, can be

combined to denote the event “John is talking with Mary”:

 9 = [: + ; + �] (14)

The vector E captures the relationship between J, M, and T, but not the role that

these elements have in the structure. A problem with this representation appears when the

roles in the event or relationship matter. For example, the events: “John is looking at

Mary,” and “Mary is looking at John” have the same encoding:

 [: + < + �] = [� + < + :] (15)

67

Moreover, this representation suffers from the crosstalk effect (i.e., spurious

representations produced by the superposition). For example, if we want to represent

“blue car and red truck” with the vectors B, C, R, and T:

 9 = [# + � +) + ;] (16)

where phantom representations can appear: red car and blue truck. Using multiplication

to bind elements to roles solves these problems. If we define vectors for the roles –S for

agent, A for action, and O for object– a representation of the sentence “John is looking at

Mary” follows:

 9 = [� ⊗ : + ! ⊗ < + (⊗ �] (17)

To extract the subject of the event E, we can multiply it by �−1 (in the binary case,

�
��
= �). Thus,

 � ⊗ 9 = � ⊗ [� ⊗ : + ! ⊗ < + (⊗ �] (18)

 � ⊗ 9 = [: + � ⊗ ! ⊗ < + � ⊗ (⊗ �] (19)

 � ⊗ 9 = [: + =1 + =2] (20)

where N1 and N2 can be considered as noise. Reading a cleanup memory that has J, L and

M stored in it with � ⊗ 9, produces J, our answer. This example shows the necessity of a

cleanup memory to work with reduced descriptions that helps recover the clean version

of the vectors composing the reduced description. Spatter Code allows other operations

that I will describe in the next sections.

68

 A problem with Spatter Code arises due to the normalization after the sum.

Remember that the sum operates over bipolar vectors (see previous section for details).

After the sum, but before normalization, some dimension may be 0, and the

normalization process–a threshold function centered on zero–must be defined randomly

in these cases. When the sum comprises few operands, for example two, many

dimensions of the sum vector are 0, introducing too much noise in the representation,

making the representation brittle. This is a common problem with normalization in all

reduced descriptions because this operation finally packs several vectors into one (of the

same size and characteristics of the operands), producing some loss in the representation.

Nonetheless this problem is more noticeable in the binary case than it is in HRR (or in the

Modular Reduced Representation to be introduced in Chapter 5). In these other

representations, summing two vectors can also produce undetermined values for some

dimensions that must be determined randomly, as explained above for the binary case.

The cases that produce this problem depend on the definition of the sum, but in general

the problem appears when the values corresponding to one dimension in the combining

vectors are complementary, that is, one value is the opposite of the other. In the binary

case the 1 is the complement of the 0, generating this situation very often.

Representations with more possible values for each dimension have more expressiveness,

and the problem appears more infrequently.

Holographic Reduced Representation

Plate (1995, 2003) proposed the Holistic Reduced Representation (HRR), a reduced

description model based on large vectors of real numbers. I describe here the operations

69

and requirements of the vectors of this representation model in some detail, which will be

useful when comparing HRR with Modular Composite Representation in Chapter 6.

 HRR uses the sum in each dimension as its superposition operation. The

multiplication is a bit more complex. It utilizes circular convolution, an operation that

resembles the convolution of vectors, but the result preserves the dimensionality of the

operands. To decode circular convolution it uses circular correlation. Actually,

correlation can be expressed as the convolution of a vector with the involution of the

second operand (Plate, 2003, p. 97). To be consistent with the nomenclature, the

involution of A will be represented by A-1. In order for these operations to work as

expected, having the properties described in previous sections, the possible values for

each of the n dimension of the vector must be independently distributed with 0 mean and

variance 1/n. For example, a suitable distribution is a normal distribution =(0,1/).
Plate extensively demonstrated the operations and applications of HRR (Plate,

2003). All the operations described in previous sections can also be implemented using

HRR. There is a practical limit to the number of vectors that can be combined into a

single one before interference between the operands introduces so much noise that the

combined vector becomes useless. HRR’s interference limit, which can be about 12

elements, is greater than in the binary case. This makes HRR an interesting option for

representing complex structures for hyperdimensional computing. However, the

complicated operations that it uses, including circular convolution and circular

correlation, the computational complexity of these operations, which is O(n2)3, and the

requirements of the vectors make HRR less attractive.

3 This can be improved to O(nlog n) using FFT.

70

HRR in the Frequency Domain

Plate (2003) also proposed a modification of HRR in the frequency domain in which the

space resulting from the Fourier-transformed vectors (pp. 145-151). The implementations

of circular convolution and circular correlation in the frequency domain execute faster

than in the time domain–the typical space of the vectors–even considering the time

employed to transform the vectors to and from the frequency domain. Even better,

creating the vectors directly in the frequency domain space avoids the transformations

altogether. HRR in the frequency domain, also known as circular HRR, works with

unitary complex numbers (i.e., complex numbers with modulus equal to one) as possible

values in each dimension. Since these complex numbers all have modulus one, the

dimensions of a circular HRR vector are determined by the angles of these complex

numbers, which can be uniformly distributed on (-π, π] without any constraint. The

circular convolution in this domain is equivalent to the dimension-by-dimension sum of

the angles, and the inverse of a vector corresponds to the negation of the angle in each

dimension. Plate defines the superposition operation as the sum of the complex numbers,

followed by a normalization that simply discards the modulus and takes only the angle of

the resulting vector. Finally, circular HRR employs the mean of the cosines of the

difference between corresponding angles as its similarity measure.

This representation has even better performance than the standard HRR. All the

operations perform in linear time, and some of them introduce less noise. The only

complaints raised by Plate were the more complex sum and similarity measure

operations, and the difficulty introduced by working with angles in connectionist systems

as opposed to working with real numbers. The Modular Composite Representation,

71

which can be compared with the HRR in the frequency domain, proposes alternatives that

overcome these difficulties (see Chapter 6 for details).

As Kanerva (1996) points out, Spatter Code is equivalent to HRR in the frequency

domain when the possible angles are restricted to 0 (equivalent to binary 0) and π

(equivalent to binary 1). Modular Composite Representation, originally based on a

generalization of Spatter Code, shares similarity with a special case of HRR in the

frequency domain, as noted by Kanerva in a personal communication to the author. I will

further discuss this similarity in Chapter 6.

Hyperdimensional Computing

Both, Kanerva (1994, 1996, 1998, 2009) and Plate (1995, 2003) describe several

operations and experiments using Spatter Code and HRR. Kanerva (2009) presented a

comprehensive and well organized review of these technologies and operations under the

name of hyperdimensional computing. Here I will present a summary of these ideas. For

more details and results, see (Kanerva, 1998, 2009; Plate, 2003). Some of the operations

were already described in previous sections. I will repeat them here for completeness.

Binding

Binding tightly associates two vectors, creating a new vector that is dissimilar to both

operands. Multiplication is used to perform this operation. For example, if A and B are

vectors, then

 � = ! ⊗ # (21)

where C represents the binding between A and B.

72

Some representations require a non-commutative binding. In these cases, a

variation of multiplication using random permutation fulfills the requirement:

 � = Π(!) ⊗ # (22)

where Π represents a random permutation.

Unbinding

Unbinding is the inverse of the binding operation. The unbinding operation allows

finding the filler given the role, or a value given the variable. Multiplying the binding

vector by the inverse of one of the constituents of the bond yields the other element:

 ! = � ⊗ #−1 (23)

In the binary case, #−1 = #, but HRR (and other reduced description models) requires

calculation of the inverse vector. When the non-commutative binding is used, we have

two different unbinding operations, one for the retrieval of each operand:

 ! = Π−1(� ⊗ #−1) for the first operand, and (24)

 # = � ⊗ Π−1(!−1) for the second operand. (25)

Grouping

Grouping, also known as superimposition or superposition, combines elements that form

a set, record, or similar compositional structure. The sum operation followed by

normalization (in most of the cases) produces grouping:

73

 @ = [! + # + �] (26)

G, a vector that represents the composition of A, B, and C, is similar to each of its

operands. An interesting combination of binding and grouping produces representations

for records or relationships:

 � = [! ⊗)1 + # ⊗)2 + � ⊗)3] (27)

where R1, R2, and R3, are vectors that represent roles. For example, the representation for

a geometric figure follows:

 B = [��4�C5 ⊗ �ℎ��5 + 45& ⊗ �ECE4] (28)

This same procedure can be used to represent relationships. Suppose the relation

parent (p, c), and A is parent of B. The vector R represents this relationship:

) = [��45	� + � ⊗ ! + � ⊗ #] (29)

Adding a role vector for the type of relationship (the vector relationType in the following

example) helps to retrieve this information using probing (see next section):

) = [45C���E	;��5 ⊗ ��45	� + � ⊗ ! + � ⊗ #] (30)

The vector R is different from A and B; this implies that two relationships with the same

fillers are not similar. To make them similar, we can include the fillers (i.e., A and B) as

new terms into the equation:

74

) = [45C���E	;��5 ⊗ ��45	� + � ⊗ ! + � ⊗ # + ! + #] (31)

Now relationships with A and B as fillers will be similar, and the fillers can be used to

cue the relationship. But introducing more terms in the composition of a vector makes it

noisier and more brittle. For additional examples of representations of structures, see

Plate (2003).

Probing

Superimposing (grouping) vectors does not easily allow reconstruction of the components

of the resulting vector, but it does admit probing, or in other words, testing if the group

vector includes a specific vector. Since the group vector is similar to its elements, the

distance between G and A in the previous example must be less than the indifference

distance, as defined in Chapter 2. Using a simple threshold function we can probe

whether a vector is part of a group:

 &(@, !) < ;ℎ457ℎEC& (32)

An even more interesting probe operation can produce the filler of a particular

role in a group. Using the example of equation (28) in the previous section,

 B ⊗ �ℎ��5−1 = [��4�C5 ⊗ �ℎ��5 + 45& ⊗ �ECE4] ⊗ �ℎ��5−1 (33)

since multiplication is distributive over sum:

 B ⊗ �ℎ��5−1 = [��4�C5 ⊗ �ℎ��5 ⊗ �ℎ��5−1 + 45& ⊗ �ECE4 ⊗ �ℎ��5−1] (34)

75

 B ⊗ �ℎ��5−1 = [��4�C5 + 45& ⊗ �ECE4 ⊗ �ℎ��5−1] (35)

 B ⊗ �ℎ��5−1 = ��4�C5 + 	E�75 ≈ ��4�C5 (36)

This operation produces an approximate, or noisy, version of circle. An auto-

associative cleanup memory that stores the vectors known by the system (i.e., all the

vectors used in the representations) can retrieve the original (clean) vector.

Analogies

There are two ways to use reduced descriptions: reconstructing the original structure, or

using them as holistic vectors. Probing is an example of the former. Here I present an

example of the second, which I borrowed from (Kanerva, 2009), that also exemplifies

how to implement analogies using the properties of reduced descriptions.

Suppose we represent the relation between a country and its monetary unit:

 ! = [�E-	�4� ⊗ G�! + �E	5� ⊗ HECC�4] (37)

 # = [�E-	�4� ⊗ �5I��E + �E	5� ⊗ J57E] (38)

If we want to know what the dollar of Mexico is, we can simply multiply:

 # ⊗ (HECC�4−1 ⊗ !)−1 ≈ J57E (39)

More examples of holistic processing, including inference, multiple substitutions, and

more complex analogies can be found in (Kanerva, 2009; Plate, 2003).

76

Mapping

Several of the operations of the previous sections yield approximate vectors that require

an auto-associative memory to cleanup. Some vectors can be similar and valid for the

system, for example a vector that represents a car, and a relation that include that vector

as filler. In these cases, we may require separate memories for storage of simple vectors

and composed vectors. A better solution takes advantage of the multiplication’s distance

preserving property. We can define a random vector to denote a region in the memory for

simple elements, and another random vector for the relations’ region.

To write to a particular region of the memory, we first multiply the vector by the

region’s mapping vector. To read from a particular region, first we multiply the cue

vector by the mapping vector, and we multiply the result by the inverse of the mapping

vector. The term region may be misleading. Actually, the mapping operation maps the

whole space into the whole space, but in huge spaces such these, the chance that a

mapped vector is similar to another vector in the system is almost zero. The mapping can

also be done with random permutations.

Hierarchical Structures

Since the results of grouping and binding have the same dimensionality as their

components, we can use them as components of other more complex structures. For

example,

 � = [��4�C5 ⊗ �ℎ��5 + 45& ⊗ �ECE4] (40)

 � = [78-�45 ⊗ �ℎ��5 + KC-5 ⊗ �ECE4] (41)

77

 # = [K�LL54 + K�L(⊗ � + 7��CC(⊗ �] (42)

where B represents the relation Bigger (bigO, smallO) with C and S as fillers. The same

procedure allows the representation of hierarchies. For example, a car, which is a

compound object, includes elements, such as the motor and the wheels, that in turn can

have their own structure.

Sequences

Several authors have proposed different ways of encoding sequences in distributed

representations (for example see Kanerva, 2009; Murdock, 1983; Plate, 2003). Here I will

describe a procedure to encode sequences in single vectors that resembles what I will

later use for storing sequences in Extended SDM. In Chapter 4, I will extensively discuss

the importance of sequences and review different ways to encode them.

To encode sequences as single vectors, we could use a role for each position in

the sequence, but this is not practical because we would need to define as many vectors

as a sequence could have elements, and this could become arbitrarily large. A better

approach is to generate the role vectors recursively. Starting with a random vector P for

the role of the first position in the sequence, the following roles are generated by simply

multiplying the previous role by P.

 � = [! ⊗ J + # ⊗ J ⊗ J + � ⊗ J ⊗ J ⊗ J] (43)

or, in a more compact notation:

 � = [� ⊗ J + # ⊗ J 2 + ! ⊗ J 3] (44)

78

Interestingly, we can construct the vector S iteratively, adding one element at a time:

 �1 = ! ⊗ J (45)

 �2 = [(�1 + #)] ⊗ J (46)

 �3 = [(�2 + �)] ⊗ J (47)

Notice that in the binary case, the inverse of a vector is itself, and a vector multiplied by

itself produces a vector with all 0s, preventing the use of this technique. Nonetheless, a

random permutation can replace both the random vector P and the multiplication,

achieving the desired result. See Chapter 4 for details.

Other Models

Several authors have proposed models of memory based on vectors or similar distributed

representations. Many of these modes use mathematical tools such as tensors (Dolan,

1989; Smolensky, 1990) to create role-filler representations. Other authors studied

convolution-based models (Metcalfe, 1982; Murdock, 1983, 1993; Willshaw, 1981;

Willshaw et al., 1969) that employ convolution to create the associations. The main

problem with these techniques is that both tensors and convolution produce elements

larger than the original elements, making difficult to create representations for complex

structures with them. Nevertheless, some of them successfully model several human

memory tasks. For example Murdock’s TODAM (1983) and TODAM2 (1993), and

Metcafe’s CHARM (Metcalfe, 1982).

79

An interesting model is RAAMs (Pollack, 1990), a back propagation neural

network that learns reduced descriptions of trees. Later, Chalmers (1990) designed a

network based on RAAM able to create reduced descriptions of sentences, and

holistically–without decoding–transform them into passive voice.

Rachkovskij and Kussul (2001) developed APNNs (Associative Projective Neural

Networks), a special type of reduced description based on sparse binary vectors (i.e.,

binary vectors with few ones). They use an operation called Context Dependent Thinning

to maintain the vector’s density almost constant. The thinning operation consists of a

carefully selected combination of random permutations. The results presented in

(Rachkovskij, 2001) show that this model has similar characteristics to other reduced

description modes such as the HRR and the Spatter Code.

Patyk-Lonska and colleges (2011) created a new reduced description, the GA

model, which is similar to HRR, but based on geometric products instead of circular

convolution. They report that GA’s performance is superior to HRR’s and similar to that

of Spatter Code. However, some of the coding vectors produced by this model are larger

than the operands, which discourage its application as a reduced description.

Even though they are not reduced descriptions by themselves, two models worth

mentioning here for their relationships with HRR and Spatter Code respectively are

BEAGLE (Jones & Mewhort, 2007) and Random Indexing (Sahlgren, 2005). Both are

models of semantic spaces, and both represent words (and texts) with large vectors.

BEAGLE utilizes circular convolution to create a vector representation that includes

word order. Random Indexing uses binary vectors and captures the representation of

80

word order using random permutations. A comparison of both models can be found in

(Recchia, Jones, Sahlgren, & Kanerva, 2010).

81

Chapter 4: Extended Sparse Distributed Memory

Sequences are important representations for cognitive agents. Agents act over time and

cognitive agents adapt and act over time. Simple events can be combined into more

complex ones forming sequences, or even trees, of simpler events (Kurby & Zacks, 2008;

Snaider et al., 2012; Sun & Giles, 2001). Kanerva, in his original work, described the use

of SDM to store sequences (Kanerva, 1988). His procedure has the disadvantage of

losing most of the auto-associative properties and noise robustness of the memory. Later

he proposed hyperdimensional arithmetic as a new mechanism for storing sequences and

other data structures such as sets and records (Kanerva, 2009). Even though this new

mechanism is an improvement over the original SDM mechanism, it is still limited in its

noise robustness, and it is very sensitive to interference (see below). Although

interference is a desirable property of the memory because it mimics psychological

effects, in this case it diminishes the capacity to retrieve sequences.

In this chapter, I propose a variant to the original SDM, called Extended Sparse

Distributed Memory (ESDM), which is especially suitable for storing sequences and

other data structures such as trees (Snaider & Franklin, 2011). This new extension

considerably improves the performance of sequence storage of the memory as compared

to both the original SDM memory sequence storage and the hyperdimensional arithmetic

sequence storage version introduced by Kanerva (2009).

In the following section I describe the importance of sequence learning. Then I

introduce Extended SDM, discussing several uses of this extension and its results.

Several simulations are then presented and discussed. Finally, I propose some future

directions.

82

Sequence Learning

Spatial-temporal sequence learning is one of the most important forms of learning for

humans and animals (Starzyk & He, 2007; Sun & Giles, 2001). Sequences are used in

procedural learning, to learn new skills, high level planning and problem solving.

For autonomous agents, time perception and representation are critical (Snaider et

al., 2010, 2012), and sequence learning is a key component of these processes. An

autonomous agent can be defined as “A system embedded in, and part of, an environment

that senses its environment and acts on it over time in pursuit of its own agenda, so that

its actions affect its future sensing” (Franklin & Graesser, 1997). We humans are good

examples of autonomous agents, as are most animals, some mobile autonomous robots

and some computer viruses. To be able to plan and foresee the result of an action, or

group of actions, is a desired ability for many autonomous agents. From a cognitive point

of view, time presents three major aspects: succession, duration, and temporal perspective

(Block, 1990). Succession refers to the sequence of events from which an agent can

perceive event order and succession.

Sun and Giles (2001) enumerate several domain problems where sequence

learning is a main component: “inference, planning, reasoning, robotics, natural

language processing, speech recognition, adaptive control, time series prediction,

financial engineering, DNA sequencing, and so on.” Each of these problems has its own

particular issues that constrain the possible approaches. Even though there is a large body

of research on engineering applications in sequence learning, in this work, I will focus on

associative memories and related architectures.

83

Sun and Giles (2001) also classified sequence learning problems into four

categories: sequence prediction, sequence generation, sequence recognition, and

sequential decision making. Sequence prediction addresses the prediction of the next

element based on previous elements of the sequence. Sequence generation focuses on the

generation of the next element of the sequence, given the previous ones. This kind of

problem is essentially the same as sequence prediction. Sequence recognition attempts to

validate a sequence. This problem can also be transformed into one of the previous types

of problems. Finally, sequential decision making addresses the selection of actions to

accomplish a goal or to follow a trajectory. These latest sequence learning problems are

essentially equivalent to planning problems. Here I will concentrate on the three first

types of sequence learning problems.

Sun and Giles (2001) also characterized sequence learning models according to

several dimensions such as the learning paradigm and the implementation paradigm. For

example, the learning paradigm might be supervised, unsupervised or reinforcement

based, while the implementation paradigm might be a neural network, a lookup table, a

deterministic or stochastic model, and so on.

The degree of a sequence element is the number of previous elements required to

unequivocally determine this element. The sequence degree is the maximum degree of

any of its elements (Lawrence et al., 2006; L. Wang, 2000). For example, ABCDEF has a

sequence degree one, since each element uniquely determines the next and therefore all

have element degree one. On the other hand, the sequence ABCMBCH requires at least

three elements to determine the next one for some of its elements: ABC establishes M,

and DBC yields H. Thus the sequence has degree three. Sequences can be classified as

84

simple if they have degree one or complex otherwise (Lawrence et al., 2006). Complex

sequences markedly increase the difficulty of the algorithms and applications for

sequence learning (Araujo & Barreto, 2002; Lawrence et al., 2006; L. Wang, 1998,

2000). When several sequences with elements in common are stored in the memory,

problems similar to those of complex sequences can arise. For example, if sequences

ABCDE and FGCDH are stored in the memory, at least three previous elements are

necessary to disambiguate the retrieval of these sequences, even if each sequence is

simple (Araujo & Barreto, 2002).

Sun and Giles (2001) also described the major sequence learning approaches:

neural networks, temporal difference methods, explicit symbolic planning, inductive

logic programming, hidden Markov models, and evolutionary computation. Temporal

difference methods, which include reinforcement learning methods such as Q-learning,

were extensively reviewed and compared with correlated neural networks for sequence

learning by Wörgötter and Porr (2004). In this work, I will focus on neural networks and

related models. Kremer (2001) comprehensively reviewed the research in this area.

Neural networks, especially recurrent backpropagation networks, are widely used

for sequence learning, for example (Giles, Horne, & Lin, 1995). Associative networks

were also studied for this task. For example, L. Wang (2000) proposed hetero-associative

networks such as bidirectional associative memory (BAM) or associative memories (L.

Wang, 1998). Several authors implemented extensions of the Hopfield network to store

sequences (Maurer, Hersch, & Billard, 2005). D. Wang and Yuwono (1995, 1996)

developed a model based on short-term memory, implemented with self-organizing

neural networks, that is able to successfully handle complex sequences. Similar

85

approaches, using self-organizing networks can be found in (Araujo & Barreto, 2002;

Barreto & Araujo, 2004; Somervuo, 1999). Using associative memories for sequence

storage is a long studied subject. Wang and Yuwono (1996) also described the problems

of using several types of neural networks to store sequences, including Hopfield and

Willshaw networks. Stringer and colleagues (Stringer, Rolls, Trappenberg, & de Araujo,

2003) studied hetero-associative continuous attractor networks to solve path-integration.

Lawrence et al. (2006) discussed the advantages of using a combination of hetero-

associative and auto-associative memory for sequence learning; they also provided a

good review of associative sequence models.

Several recent works, based on the hierarchical organization of the neocortex and

visual cortex, focus on learning and recognition of spatial and temporal patterns. This

approach, generally referred to as a deep learning system, combines hierarchical

networks with pattern recognition using different technologies such as neural and

Bayesian networks. The basic idea is to detect pattern invariances in space and (in some

models) in time in each level of the hierarchy, and to use the output of the lower layer as

input for the higher ones. Features and patterns learned at a higher layer are non-linear

combinations of patterns learned in lower ones. The higher the layer, the more abstract

are the features of the data that they capture. Examples of these hierarchical models are:

the Hierarchical Temporal Network (George, 2008; Hawkins & Blakeslee, 2007), HMAX

(Riesenhuber & Poggio, 1999; Serre, Wolf, Bileschi, Riesenhuber, & Poggio, 2007), deep

belief networks (Hinton, 2007; Hinton, Osindero, & Teh, 2006), and DeSTIN (Arel,

Rose, & Coop, 2009).

86

Several models that use SDM for sequence learning were described in Chapter 2.

Bose et al. (2005) developed a memory that learns sequences based on a SDM

implemented with spike neurons. Jockel (2009) created a multi-fold SDM that performs

sequence learning for a robotic arm manipulation system. The next section describes in

detail the procedures proposed by Kanerva to store sequences in SDM.

Storing Sequences in SDM

When storing sequences of vectors in SDM, the address cannot be the same as the word,

as it is in the auto-associative case. The vector that represents the first element of the

sequence is used as address to read the memory. The output vector is the second element

in the sequence. This second vector is used as an address to read the memory again to

retrieve the third element. This procedure is repeated until the whole sequence is

retrieved. The problem with this mechanism for storing sequences is that it is not possible

to use iterations to retrieve elements of the sequence from noisy input cues. So the

memory is far less robust.

Kanerva (2009) introduced hyperdimensional computing based on large binary

vectors as an appropriate tool for cognitive modeling, including holistic representation of

sets, sequences and mappings. Among the various vector operations proposed, three of

them are relevant to the present discussion and will be summarized here: multiplication

of binary vectors defined as bitwise XOR, permutation, and sum with normalization. For

a complete discussion of hyperdimensional computing and its operations see Chapter 3.

Bitwise XOR is the multiplication operation of binary vectors in

hyperdimensional computing. When two binary vectors are combined using bitwise

XOR, the result of this operation is a new vector of the same dimensionality as the

87

original ones. This operation has several interesting properties. First, the resulting vector

is dissimilar to the two original ones. Second, the XOR operation is reversible. Third, this

operation preserves Hamming distances. For example, if A, B, C are binary vectors, and

 !′ = (! '() �) �	& #′ = (# '() �) �ℎ5	 &(!, #) = &(!′, #′) (48)

Permutation is an operation that shuffles the positions (dimensions) of one vector.

Mathematically, this corresponds to multiplying the vector by a square matrix M with a

single one in each row and column while the other positions contain zero. This operation

is also reversible, multiplying by MT, and it preserves Hamming distances as well.

Finally, the sum operation is the arithmetic (integer) sum of the values of each

dimension of two or more vectors. For this operation, the bipolar representation of the

vectors is used (i.e., the value 0 is replaced by -1). The resulting vector is an integer

vector. To transform this vector into a binary vector, a normalization operation is

required. If one dimension has a positive value, the normalized binary vector has a one in

this dimension. If the value is negative, the normalized vector has a zero in this

dimension. Ties are resolved at random. The sum with normalization has attractive

properties: the resulting vector is similar to each of the vectors summed up; that is, the

distance between them is less than the expected distance between any two vectors in the

space. Also, XOR multiplication and random permutations distribute over the sum. For

example:

 [Π(!) + Π(#)] = Π([! + #])
(49)

88

 [(! '() �) + (# '() �)] = ([! + #]) '() �
(50)

where Π(x) denotes a random permutation and […] is the normalization operation.

In light of these properties, it is sometimes possible to retrieve the individual

added vectors from the sum vector. This is feasible only if the number of summed vectors

is small (e.g., three or fewer vectors). Even with this small number, interference between

the vectors makes retrieval of the original vectors from the sum not very reliable.

Kanerva describes how to store sequences of vectors using hyperdimensional

arithmetic (Kanerva, 2009). I will briefly describe this procedure and compare it with my

implementation in the section “Storing sequences and other data structures”. The main

problem with this procedure is that it uses the sum operation, and thus it shares the same

problems mentioned above for sums while reconstructing the sequence. It also uses

permutation, and as we discussed before, this operation requires matrices that are outside

of the binary vector domain. Nevertheless, permutations are easy to implement, and a

reduced number of different permutations are required to obtain the desired functionality.

Extended SDM

Here I present a novel structure, built upon SDM, called extended sparse distributed

memory (ESDM). The main idea of this new memory structure is the use of vectors with

different lengths for the addresses and the words. A word has a longer length than the

address in which it is stored. Each address has n dimensions while each word has m

dimensions with n < m. Moreover, the address vector is included in the word vector (see

Figure 10). Formally, in a word of length m and with an address with length n, the first n

bits of the word compose the address.

89

The structure of this new memory system is similar to the original SDM. It is

composed of hard locations, each of which has an address and counters. The address is a

fixed vector of length n. But each hard location has m counters, where m is greater than n.

To store a word vector in the memory, the procedure is the same as described for SDM in

Chapter 2, except that now the first n bits of the word are used as address. To read from

an address in the memory, again the procedure is similar to the one used for SDM.

During each iteration, a word is read from the memory and its first n bits are used to read

in the next iteration.

Formally, the address vector is ! = (O�); , where A is an address vector of size

n, W is a word vector of size m, and M is an n x m rectangular diagonal matrix with all

ones in the diagonal.

It is important to notice that the whole word vector, including the address,

comprises the useful data. Conceptually, this memory is a mix of auto-associative and

hetero-associative memories. The address part of the word is auto-associative whereas the

rest of the word is hetero-associative. This allows us to preserve, and even improve, the

desirable characteristics of the SDM. First, with an initial vector as an address to cue the

memory, it is possible to retrieve the corresponding word, even if the initial vector is a

Figure 10. A word vector with its address section.

90

noisy version of the stored one. This means that ESDM maintains the noise robustness

characteristic of SDM. Second, the data of each vector is stored in a number of hard

locations in a distributed way. So it is also robust when some hard locations are corrupted

or lost. Third, the previously discussed psychological characteristics of SDM are also

present in ESDM. Finally, the hetero-associative part of the words in ESDM allows

storing other data related to the address data but without interfering with it. This is a

notable improvement over the original hetero-associative SDM that directly uses the

current element as address of the next reading, preventing the use of iterations to retrieve

the elements, and over the hyperdimensional version that relies on the flawed sum

operation to achieve the same goal, but with far less effectiveness.

Lawrence et al. (2006) found similar conclusions with different associative

memory architectures. They studied the advantages of using a combination of auto-

associative and hetero-associative neural networks especially for sequence learning. In

particular, they emphasized the importance of both the auto-associative and hetero-

associative parts to achieve robust sequence memory. The auto-associative part provides

noise robustness when cueing the memory with partial or noisy inputs, whereas the

hetero-associative part points to the next element in the sequence.

Storing Sequences and Other Data Structures

In this chapter’s introduction I mentioned two approaches suggested by Kanerva (1988,

2009) for storing sequences in SDM. I also mention that both approaches have important

disadvantages that weaken the auto-associativity, content addressability and noise

robustness properties of the memory.

91

The implementation of sequence storage in ESDM is straightforward and it

eliminates the disadvantages mentioned. The most basic implementation uses addresses

of length n and words of length 2n, as shown in Figure 11. The sequence is composed of

vectors of length n. To store the sequence, the first two vectors E1 and E2 are

concatenated forming a word of length 2n. We will say that the word has two sections of

n bits each. This word is stored in address E1. Then E2 and E3 are concatenated and stored

in address E2. The process continues until the full sequence is stored. A special vector can

be used to indicate the end of the sequence.

To retrieve the sequence, the initial vector of the sequence is used to read a word

from the memory. This word is divided into two sections. The second section is the

second vector in the sequence. Repeating this procedure, the whole sequence is retrieved.

Notice that in each reading during the retrieval of the sequence, the vector used as an

Figure 11. Basic sequence representation using 2n word
vectors.

92

address can have some noise, but the iterative reading from the memory cleans it up, as

explained previously.

One problem with this implementation occurs when two sequences that share a

common vector are stored in the memory. For example:

ABCDE and FGCHI

In the example, the word CD is stored in address C but the word CH is stored in C

also. This produces the undesirable interference between D and H that prevents the

correct retrieval of one or both of the sequences. One plausible solution is to use the same

procedure proposed by Kanerva using hyperdimensional operations (Kanerva, 2009). The

first reading from the memory again uses the initial vector of the sequence. But the

following addresses are calculated using the previously read vectors of the sequence. An

elegant combination is achieved using permutation and sum operations. For example, if Π

denotes a random permutation, then the address for the third element of the sequence is:

 !3 = [Π(91) + 92] (51)

With this address we read the memory and from the output word the next vector

of the sequence, E3, is retrieved. The following addresses are calculated in the same way.

 !�+1 = [Π(!�) + 9�] (52)

An interesting option is to preserve the sum of the vectors in each reading and

multiply it by a scalar k between 0 and 1, for example 0.8. This produces an effect of

fading away of the old vectors of the sequence in the calculation of the next address.

93

 !′�+1 = � ∗ Π(!′�) + 9� (53)

 !�+1 = [!′�+1] (54)

where A’ is the real vector with the sum before normalization.

The introduction of the scalar k has another critical function. The normalization

required after the sum introduces excessive noise that diminishes the probability of

recovering the sequence. The scalar k mitigates this effect. See the simulations section

below for a discussion of this subject.

The equations (51), (52), (53) and (54) can be used in the original SDM, as

suggested by Kanerva (2009). In both situations, operations with sums are used, but the

advantage of this implementation is that the retrieval of the succeeding vector in the

sequence does not depend on operations that extract the vector from the sum. Here the

sum is used only to compute the next address, but the vector is extracted directly from the

second part of the output word.

Other data structures can be stored in ESDM in a similar way. For example, to

store binary trees, addresses of length n and words of length 3n are used. With the

address of the root of the tree the first word is retrieved. The word is divided into three

sections, left, center and right. The left section holds the content of the node in the tree;

the center section is used as an address with which to read the left child node of the tree;

the right section holds the address of the right child node. This procedure is repeated until

the whole tree is retrieved. Notice that here again noisy vectors can be used, and ESDM

94

takes care of cleaning them up. Also, a mechanism similar to the one described for

sequences can be used to avoid problems related to repeated vectors in several structures.

Other data structures can be easily derived from sequences and trees. A double

linked sequence can be constructed by adding another section of n bits to the word. The

address of the previous element in the sequence is stored there. This allows navigating

the sequence in reverse order. Something similar can be used to store the parent of a node

in a tree. This allows navigating the tree from the bottom up. Finally, more sections of n

bits can be added to each word in the tree so that trees with greater degrees can be stored.

Interestingly, a tree can represent a more meaningful data structure, like a record, where

each child node represents a field of the record, and the root the record itself. An even

simpler representation for record is a word with several sections where each section

represents a field of the record.

Simulations and Experiments

For simulation and testing of the ESDM, I implemented several versions of the memory.

One of them uses a database for the main storage of the hard locations, and a RAM cache

to speed up storage and retrieval operations. This allows us to create large ESDMs, with

millions of hard locations and word dimensions on the order of 1,000 or even 10,000 bits,

even using modest computers. Another version implements the actor model for parallel

and distributed execution. Finally, a GPU implementation runs in SIMD architecture with

a notable performance gain. For more implementation details, see Chapter 7.

Several simulations were performed with the ESDM. First, the capacity and noise

robustness of the extra bits of the words were compared with these same characteristics in

the standard SDM. Second, the sequence storage and retrieval were tested for several

95

values of k. Third, retrieving sequences from intermediate elements was analyzed.

Finally, experiments that test the retrieval of crossing sequences that have common

elements were performed. In this section I present and discuss the details and results of

these simulations.

 ESDM Capacity and Noise Robustness

These simulations test the capacity of the memory and its noise robustness. Kanerva

(1988) proved that the critical distance of SDM is a function of the number of words

stored in the memory. He also proved that the maximum capacity of the memory is

reached when the critical distance reaches zero, which is approximately equal to 10% of

the number of hard locations for a memory with vectors of 1,000 dimensions. After this

number it becomes impossible to retrieve a stored vector even when cueing the memory

with the same vector. For a complete analysis of SDM capacity see (Chou, 1989;

Kanerva, 1988; Keeler, 1988). Reading from ESDM is essentially the same as from

SDM, except for discarding the extra bits of the word. Hence, convergence during a read

in ESDM is the same as in SDM, and the critical distance and capacity are also similar to

those of SDM. However, we need to show that the percentage of errors (changed bits) in

the words read from ESDM is similar to the percentage of errors in the words read from

standard SDM. If only the address part of the vectors stored in ESDM is used, the

memory is equivalent to standard SDM, so the error comparison was performed between

the address part and the whole word of the same simulation.

Several simulations were performed to test the percentage of errors in the output

words. An ESDM with 200,000 hard locations, an address length of 1,000 dimensions

and a word length of 2,000 dimensions (including the address) was used for the

96

simulations. The size of the memory, determined by the number of hard locations, was

chosen to have enough hard locations in the access sphere for each read or write to

support the desired properties of the ESDM, but to be as small as possible to limit the

number of reads and writes required to perceive the effects of loading the memory. The

size of the vectors was chosen to match those used by Kanerva (1988). For this particular

simulation, a total of 10,000 random vectors were stored in the ESDM, which is roughly

half of the memory capacity.

The storing of vectors in the memory was done in stages, writing 1,000 vectors in

each stage. At the end of each stage, the vectors were read from the memory. For the

readings, 10% of the bits of each vector address were changed randomly, and these noisy

vectors were used as cues. Figure 12 and Table 1 show the results of this simulation.

An analysis of the retrieved vectors shows that the proportion of errors for the

word and the address is constant and roughly proportional to the difference in size. This

shows that using words that are longer than addresses does not affect the fidelity of the

memory. Also, the percentage of retrieved vectors is consistent with the diminishing of

the critical distance as more vectors are stored in the memory (Kanerva, 1988).

97

Figure 12. The percentage of retrieved vectors in each stage, the mean number of
iterations required in each stage, and the number of errors (changed bits) in the
address part and the whole word of the retrieved vectors in each stage.

98

Table 1
Simulation 1. ESDM capacity and noise robustness. In each stage, 1,000 vectors were
stored. Then the same vectors were retrieved adding 10% noise to the cue (address). The
number of iterations and the mean error are given for the retrieved vectors. The address
part is equivalent to the standard SDM result.

Stage Retrieved (%) Iterations Error mean

 Mean SD Address Word

1 100.00 2.59 0.49 0.00 0.00
2 100.00 3.04 0.24 0.00 0.00
3 99.80 3.51 0.59 0.00 0.00
4 98.40 4.31 0.90 0.00 0.00
5 90.30 5.23 1.25 0.04 0.09
6 71.20 6.16 1.41 0.20 0.39
7 47.60 7.30 1.62 1.37 2.83
8 22.30 8.24 1.58 3.78 6.18
9 15.00 9.50 1.83 1.15 1.60

10 12.60 11.09 3.34 1.54 2.47

Another simulation was performed to show the noise robustness of ESDM. The

same ESDM was used as for the previous simulation, with 10,000 vectors already stored

in the memory. The vectors were also preserved in a separate database so that they could

be used as cues or compared with the retrievals from the ESDM. The simulation was

performed in three stages. In each stage, one thousand vectors were randomly selected

from the set of stored vectors, and the memory was read using the address part of these

vectors with a variable amount of noise. The noise levels were as follows: 0% in the first

stage, 5% in the second, and 10% in the third. Table 2 summarizes the results of this

simulation.

99

Table 2
Simulation 2. ESDM capacity and noise robustness. In each stage, 1,000 vectors were
retrieved from an ESDM with 10,000 stored vectors, and a variable amount of noise was
added to the cue (address). The number of errors in the successfully retrieved vectors
represents the average number of bits changed in each vector.

Stage Noise (%) Retrieved (%) Error mean

1 0 100.00 0.286

2 5 97.00 4.784

3 10 14.80 2.439

The results of the experiments suggest a good performance of the memory: the

number of successful retrievals was high with low levels of noise, and the error (number

of changed bits in the retrieval) was very small, less than a bit on average. Even more,

93.3% of the vectors had zero errors in stage 1 and 79% of the retrievals in stage two had

fewer than five errors. As expected, the number of retrieved vectors diminished when the

vectors used as cues reach the critical distance. Notice that the critical distance is the

distance at which the probability of convergence to the stored value is 50%. The critical

distance is a function of the number of hard locations and the number of stored vectors in

the memory. For the ESDM used in this experiment, with a load of 50% of its capacity,

distances of 100 bits (10% of the address length) from the original vectors are beyond the

critical distance. See Kanerva (1988) for details.

Sequences

I performed several simulations to test sequences stored in ESDM. In each simulation, 50

or 100 sequences of 20 elements each were stored. As in the previous simulations, ESDM

memories with 200,000 hard locations, an address length of 1,000 dimensions and a word

length of 2,000 dimensions (including the address) were used for these simulations. A

100

new ESDM with a memory load between 5% to 10% of the memory capacity was used

for each simulation. This prevented interference among stored vectors. I considered a

sequence successfully retrieved if all elements were retrieved with a small amount of

noise (less than 5%).

The first simulation stored and successfully retrieved 49 out of 50 sequences;

however, the same approach failed to retrieve a single sequence in a run with 100

sequences. Interference produced by memory load, 10% in this case, does not suffice to

explain this result. Rather, the normalization after the sum in equation (52) enables an

effect that distorts the address. The sum has only two binary vectors as operands in the

address calculation. When the two operands differ in the value of a single dimension, the

algorithm randomizes this dimension’s value. In the average case when using a random

uniform distribution of vectors, excessive noise in 50% of the bits prevents successful

retrieval of the element.

To avoid this problem, equations (53) and (54) were used. Since one of the

operands has a smaller weight than the other, the sum has no undetermined dimensions,

and the problem disappears. In a simulation where 100 sequences were stored using

equations (53) and (54) with k = 0.8, all the sequences were restored without error.

The use of the parameter k has other interesting consequences due to the fact that

the weight of the previous elements diminishes as the sequence advances. It is possible to

“step into” the sequence in the middle. However, more than one element may be required

for the cue. For smaller values of k, fewer elements are required as part of the cue to step

into the sequence. Conversely, if two (or more) sequences have common elements, the

101

probability of retrieving the correct sequence increases as k approaches one. The value of

k is then a tradeoff between these two desirable properties.

Several simulations with different values of k were performed. First, the “step

into” property was tested. Three simulations with values of k equal to 0.7, 0.8 and 0.9

respectively were performed. One hundred sequences with 20 elements each were stored

in each simulation. Then, 10 of the stored sequences were chosen, and for the elements of

these sequences, the number of cue elements required to be able to step into the sequence

at that element was evaluated. To avoid transitory effects, only elements after the fifth

were used as points to step into. Table 3 shows the results of these simulations.

Table 3
Effect of k on stepping into the sequence. In each stage, the simulation evaluated the
number of cue elements required to step into the sequence at different points.

Stage k Required Elements

Mean SD

1 0.7 1.085 0.280
2 0.8 2.697 0.679

3 0.9 6.000 1.265

As expected, the number of required elements in the cue increases as k increases.

The best value of k depends on the degree of the sequences that memory stores. The

higher the required degree, the higher must be the value of k.

Another series of simulations was performed to evaluate the retrieval of

sequences with common elements, that is, sequences that intersect. Four simulations with

values of k between 0.9 and 0.6 respectively were performed. Ten pairs of sequences with

20 elements each were stored in each simulation. The sequences in each pair had a

common element. In every case, the intersection was after the fourth element in the

102

sequences. A number of random vectors were stored in the memory so as to achieve a

load of 10% of the capacity of the memory.

Each of these sequences was then retrieved from the memory, and the number of

successfully recovered sequences noted. With all of these values of k, all sequences were

successfully retrieved. This result shows that the feature of correctly retrieving

intersecting sequences is invariant over the value of k. However, equations (53) and (54)

suggest that if two sequences have more than one consecutive element in common, higher

values of k will perform better.

Notice that when k is equal to or less than 0.5, the first term in equation (53) is

always less than one and it does not contribute to the final value after normalization in

equation (54). As a consequence, the next address is only a function of the previous

element, so that most elements after the intersecting element are not able to be retrieved.

This is because of the interference produced by the common element.

Comparing the results of the last two groups of simulations, a balance between the

two characteristics, step into and crossing of sequences is achieved with a value of k

between 0.6 and 0.8. Of course, the selection of the value of k depends on the

requirements of the application of the ESDM.

Long Sequences

A series of experiments further demonstrates the capacity of this memory for sequence

storage. Using an Extended SDM with 1,000,000 hard locations, an address length of

1,000 dimensions, and a word length of 2,000 dimensions, 50 sequences with 100

random elements each were stored in the memory using a parameter k equal to 0.8. Then,

the sequences were retrieved adding 10% noise to the cue vectors. All sequences were

103

recovered from the memory without any error. I performed the same experiment with 100

sequences using a similar memory configuration, obtaining the same result. Another

experiment stored 10 sequences of 1,000 elements each in a memory with identical

configuration. As in the previous experiments, all sequences were retrieved without

errors when the memory was read after adding 10% noise to the cue vectors.

Each of these experiments utilizes a number of vectors that is approximately 10%

of the theoretical memory capacity. If the number of sequences increases, the

performance would diminish. Nevertheless, this possible decrease in performance would

be due to the capacity limit and not because of the sequence storage mechanism.

Another experiment demonstrates the crossing sequence learning capability of the

memory for long sequences. Using a predefined set of vectors as an alphabet, 10

sequences with 100 elements (each of them chosen from the alphabet) were stored in the

memory. The results varied depending on the alphabet’s size and the parameter k. Using a

parameter k equal to 0.7 and an alphabet of 20 elements, no sequence was retrieved

correctly. On the other hand, using k = 0.9 and alphabet with 40 vectors, every sequence

was retrieved almost without errors. Only 8 out of the 1,000 elements that composed the

10 sequences presented errors. Finally, the same experiment with k = 0.9 and 20 elements

in the alphabet had an intermediate result. Only 16 of the retrieved vectors resulted in

more than 10% of errors, and 962 vectors had less than 1% of bits with errors. These

results are consistent with the expected interference among similar vectors when the

alphabet is small, which produce a large number of the crossings between the sequences.

Summing up, these experiments demonstrate that the capabilities of the sequence

learning mechanism are preserved even when long sequences are used. The mechanism’s

104

performance degrades when the total number of vectors approaches the memory’s

maximum capacity, or when the size of the alphabet of possible vectors to construct the

sequences is small, which produces more interference among the vectors.

Conclusions

Here I have presented an extension of the original SDM that addresses several of its

difficulties with storing compound data structures like sequences, trees and records.

ESDM preserves the desirable, biologically inspired, properties of the original. It is also

still noise robust, auto-associative and distributed. These, combined with the possibility

of storing sequences and other compound data structures, make ESDM an even more

attractive option with which to model episodic memories.

The simulations successfully tested the performance of the ESDM in several

scenarios. The importance of the parameter k was shown not only for the storage of

simple sequences but also for enhancing performance when stepping into in the middle of

sequences, and for enabling accurate retrieval in the case of common elements in

different sequences.

ESDM is compatible with other improvements already studied, such as the

introduction of the “don’t care” symbol (D'Mello et al., 2005; Ramamurthy et al., 2004),

or the forgetting mechanism (Ramamurthy, D'Mello et al., 2006; Ramamurthy &

Franklin, 2011). Incorporating this forgetting mechanism is a natural direction for further

development of this architecture. Other possible variations of ESDM already studied for

SDM include dynamic allocation (Ratitch & Precup, 2004) of hard locations and

distribution of hard locations according to the data (Anwar et al., 1999; Fan & Wang,

1997).

105

Chapter 5: Integer Sparse Distributed Memory

Sparse distributed memory (SDM) (Kanerva, 1988) is based on large binary vectors, and

has several desirable properties. It is distributed, auto-associative, content addressable,

and noise robust. For details see Chapter 2.

The original SDM uses binary vectors for both addresses and data words. This

usage results in several limitations. First, real data are not always Boolean, making

representations using more than two values desirable. A possible solution for this

limitation is to use several dimensions of the word vectors to represent one feature, but

this approach does not fit very well with the structure of SDM. In the distance

calculation, a difference in any dimension has the same weight as that of any other

dimension, but if several bits (i.e., dimensions) are used to represent a single feature, the

weight of the bits should not be the same.

Mendes and colleagues (2009) evaluated several binary encodings to use with

SDM in robot navigation tasks, and reported their difficulties and limitations. Using

binary numbers coding some transitions have Hamming distances that incorrectly reflect

the difference between the features. For example, the Hamming distance between seven

(0111) and eight (1000) is 4 instead of the desired distance of 1.

They also reported the performance of the Gray code, which only partially

mitigates this effect. The best solution that they proposed is to use a sum code, in which,

for example, 3 is represented as 111 and 5 as 11111. This coding substantially increases

the dimensionality of the memory. Interestingly, they report that grouping bits and

processing them as integers produces excellent performance. However, their

implementation diminishes some of the desirable properties of SDM. The extension

106

proposed in this paper directly uses integer vectors, achieving similar performance but

without the disadvantages reported by Mendes.

 Another disadvantage of binary vectors is the loss of information due to the noise

introduced into the representation by the normalization used in combining vectors.

Vectors can be summed up dimension by dimension (for this operation, vectors

belonging to {0; 1}n are replaced by vectors of {-1; +1}n). This operation produces a

vector belonging to ℤ	. The normalization process reduces the resultant to a vector that is

also in {–1, 1}n but with significant loss of information. See for example (Kanerva, 2009;

Snaider & Franklin, 2011; Snaider & Franklin, 2012a). I extensively discussed this issue

in Chapter 3.

 Here I introduce a new version of SDM, the Integer Sparse Distributed Memory

(Integer SDM) (Snaider & Franklin, 2012b). This version is based on large vectors, on

the order of thousands of dimensions, where each dimension has a range of possible

integer values. This memory has properties similar to the original SDM noise robustness,

auto-associativity, and being distributed. A further extension of Integer SDM permits

words and addresses of different lengths, which is particularly useful for the reliable

storage of sequences and other data structures (see Chapter 4). In addition, this memory

avoids the limitations imposed by binary representation, as described above, allowing a

better encoding of non-binary data and alleviating the normalization problem when

combining several vectors. This memory also fits the requirements of the Modular

Composite Representation to be introduced in Chapter 6.

107

Integer Sparse Distributed Memory

The structure and operations of Integer SDM are similar to that of SDM (see Chapter 2).

However, the words and addresses used by Integer SDM are large vectors of integers

rather than binary vectors. The possible values for each dimension are in a defined

integer range. For example, the range of values can be {-8, 7}, {0, 15}, or any other

range. However, for simplicity, we will work with ranges with 0 as the lower bound and

r – 1 as the upper bound. Although there is no theoretical limit to the size of the range,

the storage requirement of the memory increases proportionally with the range’s size.

More formally, Integer SDM works within a multidimensional space with vectors � ∈
ℤ4	, where n is the number of dimensions of the space and r is the size of the range of

values for each dimension. The dimensions of the space follow modular arithmetic: the

greatest possible value for a dimension is r – 1, and the next value after r – 1 is 0.

Integer SDM is composed of hard locations. As in SDM, a small fraction of all

possible addresses � ∈ ℤ4	 are chosen at random (with equal probability) as addresses for

the hard locations. Each hard location has a fixed address and counters, resembling the

structure of SDM. However, hard locations in Integer SDM have a different arrangement

of counters: each dimension has r counters, one for each possible value in that dimension

(see Figure 13). I define Ci as the group of counters corresponding to the dimension i, and

���as the counter corresponding to dimension i and value � ∈ {0, 4 − 1}.

108

To read or write a word w, first the access sphere of the address is determined.

Any similarity measure for vectors in the space can be used as distance, including any

norm, but the measure need not define a metric on the space.

The distance used here is an extension of the Euclidean or Manhattan metric. The

distance between two vectors is defined as:

 &(-, �) = √∑(∆�)2
� (55)

for the extended Euclidean metric, and:

Figure 13. Structure of an Integer SDM hard location. Each hard location has an
address that is an n-dimensional vector belonging to ℤVW, and counters for storing
data. The counters are organized into groups. There is a group of counters for each
dimension of the vector space of words, n in this example. Each group has r
counters, one for each of the possible values in each dimension of the word
vectors.

109

 &(-, �) = ∑ ∆�� (56)

for the extended Manhattan distance, where:

 ∆�= min(�E&4(-� − ��), �E&4(�� − -�)). (57)

Since each dimension in the space follows modular arithmetic, each dimension i

is like a circle with two possible paths between the values ui and vi. Notice that ∆� is the

shorter of the two.

 The geometric interpretation of this space is on the surface of a hypersphere, and

the variation of the Euclidian distance is equivalent to the distance between two points on

the surface of the hypersphere. See Figure 14.

Figure 14. Euclidean distance from u to v on the surface of a sphere.
For the distance calculation, when projecting onto dimension i, there
are two possible paths. The shortest one (path1 in this example) is
used for calculating the distance.

110

The radius of the access sphere is defined in such a way that on average it

encloses a small proportion p of the total number of hard locations. If m is the number of

hard locations in the memory, the access sphere encloses pm hard locations. This value p

is also the probability of activation of one hard location, that is, the probability that one

hard location participates in a particular reading or writing operation. Since the hard

locations are uniformly distributed in the space, the probability p unambiguously

determines the radius of the access sphere. An activated hard location with respect to a

given operation is one that participates in a specified reading or writing operation. Figure

15 illustrates the structure of the Integer SDM.

Figure 15. Integer SDM structure. The addresses of hard locations are
uniformly distributed in the space of ℤVW. The access sphere of w
encloses pm hard locations. These pm hard locations are active when w
is read or written.

111

For writing the word w in the memory, the counters of each hard location in the

access sphere are updated using the following rule:

��� �7 �	�45�5	�5& ⟺ � = \�

where wi is the value of the dimension i of the word w. Notice that only one of the r

counters in each dimension is incremented for a given hard location; this process is

repeated for each hard location in the access sphere.

Reading from the memory begins by determining the hard locations in the access sphere

in the same way as when writing. Then the counters corresponding to each of the r values

in each dimension are summed up over all hard locations in the access sphere:

 ��� = ∑ ���]< ∈!��577��ℎ545
 (58)

where ��� is the sum of the counters for dimension i and value v.

Finally, for each dimension a majority rule is applied among the values, and the

value v corresponding to the maximum ��� is assigned to zi, the value of the i-th

dimension of the output vector.

 ^� = �	&5I(�) E_ ��I(��0. . ��4−1) (59)

where zi is the value of i dimension of the output vector. This vector z can be used as an

address to read from the memory again, iterating in the same way as in the original SDM.

See Chapter 2 for details.

The complexity of the reading (or writing) operation of the memory is O(mn +

prmn). The first term corresponds to the calculation of the distance from w to each hard

112

location, and the second term corresponds to the reading (or writing) of the counters in

the hard locations. Since in general pr << 1, the first term dominates. When the number

of hard locations m is too large, the implementation is likely to be slow. However, the

algorithm is easily parallelizable to be executed in multithreading or SIMD architectures

(e.g., using GPUs). Moreover, other methods for activating the hard locations have been

studied for SDM; these can be adapted for Integer SDM also. See for example (Jaeckel,

1989a, 1989b; Karlsson, 1995). These alternatives would greatly reduce the time

complexity of the algorithm.

Radius of the Access Sphere

Here I will analyze the calculation of the access sphere radius that corresponds to a

particular value of p when the variant of the Manhattan distance is used. In this section

the term distance refers to the variant of the Manhattan distance introduced in the

previous section. To calculate the radius of the access sphere as a function of p, we need

the distribution of the distances from a given point to all the other points in the space.

Since the space is symmetrical, any point is equivalent to any other one. For notational

simplicity, we will calculate the distribution with respect to the origin (the vector with

each dimension equal to 0). In Chapter 6, I will give a proof for the following

approximation to this distribution for the case when r is even. The result is similar, but

not exactly the same, when r is odd.

If the dimensions of all vectors are independent and uniformly distributed in

{0, r – 1} and r is even, then the distribution of Manhattan distances from a given vector

to the rest of the vectors of the space can be approximated by a normal distribution with

parameters:

113

 H ~ = (44 , 	(42 + 8)48) (60)

With this distribution we can calculate the radius of the access sphere; it is simply

the value of the distance that encloses a proportion p of the space:

 4�&�-7 ≈ √	(42 + 8)48 Φ−1(�) + 	44 (61)

where Φ-1 is the inverse of the normal distribution function. For example, with n = 1,000,

r = 16, and p = 0.001 the radius of the access sphere is approximately 3,771.

Fidelity and Capacity

The fidelity of this memory–the probability of retrieving a written word–is better than the

fidelity of the original SDM with the same number of hard locations and the same

number of stored words. This improvement is due to more precise storage in each hard

location. Since each dimension is independent of the others, we can choose any

dimension to analyze φ, the fidelity of one of the dimension; the result will be the same

for all other dimensions. For convenience, we select dimension 0. Suppose the stored

value for dimension 0 of word w is k, or w0 = k. To read w0 incorrectly from memory, at

least one of the sums �0� for the incorrect values (� ≠ �), must be greater than �0�. The

value of the sums for incorrect values is due to the contribution of other words written in

the memory that share some of the same hard locations used to store w. Assuming the

114

other words written in the memory are uniformly distributed in the space1, the noise

produced by the interference of these written words is distributed in r possible values.

This diminishes the expected value and variance of the �0� _E4 � ≠ �. Then the

probability of having ��� = ��I(�0�|� ≠ �) > �0� is less than in the original SDM for

the same number of words stored in the memory. This increment in the fidelity of the

memory also increments its capacity: more words can be stored before the effect of

interference is noticed. This compensates for the additional requirements of memory

storage to implement the counters of this memory as compared to the original SDM.

The theorem at the end of this section derives the following approximate formula

for φ the fidelity of this memory.

j = ∫ ϕ (- − m�√m�) Φ (- − m�√m�)
4−1 &-∞

−∞
(62)

where

m� = ���2
4 and m� = �� + ���2

4
(63)

The value t is the number of vectors stored in the memory.

Figure 16 depicts the probability density functions (pdf) of �0 � , ���, and �0 �

when one of the vectors is recalled, for an Integer SDM with 1,000,000 hard locations, r

= 16, p = 0.001, and t = 400,000. The fidelity φ of one dimension is the probability that

��� > �0 � . In this example φ = 0.99993.

1This assumption is reasonable for the purpose of estimating the capacity of the memory.

However, the memory can store vectors even if its hard locations are not uniformly distributed, but the
capacity may be diminished. See Kanerva (1993) for a similar analysis for SDM.

115

Figure 17 shows φ, the probability that one dimension is retrieved correctly, as a

function of t, the number of stored vectors. If t ≈ 550,000 then φ = 0.999. A standard

SDM with the same number of hard locations will reach this same fidelity after storing

about 105,000 vectors (Kanerva, 1993).

Figure 16. Pdf’s of �0 � , ���, and �0 � for a Integer SDM with
1,000,000 hard locations, r = 16, p = 0.001, and t = 400,000.

116

Theorem: The fidelity φ of one dimension, which is the probability of retrieving a

dimension correctly, can be approximated by:

j = ∫ ϕ (- − m�√m�) Φ (- − m�√m�)
4−1 &-∞

−∞
(64)

where

m� = ���2
4 and m� = �� + ���2

4
(65)

Proof: We will write into the memory a vector w and a set T of vectors. All these vectors

are uniformly distributed in the space. We will use t to denote the size of the set T. Then,

we will read from the memory in the address w retrieving w’, and we will calculate the

Figure 17. Fidelity of one dimension as a function of t, the number of
vectors stored in the memory. For a Integer SDM with 1,000,000 hard
locations, r = 16, p = 0.001, and t ≈ 550,000 the fidelity is φ = 0.999.

117

probability of w’=w . Since all the dimensions of w are independent (the same is true for

all vectors in T), we can analyze the fidelity φ of dimension 0, that is the probability of

correctly retrieving the value for the dimension 0 (i.e., \0′ = \0), and use this to calculate

the probability of correctly retrieving w.

 j = J [\0′ = \0] (66)

 J [\′ = \] = j	 (67)

where n is the number of dimensions of w.

Suppose that \0 = �, and remember from above that:

 \0′ = �	&5I(�)E_ max(�0(0). . �0(4−1)) (68)

When we read w, we want �0�, the sum of counters corresponding to dimension 0 and

value k, to be greater than ���, the maximum of all the other sums corresponding to

dimension 0 and values different than k. In other words,

 ��� = max(�0�||� ≠ �), (69)

and in order to recall the correct value k of \0′ , we need ��� < �0�. If we define @ =
(��� − �0�), then

 j = J [@ < 0] (70)

I will first analyze ���. Consider the hard locations that are activated when w is

written or read. Since p is the probability of activation of a hard location during one

118

reading or writing operation, and the vectors in T are independent of w, the probability of

activation of a hard location in the access spheres of both w and a vector in T is p2. The

distribution of the values of the counter �0�|� ≠ �, � ∈ {0, 4 − 1} for a hard location

activated in the write operation for one of the vectors in T has a Bernoulli distribution

with probability �� = �2
4 . Then, for the t writes of the vectors in T, the distribution of

�0�|� ≠ � for any hard location has a Binomial distribution:

 �0 � ~ # (�, �2
4) (71)

We will have r - 1 counters, corresponding to an incorrect value in dimension 0,

for each hard location in the access sphere of w with the Binomial distribution defined as

in (71). The sum of these counters for all hard locations in the access sphere of w (when

we read w) is:

 �0 � ~ # (��, �2
4) (72)

The probability mass function (pmf) of this sum is:

 J {�0 � = I} = _0 � (I) = (��I) (�2
4)

I
(1 − �2

4)
��−I

 (73)

and the cumulative distribution function (cdf) is:

 J {�0 � ≤ I} = B0 �(I) = ∑ (���) (�2
4)

�
(1 − �2

4)
��−�I

�=0 (74)

Note that:

119

 _0 � (I) = B0 �(I) − B0 �(I − 1) (75)

For the nth order statistic, the cdf of the maximum of n iid random variables '�~B (I) is:

 B��I(I) = [B (I)]	 (76)

and its pmf is:

 _��I(I) = [B (I)]	 − [B (I − 1)]	 (77)

In our case, we have r – 1 random variables �0 � , each of which has a cdf defined as in

equation (74), so:

B��I(I) = [∑ (���) (�2
4)

�
(1 − �2

4)
��−�I

�=0]
4−1

 (78)

and, _��I(I) can be calculated with:

_��I(I) = (4 − 1) {(��I) (�2
4)

I
(1 − �2

4)
��−I

[∑ (���) (�2
4)

�
(1 − �2

4)
��−�I

�=0]
4−2

} (79)

�0�, corresponds to the sum of the counter for the correct value for dimension 0 when

reading from address w. We can express �0� as:

 �0� = �0�\ + �0�; (80)

where �0�\corresponds to that part of the sum of the counters for the value k due to the

word w, and �0�; is the contribution due to the other vectors in T. �0�\ has also a

Binomial distribution:

120

 �0�\~ #(�, �) (81)

The probability mass function (pmf) of this sum is:

 J [�0�\ = I] = _0 �\(I) = (�I) �I(1 − �)�−I (82)

And, �0�; has also a binomial distribution identical to �0 � :

 �0�; ~ # (��, �2
4) (83)

and its probability mass function (pmf) is:

 J [�0�; = I] = _0 �; (I) = (��I) (�2
4)

I
(1 − �2

4)
��−I

 (84)

We can rewrite (70) as

 j = J [��� − (�0�\ + �0�;) < 0] (85)

_�0�(I) can be computed as the convolution of _0 �\(I) and _0 �; (I) :

_�0�(I) = ∑ _0 �\(�)_0 �; (I − �)I
�=0 (86)

_�0�(I) = ∑ [(��) ��(1 − �)�−�] [(��I − �) (�2
4)

I−�
(1 − �2

4)
��−(I−�)

]
I

�=0 (87)

121

We can rewrite G as

@ = ��� − (�0�\ + �0�;) (88)

Thus, to calculate _@(I) = J [@ = I], we have to compute the cross-correlation

between _�0�(I) and _��I(I):

_@(I) = ∑ _�0�(�)��
�=−�� _��I(I + �) (89)

and

B@(I) = ∑ ∑ _�0�(�)��
�=−�� _��I(- + �)I

-=−∞ = ∑ _�0�(�)��
�=−�� B��I(I + �) (90)

Finally, to calculate φ:

j = B@(0) = ∑ _�0�(�)��
�=−�� B��I(�) (91)

Although equation (91) yields an exact solution for φ, computing it is difficult.

Alternatively, FG(x) can be derived by approximating �0�\, �0�; and �0� with Poisson

distributions:

 �0 � ≃ JE�77 (m� = ���2
4) (92)

 �0 �\ ≃ JE�77(m�\ = ��) (93)

122

 �0�; ≃ JE�77 (m�; = ���2
4) (94)

From (93) and (94):

 �0� = �0 �\ + �0 �; ≃ JE�77(m�\ + m�;)
≃ JE�77 (m� = �� + ���2

4)

(95)

The distributions of �0� and �0� can be further approximated to normal distributions:

 �0 � ≃ =(m�, m�) (96)

 �0 � ≃ =(m�, m�) (97)

The cross correlation between _�0�(I) and _��I(I) is

_@(I) = ∫ _�0�(-)_��I(I + -) &-
(98)

and the cdf of G is:

B@(I) = ∫ ∫ _�0�(-)_��I(^ + -) &- &^I
−∞

(99)

B@(I) = ∫ _�0�(-) (∫ _��I(^ + -) &^I
−∞) &-∞

−∞
(100)

123

B@(I) = ∫ _�0�(-)B��I(I + -) &-∞
−∞

(101)

B@(I) = ∫ ϕ (- − m�√m�) Φ (I + - − m�√m�)
4−1 &-∞

−∞
(102)

Finally,

j = B@(0) = ∫ ϕ (- − m�√m�) Φ (- − m�√m�)
4−1 &-∞

−∞
(103)

which proves the theorem □.

Experiments and Results

For the simulation and testing of the Integer SDM I implemented the memory using a

custom database for the main storage of the hard locations, and a ram cache to speed up

the storing and retrieving operations. This allows us to create large Integer SDMs, with

hundreds of thousands of hard locations, and with word dimensions on the order of 1,000

or 10,000 dimensions, even using modest computers. For more detail about the

implementation of Integer SDM, see Chapter 7.

 Several simulations were performed to test the percentage of errors in the output

words. For the simulations I used an Integer SDM with 100,000 hard locations and a

word length of 1,000 dimensions, where r = 16 and the value in each dimension is in the

range of {0 – 15}. I used a probability of activation p = 0.001 that approximately

124

corresponds to a radius of the access sphere of 652, when the Euclidean distance variant is

employed. The size of the memory, determined by the number of hard locations, was

chosen to have enough hard locations in the access sphere for each read or write to

support the desired properties of the Integer SDM, but to be as small as possible so as to

limit the number of reads and writes required to perceive the effects of loading the

memory. For this particular simulation, a total of 5,000 random vectors were stored in the

Integer SDM. The vectors were also preserved in a separate database so they could be

used as cues or compared with the retrievals from the Integer SDM.

The simulation was performed in four stages. In each stage, 100 vectors were

randomly selected from the set of 5,000 stored vectors, and the memory was cued using

these vectors with some amount of noise, that is with some number of randomly selected

dimensions that were changed from the original. The amount of noise in each stage was:

5% in the first stage, 10% in the second, 20% in the third, and 30% in the last. In stages 1

and 2, 100% of the vectors were retrieved. Stage three had only one retrieval error, and

stage 4 produced 65% correct retrievals. Table 4 summarizes these results. The same

experiment using the variation of Manhattan distance had similar results: 100% of the

vectors were correctly retrieved in the first three stages and 65% in the fourth (see Table

5). The graceful degradation in the performance shown in these experiments is similar to

that observed in the original SDM (Kanerva, 1988). Based on these results, the

Manhattan distance is preferred due to its simplicity. Consequently, the rest of the

experiments described here utilize the Manhattan distance.

2 The radius of the access sphere was obtained empirically. For 1,000 random points, the pm
closest hard locations–100 in this experiment–were determined, and the farthest one was recorded. The
average of these recorded values was 65.

125

Table 4
Simulation 1. Integer SDM capacity and noise robustness. In each stage 100 vectors were
retrieved from an Integer SDM with 5,000 stored vectors, and a variable amount of noise
was added in the cue (address). Euclidean distance was used for this simulation.

Stage Noise (%) Retrieved (%)

1 5 100.00

2 10 100.00

3 20 99.00

4 30 65.00

Table 5
Simulation 2. Integer SDM capacity and noise robustness. In each stage 100 vectors were
retrieved from an Integer SDM with 5,000 stored vectors, and a variable amount of noise
was added in the cue (address). Manhattan distance was used for this simulation.

Stage Noise (%) Retrieved (%)

1 5 100.00

2 10 100.00

3 20 100.00

4 30 65.00

Another series of experiments further tested the noise robustness and capacity of

the memory. These experiments used Integer SDMs with 50,000, 100,000, and 200,000

hard locations respectively. In each of them, vectors were stored in stages, and then

samples were retrieved adding different amounts of noise for each sample. I considered a

retrieval to be correct when the output vector of a reading operation has no errors. Figure

18 illustrates the results of these experiments that clearly show the performance of the

memory for different configurations and how it diminishes gracefully as the noise or the

number of stored vectors increases.

126

Figure 18. Retrievals from Integer SDMs with different configurations. The
graphs show the retrieval rate with various levels of noise added to the cue
vector for each memory configuration.

127

In a similar experiment, I measured the number of dimensions that differed

between the stored word and the retrieved word when no noise is introduced. In a

memory with 100,000 hard locations, r = 16, and p = 0.001, the results matched the

theoretical expected values of φ (see Figure 19).

This experiment matches the theoretical predictions quite well, but due to the

approximations in the analysis, the correspondence for all configurations is not as close

as in this example. For example, the same experiment for a memory with 200,000 hard

locations has a deviation from the curve of around 10%. This discrepancy may be due to

the approximations in the analysis, or the slight correlation between words stored in one

particular hard location. Further work will explore this effect in greater detail.

Figure 19. Comparison of theoretical value of φ (solid line) and the measured
value (dark dashed line) for different values of t, the number of stored vectors
in the memory. The light dashed line corresponds to probability 0.999, which
is the value that Kanerva uses to define the capacity of the original SDM.

128

Nevertheless, the intuitions given by this theoretical analysis offer useful predictions

about the memory’s performance.

Another experiment demonstrated the generalization characteristics of the

memory. Figure 20(a) depicts 12 images. The images are 33 x 33 pixels, gray scale, with

16 possible gray tones. For each image, one vector of 1,089 dimensions representing the

information of the image was stored in the memory. Each of these vectors was saved in

the memory only once. The memory used for this experiment is similar to that used in the

previous experiment. It has 100,000 hard locations with addresses of 1,089 dimensions, r

= 16 and p = 0.001. Notice that the images are intended to facilitate the visualization of

the experiment; I do not argue that this is the best way to store or retrieve images. The

memory was then cued using the new vector depicted in Figure 20(b). This vector is

different from all the stored ones. The output vector’s image is displayed in Figure 20(c).

It is not in the training set either, and results from the interference of the stored vectors.

129

Extensions

Integer SDM is compatible with other improvements already studied, such as the

forgetting mechanism (Ramamurthy, D'Mello et al., 2006; Ramamurthy & Franklin,

2011), and the Extended SDM presented in Chapter 4.

Figure 20. Generalization and pattern formation. (a) Images corresponding to
vectors stored in the memory as a training set for the experiment. Each of
these vectors was stored once in the Integer SDM. (b) Image corresponding to
the vector used to cue the memory. (c) Image corresponding to the output
vector read from the memory using (b) as cue. Vectors of images (b) and (c)
are not in the training set (a).

130

Forgetting in Integer SDM

The structure of the Integer SDM is particularly suitable for implementing forgetting.

Counters of all hard locations may be decayed, that is decremented, every several

operations. The decaying procedure could use a sigmoid function to compute the

decrement of each counter. In this way, vectors that do not receive sufficient

reinforcement would eventually be forgotten.

One possible improvement of this decaying mechanism would be to increment the

counters by more than one in the writing operation. For example, each time a counter

must be incremented as a result of a writing operation in the memory, the counter would

be incremented by 10 instead of only by 1. The operation of the memory does not change,

but now the decaying of the counters will be smoother.

Extended Integer SDM

Another extension, which has already been implemented, is applying the same concepts

as in Extended SDM (see Chapter 4). The main idea of this memory structure is the use

of vectors with different lengths for the addresses and the words. This extension

dramatically improves capability of the memory to store sequences and other data

structures. Several of the experiments described in Chapter 4 have been reproduced using

integer vectors with similar results.

This extension is particularly interesting in comparison with the implementation

described by Jockel (2009) that uses SDM for a robotic arm manipulation system. This

application requires vectors encoding non-binary data and sequences of these vectors.

This architecture is composed of a multilayer SDM memory, and several encodings were

tested. The resulting architecture is more complex and limited than the Integer SDM

131

presented here. Extended Integer SDM, a combination of Extended and Integer SDM’s,

could directly handle integer vectors and sequences with intersections.

Other Extensions

Other designs of activation of hard locations, such as Jaeckel’s selected coordinate design

(Jaeckel, 1989a), can also be implemented with Integer SDM. This can improve the

signal-to-noise ratio as in the original SDM. Along the same lines, other distances can be

used in the space such as the cosine operator.

Conclusions

In this chapter I have presented a new version of SDM, the Integer SDM, that overcomes

the limitations of the original SDM resulting from its use of binary vectors. This memory

preserves the desirable, biologically inspired properties of the original. It is also noise

robust, auto-associative, and distributed. It degrades gracefully when some hard locations

fail, or when the memory approaches its maximum capacity. It is also able to generalize

patterns due to interference of several similar vectors. These properties make Integer

SDM a good candidate for modeling episodic memory in autonomous agents.

 The integer representation has several advantages over the binary one. The

encoding of values is simpler, avoiding undesirable effects of other encodings (Jockel,

2009; Mendes et al., 2009), and diminishes the effect of normalization when several

vectors are combined, for example in the storing and retrieval of sequences (Snaider &

Franklin, 2011).

132

Several extensions of the Integer SDM were also presented. Some of them are

already implemented such as the extended vectors for sequence storing. Others, such as

the forgetting mechanism, are partially implemented.

 Many applications can benefit from the advantages of this memory over the

standard SDM. The already-mentioned robotic arm manipulation system is one of them.

The episodic memory for the LIDA cognitive architecture (Franklin & Patterson, 2006;

Ramamurthy, Baars et al., 2006; Ramamurthy & Franklin, 2011) is implemented with

SDM. Integer SDM could offer a better implementation for episodic memory in this

architecture. I also argue that Integer SDM could be used to implement other memory

modules in this architecture, such as procedural memory or perceptual memory. Integer

SDM is a good candidate as a cleanup memory for use with Modular Composite

Representation, described in Chapter 6.

133

Chapter 6: Modular Composite Representation

In Chapter 3, I discuss vector representations in general, and reduced descriptions, a

mechanism for encoding complex structures as single vectors, in particular. The main

idea behind reduced descriptions is to have a dual representation: the complex structure

can be represented explicitly, with a vector for each component, or as a reduced

description, where a single vector represents the whole structure.

This chapter introduces the Modular Composite Representation (MCR): a new

reduced description model that employs long integer vectors. This representation

paradigm has properties similar to Spatter Code (Kanerva, 1994), which uses binary

vectors, and to Holographic Reduced Representations (HRR) (Plate, 1995, 2003), based

on vectors of real or complex numbers. This new model satisfies the four desirable

characteristics of reduced descriptions analyzed by Plate (2003) and discussed in Chapter

3: representation adequacy (full descriptions can be reconstructed from the reduced ones),

reduction (the reduced descriptions have a size similar to their components),

systematicity (the process of constructing the reduced description must be well known

and deterministic), and informativeness (the reduced description encloses information

about the whole it represents)(p. 19). MCR also provides explicit similarity; that is,

similar elements have similar representations.

Modular composite representation generalizes the ideas implemented in Spatter

Code: the operations employed in MCR are equivalent to the XOR and integer sum

defined in Spatter Code (see Chapter 3 for details), but extended to the modular integer

space. As Kanerva noted in a personal communication with the author, MCR also

correlates with HRR in the frequency domain, which we will explore later in this chapter.

134

High-dimensional vector spaces have interesting properties that make them

attractive for representation models. The distribution of the distances between vectors in

these spaces and the huge number of possible vectors allow a noise-robust representation

model where the distance between vectors represents the similarity (or dissimilarity) of

the concepts they represent. In Chapters 2 and 3, I extensively described the properties of

high dimensional spaces in general, and the binary case in particular. In order to qualify

as a reduced description representation model, MCR must define grouping and binding

operations, as well as a similarity measure (or distance). These operations must fulfill

additional properties discussed in Chapter 3. Notice also that although MCR requires for

some operations an associative memory for cleaning up the result vectors, it does not

need to be an Integer SDM; any associative memory can fulfill this requirement. MCR

only requires using modular integer vectors and the operations among them defined in

this chapter.

The following subsections describe the vector space used in MCR, its basic

operations, and its similarity measure. Next, I describe several experiments and compare

their results with those of Plate using HRR. Then I analyze the expected value and

variance of some expressions, and conclude with contrasting MCR with Spatter Code and

HRR.

Modular Integer Vectors

MCR utilizes large modular integer vectors, as introduced in the chapter on Integer SDM

(Chapter 5). These vectors have a defined integer range of possible values for each

dimension. For example, the range of values can be {–8, 7} or {0, 15}. Although any

range of values is possible, for simplicity in the notation and analysis, I will use ranges

135

with 0 as the lower bound and r – 1 as the upper bound, and only even values of r. In

more formal notation, MCR employs vectors within multidimensional space, � ∈ ℤ4	,

where n is the number of dimensions of the space and r is the size of the range of values

for each dimension. The dimensions of the space follow modular arithmetic. The greatest

possible value for a dimension is r – 1 and the next value after r – 1 is 0.

 Figure 21 serves to clarify the following definitions of possible relations between

values. The complement of a value is another value such that their sum equals r. For

example, if r = 16, the complement of 3 is 13. The opposite of a value is the value in its

antipode, which is calculated by adding r/2 to it.

Figure 21. The possible values for one dimension of a modular
integer vector with r = 16. The complement of a value is another
value such that their sum equals r. The opposite of a value is the
value in its antipode, that is, the value plus r/2.

136

Several integer arithmetic operations have their corresponding modular versions.

The modular sum corresponds to the arithmetic sum modulo r:

 �4 + K4 = �E&4(� + K) (104)

where modr(…) is the reminder of the integer division by r. For example, if r = 16, the

modular sum of 6 and 12 is 2. The modular subtraction is defined in a similar way:

 �4 − K4 = �E&4(� − K) (105)

Subtraction can also be expressed as the sum of the complement. To show this we can

add r inside the modr term, which does not alter the result:

 �4 − K4 = �E&4(4 + � − K) (106)

or

 �4 − K4 = �E&4(� + (4 − K)) (107)

where (r – b) is the complement of b. Other operations such as multiplication and

division also have equivalents in modular arithmetic, but MCR does not utilize them.

The individual values in each dimension of the vectors used in MCR do not have

to follow any particular distribution: they can be randomly chosen from {0, r – 1}. In

contrast, HRR vectors must follow a normal distribution with specific parameters;

otherwise, the operations defined in HRR to combine vectors do not produce the desired

results. See Chapter 3 and Plate (2003) for further discussion about this subject.

Nonetheless, to construct useful models, vectors that represent unrelated concepts ought

137

to have distant representations, and random vectors that are uniform distributed in the

space tend to be far apart from each other.

Manhattan Distance in a Modular Space

MCR utilizes a variation of the Manhattan distance introduced in Chapter 5:

 &(-, �) = ∑ ∆�� (108)

where

 ∆�= min(�E&4(-� − ��), �E&4(�� − -�)). (109)

Similar to SDM (see Chapter 2), in which the binary vector space has a large

number of dimensions, the distances from a given vector to the rest of the vectors in the

space tend to concentrate highly at half of the maximum distance. Kanerva called this

effect the space’s tendency to orthogonality.

In order to analyze the behavior and properties of the modular integer vectors

employed in MCR, it is useful to know the distribution of the distances among the vectors

in the space. The following theorem approximates this distribution for the case when r is

even. The result is similar, but not exactly the same, when r is odd.

Theorem: If the dimensions of all vectors are independent and uniformly distributed in

{0, r – 1} and r is even, then the distribution of Manhattan distances from a given vector

to the rest of the vectors of the space can be approximated by:

138

 H ~ = (44 , 	(42 + 8)48) (110)

Proof. The dimensions of the vectors are independent and uniformly distributed in

{0, r – 1}. The distance from the origin to a vector � ∈ ℤ4	 will be the sum of n random

iid variables Xi = ∆i, where ∆�= min(�E&4(0 − ��), �E&4(�� − 0)).

The possible values of Xi are between 0 and r/2 and Xi does not have a uniform

distribution since values 0 and r/2 have half of the probability of the other possible

values. This is because the modular property of the space (and the distance calculation).

For example, if r = 16, the maximum difference in dimension i between v ant the origin is

8, and the only possible value of vi is 8. The same is true for a difference of 0. For other

possible values of the difference, for example 4, there are 2 possible values of vi: 4 and

12. More formally, since adding r to the argument of the modr function does not alter the

result, we can rewrite the expression of Xi as

 '� = min(�E&4(4 − ��), �E&4(��)) (111)

The values of vi are uniformly distributed in {0, r – 1}. If vi = 0, then both

arguments of the min function are zero; thus Xi = 0. For all other possible values of vi

none of the arguments of min is zero, thus vi = 0 is the only value that produces Xi = 0,

and then P(Xi = 0) = 1/r.

For values of vi ϵ {1, r – 1} the argument of the two modr functions are positive

and less than r. So, we can rewrite the expression of Xi as

139

 '� = min(4 − ��, ��) where �� ∈ {1, 4 − 1} (112)

It is easy to see that the maximum value of Xi = r/2. If vi ≤ r/2, then r – vi ≥ r/2,

and then Xi = vi, which is less than or equal to r/2. On the other hand, if vi ≥ r/2, then

r – vi ≤ r/2, and then Xi = r – vi which is less than or equal to r/2. Notice also that for

X i = r/2, either r – vi = r/2 or vi = r/2. But, r – vi = r/2 implies that vi = r/2. Thus, only this

value produces Xi = r/2, and then P(Xi = r/2) = 1/r.

Finally, each value x ϵ {1, r/2 – 1} of Xi is produced by exactly two values of vi.

In effect,

 I = min(4 − ��, ��) ⇒ 4 − �� = I E4 �� = I where 1 ≤ I ≤ 4/2 − 1 (113)

Following reasoning similar to that of the previous paragraph, it is clear that

exactly one value of vi less than r/2 and one greater that r/2 satisfy the second half of the

previous expression for each value of x such that 1 ≤ I ≤ 4/2 − 1. Then, P(Xi = x) = 2/r,

where 1 ≤ I ≤ 4/2 − 1.

Summing up, the distribution of Xi follows

J ('� = I) =

⎩⎪
⎪⎪
⎨⎪
⎪⎪
⎧14 I = 0, 42

24 1 ≤ I < 42 − 1
0 E�ℎ54\�75

(114)

Since the distribution of Xi is symmetric on {0, r/2}, the expected value of Xi is

half of its possible values, that is, r/4. The variance of the distribution of Xi requires some

140

more analysis. We introduce the simplifying substitution, r’ = r/2. Then, the variance of

X i will be

 �2 = 14′ ∑ (� − 4′2)24′−1
�=1 + (124′ (0 − 4′2)2) + (124′ (4′ − 4′2)2)

(115)

 �2 = 14′ ∑ (� − 4′2)24′−1
�=1 + 2 (124′ (0 − 4′2)2) = 14′ ∑ (� − 4′2)24′−1

�=0
(116)

 �2 = 14′ ∑ (�2 − �4′ + 4′24)
4′−1
�=0 = 14′ ∑(�2)4′−1

�=0 − ∑(�)4′−1
�=0 + 4′24

(117)

 �2 = (4′ − 1)(24′ − 1)6 − (4′ − 1)4′
2 + 4′24 = 4′2 + 212

(118)

Substituting back r, the variance of Xi is

 �2 = 42 + 848
(119)

Since X1,…, Xn are independent and identically distributed and

 H = ∑ '�
	

�=1 (120)

it follows from the central limit theorem that for large number of dimensions n we can

approximate the distribution of the distances by a normal distribution with mean nE[X i]

and variance var(Xi)n. In conclusion, the distribution of distances from the origin (or any

other point) to the rest of the points of the space is:

141

 H ~ = (44 , 	(42 + 8)48) (121)

which proves the theorem □.

When n is large, for example 1,000 or 10,000, the ratio between the mean and the

standard deviation of the distance distribution tends to be large, with values concentrated

around half of the maximum distance. For example, when n = 1,000 and r = 16, the

distribution of the distances is well-approximated by a normal distribution with a

standard deviation of 74.16 and mean distance of 4,000. Dividing the mean by the

standard deviation–about 54 in this example–yields the number of standard deviations

between a vector and the bulk of the space. Notice that per the normal distribution,

99.9999% of the vectors of the space lie within five standard deviations of the mean,

corresponding to distances between 3,630 and 4,370 in the current example. The

probability of a random vector of being closer than 3,000 is almost zero (~10-43), which is

a useful property that helps to make the model extremely robust.

Basic Operations

Chapter 3 presented the basic vector operations employed by reduced description models

to combine into a single vector other vectors that represent the elements of a complex

structure. Two basic operations, grouping and binding, constitute the heart of the reduced

description models. Grouping (or sum) operation is used to create sets or groups of

elements, and binding (or multiplication) creates representations for bonds among

elements, such as in the role-filler case. Given that the required properties of these

operations (described in Chapter 3) are responsible for the behavior and characteristics of

142

the reduced description models, each model can define these operations according to the

characteristics of its vector space. In this way, we can abstract the reduced description

model ideas and its basic operations to explore problems and applications independently

of the reduced description implementation. For example, consider the following

expression that represents a red circle:

 B = [��4�C5 ⊗ �ℎ��5 + 45& ⊗ �ECE4] (122)

where circle, Shape, red, and Color are vectors, and the symbols ⊗ and + represent the

binding and grouping operations respectively. This expression can work in any reduced

description model with appropriate definitions for grouping and binding.

The rest of this section defines the binding and grouping operations used in MCR.

These definitions fulfill all the requirements described in Chapter 3, enabling MCR as a

reduced description system able to perform hyperdimensional computing expressions and

applications. Chapter 3 and Kanerva (2009) introduced many of these hyperdimensional

computing applications.

The binding (or multiplication) of modular integer vectors is defined as the

modular sum in each dimension. For example, the multiplication of two vectors A and B

 ∈ ℤ16	 , with values for dimension i equal 10 and 12 respectively, produces a new vector

C with dimension i equals to 6.

 �� = �E&4(!� + #�) (123)

This operation resembles the bitwise XOR used in Spatter Code.1

1 Actually, XOR is a special case of the modular sum when r = 2.

143

The unbinding operation is simply the modular subtraction in each dimension, or

the modular sum of the first operand with the complement of the second operand in each

dimension. This leads to the definition of the inverse vector in this model. The inverse of

the vector A is another vector A-1 such that each dimension i of A-1 is the complement of

the value of A in the same dimension:

 !�−1 = �E&4(4 − !�) (124)

This multiplication operation has all the properties described in Chapter 3: It is

associative, commutative, distributive over the sum (see below), and preserves distances.

Given that the definition of the MCR vector multiplication employs the modular sum in

each dimension, it inherits its associativity and commutativity properties. For example,

when adding the values of dimension i of two vectors, �E&4(!� + #�) = �E&4(#� + !�).
Also, for this operation it holds that

 �E&4(!� + �E&4(#� + ��)) = �E&4(�E&4(!� + #�) + ��) (125)

These properties also lead to the distance-preserving property of this

multiplication.

Theorem: The multiplication of MCR vectors defined above preserves the distance

between vectors. Given three MCR vectors A, B, and C, the following equality holds:

 &(!, #) = &(! ⊗ �, # ⊗ �) (126)

Proof. Suppose the distance between A and B is d. From equations (108) and (109)

144

 & = ∑ min(�E&4(!� − #�), �E&4(#� − !�))� (127)

After multiplying A and B by C, the first operand of the min function becomes

 �E&4(�E&4(!� + ��) − �E&4(#� + ��)) (128)

Applying the associativity and commutative properties of the modular sum produces the

following expression:

 �E&4(�E&4(!� − #�) + �E&4(�� − ��)) = �E&4(!� − #�) (129)

which is identical to the original expression before the multiplication. Applying the same

procedure to the second operand produces a similar result. Consequently,

 &(!, #) = &(! ⊗ �, # ⊗ �) (130)

which proves the theorem □.

This multiplication produces vectors that tend to differ from the operands.

 ! ⊗ # ≉ ! and ! ⊗ # ≉ # (131)

Later in this chapter I will explore the expected value and variance of the vectors

produced by the multiplication.

The grouping (or sum) operation is a bit more difficult to define. In fact, there are

several options for this operation. To correctly evaluate the different options, we have to

consider that producing vectors similar to its operands is the most important characteristic

of the grouping operation. This similarity allows identifying a composed vector from

145

some of its elements, and vice versa, a fundamental property of reduced description

models. The first alternative consists of the average of the operands’ values for each

dimension, choosing randomly among the closest ones if the average produces a non-

integer value. This value corresponds to the middle point on the arc between the two

values corresponding to each operand on the circle of Figure 21. For example, if we

group the vectors A and B ∈ ℤ16	 with values for dimension i 10 and 12 respectively, the

result has a value 11 in that dimension. Applying this operation to all dimensions

produces a new vector that is approximately equidistant from its operands. A problem

arises when the vectors to group have opposite values for one dimension, since the

average then has two possible values that must be defined by chance. For example, the

average for a particular dimension of vectors with values 5 and 13 can be either 9 or 1.

The lack of associativeness in the average operation generates further difficulties

when grouping several vectors, as illustrated in following example. In the same modular

space with r = 16, the average of values 0, 7 and 8 yields 5; however, averaging 7 and 8

first and then grouping with 0 produces a different result (4). Associating the values in

other ways produces yet other results. Even worse, if the values of the operands lie in

different semicircles (see Figure 21), the average must consider the two possible paths

between values (i.e., the two arcs on the circle that connect the values in one direction or

another), picking the one that minimizes the distances from the resulting value to the

operands, overcomplicating the operation. An interesting solution utilizes a mechanism

similar to the sum operation defined for HRR in the frequency domain (Plate, 2003, p.

146). Let us consider each possible value as a vector of unit length in a plane, called an

equivalent vector. The center of the circle in Figure 22 corresponds to the coordinate’s

146

origin in this plane. For example, the equivalent vector for the value zero is (0, 1) and the

value seven corresponds to the equivalent vector (√2, −√2). The sum operation involves

two steps to calculate each dimension i: the equivalent vector sum and the normalization.

The first step consists of calculating the rectangular sum (i.e., their vector sum) of the

equivalent vectors corresponding to the values of each operand for dimension i. Second,

the normalization process calculates each dimension of the group vector as the closest

value corresponding to the resultant vector normalized to length one. Since the

dimensions have only r possible values, a table with the equivalent vectors’ components

and the tangent of their angles can speed up the calculation and normalization processes.

Figure 22 shows the representation of the equivalent vectors and a couple of examples of

grouping.

Figure 22. Equivalent vectors and examples of grouping.

147

We can attach a weight to some of the vectors when we group them by

multiplying the corresponding vectors of their dimension values by a scalar or weight.

For example, suppose we want to group the vectors A and B with weights wA and wB . For

each dimension i we have to sum the equivalent vectors ai and bi corresponding to the

values Ai and Bi respectively, multiplying ai by the scalar wA and bi by the scalar wB.

 �� = value4(\!�� + \#K�) (132)

where valuer (x) produces the closest value corresponding to the vector x.

As in the binary case explained in Chapter 3, we can extend the definition of this

sum for the case of more than two operands by simply summing, in each dimension, all

the equivalent vectors of the operands for each dimension before normalizing. Grouping

several operands in this way produces more consistent results than summing and

normalizing in each individual group operation between two operands. Figure 22 depicts

the result for combining three vectors that have values 0, 7, and 13 respectively for a

given dimension.

Interestingly, the length of the resultant vector gives an idea of the quality of the

resulting value for that dimension: a longer resultant vector is more likely to represent an

almost mid-point between the operands’ values than a shorter one. Similar values have

equivalent vectors with similar directions. Adding these equivalent vectors will produce a

new vector with length approximately equal to the sum of the operands’ lengths. On the

other hand, a short resulting vector indicates that several opposite (or near opposite)

equivalent vectors comprise the operands, producing a resulting vector dissimilar to some

(or all) of these values. Figure 22 illustrates examples of both situations. Finally, it is

148

worthy of mention that using this definition of sum produces the same result as the

average version in the case of grouping only two vectors.

The final option for grouping is similar to the one used in Spatter Code (Kanerva,

2009): applying a majority rule in each dimension. This simple technique works only

when combining several vectors because with few operands, the chances of equal values

in one dimension in several vectors is small, producing an undefined value in that

dimension that must be determined randomly.

Comparing these options for the grouping operation, clearly the sum of equivalent

vectors emerges as the most appropriate one. The other options have serious flaws,

including more complex algorithms, or the introduction of more noise in the result. When

combining only two vectors, the average of each dimension, which produces the value

corresponding to the midpoint of the shorter arc between the two values in the circle of

values, is still useful due to its simplicity. The complexity of the sum, defined as the

addition of equivalent vectors, is O(nt) where n is the number of dimensions of the vector

and t is the number of vectors to group. However, this operation requires calculating the

components of the vectors representing the values of each operand and each dimension,

which involves calculating the sine and the cosine of the angle of the equivalent vector of

each value and an arctangent at the end, which could be computationally expensive (i.e.,

a large constant in the time complexity). Nevertheless, since there are only r possible and

predefined values for each dimension, using tables for the two components and the

tangent of the equivalent vectors greatly alleviates this problem.

This grouping operation has the required properties described in Chapter 3. Since

the rectangular sum of vectors is commutative and associative, the grouping operation

149

shares these properties. Actually, as in the binary sum described in Chapter 3, this

operation is not strictly associative because of the normalization after each sum.

However, using the expanded definition for several operands as defined above mitigates

this problem. Finally, the multiplication distributes over the sum. We can interpret the

multiplication as a rotation of the circle of values for each dimension. Clearly, rotating

equivalent vectors and then adding them produces a resulting vector identical to the result

of first adding the equivalent vectors and then rotating.

Hyperdimensional Computing with Modular Composite Representation

In this section, I will use an example, which Plate (2003) introduced when presenting

HRR, of encoding events with MCR, allowing us to compare the results from both

models (pp. 128-134). This example employs 512-dimensional vectors with an r of 16.

As pointed out in Chapter 3, some hyperdimensional operations produce noisy

versions of the target vector, requiring a cleanup memory with all the vectors used in the

experiment to produce the correct vector. When required, this example will use a hash

table data structure to maintain all the vectors, and an exhaustive search procedure that

computes the distances from a given vector to all the vectors in the table, returning the

closest ones. At the end of this section, I present the results from the same experiments

using Integer SDM as cleanup memory.

The example requires some base vectors (vectors representing features other

vectors are composed of) that are independently and uniformly distributed in the space.

The expected distance between these vectors is around the mean distance nr/4 (2,048 in

this example). Composing some of these base vectors by grouping and binding them

defines more complex elements. For clarity, base vectors will be divided into three

150

categories: event types, object features, and role features.The event type category

includes the vectors cause, eat, and see. The object feature category comprises being,

human, state, food, fish, and bread. Finally, object and agent constitute the role

features group. The following formulas define the token and role vectors for this

example:

 ���� = ����� + ����� + ����4� (133)

 ���� = ����� + ����� + ���Eℎ	 (134)

 ���� = ����� + ����� + ����-C (135)

 ���� = ����� + ����� + ��C-�5 (136)

 ������� = ���� + ���� + ���ℎ5__�7ℎ (137)

 �������� = ���� + ����� + ���ℎ5_K45�& (138)

 ������ = ����� + ��ℎ-	L54 (139)

 ������ = ����� + ���ℎ�47� (140)

 ����� = ����� + ��5��_�L5	� (141)

151

 ���¡¢£ = ����¤� + ��5��_EK�5�� (142)

Other role vectors, such as seeagt, have similar definition expressions. The construction of

these vectors using these expressions produces similar vectors within each category

which are also dissimilar to vectors in other groups. For example, the vectors mark and

paul are similar, and both are dissimilar to thebread. The id vectors are also random

vectors (generated in the same way as the base vectors) that help to discriminate the

vectors within the same group. We can considerer fish as a being, and construct the fish

vector accordingly, but I follows Plate’s example where he defined the fish vector with

the expression above.

Table 6 summarizes the distances among representative vectors in the example.

The distance between a vector and itself is always zero. Notice that in HRR, this is not

always the case (Plate, 2003, p. 130): a vector can have a distance from itself different

than zero. (However, in the HRR frequency domain, this distance is always zero.)

Table 6
Distances among some vectors of the example. The diagonal, with distances equal to 0,
corresponds to the distance of a vector with itself. Notice that vectors with common
features, such as the vectors that represent persons, are close (see text for a definition of
“close”).

 mark john paul luke thefish thebread hunger thirst
mark 0

john 1078 0

paul 1101 1113 0

luke 1121 1125 1088 0

thefish 2008 1978 2027 1965 0

thebread 2102 2084 2099 2077 1502 0

hunger 2033 2027 2044 2046 2033 2009 0

thirst 2036 2012 1995 1975 2068 2034 1345 0

152

Vectors with common features, such as vectors that represent persons, have small

distances between them. According to equation (110), the distance distribution of the

vectors in the space has a SD approximately equal to 50 and a mean of 2,048. The

likelihood that mark and john are within distance 1,078 of each other by chance alone is

almost zero (~10-69). The distances among unrelated vectors cluster around 2,048, the

indifference distance.

Using the token and role vectors, we can create vectors representing different

events. Table 7 describes the events of this example and the equations used to create the

corresponding MCR vectors. These equations are just one of many available options. For

example, binding each event type vector (such as eat) with an event type role vector (e.g.,

eventtype) will facilitate the decoding of the event type.

Table 7
Events created using the token and role vectors of the example.

Event Equation

Mark ate the fish. S1 = eat + eatagt ⊗ mark + eatobj ⊗ thefish

Hunger caused Mark to eat the fish. S2 = cause + causeagt ⊗ hunger + eatobj ⊗ S1

John ate. S3 = eat + eatagt ⊗ john

John saw Mark. S4 = see + seeagt ⊗ john + seeobj ⊗ mark

John saw the fish. S5 = see + seeagt ⊗ john + seeobj ⊗ thefish

The fish saw John. S6 = see + seeagt ⊗ thefish + seeobj ⊗ john

Table 8 lists the distances between the vectors that represent the events S1 to S6.

The equations used to construct these vectors influence their similarity to each other. For

example, S4, S5, and S6 have short distances between each other, reflecting their

similarity. S6 is farther from S5 than S4 even though S5 and S6 share the same elements;

153

the difference in roles accounts for this. Including the agent and object fillers as extra

terms in the equation increases the similarity between events with the same elements,

even if they participate in different roles. For example, the definition of S5 would change

to:

 °± = ��� + ����� ⊗ ���� + ���¡¢£ ⊗ ������� + ���� + ������� (143)

Table 8
Distances among vectors representing the events described in Table 7.

S1 S2 S3 S4 S5 S6

S1 0

S2 1947 0

S3 1159 2002 0

S4 1995 2036 1830 0

S5 1858 1983 1839 1085 0

S6 2025 2024 2036 1390 1443 0

The decoding using probing works as follows: multiplying the event vector by the

inverse of the role produces a vector similar to the filler vector, or in other words, the

filler vector plus a small amount of noise. An auto-associative memory that contains all

the vectors of the system works as a cleanup memory, which returns the closest vector to

the one produced by the decoding. Table 9 shows the closest items in the cleanup

memory of the example to the vectors resulting from the unbinding of several

expressions. For example, in the first row, the unbinding of the agent of S1 produces a

vector closest to mark , the correct vector. The other vectors representing persons (luke,

john, and paul) are closer than chance (the indifference distance is 2,048), but farther

away than mark by about 7 SD.

154

Table 9
Results of unbinding elements from the event vectors.

Description Expression Rank of distances

1. Agent of
eating of S1

°² ⊗ ����� −² mark
(1181)

luke
(1491)

paul
(1523)

john
(1593)

2. Agent of S1 °² ⊗ �����−²
mark
(1554)

luke
(1652)

paul
(1660)

john
(1778)

3. Object of S1 °² ⊗ ���¡¢£−²
thefish
(1166)

food
(1629)

fish
(1666)

thebread
(1837)

4. Agent of S2 °³ ⊗ ¤������ −²
hunger
(1187)

state
(1572)

thirst
(1737)

human
(1897)

5. Object of S2 °³ ⊗ ¤����¡¢£−²
S1
(1209)

eat
(1620)

S3
(1628)

S5
(1908)

6. Agent of
object of S2

°³ ⊗ ¤����¡¢£−² ⊗ ����� −²
mark
(1666)

luke
(1804)

paul
(1806)

john
(1866)

7. Object of
object of S2

°³ ⊗ ¤����¡¢£−² ⊗ ���¡¢£−²
thefish
(1659)

food
(1886)

fish
(1887)

eatagt
(1939)

8. Object of S3 °´ ⊗ ���¡¢£−²
see
(1927)

seeagt
(1947)

S6
(1959)

state
(1966)

9. John’s role in
S4

°µ ⊗ ����−²
seeagt
(1124)

agent
(1459)

eatagt
(1634)

seeobj
(1640)

10. John’s role in
S5

°± ⊗ ����−²
seeagt
(1120)

agent
(1497)

eatagt
(1664)

causeagt
(1724)

11. John’s role in
S6

°¶ ⊗ ����−²
seeobj
(1129)

object
(1527)

eatobj
(1637)

causeobj
(1715)

Plate (2003) explained the difference between the chunking mechanism and the

holistic processing with the following example (p. 134). Chunking involves a sequence

of operations. For example, the expression in line 5 can decode S1, the object of S2, which

is itself a composite vector. By first cleaning up the vector S1, and then applying the

155

expression in line 1, we obtain mark , the agent of S1. On the other hand, using holistic

processing produces the same result in one operation, as showed by the expression in line

6, which yields the final result directly without decoding the intermediate vector S1.

Chunking produces less noise than holistic processing, but requires an extra cleanup

operation.

Also interesting, the expression in line 8 returns random vectors, which are almost

the indifference distance from any vector used in the system, because S3 does not have an

object component, and the expressions of lines 10 and 11 that correctly decode John’s

role in similar events.

MCR can employ Integer SDM as cleanup memory. Performing this same

experiment using Integer SDM with a word length of 512 dimensions, 100,000 hard

locations and a radius of activation of 1,925 (see Chapter 5 for details) produces results

similar to those reported above, with a few notable considerations. Some of the

expressions in Table 9, in particular lines 2, 6, and 7, return vectors with an elevated level

of noise compared to the target vector, producing retrieval errors in a few of the runs.

Increasing the radius of activation of the hard locations in the memory mitigates this

problem. The rest of the expressions yield vectors that retrieve the correct values in all

the trials. To simulate extra data, 1,000 random vectors were preloaded in the memory.

MCR can model other data structures, representations, and applications as

described in Chapter 3. By adapting the procedures presented Chapter 4, MCR can

represent sequences and related structures efficiently. Moreover, the use of random

permutations is completely compatible with MCR, which allows employing them as an

alternative to the multiplication described in this chapter. Using MCR, it is possible to

156

reproduce all the experiments described by Plate (2003) and Kanerva (2009). I have

already reproduced some of them with similar results to the ones reported by Plate and

Kanerva. Since these experiments do not contribute to the current discussion, additional

repetition of experiments and further analysis of them are unnecessary.

Normalized Distance and Similarity

The distance defined for MCR has an inconvenient dependence on n, the dimensionality

of the vectors, and r, the number of possible values, making difficult to compare the

performance of MCR models with different values for these parameters. A normalized

distance independent of r and n, denoted by d’, becomes useful for these comparisons:

 &′(!, #) = &(!, #) 4	4 (144)

Its distribution is approximately normal with the following mean and variance:

 H′ ~ = (1, (13 + 8342) 1) (145)

The minimum normalized distance is zero, as in the non-normalized distance, but

using d’ the value one corresponds to the indifference distance, and the value two to its

maximum. The distribution of D’ clearly shows that its variance diminishes

proportionally with n without bound, allowing the creation of a model with a distance

distribution variance as low as desired. Notice that a model with a small variance has

high noise robustness, accuracy, and reliability. The variance also diminishes when

incrementing r; however, when r becomes large, the second term in the sum tends to

zero, and 1/3 dominates. If r is 16 or greater, the value of the variance tends to the

157

maximum possible (for a given value of n). The worst value corresponds to r equal two,

the binary case. See Figure 23 for details.

The similarity among vectors, defined as

 7��(!, #) = 1 − &′(!, #) (146)

is particularly handy for comparing results to those of models that uses other similarity

measures, such as the cosine. A vector has a similarity of one with itself, and zero

similarity when compared with vectors at the indifference distance (corresponding to a

normalized distance of one). The distribution of similarities of one vector with all the

other vectors in the space is almost the same as that of D’ , but with a mean equal to zero:

Figure 23. Variance of D’ over r.

158

 ��� ~ = (0, (13 + 8342) 1) (147)

Expected Value and Variance of the Similarity of Selected Expressions

Plate (2003) discussed the means and variances of different similarity measures among

several prototypical expressions of HRR in the frequency domain (pp. 267-271). Here I

will compare those results with the calculations using MCR. The experiments employ

512-dimensional vectors, matching the configuration used by Plate, and r =16.

Table 10 shows the theoretical values and the experimental results using MCR for

several expressions that were also described by Plate (2003) using HRR (p. 271). Notice

that the operations in the expressions are deterministic. In other words, with the same

vectors A, B, C, and D, the expressions always produce the same results. The means and

variances in the table compare the analytical estimates and experimental results after

calculating each expression multiple times with different random vectors.

Due to the properties of the multiplication described previously, multiplying a

vector A by another vector B, and then by its inverse B-1 yields exactly the same vector A,

which explains the theoretical results of the expressions with mean 1 and variance 0. The

rest of the expressions in the table compute the similarity between unrelated vectors, thus

they follow the distribution of equation (147) with r = 16, and a mean equal to 0 and

variance normalized by n equal to 13 + 8342 = 0.34375. The experimental values in the

table show the results of 50,000 runs for each expression, all of which closely match the

analytical results.

159

Table 10
Means and variances of selected expressions for a MCR model with n = 512 and r = 16.
The experimental results correspond to 50,000 runs. The variance is normalized by
multiplying by n.

Expression
Similarity

Analytic Experimental
 mean n . var mean n . var 7��(!, !) 1 0.00000 1.0000 0.0000

7��(!, #) 0 0.34375 0.0000 0.3435

7��(!, ! ⊗ #) 0 0.34375 0.0000 0.3429

7��(!, ! ⊗ �) 0 0.34375 0.0000 0.3466

7��(!, ! ⊗ ! ⊗ !−1) 1 0.00000 1.0000 0.0000

7��(#, ! ⊗ # ⊗ !−1) 1 0.00000 1.0000 0.0000

7��(!, ! ⊗ # ⊗ !−1) 0 0.34375 0.0000 0.3430

7��(�, ! ⊗ # ⊗ !−1) 0 0.34375 -0.0002 0.3412

7��(�, ! ⊗ # ⊗ �−1) 0 0.34375 0.0001 0.3463

7��(H, ! ⊗ # ⊗ �−1) 0 0.34375 -0.0001 0.3428

HRR in the frequency domain (Plate, 2003), described in Chapter 3, has the same

means for each of these expressions, but with higher variances, 0.5 compared to 0.34375

in MCR (pp. 145-151). When r = 2, MCR is equivalent to Spatter Code, which has a

variance of 1 for these same expressions. In conclusion, MCR is more noise robust than

either HRR or Spatter Code for models using vectors with the same size n. Notice that in

the limit as r approaches infinity, the normalized variance of the similarity of vectors in

MCR tends to 1/3; the value for r = 16 is not far from this theoretical minimum, and

values greater than 16 do not significantly improve the normalized variance. In

160

consequence, r = 16 is a good choose for constructing MCR vectors, enabling the

representation of such values with only 4 bits per dimension, and also limiting the storage

requirements of Integer SDM memories, which increases linearly with r (see Chapter 5

for details).

For the grouping operation, the analytical calculation of the means and variances

are harder to obtain. Here I present the analysis for grouping two vectors, and measure

the similarity to one of the operands. I also present the experimental results for grouping

2 to 15 vectors.

To analyzing the mean and variance of

 7��(!, ! + #) (148)

we can rewrite (148) as

 7��(!, ! + #) = 1 − &′(!, ! + #) (149)

According to the definition of the sum, the output of grouping two vectors has a

distance to any of the operands equal to half of the distance between them.

 7��(!, ! + #) = 1 − &′(!, #)2 (150)

Given that d’ approximately follows the normal distribution in equation (145),

sim(A, A + B) also distributes normally:

 ���(!, ! + #) ~ = (12 , 14 (13 + 8342) 1) (151)

The normalized variance of the similarity given by grouping two vectors and one

of its operands is approximately 0.086 for r = 16, and 0.084 for r = 32. The mean

161

reported by Plate (2003) using HRR is higher (0.6366) (p. 270). However, due to the

difference in the variance of the distance distributions of the two spaces (remember that

HRR uses cosine as similarity measure), both models have almost the same probability of

presenting the mean or less similarity between the sum vector and one of its operands just

by chance. In other words, the cdf (cumulative density function) for the distributions of

the similarity measure for HRR and MCR, have almost the same value for similarity,

equal to 0.6366 and 0.5 respectively:

 cdf(���]))(!, ! + #) = 0.6366) ≅ cdf(�����)(!, ! + #) = 0.5) (152)

Furthermore, the normalized variance of this similarity using MCR is smaller than

in HRR: 0.086 as compared to 0.0947, which makes MCR more noise robust and

accurate compared to HRR for a given dimensionality.

Figure 24 shows the experimental results of the similarity between a random

vector and the same vector grouped with k – 1 other random vectors, for values of k

between one and fifteen. The experiments use vectors with 512 dimensions and r with

values 2, 16, and 32. The data correspond to 10,000 runs for each value of k. The results

for k = 2 confirms the theoretical analysis. Additionally, compared with HRR, MCR has

better variances and similar means, considering the cdf of the distributions of the

similarity functions, also making it less noisy for grouping. (See Plate, 2003 for details.)

162

Figure 24. Means and variances of the similarity between a random vector and the
same vector grouped with k – 1 other random vectors. The vectors have 512
dimensions and three values for r are evaluated (2, 16, and 32). The data correspond
to 10,000 runs for each value of k.

163

Summary of Comparisons: MCR, HRR and Spatter Code

MCR shares many properties with HRR and Spatter Code. All three enable reduced

descriptions. Actually, MCR is a generalization of Spatter Code that uses integer modular

vectors instead of binary vectors. When r = 2, MCR becomes equivalent to Spatter Code.

The analytical and experimental results show that MCR is more reliable and accurate

than Spatter Code for a given number of dimensions; however, Spatter Code utilizes

simpler operations, which would be an advantage for some applications. The

representational expressiveness of MCR would be considered a further advantage over

Spatter Code in applications that require the encoding of non-binary data. (See for

example Jockel, 2009).

Although HRR has a rich expressive representation and very good performance

when combining and decoding structures from holistic vectors, it utilizes complex

operations, such as circular convolution, that have time complexities of the order of O(n2)

or O(nLog n). HRR in the frequency domain, also known as circular HRR, has better

overall performance, can perform the operations in O(n) time, and has more stable

variances and results than the normal HRR. As Kanerva pointed out in a personal

communication with the author, under an interpretation of the values in MCR as

discretized angles, the binding and grouping operations of both models are similar.

However, each model utilizes a different distance (or similarity) measurement, which

explains the variations in performance between the two models. The development of

MCR was inspired as an extension of Spatter Code, and as such, the simplicity of its

design. The circular HRR was derived from the normal HRR, producing a more

164

cumbersome base for the model. Finally, MCR can readily utilize Integer SDM as its

cleanup memory, whereas HRR has no specific auto-associative memory available.

Conclusions

MCR is a new reduced description representation that balances representational

expressiveness and implementational simplicity. It has all the required and desirable

characteristics of reduced descriptions described in Chapter 3: representation adequacy,

reduction, systematicity, and informativeness. Moreover, it implements explicit and

structural similarity, which allows the holistic processing of several operations, avoiding

the need to reconstruct the structure prior to processing.

The experiments and analysis detailed herein have demonstrated MCR’s

performance in a number of scenarios, empirically validating its anticipated noise

robustness, representation expressiveness, and holistic processing capability. The analysis

of the means and variances for the similarities of representative operations suggests that

MCR has better performance for these operations than HRR or Spatter Code using

vectors with the same number of dimensions. Nevertheless, the accuracy of any of these

models can be increased without bound by enlarging the dimensionality of the vectors.

To perform the experiments in this chapter I developed a script parser and

interpreter that allows writing the expressions and operations of MCR in a simple

language, and running it embedded within a Java program. This greatly facilitates the

creation and running of experiments and applications that use MCR. Chapter 7 describes

this scripting language and its implementation in more detail.

Chapters 1 and 3 discuss several challenging AI applications that would benefit

from MCR. Some of the characteristics of this vector representation–noise robustness,

165

explicit similarity, and structural similarity–can facilitate the implementation of such

applications. The simplicity of this model’s operations and its performance make it an

attractive option over other models. Moreover, its natural integration with Integer SDM

as cleanup memory offers a further advantage.

A promising project, Vector LIDA, would implement the LIDA cognitive

architecture (Franklin & Patterson, 2006; Snaider, McCall, & Franklin, 2011) using MCR

vectors as its main representation for data structures. Some of the advantages over the

current implementation, which employs nodes and links in a graph-like structure,

includes a more realistic and biologically plausible model, better integration with the

episodic memory, which already uses a vector based SDM memory, better integration

with other low level perceptual processing (such as HMAX Serre et al., 2007), better

scalability, and easier learning mechanisms. For further details, see Chapter 8.

166

Chapter 7: Implementations

This chapter describes several implementations of the Extended SDM, the Integer SDM,

and the MCR interpreter. The technologies used include database storage with least

recently used (LRU) cache, parallel and distributed support using the Akka framework

(Subramaniam, 2011), an implementation of the actors model (Hewitt, Bishop, & Steiger,

1973), and parallel processing using Graphic Processors Units (GPUs) (Che et al., 2008;

NVIDIA, 2012). The MCR interpreter was created using the Java Compiler Compiler

(Javacc), a parser generator for Java1.

Modern computers have multi-core CPUs executing instructions in parallel.

Furthermore, GPUs, which can perform billions of parallel vector operations per second,

can speed up applications, such as Extended SDM and Integer SDM, that have vector

data structures as their main components. Such applications that could only run in high-

end supercomputers a few years ago, can now execute efficiently on desktops or laptops

due to the parallel processing power of modern GPU devices.

Although of polynomial time complexity O(nm), where n and m represent the

number of dimensions of the vectors and the number of hard locations respectively,

Extended SDM and Integer SDM algorithms often execute slowly as the result of a large

number of hard locations. (See Chapters 4 and 5 for details.) Similarly, the storage

requirement of these models also increases linearly with n and m. The implementations

discussed here explore alternatives to mitigate these drawbacks.

I chose Java for these implementations for several reasons. First, Java is a mature

and solid object oriented language with countless proven libraries and frameworks that

1 JavaCC is an open source Java parser generator. The source code and more information can be

found at http://javacc.java.net/

167

facilitate the implementation of standard tasks such as persistence, logging, and

networking. The virtual machine paradigm, central to the Java technology, enables the

execution of the same program (without requiring a recompilation) in different platforms

and operating systems. This improves the availability of the system and speeds up the

development. For example, a Windows based machine has served as developing

platform, but several experiments were performed in a Linux based, High Performance

Computer. Although traditional machine-code compiled languages, such as C and C++,

might produce optimized code, the just-in-time compiler and other advanced Java

technologies have the potential to achieve similar performance (Oracle, 2010). Finally,

the LIDA Framework, a project closely related with this work, is also implemented in

Java, which biased the selection of Java.

Although many previous software implementations of SDM and its extensions

have utilized arrays as their fundamental data structure (Kanerva, 1993), the software

described here follows an object oriented approach. In the typical realization of SDM, the

addresses of the hard locations compose one array, whereas a second array implements

their counters. This simple implementation performs efficiently when the system runs in

a single processor, and the data structures hold in the physical memory. However, using

an object oriented paradigm facilitates the implementation of more sophisticated

realizations that take advantage of multithreading, distributed processing, and the

memory hierarchy.

The rest of this chapter discusses the object oriented design of SDM and its

variations, the hard locations’ cache, and a couple of parallel instantiations. Finally, a

description of the MRC’s parser and interpreter completes the chapter.

168

Object Oriented Design

The SDM design proposed here employs several design patterns (Gamma, Helm,

Johnson, & Vlissides, 1995) to improve its flexibility. For example, the widely used

factory pattern offers a standardized approach to the creation of vectors and other

elements in the system. The main difference between the standard array-based

implementation and the current one consists in the modeling of each hard location as an

object. The hard location class has an attribute for its address, a binary vector, and

another attribute referencing the counters, an n-size array of bytes. Several methods,

mostly getters and setters, help to encapsulate the class behavior. Figure 25 displays the

UML class diagram of the main classes and interfaces of the Extended SDM

implementation. Two interfaces, SparseDistributedMemory 2 and

HardLocation , define the conceptual behavior of the memory, and two abstract

classes, AbstractSparseDistributedMemory and

AbstractHardLocation , provide the implementation of their common

functionalities. Finally, the concrete classes (at the bottom of the diagram) provide the

specific components for a couple of variations: the normal implementation and the

cached version. Notice that this design encapsulates the bulk of the functionality in the

two abstract classes, whereas only a few methods are delegated to the concrete classes.

The abstract hard location class includes its address, its counters, and generic methods

such as the distance calculation, and accessors and mutators (i.e., getters and setters). The

basic concrete class for hard locations, HardLocationImpl , needs only to create the

counters, inheriting most of its functionality from its superclass.

2 Class names in Java follow the camel case practice.

169

The abstract sparse distributed memory class provides the most complex

functionality of the memory, including methods for iteratively reading, and others for

applying mappings while writing. The concrete classes must provide the most basic

methods for reading and writing, which in turn, are called from the methods defined in

the abstract class. This design facilitates reuse of code in enhancements such as the

implementation of a cached version of the memory. See the next subsection for details.

 class SDM

AbstractHardLocation

- address: BitVector
counters: byte ([])
- id: int

+ AbstractHardLocation(BitVector, int)
+ AbstractHardLocation(BitVector, int, int)
+ AbstractHardLocation(BitVector)
+ clear() : void
+ distance(BitVector) : int
+ distance(BitVector, double[]) : int
+ getAddress() : BitVector
+ getAddressLength() : int
+ getCounters() : byte[]
+ getId() : int
+ getWordLength() : int
+ getWriteCount() : int
+ read(int[]) : int[]
+ setAddress(BitVector) : void
+ setCounters(byte[]) : void
+ setId(int) : void
+ setWriteCount(int) : void
+ write(BitVector) : void

AbstractSparseDistributedMemory

+ addrLength: int {readOnly}
+ memorySize: int {readOnly}
+ wordLength: int {readOnly}

+ AbstractSparseDistributedMemory(int, int, int)
+ mappedStore(BitVector, BitVector) : void
+ retrieve(BitVector, BitVector) : BitVector
+ retrieveIterating(BitVector) : BitVector
+ retrieveIterating(BitVector, int) : BitVector
+ retrieveIterating(BitVector, BitVector) : BitVector
+ retrieveIterating(BitVector, BitVector, int) : BitVector
+ store(BitVector) : void

CachedHardLocationImpl

- dirty: boolean

+ CachedHardLocationImpl(BitVector, int)
+ CachedHardLocationImpl(BitVector, int, int)
+ CachedHardLocationImpl(BitVector)
+ clear() : void
+ clearDirty() : void
+ hasCounters() : boolean
+ isDirty() : boolean
+ removeCounters() : void
+ setCounters(byte[]) : void
+ write(BitVector) : void

CachedSparseDistributedMemoryImp

- cache: CacheControl ler
- hardlocations: HardLocation ([])
- hardLocationsInRadious: int
- sdmdao: SdmDAO

+ flush() : void
- getDynamicSphere(BitVector, double[])
+ retrieve(BitVector) : BitVector
+ store(BitVector, BitVector) : void

«interface»

HardLocation

+ clear() : void
+ distance(BitVector) : int
+ distance(BitVector, double[]) : int
+ getAddress() : BitVector
+ getAddressLength() : int
+ getCounters() : byte[]
+ getId() : int
+ getWordLength() : int
+ getWriteCount() : int
+ read(int[]) : int[]
+ setAddress(BitVector) : void
+ setCounters(byte[]) : void
+ setId(int) : void
+ write(BitVector) : void

HardLocationImpl

+ HardLocationImpl(BitVector, int)
+ HardLocationImpl(BitVector, int, int)
+ HardLocationImpl(BitVector)

«interface»

SparseDistributedMemory

+ mappedStore(BitVector, BitVector) : void
+ retrieve(BitVector) : BitVector
+ retrieve(BitVector, BitVector) : BitVector
+ retrieveIterating(BitVector) : BitVector
+ retrieveIterating(BitVector, int) : BitVector
+ retrieveIterating(BitVector, BitVector) : BitVector
+ retrieveIterating(BitVector, BitVector, int) : BitVector
+ store(BitVector, BitVector) : void
+ store(BitVector) : void

SparseDistributedMemoryImpl

- activationRadius: int
- hardlocations: HardLocation ([])

+ retrieve(BitVector) : BitVector
+ store(BitVector, BitVector) : void

-h
a

rd
lo

ca
tio

n
s

-h
a

rd
lo

ca
tio

n
s

Figure 25. UML class diagram of SDM main classes. For clarity’s sake, some class
members were not included in the diagram.

170

Finally, the addresses and other bit vector data utilize the BitVector

implementation of the Colt Java library3, providing a fast, compact implementation of

many bit-vector operations. The library represents binary vectors with an array of longs4,

performing several operations 64 bits at a time.

The basic Integer SDM implementation has a similar design, except that it uses a

new SdmVector implementation instead of the BitVector , and a Counter interface

(and related classes) to encapsulate counter functionality. I will discuss them in more

detail in the distributed and multithreading subsection. This object oriented design

provides the basis for the more advanced designs presented here, which would have been

more difficult to implement using the standard array-based design.

Cached Implementation

The storage requirements of these implementations increases proportionally with m,

number of hard locations, n, the dimensionality of the space, and in the case of Integer

SDM, r, the number of possible values in each dimension. A cache design mitigates this

requirement, allowing the execution of these applications in computers with moderate

RAM capacity. The addresses of the hard locations require some memory, but their

counters constitute the major memory-consuming elements in these applications.

Analyzing the reading and writing algorithms, both consist of comparisons of all

hard locations’ addresses to the target address, followed by a reading or update of a small

fraction of the hard locations’ counters. There is no significant advantage to storing the

3 The Colt library is a set of open source libraries for high performance scientific and technical

computing in Java developed at CERN, the European Organization for Nuclear Research. For more
information see http://acs.lbl.gov/software/colt/

4 long is a 64 bit integer data type in Java.

171

addresses in a secondary storage and then caching them, since both reading and writing

operations require all of them. Moreover, they have a modest memory footprint compared

to the counters. Thus, the addresses are instantiated directly in RAM. On the other hand,

the counters are never required all at the same time, and during an iterating reading

operation (see Chapter 2), the counters of many hard locations are repeatedly accessed,

making them good candidates for caching.

The Extended SDM and Integer SDM cached implementations utilize a LRU

cache for the hard locations’ counters. The memory instantiates all the hard locations,

including their address vectors, but not their counters. A cache controller provides the

counters as needed. The first time a hard location is accessed for reading or writing, the

cache controller creates an array with empty counters and assigns it to the hard location;

subsequently, it retrieves the counters’ values from a secondary memory. The controller

keeps track of which hard locations have instantiated counters, saving and removing them

when the space is required. A DAO class, which implements the data access object

design pattern, encapsulates the communication with secondary storage, enabling the

controller to interact with different secondary memories, such as databases or files,

without modifying the cache logic. Figure 26 shows the UML class diagram of the cache

main components. The cache controller employs the SdmDAO interface to become

independent of the DAO implementation. The CachedHardLocationImpl and

CachedSparseDistributedMemoryImpl classes have small additions to their

standard counterparts, such as getter and setter implementations to access the counters in

support of the cache mechanism.

172

Three different secondary storage mechanisms were tested: relational database

management system (RDBMS), non-relational databases management system (non-

RDBMS), and plain data files. The RDBMS implementation stores the hard location’s

information in a couple of tables, and standard SQL queries provide access to their data.

This design can employ any RDBMS engine supported by Java, which constitutes one of

its main advantages. Two database engines were used in the simulations: JavaDB and

MySQL. The former, completely implemented in Java, has the potential of embedding

 class IntegerSDMcache

«interface»

SdmDAO

+ disconnect() : void
+ getAttribute(String) : Object
+ getDBStats() : String
+ getHardLocation(int, int, int) : HardLocation
+ getHLCounters(HardLocation) : boolean
+ isNewDB() : boolean
+ removeAttribute(String) : Object
+ saveNewHardLocation(HardLocation) : boolean
+ saveNewHLCounters(HardLocation) : boolean
+ setAttribute(String, Object) : Object
+ updateHardLocation(HardLocation) : boolean
+ updateHLCounters(HardLocation) : boolean

SdmDaoBk

- attributeDb: Database
- counterDb: Database
- hardLocationDb: Database
- myEnv: Environment

+ disconnect() : void
+ getAttribute(String) : Object
+ getDBStats() : String
+ getHardLocation(int, int, int) : HardLocation
+ getHLCounters(HardLocation) : boolean
+ isNewDB() : boolean
+ removeAttribute(String) : Object
+ saveNewHardLocation(HardLocation) : boolean
+ saveNewHLCounters(HardLocation) : boolean
+ SdmDaoBk(String)
+ setAttribute(String, Object) : Object
- setup(File) : void
+ updateHardLocation(HardLocation) : boolean
+ updateHLCounters(HardLocation) : boolean

SdmDAOImpl

- dbConnector: JavaDbDaoConnector

- createPreparedstatements() : void
+ disconnect() : void
+ getAttribute(String) : Object
+ getDBStats() : String
+ getHardLocation(int, int, int) : HardLocation
+ getHLCounters(HardLocation) : boolean
+ isNewDB() : boolean
+ removeAttribute(String) : Object
+ saveNewHardLocation(HardLocation) : boolean
+ saveNewHLCounters(HardLocation) : boolean
+ SdmDAOImpl(String, String)
+ SdmDAOImpl(String, boolean)
+ SdmDAOImpl(Connection)
+ setAttribute(String, Object) : Object
+ updateHardLocation(HardLocation) : boolean
+ updateHLCounters(HardLocation) : boolean

SdmDaoRF

- attrDao: AttributeDao
- buffer: byte ([]) {readOnly}
- counterDb: RandomAccessFile
- counterDbLength: long
- hardLocationDb: RandomAccessFile
- hlByteSize: long {readOnly}
- infoDb: RandomAccessFile
- maxCounterId: int

+ disconnect() : void
+ getAttribute(String) : Object
+ getDBStats() : String
+ getHardLocation(int, int, int) : HardLocation
+ getHLCounters(HardLocation) : boolean
+ isNewDB() : boolean
- readMaxCounterId() : int
+ removeAttribute(String) : Object
- saveMaxCounterId(int) : void
+ saveNewHardLocation(HardLocation) : boolean
+ saveNewHLCounters(HardLocation) : boolean
+ SdmDaoRF(String, int, int, int, int)
+ setAttribute(String, Object) : Object
- setup(String) : void
+ updateHardLocation(HardLocation) : boolean
+ updateHLCounters(HardLocation) : boolean

CacheController

- cacheCV: LinkedHashMap<Integer, Counter[]>
- hardLocations: HardLocation ([])
- nextToUse: Counter ([])
- sdmDao: SdmDAO

+ CacheController(int, SdmDAO, HardLocation[], int, int)
- clearCounters(Counter[]) : void
+ flush() : void
- getNewCounters(int, int) : Counter[]
+ getNextToUseOrNew() : Counter[]
+ touchCache(HardLocation) : boolean
+ update(HardLocation) : void

-sdmDao

Figure 26. UML class diagram of the cache’s main components. For the sake of clarity,
some class members were not included in the diagram.

173

the database engine in the application, enabling standalone execution in any Java

platform. The second database engine, MySQL, is one of the most popular and widely

available ones. Both RDBMSs worked correctly, without significant difference in

performance. MySQL was only 5% faster than JavaDB. Nevertheless, the scalability and

clustering capabilities of MySQL make it preferable for implementing large SDM and

similar memories.

The non-RDBMSs, which employ key-value stores very similar to map data

structures, have lately gained momentum in the industry. Many leading web-based

applications utilize this storage paradigm because of its simplicity, robustness,

performance, and scalability. In addition to these advantages, many of the non-RDBMSs

use simple byte arrays as their native data type, which fits naturally to SDM technology

requirements. The experiments implemented here utilize Berkeley DB (Olson, Bostic, &

Seltzer, 1999), one of the first databases in this category.

In spite of all the rationale in favor of this kind of database in the context of the

applications of this work, the results did not show any significant difference with the

RDBMS implementations. After a careful analysis, the overhead produced by copying

the byte arrays to and from the database driver emerges as the main cause of this

unexpected result.

Finally, the plain file implementation outperforms the other two implementations.

The SdmDaoRF class stores the hard location’s data in a pair of random access files in

the file system. Minimizing the data copy operations and optimizing the file system calls

by reserving the whole disk space requirement at the beginning, the memory achieved a

performance up to five times better than the other two models.

174

Although the results strongly bias the selection of the plain file approach, further

testing, including other database models, is required before discarding the database

implementations. Moreover, the scalability and distributivity characteristics of database

systems, both relational and non-relational, make them attractive choices for distributed

environments, even in light of the above-mentioned disadvantages.

Any of these cached implementations suffice to run the SDM variations described

in this work, even on computers of modest capabilities. They also provide a persistence

mechanism as a valuable side effect of the cache architecture: After performance of a

simulation, the secondary storage preserves the memory information, thus a future

simulations can reuse the stored data.

Parallel and Distributed Implementations

In the last decade, parallel processing has become ubiquitous. Nowadays, it is common to

have multi-core CPUs executing instructions in parallel, even in desktop and laptop

computers. Furthermore, Graphic Processors Units (GPUs), which can perform billions

of parallel vector operations per second, are often found even in mid-range computers.

Cloud computing, a metaphor for the delivery of computing processing as a utility

service, provides cheap, almost unlimited processing power that, in general, relies on

multithreading and distributed processing. This paradigm is an attractive option for

memory- and processing-intensive AI applications, including the SDM extensions

described in this dissertation. For example, Google Inc. has recently proposed a cloud

robotics platform to help developing smart robots using the processing power of cloud

computing (Guizzo, 2011).

175

Instead of using the low level threading support of Java, the multithreading

implementation presented here utilizes Akka, an actors model framework (Hewitt et al.,

1973). The actors model, a theoretical model of concurrent computation, defines actors as

its primitive elements. The actors communicate only through messages, and there is no

global state of the system. In response to received messages, an actor can modify its local

state, send messages to other actors, and create new actors. The object paradigm differs

from the actor model in that the former typically executes sequentially and the latter is

inherently concurrent and asynchronous. The Akka framework implements the actors

model in Java (and in Scala), abstracting from some of the inherent complexities of

concurrent programming. Furthermore, this framework hides the implementation details

of distributed execution from the programmer; after defining the actors, they can be

executed locally or distributively over a network.

The Integer SDM implementation using Akka defines a number of classes for

actors and messages. Whereas the messages are simple objects that encapsulate each

operation and do not need further analysis, the new actor classes and the changes in some

of the base classes require additional discussion. By dividing the functionality of the

sparse distributed memory class, the implementation better supports the concurrent

design. The new HardLocationPool interface and its several implementations

encapsulate the control of the hard location’s collection, leaving only the high level

functionality of the memory to the SparseDistributedMemoryImpl class. The

hard location pool’s variants implement different functionalities, including the cached

and multithreaded versions. Figure 27 displays the UML diagram corresponding to this

new design.

176

The AkkaHardLocationPool connects the SDM with the Akka framework.

This class has an SdmRouterActor which in turn includes a collection of SdmActor

actors. Each SdmActor actor has a hard location pool. Furthermore, the router actor can

include other router actors in its actor collection, implementing a tree-like structure of

actors that resembles the composite design pattern (Gamma et al., 1995). Each leaf of this

tree has a hard location pool, and due to the actor model capabilities, the access to each

pool executes concurrently. Some of the router actors (and its SdmActor children) can

 class AkkaImplementation

AbstractHardLocationPool

hardlocations: HardLocation ([]) {readOnly}

+ close() : void
+ flush() : void
getDynamicSphere(SdmVector, double[]) : Col lection<HardLocationIdx>
+ read(SdmVector, double[]) : Counter[]
+ readArray(SdmVector, double[]) : int[]
+ wri te(SdmVector, SdmVector) : void

CachedHardLocationPoolImpl

- cache: CacheController
- sdmdao: SdmDAO

+ close() : void
+ flush() : void
- updateCache(Col lection<HardLocationIdx>) : void

«interface»

HardLocation

+ getAddress() : SdmVector
+ getAddressLength() : int
+ getCounters() : Counter[]
+ getId() : int
+ getWordLength() : int
+ getWriteCount() : int
+ read(Counter[]) : Counter[]
+ read(int[][]) : int[]
+ setAddress(SdmVector) : void
+ setCounters(Counter[]) : void
+ setId(int) : void
+ setWriteCount(int) : void
+ write(SdmVector) : void

HardLocationImpl

«interface»

HardLocationPool

+ close() : void
+ flush() : void
+ read(SdmVector, double[]) : Counter[]
+ readArray(SdmVector, double[]) : int[]
+ write(SdmVector, SdmVector) : void

HardLocationPoolImpl

«interface»

SparseDistributedMemory

SparseDistributedMemoryImpl

AkkaHardLocationPool

- routerActor: ActorRef {readOnly}

+ close() : void
+ flush() : void
+ read(SdmVector, double[]) : Counter[]
+ readArray(SdmVector, double[]) : int[]
+ wri te(SdmVector, SdmVector) : void

-hlPool

#hardlocations

Figure 27. UML class diagram of some of the classes that support the Akka actor
implementation. To improve clarity, some class members were not included in the
diagram.

177

actually be remotely instantiated, making the design distributed as well. See Figure 28 for

details. When the sparse distributed memory class invokes

AkkaHardLocationPool ’s read or write methods, it sends a message to the router

actor, which in turn broadcasts the message to its children. In response to the message,

the children actors of type SdmActor , concurrently read from or write to their own hard

location pool, and send a message back to the sender. The children actors of type

SdmRouterActor broadcast the message down the hierarchy.

Several Integer SDM experiments utilized this implementation, using both

multithreading and distributed support, running in a high performance computer (HPC),

which consists of a Beowulf (Linux) cluster of 133 Penguin Computing compute nodes.

The nodes used for the experiments have 8 processors (2.5Ghz AMD Opteron 2380’s)

and 32GB of memory, and are connected via DDR InfiniBand. The experiments

Figure 28. Hierarchy of actors used in the SDM Akka implementation.

178

employed configurations with one node (8 processors), two nodes (16 processors), and

four nodes (32 processors). The performance using one node was almost five times faster

than running the same experiment without concurrency. The framework and threading

overhead explain why the performance does not achieve the theoretical eight-fold

enhancement. Using two or four nodes (up to 32 processors) allows creating large Integer

SDM instances, impossible to achieve in smaller configurations. Although the

performance degrades due to the communication overhead, the experiments prove the

viability of this design for distributed computing.

GPU Processing Support

GPUs, originally created for graphic processing, have expanded their application

spectrum to other computation intensive fields, such as physics and AI, which have

benefited from their parallel processing capabilities. These devices comprise many

simple cores that can execute the same code with different data in parallel, following the

SIMD architecture, and making them ideal for vector or matrix processing. The GPUs

work as coprocessors of the host processor. A program using this paradigm has sections

that run sequentially on the host, and other sections that run in parallel on the GPU. This

architecture has a memory hierarchy that comprises a global memory common to all

processes in the GPU, a private memory for each GPU’s core, and a memory space

shared by the running cores. Although optimizing aspects such as data copy and memory

allocation across this hierarchy can improve the overall performance, these

considerations are outside the scope of the present work. To implement GPU support, the

de facto standard in the industry and academia is the CUDA GPU programming toolkit,

developed by NVIDIA for their GPUs (Che et al., 2008; NVIDIA, 2012).

179

The Extended SDM implementation with CUDA support utilizes parallel

processing to calculate the distances among vectors when the access sphere is determined

(see Chapters 2 and 4), and to access the counters of the hard locations in the reading and

writing operations. Two new classes, CudaHardLocationPool and CudaUtils ,

encapsulate most of the code that interfaces with the kernels, the CUDA subroutines.

The addresses and counters of the hard locations were allocated in the global

memory of the GPU, minimizing the memory copy to and from the host. Five kernels,

developed in C with CUDA extensions, provide the algorithms for the functionality of the

memory: initSdm , write , read , normalize , and getDistance . The initSdm

kernel creates the hard locations in the GPU memory. The write and read kernels

perform the basic operations of the memory, supporting the low level details of the

HardLocationPool interface (see Figure 27 for details). The read kernel produces a

vector of integers with the sums of the counters in each dimension corresponding to the

hard locations in the access sphere. This vector must be normalized to obtain the output

binary vector, but due to the parallel execution of the kernel in the GPU, the

normalization must be performed using a separate kernel. Finally, the getDistance

kernel calculates the distance between two vectors, and the read and write kernels call

it to determine which hard locations are inside the access sphere.

This CUDA implementation was tested using a GPU NVIDIA GeForce GTX 560

Superclocked 2048 MB GDDR5 with 336 CUDA cores. The experiments run with this

hardware showed an impressive gain in performance. In an Extended SDM with 500,000

hard locations, an address size of 1,000, and word size of 2,000, the reading and writing

operations ran 52 times faster than when the object oriented implementation (see above)

180

was used. This result may be further improved optimizing the memory usage and fine

tuning the thread execution. Moreover, the newest GPUs have up to 3,073 CUDA cores5,

almost ten times more than the one employed here. Using these new GPUs would

improve the performance of this implementation even more. These results demonstrate

the feasibility of these memories for real time applications with a large number of hard

locations, such as robot controllers or visual recognition.

MCR Parser and Interpreter

Although hyperdimensional computing (Kanerva, 2009) using MCR vectors can be

implemented using general-purpose programming languages (GPL) such as Java or C++,

the syntaxes and native structure of these languages obfuscate the simplicity of the

hyperdimensional computing expressions (see Chapters 3 and 6 for examples of MCR

expressions). A specific scripting language, that allows writing MCR expressions, was

developed using Javacc, a Java parser generator that produces a parser in Java code from

a grammar specification. A runtime interpreter, implemented also in Java, can evaluate

the MCR scripting language and maintain the MCR vectors in memory.

Figure 29 shows an example of the MCR scripting language, which reproduces

the expressions of the hyperdimensional computing example presented in Chapter 6.

Variables, such as cause, idmark , and luke, represent vectors. The plus sign (+) stands

for the grouping operation, whereas the product sign (*) represents the binding operator.

The * has precedence over the +, and parentheses can be used to force a desired

operation’s evaluation order. The exclamation symbol (!) produces the inverse of its

5 The top of the line NVIDIA GPU as today is GeForce GTX 690. See http://www.geforce.com

for details.

181

succeeding vector, useful for the probe operation (See Chapters 3 and 6 for details). Also,

the slash (/) is equivalent to multiplication by the inverse of the second operand, which is

a compact syntax for probing.

Several instructions complement the scripting language: newrnd() creates new

random vectors, print() outputs a message to the console, printd() displays the

distance among two vectors, and rank() displays the rank of closest vectors in the

system, that is, all the vectors assigned to a variable so far, to a given vector. Appendix B

lists the complete grammar definition of the MCR scripting language in Javacc format.

The MCR interpreter runs inside a Java program, and can process expressions

defined in a text file or embedded in the code as strings. The execution of the interpreter

can be interleaved with normal Java code, rendering it unnecessary to include in the

scripting language the typical control structures, such as if and for-loops, found in most

GPLs. In effect, if we need to repeat one or several MCR expressions, we can wrap the

interpreter execution by a for-loop in the Java code. A hash table data structure, with the

vector’s variable names as keys, holds the vectors created by the interpreter. Since both

the Java code and the interpreter have access to this hash table, the Java code can

manipulate these vectors, or even create new ones that are included in the interpreter

repertory. This easy interaction between the native Java code and the MCR interpreter

enables the creation of experiments and applications using the “best of both worlds”: the

simplicity of the MCR scripting language combined with the power and versatility of

Java.

182

Figure 29. Example of MCR scripting expressions. This example reproduces the
experiment presented in Chapter 6.

183

Conclusions

This chapter presents the software implementations of the technologies introduced in this

dissertation. Cached versions of the Extended and Integer SDM allow running these

memories even in modest computers. The various parallel implementations introduced

here, including multithreading, distributed, and SIMD variants, have demonstrated the

feasibility of SDM and related models, to take advantage of the incipient trend of parallel

computing. Further work must address optimization of these designs to improve their

performance and scalability. Finally, the MCR scripting language interpreter simplifies

the implementation of experiments and applications based on MCR vectors, without the

burden of the syntactic overhead of the host language.

184

Chapter 8: Conclusions

Cognitive software agents, robot controllers, and other similar challenging AI

applications have several basic operations in common. These operations, described in

Chapter 1, include pattern recognition when partial and noisy cues are used, sequence

learning, generalization of patterns, and Hebbian learning. A memory system for these

applications can facilitate the implementation of these operations. SDM has proven to be

a good candidate. It possesses some of the desirable features for memory systems listed

in Chapter 1: content addressability, auto-associativity and hetero-associativity,

robustness to noise, generalization, clustering, pattern recognition, sequence learning,

resilience to memory damage, one-shot and incremental learning, forgetting, and high

dimensionality. The SDM extensions presented in this dissertation, which further

improve these features, and MCR, the new reduced description model introduced in this

work, integrate a set of technologies with the potential to address the complexities of

challenging AI applications.

The rest of this chapter will describe some further directions and possible

applications of the technologies introduced here, followed by a discussion of their

limitations. Finally, I will summarize the conclusions and cite this author’s papers related

to this work. Appendix A includes a complete list of papers written by the author.

Further Directions

Several extensions and variations of Extended SDM and Integer SDM are natural paths

of further development. First, a forgetting mechanism (Ramamurthy, D'Mello et al.,

2006), which will help to preserve only the most often repeated elements in the memory,

would improve the unsupervised learning capability of the memory. Only correct inputs

185

and associations are likely to be repeated frequently, and then incorrect inputs would

decay away from the memory without any supervision. By balancing the new inputs and

the decay rate, this mechanism would also prevent the memory from approaching its

maximum capacity.

Other designs of SDM hard location activation, like Jaeckel’s selected coordinate

design (Jaeckel, 1989a, 1989b), can also be implemented with these SDM extensions,

improving the signal to noise ratio. Moreover, other designs, such as the ones proposed

by (Anwar et al., 1999; Fan & Wang, 1997; Keeler, 1988; Ratitch & Precup, 2004) and

reviewed in Chapter 2, utilize variations in the distribution of the hard locations that

improve the performance of SDM when the data to be stored are not uniformly

distributed in the space. Exploring these variations is also an attractive further direction.

Random indexing (Sahlgren, 2005), a semantic space model that creates semantic

vectors by combining random vectors associated with each word, is a possible application

of Extended SDM. In the random indexing model, each word has two associated vectors:

a random vector, and a semantic vector, the latter being the result of combining the

random vectors of other words related to this one. The process can be iterative, refining

the semantic vector as new related words appear. Extended SDM has the potential to

produce semantic vectors directly during word storage. The data vector (see Chapter 4 for

details) can hold the random vector and the semantic vector in two sections that are

updated whenever new data arrives. With this implementation, the memory would still

preserve its noise robustness capability, and would additionally create the semantic

vectors that relate the words according to their meaning.

186

In recent years, several models of the so called deep learning systems, such as

HMAX (Serre et al., 2007), HTM (George, 2008), DeSTIN (Arel et al., 2009), and deep

belief nets (Hinton, 2007; Hinton et al., 2006), have emerged. These models, based on the

hierarchical organization of the neocortex, and of the visual cortex, focus on learning and

recognition of spatial and temporal patterns. They detect pattern invariances in space and

(in some models) in time in each level of the hierarchy. The output of a lower layer

provides the input for the higher ones. The higher the layer, the more abstract are the

features they capture of the data. A possible deep learning system could use layers of

Extended Integer SDMs. The memory that implements each layer stores the input

vectors, and its interference and generalization properties facilitate the creation and

detection of patterns from similar vectors (see an experiment of Chapter 5 that shows this

mechanism). Finally, the sequence storage mechanism described in Chapter 4 helps to

learn temporal patterns in each layer.

Vector LIDA

A promising project that I called Vector LIDA would intensively utilize the technologies

presented in this dissertation. This project would implement the LIDA architecture

(Franklin & Patterson, 2006; Snaider et al., 2011) using MCR vectors as its main

representation for data structures, and the various extensions of SDM presented here for

its main memory mechanisms. The LIDA architecture was briefly introduced in Chapter

2, and a recent description of the model can be found in (Franklin, Strain, Snaider,

McCall, & Faghihi, in press). For reference, Figure 30 depicts the structure of the LIDA

model, including its modules and their interactions.

187

The current version of the LIDA model utilizes nodes and links in a graph-like

structure (node structure) as its main data structure. This implementation introduces

several problems. First, comparing node structures can be computationally expensive.

Moreover, some of LIDA’s processes require approximate comparisons of the node

structures, which can be even harder to compute. MCR vectors can represent information

such as that contained in node structures, but unlike node structures, MCR vectors have

an innate approximate comparison property, as explained in detail in Chapters 3 and 6.

Second, some modules in the LIDA model, such as perceptual associative

memory, episodic memory, and procedural memory, require the implementation of

learning mechanisms. These mechanisms must be able to learn new node structures in an

instructionalist learning mode, and reinforce previous ones via reinforcement learning.

Figure 30. LIDA cognitive model diagram. The boxes represent the different
modules of the model, and the arrows the interactions among them.

188

The current model uses a value attached to each node and link, called base level

activation, that helps to implement reinforcement learning. However, the model does not

have a generic strategy for the learning of new elements, and the current implementations

of several modules do not scale well. The SDM variations presented here have both the

required learning mechanisms (instructionalist and reinforcement) integrated into their

basic functionality. Learning new vectors (instructionalist learning) simply consists of

storing the vector in the memory using its standard storage procedure. When the same

vector is stored several times (reinforcement), the hard locations’ counters corresponding

to the values of each dimension of this vector will have larger counts, making it resistant

to interference by other vectors stored in the memory. This effect would improve

implementing a forgetting mechanism.

Moreover, the current episodic memory module in LIDA already employs a SDM

memory as its base implementation. The problem of translating back and forth from node

structures to vectors in episodic memory disappears when using MCR vectors as the main

data structure of LIDA. Furthermore, the sequence storage mechanism of Extended SDM

would enable the episodic memory module to store composite events, sequences of

simpler events, improving the event-learning capability of the episodic memory module.

Third, MCR vectors have the potential of implementing directly Barsalou’s

perceptual symbol system (1999), which uses symbols grounded in sensory and motor

information. Although the current LIDA model employs a version of perceptual symbols,

it does not exploit their capability for expressiveness, and they have a limited impact on

the functionality of the whole system. Nodes in LIDA are grounded in sensory data. The

activation of a node depends on the activation of its child nodes, which eventually are

189

activated from sensory data. However, a node (without considering its children) does not

represent any specific sensory or motor information by itself, so its grounding feature is

seldom employed in the LIDA model processes. Moreover, the simulator idea, central to

the perceptual symbol system theory, is hard to implement using nodes and node

structures. On the other hand, constructing MCR vectors from sensory and motor

information using hyperdimensional computing operations would produce

representations that have many of the perceptual symbols’ characteristics described by

Barsalou (1999). Similar sensory information would yield similar representations, and the

holistic processing operations of MCR could facilitate the implementation of the

simulators described in his model. Interestingly, MCR vectors with role-filler

components for each modality have the potential to integrate several modalities in a

single representation, addressing the so called binding problem. For example, the MCR

vector B

 # = [K�4&¹��L5 ⊗ º�7-�C + K�4&�E	L ⊗ !-&��E4�] (153)

may represent the integration of the data from the visual and auditory modalities. Notice

that the vectors birdImage and birdSong would be in turn reduced descriptions also.

Fourth, the hierarchical networks described in the previous section provide

biologically plausible mechanisms with which to perceive both spatial and temporal

patterns from low level sensory data, making them attractive for modeling low level

perception between sensory memory and perceptual associative memory (PAM) in LIDA

(see Figure 30). Since these models in general produce high dimensional vectors as

output, interfacing them with Extended Integer SDM memories for implementing PAM

190

would be simpler, more scalable, and more noise robust than with the current

implementation. HMAX (Serre et al., 2007) is probably the most biologically realistic

hierarchical model for this function, since their authors designed it following the

biological data as accurately as possible, but other models such as HTM (George, 2008)

or DeSTIN (Arel et al., 2009) are also possible options. Furthermore, these hierarchical

models have the potential of detecting spatial-temporal patterns in other modules, such as

the workspace or perceptual memory, and they would seamlessly integrate with MCR

vectors. For example, attention and structure-building codelets (see Figure 30) can be

implemented with these hierarchical networks so as to detect patterns in the workspace,

and build coalitions and complex structures, respectively, with these patterns. A similar

implementation for procedural memory, using hierarchical networks, could improve the

detection and learning of temporal patterns that eventually became sequences of actions

or behavior streams (D'Mello, Ramamurthy, Negatu, & Franklin, 2006). These

hierarchical network models, combined with MCR vectors and Extended Integer SDM,

have the potential to provide a primary detection algorithm in LIDA.

Finally, using MCR vectors would produce a more biologically plausible model

through its synergy with other models, such as the hierarchical networks mentioned

above, Barsalou’s perceptual symbols, Fuster’s cognits (2006), and several

neurodynamical theories (Franklin et al., in press). I have already described (see above)

how to implement perceptual symbols, and how their construction addresses the binding

problem. A discussion follows of the relationship between MCR vectors and both cognits

and neurodynamical theories.

191

 Fuster defined a cognit as an abstraction of a network of neurons. Its

representation power comes from the neurons that compose it and specially the

relationship between its component neurons. He extensively describes how different

memory types (e.g., episodic, perceptual, motor, etc.) can be interpreted as hierarchies of

cognits. He pointed out that cognits in one level of this hierarchy can be a composition of

other cognits from several levels in the hierarchy. MCR vectors may be used as an

abstraction of the cognit model. They are also distributed, can combine elements of

various levels of the memory hierarchy in a single vector, and their hyperdimensional

operations can combine and associate cognits represented as vectors.

Franklin and colleges (Franklin et al., in press) have compared several

neurodynamical theories with the LIDA model. By interpreting the brain as a dynamical

system, the representations would be trajectories in the phase space (pattern of activation

space) of one or several cell assemblies. These trajectories can in turn interfere with and

influence the trajectory in the phase space of other cell assemblies. A MCR vector would

model not only a pattern of activation of a cell assembly, but also a trajectory of these

patterns. For example, if a single neuron in a cell assemble has a sequence of activations

in a trajectory of 4 steps (e.g., 1011, where one and zero mean high firing rate and low

firing rate respectively), we may code this sequence as a single value (11 in the example)

and assign this value to one dimension in our MCR vector. Employing the same

procedure for each neuron in the cell assembly, produces a MCR vector that represent the

trajectory of the pattern. Using an Integer SDM as a cleanup memory can produce a

previously stored vector from a partial vector, which would model the oscillatory and

self-organizing properties of the dynamical system interpretation. Using random

192

permutation or multiplication produces a new vector that would model the influence from

one cell assembly to another. Although these ideas are still under development, using

MCR vectors and the memories proposed herein has enormous potential to model

representations and cognitive processes in a more biologically plausible way.

Summing up, some of the advantages of Vector LIDA over the current

implementation include a more realistic and biologically plausible model, better

integration with its episodic memory, better integration with other low level perceptual

processing (such as HMAX Serre et al., 2007), better scalability, and easier learning

mechanisms.

Limitations

The proposed memory models have the several advantages described herein; however,

they have also some limitations. First, the performance of the memories degrades if the

stored vectors are not uniformly distributed in the space. The possible variations in the

hard location activation mechanism mentioned in the previous section would mitigate this

issue, but a more extensive study has to confirm the expected improvement.

Second, the memories discussed in this work only produce a single vector as a

result of the reading operation. Although this is enough for a broad range of uses, some

applications (e.g., the procedural memory module in vector LIDA) could require

retrieving the set of closest vectors in the memory. A multilayer hierarchical memory

might provide a possible path for addressing this issue.

Third, Integer SDM used as a cleanup memory for an MCR reduced description

model does not always yield the expected vector due to the excessive noise introduced by

193

the MCR operations (see examples in Chapter 6). Other ways to improve the noise

robustness of the memory need to be explored to solve this problem.

Finally, MCR vectors can integrate several vectors into one, but if the number of

combined vectors is too large, the composite vector becomes useless due to the noise

introduced in the representation. Exploring sparse vector representations–vectors with a

small number of significant dimensions compared to the total number of dimensions–

might improve the performance of MCR vectors.

Summary of Conclusions

The first variation of SDM presented here, Extended SDM, increases the hetero-

associativity feature of the memory without diminishing its auto-associativity. This

variation is particularly efficient for learning sequences and other data structures such as

trees. Furthermore, the novel mechanism for sequence storage described in Chapter 4

allows the inclusion of sequences of degree greater than one, crossing sequences–

sequences with common elements–and sequence recall from a middle point to the end.

Previously, this kind of sequence learning was only possible in SDM with complex

architectures such as the one described by Kanerva (1988) or the one implemented by

Jockel (2009). I also analyzed the effect of the parameter k (see Chapter 4) to fine-tune

the behavior of the memory for sequence learning. This parameter controls the number of

previous elements required to retrieve the next element in a sequence, thereby controlling

the grade of the sequences that the memory can learn. Two papers have already been

accepted or published discussing this memory and its applications: (Snaider & Franklin,

2011; Snaider & Franklin, 2012a).

194

Another extension presented here, the Integer SDM, extends the domain of the

memory to accept integer vectors, with a range of possible values for each dimension.

Real world data are often non-binary, thus a memory able to store values other than

binary can be more effective for applications that use such values. The integer

representation has several advantages over the binary one. The encoding of values is

simpler, avoiding undesirable effects of other encodings (Jockel, 2009; Mendes et al.,

2009), and it diminishes the effect of normalization when several vectors are combined,

for example in the storage and retrieval of sequences (Snaider & Franklin, 2011). The

benefits of this model are retained when merged with Extended SDM into a combination

SDM possessing integer vectors, better support for hetero-associativity, and improved

sequence learning.

Integer SDM as a cleanup memory is also a good companion for the Modular

Composite Representation. Reduced descriptions using large vectors, such as Spatter

Code and HRR, require an auto-associative memory to clean up not only noisy input

vectors, but also those produced as the result of operations between other vectors. These

operations, such as sum or multiplication, often produce noisy versions of the target

vectors. The auto-associative memory helps clean up these vectors.

Both theoretical and empirical analyses of the capacity of Integer SDM were

presented in this dissertation. The results of the experiments match the theoretical

predictions, and demonstrate the potential of the system. A first paper describing this

memory has already been published (Snaider & Franklin, 2012b). A second paper that

describes the theoretical analysis of this memory, and related experiments, has been

submitted for review (Snaider, Franklin, Strain, & George, in review).

195

I also defined and empirically tested Modular Composite Representation (MCR),

a new reduced description representation based on modular integers. It improves on two

earlier reduced description models (Hinton, 1990): the binary Spatter Code (Kanerva,

1994) and the Holographic Reduced Representation (Plate, 1995, 2003). The former uses

large binary vectors and simple operations, such as XOR, to produce a reduced

description model able to represent complex structures or hierarchies as a whole. The use

of binary vectors limits the model’s expressiveness, and some required operations such as

normalization introduce excessive noise into the vectors that can diminish the

performance of the model. On the other hand, Holographic Reduced Representation

(HRR), based on large real-numbered vectors, has a rich representation capability, but it

requires complex operations such as circular convolution. Moreover, the vectors must

follow a normal distribution for each dimension, which further complicates its use. MCR

is an intermediate point between these two models, balancing representational

expressiveness and implementational simplicity.

The detailed presentation of MCR includes a complete description of the model

and its operations. Some examples of different uses and applications were also presented,

including the integration of Integer SDM as a cleanup memory. The experiments and

analysis detailed herein have demonstrated MCR’s performance in a number of scenarios,

empirically validating its anticipated noise robustness, representational expressiveness,

and holistic processing capability. The analysis of the means and variances for the

similarities of representative operations suggests that MCR has better performance for

these operations than either HRR or Spatter Code using vectors with the same number of

196

dimensions. A paper describing the MCR model is in review (Snaider & Franklin, in

review).

Chapter 7 demonstrates that the extensions of SDM presented here are well suited

for parallel implementation. Several implementations were described and tested. The first

realization uses a least recently used (LRU) cache and a database. Another

implementation uses a state of the art parallel framework, the Akka framework, which

implements the actors model (Hewitt et al., 1973). This implementation, able to run as a

multithreading application or in a distributed architecture, outperforms the single-thread

implementation, proving the potential of these SDM variations for running in parallel and

on distributed hardware. Finally, a third implementation explores the parallel vector

architecture supported by modern GPUs. This computational paradigm has a SIMD

(Single Instruction Multiple Data) structure that is ideal for SDMs due their vector

structure.

Finally, I described further directions and possible applications of this research,

including the use of the extended SDM, Integer SDM, and MCR representations as the

main technologies for implementing the LIDA cognitive architecture. A paper

introducing the LIDA computational framework, the base for future developments, has

already been published (Snaider et al., 2011). I am preparing a position paper that

includes the requirements for representations involved in challenging AI applications as

described in Chapter 1, and the advantages of the vector LIDA project. This project

shows how all the technologies that comprise this work can be used together to enhance

their features. Other possible extensions include deep learning using Extended SDM and

a multi-layered version of these memories.

197

References

Albus, J. S. (1971). A theory of cerebellar function. Mathematical Biosciences, 10, 25-61.

Albus, J. S. (1981). Brains, Behavior, and Robotics: BYTE/McGraw-Hill.

Altmann, E. M., & Gray, W. D. (2002). Forgetting to remember: the functional

relationship of decay and interference. Psychological Science, 13(1), 27-33.

Anwar, A., Dasgupta, D., & Franklin, S. (1999). Using Genetic Algorithms for Sparse

Distributed Memory Initialization. Paper presented at the International
Conference Genetic and Evolutionary Computation (GECCO).

Anwar, A., & Franklin, S. (2005). A Sparse Distributed Memory Capable of Handling

Small Cues, SDMSCue. In M. K. Ng, A. Doncescu, L. T. Yang & T. O. Leng
(Eds.), High Performance Computational Science and Engineering: IFIP TC5
Workshop on High Performance Computational Science and Engineering
(HPCSE), World Computer Congress, August 22–27, 2004, Toulouse, France (pp.
23–38). New York, NY: Springer Science+Business Media Inc.

Araujo, A. F. R., & Barreto, G. A. (2002). Context in temporal sequence processing: a

self-organizing approach and its application to robotics. IEEE Transactions on
Neural Networks, 13(1), 45-57.

Arel, I., Rose, D., & Coop, R. (2009). DeSTIN: A Scalable Deep Learning Architecture

with Application to High-Dimensional Robust Pattern Recognition. Proc. of the
AAAI 2009 Fall Symposium on Biologically Inspired Cognitive Architectures
(BICA).

Baars, B. J. (1988). A Cognitive Theory of Consciousness. Cambridge, UK: Cambridge

University Press.

Baars, B. J., & Franklin, S. (2003). How conscious experience and working memory

interact. Trends in Cognitive Sciences, 7(4), 166-172.

Baars, B. J., & Franklin, S. (2009). Consciousness is computational: The LIDA model of

Global Workspace Theory. International Journal of Machine Consciousness,
1(1), 23-32.

Baddeley, A. D., Conway, M., & Aggleton, J. P. (2001). Episodic Memory. Oxford, UK:

Oxford University Press.

Barreto, G. A., & Araujo, A. F. R. (2004). Identification and control of dynamical

systems using the self-organizing map. IEEE Transactions on Neural Networks,
15(5), 1244-1259.

198

Barsalou, L. W. (1999). Perceptual symbol systems. Behavioral and Brain Sciences, 22,
577–609.

Block, R. (1990). Cognitive Models of Psychological Time. Hillsdale, NJ: Lawrence

Erlbaum Associates.

Blumenthal, L. M., & Menger, K. (1970). Studies in geometry. San Francisco, CA:

Freeman.

Bose, J., Furber, S. B., & Shapiro, J. L. (2005). Spiking neural sparse distributed memory

implementation for learning and predicting temporal sequences. Lecture Notes in
Computer Science, 3696/2005, 115 - 120.

Brooks, R. A. (1986). A Robust Layered Control System for a Mobile Robot. IEEE

Journal of Robotics and Automation, RA-2(1), 14-23.

Brooks, R. A. (1991). Inteligence without represention. Artificial Intelligence, 47, 139-

159.

Brown, J. (1958). Some tests of the decay theory of immediate memory. Quarterly

Journal of Experimental Psychology, 10, 12-21.

Chalmers, D. J. (1990). Syntatic Transformations on Distributed Representations.

Connection Science, 2(1-2), 53-62.

Che, S., Boyer, M., Meng, J., Tarjan, D., Sheaffer, J. W., & Skadron, K. (2008). A

performance study of general-purpose applications on graphics processors using
CUDA. Journal of Parallel and Distributed Computing, 68(10), 1370-1380.

Chou, P. A. (1989). The capacity of the Kanerva associative memory. IEEE Trans.

Information Theory, 35(2), 281-298.

Clarke, T., Prager, R. W., & Fallside, F. (1991). The modified Kanerva model: Theory

and results for real-time word recognition. IEE Proceedings of Radar and Signal
Processing, 138(1), 25-31.

Cohen, T., & Widdows, D. (2009). Empirical distributional semantics: Methods and

biomedical applications. Journal of Biomedical Informatics, 42(2), 390-405.

D'Mello, S. K., Ramamurthy, U., & Franklin, S. (2005). Encoding and Retrieval

Efficiency of Episodic Data in a Modified Sparse Distributed Memory System
Proceedings of the 27th Annual Meeting of the Cognitive Science Society. Stresa,
Italy.

D'Mello, S. K., Ramamurthy, U., Negatu, A., & Franklin, S. (2006). A Procedural

Learning Mechanism for Novel Skill Acquisition. In T. Kovacs & James A. R.

199

Marshall (Eds.), Proceeding of Adaptation in Artificial and Biological Systems,
AISB'06 (Vol. 1, pp. 184–185). Bristol, England: Society for the Study of
Artificial Intelligence and the Simulation of Behaviour.

Danforth, D. G. (1990). An empirical investigation of sparse distributed memory using

discrete speech recognition (No. Technical report 90.18): Research Institute for
Advanced Computer Science, NASA Ames Research Center.

Deerwester, S. C., Dumais, S. T., Furnas, G. W., Landauer, T. K., & Harshman, R. A.

(1990). Indexing by latent semantic analysis. Journal of the American Society of
Information Science, 41(6), 391-407.

Dolan, C. P. (1989). Tensor manipulation networks: connectionist and symbolic

approaches to comprehension, learning, and planning. Los Angeles, CA: UCLA,
Computer Science Department.

Ebbinghaus, H. (1885). Memory: A contribution to experimental psychology. New York,

NY: Dover.

Fan, K. C., & Wang, Y. K. (1997). A genetic sparse distributed memory approach to the

application of handwritten character recognition. Pattern Recognition Letters,
30(12), 2015-2022.

Fei-Fei, L., Fergus, R., & Perona, P. (2006). One-Shot learning of object categories.

IEEE Trans. Pattern Analysis and Machine Intelligence, 28(4), 594 - 611.

Foundalis, H. E. (2006). PHAEACO: A Cognitive Architecture Inspired by Bongard's

Problems. PhD Thesis., Indiana University, Indiana.

Foundalis, H. E., & Martinez, M. (2007). A Generalization of Hebbian Learning in

Perceptual and Conceptual Categorization. In S. Vosniadou, D. Kayser, & A.
Protopapas (Eds.), Proceedings of the European Cognitive Science Conference
2007. Delphi, Greece.

Franklin, S. (1995). Artificial Minds. Cambridge MA: MIT Press.

Franklin, S., Baars, B. J., Ramamurthy, U., & Ventura, M. (2005). The Role of

Consciousness in Memory. Brains, Minds and Media, 1, 1–38.

Franklin, S., & Graesser, A. C. (1997). Is it an Agent, or just a Program?: A Taxonomy

for Autonomous Agents Intelligent Agents III (pp. 21–35). Berlin: Springer
Verlag.

Franklin, S., & Patterson, F. G. J. (2006). The LIDA Architecture: Adding New Modes of

Learning to an Intelligent, Autonomous, Software Agent IDPT-2006 Proceedings

200

(Integrated Design and Process Technology): Society for Design and Process
Science.

Franklin, S., Strain, S., Snaider, J., McCall, R., & Faghihi, U. (in press). Global

Workspace Theory, its LIDA Model and the Underlying Neuroscience.
Biologically Inspired Cognitive Architectures, 1.

Furber, S. B., Bainbridge, W. J., Cumpstey, J. M., & Temple, S. (2004). A Sparse

Distributed Memory based upon N-of-M Codes. Neural Networks, 17(10), 1437-
1451.

Fuster, J. M. (2006). The cognit: A network model of cortical representation.

International Journal of Psychophysiology, 60(2), 125-132.

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. M. (1995). Design Patterns: Elements

of Reusable Object-Oriented Software: Addison-Wesley Professional.

George, D. (2008). How the brain might work: A hierarchical and temporal model for

learning and recognition. PhD Thesis., Stanford University.

Giles, C. L., Horne, B. G., & Lin, T. (1995). Learning a Class of Large Finite State

Machines with a Recurrent Neural Network. Neural Networks, 8(9), 1359-1365.

Guizzo, E. (2011). Robots with their heads in the clouds. IEEE Spectrum, 48(3), 16-18.

Hawkins, J. (2005). On Intelligence. New York, NY: Owl Books.

Hawkins, J., & Blakeslee, S. (2007). Why can’t a computer be more like a brain. IEEE

Spectrum, 44(4), 20-26.

Hely, T., Willshaw, D. J., & Hayes, G. (1997). A new approach to Kanerva's sparse

distributed memory. IEEE Transactions on Neural Networks, 8(3), 791-794.

Hewitt, C., Bishop, P., & Steiger, R. (1973). A universal modular ACTOR formalism for

artificial intelligence. Paper presented at the Proceedings of the 3rd international
joint conference on Artificial intelligence.

Hinton, G. E. (1990). Mapping part-whole hierarchies into connectionist networks.

Artificial Intelligence, (46), 47-75.

Hinton, G. E. (2007). Learning multiple layers of representation. TRENDS in Cognitive

Sciences, 11(10), 428-434.

Hinton, G. E., McClelland, J. L., & Rumelhart, D. E. (1986). Distributed representations.

In D. E. Rumelhart & J. L. McClelland (Eds.), Parallel Distributed Processing:

201

Explorations in the Microstructure of Cognition. Volume 1: Foundations (pp. 77-
109). Cambridge, MA: MIT Press.

Hinton, G. E., Osindero, S., & Teh, Y. (2006). A fast learning algorithm for deep belief

nets. Neural Computation, 18, 1527-1554.

Hofstadter, D. R. (1995). Fluid Concepts and Creative Analogies. New York, NY: Basic

Books.

Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective

computational abilities. In Proceedings of the National Academy of Science, 79,
2554-2558.

Howell, R. M., & Fowler, D. (1990). A Neural Network as an Instrument of Prediction.

In R. A. Miller (Ed.), Procedings of the Annual Symposium on Computer
Application in Medical Care (pp. 299-302). Washington DC: IEEE Computer
Society Press.

Jaeckel, L. A. (1989a). An Alternative Design for a Sparse Distributed Memory. (No.

Report RIACS TR 89.28): Research Institute for Advanced Computer Science,
NASA Ames Research Center.

Jaeckel, L. A. (1989b). A Class of Designs for a Sparse Distributed Memory (No. Report

RIACS TR 89.30): Research Institute for Advanced Computer Science, NASA
Ames Research Center.

Jockel, S. (2009). Crossmodal Learning and Prediction of Autobiographical Episodic

Experiences using a Sparse Distributed Memory. PhD Thesis., University of
Hamburg, Hamburg.

Joglekar, U. D. (1989). Learning to read aloud: A neural network approach using sparse

distributed memory (No. RIACS 89.27): Research Institute for Advanced
Computer Science, NASA Ames Research Center.

Jones, M. N., & Mewhort, D. J. K. (2007). Representing word meaning and order

information in a composite holographic lexicon. Psychological Review, 114, 1-37.

Kanerva, P. (1988). Sparse Distributed Memory. Cambridge MA: The MIT Press.

Kanerva, P. (1993). Sparse Distributed Memory and related models. In M. H. Hassoun

(Ed.), Associative Neural Memories: Theory and Implementation (pp. 50-76).
New York, NY: Oxford University Press.

Kanerva, P. (1994). The binary spatter code for encoding concepts at many levels. In M.

Marinaro & P. Morasso (Eds.), ICANN ’94: Proceedings of International

202

Conference on Artificial Neural Networks (Vol. 1, pp. 226–229). London, UK:
Springer-Verlag.

Kanerva, P. (1996). Binary Spatter-Coding of Ordered K-Tuples. In C. von der Malsburg,

W. von Seelen, J. C. Vorbrüggen & B. Sendhoff (Eds.), ICANN 96 Proceedings of
the 1996 International Conference on Artificial Neural Networks (Vol. 1112, pp.
869-873): Springer.

Kanerva, P. (1998). Dual Role of Analogy in the Design of a Cognitive Computer. In K.

Holyoak, D. Gentner & B. Kokinov (Eds.), Advances in Analogy Research:
Integration of Theory and Data from the Cognitive, Computational, and Neural
Sciences (Proc. Analogy'98 workshop) (pp. 164-170). Sofia, Bulgaria: New
Bulgarian University.

Kanerva, P. (2009). Hyperdimensional Computing: An Introduction to computing in

distributed representation with high-dimensional random vectors. Cognitive
Computation, 1(2), 139-159.

Karlsson, R. (1995). A fast activation mechanism for the Kanerva SDM memory.

Proceedings of the RWC Symposium, 69-70.

Keeler, J. D. (1988). Comparison between Kanerva’s SDM and Hopfield-type neural

networks. Cognitive Science, 12, 299-329.

Keppel, G., & Underwood, B. J. (1962). Proactive inhibition in short-term retention of

single items. Journal of Verbal Learning and Verbal Behavior, 1, 153-161.

Kremer, S. C. (2001). Spatiotemporal Connectionist Networks: A Taxonomy and

Review. Neural Computation, 13(2), 249-306.

Kruschke, J. K. (2003). Attention in Learning. Current Directions in Psychological

Science 12, 171-175.

Kurby, C. A., & Zacks, J. M. (2008). Segmentation in the perception and memory of

events. Trends in Cognitive Science, 12(2), 72-79.

Lawrence, M., Trappenberg, T., & Fine, A. (2006). Rapid learning and robust recall of

long sequences in modular associator networks. Neurocomputing, 69(7-9), 634-
641.

Leveille, J., Ames, H., Chandler, B., Gorchetchnikov, A., Livitz, G., Versace, M., et al.

(2011). Invariant object recognition and localization in a virtual animat. Paper
presented at the International Conference on Cognitive and Neural Systems
(ICCNS) 2011.

203

Likharev, K. K. (2009). Biologically Inspired Computing in CMOL CrossNets. Paper
presented at the AAAI Fall Symposium on Biologically Inspired Cognitive
Architecture.

Logan, G. D. (2002). An Instance Theory of Attention and Memory. Psychological

Review, 109, 376–400.

Lopez, I., Sanz, R., Moreno, F., Salvador, R., & Alarcon, J. (2007). From Cognitive

Architectures to Hardware: A Low Cost FPGA-Based Design Experience. Paper
presented at the IEEE International Symposium on Intelligent Signal Processing.
WISP 2007.

Marr, D. (1969). A theory of cerebellar cortex. Journal of Physiology, 202, 437-470.

Maurer, A., Hersch, M., & Billard, A. G. (2005). Extended hopfield network for

sequence learning: Application to gesture recognition. Proceedings of the ICANN
2005.

McGeoch, J. A. (1932). Forgetting and the law of disuse. Psychological Review, 39, 352-

370.

Mendes, M., Coimbra, A., & Crisóstomo, M. (2009). Assessing a Sparse Distributed

Memory Using Different Encoding Methods. Proceedings of the World Congress
on Engineering, 1, 1-6.

Mendes, M., Crisostomo, M., & Coimbra, A. P. (2008). Robot navigation using a sparse

distributed memory. Paper presented at the IEEE International Conference on
Robotics and Automation. ICRA 2008.

Meng, H., Appiah, K., Hunter, A., Yue, S., Hobden, M., Priestley, N., et al. (2009). A

modified sparse distributed memory model for extracting clean patterns from
noisy inputs. Paper presented at the International Joint Conference on Neural
Networks (IJCNN), Atlanta, GA, USA.

Metcalfe, J. (1982). A composite holographic associative recall model. Psychological

Review, 89, 627-661.

Murdock, B. B. (1983). A Distributed Memory Model for Serial-Order Information.

Psychological Review, 92(1), 316-338.

Murdock, B. B. (1993). TODAM2: A Model for the Storage and Retrieval of Item,

Associative, and Serial-Order Information. Psychological Review, 100(2), 183-
203.

Newell, A., & Simon, H. A. (1976). Computer Science as Empirical Inquiry: Symbols

and Search. Communications of the ACM, 19(3), 113-126.

204

NVIDIA. (2012). CUDA C Programming Guide V.4.2. Santa Clara CA: NVIDIA.

Olson, M., Bostic, K., & Seltzer, M. (1999). Berkeley DB Proccedings of the Usenix

Annual Technical Conference. Monterey, CA.

Oracle. (2010). Java Programming Language, SL-275-SE6 G.2.

Patyk-Lonska, A., Czachor, M., & Aerts, D. (2011). A comparison of geometric

analogues of holographic reduced representations, original holographic reduced
representations and binary spatter codes Procedings of the Federated Conference
on Computer Science and Information Systems (FedCSIS), 2011

Peterson, L. R., & Peterson, M. J. (1959). Short-term retention of individual verbal items.

Journal of Experimental Psychology, 58, 193-198.

Plate, T. A. (1995). Holographic Reduced Representations. IEEE Transactions on Neural

Networks, 6(3), 623-641.

Plate, T. A. (2003). Holographic Reduced Representation: distributed representation of

cognitive structure. Stanford: CSLI.

Polikar, R., Udpa, L., Udpa, S., & Honavar, V. (2001). Learn++: An incremental learning

algorithm for supervised neural networks. IEEE Transactions on System, Man and
Cybernetics (C), Special Issue on Knowledge Management, 31(4), 497-508.

Pollack, J. B. (1990). Recursive Distributed Representations. Artificial Intelligence, 46(1-

2), 77-105.

Prager, R. W., & Fallside, F. (1989). The modified Kanerva model for automatic speech

recognition. Computer Speech and Language, 3(1), 61-81.

Rachkovskij, D. A. (2001). representation and Processing of Structures with Binary

Sparse Distributed Codes. IEEE Transactions on Knowledge and Data
Engineering, 13(2), 261-276.

Rachkovskij, D. A., & Kussul, E. M. (2001). Binding and Normalization of Binary

Sparse Distributed Representations by Context-Dependent Thinning. Neural
Computation, 13(2), 411-452.

Ramamurthy, U., Baars, B. J., D’Mello, S. K., & Franklin, S. (2006). LIDA: A Working

Model of Cognition. Paper presented at the 7th International Conference on
Cognitive Modeling, Trieste, Italy.

Ramamurthy, U., D'Mello, S. K., & Franklin, S. (2006). Realizing Forgetting in a

Modified Sparse Distributed Memory System. In C. Schunn & S. Lane (Eds.),

205

Proceedings of the 28th Annual Conference of the Cognitive Science Society (pp.
1992–1997). Mahwah, NJ: Lawrence Erlbaum Associates.

Ramamurthy, U., D’Mello, S. K., & Franklin, S. (2004). Modified Sparse Distributed

Memory as Transient Episodic Memory for Cognitive Software Agents
Proceedings of the International Conference on Systems, Man and Cybernetics.
Piscataway, NJ: IEEE.

Ramamurthy, U., & Franklin, S. (2011). Memory Systems for Cognitive Agents. Paper

presented at the Proceedings of Human Memory for Artificial Agents Symposium
at the Artificial Intelligence and Simulation of Behavior Convention (AISB'11).

Rao, R. P. N., & Fuentes, O. (1998). Hierarchical Learning of Navigational Behaviors in

an Autonomous Robot using a Predictive Sparse Distributed Memory. Machine
Learning, 31, 87-113.

Ratitch, B., & Precup, D. (2004). Sparse distributed memories for on-line value-based

reinforcement learning. Lecture Notes in Computer Science (LNCS), 3201, 347-
358.

Recchia, G. L., Jones, M. N., Sahlgren, M., & Kanerva, P. (2010). Encoding sequential

information in vector space models of semantics: Comparing holographic reduced
representation and random permutation. In S. Ohisson & R. Catrambone (Eds.),
Proceedings of the 32nd Annual Cognitive Science Society. Austin, TX.

Riesenhuber, M., & Poggio, T. (1999). Hierarchical models of object recognition in

cortex. Nature Neuroscience, 2, 1019-1025.

Robertson, P., & Laddaga, R. (2011). Learning to Find Structure in a Complex World.

Paper presented at the Biological Inspired Cognitive Architectures 2011,
Washington DC.

Rogers, D. (1990). Predicting weather using a genetic memory: a combination of

Kanerva's sparse distributed memory with Holland's genetic algorithms. Advances
in Neural Information Processing Systems, 2, 455-464.

Saarinen, J., Pohja, S., & Kaski, K. (1991). Self-organization with Kanerva’s sparse

distributed memory. In T. Kohonen, K. Mäkisara, O. Simula & J. Kangas (Eds.),
Artificial Neural Networks ICANN-91 (Vol. 1, pp. 285-290). Helsinki, Finland:
Elsevier/North-Holland.

Sahlgren, M. (2005). An Introduction to Random Indexing. Paper presented at the

Methods and Applications of Semantic Indexing Workshop at the 7th
International Conference on Terminology and Knowledge Engineering, TKE
2005, Copenhagen, Denmark.

206

Sejnowski, T. J., & Rosenberg, C. R. (1986). NETtalk: A Parallel Network that Learns to
Read Aloud (No. Report JHU/EECS-86/01): Department of Electrical
Engineering and Computer Science, Johns Hopkins University.

Serre, T., Wolf, L., Bileschi, S., Riesenhuber, M., & Poggio, T. (2007). Robust Object

Recognition with Cortex-Like Mechanisms. IEEE Transations on Pattern
Analysis and Machine Intelligence, 29(3), 411-426.

Shannon, C., & Weaver, W. (1949). The mathematical theory of communication. Urbana,

IL: University of Illinois Press.

Sims, C. R., & Gray, W. D. (2004). Episodic versus semantic memory: An exploration of

models of memory decay in the serial attention paradigm. Paper presented at the
6th international conference on cognitive modeling -- ICCM2004, Pittsburgh, PA.

Smolensky, P. (1990). Tensor Product Variable Binding and the Representation of

Symbolic Structures in Connectionist Systems. Artificial Intelligence, 46(1-2),
159-216.

Snaider, J., & Franklin, S. (2011). Extended Sparse Distributed Memory. Paper presented

at the Biological Inspired Cognitive Architectures 2011, Washington DC.

Snaider, J., & Franklin, S. (2012a). Extended Sparse Distributed Memory and Sequence

Storage. Cognitive Computation, 4(2), 172-180.

Snaider, J., & Franklin, S. (2012b). Integer Sparse Distributed Memory. Paper presented

at the The 25th Florida Artificial Intelligence Research Society Conference
FLAIRS-25, Marco Island, FL.

Snaider, J., & Franklin, S. (in review). Modular Composite Representation.

Snaider, J., Franklin, S., Strain, S., & George, E. O. (in review). Integer Sparse

Distributed Memory: Analysis and Results.

Snaider, J., McCall, R., & Franklin, S. (2010). The Immediate Present Train Model Time

Production and Representation for Cognitive Agents. Paper presented at the
AAAI Spring Symposium 2010 on "It's All In the Timing".

Snaider, J., McCall, R., & Franklin, S. (2011). The LIDA Framework as a General Tool

for AGI. Paper presented at the The Fourth Conference on Artificial General
Intelligence.

Snaider, J., McCall, R., & Franklin, S. (2012). Time Production and Representation in a

Conceptual and Computational Cognitive Model. Cognitive Systems Research,
13(1), 59-71.

207

Somervuo, P. (1999). Redundant Hash Addressing of Feature Sequences Using the Self-
Organizing Map. Neural Processing Letters, 10(1), 25-34.

Starzyk, J. A., & He, H. (2007). Anticipation-Based Temporal Sequences Learning in

Hierarchical Structure. IEEE Transactions on Neural Networks, 18(2), 344-358.

Stringer, S. M., Rolls, E. T., Trappenberg, T. P., & de Araujo, I. E. T. (2003).

Selforganizing continuous attractor networks and motor function. Neural
Networks, 16 (2), 161-182.

Subramaniam, V. (2011). Programming Concurrency on the JVM: Mastering

Synchronization, STM, and Actors Pragmatic Bookshelf.

Sun, R., & Giles, C. L. (2001). Sequence learning: From recognition and prediction to

sequential decision making. IEEE Intelligent Systems, 16(4), 67-70.

Sutton, R. S., & Whitehead, S. D. (1993). Online learning with random representations

Proceedings of the 10th International Conference on Machine Learning (pp. 314-
321): Morgan Kaufmann.

Tenenbaum, J. B., Kemp, C., Griffiths, T. L., & Goodman, N. D. (2011). How to grow a

mind: statistics, structure, and abstraction. Science, 331(6022), 1279-1285.

Tulving, E. (1968). Theoretical issues in free recall. In T. R. Dixon & D. L. Horton

(Eds.), Verbal Behaviour and General Behaviour Theory. Englewood Cliffs, NJ:
Prentice Hall.

Turney, P. D., & Pantel, P. (2010). From Frequency to Meaning: Vector Space Models

of Semantics. Journal of Artificial Intelligence Research, 37, 141-188.

Versace, M., & Chandler, B. (2011). MoNETA: A Mind Made from Memristors. IEEE

Spectrum, December 2011.

Wang, D., & Yuwono, B. (1995). Anticipation-based temporal pattern generation. IEEE

Trans. Syst., Man, Cybern, 25(4), 615-628.

Wang, D., & Yuwono, B. (1996). Incremental Learning of Complex Temporal Patterns.

IEEE Transactions on Neural Networks, 7(6), 1465-1481.

Wang, L. (1998). Learning and retrieving spatio-temporal sequences with any static

associative neural network. IEEE Transactions on Circuits and Systems II:
Analog and Digital Signal Processing, 45(6), 729-738.

Wang, L. (2000). Heteroassociations of spatio-temporal sequences with the bidirectional

associative memory. IEEE Transactions on Neural Networks, 11(6), 1503-1505.

208

Willshaw, D. J. (1981). Holography, associative memory, and inductive generalization.
In G. E. Hinton & J. A. Anderson (Eds.), Parallel Models of Associative Memory
(pp. 83-104). Hillsdale, NJ: Erlbaum.

Willshaw, D. J., Buneman, O. P., & Longuet-Higgins, H. C. (1969). Non-holographic

associative memory. Nature, 222(5197), 960-962.

Winston, P. H. (1992). Artificial Intelligence (3rd ed.). Boston, MA: Addison Wesley.

Wörgötter, F., & Porr, B. (2004). Temporal sequence learning, prediction, and control: A

review of different models and their relation to biological mechanisms. Neural
Computation, 17(2), 245-319.

209

Appendix A: Author’s Refereed Publications

Snaider, J., & Franklin, S. (2012a). Extended Sparse Distributed Memory and Sequence
Storage. Cognitive Computation, 4(2), 172-180.

Franklin, S., Strain, S., Snaider, J., McCall, R., & Faghihi, U. (in press). Global

Workspace Theory, its LIDA Model and the Underlying Neuroscience.
Biologically Inspired Cognitive Architectures, 1.

Snaider, J., McCall, R., & Franklin, S. (2012). Time Production and Representation in a

Conceptual and Computational Cognitive Model. Cognitive Systems Research,
13(1), 59-71.

Snaider, J., & Franklin, S. (2012). Integer Sparse Distributed Memory. Paper presented at

the The 25th Florida Artificial Intelligence Research Society Conference
FLAIRS-25, Marco Island, FL.

Snaider, J., & Franklin, S. (2011). Extended Sparse Distributed Memory. Paper presented
at the Biological Inspired Cognitive Architectures 2011, Washington DC.

Snaider, J., Olney, A. M., & Person, N. (2011). Nonverbal Action Selection for

Explanations Using an Enhanced Behavior Net. Paper presented at the the 11th
Conference of Intelligent Virtual Agents 2011.

Snaider, J., McCall, R., & Franklin, S. (2011). The LIDA Framework as a General Tool

for AGI. Paper presented at the The Fourth Conference on Artificial General
Intelligence.

Snaider, J., McCall, R., & Franklin, S. (2010). The Immediate Present Train Model Time

Production and Representation for Cognitive Agents. Paper presented at the
AAAI Spring Symposium 2010 on "It's All In the Timing".

Snaider, J., McCall, R., & Franklin, S. (2009). Time Production and Representation in a

Conceptual and Computational Cognitive Model. Paper presented at the AAAI
Fall Symposium 2009 on Biologically Inspired Cognitive Architecture.

Snaider, J., Proaño, A., López De Luise, D., & Stegmayer, G. (2008). Autenticación

Facial Inteligente. Paper presented at the X Workshop de Investigadores en
Ciencias de la Computación. La Pampa, Argentina.

Franklin, S., Madl, T., D'Mello, S. K., & Snaider, J. (in review). LIDA: A Systems-level

Architecture for Cognition, Emotion, and Learning. Transactions on Autonomous
Mental Development.

210

Snaider, J., Franklin, S., Strain, S., & George, E. O. (in review). Integer Sparse
Distributed Memory: Analysis and Results.

Snaider, J., & Franklin, S. (in review). Modular Composite Representation.

211

Appendix B: MCR Scripting Language Javacc Grammar

/**
 * JavaCC template file created by SF JavaCC plugin 1.5.17+ wizard for
 * JavaCC 1.5.0+
 *
 * @author Javier Snaider
 *
 */
options
{
 JDK_VERSION = "1.6";
 static = false;
}

PARSER_BEGIN(McrParser)
package edu.memphis.ccrg.mvsdm.mcr.parser;
import edu.memphis.ccrg.mvsdm.parser.nodes.*;
import java.util.ArrayList;
import java.util.List;

public class McrParser
{
}

PARSER_END(McrParser)

SKIP :
{
 " "
| "\r"
| "\t"
}
/* OPERATORS */
TOKEN :
{
< PLUS : "+" >
}
TOKEN:
{
< INV : "!" >
}
TOKEN:
{
< MULOP : "*"|"/" >
}

TOKEN:
{
< EXP : "^" >
}
TOKEN:
{
< SEP : ";" >
}

212

TOKEN:
{
< NEW : "newvector" >
| < NEWRNDVECTOR : "newrndvector" >
| < NEWRND : "newrnd" >
| < PRINT : "print" >
| < PRINTDISTANCE : "printd" >
| < PRINTRANK : "rank" >
}
TOKEN:
{
< EQUALS : "=" >
}
TOKEN:
{
< CR : "\n" >
}
TOKEN:
{
< LPAREN : "(" >
}
TOKEN:
{
< RPAREN : ")" >
}

TOKEN:
{
< COMMENT: "//" (~["\n"])* >
}
TOKEN :
{
< CONSTANT : ("-")? < NUMBER >("." < NUMBER >)(["E" ,"e"] ("-")? <
NUMBER >)? >
| < INTEGER : (("-")? < NUMBER >) >
| < ID : <LETTER> (<LETTER>|<DIGIT>)* >
| < NUMBER : (< DIGIT >)+ >
| < #DIGIT : ["0"-"9"] >
| < #LETTER: ["_","a"-"z","A"-"Z"] >
| < STRING_LITERAL: "\"" (~["\"","\\","\n","\r"] | "\\"
(["n","t","b","r","f","\\","\'","\""] | ["0"-"7"] (["0"-"7"])? | ["0"-
"3"] ["0"-"7"] ["0"-"7"]))* "\"" >
}

Program program ():
{
 Statement stmt=null;
 Program prog=new Program();
}
{
 (
 (stmt=statement(){
 if (stmt!=null){
 prog.addStatement(stmt);
 }
 })+

213

)
 <EOF>
 {
 return prog;
 }
}

Statement statement():
{
 VecExpression vexp=null;
 VecExpression vexp2=null;
 List<String> ids = new ArrayList<String>();
 Token token=null;
 Token token2=null;
}
{
(token = < ID > <EQUALS > vexp=vectorExpression() < SEP >)
 {
 return new Assignment(new VectorIdentifier(toke n.image),vexp);
 }

|LOOKAHEAD(3)
(< PRINT > "(" vexp = vectorExpression() ")" < SEP >)
 {
 return new PrintVector(vexp);
 }

|LOOKAHEAD(3)
(< PRINT > "(" token = < STRING_LITERAL > ")" < SEP >)
 {
 return new
PrintObject(token.image.substring(1,token.image.len gth()-1));
 }

| (< PRINTDISTANCE > "(" vexp = vectorExpression() "," vexp2 =
vectorExpression() ")"
< SEP >)
 {
 return new PrintVectorDistance(vexp,vexp2);
 }
|LOOKAHEAD(3)
(< PRINTRANK > "(" vexp = vectorExpression() "," to ken = < INTEGER >
")" < SEP >)
 {
 return new PrintRank(vexp, new Integer (token.i mage));
 }

|LOOKAHEAD(3)
(< PRINTRANK > "(" token = < STRING_LITERAL > ","
vexp = vectorExpression() "," token2 = < INTEGER > ")" < SEP >)
 {
 return new PrintRank(token.image.substring(1,to ken.image.length()
1),vexp, new Integer (token2.image));
 }

| (< NEWRND > "(" token=< ID >

214

 ("," token2=< ID >
 {
 ids.add(token2.image);
 }
)*
 ")" < SEP >)
 {
 ids.add(0,token.image);
 return new NewRnd(ids);
 }

| < SEP >
| < CR >
{
return null;
}
| < COMMENT >< CR >
{
return null;
}
}

VecExpression vectorExpression():
{
 VecExpression oper1=null;
 VecExpression oper2=null;
 Token token=null;
 char op;
 List<VecExpression> ops = new ArrayList<VecExpr ession>();
}
{
LOOKAHEAD(2)
 oper1=term() (op=addop() oper2=term()
 {
 ops.add(oper2);
 })*
 {
 if(ops.size()>0){
 ops.add(0,oper1);
 return new SumOp(ops);
 }else{
 return oper1;
 }
 }

|LOOKAHEAD(3)
< NEW > "(" ")"
{
return new NewVectorFact(false);
}
|LOOKAHEAD(4)
< NEW > "(" oper1= vectorExpression() ")"
{
return new NewVectorFact(oper1);
}
| < NEW > "(" oper1= vectorExpression() "," token =< INTEGER > ")"

215

{
return new NewVectorFact(oper1,new Integer(token.im age));
}
| < NEWRNDVECTOR > "("")"
{
return new NewVectorFact(true);
}

|LOOKAHEAD(2)
 token=< ID >
{
return new VectorIdentifier(token.image);
}
}

char addop():
{
}
{
<PLUS>
{
return '+';
}
}

VecExpression term():
{
 VecExpression oper1=null;
 VecExpression oper2=null;
 Token token;
}
{
oper1=factor() (token=< MULOP > oper2=factor()
 {
 oper1= new MulOp(oper1,oper2,(token.image.charA t(0)=='/'));
 })*
{
return oper1;
}
}

VecExpression factor():
{
 VecExpression oper1=null;
}
{
oper1=icp()
{
return oper1;
}
|< INV > oper1=icp()
{
return new InvOp(oper1);
}
}

216

VecExpression icp():
{
 VecExpression oper1=null;
 Token token = null;
}
{
token=< ID >
{
return new VectorIdentifier(token.image);
}
|< LPAREN > oper1=vectorExpression() < RPAREN >
{
return oper1;
}
}

	Integer Sparse Distributed Memory and Modular Composite Representation
	Recommended Citation

	Acknowledgements
	Abstract
	Table of Contents
	List of Tables
	List of Figures
	Chapter 1: Introduction
	Chapter 2: Sparse Distributed Memory
	Chapter 3: Vector Representation
	Chapter 4: Extended Sparse Distributed Memory
	Chapter 5: Integer Sparse Distributed Memory
	Chapter 6: Modular Composite Representation
	Chapter 7: Implementations
	Chapter 8: Conclusions
	References
	Appendix A: Author’s Refereed Publications
	Appendix B: MCR Scripting Language Javacc Grammar

