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Abstract

Javier Snaider. Ph.D. The University of MemphisgR012. Integer Sparse
Distributed Memory and Modular Composite RepredenriaMajor Professor: Stan P.
Franklin.

Challenging Al applications, such as cognitive @etghures, natural language
understanding, and visual object recognition skarmee basic operations including
pattern recognition, sequence learning, clusteang, association of related data. Both
the representations used and the structure oftamsya@gnificantly influence which tasks
and problems are most readily supported. A memargahand a representation that
facilitate these basic tasks would greatly imprtheperformance of these challenging
Al applications.

Sparse Distributed Memory (SDM), based on largatyivectors, has several
desirable properties: auto-associativity, contelgrassability, distributed storage,
robustness over noisy inputs that would facilitheeimplementation of challenging Al
applications. Here | introduce two variations oe thmiginal SDM, the Extended SDM
and the Integer SDM, that significantly improvedbealesirable properties, as well as a
new form of reduced description representation thmMER.

Extended SDM, which uses word vectors of largez tian address vectors,
enhances its hetero-associativity, improving tloeagje of sequences of vectors, as well
as of other data structures. A novel sequenceiteamechanism is introduced, and
several experiments demonstrate the capacity aneesee learning capability of this
memory.

Integer SDM uses modular integer vectors rather thaary vectors, improving

the representation capabilities of the memory &hdoise robustness. Several
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experiments show its capacity and noise robustideretical analyses of its capacity
and fidelity are also presented.

A reduced description represents a whole hieravsiyg a single high-
dimensional vector, which can recover individuams and directly be used for complex
calculations and procedures, such as making araslogurthermore, the hierarchy can be
reconstructed from the single vector. Modular CosigoRepresentation (MCR), a new
reduced description model for the representati@a us challenging Al applications,
provides an attractive tradeoff between expressisemand simplicity of operations. A
theoretical analysis of its noise robustness, séwxperiments, and comparisons with
similar models are presented.

My implementations of these memories include aedlypriented version using a
RAM cache, a version for distributed and multi-tdang execution, and a GPU version

for fast vector processing.
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Chapter 1: Introduction

Today, computers are ubiquitous. They are not prégent in high technology research
facilities and complex industrial process contydtems, but in everyday places and
situations. We have computers in our desks, o, eard our cell phones. The processor
in my cell phone is probably more powerful than ¢benputer onboard Apollo 11, and
certainly, it also has more memory capacity. Computan perform complicated
mathematical calculations at amazing speed thauwtisnkable just a few years ago.
The spectrum of computer applications is equallgressive. Applications cover assorted
disciplines such as science, medicine, busineaphgrs arts, media, industry, education,
military science, and so on. Most of these appbecet exploit the strengths of computers:
computer power, memory capacity, communication gpaamong others.

Despite the power and success of computers, thertasks that computers are
not yet able to perform well. For many tasks thahhans perform almost effortlessly,
such as object and face recognition, natural lagguaderstanding, and navigation in
unknown environments, there are no efficient atons that perform at least as well as
humans. Interestingly, the kinds of tasks that astens perform efficiently, such as math
calculations, frequently challenge people when #reycarried out by hand, as shown by
the number of errors that people incur performimgse operations. On the other hand,
computers have trouble with operations that seemplsi and unchallenging to humans.

Several authors (Franklin, 1995; Kanerva, 19889200inston, 1992) have
pointed out the importance of representations ttopa tasks efficiently and solve
problems. Winston (1992) defined the representairorciple in these words: “Once a

problem is described using an appropriate repratent the problem is almost solved”
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(p- 18). Franklin (1995) discussed the importarfaepresentation for both symbolic Al
and connectionist models (p. 365). Kanerva (20@)tpd out how a representation can
facilitate certain tasks at the expense of oth®ersce example from computer science
illustrates this. Usually computers represent gignéegers using two’s complement
format. Addition and subtraction operations caretlieiently performed by the same
hardware. On the other hand, Binary Coded DeciB@D) format represents each
decimal digit of a number with its own bit sequer8€ED excels at fast and accurate
translation between machine and human readableatsriHowever, it requires more
complex algorithms and circuits for basic arithro@perations, and its storage usage is
less efficient.

The structure of a system correlates with the sepr@tion used. For example,
special hardware is needed to support floatingtpelresentation efficiently. Without
this special hardware, the implementation of matteral operations will be too slow to
be practical. Many Digital Signal Processors (D3Reje fixed point arithmetic
implementations that speedup processing when jppadgsnot an issue.

Both the representation and structure of a systgnifisantly influence which
tasks and problems are most readily supported.kénéactor underlying representation
is the memory mechanism. The characteristics gses’s memory can give clues as to
what kind of tasks the system can perform effidiemtnalyzing the features of

biological memories helps to define the requiremefitsome applications, such as



cognitive architectures and robot navigation cdtérs, that face tasks and problems
similar to those of biological entitits

Biological memories, and human memory in particutan be categorized in
numerous forms: sensory, procedural, working, datise, episodic, semantic, long-term
memory, and perhaps others (Ramamurthy & FranRbd1). Here | discuss properties
that may fit in several of these categories.

Human memory is always learning. Although attentsoan important component
of learning (Kruschke, 2003; Logan, 2002), humaasri effortlessly all the time. Human
memory is content addressable; for example, memioaypast event can be cued by a
similar event or by partial contents of that memdiyis property is called auto-
associativity (see below). We can remember a paeeface almost instantly without
knowing where it is stored in the memory. Human ragnis able to associate related
data, such as the name of a person with her fdds.pfoperty, called hetero-
associativity, allows the memory to retrieve soratadriggered by related data. Even
more important, human memory is particularly goadréEmembering sequences.
Language, motor skills, music, and planning aremgas of human activities that
require one to learn, recognize and remember segqsen

The human mind handles innumerable kinds of datiding low level sensory
information, such as visual or auditory informatipast events, motor skills and their
relationship with the context in which they are lgggh highly abstract concepts, and so
on. Several of these types of data, such as visfmmation, are unlikely to appear twice

in exactly the same way. For example, when we obsgtandscape or a face, there are

! Some features described here may be implementéshbgional processes other than memory.
Nevertheless, | will assume here that memory igarsible for these functionalities.
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myriads of factors that affect the observation:ilsenination, the angle of the observer,
weather conditions, etc. Human memory is able talleathese factors and recognize the
landscape or face anyway. Moreover, the human meoaor combine several images
into a prototypical view.

Even if there is no certainty about the capacitthefhuman memory, it seems
that data stored in it smoothly degrades or dechys. main theories about forgetting
have been proposed: interference and decay; seadanple (Altmann & Gray, 2002) for
a discussion on this subjécinterference between similar experiences and¢ay of
memory affects the recall process. We can oftereneber a face or a place, even if not
perfectly. In contrast, when an item of data i®ted from a computer memory, it is
deleted for good.

Computers also have memory modules. However, thal fisnctionality of
computer memory differs from that of humans. Fitts¢, computer’'s main memory
comprises an array of registers that generallyestiata as binary words. Each register
has a position in the memory identified by its a$dr Reading from these memories
requires knowing the address of the data that we twaread. Second, in general, there is
no relationship between the data and the addreseevithis stored. Finally, computer
memories have a predefined capacity explicitly sheteed by the number of records or
addresses in them.

Several Al applications, such as cognitive architexs (Foundalis, 2006;
Ramamurthy & Franklin, 2011), robot controllersqiel, 2009; Robertson & Laddaga,

2011), natural language processing, and visuagration, have in common that they try

2 However, some authors claim that traces in detiVeranemory do not decay, but some of them
cannot be retrieved (Tulving, 1968).
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to solve problems that are generally easy for hanlamt even the most advanced
algorithms today perform poorly compared with humarhesehallengingAl
applications can benefit from memory modules thare features with human memory.
Additionally, the features of these memory moduwlffsr the potential to enhance the
power and simplify the implementation of such aggdions. Moreover, recent
innovations in parallel computing (see below) maypiove the efficiency of such
implementations.

Challenging Al applications, such as the ones desdrabove, must be able to
perform a very wide range of tasks: object recagnjtplanning, action selection,
reasoning, and so on. But is there a set of pamitasks that is common to many of these
more high level tasks? It is difficult to give afidéive answer to this question. However,
several authors have attempted it. Ramamurthy eartkbn (2011) analyzed the
different types and requirements for memories aadling mechanisms for cognitive
agents. Jockel (2009) listed the desirable pragedf the memory module for the
controller system of cognitive, autonomous robots.

In his presentation, Robertson (2011) enumerateerakinsightful concepts
about robot perception and navigation requiremeétesdefined robust pattern
recognition as one of the most important low legasks for robot navigation controllers.
He pointed out that vectors of sensory input degaabways noisy, and it is unlikely that
exactly the same data will occur twice. Thus, @tag of several similar vectors is
critical in order to recognize them as the samermftion. Kanerva (1988, 2009) and
Jockel (2009) discussed similar ideas. Robertsem raentioned sequence learning and

integration of similar sequences as important t&ska robot controller. Other authors



identified sequence learning as a major piece ghition (Starzyk & He, 2007; Sun &
Giles, 2001). Association of related data, or Hablbearning, is frequently mentioned as
a fundamental process for both cognitive agentsrifalis & Martinez, 2007) and robot
controllers (Jockel, 2009; Robertson & Laddaga,130Kanerva (1988, 1993, 2009) also
described several important characteristics ofasgmtations and memory systems for
cognitive agents.

Summing up, a tentative list of some of the bapierations desirable for these
kinds of applications includes pattern recognitiocjuding when partial and noisy cues
are used, sequence learning, generalization, alewark as clustering, and association of
related data (i.e., Hebbian learning). A descriptib the requirements for memories and

data representation that facilitate these basicatioas follows.

Content Addressability

Biological memories are able to retrieve memorgagipartial or related data. For
example, the smell of a baking cake might remindfusur grandmother’s kitchen. This
is very different than how computer memories store retrieve data: namely, the
content’s address or location is required to re¢righe information. Content addressable
memories, also called associative memories, corhedriypes: auto-associative and

hetero-associative.

Auto-associativity and Hetero-associativity
Auto-associative memory associates a data itemitghf. This allows recovery the data

using a noisy or partial version as a cue. For @tana partial image of a person’s face

% Some of these requirements are also describaztkel] 2009.
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suffices to recall the complete image. Auto-assig plays a particularly important
role in the processing of sensory data, where saté often noisy or incomplete.

In hetero-associative memory, a set of data trgtfes retrieval of a related set.
For example, a person’s name enables recall dabes In a more practical scenario, a
robot controller application can relate an actiod ds context with its probable result

and use this information for planning.

Robustness to Noise

Robustness to noise, intimately related with agseaiativity, allows the memory to

recall stored information using noisy inputs. Sdmes memories with this property are

calledcleanupmemories, because they can eliminate the noiseisy inputs.
Applications that work with real world data, su@rabot controllers, are exposed

to noisy input data from sensors and propriocegdtiom sensors monitoring actuators.

Robustness to noise is a critical feature for amblications.

Generalization, Clustering, and Pattern Recognition
Clustering, which is essentially a classificationlgem, consists of grouping elements
into a set according to a specific criterion. Indual experiences or patterns are grouped
into categories based on common features. Genatializ closely related to clustering,
can be defined as a distillation of the commonues of the elements in a cluster.
Sometimes, this process also creates a new eléhegnepresents this generalization.
Several authors consider the recognition and ¢ieagon of patterns as one of
the most fundamental properties of cognition (Falisgd2006; Hofstadter, 1995). There

are many algorithms for clustering data. Howevevgesal of them are not biologically



plausible. First, they are not incremental: addieg data requires the algorithm to

reexamine all previous elements. Moreover, marth@i must predefine the number of
clusters or groups into which to divide the datd anoraclethat labels the training data
set. Human memory seems to be able to recogniterpsitcluster them, and generalize

new inputs without requiring the reprocessing dpatvious inputs.

Sequence Learning

Several authors, including (Starzyk & He, 2007; 8uGiles, 2001), consider spatial and
temporal sequence learning to be one of the magstiitant forms of learning for humans
and animals: sequences are present in procedaralng, to learn new skills, high level
planning, and problem solving.

For autonomous agents, time perception and refg®nare critical (Snaider,
McCall, & Franklin, 2010, 2012). Autonomous ageaibée to plan and foresee the result
of an action or group of actions are more likelgteceed in complex environments. The
ability to estimate the duration of these actimrdp perform time related logical
inferences, is also valuable. Sequence learniagkesy component of these processes.

Robust sequence learning requires memory modétsheih auto-associative and
hetero-associative characteristics. The auto-aaaity allows cueing the memory with
partial or noisy inputs, whereas the hetero-assgitiaconnects one element to the next

in the sequence (Lawrence, Trappenberg, & Fine§200



Resilience to Memory Damage

A memory system capable of recalling informatioereif it suffered minor damage
could be a useful feature for robots and otheriegipbns. This feature is often related to
the distribution and redundancy of the data inntieenory.

Autonomous robots implemented with memories pogsgékis feature may still
work even if part of their memory is damaged. Tikia critical feature for robots in
distant locations, such as space exploration robots

One of the limitations in the size of integratedtuits is the number of defects per
unit of area. A memory model that is able to workrewith these defects may be a good

candidate for future memory hardware implementation

One-shot Learning

The ability to learn a particular piece of informoat with one or few examples is called
one-shot learning (Fei-Fei, Fergus, & Perona, 200@ny connectionist models require
large training data sets to learn patterns. Fomgika, feed-forward neural networks
trained with backpropagation sometimes require setswith thousands of examples for
training. On the other hand, a young child leam&esgal categories a day using just a few
examples (Tenenbaum, Kemp, Griffiths, & Goodmari,130Systems with one-shot

learning memories tend to be more adaptive antemisio environmental changes.

Incremental Learning
Incremental learning is the ability to learn andgistér new information without the

necessity of reprocessing previously stored oistiagl data. Storing all the previous



data just to reprocess them when new input dataaapg inefficient and most of the time

infeasible. See for example (Polikar, Udpa, Udp&jd@avar, 2001).

Forgetting, Interference, and Graceful Degradation
Forgetting would seem to be a negative featureahories. However, it possesses
significant value related to learning. Forgettitig\as retaining only the most relevant or
frequent elements in the memory. The two primaeptles and possible mechanisms of
forgetting are decay (Brown, 1958; Ebbinghaus, 1&&%erson & Peterson, 1959) and
interference (Keppel & Underwood, 1962; McGeocl32)9 Similar events interfere with
one other, affecting their retrieval. Alternativetiecay causes memory loss as a function
of time (Ramamurthy, D'Mello, & Franklin, 2006; i Gray, 2004). Altmann and
Gray (2002) claim that decay and interference amnetfonally related and that the decay
mechanism prevents old traces from interfering wkv ones.

In unsupervised learning, a forgetting mechanistpshi® eliminate incorrect data
and wrong associations from the memory. For exanaplerong association is unlikely
to be frequently repeated, and the forgetting meishawill eventually discard it from

the memory.

High Dimensionality

The input from sensors and the possible statetabtars of robots and cognitive agents
may be represented with a high-dimensional feaiustate vector. Memories and
representations that directly handle these largeove may be an advantage. However,

this is not the main reason for this requirememnghHlimensional spaces have properties
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that help implement many of the requirements ligtexbiously. Since high

dimensionality is a critical issue for this worketnext section discusses it in more detail.

High Dimensional Vector Spaces

The neural system of humans and of some otherasinas on the order of £0

neurons. When the activity of neurons is recor@eén for simple mental events or

tasks, a wide number of neurons are active acenssa regions of the brain. Even if it

is not yet clear what exactly these patterns avaibn represent, we can argue that these
representations are distributed across a large euoflmeurons. On the other hand, in
unary representations, each unit, or neuron, reptesomething by itself.

High dimensional representations have useful ptagsethat would help in
achieving the desiderata described above. In theemionist and machine learning
literature, the problem related with high dimensilospaces is known as therse of
dimensionality Such spaces often involve exponential growtth@execution time of
algorithms. Because the space increases so quaaiy,samples become sparsely
distributed, and methods based on statistical fibgimice require an enormous amount of
data to be reliable. On the other hand, Kanervaqpeefers to high dimensionality as a
blessing. The inherent noise robustness of higledsional representations and their
potential for holistic processing (see below) catually facilitate the implementation of
the desired processes and features of the system.

Kanerva used binary vectors with thousands of dsioes for his binary Spatter
Code representations (1994) and Sparse DistritMesdory (1988, 2009). These vectors
have a rich representation capability and are mbése robust. Plate (1995, 2003) created

the Holographic Reduced Representation (HRR), eeseptation based on large vectors
11



of real numbers that also exploits the propertidsigh dimensional spaces. Vectors of
any of these high dimensional spaces can be usegitesent a complex structure, where
each vector denotes an element in the structureekier, a single vector can also
represent the same structure by implementiregdaced descriptiora mechanism to
encode complex hierarchical structures in vectoanectionist models (Hinton,

1990). These reduced description vectors can banebgal to obtain the whole structure,
but may also be used as is for certain operatibms. enables holistic processing of the
structure. Kanerva'’s Spatter Code and Plate’s HRRnaplementations of reduced
description models.

Kanerva (2009) introduced a possible new paradifjoomputing based on
distributed representations named hyperdimensimorabuting. He described operations
that can be performed using Spatter Code vectoch, &s analogy-making and inference
reasoning. Although he discussed hyperdimensiamrabating using binary vectors, the
same paradigm can be extended to other reducedptEstmodels such as HRR or
Modular Composite Representation, the one thatheilintroduced in this dissertation.
Plate (2003) also demonstrated the power of HRRov®to solve several tasks,
including sequence learning and logic operatiorsclvcomplement the
hyperdimensional ideas. The features of these rmadake them good candidates for
representation in cognitive architectures and offiepplications.

Several other models are based on large vectokel@med over the last two
decades, semantic space models exhibit succesany fnelds. Some of the more
prominent models are Latent Sematic Analysis (L@®erwester, Dumais, Furnas,

Landauer, & Harshman, 1990), based on statistitallyais; Random Indexing (Sahlgren,
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2005), based on random sparse vectors and randonuiaions; and BEAGLE (Jones
& Mewhort, 2007), based on HRR. For recent sungygmantic space models see
(Cohen & Widdows, 2009; Turney & Pantel, 2010).n8ligh most of these models are
based on the similarities or distances between sy@a@me of them were extended to

support other kinds of data (Jones & Mewhort, 2@&&hIgren, 2005) .

Parallel Computing Becoming Cheap

Modern computers are based on the Von Neumann mwtih dates to the 1940'’s.
This architecture divides the computer’s structate the central processing unit, the
memory, and the input-output unit. Computers asegied to perform logic and
mathematics based on binary representations of etsnb

Biological brains are composed of neurons. Thevatitin of these neurons and
their interconnection play an important role in oitige processing and memory. The
highly parallel and interconnected structure oifs@&eems very different than the
architecture of a computer. However, since itsgirice, the latter has undergone
innumerable improvements. Nowadays, it is commadmatee multi-core CPUs executing
instructions in parallel. Furthermore, Graphic Rs®ors Units (GPUs), which can
perform billions of parallel vector operations gecond, are often found even in mid-
range computers.

Although these tendencies do not radically chahgestructure of computers,
parallel computing and connectionist models ingpbg biological brains are now more
easily and more frequently implemented with higbdyallel algorithms using such
technologies as GPUs. Applications that could ffficiently only on high-end

supercomputers a few years ago can now be execntddsktops or laptops. For
13



example, Leveille and colleagues (2011) have beerldping MONETA (MOdular
Neural Exploring Traveling Agent), a highly pardibegnitive architecture implemented
to run on GPU based systems or on future memristbmologies (Versace & Chandler,
2011).

The memiristor is not the only new hardware techglbat is promising for
parallel implemetations. Likharev (2009) develo@MOL, a hybrid CMOS-
nanoelectronic circuit, and demonstrated sevenmalat@etworks implementations using
this technology. Furthermore, some authors experietewith FPGA (Field-
Programmable Gate Array) for hardware implementatiof simple cognitive

architectures (Lopez, Sanz, Moreno, Salvador, &&da, 2007).

Contributions of this Work
First proposed by Kanerva (1988), sparse distrbatemory (SDM) is a mathematical
model of human long term memory based on largerpivectors. The previous sections
have described this memory’s desirable propeftiés distributed, auto-associative,
content addressable, and noise robust. Moreovexhibits one-shot learning, is resilient
to damage, and its contents degrade gracefuldysdt possesses interesting psychological
characteristics as well, including interferencegimg when it does not know, and the
tip of the tongue effect. Furthermore, SDM’s stuuetis ideal for parallel processing or
hardware implementation.

SDM’s features make it an attractive option for mlaty memory modules in
cognitive architectures and other challenging Adlajations. The proposed variations on

SDM, Extended SDM and Integer SDM, further impradgdeatures.
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Extended SDM increases the hetero-associativityifeaf the memory. Data to
be described herein will show that a novel mechanising this extension is particularly
effective for sequence learning.

Integer SDM extends the domain of the memory t@picmteger vectors, with a
range of possible values for each dimension. Tinefits of this model are retained when
merged with Extended SDM into a combined SDM malat uses integer vectors, has
better hetero-associativity support, and improwgpience learning. These models can be
further expanded, for instance with the forgettimgchanism (Ramamurthy, D'Mello et
al., 2006), which would presumably improve the yesuised learning capabilities of the
memory.

Finally, a new reduced description representatiom Modular Composite
Representation (MCR) is introduced in this workatgr Code uses binary vectors and
simple operations such as bitwise XOR and aritherstims, but has some limitations in
its representation capabilities. Data from the vealld are not always Boolean, and
representations using more than two values arealdsi Moreover, the sum with
normalization operation required in Spatter Codg maoduce excessive noise into the
representation, making it brittle. Holographic Reeldl Representation uses real-valued
vectors, endowing it with a rich expressiveness,tmequires complex operations such
as circular convolution to combine vectors. Mod@Wamposite Representation provides
a good tradeoff between representation expressseeanad simplicity of operations.

Each of these representational models requiresaamep memory for retrieving
the components of a composite vector. Integer S®&Igood option for this function in

MCR.
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This research aims to achieve several specificsgtraparticular it produces the

following contributions to computer science:

Design and implementation of a new variation of SEMtended SDM, that
improves the hetero-associativity and sequenceilggarcapabilities of the
memory. (Chapter 4: Extended Sparse Distributed tdgnChapter 7:
Implementations.)

A new mechanism that allows the application of Bl SDM to the important
and widely studied field of sequence storage atréeval. | compared the
sequence storage and retrieval performance of BgteBDM to the original
SDM. (Chapter 4: Extended Sparse Distributed Memory

Design and implementation of a second variatio8[@M, Integer SDM, that
expands the representation capability of the memuotggration of Integer SDM
and Extended SDM into a dual-feature model. (Chdatinteger Sparse
Distributed Memory; Chapter 7: Implementation.)

Definition and empirical test of Modular CompodRepresentation (MCR), a
new reduced description model that balances repiasanal expressiveness and
implementational simplicity. | also demonstrated tise of Integer SDM as
cleanup memory for MCR. (Chapter 6: Modular ComfmBiepresentation.)
Demonstration of the implementation feasibilitytlése memory models in state-

of-the-art parallel and distributed technologi€hdpter 7: Implementations.)

Structure of this Dissertation

This dissertation has the following organizatioha@ter 2 introduces SDM and the

required mathematical background. Chapter 3 revieesnain concepts and models of
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vector representations. Chapter 4 introduces Exgi®DM and several experiments.
Sequence learning using Extended SDM is also cduarthis chapter. Chapter 5
develops Integer SDM and its applications. Chaptetroduces Modular Composite
Representation and several examples of its useglass its integration with Integer
SDM. Chapter 7 describes several implementatiotiseofechnologies introduced herein.
Finally, Chapter 8 suggests directions for fut@search, and discusses the conclusions

and contributions.
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Chapter 2: Sparse Distributed Memory

Many challenging Al applications including cognéiarchitectures, robot controllers,
image and speech recognition, and several oth@esrhamory requirements that are not
well fulfilled by conventional memory models. Natrprisingly these same
characteristics are also found in biological meemrAll these applications require
recollection of previous memories from current dagxrcepts, or information. This is not
different from many other applications in compugeience and software engineering, but
what make these applications special is that thectidata are not exactly the same as
the stored data in the memory. A useful way toteesesituation is considering the new
data as a noisy version of the old data. The meinasyto be able to retrieve the stored
data using noisy cues. Along the same lines, itlvba desirable if the memory were
associative and content addressable. That isputldlbe capable of retrieving stored data
based on the same information, or part of it. Thidifferent from conventional

memories, where the data are retrieved by knowiag aiddress in the memory. Another
very important feature of the memory is the capigbalf recalling sequences based on a
few of its elements. For example, humans can rereemimelody using a few notes as a
cue. Moreover, notice that the cue for the sequemgcorrespond to an inner part of it,
and even then the memory should be capable oévetg the sequence from that point to
the end. It is not surprising that humans and other arsrhalve memories that exhibit
these same properties. In summary, a desirablelmbdemory for challenging Al

applications should be auto-associative, contetitea$able, noise robust, and able to

1t is also possible that cueing with an inner pdithe sequence might retrieve the sequence from
the beginning, as in the melody example, but this different mechanism that | am not going toulsc
here.
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store and recall sequences. For a complete analiydie desirable properties of these
memories, see Chapter 1.

Sparse distributed memory (SDM) is a mathematicadehof human long-term
memory based on large binary vectors (Kanerva, 19883). This memory has several
desirable properties. It is distributed, auto-aggoe, content addressable, and noise
robust. Furthermore, it presents interesting psipcheal characteristics (e.g.,
interference, knowing when it does not know, areltifp of the tongue effect), that make
it an attractive option with which to model episodiemory (Baddeley, Conway, &
Aggleton, 2001; Franklin, Baars, Ramamurthy, & \{gat 2005). SDM can also store
sequences of vectors as described by Kanerva (1988); moreover, the extension
explained in Chapter 4 is particularly well suitedstore sequences and produces even
better results in this task than the original SDM.

The main idea behind SDM is based on the correspaalof thelistance
between concepts in the human mind and the distagteeeen vectors in a high-
dimensional space, that is, vectors with hundredeausands of dimensions. The idea of
distance between concepts is not new; actuallyraesematic spaces use this same idea,
such as Latent Sematic Analysis (LSA) (Deerwedtat.e1990), based on statistical
analysis, Random Indexing (Sahlgren, 2005), and BEA (Jones & Mewhort, 2007).
Here we use the distance between concepts intdlgldjfferent way, but conceptually,
it is the same idea. Kanerva defimesnt of interestis a general term for concepts,
percepts, events and other similar entities ohtired. The distance between concepts can
be extended and applied in a more general wayydiad of point of interest. Thus,

distances between events, or percepts are alsibj@oss
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There are diverse ways to represent points ofaatefor instance, using nodes
and links in graphs, or data structures such agdsecHowever, particularly for this
work, points of interest may be represented byaredh a high-dimensional space. An
interesting property of vectors (also known as ®)im a high-dimensional space is that
each point is far away from almost any other poirthe space. This implies that two
randomly chosen points of the space are likelyetdalb away from each other. Points of
interest that are unrelated will be representedistant vectors in the space; any vector
in the space that represents a point of interdar iaway from other points of interest.
Moreover if we slightly alter the vector, it wiltis be closer to the original vector than to
any other point of interest. Thus, the represemadf a point of interest does not need to
be an exact vector or point in the space. Noisgigas of this vector can represent the
same point of interest and they still will be faray from other points of interest. This
makes the representation noise robust, one of s important qualities of SDM. This
representation can also be interpreted lal@that surrounds each point of interest. Any
vector in this halo is also a representation ofpihiat of interest. For example, if the
memory is used to recall a previous event or consteped in the memory, the new
stimulus or cue does not need to be exactly the sethe original one, which is a
common scenario in robotics or visual recognition.

The original SDM developed by Kanerva uses highetigional binary vectors
with 1,000 or more dimensions. This space exhth#simportant properties of high-
dimensional spaces described here. These vectisad both as addresses of the
memory and also as words, the data stored in timearye Normally, SDM is used as an

auto-associative memory, thus the address vectbeisame as the word vector (but see
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Chapter 4). In this case, after writing a wordha themory, the vector can be retrieved
using partial or noisy data.

The rest of this chapter describes SDM in detaiktiSome required
mathematical background is explained. Then thettra and functionality of the
memory is delineated. The following section anayte fidelity and capacity of the
memory. The final two sections compare SDM witheotitmemory models and describe

several applications that use SDM.

Mathematical Background

This section describes the fundamental mathematinatture behind Sparse Distributed
Memory: the binary spacg] = {0,1}". This space is composed of n-dimensional binary
vectors, that is, n-tuples of zeros and ones. kamgle, [1,1,0,1,0,0] represents a vector
of 5.

Depending on the context, these tuples can alsalbed points, patterns,
addresses, or words. In this dissertation, a vedt{d, 1}" any of these terms may be
used interchangeably according to the contextaFspace witm dimensions, the
number of vectors is given Y= 2". For example, witm = 1, the space comprises {[0],
[1]} and thereforeN = 2.Withn = 2 the space is composed of {[0,0], [0,1], [1[@]1]},
giving N = 4. Kanerva represents the space itself alsoMithor notational simplicity, |
will follow the same convention here. The pointdNatan be geometrically visualized as
the vertices of a hypercube mflimensions which has its sides of length equal to

It is important to notice that vectors of thesecgsado not necessarily have any

particular order. They are just vectors, not binauynbers. The properties of the vectors
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required for SDM emerges from the distributionléit distanceqsee below), not from
their binary number representation.

A summary of the main concepts of the space {0 fdlJows; for a full
description of the space see (Blumenthal & Meng@70; Kanerva, 1988). For the
examples in the following paragraphs let us assam®, x =[1,0,0,1,1,0] ang¢t =

[1,1,0,0,0,0].

Origin 0

The point with zero in every coordinate= [0,0,0,...,0,0]

Complement X
The complement of a vectaiis the vector that has zeros wheigas ones and vice

versa. For exampléx=10,1,1,0,0,1]

Norm [X]
The norm of a binary vector is the number of omas the vector has. For exampié 4

3andy| = 2.

Difference X-y
The difference of two vectorsandy is another vector that has ones in the dimensions
wherex andy differ and zeros in the dimensions where theyeagrais operation is
equivalent to the bitwise exclusive ®@R betweerx andy.

The difference is commutative in this space:y =y —X. In the examplex—y =

[0,1,0,1,1,0]
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Distance dx, y)

There are several distances that can be usedsisghce. The most common one, and
also the one used in SDM, is the Hamming distahlbe.Hamming distance betwern
andy is the number of dimensions by whixlandy differ. This is equivalent to the norm
of the difference betweenandy: d(x, y) = |x — y|.Moreover, sincex — X is equal to the
vector with all ones x is the farthest point fromin the space.

The distance can be used as a similarity measuoeyeéctors oN aresimilar if
they are close enough. Of course, this definiteorelative, and this term in general is
used in relation to other vectors; for example,ahdy are vectorsSis a set of vectors,
andy € S, we can say: “vectox is the most similar tg in S”

To implement SDM several similarity measures cand®esl, including other
distances such as the Euclidean one. For the foltpdiscussion, if no other measure is
explicitly indicated, wherever the term “distanég’Used, the Hamming distance is
assumed.

In the exampled(x, y) = [x—-y| =0,1,0,1,1,0]| = 3

Betweenness X:y:z
Pointy is betweerx andy if and only ifd(x, 2 = d(x, y) + d(y, 2.

Using Hamming distance, any dimensiasf y must be equal to the same
dimension ofk or z if X :y: ztheny; = X ory; = z

Based on this, it is easy to shown that the espeeeN is betweerx and'x. In
the example, there are several points betwesrdy. Al pointsz that follows the pattern

[1,*,0,*,*,0] , where * can be either O or 1, arettveenx andy. (e.g.,x:[1,1,0,0,1,0] y.)

23



Orthogonality xly

Two vectors are orthogonal, or indifferent, if andy if the distance between them is

half of the number of dimensiond(x, y) = n/2.

This property is commutative, xfL y theny L x. It is easy to see that if a vector

X is orthogonal to another vectgrx is also orthogonal tgy. If x is orthogonal tg, then

x has exactly half of its dimensions equaytd@herefore, the other half of the dimensions

of x are equal toy. Thenx L y.

Kanerva defines thiadifference distancef the space {0, T}to ben/2. In the

example, the indifference distance is 3 and[1,1,0,0,1,1].

Sphere @r, x)
A spheré of radiusr and centex is the set of points dfl that are at most a distance
from x.
O(r, X) = {y | d(y, ¥ <r}. Spheres with radius enclose the entire spalse For example,
0o, ¥ ={[0,0,0,1,1,0], [1,1,0,1,1,0], [1,0,1,1,1,42,,0,0,0,1,0], [1,0,0,1,0,0],
[1,0,0,1,1,1]}.
| already mentioned th&t can be represented as the vertices of a hypeafube
dimensions. The distance between two points isetiigth of the shortest path across the
edges of the hypercube that connects the corresppudrtices to these two points.
Kanerva (1988) defines a space (any metric spatgust binary spaces) as

spherical if (1) each pointof the space has exactly one opposif€2) all points of the

2 Kanerva actually used circle for this concept. ldwer, as we shall see later, sphere is a better
name here.
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space are between any potrdnd its oppositex, and (3) each point in the space is
isometrically equivalent to any other point; thatfor any two pointg andy there exists
a distance preserving transformation that magosy. The surface of a sphere is clearly a
spherical space, ashé

Based on this definition, Kanerva suggestedsgiteere analogySinceN is
spherical, the space is analogous to a three dioraisphere with diameten2The
pointsx and x are in thepolesof this sphere (any point of the space caw)bthe entire

space lies betweepand x, and most of the space is in #guator(see Figure 1).

equator

Figure 1. The sphere analogy. The sphls analogous to the surfa
of a 3-dimsional sphere. For any patmmost of the points ilN are
near of the equator, which is half way betwgemd x. Adapted fron
(Jockel, 2009).

A circle on the surface of the 3-dimensional sphvatk center ak is analogous
to a sphere ilN. The analogy is far from perfedt:has a discrete number of elements and

the surface of the sphere is continuous, the mingath between two points M are not
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unique, and a sphere Mis in general not convex. Nevertheless, the ayakgxcellent
for illustrating several properties of the spacarfirva, 1988).

A very important property dfl is the distribution of the distances from a
randomly chosen point to the rest of the pointdhefspace. Sindd is spherical
according to the definition above, any point cooddin the origin (or translated to it), so |
will consider the distances from the origin. Kare(¥988) proved that these distances

follow a binomial distribution, that can be appmmated by a Normal distribution with

mean distance equalsn@® and standard deviation approximately equalv/_ﬁm.

Figure 2 summarizes this distribution for differgatues omn. It is easy to see that half of
the space is closer thar? and the other half is farther than that distaBzg it is
counterintuitive that as the number of dimensiomscreases, the distribution tends to
highly concentrate the points at about the indéfifee distance/2. For example, for

n= 1,000, the mean distance is 500 and the stamt#adtion SD) is about 15.8.

90
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0O 01 02 03 04 05 06 07 08 09 1
Normalized Distance from a point
1=n

Figure 2. Distribution of Hamming distancesi As the number of dimensions
n increases, the distribution tends to highly concentrate the points at about the
indifference distance/2. Adapted from (Kanerva, 1988).
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According to the Normal distribution, only one nahth of the space is closer
than 422 bits or farther than 578 bits, sinceChs about 78 bits. Notice that points do
not concentrate or cluster in the space, all p@ressometrically equivalent, and the
distances from any point to the rest of the spaee&ancentrated at almost the
indifference distance.

Randomly selected points of the space can represealated points of interest,
and due to the large size of the space, it is alimgzossible to run out of vectors.
Because of the distribution and the symmetry ofsibece, any two randomly chosen
points will likely be almost at the indifferencesthnce from each other, that is, they are
almost orthogonal to each other. Kanerva namedehisrkable property thendency to
orthogonalityof the space.

Kanerva (2009) described another interesting exangppose we have two
vectors A and B that only differ in 25% of theit$iThis is unlikely to happen by
chance, but they can be constructed in this waggoesent related concepts (see
Chapters 3 and 6). Based on A, we can create @negictor C by changing 1/3 of the
bits of A. C is just a noisy version A. One mighink that C could become closer to B
than to A, but this is very unlikely. & = 1/4 ande = 1/3, then the distance between A
and B isd(A,B) = dn, and the expected distance between C and RIfCE8) = (d + e —
2de)n. Thus,d(C,B) = d(A,B) + (1 - Z)en It is clear that the distance between C and B
also increases. With = 1,000,d(A,C) = 333 andd(C,B) = 416. The difference is more
than 5SD. If the dimensionality of the space is higher ¢iffect is even more
pronounced: witm = 10,000 the distana{A,C) = 3,333 andi(C,B) = 4,166. In this

case the difference is more than4B@
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These properties of high dimensional spaces arbais of Sparse Distributed

Memory. The following section describes the struetand functionality of SDM.

Memory Description
Here | present an introduction to SDM. Both leisyugescriptions (Franklin, 1995) and
highly detailed descriptions (Kanerva, 1988, 199@) available.

Conventional computer memories are accessed usiigdation, or address, of
the data. A memory of this kind is just an arrayixéd size registers; each register holds
a word of the memory and the size of the registealled the word size. Each register is
indexed by its address, and has a size that is krz@whe address size. In general, there
is no relation between the address and the worddstt that particular register.
Conversely, in SDM, a content addressable randamsaanemory, the data in the
memory are retrieved using the same content, aropar, as the cue. Several authors,
including Hawkins (2005), believe this is a fundautaé characteristic of the human
memory. In this kind of memory, callegsociative memoyynstead of using a fixed,
uninformative address to store the data, a meaulingttor is used as the address. In a
special case of associative memory, cadletb-associativea data word stored in the
memory is associated with itself. In other wortie tlata is stored using itself as an
address. This can seem useless, but is actuatly cumvenient because it allows a word
stored in the memory to be retrieved using an apprate or noisy version of itself
(Kanerva, 2009). See Chapter 1 for more discusaiaut this subject.

We can imagine a conventional memory with an asklséze equal to its word
size and use the memory as an associative memamoldem arises with large word or

the address sizes, such as the sizes describleel pmevious section. For example with
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n = 1,000, Franklin (1995) compared the size of thesnory with the number of atoms

in the universe. It is evident that such a memamnot be constructed. Moreover, even if
it were possible to construct, the auto-associatharacteristic could not be easily
implemented. Nevertheless, high dimensional ve@msan attractive option to model
concepts, events, and other similar entities, ddill &icely addresses these problems.

SDM is built upon the properties of high dimensiog@aces described on the
previous sections. Here | will use high dimensldniaary spaces in the order of 1,000,
or 10,000 dimensions. Both addresses and wordsirzaey vectors whose length equals
the number of dimensions of the space. As an ex@npilill use binary vectors of 1,000
dimensions.

To calculate distances between two vectors ingbace, the Hamming distance is
used. As explained in the previous section, theadees from a point in the space to any
other point are highly concentrated around hathefmaximum distance. In our
example, more than 99.9999% of the vectors liedast@ance between 422 and 578 from

a given vector of the space.

Hard Locations

Since it is impossible to construct a memory withtrshuge address space, SDM is built
with hard locations the units of storage of the memory. Only hardtmns can store
data, and each hard location has a fixed addrespasse uniformly distributed sample of
all possible addresses of the space, on the ofdf of them, is chosen. This sample
constitutes the addresses of the hard locatiores pidportion of hard locations over the
number of possible addresses of the space is waai},sn the example on the order of

2% the reason that the memory is cabparse The number of addresses selected to
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construct the memory is denotedrbyHard locations are like islands in the vectorcgpa
As in the ocean, islands are just a tiny proportibthe entire surface of the ocean. Data
storage is only possible in these islands.

To store data, each hard location basnters one for each dimension. | denote
asc; the counter corresponding to dimensiolm the example, each hard location has
1,000 counters. A counter is just an integer regigtat can be incremented or
decremented in steps of size one. According tmafgyy Kanerva (1988), a range of -40
to 40 provides enough capacity for a SDM with 1,000 hard locations, as in this
example. For other sizes this range may vary.

Each hard location can store several words butcasmdination rather than
distinct entities. The reconstruction of one ofsthevords requires the participation of
many hard locations in its storage and retrievat.Writing in an arbitrary address in
SDM, the word is stored in several hard locatidriss is radically different than the way
a conventional memory works, where words are stpugidn one location. To read from
an arbitrary address in SDM, the output vectorésmposite of the readings of several
hard locations. This distributed storage is whakeseSDM noise robust. The process of
selecting which hard locations participate in gkameading or writing operation is
called theactivationof hard locations. Aactivated hard locatioms one that participates
in a reading or writing operation. Kanerva (1988gsithe access sphere to determine
which hard locations are active for a read or woperation (see below for details).
Different activation mechanisms produce interestiagations on the original SDM.

Several of these alternate activation mechanisrhdiexplored later in this chapter.
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Writing and Reading Hard Locations

In order to understand how to read and write veatwSDM, first it is necessary to know
how to read and write a vector in a hard locatiomwrite a word vectow in a hard
location, for each dimensianif the bitw; of this dimension in the word is 1, the
corresponding counter of that hard location is incremented. If it i counter is
decremented. For example, if the ward: [1,0,0,1,0] is stored in a hard location, the
first countercy is incrementeds; is decremented, is decremented, and so on.

To read a word vector from a hard location, we cot@@ vector such that, for
each dimension if the corresponding counterin the hard location is positive, 1 is
assigned to dimensiann the vector being read, otherwise 0 is assighedexample, if
the counter€ of a hard location have the values [10,-5,11,}Zh8 output wordv is
[1,0,1,0,0]. The chance that a word datum is eydh# address of a hard location is
almost zero. However, words are written to thearest hard locations. Next section

explains how these hard locations are chosen andhidistributed storage takes place.

SDM Storage

Since a hard location stores words as a combinafiali the stored words in it, reading
it returns this combination that would be differéman any of the stored words. SDM
addresses this problem by reconstructing the aiguord using information from

several hard locations.
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To determine which hard locations are used to oeadrite, anaccess sphens
defined. The access sphere for an address veampker® with center at this address.
The radius of the access sphere is defined in awedly that on average it encloses a
small proportiorp of the total number of hard locationsnifis the number of hard
locations in the memory, the access sphere engbmséard locations. This valygis
also theprobability of activationof one hard location, that is, the probabilityttbae
hard location is in the access sphere of one pdaticeading or writing operation. Thus,
the probabilityp determines unequivocally the radius of the acsphsre. For example,
for a SDM with 1,000 dimensions, and a probabibtyactivationp = 0.1%, the radius of
the access sphere is 451. The access sphere mt#lic@any hard location whose address

is less than 451 away from the address vector. F&gre 3.)

SDM
[]
Access Sphere O
encloses pm
Hard Locations ]
L]
Hard
Locations L]
[ O
[]
]

Figure 3. Access Sphere. Adapted from (Kanerva, 1993).

The activation of the hard locations can be addaysing other strategies; some

of them are explored in following sections. To wr# word vectow in any address of
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the memory, the word is written to all hard locatanside the access sphere of the

address. Figure 4 shows the entire process.

Address a Word w
10010010...1001 distance Y 10 01 0 O 0o 1
01011001...1011 728 0 -7 5 2 6 -4 3 1 -2
2 10101100...0111 389 1 8 -36 /-5 4 -9 -4 -6
o
8
3< 00111011...1010 403 1 213/-1111-3|7 6 8
T
©
T
10101001...0011 635 0| 4 6/ 32186 - 1 -3
NN J N Y,
Y
Address Counters

Figure 4. Writing hard locations. First the distance from the address
vectora to each hard location’s address is computed. Each dimgrion
the vector Y is equal to 1 if the hard locatjds into the access sphere of
address. The counters of activated hard locations (gray rows) are
updated. Ifw; is O, the countdarof each active hard location is
decremented. My is 1, these counters are incremented.

First the distance from the address veatty each hard location’s address is
computed. The activation vectdns a binary vector o dimensions, one for each hard
location in the memory. The value of each dimengigrequal to 1 if the distance froan
to the corresponding hard locatipis less than the activation radiusi(a, hd) <r. Itis 0
otherwise. Finally, the word is written to all activated hard locations, updgttheir

counters.
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SDM Retrieval

Reading SDM from any address consist of readiogn fall hard locations in the access
sphere of the address vector, and combining themg asmajority rule for each
dimension. In other words, the output vector wél/g, in each dimension, a value equal
tol if the majority of the vectors read from thedbpcations in the access sphere have a
1 in that dimension, and a value of O otherwise akernate procedure achieves a better
result. By summing up the counters for each dinwnef all hard locations in the access
sphere, and then normalizing these sums using dzhamism explained above for
reading a single hard location, one can producedtitygut vector without requiring the
normalization of the readings of each hard locatnalividually.

In general, SDM is used as an auto-associative mgmbere the address vector
is the same as the word vector, enabling the vetrigf a word from the memory using
partial or noisy data as a cue. Suppose a vettarpartial or noisy version of a vector
stored in the memory, lies within a critical distarofv (see next section). \f is used as
address with which to cue the memory, the outpatorev”, will be closer tos thanv'.

If the process is repeated, using the veetoas an address, the new reading will be even
closer tov. After a few iterations, typically fewer than 1Be readings converge to the
original vector. If the vector’ is farther away than the critical distance, thecessive
readings from the iterations will diverge. If thectorv’ is about at the critical distance
from v, the iterations yield vectors that are typicaliylee same critical distance from the
vectorv. This behavior mimics the “tip of the tongue” efféFranklin, 1995). Figure 5

depicts the critical distance idea.
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Figure 5. Critical distance. Convergence and divergence in
iterative readings. Starting frorp which is within the critical
distance, the stored wowdis finally read. Starting frong, the
sequence of readings divergB8x) denotes the-th in the
sequence of readings. Redrawn from (Kanerva, 1988, p. 70).

Critical Distance, Fidelity, and Memory Capacity
Kanerva (1988) defined the critical distance asdistance beyond which divergence is
more likely than convergence when reading SDMefiehds on the number of vectors
already stored in the memory and on the numbeanf locations that comprise the
memory. He derived the expression for the crittiatance as a function of the number of
hard locations and the number of stored wordsekample, a memory with one million
hard locations, 10,000 stored words and an n =01 )@8s a critical distance of about 209.
Another important concept is the fidel@ythat is the probability of correctly

retrieving a bit of the output word. The memoryelity is then then-th power ofP.
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The memory capacity is defined as the number eédtawordsT for which the
critical distance is zero. At this point, it is rmissible to retrieve the stored words, even
using the same word as the address. Kanerva ctddulae SDM capacity (1988, 1993)

by setting the memory fidelity to 0.5 and solving T:

Capacity =

<q>—1 (ﬁ))z ®

where® is the normal distribution function amadthe number of hard locations. For
example, withn = 1,000the capacity is approximately equalsid 10, that is 100,000
words.

Other authors studied the capacity of SDM. Jagd@89a) developed an
approximate analysis that was also used also bgikan(1993). The most complete
analysis of SDM’s capacity was performed by Chd8@). He derived the exact
capacity of the memory in the general case. Kg&@88) used Shannon’s information
capacity (Shannon & Weaver, 1949). In this theoattiramework, the capacity can be
allocated to store more words or to tolerate maisenin the cues. He developed a
mathematical model of the memory that helps toyaeaeithe memory. A simple
generalization of this mathematical model incluttesbinary Hopfield network
(Hopfield, 1982) as a special case. Keller usesiitiodel to compare the capacity of both
memories. He showed that both memories have the sapacity per storage element or
counter. However, SDM presents an interesting adggnover Hopfield nets. In the
former, the size of the words is independent ofniineber of storage elements;

conversely, in the Hopfield nets the size of thedsaletermines the capacity of the
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memory. Doubling the number of hard locations ilVB8oubles the capacity of the

memory, independently of the dimensionality of Wieetors.

Storing Sequences in SDM

When storing sequences of vectors in SDM, the addrannot be the same as the word,
as it is in the auto-associative use. The vecttrgpresents the first element of the
sequence is used as address to read the memorguffhg vector is the second element
in the sequence, which is now used in turn as dread to read the memory again in
order to retrieve the third element. This procedsitepeated until the whole sequence is
retrieved. This mechanism uses the memory in adwetgsociative way, where the output
is not necessarily similar to the cue vector. Kaagi988, 1993) showed that this
procedure converges to the elements of the sequ&hegroblem with this mechanism
for storing sequences is that it is not possibles® iterations to retrieve elements of the
sequence from noisy input cues, yielding a far tebsist memory. Another problem
arises when the stored sequences have common éée@mem ABCD and FGCH. In the
example, if the two sequences are stored with ésertdbed mechanism, cueing with the
vector C will probably return an incorrect vectidanerva proposed the use of multiple
foldsto store sequences. Each fold is an entire SDMstbees the sequence of #ie
element ahead. That is, the next element is staréte fold with the current element as
the address. The element two steps ahead is stofeld, by using the current element
as the address. The elemkisteps ahead is stored in that address in.féloe readings

of all folds are combined to predict the next elamdockel (2009) uses this procedure to
store sequences for a robotic arm manipulatioreays{See the following sections for

details.) This procedure is clumsy, difficult toplament and wastes memory resources.

37



Kanerva (2009) proposed a better solution usinghdimensional arithmetic, but some
limitations and problems remain. In Chapter 4, Il discuss this problem in detail and
introduce Extended Sparse Distributed Memory thdt@sses this issue with better

results.
SDM Compared with Other Models

Matrix Notation of SDM
SDM can be described in terms of matrices and vegerations. For details see
(Kanerva, 1993). This representation is usefuttonparing the memory with correlation
matrix memories, such as the Hopfield net (Hopfié@B2) or Willshaw memories
(Willshaw, 1981).

Figure 6 depicts the realization of SDM using ntasi Than x n matrix A in the
left contains the address of one hard locatioracheow. The vector d, of size,
contains the distances from the cue vextir each hard location address. The vegtor
of sizem, is the activation vector. ff; < r, the activation radius, themis 1, and O
otherwise.

C is ann x mmatrix that contains the counters of one hardtionan each row.
In order to write to the memory, the input vectoused to update the rows of the matrix
C that correspond to the active hard locations.réading from the memory, the vecsr
of sizen, has the sum of the counters corresponding toathe inC, for the activated
hard locations. This vector can be calculates a<C'y. Finally, the binary vectaz, the
output vector, will have in dimensiora value 1 ifs >0 and 0 ifs < 0. If 5 =0, the

output value is chosen randomly.
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Address a Word w

10010010...1001 distance Y 10 01 0 O 0 1
01011001...1011 728 0 -7 5 2|6 4|3 ‘1 -2
2 10101100...0111 389 1 8 -3 6 -5 4 -9 -4 | -6
(]
8< |
3 00111011...1010 403 1 2. 3 11 37 ‘6 8
° Address Matrix A .
g . Counters Matrix C

10101001...0011 635 0 4.6 -3 -2-16 1-3
N J
Y
- 0 © OO N O
Address Sums S & 8 c'; g © L‘v) ‘(11 N~
OutputWordz 1 0 0 1 0 O 0 1

Figure 6. Realization of SDM using matrices. Redrawn from (Kanerva, 1993).

Artificial Neural Network

Some artificial neural networks (ANNs) exhibit caeteristics similar to SDM, such as
noise robustness, associativity, and so on. Kardggaribed how SDM can be
interpreted as a synchronous, fully connectedgttagered feedforward artificial neural
network. For details see (Kanerva, 1993). Thisrpretation is useful for comparing an
SDM to a feedforward network. However, it is im@nt to notice that an SDM has a
completely different architecture and behavior thdaedforward ANN. In this view, the
input layer is just the input vectgr The hidden layer corresponds to a vegtof sizem
that represents the active hard locations. Theixnatiormed from the hard locations’
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addresses corresponds to the matrix of synaptighi®between the input and hidden
layers. The output layer is the output ve@dfinally, the matrix of synaptic weights
between the hidden and output layers is determyetie matrixC of the counters of the

hard locations. Figure 7 depicts this interpretatio

Figure 7. Description of SDM as an artificial neural network. The input .

X, is the input vector. The hidden layer is the activation vectord the

output layer is the output vector. The connections between X and Y are

by the hard location address. The connections between the hidden layer and
the output layer are determined by the hard locations’ counters. Redrawn
from (Kanerva, 1993).

However, if we compare a three layer feedforwangralenetwork trained with
backpropagation and a SDM, they have several diffggs: first, SDM has the matix
of synapses fixed and the mat@xallows only integer values. A feedforward network
uses real values for the synaptic weights. Sedtwedactivation function of the hidden
units is completely different from the activatiohhard locations. In SDM the hard
locations are activated with a non-linear functma they only can take values 0 or 1. In

back propagation networks, linear combinationshefihputs are used to activate the
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hidden units and they can take real values. Findlig to the mechanism and
characteristics of SDM, its training is faster, gared to backpropagation trained
networks. Even learning with just one or few rejpatss is possible using SDM (Kanerva,
1993). On the other hand, a network trained by Ipgiopagation requires a large training

set to learn.

Model of the Cerebellum

The functionality and features of SDM make this meyra good candidate to model
episodic memory (Baddeley et al., 2001; Franklinlet2005). However, Kanerva
partially modeled SDM after the structure of cortéxhe cerebellum. | briefly compare
them here; for details see (Kanerva, 1988, 1993.main types of cells in the cerebellar
cortex and its whole structure can be interpretedaats of the SDM functionality.

Figure 8 shows a schematic view of the cerebetigex. There are two main
types of inputs. The climbing fibers (Cl), whiclcegve the signals from neurons in the
brain stem, would have the same functionality aswtbrd data input in SDM. The other
kinds of inputs are the mossy fibers (Mo), whichudohave the same functionality as
the address input in SDM. The granule cells (Ghicl receive inputs from the mossy
fibers, would be equivalent to the hidden unitthe SDM and work as address decoders.
The Golgi cells (Go) could control the number cdrmule cells that fires at the same time,
and could be interpreted as the control of actwatif hard locations in SDM.

The axons of Purkinje cells (Pu) are the outputtheimodel, and the synapses

between the granule and the Purkinje cells woytdesent the counters of hard locations.
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The comparison is far from perfect (Kanerva, 1988j,the similarities suggest
that the cerebellar cortex can be interpreted asaaciative memory and SDM is a

plausible model of it.
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Figure 8. Schematic view of cerebellar cortex. Redrawn from (Kanerva,
1993).

Both Marr (1969) and Albus (1971) developed matherabmodels of the
cerebellum. Albus developed CMAC, Cerebellar Motlieihmetic Computer (Albus,
1981). CMAC is a sparse coarsely-coded associatamory algorithm designed to

provide motor control for robotic manipulators. Badflarr's model and Abus’ CMAC are
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similar to SDM. Kanerva (1993) extensively compa&M with these two models,
showing that CMAC can be represented as a speasal af the Jaeckel's hyper plane

design (see next section for details).

Extensions and Improvements

Several authors have proposed different extensindssariations of SDM. In this section

| will discuss some of the most influential onesie®f the critical steps in SDM’s
algorithm is the activation of hard locations. Marfythe extensions described here
address this issue. Others explore variationsardistribution of the hard location
addresses in the space. Data in real applicati@nsfeen not uniformly distributed,
tending to cluster, which diminishes the perforneatthe memory. In these situations
some hard locations may not be activated at ayltiag in wasting of their capacity.
Other hard locations may be activated very freqyemtd again are wasted because their
contents represent mostly noise. Most of the eidessliscussed here address one or

both of these issues.

Jaeckel's Selected-Coordinate Design

Jaeckel (1989a) introduced the selected-coordateg@gn as an alternate mechanism to
activate hard locations. The rest of the modekacty the same as in the original SDM.
In this model, for each hard location a small nunibaf dimensions are randomly
chosen, each being randomly assigned a value ofaresne with equal probability. For
example, for an address space of 1,000 dimensi@ndimensions are chosen. A hard

location is activated if only if the address todea write matches all theselected
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dimensions values. The probability of activatmpaf one hard location is then (d‘.Sm
the example, it is approximately 0.001.

Jaeckel (1989a) showed that the capacity and tydefithis model are slightly
better than the original SDM. Another advantager ¢hve original is the simplicity of the
calculation of the activation. A hardware implenaian using this model is simpler than
the one corresponding to the original SDM.

Karlsson (1995) proposed a variation of Jaeckedsgh restricting the selection
of the selected dimensions for hard locations. Witk simple change and the use of a
lookup table he was able to speed up the processtigaition of hard locations by several

orders of magnitude.

Jaeckel’s Hyperplane Design

In this second variation Jaeckel (1989b) dealt witbwed data, which are data with few
ones. In this case fewer dimensions are seleaeéxbmple three, and all them must be
one in the address to read or write in order tvaid the hard location. By choosing the

parametek according to the proportion of ones in the dats jfossible to achieve better

results.

He also suggestadtermediate designsn these models only a fractiorof the
selected dimensions need to match the addresadwrenrite. By carefully choosirg
andr depending on the number of ones in the datapibssible to obtain a reasonable
value for the activation probabilify Jaeckel (1989b) showed that the original SDM
corresponds to one end of these intermediate deaih the selected-coordinate design

corresponding to the other.
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Dynamic Allocation

Several authors suggested allocating the harditoatising different distributions.
Keller (1988) suggested choosing the addressdsedfdrd locations following the same
distribution as the data. Jaeckel’'s hyperplanege@i989b) is inspired in this idea.
Saarinen et al. (1991) improved memory utilizatigrdistributing the hard addresses
with Kohonen'’s self-organizing algorithm.

Other authors have proposed the use of geneticidgs to distribute the hard
location addresses. For example (Anwar, Dasgupfaaiklin, 1999; Fan & Wang,
1997). Fan and Wang used a genetic algorithm tialize the addresses of hard
locations. Anwar et al. used a different fitnessction to maximize the distance between
hard locations. If each of these algorithms is sesea neural network, the genetic
algorithm changes the weights in the connectionsdxn the input layer and the hidden
layer (matrixA in the ANN representation), while connections lestw hidden layer and
the output layer (matri in the ANN representation) are updated with tla@dard SDM
procedure.

Ratitch and Precup (2004) created the hard locatismeeded, distributing the
hard locations following the distribution of thetaaTheir design does not require
allocating memory for hard locations that are regd) as is done in the original SDM.
When data needs to be stored, new hard locatiensraated in the neighborhood of the
input data if their number is less than a predefingue. If the predefined maximum
number of hard locations has already been reaameithfrequently active hard location is
first removed before creating a new one. The cdrakthe hard location to be removed

is combined with its nearest neighbor. Using simdaas, Sutton and Whitehead (1993)
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slowly move rarely active hard locations towarus address of data if the number of
active hard locations for that data is below aaervalue.

Helly, Willshaw, and Hayes (1997) proposed an a#itve signal model that
propagateghe input data through the entire memory, decnggisie signal strength
proportionately with the distance from the inputey also used a pruning mechanism
similar to Sutton and Whitehead. This mechanismiekted the requirement of
predefining the access radius that best fit tha.ddtey reported a notable improvement

for non-random data over the original SDM.

Other Variations
Furber and colleagues (2004) developed an SDMorerssing spiking neurons. They
used sparse codes, where amlyf m bits are ones in the word vectors. They based thei
design on Jaeckel’s hyperplane design for the atibir of hard locations, using a
Willshaw memory (Willshaw, 1981; Willshaw, Bunem&nl.onguet-Higgins, 1969) as
an alternative to counters for storage of the deté design choice diminishes the
capacity and noise robustness of the memory asgqubout by Kanerva in his analysis of
SDM with one bit counters. However the most regestibred words in this model are
easily retrieved, providing a good model for shermm memory (Kanerva, 1988, pp. 75 -
76). Bose, Furber, and Shapiro (2005) extendedi#sgyn to store sequences.
Ramamurthy, D’Mello, and Franklin (2006) introdudedgetting as part of an
unsupervised learning mechanism. They decay thetemutoward zero over time
according to a sigmoid function, with the resulttbnly sufficiently repeated vectors are
preserved in the memory. The same authors als@peoithe use of ternary vectors,

introducing a “don’t care” symbol as a third possivalue for the dimensions of the
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vectors (D'Mello, Ramamurthy, & Franklin, 2005; Ramurthy, D’Mello, & Franklin,
2004). This latter variation increased the perforogafor text based applications. Finally
Anwar and Franklin (2005) introduced a model of SBidt can handle small cues, that

is, vectors with a small number of dimensions.

Applications
Several applications were created using SDM as thain component or as a part of
them. In this section, | present some represertapplications in various domains. Of
course, this sample by no means limits the posajidications to only these domains.
The properties of SDM make it good candidate foognitive agent’s episodic
memory model (Ramamurthy & Franklin, 2011). Varieushors used SDM for speech
and pattern recognition (Clarke, Prager, & Fallsi#91; Fan & Wang, 1997; Joglekar,
1989; Meng et al., 2009). Others implemented ptegi@pplications using SDM
(Howell & Fowler, 1990; Rogers, 1990). And stilhets developed memory systems,
especially procedural memory, for robot controllaggpions (Jockel, 2009; Mendes,
Coimbra, & Crisostomo, 2009; Mendes, Crisostom&@mbra, 2008; Rao & Fuentes,

1998).

LIDA Episodic Memory

The LIDA model (Baars & Franklin, 2009; FranklinRatterson, 2006; Ramamurthy,
Baars, D’'Mello, & Franklin, 2006) is a comprehergsiconceptual and computational
model covering a large portion of human cognitidased primarily on Global
Workspace theory (Baars, 1988) the model implemamdisfleshes out a number of

psychological and neuropsychological theories. OIBEA model and its ensuing
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architecture are grounded in the LIDA cognitiveley@aars & Franklin, 2003; Franklin
et al., 2005). Every autonomous agent (Franklintr&esser, 1997), be it human, animal,
or artificial, must frequently sample (sense) itsionment and select an appropriate
response (action). More sophisticated agents, asittumans, process (make sense of)
the input from such sampling in order to facilitéteir decision making. The agent’s
“life” can be viewed as consisting of a continuadjgence of these cognitive cycles. Each
cycle constitutes a unit of sensing, attendingatahg. A cognitive cycle can be thought
of as a moment of cognition, a cognitive “momeiliring each cognitive cycle the
LIDA agent first makes sense of its current situatas best as it can by updating its
representation of its current situation, both exdéand internal. By a competitive
process, as specified by Global Workspace Theoap(® 1988), it then decides what
portion of the represented situation is most indn&feattention. Broadcasting this portion,
the current contents of consciousness, enablesgiret to choose an appropriate action
and execute it. The different memories of the ageay also learn the broadcast content,
completing the cycle.

LIDA includes several memory modules implementedaweral different
technologies. SDM exhibits interesting psycholobateracteristics as well
(interference, knowing when it doesn’'t know, thedf the tongue effect), that make it an
attractive option with which to model episodic maeyn(Baddeley et al., 2001; Franklin
et al., 2005). LIDA'’s transient episodic memory aletlarative memory are
implemented using variations of SDM (Ramamurthyé&llo et al., 2006; Ramamurthy
et al., 2004; Ramamurthy & Franklin, 2011). Thegfdting and consolidation

mechanisms are interesting improvements for ti@d memory of cognitive agents
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(Ramamurthy, D'Mello et al., 2006). When implemegtihe forgetting introduced in the
previous section, the counters of each hard locatfdhe episodic memory are decayed
according to a sigmoid function. Counters with hgtiues decay more slowly than
counters with low values. Counters with high valaesa consequence of highly repeated
word vectors. Eventually, only counters with higilues will remain and only these
highly repeated words will be preserved in the mgmbdhese words that are preserved
in the episodic memory amonsolidatedo the declarative memory. The declarative
memory, implemented with a second SDM, has ex#lcdysame address for each hard
location. The consolidation process is as folloatgredefined intervals the counters of
each hard location of the declarative memory isatgd with the counters of the
corresponding hard location in the transient epcsogemory. Declarative memory has a

slower decay rate than episodic memory, presetitsngpntents for longer periods.

Pattern and Speech Recognition

Prager and Fallside (1989) and Clarke et al. (188p)emented a short word recognition
system based on continuous speech inputs. Testngystem with 133 small words, they
reached a recognition accuracy of 95% without sytit@onstraints. Their model used a
variation of the original SDM that is able to reggat real values. Each utterance of a
vowel was represented by a 128-dimensional vedtarad numbers.

Joglekar (1989) studied phonemes recognition wETtdlk data (Sejnowski &
Rosenberg, 1986). He mapped hard locations dirextample data to obtain the best
results. Additionally, Danforth (1990) experimenteith recognition of spoken digits.

He represented the words with 240 bits. The resuisoved dramatically when some
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words where used as addresses of hard locationgeVs his best results were achieved
using Jaeckel’s selected coordinate design.

Several authors implemented pattern recognitiomiggipns with SDM. Fan and
Wang (1997) implemented a digit-recognition appia@ausing genetic algorithms to
allocate the hard locations in the space. Mend, ¢2@09) created a modified version of
SDM that allocates hard location addresses withesohthe data vectors improving the
efficiency of the system. They also implementeddbenters with only 2 bits but
included ari-state (high impedance) value. This design diminishedntieenory
requirements and facilitated the hardware impleateort while keeping the performance

relatively high.

Prediction Applications
Rogers (1990) implemented a weather forecastinicapipn using a combination of
SDM and a genetic algorithm. He trained the sysatim 58,000 weather samples for the
Australian coast. Each sample included featurels asdemperature, air pressure or
cloud cover. The predictions using this mixed aggilon outperform the results of the
application using only SDM. Howell and Fowler (19@@veloped a simple application
that predicted academic success or failure foradl@atlege students. They reported a
performance of 68%, higher than similar studiethaf time.

Perhaps the most promising prediction applicatemesrelated to sequence
learning, and are strongly related with robot natian, which is explored in the next

section.

50



Robot Navigation and Manipulation

Several authors experimented with SDM as a mairnpoorent of robot navigation
systems. Rao and Fuentes (1998) created a sysatm@ntiployed a SDM combined with
Brooks’ subsumption architecture (Brooks, 1986etarn adaptive navigational
behaviors. They trained the system with vectorsémt from the sensor data and motor
inputs from the three most recent perceptions. 3Bk was modified to self-organize
the inputs in the address space.

Mendes et al. (2008, 2009) experimented with atrgbbicle that uses video
images and motor information as sensory inputsy Tiiézed a modified SDM to
predict the subsequent movements during autonomeigation after training. Their
SDM uses a randomized reallocation algorithm tcadyically allocate new hard
locations as needed. The authors also comparedateneoding methods for real or
integer values when they are used with SDM. | @xiblore this issue in more detail in
Chapter 5.

Jockel (2009) developed a robotic arm manipulasigstem based on the
modified SDM of Mendes (2008) and Bose (2005). emory dynamically allocates
hard locations as needed and used buffers insteamlinters. He also developed a multi-
fold memory, as suggested by Kanerva (1988), fmage of sequences. Each fold is in
fact an independent SDM, and the system can hatgptauolds. Thek™-fold stores a
prediction for the next element based on the el¢kprior steps in the sequence. The
system combines the predictions of all folds tedatne the next element. | will discuss

a simpler approach for the same problem in Chapter
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In summary, Sparse Distributed Memory is an assigeimemory based on the
properties of high dimensional binary spaces. ¢toisiposed of hard locations, the
storage units of the memory. Its auto-associatartgl noise robustness make it a good
candidate for several applications, such as epgisoemory for cognitive architectures,
robot navigation controllers, and pattern recognitiSeveral authors developed
variations and improvements: the forgetting mectranidynamic allocation of hard
locations, and variations in the hard locationvaatton mechanism are some of the

extensions described in this chapter.
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Chapter 3: Vector Representation

In Chapter 1, | mentioned the importance of theesgntation chosen for a system, and
the degree to which the representation influendestiwtask categories the system can
compute optimally. In this work, | will discusspresentations that help to perform
challenging Al applications, in particular vectepresentations. In Chapter 1, |
extensively described some of the basic operatieaqsired for these applications, and
desirable properties of the representation and mgsystems that readily support these
basic operations. Plate (2003) described the ptiegesf representation models in
general and the ones suitable for connectionigesysin particular (pp. 2-16).
Distributed representations in connectionist modetsintimately related with vector
representations. Here, | will summarize these epts; and focus on representations
based on long vectors and their properties.

In classic Al representations, there are two mppr@aches: the symbolic
approach, and the connectionist approach that lbapessentations on the state of a
simple network of units. Another representation elasl the vector representation, built
on vector spaces. Finally, some researchers clatmb representation is required at all
(or at least, its importance is not as strong ather approaches maintain) (Brooks,
1991).

Newell and Simon (1976) define physical symbol syst as follows:

A physical symbol system consists of a set of iesstitcalled symbols, which are

physical patterns that can occur as componentsathar type of entity called an

expression (or symbol structure). Thus, a symbyaksire is composed of a

number of instances (or tokens) of symbols relatesbme physical way (such as

one token being next to another). At any instaritroé the system will contain a

collection of these symbol structures. Besidesdlstsictures, the system also

contains a collection of processes that operaexpressions to produce other
expressions: processes of creation, modificatigpraduction and destruction. A
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physical symbol system is a machine that produuesigh time an evolving

collection of symbol structures. Such a systemtsxisa world of objects wider

than just these symbolic expressions themselves.
Basically, these systems are composed of entgignlfols) that can be instantiated
(tokens), and of rules to manipulate them. Symbodsattractive representations for high-
level problems such as planning or chess playingthey seem less appropriate for other
tasks, such as those required for challenging Aliegtions: object recognition,
sequence learning, and so on. Further discussieynalbolic Al is beyond the scope of
this work.

Connectionist systems, such as neural networksmastic networks, can
represent knowledge and data in several ways. diigeterm knowledge (or data)
representation is often based on the weights dlirtke between units. The different
states or activation patterns of the units comploseshort-term data representations.

The short-term representations in connectionigesys can in turn be subdivided
into localist and distributed representations hie former, each unit represents a single
object, concept, or element of the system. Theesgmted elements have a one-to-one
correspondence to the system’s units (Franklin5199132). The main advantage of a
localist approach is the explicit representatiodatfa. An external observer can easily
interpret the activation of the units as the currepresentation of the system. For
example, semantic networks and similar models, asdhe Perceptual Associative
Memory in the LIDA architecture (Ramamurthy & Fréink2011), follow this paradigm.
Passing activation among units can explicitly inpdat constraint rules; or reinforcing
the units’ activation based on the activation dfeos can model similarity and

composition of elements. Finally, localist repréaéinns are good candidates for input to
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or output from a system. For example, in clasdifocatasks, the output vector’s
dimensions represent the possible classificatibegcaies, where the value of each
dimension denotes the probability of the probedhelat belonging to the corresponding
category. Because of its explicit representatibese¢ networks are easy to design
according to the requirements of the system. Desfsitadvantages, this type of
representation has several problems, mostly retatedefficiency. The one-to-one
correspondence between items and units in thersyistelies that representingitems
requiresn units. For a system with few items, this may lesomable, but it becomes
impractical for large number of elements. Moreoesen similar items require an
individual unit to represent each one. Somethinglar occurs with the connections
between elements; their number can increase geicaiBtr producing in many cases a
high degree of redundancy.

On the other hand, in distributed representatiach @€em is represented by the
activation of several units, and each unit canigipgte in the representation of a number
of items (Franklin, 1995, p. 132; Hinton, McClelthr& Rumelhart, 1986). This
representation is more efficient than the localist. For example, 10 units can represent
2'% elements. The patterns of activation of the uritsprise a vector, where each unit in
the system corresponds to a dimension. The disédbiepresentation is more compact
and computationally efficient than the localistf Buthe expense of explicitness. In an
interesting alternative, the units themselves egmnasent explicit features of the item
(e.g., is-red). The pattern of activation of sel/arats distributively represents a
particular item, but each unit locally representsierofeature(Hinton et al., 1986). This

intermediate model has some advantages. Similaregits have similar representations,
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because they may share several features. Thigadrid automatic generalization, since
similar items will activate similar patterns of tgjiand the system will capitalize this
reacting alike (Franklin, 1995, pp. 132-133). Hoe®\a system might require a large
number of microfeatures in order to represent@disible items, making this model
impractical.

Distributed representations can implement whaeR2003) callexplicit
similarity: similar elements have similar representationd 8. Several kinds of
similarity measures can be used among vectors,teegcosine, or the inverse of some
distance, such as the Hamming (for binary vector&uclidean distances.

Explicit similarity becomes even more advantagaamisg vectors that belong to
high dimensional spaces (i.e., vector spaces wiing@ number of dimensions). Such
spaces offer an enormous number of possible wasts/ation patterns, and the necessity
for compact representations becomes less crifitedre is no need for a one to one
correspondence between patterns and items. Forpdeaim a binary space with 1,000
dimensions, we can theoretically represéfialifferent items, but this is highly
unlikely. We can use just a fraction of the veciarthe space, say%? vectors
distributed in the space, which still allows a giia number of possible representations.
Even after adding some noise by introducing a feanges in one of these vectors, it can
still represent the same item. In other words georeof the space, instead of just one
point, represents an item, creating a more noisestarepresentation that gracefully
degrades as noise increases, and produces degirapbsties such as pattern

completion. (See Chapter 2 for an extended disons®i this subject.)
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Distributed representations are generally assatiaih connectionist systems.
However, we can abstract the representation frenniplementation. A vector itself can
represent an item without corresponding to thespatf activation of units in a
connectionist system. In many subfields of compségnce vector representations
constitute one of the main types of data structtoe.example in machine learning, a
vector of features—often of different data typepr@sents an element in a training set. A
different approach, and closer to the focus of wosk, utilizes vectors where all the
dimensions share the same data type. Even witluthigsrmity, the number of possible
representation models is limitless. The way towdate or define the vector
representation for an item, and the distance oitailty measurement define the
representation and its properties. For exampl#hanast two decades a large number of
semantic space models have emerged that use mggmsiional vectors to represent
words and texts. The most representative modelisdad_atent Sematic Analysis (LSA)
(Deerwester et al., 1990) based on statisticalyarsalRandom Indexing (Sahlgren,
2005),which employs random sparse vectors and rarpmutations; and BEAGLE
(Jones & Mewhort, 2007), which computes vectoragisircular convolution. For recent
surveys of semantic space models see (Cohen & Wisld2009; Turney & Pantel,
2010).

In an even more generic view, vectors can repremgntoncept or element of
interest: objects, features, rules, constraints@s, etc. As explained above, when a
vector belongs to a high dimensional space, intieigproperties arise. For example, two

randomly chosen points of the space are far avoag &ach other, which Kanerva (1988)
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defines as tendency to orthogonality, making thewdgcandidates to represent unrelated

concepts. For a complete discussion of this subseet Chapter 2.

Reduced Descriptions
Here, | discuss the main ideas behind reduced igésas. For further information, see
Plate (2003).

One frequent criticism of distributed representadior vector representations) is
the difficulty they pose in the representation @fiplex structures. Performing high level
cognitive tasks such as reasoning, planning, eoraselection often involves structures
with multiple elements. Implementations of thesksafrequently utilize structures such
as sequences, hierarchies, and variable bindingedfer, the elements of these
structures can in turn be complex structures themeseOf course, we can create these
structures and use vectors as elements. But, ircédsa, the vectors become mere
symbols, with a significant loss of expressive pow#nton (1990) introduced the
concept of reduced description, a method for emgpdomplex structures as single
vectors. The main idea is to have a dual representdhe structure can be represented
explicitly, with a vector for each component, oraaeduced description, where a single
vector represents the whole structure. When thiesyfocuses on a particular composite
element, its constituent structure is represemddli, instantiating all the elements
(vectors) that compose it. On the other hand, wiherelement participates in the
structure of another element that has the curpentd, it is represented with a single

vector as a reduced description. See Figure 9.
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J
Full representation: Components are explicitly represented Reduced description: Single vector
represents the whole structure

A reduced description as part of another structure

Figure 9. Reduced description. A complex structure has a dual representation: a full
representation with an explicit structure where each element is a vectarreshaced
description, where a single vector represents the whole structure.

The reduced description is not a mere pointeréduh description, but a loosely
compressed version of the original structure. Ugioigters to create data structures has a
long history in computer science. For examplstractin the C programming language
can have several elements, where some of them ealgb pointers to other structures.
Pointers help create lists, trees, or other dattsires. Object oriented languages, such
as Java, hide the pointers from the programmegudijects references, but they employ
essentially the same mechanism: an object refeleads to the actual location of the
object in memory. A pointer (or object referencegs not have any direct relationship
with the data it points to. In other words, lookiigthe pointer rather than what it points
to reveals nothing about the data. Furthermoresrgan item (or part of it), it is not
possible to locate it easily. Hash indexing is jatalp the traditional computer science

technique most similar to reduced descriptions hithegsallows the location of data to be
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calculated from its content. However, the hashisgglly does not provide any

information about the content, and similar elemefitsn have very dissimilar hashing

values. The reduced descriptions, on the other,faecabbreviated representations of

the full data. Moreover, as we shall see, sevegratations can use directly the reduce

descriptions without needing to recover the oribdeda.

Plate (2003) analyses reduced descriptions fromdesirable characteristics:

Representation adequacyhe reduced description must be able to recocistru
retrieve the full representation. Failing to tresanalogous to a pointer that does
not point to its data.

Reduction The reduced description must be smaller thariulheepresentation.
In general, the vectors used in vector represemsiare of a fixed size, and a
single vector comprises a reduced description.

SystematicityThe construction of the reduced description sthdwe systematic.
That is, the way to construct the reduced desonptiust be well known and
deterministic. This facilitates the reconstructadrthe full representation.
InformativenessThe reduced description should contain some mébion about
the whole it represents. This allows its direct iggecertain operations without
retrieving the full representation (pp. 19-20).

Defining a reduced representation model deternyasg operations that

combine vectors and produce these required chaistii®. The next section explores

these basic operations in general, and the follgwettions describe some of the most

relevant reduced description models.
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Basic Operations to Combine Vectors

Many of the complex structures apply to Al problgmesvasively; examples include
sequences, hierarchies, and predicates (i.e.,willes/ariable binding). These structures,
and probably others, can be constructed out of swepler primitives such as binding
and grouping. Binding is the assignment of one elgimwhich is called the filler, to a
particular role or position in the structure. FRample, in a sentence, an element “Sue”
can be bound to treubjectrole. Grouping is forming a set (or collection)ed¢ments.

For example, the structure to represent a sentartee a collection of roles (bound to
their fillers) where each role stands for a parthef sentence. In a similar way, a
sequence can be modeled with the group of its elespeach of them bound to its
position in the sequence. To create a reducedigésarmodel, we need to define
binding and grouping operatiohsind a distance or similarity measure. Kanervag20
introduced more abstract names for these operatiengses multiplication for binding,
and sum for grouping, which simplifies the openasionotation. | will use this same
convention here. The following summarizes the Keaarideas of hyperdimensional
arithmetic (Kanerva, 2009).

In general, the multiplication and sum operatioos'dnecessarily correspond
with the usual arithmetic operations, but they $thtnave several properties in common.
These properties, in turn, facilitate the achieveinod the four characteristics of reduced
description models described in the previous secior example, the multiplication
must be reversible; this allowsbindingthe filler to reconstruct the original structure.

will use the operations defined in Spatter Coden@¢aa, 1994) as examples of the more

! Some systems can create reduced descriptionsuvigiplicitly defining these operations. For
example see RAAM (Pollack, 1990).
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general cases. This representation model usesbi¥®R as multiplication; integer
sum, in each dimension, followed by a normalizapoocess, as sum; and Hamming
distance as the distance measure.

If a vector A represents an element and vectomplBesents a role, the binding of

Ato B is given by:
C=AQB (2)

where® denotes the multiplication operator (e.g., XORSpatter Code). Multiplication
by theinversevector reverses this operation. The definitiothef inverse vector depends
on the multiplication operator used. In the XORe;asis the same vector, but in other
reduced description models (with a different muiltgtion operation) the inverse could

be another vectar

A=CQ® B! (3)

In the binary case using XOR;! = B.

The multiplication must be commutative and asso®at

AQRB=B®A 4)

(AR B)®C=AQ (B®C) (5)

Bitwise XOR fulfills these two properties. In sorm@ses, a non-commutative

multiplication becomes handy. Applying a randomnpatiation by changing the order of

2 Some versions of multiplication may not have areise for all possible vectors. This is
analogous to 0 in the real numbers, which has verge.
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the dimensions of one of the operands before cangptiie XOR produces an alternate
non-commutative multiplication. This technique applto binary spaces as well as other
vector spaces; for more details, see (Kanerva, ;2@®e, 2003). In general, a particular
system employs a single random permutation thag doechange for that particular
system after its creation. Random permutationsvattaodeling other data structures such
as sequences efficiently. See Chapter 4 for fudeéails.

The multiplication also preserves distances:

d(A,B)=d(AQ®C,BQC) (6)

This is easily verified for the XOR operation. THamming distance is the number of
bits by whichA andB differ. For example, if dimensiarof vector C is 0A; XOR C; =
A;. Similarly, B;,XOR C; = B,. If dimensioni of Cis 1, A;,XOR C; = -~A;; and,
B,XOR C; = —B;. In both cases, the XOR operation preserves ffereince betwees
andB;, thus the distance betweArandB is the same as the distance betw&&ORC
andB XOR C

Interestingly, the multiplication in general pro@sc vector that is dissimilar to

its operands:

AQB#Aand AQ B B (7

wheres denotes dissimilarity.

The sum must also be associative and commutative:

A+B=B+A 8)
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(A+B)+C=A+(B+C) (9)

In Spatter Code, the sum is defined as the integerfor each dimension of the
vectors after they have been transformed into hipegctors with the zeros replaced by
minus ones. A normalization function (e.g., a singhireshold function) yields a binary
vector again. For each dimension, if the integen gipositive, a one is assigned to that
dimension, or zero otherwise. Actually, the sumrdef in this way is not strictly
associative, due to the normalization. But we aafimd a multi-operand sum that first
computes the integer sum of all the operands fon danension, and normalizes it

(denoted by [...]) at the end.

Sum(A,B,C,..)=[A+B+C+ ] (10)

The resulting vector of the sum is similar to ipemnds:

A+B~Aand A+ B~ B (11)

Finally, multiplication has to distribute over sum:

A®B+C)=AQB+AQC (12)

Random permutations (denoted by capital Greekrtefie I', etc.) can be used as
a kind of multiplication. It is not a real multiphtion, because one of the operands is not
a vector, but different permutations can repredéférent roles. In this case, applying a
permutation to a vector binds the vector to the represented by the permutation. For

example, ifiT andI represent color and shape respectively,
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A = Il(red) + I'(square) (13)

thenA represents a red square.

Permutations also preserve distances, are commgjtassociative, and
distributive over the sum. Moreover, they haveraaresting advantage over other
multiplications: they preserve the vectors’ dengiigfined as the relative number of
zeros and ones. Some associative memories (e.dsh¥v et al., 1969) and some
representation models (e.g., Rachkovskij & Kus20Q1) perform better with sparse
vectors (i.e., vectors with few ones). Permutatinsk well for both sparse vectors and
dense vectors, which have an equal number of zerd®nes (see Rachkovskij &
Kussul, 2001 for further discussion on this subject

Summing up, to create a reduced description we tagefine multiplication and
sum operations, as well as a distance measureeantar space. The multiplication must
be associative, commutative, and distributive dliersum. It must also preserve
distance, and produce vectors dissimilar to itsapds. The sum has to be associative
(with some license) and commutative, and must predectors similar to its operands.
These properties of the multiplication and the sullow creating reduced description
vectors, and performing the operations describial ia the hyperdimensional section. A
discussion about these properties can be foundandrva, 2009; Plate, 2003).

Combining random permutations with some multiplmas yields a non-
commutative multiplication that is useful to modelme structures. Permutations can be

used as multiplications by themselves to model sbimgings. Although it is not a hard
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requirement, using high dimensional vectors enhmaBeoee of these properties. See

Chapter 2 for details.

Spatter Code
Kanerva developed Spatter Code (1994, 2009) aduzed description model based on
large binary vectors. Vectors of high dimensionqaces tend to be orthogonal; making
them good candidates for representing unrelatedegia (see Chapter 2 for details).
Spatter Code defines the sum operation, also callpdrposition, as an integer sum in
each dimension followed by a normalization prodesgeneral, a threshold function).
Bitwise XOR is the multiplication, or binding op&ian, and it employs the Hamming
distance as a similarity measure.

Spatter Code can encode a set of elements usirsgith@peration. For example,
three binary vectord, M, andT, representing John, Mary, and talk respectively, wa

combined to denote the event “John is talking \Witry”:

E=[J+T+ M] (14)

The vectorE captures the relationship betwekmM, andT, but not the role that
these elements have in the structure. A problerh thit representation appears when the
roles in the event or relationship matter. For eglamthe events: “John is looking at

Mary,” and “Mary is looking at John” have the saemeoding:

[J+L+M]=[M+L+J] (15)
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Moreover, this representation suffers from the stalk effect (i.e., spurious
representations produced by the superposition)ekample, if we want to represent

“blue car and red truck” with the vectdss C, R,andT:
E=[B+C+R+T] (16)

where phantom representations can appear: rechddlae truck. Using multiplication
to bind elements to roles solves these problenvge Iflefine vectors for the roleSfor
agentA for action, and for object— a representation of the sentence “i®kooking at

Mary” follows:

E=[SQ@J+AQL+0Q M| (17)

To extract the subject of the evdhtwe can multiply it byS~! (in the binary case,

s~1=5). Thus,
SQE=S®[S®J+A®L+0® M] (18)
SQE=[J+S®AR®L+SQ0Q M] (19)
S®E=[J+N,+N,] (20)

whereN; and N can be considered as noise. Reading a cleanup mdinad has), L and

M stored in it withS ® E, produces), our answer. This example shows the necessity of a
cleanup memory to work with reduced descriptiorad tielps recover the clean version

of the vectors composing the reduced descriptipatt®r Code allows other operations

that | will describe in the next sections.
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A problem with Spatter Code arises due to the adimation after the sum.
Remember that the sum operates over bipolar ve(deesprevious section for details).
After the sum, but before normalization, some disi@m may be 0, and the
normalization process—a threshold function centeredero—must be defined randomly
in these cases. When the sum comprises few operfandxample two, many
dimensions of the sum vector are 0, introducingneh noise in the representation,
making the representation brittle. This is a commpmblem with normalization in all
reduced descriptions because this operation fipabks several vectors into one (of the
same size and characteristics of the operandgjupiog some loss in the representation.
Nonetheless this problem is more noticeable irbthary case than it is in HRR (or in the
Modular Reduced Representation to be introducéthapter 5). In these other
representations, summing two vectors can also geduadetermined values for some
dimensions that must be determined randomly, akaievgul above for the binary case.
The cases that produce this problem depend oretir@tabn of the sum, but in general
the problem appears when the values correspondioge dimension in the combining
vectors are complementary, that is, one valueatiposite of the other. In the binary
case the 1 is the complement of the 0, generatisgsituation very often.
Representations with more possible values for danlension have more expressiveness,

and the problem appears more infrequently.

Holographic Reduced Representation
Plate (1995, 2003) proposed the Holistic Reducqutédentation (HRR), a reduced

description model based on large vectors of realbrs. | describe here the operations
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and requirements of the vectors of this represemabodel in some detail, which will be
useful when comparing HRR with Modular Composit@fesentation in Chapter 6.

HRR uses the sum in each dimension as its supggmogperation. The
multiplication is a bit more complex. It utilizeg@ular convolution, an operation that
resembles the convolution of vectors, but the tgmelserves the dimensionality of the
operands. To decode circular convolution it usesutar correlation. Actually,
correlation can be expressed as the convoluti@enveictor with the involution of the
second operand (Plate, 2003, p. 97). To be consisith the nomenclature, the
involution of A will be represented b4™. In order for these operations to work as
expected, having the properties described in pusvsections, the possible values for
each of then dimension of the vector must be independentlyibisted with 0 mean and
variance 1. For example, a suitable distribution is a nordistribution N (0,1/n).

Plate extensively demonstrated the operations pplications of HRR (Plate,
2003). All the operations described in previoudieaes can also be implemented using
HRR. There is a practical limit to the number oftegs that can be combined into a
single one before interference between the operatrdsiuces so much noise that the
combined vector becomes useless. HRR’s interfertmit, which can be about 12
elements, is greater than in the binary case. mhaises HRR an interesting option for
representing complex structures for hyperdimensiocoputing. However, the
complicated operations that it uses, includingudacconvolution and circular
correlation, the computational complexity of thegerations, which i©(n%)?3, and the

requirements of the vectors make HRR less attractiv

% This can be improved ©(nlog n) using FFT.
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HRR in the Frequency Domain

Plate (2003) also proposed a modification of HREhanfrequency domain in which the
space resulting from the Fourier-transformed vec{pp. 145-151). The implementations
of circular convolution and circular correlationthre frequency domain execute faster
than in theime domain-the typical space of the vectors—even denisig the time
employed to transform the vectors to and from tegudency domain. Even better,
creating the vectors directly in the frequency donspace avoids the transformations
altogether. HRR in the frequency domain, also knaseircular HRR, works with

unitary complex numbers (i.e., complex numbers withdulus equal to one) as possible
values in each dimension. Since these complex nisnvdbehave modulus one, the
dimensions of a circular HRR vector are determimgthe angles of these complex
numbers, which can be uniformly distributed ar g without any constraint. The
circular convolution in this domain is equivaleotthe dimension-by-dimension sum of
the angles, and the inverse of a vector correspntife negation of the angle in each
dimension. Plate defines the superposition oparasthe sum of the complex numbers,
followed by a normalization that simply discarde thodulus and takes only the angle of
the resulting vector. Finally, circular HRR empldize mean of the cosines of the
difference between corresponding angles as itdagitlyi measure.

This representation has even better performancetheastandard HRR. All the
operations perform in linear time, and some of thetmoduce less noise. The only
complaints raised by Plate were the more complexauod similarity measure
operations, and the difficulty introduced by wourkiwith angles in connectionist systems

as opposed to working with real numbers. The Mad@amposite Representation,
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which can be compared with the HRR in the frequetmyain, proposes alternatives that
overcome these difficulties (see Chapter 6 foritita

As Kanerva (1996) points out, Spatter Code is exjait to HRR in the frequency
domain when the possible angles are restricted¢g@valent to binary 0) and
(equivalent to binary 1). Modular Composite Reprgation, originally based on a
generalization of Spatter Code, shares similariti & special case of HRR in the
frequency domain, as noted by Kanerva in a persmramunication to the author. | will

further discuss this similarity in Chapter 6.

Hyperdimensional Computing

Both, Kanerva (1994, 1996, 1998, 2009) and Pl228%12003) describe several
operations and experiments using Spatter Code &Rl Hanerva (2009) presented a
comprehensive and well organized review of theslertelogies and operations under the
name ofhyperdimensional computinglere | will present a summary of these ideas. For
more details and results, see (Kanerva, 1998, Z2@lda®e, 2003). Some of the operations

were already described in previous sections. | @pleat them here for completeness.

Binding
Binding tightly associates two vectors, creatingea vector that is dissimilar to both
operands. Multiplication is used to perform thigiion. For example, A andB are

vectors, then

C=A®B (21)

whereC represents the binding betwe&andB.
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Some representations require a non-commutativerignth these cases, a

variation of multiplication using random permutatiulfills the requirement:
C=II(A)Q®B (22)
wherell represents a random permutation.

Unbinding
Unbinding is the inverse of the binding operatidhe unbinding operation allows
finding the filler given the role, or a value givére variable. Multiplying the binding

vector by the inverse of one of the constituenthefbond yields the other element:
A=C® B! (23)

In the binary caseB~! = B, but HRR (and other reduced description modetg)ires
calculation of the inverse vector. When the non“cwtative binding is used, we have

two different unbinding operations, one for theiestal of each operand:

A=1I"'(C ® B™!) for the first operand, and (24)

B=C®II'(A™") for the second operand. (25)

Grouping
Grouping, also known as superimposition or supetipos combines elements that form
a set, record, or similar compositional structiitee sum operation followed by

normalization (in most of the cases) produces grmip
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G=[A+B+C] (26)

G, a vector that represents the compositioA,d, andC, is similar to each of its
operands. An interesting combination of binding gnaliping produces representations

for records or relationships:

S=[A®R,+B®R,+C® R;] (27)

whereRy, R,, andRs, are vectors that represent roles. For exampderepresentation for

a geometric figure follows:

F = [circle @ Shape + red @ Color] (28)

This same procedure can be used to represenbredhips. Suppose the relation

parent(p, ¢), andA is parent oB. The vectoR represents this relationship:

R = [parent+ p@® A+ c ® B] (29)

Adding a role vector for the type of relationshilpg( vectorelationTypein the following

example) helps to retrieve this information usinglpng (see next section):

R = [relationType @ parent + p Q@ A + ¢ ® B] (30)

The vectoR is different fromA andB; this implies that two relationships with the same
fillers are not similar. To make them similar, wandnclude the fillers (i.eA andB) as

new terms into the equation:
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R = [relationType @ parent + pQ A+c® B+ A + B] (31)

Now relationships witlA andB as fillers will be similar, and the fillers can bsed to
cue the relationship. But introducing more termghim composition of a vector makes it
noisier and more brittle. For additional examplésepresentations of structures, see

Plate (2003).

Probing

Superimposing (grouping) vectors does not easlibyateconstruction of the components
of the resulting vector, but it does admibbing,or in other words, testing if the group
vector includes a specific vector. Since the greegtor is similar to its elements, the
distance betwee@ andA in the previous example must be less than théf@mdnce
distance, as defined in Chapter 2. Using a sintpleshold function we can probe

whether a vector is part of a group:

d(G, A) < Threshold (32)

An even more interesting probe operation can predhe filler of a particular

role in a group. Using the example of equation {@&he previous section,

F ® Shape™! = [circle ® Shape + red ® Color] ® Shape™! (33)

since multiplication is distributive over sum:

FQ® Shape_1 = [circle @ Shape ® Shape_l + red @ Color @ Shape_l] (34)
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F® Shape_1 = [circle + red ® Color ® Shape_l] (35)

F® Shape_1 = circle + noise = circle (36)

This operation produces an approximate, or noisksign ofcircle. An auto-
associative cleanup memory that stores the vektmwn by the system (i.e., all the

vectors used in the representations) can retrlevetiginal (clean) vector.

Analogies

There are two ways to use reduced descriptionenstructing the original structure, or
using them akolistic vectors. Probing is an example of the former. Hgmn@sent an
example of the second, which | borrowed from (KaaeR009), that also exemplifies
how to implement analogies using the propertiegdéiced descriptions.

Suppose we represent the relation between a coantryts monetary unit:

A = [country @ USA + money @ Dollar] (37)

B = [country @ Mexico + money @ Peso] (38)

If we want to know what the dollar of Mexico is, wan simply multiply:

B® (Dollar_l R A)_l ~ Peso (39)

More examples afolistic processing, including inference, multiple subsiitos, and

more complex analogies can be found in (Kanerva92Plate, 2003).
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Mapping

Several of the operations of the previous sectyiglsl approximate vectors that require
an auto-associative memory to cleanup. Some vectorde similar and valid for the
system, for example a vector that represents andra relation that include that vector
as filler. In these cases, we may require sepamnataories for storage of simple vectors
and composed vectors. A better solution takes ddgarof the multiplication’s distance
preserving property. We can define a random vedotdenote aegionin the memory for
simple elements, and another random vector fordlagions’ region.

To write to a particular region of the memory, wstfmultiply the vector by the
region’smappingvector. To read from a particular region, first maltiply the cue
vector by the mapping vector, and we multiply tesult by the inverse of the mapping
vector. The term region may be misleading. Actydallg mapping operation maps the
whole space into the whole space, but in huge spaweh these, the chance that a
mapped vector is similar to another vector in Yysteam is almost zero. The mapping can

also be done with random permutations.

Hierarchical Structures
Since the results of grouping and binding havestirae dimensionality as their
components, we can use them as components ofratirercomplex structures. For

example,

C = [circle @ Shape + red @ Color] (40)

S = [square @ Shape + blue @ Color] (41)
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B = [bigger + bigO @ C + smallO ® S1] (42)

whereB represents the relati@digger (bigO, smallOQ with C andS as fillers. The same
procedure allows the representation of hierarcliesexample, a car, which is a
compound object, includes elements, such as therraat the wheels, that in turn can

have their own structure.

Seqguences

Several authors have proposed different ways ab@ding sequences in distributed
representations (for example see Kanerva, 2009¢dbk; 1983; Plate, 2003). Here | will
describe a procedure to encode sequences in secfiers that resembles what | will
later use for storing sequences in Extended SDNCHapter 4, | will extensively discuss
the importance of sequences and review differeyswaencode them.

To encode sequences as single vectors, we could nade for each position in
the sequence, but this is not practical becauseaudd need to define as many vectors
as a sequence could have elements, and this cectuhie arbitrarily large. A better
approach is to generate the role vectors recuysi®thrting with a random vectérfor
the role of the first position in the sequence,ftil®wing roles are generated by simply

multiplying the previous role bly.

S=[AQP+B®PQP+CQPQPQP] (43)

or, in a more compact notation:

S=[CQP+BQ®P>*+AQ® P (44)
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Interestingly, we can construct the vectoteratively, adding one element at a time:

S \=AQP (45)
S, =S+ BI® P (46)
S;=[(S,+C)]® P (47)

Notice that in the binary case, the inverse of @was itself, and a vector multiplied by
itself produces a vector with all Os, preventing tise of this technique. Nonetheless, a
random permutation can replace both the randonorvBcind the multiplication,

achieving the desired result. See Chapter 4 faildet

Other Models

Several authors have proposed models of memoryllmaseectors or similar distributed
representations. Many of these modes use mathexhimiais such as tensors (Dolan,
1989; Smolensky, 1990) to create role-filler repreations. Other authors studied
convolution-based models (Metcalfe, 1982; Murdd@83, 1993; Willshaw, 1981;
Willshaw et al., 1969) that employ convolution tea&te the associations. The main
problem with these techniques is that both tenandsconvolution produce elements
larger than the original elements, making diffidolicreate representations for complex
structures with them. Nevertheless, some of theznessfully model several human
memory tasks. For example Murdock’s TODAM (1983) SI©ODAM?2 (1993), and

Metcafe’s CHARM (Metcalfe, 1982).
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An interesting model is RAAMs (Pollack, 1990), akb@ropagation neural
network that learns reduced descriptions of treater, Chalmers (1990) designed a
network based on RAAM able to create reduced dasanis of sentences, and
holistically—without decoding—transform them intasgive voice.

Rachkovskij and Kussul (2001) developed APNNs (Agdtve Projective Neural
Networks), a special type of reduced descripticgedaon sparse binary vectors (i.e.,
binary vectors with few ones). They use an openatadled Context Dependent Thinning
to maintain the vector’s density almost constaht Thinning operation consists of a
carefully selected combination of random permutetid he results presented in
(Rachkovskij, 2001) show that this model has singlaracteristics to other reduced
description modes such as the HRR and the Spattz.C

Patyk-Lonska and colleges (2011) created a newceztldescription, the GA
model, which is similar to HRR, but based on geaim@roducts instead of circular
convolution. They report that GA’s performanceuperior to HRR'’s and similar to that
of Spatter Code. However, some of the coding veqtosduced by this model are larger
than the operands, which discourage its applicatga reduced description.

Even though they are not reduced descriptions émselves, two models worth
mentioning here for their relationships with HRRI&patter Code respectively are
BEAGLE (Jones & Mewhort, 2007) and Random IndeXfBghlgren, 2005). Both are
models of semantic spaces, and both represent amdgexts) with large vectors.
BEAGLE utilizes circular convolution to create ect@ representation that includes

word order. Random Indexing uses binary vectorscapdures the representation of
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word order using random permutations. A compardmoth models can be found in

(Recchia, Jones, Sahlgren, & Kanerva, 2010).
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Chapter 4: Extended Sparse Distributed Memory

Sequences are important representations for cogratients. Agents act over time and
cognitive agents adapt and act over time. Simpémsvcan be combined into more
complex ones forming sequences, or even treeanpley events (Kurby & Zacks, 2008;
Snaider et al., 2012; Sun & Giles, 2001). Kanenvéis original work, described the use
of SDM to store sequences (Kanerva, 1988). Hisquoe has the disadvantage of
losing most of the auto-associative propertiesrarsge robustness of the memory. Later
he proposed hyperdimensional arithmetic as a neghamsm for storing sequences and
other data structures such as sets and recordeikgr2009). Even though this new
mechanism is an improvement over the original SD&tnanism, it is still limited in its
noise robustness, and it is very sensitive tofietence (see below). Although
interference is a desirable property of the menb@gause it mimics psychological
effects, in this case it diminishes the capacitietoeve sequences.

In this chapter, | propose a variant to the orig#laM, called Extended Sparse
Distributed Memory (ESDM), which is especially siite for storing sequences and
other data structures such as trees (Snaider &Hkna@2011). This new extension
considerably improves the performance of sequetocage of the memory as compared
to both the original SDM memory sequence storagetlae hyperdimensional arithmetic
sequence storage version introduced by Kanervadj200

In the following section | describe the importaméesequence learning. Then |
introduce Extended SDM, discussing several us#isi®extension and its results.
Several simulations are then presented and disguBs®lly, | propose some future

directions.
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Sequence Learning

Spatial-temporal sequence learning is one of thst ingportant forms of learning for
humans and animals (Starzyk & He, 2007; Sun & GRE1). Sequences are used in
procedural learning, to learn new skills, high lgManning and problem solving.

For autonomous agents, time perception and repsgemare critical (Snaider et
al., 2010, 2012), and sequence learning is a keyoaent of these processes. An
autonomous agent can be defined as “A system erededdand part of, an environment
that senses its environment and acts on it over iimpursuit of its own agenda, so that
its actions affect its future sensing” (FranklinGkaesser, 1997). We humans are good
examples of autonomous agents, as are most angoate mobile autonomous robots
and some computer viruses. To be able to plan@medde the result of an action, or
group of actions, is a desired ability for manyosamous agents. From a cognitive point
of view, time presents three major aspects: sumgssduration, and temporal perspective
(Block, 1990). Succession refers to the sequenesaits from which an agent can
perceive event order and succession.

Sun and Giles (2001) enumerate several domain gmabivhere sequence
learning is a main component: “inference, plannnegsoning, robotics, natural
language processing, speech recognition, adaptiviea, time series prediction,
financial engineering, DNA sequencing, and so &@ath of these problems has its own
particular issues that constrain the possible aares. Even though there is a large body
of research on engineering applications in sequkaraing, in this work, I will focus on

associative memories and related architectures.
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Sun and Giles (2001) also classified sequenceiteaproblems into four
categories: sequence prediction, sequence gengragiguence recognition, and
sequential decision making. Sequence predictioneadds the prediction of the next
element based on previous elements of the sequ8ageence generation focuses on the
generation of the next element of the sequencendive previous ones. This kind of
problem is essentially the same as sequence poedi&equence recognition attempts to
validate a sequence. This problem can also beftraned into one of the previous types
of problems. Finally, sequential decision makindradses the selection of actions to
accomplish a goal or to follow a trajectory. Thedest sequence learning problems are
essentially equivalent to planning problems. Hesélliconcentrate on the three first
types of sequence learning problems.

Sun and Giles (2001) also characterized sequenoag models according to
several dimensions such as the learning paradighthenimplementation paradigm. For
example, the learning paradigm might be supervisesiipervised or reinforcement
based, while the implementation paradigm might bewral network, a lookup table, a
deterministic or stochastic model, and so on.

Thedegreeof a sequence element is the number of previamaesits required to
unequivocally determine this element. The sequéegeee is the maximum degree of
any of its elements (Lawrence et al., 2006; L. W&§0). For example, ABCDEF has a
sequence degree one, since each element uniquelynidges the next and therefore all
have element degree one. On the other hand, theseg BCMBCH requires at least
three elements to determine the next one for sditie elements: ABC establishes M,

and DBC yields H. Thus the sequence has degree. thegjuences can be classified as
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simpleif they have degree one complexotherwise (Lawrence et al., 2006). Complex
sequences markedly increase the difficulty of figer&thms and applications for
sequence learning (Araujo & Barreto, 2002; Lawreeical., 2006; L. Wang, 1998,
2000). When several sequences with elements in @onare stored in the memory,
problems similar to those of complex sequencesaciar. For example, if sequences
ABCDE and FSCDH are stored in the memory, at least three prevéberments are
necessary to disambiguate the retrieval of thegeesees, even if each sequence is
simple (Araujo & Barreto, 2002).

Sun and Giles (2001) also described the major seguearning approaches:
neural networks, temporal difference methods, ex@iymbolic planning, inductive
logic programming, hidden Markov models, and evohdry computation. Temporal
difference methods, which include reinforcementrigeg methods such as Q-learning,
were extensively reviewed and compared with caiedlaeural networks for sequence
learning by Worgotter and Porr (2004). In this wdrwill focus on neural networks and
related models. Kremer (2001) comprehensively metethe research in this area.

Neural networks, especially recurrent backpropagatetworks, are widely used
for sequence learning, for example (Giles, Horné,ii& 1995). Associative networks
were also studied for this task. For example, Ln@vg000) proposed hetero-associative
networks such as bidirectional associative memBAM) or associative memories (L.
Wang, 1998). Several authors implemented extensibtisee Hopfield network to store
sequences (Maurer, Hersch, & Billard, 2005). Dn@/and Yuwono (1995, 1996)
developed a model based on short-term memory, mgréed with self-organizing

neural networks, that is able to successfully haedimplex sequences. Similar
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approaches, using self-organizing networks carobed in (Araujo & Barreto, 2002;
Barreto & Araujo, 2004; Somervuo, 1999). Using assitve memories for sequence
storage is a long studied subject. Wang and Yuwtf66) also described the problems
of using several types of neural networks to sseguences, including Hopfield and
Willshaw networks. Stringer and colleagues (Strméwlls, Trappenberg, & de Araujo,
2003) studied hetero-associative continuous atranettworks to solve path-integration.
Lawrence et al. (2006) discussed the advantagesiiodg a combination of hetero-
associative and auto-associative memory for seguieacning; they also provided a
good review of associative sequence models.

Several recent works, based on the hierarchicanizgtion of the neocortex and
visual cortex, focus on learning and recognitiosditial and temporal patterns. This
approach, generally referred to adegep learningsystem, combines hierarchical
networks with pattern recognition using differeethnologies such as neural and
Bayesian networks. The basic idea is to detecépaitvariances in space and (in some
models) in time in each level of the hierarchy, emdse the output of the lower layer as
input for the higher ones. Features and pattearsi¢el at a higher layer are non-linear
combinations of patterns learned in lower ones. Aigker the layer, the more abstract
are the features of the data that they capturemibess of these hierarchical models are:
the Hierarchical Temporal Network (George, 2008vKas & Blakeslee, 2007), HMAX
(Riesenhuber & Poggio, 1999; Serre, Wolf, Bileséhesenhuber, & Poggio, 2007), deep
belief networks (Hinton, 2007; Hinton, Osindero;T&h, 2006), and DeSTIN (Arel,

Rose, & Coop, 2009).
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Several models that use SDM for sequence learnerg described in Chapter 2.
Bose et al. (2005) developed a memory that lesggaences based on a SDM
implemented with spike neurons. Jockel (2009) ectatmulti-fold SDM that performs
sequence learning for a robotic arm manipulati@gtesy. The next section describes in

detail the procedures proposed by Kanerva to segaences in SDM.

Storing Sequences in SDM

When storing sequences of vectors in SDM, the addrannot be the same as the word,
as it is in the auto-associative case. The vebtdrrepresents the first element of the
sequence is used as address to read the memorguffhg vector is the second element
in the sequence. This second vector is used addirss to read the memory again to
retrieve the third element. This procedure is regggbantil the whole sequence is
retrieved. The problem with this mechanism forisipisequences is that it is not possible
to use iterations to retrieve elements of the secgiérom noisy input cues. So the
memory is far less robust.

Kanerva (2009) introduced hyperdimensional comguitiased on large binary
vectors as an appropriate tool for cognitive madglincluding holistic representation of
sets, sequences and mappings. Among the variotm vgaerations proposed, three of
them are relevant to the present discussion anndegummarized here: multiplication
of binary vectors defined as bitwise XOR, permutatiand sum with normalization. For
a complete discussion of hyperdimensional compudimgyits operations see Chapter 3.

Bitwise XOR is the multiplication operation of biyavectors in
hyperdimensional computing. When two binary vectyescombined using bitwise

XOR, the result of this operation is a new vectiothe same dimensionality as the
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original ones. This operation has several intanggtroperties. First, the resulting vector
is dissimilar to the two original ones. Second, X@R operation is reversible. Third, this

operation preserves Hamming distances. For exam@le B, Care binary vectors, and

A" =(A XOR C) and B' = (B XOR C) then d(A, B) = d(A’, B') (48)

Permutation is an operation that shuffles the myst(dimensions) of one vector.
Mathematically, this corresponds to multiplying trextor by a square matrix M with a
single one in each row and column while the otlesitppns contain zero. This operation
is also reversible, multiplying by Mand it preserves Hamming distances as well.

Finally, the sum operation is the arithmetic (irgggum of the values of each
dimension of two or more vectors. For this operatibe bipolar representation of the
vectors is used (i.e., the value 0 is replacedlbyThe resulting vector is an integer
vector. To transform this vector into a binary we&ct normalization operation is
required. If one dimension has a positive value,rtbrmalized binary vector has a one in
this dimension. If the value is negative, the ndirea vector has a zero in this
dimension. Ties are resolved at random. The suim matmalization has attractive
properties: the resulting vector is similar to eatkhe vectors summed up; that is, the
distance between them is less than the expecta@hdesbetween any two vectors in the
space. Also, XOR multiplication and random permatet distribute over the sum. For

example:

[TI(A) + II(B)] = TI([A + B]) (49)
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[(A XORC)+ (B XORC)] = ([A+ B]) XORC (50)

wherell(x) denotes a random permutation and [...] is the nbzatgon operation.

In light of these properties, it is sometimes plalssio retrieve the individual
added vectors from the sum vector. This is feasblg if the number of summed vectors
is small (e.g., three or fewer vectors). Even whiils small number, interference between
the vectors makes retrieval of the original vectasen the sum not very reliable.

Kanerva describes how to store sequences of vacsorg hyperdimensional
arithmetic (Kanerva, 2009). | will briefly descrili@s procedure and compare it with my
implementation in the section “Storing sequencebsather data structures”. The main
problem with this procedure is that it uses the speration, and thus it shares the same
problems mentioned above for sums while reconstgi¢che sequence. It also uses
permutation, and as we discussed before, this tpen@quires matrices that are outside
of the binary vector domain. Nevertheless, pernutatare easy to implement, and a

reduced number of different permutations are reguio obtain the desired functionality.

Extended SDM

Here | present a novel structure, built upon SDdled extended sparse distributed
memory (ESDM). The main idea of this new memorydtire is the use of vectors with
different lengths for the addresses and the wakdsgord has a longer length than the
address in which it is stored. Each addressdimensions while each word hias
dimensions witm < m. Moreover, the address vector is included in tbedwector (see
Figure 10). Formally, in a word of lengthand with an address with lengththe firstn

bits of the word compose the address.
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Address: n bits length
A
- N

——
Word: m bits length

Figure 10. A word vector with its address section.

The structure of this new memory system is sintdahe original SDM. It is
composed of hard locations, each of which has dread and counters. The address is a
fixed vector of lengtim. But each hard location hascounters, where is greater than.

To store a word vector in the memory, the proceditke same as described for SDM in
Chapter 2, except that now the finshits of the word are used as address. To read from
an address in the memory, again the procedurenitasito the one used for SDM.

During each iteration, a word is read from the mgnamd its firsin bits are used to read
in the next iteration.

Formally, the address vectords= (WM)T, whereA is an address vector of size
n, Wis a word vector of siza, andM is ann x mrectangular diagonal matrix with all
ones in the diagonal.

It is important to notice that the whole word veciacluding the address,
comprises the useful data. Conceptually, this mgnsoa mix of auto-associative and
hetero-associative memories. The address pareofitind is auto-associative whereas the
rest of the word is hetero-associative. This allowso preserve, and even improve, the
desirable characteristics of the SDM. First, withirgtial vector as an address to cue the

memory, it is possible to retrieve the correspogduord, even if the initial vector is a
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noisy version of the stored one. This means th&M $aintains the noise robustness
characteristic of SDM. Second, the data of eachoves stored in a number of hard
locations in a distributed way. So it is also rabmsen some hard locations are corrupted
or lost. Third, the previously discussed psychatabcharacteristics of SDM are also
present in ESDM. Finally, the hetero-associative pathe words in ESDM allows

storing other data related to the address datavituibut interfering with it. This is a
notable improvement over the original hetero-asgoa SDM that directly uses the
current element as address of the next readingeptieg the use of iterations to retrieve
the elements, and over the hyperdimensional vetb@irelies on the flawed sum
operation to achieve the same goal, but with feg kdfectiveness.

Lawrence et al. (2006) found similar conclusionthwdifferent associative
memory architectures. They studied the advantafyesitog a combination of auto-
associative and hetero-associative neural netwesgscially for sequence learning. In
particular, they emphasized the importance of tla¢hauto-associative and hetero-
associative parts to achieve robust sequence mefiogyauto-associative part provides
noise robustness when cueing the memory with partiaoisy inputs, whereas the

hetero-associative part points to the next elenmetiite sequence.

Storing Sequences and Other Data Structures

In this chapter’s introduction | mentioned two apgches suggested by Kanerva (1988,
20009) for storing sequences in SDM. | also menti@t both approaches have important
disadvantages that weaken the auto-associatidatiteat addressability and noise

robustness properties of the memory.
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The implementation of sequence storage in ESDNrasghtforward and it
eliminates the disadvantages mentioned. The mast mplementation uses addresses
of lengthn and words of lengthr? as shown in Figure 11. The sequence is compdsed o
vectors of lengtim. To store the sequence, the first two vectararil & are
concatenated forming a word of lengiin EVe will say that the word has two sections of
n bits each. This word is stored in addregsTiBen E and E are concatenated and stored
in address E The process continues until the full sequenstarged. A special vector can

be used to indicate the end of the sequence.

n bits length n bits length
A A

A B

———

C D

Figure 11. Basic sequence representation usimg@rd
vectors.

To retrieve the sequence, the initial vector ofdeguence is used to read a word
from the memory. This word is divided into two sens. The second section is the
second vector in the sequence. Repeating this guoegethe whole sequence is retrieved.

Notice that in each reading during the retrievalhaef sequence, the vector used as an
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address can have some noise, but the iterativenggtdm the memory cleans it up, as
explained previously.

One problem with this implementation occurs whea s&quences that share a
common vector are stored in the memory. For example

ABCDE and F&HI

In the example, the word CD is stored in addressitGhe word CH is stored in C
also. This produces the undesirable interferentedssn D and H that prevents the
correct retrieval of one or both of the sequen@es plausible solution is to use the same
procedure proposed by Kanerva using hyperdimenisgpsations (Kanerva, 2009). The
first reading from the memory again uses the iiteztor of the sequence. But the
following addresses are calculated using the pusioread vectors of the sequence. An
elegant combination is achieved using permutatr@hsaim operations. For examplellif

denotes a random permutation, then the addressddhird element of the sequence is:

As = [TI(E)) + E,| (51)

With this address we read the memory and from thput word the next vector

of the sequencesEis retrieved. The following addresses are catedlan the same way.

Aipy = [TI(A) + E}] (52)

An interesting option is to preserve the sum ofiéetors in each reading and
multiply it by a scalak between 0 and 1, for example 0.8. This producesffact of

fading away of the old vectors of the sequencééncialculation of the next address.
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Al =k=TI(A") + E (53)

Ai+1 = [A’i+1] (54)

where A’ is the real vector with the sum beforemalization.

The introduction of the scal&rhas another critical function. The normalization
required after the sum introduces excessive nbeediminishes the probability of
recovering the sequence. The scélmitigates this effect. See the simulations section
below for a discussion of this subject.

The equations (51), (52), (53) and (54) can be us#tk original SDM, as
suggested by Kanerva (2009). In both situationsratpns with sums are used, but the
advantage of this implementation is that the reali®f the succeeding vector in the
sequence does not depend on operations that ettteagector from the sum. Here the
sum is used only to compute the next addressheutdctor is extracted directly from the
second part of the output word.

Other data structures can be stored in ESDM imdeagi way. For example, to
store binary trees, addresses of lemgémd words of lengthrBare used. With the
address of the root of the tree the first worceisieved. The word is divided into three
sections, left, center and right. The left secholds the content of the node in the tree;
the center section is used as an address with vihickad the left child node of the tree;
the right section holds the address of the rigiitletode. This procedure is repeated until

the whole tree is retrieved. Notice that here agaisy vectors can be used, and ESDM
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takes care of cleaning them up. Also, a mechanisias to the one described for
sequences can be used to avoid problems relategaated vectors in several structures.
Other data structures can be easily derived fraquneseces and trees. A double
linked sequence can be constructed by adding ansgiston ofn bits to the word. The
address of the previous element in the sequerstensd there. This allows navigating
the sequence in reverse order. Something similabeaused to store the parent of a node
in a tree. This allows navigating the tree fromblogtom up. Finally, more sections rof
bits can be added to each word in the tree sdréed with greater degrees can be stored.
Interestingly, a tree can represent a more meauidgta structure, like a record, where
each child node represents a field of the record,the root the record itself. An even
simpler representation for record is a word withesal sections where each section

represents a field of the record.

Simulations and Experiments
For simulation and testing of the ESDM, | implenezhseveral versions of the memory.
One of them uses a database for the main storae bfard locations, and a RAM cache
to speed up storage and retrieval operations. dllue/s us to create large ESDMs, with
millions of hard locations and word dimensions loa ¢rder of 1,000 or even 10,000 bits,
even using modest computers. Another version imgtgsithe actor model for parallel
and distributed execution. Finally, a GPU implenaéion runs in SIMD architecture with
a notable performance gain. For more implementateiails, see Chapter 7.

Several simulations were performed with the ESDNktFthe capacity and noise
robustness of the extra bits of the words were @etpwith these same characteristics in

the standard SDM. Second, the sequence storagetedal were tested for several
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values ofk. Third, retrieving sequences from intermediatenelets was analyzed.
Finally, experiments that test the retrieval ofssiog sequences that have common
elements were performed. In this section | preaadtdiscuss the details and results of

these simulations.

ESDM Capacity and Noise Robustness
These simulations test the capacity of the memodyis noise robustness. Kanerva
(1988) proved that the critical distance of SDM inction of the number of words
stored in the memory. He also proved that the mawiroapacity of the memory is
reached when the critical distance reaches zerighw approximately equal to 10% of
the number of hard locations for a memory with gexbf 1,000 dimensions. After this
number it becomes impossible to retrieve a stoestiov even when cueing the memory
with the same vector. For a complete analysis dfiSRpacity see (Chou, 1989;
Kanerva, 1988; Keeler, 1988). Reading from ESDMssentially the same as from
SDM, except for discarding the extra bits of theavdience, convergence during a read
in ESDM is the same as in SDM, and the criticaladise and capacity are also similar to
those of SDM. However, we need to show that thegrgage of errors (changed bits) in
the words read from ESDM is similar to the percgataf errors in the words read from
standard SDM. If only the address part of the wscstored in ESDM is used, the
memory is equivalent to standard SDM, so the eroonparison was performed between
the address part and the whole word of the same!aiion.

Several simulations were performed to test thegregage of errors in the output
words. An ESDM with 200,000 hard locations, an addriength of 1,000 dimensions

and a word length of 2,000 dimensions (includirgdaddress) was used for the
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simulations. The size of the memory, determinethieynumber of hard locations, was
chosen to have enough hard locations in the aspisse for each read or write to
support the desired properties of the ESDM, biiiet@s small as possible to limit the
number of reads and writes required to perceivestteets of loading the memory. The
size of the vectors was chosen to match thoselms&eénerva (1988). For this particular
simulation, a total of 10,000 random vectors weéoeesl in the ESDM, which is roughly
half of the memory capacity.

The storing of vectors in the memory was doneages, writing 1,000 vectors in
each stage. At the end of each stage, the vecensngad from the memory. For the
readings, 10% of the bits of each vector address aleanged randomly, and these noisy
vectors were used as cues. Figure 12 and Tablewi tte results of this simulation.

An analysis of the retrieved vectors shows thaiptioportion of errors for the
word and the address is constant and roughly ptiopat to the difference in size. This
shows that using words that are longer than adelsedses not affect the fidelity of the
memory. Also, the percentage of retrieved vec®nsistent with the diminishing of

the critical distance as more vectors are storedamemory (Kanerva, 1988).
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Figure 12. The percentage of retrieved vectors in each stage, the mean number of
iterations required in each stage, and the number of errors (changed bis) in t
address part and the whole word of the retrieved vectors in each stage.
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Table 1

Simulation 1. ESDM capacity and noise robustnigssach stage, 1,000 vectors were
stored. Then the same vectors were retrieved addi#ignoise to the cue (address). The
number of iterations and the mean error are givethe retrieved vectors. The address
part is equivalent to the standard SDM result.

Stage Retrieved (%) Iterations Error mean

Mean SD Address  Word
1 100.00 2.59 0.49 0.00 0.00
2 100.00 3.04 0.24 0.00 0.00
3 99.80 3.51 0.59 0.00 0.00
4 98.40 4.31 0.90 0.00 0.00
5 90.30 5.23 1.25 0.04 0.09
6 71.20 6.16 1.41 0.20 0.39
7 47.60 7.30 1.62 1.37 2.83
8 22.30 8.24 1.58 3.78 6.18
9 15.00 9.50 1.83 1.15 1.60
10 12.60 11.09 3.34 1.54 2.47

Another simulation was performed to show the noristness of ESDM. The
same ESDM was used as for the previous simulatidh,10,000 vectors already stored
in the memory. The vectors were also preservedsigparate database so that they could
be used as cues or compared with the retrievats fr@ ESDM. The simulation was
performed in three stages. In each stage, onedhdugectors were randomly selected
from the set of stored vectors, and the memoryreag using the address part of these
vectors with a variable amount of noise. The ntgsels were as follows: 0% in the first
stage, 5% in the second, and 10% in the third.&aldummarizes the results of this

simulation.
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Table 2

Simulation 2. ESDM capacity and noise robustnkssach stage, 1,000 vectors were
retrieved from an ESDM with 10,000 stored vectars] a variable amount of noise was
added to the cue (address). The number of errdheisuccessfully retrieved vectors
represents the average number of bits changectinvestor.

Stage Noise (%) Retrieved (%)  Error mean
1 0 100.00 0.286
2 5 97.00 4.784
3 10 14.80 2.439

The results of the experiments suggest a good ipeaface of the memory: the
number of successful retrievals was high with lewels of noise, and the error (number
of changed bits in the retrieval) was very smalislthan a bit on average. Even more,
93.3% of the vectors had zero errors in stage 178f4 of the retrievals in stage two had
fewer than five errors. As expected, the numbeetrsfeved vectors diminished when the
vectors used as cues reach the critical distanagcd\that the critical distance is the
distance at which the probability of convergencthtostored value is 50%. The critical
distance is a function of the number of hard lareiand the number of stored vectors in
the memory. For the ESDM used in this experimerth & load of 50% of its capacity,
distances of 100 bits (10% of the address lengtim the original vectors are beyond the

critical distance. See Kanerva (1988) for detalils.

Seqguences

| performed several simulations to test sequenmgsdin ESDM. In each simulation, 50
or 100 sequences of 20 elements each were stosad.tAe previous simulations, ESDM
memories with 200,000 hard locations, an addrexgheof 1,000 dimensions and a word

length of 2,000 dimensions (including the addres=ke used for these simulations. A
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new ESDM with a memory load between 5% to 10% efrttemory capacity was used
for each simulation. This prevented interferencemgstored vectors. | considered a
sequence successfully retrieved if all elementewetrieved with a small amount of
noise (less than 5%).

The first simulation stored and successfully regtk49 out of 50 sequences;
however, the same approach failed to retrievegesgequence in a run with 100
sequences. Interference produced by memory lod&d,id@his case, does not suffice to
explain this result. Rather, the normalization raite sum in equation (52) enables an
effect that distorts the address. The sum hastembinary vectors as operands in the
address calculation. When the two operands diff¢ihe value of a single dimension, the
algorithm randomizes this dimension’s value. Indkerage case when using a random
uniform distribution of vectors, excessive nois&d%6 of the bits prevents successful
retrieval of the element.

To avoid this problem, equations (53) and (54) wesed. Since one of the
operands has a smaller weight than the other,uimeh&s no undetermined dimensions,
and the problem disappears. In a simulation whéfeskquences were stored using
equations (53) and (54) with= 0.8, all the sequences were restored without.error

The use of the parametehas other interesting consequences due to théhfaict
the weight of the previous elements diminishedqiasequence advances. It is possible to
“step into” the sequence in the middle. Howeverrartbhan one element may be required
for the cue. For smaller valueslgffewer elements are required as part of the ceéeo

into the sequence. Conversely, if two (or moreuseges have common elements, the
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probability of retrieving the correct sequence @ases ak approaches one. The value of
k is then a tradeoff between these two desirablpgrties.

Several simulations with different valueskofvere performed. First, the “step
into” property was tested. Three simulations wigues ok equal to 0.7, 0.8 and 0.9
respectively were performed. One hundred sequemite0 elements each were stored
in each simulation. Then, 10 of the stored sequenege chosen, and for the elements of
these sequences, the number of cue elements r@dqoibe able to step into the sequence
at that element was evaluated. To avoid transiffigcts, only elements after the fifth
were used as points to step into. Table 3 showsethdts of these simulations.
Table 3

Effect of k on stepping into the sequenoeeach stage, the simulation evaluated the
number of cue elements required to step into thaesgce at different points.

Stage k Required Elements
Mean SD
1 0.7 1.085 0.280
2 0.8 2.697 0.679
3 0.9 6.000 1.265

As expected, the number of required elements ittleencreases &sncreases.
The best value df depends on the degree of the sequences that mstooeg. The
higher the required degree, the higher must bedhe ofk.

Another series of simulations was performed to @&l the retrieval of
sequences with common elements, that is, sequémataisitersect. Four simulations with
values ofk between 0.9 and 0.6 respectively were performed.pairs of sequences with
20 elements each were stored in each simulatiom s€fuences in each pair had a

common element. In every case, the intersectionaftasthe fourth element in the
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sequences. A number of random vectors were stardggtimemory so as to achieve a
load of 10% of the capacity of the memaory.

Each of these sequences was then retrieved fromeheory, and the number of
successfully recovered sequences noted. With #lflesfe values &, all sequences were
successfully retrieved. This result shows thatféfag¢ure of correctly retrieving
intersecting sequences is invariant over the vafle However, equations (53) and (54)
suggest that if two sequences have more than arsecotive element in common, higher
values ofk will perform better.

Notice that wherk is equal to or less than 0.5, the first term inapn (53) is
always less than one and it does not contributkeedinal value after normalization in
equation (54). As a consequence, the next addsesdy a function of the previous
element, so that most elements after the intergpelement are not able to be retrieved.
This is because of the interference produced bygdinemon element.

Comparing the results of the last two groups ofusations, a balance between the
two characteristics, step into and crossing of esages is achieved with a valuekof
between 0.6 and 0.8. Of course, the selectioneot#tue ok depends on the

requirements of the application of the ESDM.

Long Sequences

A series of experiments further demonstrates thaaty of this memory for sequence
storage. Using an Extended SDM with 1,000,000 kardtions, an address length of
1,000 dimensions, and a word length of 2,000 dino@&ss 50 sequences with 100
random elements each were stored in the memorg agrarametek equal to 0.8. Then,

the sequences were retrieved adding 10% noisestouil vectors. All sequences were
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recovered from the memory without any error. | perfed the same experiment with 100
sequences using a similar memory configuratiorgiabitg the same result. Another
experiment stored 10 sequences of 1,000 elemecitsirra memory with identical
configuration. As in the previous experiments salfjuences were retrieved without
errors when the memory was read after adding 10%ero the cue vectors.

Each of these experiments utilizes a number oforechat is approximately 10%
of the theoretical memory capacity. If the numbiesexjuences increases, the
performance would diminish. Nevertheless, this fimsslecrease in performance would
be due to the capacity limit and not because ofdurience storage mechanism.

Another experiment demonstrates the crossing seguearning capability of the
memory for long sequences. Using a predefinedfsetatiors as aalphabef 10
sequences with 100 elements (each of them chosemtlre alphabet) were stored in the
memory. The results varied depending on the alglsabee and the parameterUsing a
parametek equal to 0.7 and an alphabet of 20 elements, quaesee was retrieved
correctly. On the other hand, usikg 0.9 and alphabet with 40 vectors, every sequence
was retrieved almost without errors. Only 8 outhef 1,000 elements that composed the
10 sequences presented errors. Finally, the sapeiment withk = 0.9 and 20 elements
in the alphabet had an intermediate result. OnlgfliiBe retrieved vectors resulted in
more than 10% of errors, and 962 vectors had hess 1% of bits with errors. These
results are consistent with the expected interfexemong similar vectors when the
alphabet is small, which produce a large numbéhetrossings between the sequences.

Summing up, these experiments demonstrate thagiebilities of the sequence

learning mechanism are preserved even when longesegs are used. The mechanism’s
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performance degrades when the total number of keafmproaches the memory’s
maximum capacity, or when the size of the alphabpbssible vectors to construct the

sequences is small, which produces more interferantwng the vectors.

Conclusions

Here | have presented an extension of the ori@mda¥ that addresses several of its
difficulties with storing compound data structuli&e sequences, trees and records.
ESDM preserves the desirable, biologically inspiggdperties of the original. It is also
still noise robust, auto-associative and distriduehese, combined with the possibility
of storing sequences and other compound data stesstmake ESDM an even more
attractive option with which to model episodic meies.

The simulations successfully tested the performafitee ESDM in several
scenarios. The importance of the paramietgas shown not only for the storage of
simple sequences but also for enhancing performahea stepping into in the middle of
sequences, and for enabling accurate retrievalertase of common elements in
different sequences.

ESDM is compatible with other improvements alreatlydied, such as the
introduction of the “don’t care” symbol (D'Mello at., 2005; Ramamurthy et al., 2004),
or the forgetting mechanism (Ramamurthy, D'Mellalet2006; Ramamurthy &
Franklin, 2011). Incorporating this forgetting maaism is a natural direction for further
development of this architecture. Other possibleatians of ESDM already studied for
SDM include dynamic allocation (Ratitch & Precupp2) of hard locations and
distribution of hard locations according to thead@&nwar et al., 1999; Fan & Wang,

1997).
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Chapter 5: Integer Sparse Distributed Memory

Sparse distributed memory (SDM) (Kanerva, 198®gised on large binary vectors, and
has several desirable properties. It is distribusedio-associative, content addressable,
and noise robust. For details see Chapter 2.

The original SDM uses binary vectors for both addes and data words. This
usage results in several limitations. First, redghdare not always Boolean, making
representations using more than two values desir&bpossible solution for this
limitation is to use several dimensions of the weedtors to represent one feature, but
this approach does not fit very well with the stawe of SDM. In the distance
calculation, a difference in any dimension hassdm@e weight as that of any other
dimension, but if several bits (i.e., dimension®) ased to represent a single feature, the
weight of the bits should not be the same.

Mendes and colleagues (2009) evaluated severalemagodings to use with
SDM in robot navigation tasks, and reported thdfradlities and limitations. Using
binary numbers coding some transitions have Hammistgnces that incorrectly reflect
the difference between the features. For examipéeHamming distance between seven
(0111) and eight (1000) is 4 instead of the degilisthnce of 1.

They also reported the performance of the Gray ,cotieh only partially
mitigates this effect. The best solution that theyposed is to use a sum code, in which,
for example, 3 is represented as 111 and 5 as 1Thid coding substantially increases
the dimensionality of the memory. Interestinglygtireport that grouping bits and
processing them as integers produces excellertnpeathce. However, their

implementation diminishes some of the desirabl@@ries of SDM. The extension
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proposed in this paper directly uses integer vecthieving similar performance but
without the disadvantages reported by Mendes.

Another disadvantage of binary vectors is the tdgaformation due to the noise
introduced into the representation by the normabnaused in combining vectors.
Vectors can be summed up dimension by dimensiartl{fe operation, vectors
belonging to {0; 1} are replaced by vectors of {-1; )} This operation produces a
vector belonging t&”. The normalization process reduces the resulteatvector that is
also in {-1, 1} but with significant loss of information. See forample (Kanerva, 2009;
Snaider & Franklin, 2011; Snaider & Franklin, 20L2axtensively discussed this issue
in Chapter 3.

Here | introduce a new version of SDM, the Inte§parse Distributed Memory
(Integer SDM) (Snaider & Franklin, 2012b). Thissien is based on large vectors, on
the order of thousands of dimensions, where eauvkrmiion has a range of possible
integer values. This memory has properties siniahe original SDM noise robustness,
auto-associativity, and being distributed. A furtegtension of Integer SDM permits
words and addresses of different lengths, whigarsicularly useful for the reliable
storage of sequences and other data structure€sgser 4). In addition, this memory
avoids the limitations imposed by binary represiéornaas described above, allowing a
better encoding of non-binary data and alleviatmgnormalization problem when
combining several vectors. This memory also fitsréquirements of the Modular

Composite Representation to be introduced in Cind@pte
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Integer Sparse Distributed Memory

The structure and operations of Integer SDM arelairto that of SDM (see Chapter 2).
However, the words and addresses used by Integelr &8 large vectors of integers
rather than binary vectors. The possible valueg&ah dimension are in a defined
integer range. For example, the range of valuededrs, 7}, {0, 15}, or any other
range. However, for simplicity, we will work witlanges with 0 as the lower bound and
r — 1 as the upper bound. Although there is no thigatdimit to the size of the range,
the storage requirement of the memory increasgsoptionally with the range’s size.
More formally, Integer SDM works within a multidimsional space with vectorse

Z', wheren is the number of dimensions of the spaceraisdhe size of the range of
values for each dimension. The dimensions of tlaeeollow modular arithmetic: the
greatest possible value for a dimension-sl, and the next value after 1 is 0.

Integer SDM is composed of hard locations. As ilVG@& small fraction of all
possible addresses e Z! are chosen at random (with equal probability) atresses for
the hard locations. Each hard location has a fadittess and counters, resembling the
structure of SDM. However, hard locations in Inte§®M have a different arrangement
of counters: each dimension hasounters, one for each possible value in that dgios
(see Figure 13). | defing; as the group of counters corresponding to the msmei, and

C/as the counter corresponding to dimensiand valueyv € {0,r — 1}.
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Hard Location

Address: | n-dimensional vector

Group of counters for each dimension
Co C1 C2 Cs Cn-1
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Figure 13. Structure of an Integer SDM hard location. Each hard location has an
address that is amdimensional vector belonging &f, and counters for storing

data. The counters are organized into groups. There is a group of counters for each
dimension of the vector space of wordsn this example. Each group has

counters, one for each of the possible values in each dimension of the word

vectors.

To read or write a word, first the access sphere of the address is detethi
Any similarity measure for vectors in the space lbaused as distance, including any

norm, but the measure need not define a metrib@space.

The distance used here is an extension of thed&arli or Manhattan metric. The

distance between two vectors is defined as:

dw,v)= | Z(Aiﬂ (55)

for the extended Euclidean metric, and:
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d(u,v) = Z A, (56)

for the extended Manhattan distance, where:
A= min(mod,(u; — v;), mod,(v; — u;)). (57)

Since each dimension in the space follows modultmaetic, each dimensian
is like a circle with two possibleathsbetween the valuas andvi. Notice thatj; is the
shorter of the two.

The geometric interpretation of this space istengurface of a hypersphere, and
the variation of the Euclidian distance is equinék® the distance between two points on

the surface of the hypersphere. See Figure 14.

distance from

u
utov

path, for -

dimension i

- A
path, for
dimension i

Figure 14. Euclidearistance fromu to v on the surface of a sphere.
For the distance calculation, when projecting onto dimensibiere
are two possiblpaths.The shortest one (pathn this example) is
used for calculating the distance.

109



The radius of the access sphere is defined in awedy that on average it
encloses a small proportigrof the total number of hard locationsnifis the number of
hard locations in the memory, the access spheitessaspmhard locations. This valye
is also the probability of activation of one haoddtion, that is, the probability that one
hard location participates in a particular readingvriting operation. Since the hard
locations are uniformly distributed in the spate, probabilityp unambiguously
determines the radius of the access spheracfimatedhard location with respect to a
given operation is one that participates in a df@etreading or writing operation. Figure

15 illustrates the structure of the Integer SDM.

Integer SDM
L]
Access Sphere ]
encloses pm
Hard Locations [l
[
Hard
Locations D
a O
[]
[]

Figure 15. Integer SDM structure. The addresses of hard locations are
uniformly distributed in the space @f'. The access spherewf
enclosepmhard locations. Thegemhard locations are active when

is read or written.
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For writing the wordv in the memory, the counters of each hard locatidhe

access sphere are updated using the following rule:

C! is incremented < v = w;

wherew; is the value of the dimensiomf the wordw. Notice that only one of the
counters in each dimension is incremented for arghard location; this process is
repeated for each hard location in the access spher

Reading from the memory begins by determining tel lhocations in the access sphere
in the same way as when writing. Then the courtenesponding to each of thevalues
in each dimension are summed up over all harditmtsin the access sphere:

Sf= ) ¢ (58)

i
HL e
Access
Sphere

wheresS? is the sum of the counters for dimensi@md valuey.
Finally, for each dimension a majority rule is apglamong the values, and the
valuev corresponding to the maximus¥ is assigned ta, the value of théth

dimension of the output vector.
z; = index(v) of max(SiO. : Si’_l) (59)

wherez is the value of dimension of the output vector. This vectaran be used as an
address to read from the memory again, iteratingersame way as in the original SDM.
See Chapter 2 for detalils.

The complexity of the reading (or writing) operatiof the memory i©(mn +

prmn). The first term corresponds to the calculatiomthef distance frorw to each hard
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location, and the second term corresponds to tding (or writing) of the counters in
the hard locations. Since in gengrak< 1, the first term dominates. When the number
of hard locationsnis too large, the implementation is likely to bews However, the
algorithm is easily parallelizable to be executedhultithreading or SIMD architectures
(e.g., using GPUs). Moreover, other methods favatihg the hard locations have been
studied for SDM; these can be adapted for Inte@av Glso. See for example (Jaeckel,
1989a, 1989b; Karlsson, 1995). These alternativamdowgreatly reduce the time

complexity of the algorithm.

Radius of the Access Sphere
Here | will analyze the calculation of the accgsisese radius that corresponds to a
particular value op when the variant of the Manhattan distance is .usethis section
the term distance refers to the variant of the Ndtaim distance introduced in the
previous section. To calculate the radius of theesas sphere as a functionppfve need
the distribution of the distances from a given ptanall the other points in the space.
Since the space is symmetrical, any point is edgmtdo any other one. For notational
simplicity, we will calculate the distribution witlespect to the origin (the vector with
each dimension equal to 0). In Chapter 6, | widega proof for the following
approximation to this distribution for the case wihes even. The result is similar, but
not exactly the same, whers odd.

If the dimensions of all vectors are independet @amformly distributed in
{0, r — 1} andr is even, then the distribution of Manhattan diseanfrom a given vector
to the rest of the vectors of the space can beoappated by a normal distribution with

parameters:
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D~N<ﬂ n(r2+8)> (60)
e

With this distribution we can calculate the radifishe access sphere; it is simply

the value of the distance that encloses a propoptmf the space:

n(r? +38) - nr (61
TPy

radius ~

where®™ is the inverse of the normal distribution functiéior example, witm = 1,000,

r = 16, ando = 0.001 the radius of the access sphere is appatiyn3,771.

Fidelity and Capacity

The fidelity of this memory—the probability of rigving a written word—is better than the
fidelity of the original SDM with the same numbédrard locations and the same
number of stored words. This improvement is duedoe precise storage in each hard
location. Since each dimension is independent@bthers, we can choose any
dimension to analyze, the fidelity of one of the dimension; the reswill be the same

for all other dimensions. For convenience, wecalenension 0. Suppose the stored

value for dimension O of wond is k, orwp = k. To readng incorrectly from memory, at

least one of the sun, for the incorrect values) (# k), must be greater tha?g. The
value of the sums for incorrect values is due &dbntribution of other words written in

the memory that share some of the same hard |osatised to store. Assuming the
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other words written in the memory are uniformlytdisuted in the spacethe noise
produced by the interference of these written wasdhstributed irr possible values.

This diminishes the expected value and variandbenf(‘)’ for v # k. Then the

probability of havingM g» = max (.Sg|v # k) > S(’)‘ is less than in the original SDM for
the same number of words stored in the memory. ifkiement in the fidelity of the
memory also increments its capacity: more wordsheastored before the effect of
interference is noticed. This compensates for ttktianal requirements of memory
storage to implement the counters of this memomgoaspared to the original SDM.
The theorem at the end of this section derivedal@wving approximate formula

for ¢ the fidelity of this memory.

cp=/w¢ ALY A du ©2
o\ Vi Vi

where

mtp2 (63)

r

2
mt
Ay = P and A, = mp +
r

The valuet is the number of vectors stored in the memory.

Figure 16 depicts the probability density functigpdf) of S;, M ge, andS(')C
when one of the vectors is recalled, for an Inte&jeM with 1,000,000 hard locations,

=16,p = 0.001, and = 400,000. The fidelityp of one dimension is the probability that

Mgo > S§. In this example = 0.99993.

1This assumption is reasonable for the purposetifiaiing the capacity of the memory.
However, the memory can store vectors even ifatsl ocations are not uniformly distributed, bug th
capacity may be diminished. See Kanerva (1993 feimilar analysis for SDM.
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Figure 16. Pdf's ofS;, M g, andS(’)‘for a Integer SDM with
1,000,000 hard locations= 16,p = 0.001, and = 400,000.

Figure 17 shows, the probability that one dimension is retrievedrectly, as a
function oft, the number of stored vectorst ¥ 550,000 ther = 0.999. A standard
SDM with the same number of hard locations willaeéhis same fidelity after storing

about 105,000 vectors (Kanerva, 1993).
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Figure 17. Fidelity of one dimension as a functiort,ahe number of
vectors stored in the memory. For a Integer SDM with 1,000,000 hard
locationsy = 16,p = 0.001, and = 550,000 the fidelity i® = 0.999.

Theorem: The fidelity ¢ of one dimension, which is the probability of reting a

dimension correctly, can be approximated by:

o= [To( )0k " ©Y

where

2 2 65
t t
Av=gand/1k=mp+g (63)

Proof. We will write into the memory a vectarand a set T of vectors. All these vectors
are uniformly distributed in the space. We will ise denote the size of the set T. Then,

we will read from the memory in the addressetrievingw’, and we will calculate the
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probability ofw’=w. Since all the dimensions wfare independent (the same is true for
all vectors in T), we can analyze the fideljtyf dimension 0, that is the probability of
correctly retrieving the value for the dimensio(i.8., w6 = wy), and use this to calculate

the probability of correctly retrieving.

Q= P[w6 = wo] (66)

Plw' = w] = ¢" (67)

wheren is the number of dimensions wf

Suppose thab, = k, and remember from above that:
wy, = index(v)of max(S(()O). . S(()r_l)> (68)

When we readv, we wantS(’)‘, the sum of counters corresponding to dimensiand
valuek, to be greater thaM ., the maximum of all the other sums corresponding t

dimension 0 and values different tharin other words,
Mg = max(Sg|v # k), (69)

and in order to recall the correct vakief wj, we needV s < S;. If we defineG =

(Mgo — S§), then
@ = P[G < 0] (70)

| will first analyze M g». Consider the hard locations that are activateenmhis

written or read. Sincp is the probability of activation of a hard locatiduring one
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reading or writing operation, and the vectors iar@ independent a¥, the probability of
activation of a hard location in the access sphefésthw and a vector in T ig?. The
distribution of the values of the count&f|v # k,v € {0,r — 1} for a hard location

activated in the write operation for one of theteesin T has a Bernoulli distribution

with probabilityp, = ”72. Then, for the writes of the vectors in T, the distribution of

Cg|u # k for any hard location has a Binomial distribution:

C~B (r, p—2> (71)

r

We will haver - 1 counters, corresponding toiagorrectvalue in dimension 0,
for each hard location in the access spheke with the Binomial distribution defined as
in (71). The sum of these counters for all haré@tmns in the access spherenofwhen

we readw) is:

7
Sy~ B (mt,—) (72)
r

The probability mass function (pmf) of this sum is:

2\ X 2\ mt—x
P{S{ =x} = fi(x) = (’"’) <”7> (1 —”7> (73)

and the cumulative distribution function (cdf) is:

oS Sx}=F5(x)=Z<n?t> <p72><1—§>m (74)

i=0 \1

Note that:
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fo(x) = Fj(x) = Fj(x = 1) (75)

For the M order statistic, the cdf of the maximumroifd random variableX;,~F(x) is:
Fax(x) = [F(0)]" (76)

and its pmf is:
Fmax®) = [F)]" = [F(x = 1)]" (77)

In our case, we have- 1 random variables(’j, each of which has a cdf defined as in

equation (74), so:

F. (x)= li (mt) <p_2>’ (1 _p_2>mt—ilr—l 78)
max - & j r r

and, f,,,.(x) can be calculated with:

N WICKCORMWICICO N

Sy, corresponds to the sum of the counter forcthreect value for dimension 0 when

reading from address. We can expresS;, as:
S§ =Sy + Sy (80)

whereSg‘”corresponds to that part of the sum of the couriverthe valuek due to the

wordw, anngT is the contribution due to the other vectors irSj"? has also a

Binomial distribution:
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Sy~ B(m, p)

The probability mass function (pmf) of this sum is:

P[Sg“’ - x] = f(x) = <m

X

> pd-p"

And, SgT has also a binomial distribution identical&'gﬁz

2
S(I;T~ B (mt,p—>
;

and its probability mass function (pmf) is:

elstr =] == () () (

We can rewrite (70) as

o=P [MSU - <S§W+S§T> < 0]

fsg(x) can be computed as the convolutiodéﬁf(x) andng(x) :

Fp() = D fy () fy" (x =)
i=0

e )G
%0 el AN x—i) \r
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’

D >mt—(x—i)]

(81)

(82)

(83)

(84)

(85)

(86)
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We can rewrités as
G= Mg — (S(’jw + Sé‘T) (88)

Thus, to calculatg;(x) = P[G = x], we have to compute the cross-correlation

betweenf Sg(x) andf,,,. . (x):

fe(x) = .itfsg(i) Smax(x +10) )
and
x mt (90)
Fg(x) = u;«, ;n f 5t Frnantt 1) = ;m f 580 Frg(x + 1)
Finally, to calculatep:
(91)

0= Fo0)= Y, [t(i) Fpu(i)

i=—mt

Although equation (91) yields an exact solutiongpcomputing it is difficult.

Alternatively,Fg(X) can be derived by approximatiﬂé“”, SgT andsS,, with Poisson

distributions:

2
t
S, =~ Poiss </1U =P > (92)

r

Sgw ~ Poiss(Ay,, = mp) (93)
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2
t
S(I;T ~ Poiss </1kT = g) (94)
From (93) and (94):
S = 83" + 8,7 = Poiss(Ay + Air)

2
t
~ Poiss <1k=mp+mp >
’

(95)

The distributions of5,) andS(',‘ can be further approximated to normal distribution

So

R

N (4, Ap) (96)

Sy = N(Ae A (97)

The cross correlation betwegfgug(x) andf,, . (x) is

fox) = / fsg(u)fmax(x +u) du (98)
and the cdf oG is:
Fs(x) = /x / fs(’;(”)fmax(z +u)dudz (99)
0o x (100)
Fs(x) = / fS(;)c(u) (/ Smax(z + 1) dz) du
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Fg(x) = / ) f 5400 Fry (x + 1) du (101)

. _ _ r—1 (102)
Fo(x) = / Y= AP du

Finally,

¢=F(o)=/oo¢ L) L - du (%)
e\ Vi) \ VA

which proves the theorem

Experiments and Results
For the simulation and testing of the Integer SDikhplemented the memory using a
custom database for the main storage of the haaditms, and a ram cache to speed up
the storing and retrieving operations. This allasdo create large Integer SDMs, with
hundreds of thousands of hard locations, and wardwlimensions on the order of 1,000
or 10,000 dimensions, even using modest computeranore detail about the
implementation of Integer SDM, see Chapter 7.

Several simulations were performed to test thegeage of errors in the output
words. For the simulations | used an Integer SDkh\D0,000 hard locations and a
word length of 1,000 dimensions, where 16 and the value in each dimension is in the

range of {0 — 15}. | used a probability of activatip = 0.001 that approximately
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corresponds to a radius of the access sphere’oivd&n the Euclidean distance variant is
employed. The size of the memory, determined bythreber of hard locations, was
chosen to have enough hard locations in the aspisse for each read or write to
support the desired properties of the Integer SBM to be as small as possible so as to
limit the number of reads and writes required tacpive the effects of loading the
memory. For this particular simulation, a totabgd00 random vectors were stored in the
Integer SDM. The vectors were also preserved eparste database so they could be
used as cues or compared with the retrievals franriteger SDM.

The simulation was performed in four stages. Irhesdage, 100 vectors were
randomly selected from the set of 5,000 storedorscand the memory was cued using
these vectors with some amount of noise, thattis ®me number of randomly selected
dimensions that were changed from the original. &ineunt of noise in each stage was:
5% in the first stage, 10% in the second, 20% éntkird, and 30% in the last. In stages 1
and 2, 100% of the vectors were retrieved. Stageethad only one retrieval error, and
stage 4 produced 65% correct retrievals. Tablednsarizes these results. The same
experiment using the variation of Manhattan distaimad similar results: 100% of the
vectors were correctly retrieved in the first thet¢gges and 65% in the fourth (see Table
5). The graceful degradation in the performancewhio these experiments is similar to
that observed in the original SDM (Kanerva, 198&sed on these results, the
Manhattan distance is preferred due to its simpli€onsequently, the rest of the

experiments described here utilize the Manhattstadce.

2 The radius of the access sphere was obtained ieailyir For 1,000 random points, tpen
closest hard locations—100 in this experiment—wetermined, and the farthest one was recorded. The
average of these recorded values was 65.
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Table 4

Simulation 1. Integer SDM capacity and noise robess.In each stage 100 vectors were
retrieved from an Integer SDM with 5,000 storedtoes; and a variable amount of noise
was added in the cue (address). Euclidean distaasaised for this simulation.

Stage Noise (%) Retrieved (%)
1 5 100.00
2 10 100.00
3 20 99.00
4 30 65.00
Table 5

Simulation 2. Integer SDM capacity and noise robess.In each stage 100 vectors were
retrieved from an Integer SDM with 5,000 storedtoes; and a variable amount of noise
was added in the cue (address). Manhattan disteaseised for this simulation.

Stage Noise (%) Retrieved (%)
1 5 100.00
2 10 100.00
3 20 100.00
4 30 65.00

Another series of experiments further tested theenmbustness and capacity of
the memory. These experiments used Integer SDMs30i{000, 100,000, and 200,000
hard locations respectively. In each of them, vacigere stored in stages, and then
samples were retrieved adding different amountsoefe for each sample. | considered a
retrieval to be correct when the output vector ofading operation has no errors. Figure
18 illustrates the results of these experimentisdlearly show the performance of the
memory for different configurations and how it dmshes gracefully as the noise or the

number of stored vectors increases.
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Figure 18. Retrievals from Integer SDMs with different configurations. The
graphs show the retrieval rate with various levels of noise added to the cue
vector for each memory configuration.
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In a similar experiment, | measured the numberimiedsions that differed
between the stored word and the retrieved word wigemoise is introduced. In a
memory with 100,000 hard locationss 16, ando = 0.001, the results matched the

theoretical expected values@{see Figure 19).

P(S>Ms)
1.000

0.998

0.996

0.994

0.992

0.990

0.988

"\ t
20000 40000 60000 80000

Figure 19. Comparison of theoretical valuegofsolid line) and the measured
value (dark dashed line) for different values,dhe number of stored vectors
in the memory. The light dashed line corresponds to probability 0.999, which
is the value that Kanerva uses to define the capacity of the original SDM.

This experiment matches the theoretical predictopnge well, but due to the
approximations in the analysis, the correspondésrcall configurations is not as close
as in this example. For example, the same expetifoea memory with 200,000 hard
locations has a deviation from the curve of aroLid%. This discrepancy may be due to
the approximations in the analysis, or the sligit@ation between words stored in one

particular hard location. Further work will expldtes effect in greater detalil.
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Nevertheless, the intuitions given by this theaadtanalysis offer useful predictions
about the memory’s performance.

Another experiment demonstrated the generalizathanacteristics of the
memory. Figure 20(a) depicts 12 images. The image83 x 33 pixels, gray scale, with
16 possible gray tones. For each image, one vetth089 dimensions representing the
information of the image was stored in the memB&gch of these vectors was saved in
the memory only once. The memory used for this Bxpt is similar to that used in the
previous experiment. It has 100,000 hard locatieitis addresses of 1,089 dimensions,
=16 andp = 0.001. Notice that the images are intended tilitite the visualization of
the experiment; | do not argue that this is the ey to store or retrieve images. The
memory was then cued using the new vector depintédyure 20(b). This vector is
different from all the stored ones. The output estimage is displayed in Figure 20(c).

It is not in the training set either, and results1f the interference of the stored vectors.
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Figure 20. Generalization and pattern formation. (a) Images corresponding to
vectors stored in the memory as a training set for the experiment. Each of
these vectors was stored once in the Integer SDM. (b) Image corresponding to
the vector used to cue the memory. (c) Image corresponding to the output
vector read from the memory using (b) as cue. Vectors of images (b) and (c)
are not in the training set (a).

Extensions
Integer SDM is compatible with other improvementsady studied, such as the
forgetting mechanism (Ramamurthy, D'Mello et alQ@&; Ramamurthy & Franklin,

2011), and the Extended SDM presented in Chapter 4.
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Forgetting in Integer SDM

The structure of the Integer SDM is particularlytable for implementing forgetting.
Counters of all hard locations may be decayed,ishédécremented, every several
operations. The decaying procedure could use aosthfunction to compute the
decrement of each counter. In this way, vectorsdbaiot receive sufficient
reinforcement would eventually be forgotten.

One possible improvement of this decaying mechamsuid be to increment the
counters by more than one in the writing operatkor.example, each time a counter
must be incremented as a result of a writing opmrah the memory, the counter would
be incremented by 10 instead of only by 1. The a@n of the memory does not change,

but now the decaying of the counters will be smenth

Extended Integer SDM

Another extension, which has already been impleatkn$ applying the same concepts
as in Extended SDM (see Chapter 4). The main ifld@somemory structure is the use

of vectors with different lengths for the addressed the words. This extension
dramatically improves capability of the memory tore sequences and other data
structures. Several of the experiments describ&hepter 4 have been reproduced using
integer vectors with similar results.

This extension is particularly interesting in comgan with the implementation
described by Jockel (2009) that uses SDM for atiolasm manipulation system. This
application requires vectors encoding non-binatpa dad sequences of these vectors.
This architecture is composed of a multilayer SDEmhmory, and several encodings were

tested. The resulting architecture is more compleklimited than the Integer SDM
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presented here. Extended Integer SDM, a combinafi@xtended and Integer SDM’s,

could directly handle integer vectors and sequendtsintersections.

Other Extensions

Other designs of activation of hard locations, sasldaeckel’s selected coordinate design
(Jaeckel, 1989a), can also be implemented witlgémt&DM. This can improve the
signal-to-noise ratio as in the original SDM. Alotihg same lines, other distances can be

used in the space such as the cosine operator.

Conclusions

In this chapter | have presented a new versiorDdl Sthe Integer SDM, that overcomes
the limitations of the original SDM resulting frois use of binary vectors. This memory
preserves the desirable, biologically inspired praps of the original. It is also noise
robust, auto-associative, and distributed. It dégsagracefully when some hard locations
fail, or when the memory approaches its maximunacp. It is also able to generalize
patterns due to interference of several similatasc These properties make Integer
SDM a good candidate for modeling episodic memorgutonomous agents.

The integer representation has several advantageghe binary one. The
encoding of values is simpler, avoiding undesiraftects of other encodings (Jockel,
2009; Mendes et al., 2009), and diminishes theceffenormalization when several
vectors are combined, for example in the storirdjratrieval of sequences (Snaider &

Franklin, 2011).
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Several extensions of the Integer SDM were alssgued. Some of them are
already implemented such as the extended vectosefuence storing. Others, such as
the forgetting mechanism, are partially implemented

Many applications can benefit from the advantagehis memory over the
standard SDM. The already-mentioned robotic armipudation system is one of them.
The episodic memory for the LIDA cognitive architee (Franklin & Patterson, 2006;
Ramamurthy, Baars et al., 2006; Ramamurthy & FianRD11) is implemented with
SDM. Integer SDM could offer a better implementatfor episodic memory in this
architecture. | also argue that Integer SDM cowddibed to implement other memory
modules in this architecture, such as procedurahong or perceptual memory. Integer
SDM is a good candidate as a cleanup memory fomitbeModular Composite

Representation, described in Chapter 6.
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Chapter 6: Modular Composite Representation

In Chapter 3, | discuss vector representation®meal, and reduced descriptions, a
mechanism for encoding complex structures as siwggtéors, in particular. The main
idea behind reduced descriptions is to have argpaésentation: the complex structure
can be represented explicitly, with a vector fatheeomponent, or as a reduced
description, where a single vector represents tha@evstructure.

This chapter introduces the Modular Composite Rapration (MCR): a new
reduced description model that employs long integetors. This representation
paradigm has properties similar to Spatter Code@daa, 1994), which uses binary
vectors, and to Holographic Reduced RepresentafldR®) (Plate, 1995, 2003), based
on vectors of real or complex numbers. This newehedtisfies the four desirable
characteristics of reduced descriptions analyzeBlate (2003) and discussed in Chapter
3: representation adequacy (full descriptions eareloonstructed from the reduced ones),
reduction (the reduced descriptions have a sizéssito their components),
systematicity (the process of constructing the cedudescription must be well known
and deterministic), and informativeness (the redud=scription encloses information
about the whole it represents)(p. 19). MCR alswidies explicit similarity; that is,
similar elements have similar representations.

Modular composite representation generalizes thasidimplemented in Spatter
Code: the operations employed in MCR are equivatetite XOR and integer sum
defined in Spatter Code (see Chapter 3 for detilg)extended to the modular integer
space. As Kanerva noted in a personal communicatittnthe author, MCR also

correlates with HRR in the frequency domain, whiaghwill explore later in this chapter.
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High-dimensional vector spaces have interestinggmees that make them
attractive for representation models. The distrdrudf the distances between vectors in
these spaces and the huge number of possible sedkaw a noise-robust representation
model where the distance between vectors repregentsmilarity (or dissimilarity) of
the concepts they represent. In Chapters 2 andXehsively described the properties of
high dimensional spaces in general, and the bicasg in particular. In order to qualify
as a reduced description representation model, M@& define grouping and binding
operations, as well as a similarity measure (dade). These operations must fulfill
additional properties discussed in Chapter 3. déadiso that although MCR requires for
some operations an associative memory for cleampritpe result vectors, it does not
need to be an Integer SDM; any associative memamyfudfill this requirement. MCR
only requires using modular integer vectors andoferations among them defined in
this chapter.

The following subsections describe the vector spseel in MCR, its basic
operations, and its similarity measure. Next, lctiée several experiments and compare
their results with those of Plate using HRR. Thanalyze the expected value and
variance of some expressions, and conclude wittrastimg MCR with Spatter Code and

HRR.

Modular Integer Vectors

MCR utilizes large modular integer vectors, asadtrced in the chapter on Integer SDM
(Chapter 5). These vectors have a defined integeye of possible values for each
dimension. For example, the range of values ca&r-®&ge7} or {0, 15}. Although any

range of values is possible, for simplicity in tieation and analysis, | will use ranges
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with 0 as the lower bound amd- 1 as the upper bound, and only even values|af
more formal notation, MCR employs vectors withinltiimensional space; € Z7,
wheren is the number of dimensions of the spaceraisdhe size of the range of values
for each dimension. The dimensions of the spadewainodular arithmetic. The greatest
possible value for a dimensionris- 1 and the next value after 1 is O.

Figure 21 serves to clarify the following defioitis of possible relations between
values. The complement of a value is another veilhet that their sum equalsFor
example, ifr = 16, the complement of 3 is 13. The opposite wdlae is the value in its

antipode which is calculated by adding to it.

Figure 21. The possible values for one dimension of a modular
integer vector withh = 16. The complement of a value is another
value such that their sum equal9 he opposite of a value is the
value in itsantipode that is, the value plug2.
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Several integer arithmetic operations have thairesponding modular versions.

The modular sum corresponds to the arithmetic suaiutor:

a,+ b, = mod,(a+ b) (104)

wheremody(...) is the reminder of the integer division hyFor example, if = 16, the

modular sum of 6 and 12 is 2. The modular subtvaads defined in a similar way:

a, — b, = mod,(a — b) (105)

Subtraction can also be expressed as the sum obthplement. To show this we can

addr inside theanod term, which does not alter the result:

a, —b, = mod,(r +a— b) (106)

or

a, — b, = mod,(a+ (r — b)) (107)

where ¢ —Db) is the complement df. Other operations such as multiplication and
division also have equivalents in modular arithmetut MCR does not utilize them.

The individual values in each dimension of the sesused in MCR do not have
to follow any particular distribution: they can txdomly chosen from {@,— 1}. In
contrast, HRR vectors must follow a normal disttidm with specific parameters;
otherwise, the operations defined in HRR to combmeors do not produce the desired
results. See Chapter 3 and Plate (2003) for fudissussion about this subject.

Nonetheless, to construct useful models, vectatsrédpresent unrelated concepts ought
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to havedistantrepresentations, and random vectors that areramiflsstributed in the

space tend to be far apart from each other.

Manhattan Distance in a Modular Space

MCR utilizes a variation of the Manhattan distamieoduced in Chapter 5:
d(u,v) = Z A, (108)

where
A= min(modr(ui —v;), mod,.(v; — ul-)). (109)

Similar to SDM (see Chapter 2), in which the bineegtor space has a large
number of dimensions, the distances from a givemtoveo the rest of the vectors in the
space tend to concentrate highly at half of theimam distance. Kanerva called this
effect the spacetndency to orthogonality

In order to analyze the behavior and propertigh®imodular integer vectors
employed in MCR, it is useful to know the distrilout of the distances among the vectors
in the space. The following theorem approximatesdrstribution for the case wherns
even. The result is similar, but not exactly theasawherr is odd.

Theorem: If the dimensions of all vectors are independemt aniformly distributed in
{0, r — 1} andr is even, then the distribution of Manhattan diseenfrom a given vector

to the rest of the vectors of the space can beoappated by:
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2
D~N <ﬂ M) (110)

Proof. The dimensions of the vectors are independent aridrmly distributed in
{0, r — 1}. The distance from the origin to a vectoe Z; will be the sum ofi random
iid variables X= A;, where A;= min(mod,(0 — v;), mod,(v; — 0)).

The possible values of;ére between 0 and2 and X does not have a uniform
distribution since values 0 amnf2 have half of the probability of the other possib
values. This is because the modular property offiaee (and the distance calculation).
For example, if = 16, the maximum difference in dimensidoetweerv ant the origins
8, and the only possible valuewis 8. The same is true for a difference of 0. Rbep
possible values of the difference, for exampléndre are 2 possible valueswf4 and
12. More formally, since addingto the argument of thmod function does not alter the

result, we can rewrite the expression pbX
X, = min(mod,(r - v;), mod,(vi)) (111)

The values of; are uniformly distributed in {O; — 1}. If v; = 0, then both
arguments of the min function are zero; thysX. For all other possible valueswpf
none of the arguments of min is zero, tkius O is the only value that produces=X0,
and then P(X=0) = 1f.

For values of; € {1, r — 1} the argument of the twood functions are positive

and less than So, we can rewrite the expression ¢aX
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X; = min(r — v;,v;) wherev; € {1,r -1} (112)

It is easy to see that the maximum value pEX2. If v <r/2, thenr — v > /2,
and then X=v;, which is less than or equalt2. On the other hand, ¥ >r/2, then
r—v <r/2, and then X=r — v which is less than or equal 2. Notice also that for
Xi =r/2, eithemr — v, =r/2 orv; =r/2. But,r — v =r/2 implies that; =r/2. Thus, only this
value produces p&r/2, and then P(X=r/2) = 1k.

Finally, each valuea € {1, r/2 — 1} of X is produced by exactly two values\af

In effect,
x=min(r —v;,v;) =>r—v;=xorv;=xwherel <x<r/2-1 (113)

Following reasoning similar to that of the previquasagraph, it is clear that
exactly one value of, less than/2 and one greater tha® satisfy the second half of the
previous expression for each valuexguch that < x < /2 — 1. Then, P(X=x) = 2k,
wherel <x <r/2 - 1.

Summing up, the distribution of; Xollows

( (114)
1 r
2 x=0,=
r 2
PXi=x0=32 1<x<ly
r 2
0 otherwise

Since the distribution of X¥s symmetric on {0r/2}, the expected value of; X

half of its possible values, that r$4. The variance of the distribution of dequires some
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more analysis. We introduce the simplifying sulioin, r’ = r/2. Then, the variance of

Xi will be
r1=1 , : , (115)
2 1 <_r_>2 L( _1)2 L</_r_>2
“‘wglf’ 2) \\"72) )T e\ T3
r—1 ri—1
N2 N2 "2 (116)
2 r 1 r 1 r
=52 (-3) +2<7<0‘5) ) =2 (1-5)
i=1 i=0
rr—1 ) rr—1 rr—1 ) (117)
2 _ -2 o F — l 2\ _ r_
c —r—z<l —ir +T>_ ,2(1) Z(l)+4
i=0 i=0 i=0
62:(”/—1)(2”/—1)_(”/—1)’” r_’zzr’2+2 (118)
6 2 4 12
Substituting back, the variance of Xis
62 = " +8 (119)
48
Since X,..., X, are independent and identically distributed and
“ (120)

it follows from the central limit theorem that flarge number of dimensiomswe can
approximate the distribution of the distances lopamal distribution with meanE[X]
and variance var@n. In conclusion, the distribution of distances frtre origin (or any
other point) to the rest of the points of the space

140



2
D~N <ﬂ M) (121)

which proves the theorem

Whenn is large, for example 1,000 or 10,000, the radtwieen the mean and the
standard deviation of the distance distributiordteto be large, with values concentrated
around half of the maximum distance. For exampleemn = 1,000 and r = 16, the
distribution of the distances is well-approximabgda normal distribution with a
standard deviation of 74.16 and mean distance08i04 Dividing the mean by the
standard deviation—about 54 in this example-yitldshumber of standard deviations
between a vector and the bulk of the space. Ntti@eper the normal distribution,
99.9999% of the vectors of the space lie withie fstandard deviations of the mean,
corresponding to distances between 3,630 and 4n3h@ current example. The
probability of a random vector of being closer t13a@00 is almost zero (~18), which is

a useful property that helps to make the modekex#ty robust.

Basic Operations

Chapter 3 presented the basic vector operationtogathby reduced description models
to combine into a single vector other vectors thptesent the elements of a complex
structure. Two basic operations, grouping and Ibigdconstitute the heart of the reduced
description models. Grouping (or sum) operatiomsied to create sets or groups of
elements, and binding (or multiplication) creatgresentations for bonds among
elements, such as in the role-filler case. Givex the required properties of these
operations (described in Chapter 3) are responfibline behavior and characteristics of
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the reduced description models, each model canaldiese operations according to the
characteristics of its vector space. In this wag,oan abstract the reduced description
model ideas and its basic operations to explorblenas and applications independently
of the reduced description implementation. Fomeple, consider the following

expression that represents a red circle:

F = [circle ® Shape + red @ Color] (122)

wherecircle, Shapered, andColor are vectors, and the symb@sand + represent the

binding and grouping operations respectively. HExgression can work in any reduced
description model with appropriate definitions §pouping and binding.

The rest of this section defines the binding armiging operations used in MCR.
These definitions fulfill all the requirements debed in Chapter 3, enabling MCR as a
reduced description system able to perform hypezdsional computing expressions and
applications. Chapter 3 and Kanerva (2009) intredunany of these hyperdimensional
computing applications.

The binding (or multiplication) of modular integegctors is defined as the
modular sum in each dimension. For example, theiptightion of two vector®\ andB
€ Z', with values for dimensionequal 10 and 12 respectively, produces a new vecto

C with dimension equals to 6.

This operation resembles the bitwise XOR used &tt8pCodé.

! Actually, XOR is a special case of the modular sumenr = 2.
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The unbinding operation is simply the modular sation in each dimension, or
the modular sum of the first operand with the camnt of the second operand in each
dimension. This leads to the definition of the irseevector in this model. The inverse of
the vectorA is another vectoh™ such that each dimensioof A™ is the complement of

the value ofA in the same dimension:
A7l = mod,(r - A) (124)

This multiplication operation has all the propestaéescribed in Chapter 3: It is
associative, commutative, distributive over the gsee below), and preserves distances.
Given that the definition of the MCR vector multgation employs the modular sum in
each dimension, it inherits its associativity anchenutativity properties. For example,
when adding the values of dimensioof two vectors,mod,(A; + B;) = mod,.(B; + A;).

Also, for this operation it holds that
mod,(A; + mod.(B; + C;)) = mod,(mod.(A; + B)) + C)) (125)

These properties also lead to the distance-preggproperty of this
multiplication.
Theorem: The multiplication of MCR vectors defined abovegerves the distance

between vectors. Given three MCR vectar8, andC, the following equality holds:
d(A,B)=d(AQC,B®C) (126)

Proof. Suppose the distance betweeandB is d. From equations (108) and (109)
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d = Z min(mod,(A,- — B;), mod,.(B; — Ai)) (127)

After multiplying A andB by C, the first operand of thain function becomes
mod,(mod,(A; + C;) — mod,(B; + C))) (128)

Applying the associativity and commutative propestof the modular sum produces the

following expression:
mod,(mod,(A; — B;) + mod,(C; — C;)) = mod,(A; — B) (129)

which is identical to the original expression beftlne multiplication. Applying the same

procedure to the second operand produces a siregdalt. Consequently,
d(A,B)=d(A®C,BQC) (130)

which proves the theorem

This multiplication produces vectors that tend ifted from the operands.
AQBr#Aand AQ B# B (131)

Later in this chapter | will explore the expectedue and variance of the vectors
produced by the multiplication.

The grouping (or sum) operation is a bit more diffi to define. In fact, there are
several options for this operation. To correctlgleate the different options, we have to
consider that producing vectors similar to its @pels is the most important characteristic

of the grouping operation. This similarity allovekentifying a composed vector from
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some of its elements, and vice versa, a fundamprigkerty of reduced description
models. The first alternative consists of #werageof the operands’ values for each
dimension, choosing randomly among the closest ifilles average produces a non-
integer value. This value corresponds to the migdiat on the arc between the two
values corresponding to each operand on the @fdiggure 21. For example, if we
group the vectord andB e Z/, with values for dimension10 and 12 respectively, the
result has a value 11 in that dimension. Applyimg bperation to all dimensions
produces a new vector that is approximately eqtadidrom its operands. A problem
arises when the vectors to group have oppositeesdr one dimension, since the
average then has two possible values that mustfioged by chance. For example, the
average for a particular dimension of vectors wahues 5 and 13 can be either 9 or 1.
The lack of associativeness in the average operggaerates further difficulties
when grouping several vectors, as illustrated ilofang example. In the same modular
space withr = 16, the average of values 0, 7 and 8 yieldo®%gver, averaging 7 and 8
first and then grouping with O produces a diffenesult (4). Associating the values in
other ways produces yet other results. Even wdrd®e values of the operands lie in
different semicircles (see Figure 21), the averagst consider the two possible paths
between values (i.e., the two arcs on the cir@é ¢bnnect the values in one direction or
another), picking the one that minimizes the dis¢grfrom the resulting value to the
operands, overcomplicating the operation. An irgimg solution utilizes a mechanism
similar to the sum operation defined for HRR in tleguency domain (Plate, 2003, p.
146). Let us consider each possible value as @wvetunit length in a plane, called an

equivalent vectorThe center of the circle in Figure 22 correspaidbie coordinate’s
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origin in this plane. For example, the equivalestter for the value zero is (0, 1) and the

value seven corresponds to the equivalent veqﬁr—\/i). The sum operation involves
two steps to calculate each dimensiatie equivalent vector sum and the normalization.
The first step consists of calculating the rectdagsum (i.e., their vector sum) of the
equivalent vectors corresponding to the valuesaoheperand for dimensionSecond,

the normalization process calculates each dimerdditime group vector as the closest
value corresponding to the resultant vector nomadlito length one. Since the
dimensions have onlypossible values, a table with the equivalent vettmmponents
and the tangent of their angles can speed up thelagon and normalization processes.
Figure 22 shows the representation of the equivalkectors and a couple of examples of

grouping.

equivalent vector of 0

Figure 22. Equivalent vectors and examples of grouping.
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We can attach a weight to some of the vectors wieegroup them by
multiplying the corresponding vectors of their dmsmn values by a scalar or weight.
For example, suppose we want to group the veét@rsdB with weightswa andwg . For
each dimensionwe have to sum the equivalent vectgrandb; corresponding to the

valuesA; andB; respectively, multiplying; by the scalawa andb; by the scalaws.

C; = value,(w 4a; + wgh;) (132)

where valug(x) produces the closest value corresponding to ¢latovx.

As in the binary case explained in Chapter 3, weecdend the definition of this
sum for the case of more than two operands by gisyphming, in each dimension, all
the equivalent vectors of the operands for eacledgion before normalizing. Grouping
several operands in this way produces more consisgsults than summing and
normalizing in each individual group operation beén two operands. Figure 22 depicts
the result for combining three vectors that havees0, 7, and 13 respectively for a
given dimension.

Interestingly, the length of the resultant vectmeg an idea of the quality of the
resulting value for that dimension: a longer restitvector is more likely to represent an
almost mid-point between the operands’ values ¢ghanorter one. Similar values have
equivalent vectors with similar directions. Addithggese equivalent vectors will produce a
new vector with length approximately equal to thensof the operands’ lengths. On the
other hand, a short resulting vector indicates $skaeral opposite (or near opposite)
equivalent vectors comprise the operands, prodwirggulting vector dissimilar to some

(or all) of these values. Figure 22 illustratesmeghes of both situations. Finally, it is
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worthy of mention that using this definition of sygroduces the same result as the
average version in the case of grouping only twaios.

The final option for grouping is similar to the onged in Spatter Code (Kanerva,
2009): applying a majority rule in each dimensidhis simple technique works only
when combining several vectors because with fewanuis, the chances of equal values
in one dimension in several vectors is small, pootlyan undefined value in that
dimension that must be determined randomly.

Comparing these options for the grouping operattearly the sum of equivalent
vectors emerges as the most appropriate one. Tiee @ptions have serious flaws,
including more complex algorithms, or the introdostof more noise in the result. When
combining only two vectors, the average of eachetlision, which produces the value
corresponding to the midpoint of the shorter artgvben the two values in the circle of
values, is still useful due to its simplicity. Themplexity of the sum, defined as the
addition of equivalent vectors, @(nt) wheren is the number of dimensions of the vector
andt is the number of vectors to group. However, tinisration requires calculating the
components of the vectors representing the valtieaah operand and each dimension,
which involves calculating the sine and the cosihthe angle of the equivalent vector of
each value and an arctangent at the end, whichl d@u€omputationally expensive (i.e.,
a large constant in the time complexity). Neverhs| since there are omlypossible and
predefined values for each dimension, using tdolethe two components and the
tangent of the equivalent vectors greatly allewwdlas problem.

This grouping operation has the required propede=xribed in Chapter 3. Since

the rectangular sum of vectors is commutative aso@ative, the grouping operation
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shares these properties. Actually, as in the bisany described in Chapter 3, this
operation is not strictly associative because efrtbrmalization after each sum.
However, using the expanded definition for sevep@rands as defined above mitigates
this problem. Finally, the multiplication distritag over the sum. We can interpret the
multiplication as aotation of the circle of values for each dimension. Chgambtating
equivalent vectors and then adding them producesudting vector identical to the result

of first adding the equivalent vectors and theating.

Hyperdimensional Computing with Modular Composite Representation

In this section, | will use an example, which PIg€03) introduced when presenting
HRR, of encoding events with MCR, allowing us tongare the results from both
models (pp. 128-134). This example employs 512-dsional vectors with anof 16.

As pointed out in Chapter 3, some hyperdimensiopatations produce noisy
versions of the target vector, requiring a cleamgmory with all the vectors used in the
experiment to produce the correct vector. Whenireduthis example will use a hash
table data structure to maintain all the vectans, @ exhaustive search procedure that
computes the distances from a given vector tdhalhectors in the table, returning the
closest ones. At the end of this section, | pregentesults from the same experiments
using Integer SDM as cleanup memory.

The example requires some base vectors (vectorssesqting features other
vectors are composed of) that are independentlyaiidrmly distributed in the space.
The expected distance between these vectors iacdtha mean distance/4 (2,048 in
this example). Composing some of these base veayogsouping and binding them

defines more complex elements. For clarity, bastove will be divided into three
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categories: event types, object features, andfealeires.The event type category

includes the vectorsause eat, andsee The object feature category compribesg,

human, state, food, fish, andbread. Finally, object andagentconstitute the role

features group. The following formulas define tbkein and role vectors for this

example:

mark = being + human +id,,

John = being + human + id

john

paul = being + human + id

paul

luke = being + human +id,;,

thefish = food + fish + id,,, 75

thebread = food + bread + id;je preaa

hunger = state +id,,,, .,

thirst = state + id,;;,.;

eat,,, = agent + idea,_agen,
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eat,,; = object +id,; opjecs (142)

Other role vectors, such asggy;, have similar definition expressions. The constancof
these vectors using these expressions producdsisuectors within each category
which are also dissimilar to vectors in other gmugpor example, the vectarsark and
paul are similar, and both are dissimilarth@bread. The id vectors are also random
vectors (generated in the same way as the basersgtttat help to discriminate the
vectors within the same group. We can considgshras abeing, and construct thigsh
vector accordingly, but | follows Plate’s examplbeexe he defined thiesh vector with
the expression above.

Table 6 summarizes the distances among representa&tttors in the example.
The distance between a vector and itself is alvkays. Notice that in HRR, this is not
always the case (Plate, 2003, p. 130): a vectohasa a distance from itself different
than zero. (However, in the HRR frequency domdais, distance is always zero.)
Table 6
Distances among some vectors of the exaniple.diagonal, with distances equal to O,
corresponds to the distance of a vector with itdéitice that vectors with common

features, such as the vectors that represent geramnclose (see text for a definition of
“close”).

mark john paul luke thefish thebread hunger thirst
mark 0
john 1078 0
paul 1101 1113 0
luke 1121 1125 1088 0
thefish 2008 1978 2027 1965 0
thebread 2102 2084 2099 2077 1502 0
hunger 2033 2027 2044 2046 2033 2009 0
thirst 2036 2012 1995 1975 2068 2034 1345 0
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Vectors with common features, such as vectorsrédpaesent persons, have small
distances between them. According to equation (Xth6)distance distribution of the
vectors in the space hasSB approximately equal to 50 and a mean of 2,048. The
likelihood thatmark andjohn are within distance 1,078 of each other by chahoee is
almost zero (~18%). The distances among unrelated vectors clustemar2,048, the
indifference distance.

Using the token and role vectors, we can creat®recepresenting different
events. Table 7 describes the events of this exaamd the equations used to create the
corresponding MCR vectors. These equations arepesbf many available options. For
example, binding each event type vector (suakagjswith an event type role vector (e.g.,

eventype Will facilitate the decoding of the event type.

Table 7

Events created using the token and role vectotseéxample.

Event Equation

Mark ate the fish. S| = eat + eat,, ® mark + eat,; ® thefish

Hunger caused Mark to eat the fishS; = cause + cause,,; ® hunger + eaty,; ® S,

John ate. S3 = eat + eat,y ® john

John saw Mark. S, = see + see,q @ john + see,,; ® mark
John saw the fish. S5 = see + see,q @ john + see,; ® thefish
The fish saw John. Se = see + see,,; @ thefish + see,p,; & john

Table 8 lists the distances between the vectotgd¢ipaesent the events ® S
The equations used to construct these vectorseimékl their similarity to each other. For
example, § S;, and $ have short distances between each other, reftgttitair
similarity. S is farther from $than g even though $Sand g share the same elements;
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the difference in roles accounts for this. Inclypihe agent and object fillers as extra
terms in the equation increases the similarity betwevents with the same elements,

even if they participate in different roles. Foaexle, the definition of Snvould change

to:

S5 = see + see,,; ® john + see,,; & thefish + john + thefish (143)

Table 8
Distances among vectors representing the eventsilled in Table 7.

St S S S S S

St 0

S 1947 0

S3 1159 2002 0

Sy 1995 2036 1830 0

S 1858 1983 1839 1085 0

Se 2025 2024 2036 1390 1443 0

The decoding using probing works as follows: mijtipg the event vector by the
inverse of the role produces a vector similar ®fther vector, or in other words, the
filler vector plus a small amount of noise. An aagsociative memory that contains all
the vectors of the system works as a cleanup memarigh returns the closest vector to
the one produced by the decoding. Table 9 showsltisest items in the cleanup
memory of the example to the vectors resulting ftbemunbinding of several
expressions. For example, in the first row, theingiing of the agent ofSroduces a
vector closest tonark, the correct vector. The other vectors represgrmersonslgke,
john, andpaul) are closer than chance (the indifference dist@é2¢048), but farther

away thamark by about 7SD.
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Table 9
Results of unbinding elements from the event v&ctor

Description Expression Rank of distances
1. Adent of B mark luke paul john
eatir?g of 3 S, ® eat, ! (1181) (1491) (1523) (1593)
mark luke paul john
2.Agentof$ S, ® agent™! (1554) (1652) (1660) (1778)
thefish food  fish thebread
3.Objectof $ S, ® eat,y; ™ (1166) (1629) (1666) (1837)
hunger state thirst human
4.Agentof $ S, ® cause,, ! (1187) (1572) (1737) (1897)
| S eat S S
5.Objectof $ S, ® cause,; ! (1209) (1620) (1628) (1908)
6. Agent of B B mark luke paul john
obje%t of S S, ® cause,,, ! @ eat,,, "' (1666) (1804) (1806) (1866)
. thefish food  fish eal
7. Object of _ _ agt
Objeci S S, ® cause,,; ! @ eat,,; ! (1659) (1886) (1887) (1939)
see Setgt S state
8.Objectof §  S; ® eat,y; ™ (1927) (1947) (1959) (1966)
) H Se(agt agent eaiagt Sefobj
g;JOhnsm'e " s, ® john ! (1124) (1459) (1634) (1640)
, - Setgt  agent ealy: CauUStagt
ég' John's role in ¢ o john~! (1120) (1497) (1664) (1724)
, - Setnj  Object ealyp CauSkop;
éel' John'srolein o o john™! (1129) (1527) (1637) (1715)

Plate (2003) explained the difference betweercthakingmechanism and the
holistic processing with the following example (p. 134hu@king involves a sequence
of operations. For example, the expression in3itan decode;Sthe object of § which

is itself a composite vector. By first cleaningtap vector § and then applying the
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expression in line 1, we obtamark, the agent of S On the other hand, using holistic
processing produces the same result in one operaissshowed by the expression in line
6, which yields the final result directly withoueéecbding the intermediate vectoy. S
Chunking produces less noise than holistic prongs$iut requires an extra cleanup
operation.

Also interesting, the expression in line 8 retuarsdom vectors, which are almost
the indifference distance from any vector usedhegystem, because &es not have an
object component, and the expressions of linem#lQla that correctly decode John’s
role in similar events.

MCR can employ Integer SDM as cleanup memory. Paifa this same
experiment using Integer SDM with a word lengttbd® dimensions, 100,000 hard
locations and a radius of activation of 1,925 (Skapter 5 for details) produces results
similar to those reported above, with a few notaolesiderations. Some of the
expressions in Table 9, in particular lines 2,r@] @, return vectors with an elevated level
of noise compared to the target vector, producgtgaval errors in a few of the runs.
Increasing the radius of activation of the hardatamns in the memory mitigates this
problem. The rest of the expressions yield vedtuasretrieve the correct values in all
the trials. To simulate extra data, 1,000 randontors were preloaded in the memory.

MCR can model other data structures, representgtanmd applications as
described in Chapter 3. By adapting the procedomesented Chapter 4, MCR can
represent sequences and related structures efficibtoreover, the use of random
permutations is completely compatible with MCR, e¥hallows employing them as an

alternative to the multiplication described in thigapter. Using MCR, it is possible to
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reproduce all the experiments described by Pl&i@3pPand Kanerva (2009). | have
already reproduced some of them with similar resaltthe ones reported by Plate and
Kanerva. Since these experiments do not contrifoutiee current discussion, additional

repetition of experiments and further analysisheit are unnecessary.

Normalized Distance and Similarity

The distance defined for MCR has an inconveniepeddence on, the dimensionality
of the vectors, and the number of possible values, making difficalcompare the
performance of MCR models with different valuestfugse parameters. ®ormalized

distanceindependent of andn, denoted byl’, becomes useful for these comparisons:
d'(A, B) = d(A, B) (144)
nr

Its distribution is approximately normal with thalbwing mean and variance:

1 8 \1
D-N(L(3+55)7)
3732 )0 (145)

The minimum normalized distance is zero, as imive-normalized distance, but
usingd’ the value one corresponds to the indifferencades, and the value two to its
maximum. The distribution d’ clearly shows that its variance diminishes
proportionally withn without bound, allowing the creation of a modeihna distance
distribution variance as low as desired. Noticé ¢hamodel with a small variance has
high noise robustness, accuracy, and reliabilihe Variance also diminishes when
incrementing’; however, whem becomes large, the second term in the sum tends to

zero, and 1/3 dominates.rlfis 16 or greater, the value of the variance teéadke
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maximum possible (for a given valuerf The worst value corresponds to r equal two,

the binary case. See Figure 23 for details.

Variance of D' over r

Figure 23. Variance of D’ over.

Thesimilarity among vectors, defined as

sim(A,B)=1-d'(A, B) (146)

is particularly handy for comparing results to tha$ models that uses other similarity
measures, such as the cosine. A vector has a stgndéone with itself, and zero
similarity when compared with vectors at the ingliéfnce distance (corresponding to a
normalized distance of one). The distribution ofitarities of one vector with all the

other vectors in the space is almost the samesa®tDh’, but with a mean equal to zero:
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. 1 8 \1
Sim ~ N (0’ (5 + m) ;) (147)

Expected Value and Variance of the Similarity of Sected Expressions

Plate (2003) discussed the means and variancefesedt similarity measures among
several prototypical expressions of HRR in the diestcy domain (pp. 267-271). Here |
will compare those results with the calculationsi@MCR. The experiments employ
512-dimensional vectors, matching the configuratisad by Plate, and=16.

Table 10 shows the theoretical values and the arpatal results using MCR for
several expressions that were also described by 2@03) using HRR (p. 271). Notice
that the operations in the expressions are detéstiginin other words, with the same
vectorsA, B, C, andD, the expressions always produce the same reSakksmeans and
variances in the table compare the analytical edémand experimental results after
calculating each expression multiple times wittieddnt random vectors.

Due to the properties of the multiplication desedlpreviously, multiplying a
vectorA by another vectdB, and then by its inversg™ yields exactly the same vectay
which explains the theoretical results of the egpi@ns with mean 1 and variance 0. The
rest of the expressions in the table compute thédaity between unrelated vectors, thus

they follow the distribution of equation (147) witks 16, and a mean equal to 0 and
variance normalized by equal to% + % = 0.34375. The experimental values in the

table show the results of 50,000 runs for eachesgion, all of which closely match the

analytical results.
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Table 10

Means and variances of selected expressions foCR khodel with n =512 and r = 16.
The experimental results correspond to 50,000 rTims.variance is normalized by
multiplying byn.

Expression . Similarity .

Analytic Experimental

mean n.var mean n.var
sim(A, A) 1 0.00000 1.0000 0.0000
sim(A, B) 0 0.34375 0.0000 0.3435
sim(A, A @ B) 0 0.34375 0.0000 0.3429
sim(A, A ® C) 0 0.34375 0.0000 0.3466
szm(A, ARAR® A_l) 1 0.00000 1.0000 0.0000
szm(B, AQB® A‘l) 1 0.00000 1.0000  0.0000
sim(A, AQB® A‘l) 0 0.34375 0.0000  0.3430
sim(C,AQ B® A™") 0 0.34375 -0.0002  0.3412
sim(C,AQ B® C™') 0 0.34375 0.0001  0.3463
sim(D,AQ B C™") 0 0.34375 -0.0001  0.3428

HRR in the frequency domain (Plate, 2003), desdriheChapter 3, has the same
means for each of these expressions, but with higgnéances, 0.5 compared to 0.34375
in MCR (pp. 145-151). When= 2, MCR is equivalent to Spatter Code, which&as
variance of 1 for these same expressions. In ceimiuMCR is more noise robust than
either HRR or Spatter Code for models using veattis the same size. Notice that in
the limit asr approaches infinity, the normalized variance efshmilarity of vectors in
MCR tends to 1/3; the value for 16 is not far from this theoretical minimum, and

values greater than 16 do not significantly imprtwenormalized variance. In
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consequence,= 16 is a good choose for constructing MCR vectemnsbling the
representation of such values with only 4 bitsgiarension, and also limiting the storage
requirements of Integer SDM memories, which inoesdmearly withr (see Chapter 5

for details).

For the grouping operation, the analytical calealabf the means and variances
are harder to obtain. Here | present the analgsigrouping two vectors, and measure
the similarity to one of the operands. | also pné$iee experimental results for grouping
2 to 15 vectors.

To analyzing the mean and variance of

sim(A, A+ B) (148)

we can rewrite (148) as

sim(A,A+B)=1—d (A, A+ B) (149)

According to the definition of the sum, the outpfigrouping two vectors has a

distance to any of the operands equal to halfefdistance between them.

d'(A, B)

sim(A,A+ B)=1— (150)

Given thatd’ approximately follows the normal distribution iquation (145),

sim(A, A + B) also distributes normally:

11/1 811
Sim(A, A B~N<—,—<— —>—)
im(A, A+ B) 233732 )5 (151)

The normalized variance of the similarity givendrpuping two vectors and one

of its operands is approximately 0.086 ffer 16, and 0.084 far= 32. The mean
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reported by Plate (2003) using HRR is higher (0633p. 270). However, due to the
difference in the variance of the distance distidns of the two spaces (remember that
HRR uses cosine as similarity measure), both mduaete almost the same probability of
presenting the mean or less similarity betweersthme vector and one of its operands just
by chance. In other words, the cdf (cumulative dgrignction) for the distributions of

the similarity measure for HRR and MCR, have alntlbstsame value for similarity,

equal to 0.6366 and 0.5 respectively:

cdf (Simypr(A, A + B) = 0.6366) = cdf (Simycr(A, A + B) = 0.5) (152)

Furthermore, the normalized variance of this sirtyaising MCR is smaller than
in HRR: 0.086 as compared to 0.0947, which make®kM¢gore noise robust and
accurate compared to HRR for a given dimensionality

Figure 24 shows the experimental results of thelaiity between a random
vector and the same vector grouped With1 other random vectors, for valuesof
between one and fifteen. The experiments use \&eutith 512 dimensions andwith
values 2, 16, and 32. The data correspond to 10106@0for each value & The results
for k = 2 confirms the theoretical analysis. Additiogatompared with HRR, MCR has
better variances and similar means, consideringdhef the distributions of the

similarity functions, also making it less noisy fmouping. (See Plate, 2003 for details.)
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Figure 24. Means and variances of the similarity between a random vector and the
same vector grouped wikh- 1 other random vectors. The vectors have 512
dimensions and three values faare evaluated (2, 16, and 32). The data correspond
to 10,000 runs for each valuelof
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Summary of Comparisons: MCR, HRR and Spatter Code

MCR shares many properties with HRR and SpatteeCatl three enable reduced
descriptions. Actually, MCR is a generalizatiorSgfatter Code that uses integer modular
vectors instead of binary vectors. Whren 2, MCR becomes equivalent to Spatter Code.
The analytical and experimental results show th@RMs more reliable and accurate

than Spatter Code for a given number of dimensibagiever, Spatter Code utilizes
simpler operations, which would be an advantagesdaone applications. The
representational expressiveness of MCR would bsidered a further advantage over
Spatter Code in applications that require the eimgpdf non-binary data. (See for
example Jockel, 2009).

Although HRR has a rich expressive representatinohvary good performance
when combining and decoding structures from haligtictors, it utilizes complex
operations, such as circular convolution, that have complexities of the order &f(n%)
or O(nLog n). HRR in the frequency domain, also known as ¢tacHRR, has better
overall performance, can perform the operatiorS(im) time, and has more stable
variances and results than the normal HRR. As Kangointed out in a personal
communication with the author, under an interpretadf the values in MCR as
discretized angles, the binding and grouping op@ratof both models are similar.
However, each model utilizes a different distarares{milarity) measurement, which
explains the variations in performance betweernwuemodels. The development of
MCR was inspired as an extension of Spatter Catkaa such, the simplicity of its

design. The circular HRR was derived from the ndifRR, producing a more
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cumbersome base for the model. Finally, MCR cadilgatilize Integer SDM as its

cleanup memory, whereas HRR has no specific aigtoeggive memory available.

Conclusions

MCR is a new reduced description representationbthi@nces representational
expressiveness and implementational simplicitigak all the required and desirable
characteristics of reduced descriptions describechiapter 3: representation adequacy,
reduction, systematicity, and informativeness. &bwer, it implements explicit and
structural similarity, which allows the holisticqmessing of several operations, avoiding
the need to reconstruct the structure prior to ¢ssing.

The experiments and analysis detailed herein haweodstrated MCR'’s
performance in a number of scenarios, empiricadljdating its anticipated noise
robustness, representation expressiveness, argfitipliocessing capability. The analysis
of the means and variances for the similaritiesepfesentative operations suggests that
MCR has better performance for these operations HHRR or Spatter Code using
vectors with the same number of dimensions. Neekds, the accuracy of any of these
models can be increased without bound by enlarieglimensionality of the vectors.

To perform the experiments in this chapter | depetba script parser and
interpreter that allows writing the expressions apdrations of MCR in a simple
language, and running it embedded within a Javgrpr. This greatly facilitates the
creation and running of experiments and applicatibat use MCR. Chapter 7 describes
this scripting language and its implementation orendetail.

Chapters 1 and 3 discuss several challenging Alcgtions that would benefit

from MCR. Some of the characteristics of this vecepresentation—noise robustness,
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explicit similarity, and structural similarity—cdacilitate the implementation of such
applications. The simplicity of this model's opéoat and its performance make it an
attractive option over other models. Moreoverpasural integration with Integer SDM
as cleanup memory offers a further advantage.

A promising project, Vector LIDA, would implemeritd LIDA cognitive
architecture (Franklin & Patterson, 2006; SnaitdeCall, & Franklin, 2011) using MCR
vectors as its main representation for data strastitbome of the advantages over the
current implementation, which employs nodes arkslin a graph-like structure,
includes a more realistic and biologically plausiblodel, better integration with the
episodic memory, which already uses a vector b&&#d memory, better integration
with other low level perceptual processing (suchiBAX Serre et al., 2007), better

scalability, and easier learning mechanisms. Fdhéu details, see Chapter 8.
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Chapter 7: Implementations

This chapter describes several implementationseEixtended SDM, the Integer SDM,
and the MCR interpreter. The technologies usedidedatabase storage with least
recently used (LRU) cache, parallel and distribueplport using the Akka framework
(Subramaniam, 2011), an implementation of the aatwrdel (Hewitt, Bishop, & Steiger,
1973), and parallel processing using Graphic PsmredJnits (GPUs) (Che et al., 2008;
NVIDIA, 2012). The MCR interpreter was created gsihe Java Compiler Compiler
(Javacc), a parser generator for Java

Modern computers have multi-core CPUs executinyungons in parallel.
Furthermore, GPUs, which can perform billions ofghial vector operations per second,
can speed up applications, such as Extended SDNh&agkr SDM, that have vector
data structures as their main components. Suchcapphs that could only run in high-
end supercomputers a few years ago, can now exefficiently on desktops or laptops
due to the parallel processing power of modern @Bices.

Although of polynomial time complexit®(nm), wheren andm represent the
number of dimensions of the vectors and the nurabkard locations respectively,
Extended SDM and Integer SDM algorithms often eteslowly as the result of a large
number of hard locations. (See Chapters 4 and 8dtails.) Similarly, the storage
requirement of these models also increases lingathyn andm. The implementations
discussed here explore alternatives to mitigateetisdeawbacks.

| chose Java for these implementations for seveesons. First, Java is a mature

and solid object oriented language with countlessen libraries and frameworks that

! JavaCC is an open source Java parser generasolince code and more information can be
found at http://javacc.java.net/
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facilitate the implementation of standard taskshsag persistence, logging, and
networking. The virtual machine paradigm, centoahte Java technology, enables the
execution of the same program (without requirimg@mpilation) in different platforms
and operating systems. This improves the avaitgtofithe system and speeds up the
development. For example, a Windows based maclaisaérved as developing
platform, but several experiments were performed iinux based, High Performance
Computer. Although traditional machine-code conplenguages, such as C and C++,
might produce optimized code, the just-in-time cder@nd other advanced Java
technologies have the potential to achieve sinpéformance (Oracle, 2010). Finally,
the LIDA Framework, a project closely related witis work, is also implemented in
Java, which biased the selection of Java.

Although many previous software implementation§bBM and its extensions
have utilized arrays as their fundamental datagira (Kanerva, 1993), the software
described here follows an object oriented approbucthe typical realization of SDM, the
addresses of the hard locations compose one avheyeas a second array implements
their counters. This simple implementation perfoefiiently when the system runs in
a single processor, and the data structures hdleeiphysical memory. However, using
an object oriented paradigm facilitates the impletagon of more sophisticated
realizations that take advantage of multithreadihsgtributed processing, and the
memory hierarchy.

The rest of this chapter discusses the object teuedesign of SDM and its
variations, the hard locations’ cache, and a coapfgrallel instantiations. Finally, a

description of the MRC'’s parser and interpreter plates the chapter.
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Object Oriented Design

The SDM design proposed here employs several desitierns (Gamma, Helm,
Johnson, & Vlissides, 1995) to improve its flexiyil For example, the widely used
factory pattern offers a standardized approachedcateation of vectors and other
elements in the system. The main difference betwlsestandard array-based
implementation and the current one consists imrtbdeling of each hard location as an
object. The hard location class has an attributé$address, a binary vector, and
another attribute referencing the countersy-aizearray of bytes. Several methods,
mostly getters and setters, help to encapsulateléisse behavior. Figure 25 displays the
UML class diagram of the main classes and intesfa¢¢he Extended SDM

2 and

implementation. Two interfaceSparseDistributedMemory
HardLocation , define the conceptual behavior of the memory,tarmdabstract
classesAbstractSparseDistributedMemory and

AbstractHardLocation , provide the implementation of their common
functionalities. Finally, the concrete classesliatbottom of the diagram) provide the
specific components for a couple of variations:ribemal implementation and the

cached version. Notice that this design encapsutaeebulk of the functionality in the

two abstract classes, whereas only a few meth@ldedegated to the concrete classes.
The abstract hard location class includes its addiies counters, and generic methods
such as the distance calculation, and accessomqatadors (i.e., getters and setters). The

basic concrete class for hard locatiddardLocationimpl , heeds only to create the

counters, inheriting most of its functionality frate superclass.

2 Class names in Java follow the camel case practice
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class SDM /

AbstractHardLocation

- address BitVector
# counters: byte ([])
id: int

AbstractHardLocation(BitVector, int)
AbstractHardLocation(BitVector, int, int)
AbstractHardLocation(BitVector)
clear() : void

distance(BitVector) : int
distance(BitVector, double[]) : int
getAddress() : BitVector
getAddressLength() : int
getCounters() : byte[]

getld() : int

getWordLength() : int
getWriteCount() : int

read(int[]) : int[]
setAddress(BitVector) : void
setCounters(byte[]) : void

setld(int) : void

setWriteCount(int) : void
write(BitVector) : void

ot ot F kot + F o+ o+ o+ +

«interface»
HardLocation

«interface»
SparseDistributedMemory

CachedHardLocationimpl

HardLocationimpl

dirty: boolean +

ottt o+ o+

CachedHardLocationImpl(BitVector, int) +
CachedHardLocationImpl(BitVector, int, int)
CachedHardLocationimpl(BitVector)

clear() : void

clearDirty() : void

hasCounters() : boolean

isDirty() : boolean

removeCounters() : void

setCounters(byte[]) : void

write(BitVector) : void

HardLocationimpl(BitVector, int)
+ HardLocationlmpl(BitVector, int, int)
HardLocationimpl(BitVector)

+ clear(): void + mappedStore(BitVector, BitVector) : void
+ distance(Bitvector): int + retr!eve(B\t\/ector) : BitVector .
+ distance(BitVector, double[) : int + retrieve(BitVector, BitVector) : BitVector
+ getAddress() : BitVector + retr!evelterat\ng(B\(\/ectDr).: B|tVe.ctor
+ getAddressLength() : int + retrievelterating(BitVector, int) : BitVector
+ getCounters() : byte[] + retrievelterating(BitVector, BitVector) : BitVector
i~ td0 : int + retrievelterating(BitVector, BitVector, int) : BitVector
getid)
+ getWordLength( : int + store(BitVector, BitVector) : void
+ getWiteCount( : int + store(BitVector) : void
+ read(int[]) : int]] A
+ setAddress(BitVector) : void T
+ setCounters(byte[]) : void i
+ setld(int) : void +
+ write(Bitvector) : void AbstractSparseDistributedMemory
+ addrLength: int {readOnly}
. + memorySize: int{readOnly}
i E + wordLength: int freadOnly}
2|2
S |3
g § + AbstractSparseDistributedM ory(int, int, int)
g g + mappedStore(BitVector, BitVector) : void
Iz R + retrieve(BitVector, BitVector) : BitVector
+ retrievelterating(BitVector) : BitVector
+ retrievelterating(BitVector, int) : BitVector
+ retrievelterating(BitVector, BitVector) : BitVector
+ retrievelterating(BitVector, BitVector, int) : BitVector
+ store(BitVector) : void

SparseDistributedMemorylmpl

activationRadius: int
hardlocations: HardLocation ([])

+ o+

retrieve(BitVector) : BitVector
store(BitVector, BitVector) : void

CachedSparseDistributedMemorylmp

cache: CacheController
hardlocations: HardLocation ([])
hardLocationsinRadious: int
sdmdao: SdmDAO

+ flush() : void
getDynamicSphere(BitVector, double[])
retrieve(BitVector) : BitVector
store(BitVector, BitVector) : void

+ o+

Figure 25. UML class diagram of SDM main classes. For clarity’s sake, songe clas

members were not included in the diagram.

The abstract sparse distributed memory class pesuite most complex

functionality of the memory, including methods fratively reading, and others for

applying mappings while writing. The concrete céssgust provide the most basic

methods for reading and writing, which in turn, eafled from the methods defined in

the abstract class. This design facilitates refisede in enhancements such as the

implementation of a cached version of the memoeg the next subsection for details.
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Finally, the addresses and other bit vector dalizeithe BitVector
implementation of the Colt Java librdrproviding a fast, compact implementation of
many bit-vector operations. The library represéinsry vectors with an array of lorfgs
performing several operations 64 bits at a time.

The basic Integer SDM implementation has a sinti&gign, except that it uses a
newSdmVector implementation instead of tiBtVector , and aCounter interface
(and related classes) to encapsulate counter @unadify. | will discuss them in more
detail in the distributed and multithreading sultieec This object oriented design
provides the basis for the more advanced desigrsepted here, which would have been

more difficult to implement using the standard giased design.

Cached Implementation

The storage requirements of these implementatimrsases proportionally witin,

number of hard locations, the dimensionality of the space, and in the caseteger

SDM, r, the number of possible values in each dimensfkrache design mitigates this

requirement, allowing the execution of these ajgpilons in computers with moderate

RAM capacity. The addresses of the hard locatieqaire some memory, but their

counters constitute the major memory-consuming efesin these applications.
Analyzing the reading and writing algorithms, botinsist of comparisons of all

hard locations’ addresses to the target addreléswix by a reading or update of a small

fraction of the hard locations’ counters. Theraassignificant advantage to storing the

% The Colt library is a set of open source libraf@shigh performance scientific and technical
computing in Java developed at CERN, the Europeagarization for Nuclear Research. For more
information see http://acs.lbl.gov/software/colt/

*long is a 64 bit integer data type in Java.
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addresses in a secondary storage and then cableimg $ince both reading and writing
operations require all of them. Moreover, they haveodest memory footprint compared
to the counters. Thus, the addresses are inseshtiatectly in RAM. On the other hand,
the counters are never required all at the same, @md during an iterating reading
operation (see Chapter 2), the counters of many loaations are repeatedly accessed,
making them good candidates for caching.

The Extended SDM and Integer SDM cached implemiemisiutilize a LRU
cache for the hard locations’ counters. The menmstantiates all the hard locations,
including their address vectors, but not their ¢ets A cache controller provides the
counters as needed. The first time a hard locadi@scessed for reading or writing, the
cache controller creates an array with empty coaraed assigns it to the hard location;
subsequently, it retrieves the counters’ valuesifeosecondary memory. The controller
keeps track of which hard locations have instamtiaiounters, saving and removing them
when the space is required. A DAO class, which en@nts the data access object
design pattern, encapsulates the communicationseitbndary storage, enabling the
controller to interact with different secondary nweras, such as databases or files,
without modifying the cache logic. Figure 26 shdivs UML class diagram of the cache
main components. The cache controller employsSttraDAGOnterface to become
independent of the DAO implementation. T®achedHardLocationimpl and
CachedSparseDistributedMemoryimpl classes have small additions to their
standard counterparts, such as getter and sefpézrmentations to access the counters in

support of the cache mechanism.
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class IntegerSDMcache J
«interface»
CacheController SdmDAO
cacheCV: LinkedHashMap<Integer, Counter{]> + disconnect() : void
hardLocations: HardLocation ([]) + getAttribute(String) : Object
nextToUse: Counter ([]) + getDBStats() : String
sdmDao: SdmDAO + getHardLocation(int, int, int) : HardLocation
-sdmDao| , getHLCounters(HardLocation) : boolean
+ CacheController(int, SUmMDAO, HardLocation[], int, int) + isNewDB() : boolean
- clearCounters(Counter(]) : void + removeAttribute(String) : Object
+ flush() : void + saveNewHardLocation(HardLocation) : boolean
- getNewCounters(int, int) : Counter[] + saveNewHLCounters(HardLocation) : boolean
+ getNextToUseOrNew() : Counterf] + setAttribute(String, Object) : Object
+ touchCache(HardLocation) : boolean + updateHardLocation(HardLocation) : boolean
+ update(HardLocation) : void + updateHLCounters(HardLocation) : boolean
»p b
' I '
' I '
' I '
' I '
' I '
' I '
' I '
........................ ' 1 1
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
H H
SdmDAOImpl SdmDaoRF SdmDaoBk
dbConnector: JavaDbDaoConnector - attrDao: AttributeDao - attributeDb: Database
buffer: byte ([]) {readOnly} - counterDb: Database
- createPreparedstatements() : void - counterDb: RandomAccessFile - hardLocationDb: Database
+ disconnect() : void - counterDbLength: long - myEnv: Environment
+ getAttribute(String) : Object - hardLocationDb: RandomAccessFile
+ getDBStats() : String - hiByteSize: long {readOnly} + disconnect() : void
+ getHardLocation(int, int, int) : HardLocation - infoDb: RandomAccessFile + getAttribute(String) : Object
+ getHLCounters(HardLocation) : boolean - maxCounterld: int + getDBStats() : String
+ isNewDB() : boolean + getHardLocation(int, int, int) : HardLocation
+ removeAttribute(String) : Object + disconnect() : void + getHLCounters(HardLocation) : boolean
+ saveNewHardLocation(HardLocation) : boolean + getAttribute(String) : Object + isNewDB(): boolean
+ saveNewHLCounters(HardLocation) : boolean + getDBStats() : String + removeAttribute(String) : Object
+ SdmDAOImpl(String, String) + getHardLocation(int, int, int) : HardLocation + saveNewHardLocation(HardLocation) : boolean
+ SdmDAOImpl(String, boolean) + getHLCounters(HardLocation) : boolean + saveNewHLCounters(HardLocation) : boolean
+ SdmDAOImpl(Connection) + isNewDB() : boolean + SdmbDaoBKk(String)
+ setAttribute(String, Object) : Object - readMaxCounterld() : int + setAttribute(String, Object) : Object
+ updateHardLocation(HardLocation) : boolean + removeAttribute(String) : Object - setup(File) : void
+ updateHLCounters(HardLocation) : boolean - saveMaxCounterld(int) : void + updateHardLocation(HardLocation) : boolean
+ saveNewHardLocation(HardLocation) : boolean + updateHLCounters(HardLocation) : boolean
+ saveNewHLCounters(HardLocation) : boolean
+ SdmDaoRF(String, int, int, int, int)
+ setAttribute(String, Object) : Object
- setup(String) : void
+ updateHardLocation(HardLocation) : boolean
+ updateHLCounters(HardLocation) : boolean

Figure 26. UML class diagram of the cache’s main components. For the sake of clarity,
some class members were not included in the diagram.

Three different secondary storage mechanisms wsted: relational database
management system (RDBMS), non-relational databasesgement system (non-
RDBMS), and plain data files. The RDBMS implemeiataistores the hard location’s
information in a couple of tables, and standard $Qéries provide access to their data.
This design can employ any RDBMS engine suppornjedblva, which constitutes one of
its main advantages. Two database engines werdntiee simulations: JavaDB and

MySQL. The former, completely implemented in Javas the potential of embedding
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the database engine in the application, enablengdsiione execution in any Java
platform. The second database engine, MySQL, isobtiee most popular and widely
available ones. Both RDBMSs worked correctly, withsignificant difference in
performance. MySQL was only 5% faster than Javald.ertheless, the scalability and
clustering capabilities of MySQL make it preferafde implementing large SDM and
similar memories.

The non-RDBMSs, which employ key-value stores \@myilar to map data
structures, have lately gained momentum in thestrguMany leading web-based
applications utilize this storage paradigm becadses simplicity, robustness,
performance, and scalability. In addition to thadeantages, many of the non-RDBMSs
use simple byte arrays as their native data typewfits naturally to SDM technology
requirements. The experiments implemented heneaifderkeley DB (Olson, Bostic, &
Seltzer, 1999), one of the first databases indhaisgory.

In spite of all the rationale in favor of this kiofldatabase in the context of the
applications of this work, the results did not shemy significant difference with the
RDBMS implementations. After a careful analysig ttiverhead produced by copying
the byte arrays to and from the database drivergeseas the main cause of this
unexpected result.

Finally, the plain file implementation outperforrige other two implementations.
The SdmDaoRFclass stores the hard location’s data in a paiaidom access files in
the file system. Minimizing the data copy operasi@md optimizing the file system calls
by reserving the whole disk space requirementeab#ginning, the memory achieved a

performance up to five times better than the otiwermodels.
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Although the results strongly bias the selectiothefplain file approach, further
testing, including other database models, is reguefore discarding the database
implementations. Moreover, the scalability andristtivity characteristics of database
systems, both relational and non-relational, makentattractive choices for distributed
environments, even in light of the above-mentiodsddvantages.

Any of these cached implementations suffice tothenSDM variations described
in this work, even on computers of modest capaslitThey also provide a persistence
mechanism as a valuable side effect of the cadiatacture: After performance of a
simulation, the secondary storage preserves theonyanformation, thus a future

simulations can reuse the stored data.

Parallel and Distributed Implementations

In the last decade, parallel processing has becdmogiitous. Nowadays, it is common to
have multi-core CPUs executing instructions in ppa@reeven in desktop and laptop
computers. Furthermore, Graphic Processors Uni&J&}, which can perform billions
of parallel vector operations per second, are dftend even in mid-range computers.
Cloud computing, a metaphor for the delivery of poing processing as a utility
service, provides cheap, almost unlimited procgsgower that, in general, relies on
multithreading and distributed processing. Thisadagm is an attractive option for
memory- and processing-intensive Al applicationsluding the SDM extensions
described in this dissertation. For example, Gotgiehas recently proposediaud
roboticsplatform to help developing smart robots usingghecessing power of cloud

computing (Guizzo, 2011).
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Instead of using the low level threading suppordafa, the multithreading
implementation presented here utilizes Akka, anraanodel framework (Hewitt et al.,
1973). The actors model, a theoretical model otoomnt computation, defines actors as
its primitive elements. The actors communicate ¢lhnfgugh messages, and there is no
global state of the system. In response to recaivessages, an actor can modify its local
state, send messages to other actors, and creai@ct@s. The object paradigm differs
from the actor model in that the former typicalkeeutes sequentially and the latter is
inherently concurrent and asynchronous. The Akaméwork implements the actors
model in Java (and in Scala), abstracting from sohtke inherent complexities of
concurrent programming. Furthermore, this framewuodes the implementation details
of distributed execution from the programmer; aftefining the actors, they can be
executed locally or distributively over a network.

The Integer SDM implementation using Akka definesienber of classes for
actors and messages. Whereas the messages are cimegks that encapsulate each
operation and do not need further analysis, theamar classes and the changes in some
of the base classes require additional discusBipmulividing the functionality of the
sparse distributed memory class, the implementduatter supports the concurrent
design. The newlardLocationPool interface and its several implementations
encapsulate the control of the hard location’semibn, leaving only the high level
functionality of the memory to th®parseDistributedMemorylmpl class. The
hard location pool’s variants implement differemtétionalities, including the cached
and multithreaded versions. Figure 27 displaydih® diagram corresponding to this

new design.
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class Akkalmplementation /

«interface»
SparseDistributedMemory

?

SparseDistributedMemorylmpl cinteriace>
e s -hiPool HardLocationPool
«interface» + close(): void
HardLocati + flush() : void

ardLocation + read(SdmVector, double[]) : Counter]
+ getAddress() : SdmVector + readArray(SdmVector, doublel]) : int[]
+ getAddressLength() : int + write(SdmVector, SdmVector) : void
+ getCounters() : Counter[] A
+ getld():int A
+ getWordLength() : int '
+ getWriteCount() : int E
+ read(Counter]) : Counter(]
+ read(int]][]) : int[] AbstractHardLocationPool
+ setAddress(SdmVector) : void ; X .

#hardlocations

+ setCounters(Counter]): void # hardlocations: HardLocation ([]) {readOnly}
+ setld(int) : void close() : void
. ) A :
' setWriteCount(int) : void flush( : void

write(SdmVector) : void

A

getDynamicSphere(SdmVector, double[]) : Collection<HardLocationldx>
read(SdmVector, double[]) : Counter(]

readArray(SdmVector, double[]) : int[]

write(SdmVector, SdmVector) : void

HardLocationlmpl Zf Zf

+ o+ o+ F 4+

CachedHardLocationPoollmpl HardLocationPoolimpl AkkaHardLocationPool
- cache: CacheController - routerActor: ActorRef {readOnly}
- sdmdao: SdmDAO
close() : void
+ close() : void flush() : void

+ flush() : void
- updateCache(Collection<HardLocationldx>) : void

read(SdmVector, double[]) : Counter[]
readArray(SdmVector, double[]) : int[]
write(SdmVector, SdmVector) : void

+ o+ o+ o+ o+

Figure 27. UML class diagram of some of the classes that support the Akka actor
implementation. To improve clarity, some class members were not included in the
diagram.

The AkkaHardLocationPool connects the SDM with the Akka framework.
This class has a@dmRouterActor ~ which in turn includes a collection 8tdmActor
actors. EaclsdmActor actor has a hard location pool. Furthermore, dloger actor can
include other router actors in its actor collectionplementing a tree-like structure of
actors that resembles the composite design pdtBammma et al., 1995). Each leaf of this
tree has a hard location pool, and due to the actalel capabilities, the access to each

pool executes concurrently. Some of the routerragtnd itsSdmActor children) can
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actually be remotely instantiated, making the desligtributed as well. See Figure 28 for
details. When the sparse distributed memory clagskies

AkkaHardLocationPool 's read or write methods, it sends a message tootlter
actor, which in turn broadcasts the message thitdren. In response to the message,
the children actors of typggdmActor , concurrently read from or write to their own hard
location pool, and send a message back to the isérttechildren actors of type

SdmRouterActor  broadcast the message down the hierarchy.

HardLocationPool

4

SparseDistributedMemory——f AkkaHardLocationPool

l

SdmRouterActor
SdmActor SdmActor oo SdmRouterActor

1 1 I

HardLocationPool | | HardlLocationPool

Figure 28. Hierarchy of actors used in the SDM Akka implementation.

Several Integer SDM experiments utilized this impdatation, using both
multithreading and distributed support, runningihigh performance computer (HPC),
which consists of a Beowulf (Linux) cluster of 1B8nguin Computing compute nodes.
The nodes used for the experiments have 8 procets6Ghz AMD Opteron 2380’s)

and 32GB of memory, and are connected via DDR iBéind. The experiments

177



employed configurations with one node (8 procegsos® nodes (16 processors), and
four nodes (32 processors). The performance usiegiode was almost five times faster
than running the same experiment without concugreflce framework and threading
overhead explain why the performance does not eeliee theoretical eight-fold
enhancement. Using two or four nodes (up to 32qsmars) allows creating large Integer
SDM instances, impossible to achieve in smallefigarations. Although the
performance degrades due to the communication eadrtthe experiments prove the

viability of this design for distributed computing.

GPU Processing Support

GPUs, originally created for graphic processingehexpanded their application
spectrum to other computation intensive fieldshsag physics and Al, which have
benefited from their parallel processing capabtitiThese devices comprise many
simplecoresthat can execute the same code with differentidgtarallel, following the
SIMD architecture, and making them ideal for vectomatrix processing. The GPUs
work as coprocessors of the host processor. A arogising this paradigm has sections
that run sequentially on the host, and other sestibat run in parallel on the GPU. This
architecture has a memory hierarchy that compasgiebal memory common to all
processes in the GPU, a private memory for each’&8ide, and a memory space
shared by the running cores. Although optimizingeas$s such as data copy and memory
allocation across this hierarchy can improve theral performance, these
considerations are outside the scope of the pregakt To implement GPU support, the
de facto standard in the industry and academtzeiUUDA GPU programming toolkit,

developed by NVIDIA for their GPUs (Che et al., 8300IVIDIA, 2012).
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The Extended SDM implementation with CUDA suppditizes parallel
processing to calculate the distances among vestoes the access sphere is determined
(see Chapters 2 and 4), and to access the cownties hard locations in the reading and
writing operations. Two new class€jdaHardLocationPool andCudaUtils
encapsulate most of the code that interfaces Wwekdrnels the CUDA subroutines.

The addresses and counters of the hard locatioresallecated in the global
memory of the GPU, minimizing the memory copy td &nom the host. Five kernels,
developed in C with CUDA extensions, provide thgoathms for the functionality of the
memory:initSdm , write , read , normalize , andgetDistance . TheinitSdm
kernel creates the hard locations in the GPU menTdrgwrite andread kernels
perform the basic operations of the memory, supmpthe low level details of the
HardLocationPool interface (see Figure 27 for details). Thad kernel produces a
vector of integers with the sums of the countersaoh dimension corresponding to the
hard locations in the access sphere. This vectat beinormalized to obtain the output
binary vector, but due to the parallel executiothef kernel in the GPU, the
normalization must be performed using a separateekd-inally, thegetDistance
kernel calculates the distance between two vecamic thaead andwrite kernels call
it to determine which hard locations are insideabeess sphere.

This CUDA implementation was tested using a GPU DI\l GeForce GTX 560
Superclocked 2048 MB GDDR5 with 336 CUDA cores. Experiments run with this
hardware showed an impressive gain in performanc Extended SDM with 500,000
hard locations, an address size of 1,000, and siasdof 2,000, the reading and writing
operations ran 52 times faster than when the objgented implementation (see above)
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was used. This result may be further improved ogtimg the memory usage and fine
tuning the thread execution. Moreover, the newét/§have up to 3,073 CUDA corgs
almost ten times more than the one employed hesieguhese new GPUs would
improve the performance of this implementation ewveme. These results demonstrate
the feasibility of these memories for real time laggtions with a large number of hard

locations, such as robot controllers or visual geaion.

MCR Parser and Interpreter
Although hyperdimensional computing (Kanerva, 200€hg MCR vectors can be
implemented using general-purpose programming lages! (GPL) such as Java or C++,
the syntaxes and native structure of these langualgieiscate the simplicity of the
hyperdimensional computing expressions (see Chaptand 6 for examples of MCR
expressions). A specific scripting language, thiats writing MCR expressions, was
developed using Javacc, a Java parser generat@rduces a parser in Java code from
a grammar specification. A runtime interpreter, iempented also in Java, can evaluate
the MCR scripting language and maintain the MCRamscn memory.

Figure 29 shows an example of the MCR scriptingleage, which reproduces
the expressions of the hyperdimensional computkagngle presented in Chapter 6.
Variables, such asause idmark, andluke, represent vectors. The plus sigf $tands
for the grouping operation, whereas the produgt gig represents the binding operator.
The* has precedence over theand parentheses can be used to force a desired

operation’s evaluation order. The exclamation syinfbpproduces the inverse of its

> The top of the line NVIDIA GPU as today is GeFo@&EX 690. See http://www.geforce.com
for details.

180



succeeding vector, useful for the probe operatime(Chapters 3 and 6 for details). Also,
the slash/() is equivalent to multiplication by the inversetbé second operand, which is
a compact syntax for probing.

Several instructions complement the scripting laggunewrnd() creates new
random vectorsprint() outputs a message to the consptetd() displays the
distance among two vectors, aahk() displays the rank of closest vectors in the
system, that is, all the vectors assigned to akbgiso far, to a given vector. Appendix B
lists the complete grammar definition of the MCRsing language in Javacc format.

The MCR interpreter runs inside a Java program,camdorocess expressions
defined in a text file or embedded in the codetasgs. The execution of the interpreter
can be interleaved with normal Java code, rendérimgnecessary to include in the
scripting language the typical control structusegsh as if and for-loops, found in most
GPLs. In effect, if we need to repeat one or sd\MZR expressions, we can wrap the
interpreter execution by a for-loop in the Javaecadl hash table data structure, with the
vector’s variable names as keys, holds the vecteated by the interpreter. Since both
the Java code and the interpreter have accesstoash table, the Java code can
manipulate these vectors, or even create new baéare included in the interpreter
repertory. This easy interaction between the nalaxa code and the MCR interpreter
enables the creation of experiments and applicaitismg the “best of both worlds”™: the
simplicity of the MCR scripting language combineiihithe power and versatility of

Java.
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//Create random base vectors
newrnd (cause, eat, see, being, human,state, food, fish,bread,object,agent);

//Create random id vectors

newrnd (idmark, idjohn, idpaul,idluke) ;

newrnd (idthebread, idthefish, idhunger, idthirst, ideatagt, ideatobj,
idseeagt, idseeobj, idcauseagt, idcauseobj) ;

//people vectors

mark = being + human + idmark;
john = being + human + idjohn;
paul = being + human + idpaul;
luke = being + human + idluke;

//Other vectors

thefish = food + fish + idthefish;
thebread = food + bread + idthebread;
hunger = state + idhunger;

thirst = state + idthirst;

eatagt = agent + ideatagt;
eatobj = object + ideatobj;

seeagt = agent + idseeagt;
seeobj = object + idseeobj;

causeagt = agent + idcauseagt;
causeobj = object + idcauseobj;

//events
sl = eatagt * mark + eatobj * thefish + eat;
s2 = cause +causeagt * hunger + causeobj*sl;

s3 = eat + eatagt*john;

s4 = see + seeagt*johntseeobj*mark;

s5 = see + seeagt * john + seeobj* thefish;
s6 = see + seeagt * thefish + seeobj* john;
//probes

printd (sl, eat);

print("");

rank ("sl/eatagt",sl*!eatagt,5);
rank ("sl/agent",sl/agent,5);
rank ("sl/eatobj",sl/eatobj,5);

rank ("s2/causeagt",s2/causeagt, 5) ;
rank ("s2/causeobj",s2/causeobij, 5) ;
rank ("s2/causeobj/eatagt",s2/causeobj/eatagt,5) ;
rank ("s2/causeobj/eatobj", s2/causeobj/eatobi,5) ;

rank ("s3/eatobj",s3/eatobi, 5);
rank ("s4/john",s4/john,5) ;
rank ("s5/john",s5/john, 5) ;
rank ("s6/john",s6/john,5) ;

Figure 29. Example of MCR scripting expressions. This example reproduces the
experiment presented in Chapter 6.

182



Conclusions

This chapter presents the software implementatbtise technologies introduced in this
dissertation. Cached versions of the Extended riredjér SDM allow running these
memories even in modest computers. The variousl@araplementations introduced
here, including multithreading, distributed, and/®l variants, have demonstrated the
feasibility of SDM and related models, to take atage of the incipient trend of parallel
computing. Further work must address optimizatibthese designs to improve their
performance and scalability. Finally, the MCR stinig language interpreter simplifies
the implementation of experiments and applicatimeesed on MCR vectors, without the

burden of the syntactic overhead of the host laggua
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Chapter 8: Conclusions

Cognitive software agents, robot controllers, atietosimilar challenging Al
applications have several basic operations in comibese operations, described in
Chapter 1, include pattern recognition when padral noisy cues are used, sequence
learning, generalization of patterns, and Hebbeanrling. A memory system for these
applications can facilitate the implementationhadde operations. SDM has proven to be
a good candidate. It possesses some of the desfesttlires for memory systems listed
in Chapter 1: content addressability, auto-assediyatnd hetero-associativity,
robustness to noise, generalization, clusteringeparecognition, sequence learning,
resilience to memory damage, one-shot and increahkatrning, forgetting, and high
dimensionality. The SDM extensions presented is dissertation, which further
improve these features, and MCR, the new reducsctigéion model introduced in this
work, integrate a set of technologies with the poé to address the complexities of
challenging Al applications.

The rest of this chapter will describe some furttezctions and possible
applications of the technologies introduced heskpded by a discussion of their
limitations. Finally, | will summarize the conclesis and cite this author’s papers related

to this work. Appendix A includes a complete lispapers written by the author.

Further Directions

Several extensions and variations of Extended SB#lateger SDM are natural paths
of further development. First, a forgetting meclsam{Ramamurthy, D'Mello et al.,
2006), which will help to preserve only the modeafrepeated elements in the memory,

would improve the unsupervised learning capabdftthe memory. Only correct inputs
184



and associations are likely to be repeated frefyetd then incorrect inputs would
decay away from the memory without any supervisigynbalancing the new inputs and
the decay rate, this mechanism would also preventrtemory from approaching its
maximum capacity.

Other designs of SDM hard location activation, likeckel’'s selected coordinate
design (Jaeckel, 1989a, 1989b), can also be impiedavith these SDM extensions,
improving the signal to noise ratio. Moreover, otesigns, such as the ones proposed
by (Anwar et al., 1999; Fan & Wang, 1997; Keel€&88, Ratitch & Precup, 2004) and
reviewed in Chapter 2, utilize variations in thetdbution of the hard locations that
improve the performance of SDM when the data tetbeed are not uniformly
distributed in the space. Exploring these variaimnalso an attractive further direction.

Random indexing (Sahlgren, 2005), a semantic spacke| that creates semantic
vectors by combining random vectors associated @atth word, is a possible application
of Extended SDM. In the random indexing model, eaohd has two associated vectors:
a random vector, and a semantic vector, the |lb&grg the result of combining the
random vectors of other words related to this dime process can be iterative, refining
the semantic vector as new related words appe&nBed SDM has the potential to
produce semantic vectors directly during word gjerd he data vector (see Chapter 4 for
details) can hold the random vector and the semagattor in two sections that are
updated whenever new data arrives. With this implaation, the memory would still
preserve its noise robustness capability, and wadttitionally create the semantic

vectors that relate the words according to theiamirgg.
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In recent years, several models of the so calésp learningsystems, such as
HMAX (Serre et al., 2007), HTM (George, 2008), D&STArel et al., 2009), and deep
belief nets (Hinton, 2007; Hinton et al., 2006)y&d@merged. These models, based on the
hierarchical organization of the neocortex, anthefvisual cortex, focus on learning and
recognition of spatial and temporal patterns. Tthetect pattern invariances in space and
(in some models) in time in each level of the hielng. The output of a lower layer
provides the input for the higher ones. The higherlayer, the more abstract are the
features they capture of the data. A possible tkmping system could use layers of
Extended Integer SDMs. The memory that implemeath éayer stores the input
vectors, and its interference and generalizatiopgnties facilitate the creation and
detection of patterns from similar vectors (seegoeriment of Chapter 5 that shows this
mechanism). Finally, the sequence storage mechatasoribed in Chapter 4 helps to

learn temporal patterns in each layer.

Vector LIDA

A promising project that | called Vector LIDA wouidtensively utilize the technologies
presented in this dissertation. This project wonddlement the LIDA architecture
(Franklin & Patterson, 2006; Snaider et al., 2Qisihg MCR vectors as its main
representation for data structures, and the vaeatensions of SDM presented here for
its main memory mechanisms. The LIDA architectues Wriefly introduced in Chapter
2, and a recent description of the model can bedon (Franklin, Strain, Snaider,
McCall, & Faghihi, in press). For reference, FigB8fedepicts the structure of the LIDA

model, including its modules and their interactions
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Figure 30. LIDA cognitive model diagram. The boxes represent the different
modules of the model, and the arrows the interactions among them.

The current version of the LIDA model utilizes nedad links in a graph-like

structure (node structure) as its main data strecithis implementation introduces

several problems. First, comparing node structcaesbe computationally expensive.

Moreover, some of LIDA’s processes require appr@tarcomparisons of the node

structures, which can be even harder to computeR Méttors can represent information
such as that contained in node structures, butenlbde structures, MCR vectors have

an innate approximate comparison property, as eqdan detail in Chapters 3 and 6.

Second, some modules in the LIDA model, such asepéual associative

memory, episodic memory, and procedural memorywiredghe implementation of

learning mechanisms. These mechanisms must beécalelgrn new node structures in an

instructionalist learning mode, and reinforce poexi ones via reinforcement learning.

187




The current model uses a value attached to eaah araillink, called base level
activation, that helps to implement reinforcemeatrhing. However, the model does not
have a generic strategy for the learning of newnelds, and the current implementations
of several modules do not scale well. The SDM v presented here have both the
required learning mechanisms (instructionalist smforcement) integrated into their
basic functionality. Learning new vectors (instragtlist learning) simply consists of
storing the vector in the memory using its standdodage procedure. When the same
vector is stored several times (reinforcement) hidwel locations’ counters corresponding
to the values of each dimension of this vector halve larger counts, making it resistant
to interference by other vectors stored in the nrgmthis effect would improve
implementing a forgetting mechanism.

Moreover, the current episodic memory module inAl&8lready employs a SDM
memory as its base implementation. The problemaoistating back and forth from node
structures to vectors in episodic memory disappeaen using MCR vectors as the main
data structure of LIDA. Furthermore, the sequerieceage mechanism of Extended SDM
would enable the episodic memory module to storepmsite events, sequences of
simpler events, improving the event-learning calggof the episodic memory module.

Third, MCR vectors have the potential of implemegtdirectly Barsalou’s
perceptual symbol system (1999), which uses syndrolsnded in sensory and motor
information. Although the current LIDA model emptog version of perceptual symbols,
it does not exploit their capability for expressiess, and they have a limited impact on
the functionality of the whole system. Nodes in BlBre grounded in sensory data. The

activation of a node depends on the activationsothild nodes, which eventually are
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activated from sensory data. However, a node (witkonsidering its children) does not
represent any specific sensory or motor informalipitself, so its grounding feature is
seldom employed in the LIDA model processes. Moeeathe simulator idea, central to
the perceptual symbol system theory, is hard tdampnt using nodes and node
structures. On the other hand, constructing MCRoredrom sensory and motor
information using hyperdimensional computing operet would produce
representations that have many of the perceptunabsls’ characteristics described by
Barsalou (1999). Similar sensory information wowleld similar representations, and the
holistic processing operations of MCR could faatkt the implementation of the
simulators described in his model. InterestinglyzRIvectors with role-filler
components for each modality have the potentialtegrate several modalities in a
single representation, addressing the so calledirgrproblem. For example, the MCR

vectorB

B = [birdImage @ Visual + birdSong @ Auditory] (153)

may represent the integration of the data fronmvtbeal and auditory modalities. Notice
that the vectorbirdimageandbirdSongwould be in turn reduced descriptions also.
Fourth, the hierarchical networks described ingrevious section provide
biologically plausible mechanisms with which to geve both spatial and temporal
patterns from low level sensory data, making thénactive for modeling low level
perception between sensory memory and perceptsatiasive memory (PAM) in LIDA
(see Figure 30). Since these models in generabpeodigh dimensional vectors as

output, interfacing them with Extended Integer SBMmories for implementing PAM
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would be simpler, more scalable, and more noisagbinan with the current
implementation. HMAX (Serre et al., 2007) is prolyahe most biologically realistic
hierarchical model for this function, since theaitfzors designed it following the
biological data as accurately as possible, butratielels such as HTM (George, 2008)
or DeSTIN (Arel et al., 2009) are also possibla@m. Furthermore, these hierarchical
models have the potential of detecting spatial-m@gpatterns in other modules, such as
the workspace or perceptual memory, and they weedanlessly integrate with MCR
vectors. For example, attention and structure-mgldodelets (see Figure 30) can be
implemented with these hierarchical networks stoaketect patterns in the workspace,
and build coalitions and complex structures, respely, with these patterns. A similar
implementation for procedural memory, using hignaral networks, could improve the
detection and learning of temporal patterns thah&ally became sequences of actions
or behavior streaméD'Mello, Ramamurthy, Negatu, & Franklin, 2006 heke
hierarchical network models, combined with MCR westand Extended Integer SDM,
have the potential to provide a primary detectigo@thm in LIDA.

Finally, using MCR vectors would produce a morddmgaally plausible model
through its synergy with other models, such ashtbearchical networks mentioned
above, Barsalou’s perceptual symbols, Fuswstmits(2006), and several
neurodynamical theories (Franklin et al., in presbBave already described (see above)
how to implement perceptual symbols, and how tb@mstruction addresses the binding
problem. A discussion follows of the relationshgiween MCR vectors and both cognits

and neurodynamical theories.
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Fuster defined a cognit as an abstraction of worktof neurons. Its
representation power comes from the neurons thmposee it and specially the
relationship between its component neurons. Hensktely describes how different
memory types (e.g., episodic, perceptual, motar) ean be interpreted as hierarchies of
cognits. He pointed out that cognits in one leeghe hierarchy can be a composition of
other cognits from several levels in the hierardiZR vectors may be used as an
abstraction of the cognit model. They are alsaithsted, can combine elements of
various levels of the memory hierarchy in a singdetor, and their hyperdimensional
operations can combine and associate cognits esgegsas vectors.

Franklin and colleges (Franklin et al., in pressydncompared several
neurodynamical theories with the LIDA model. Byargreting the brain as a dynamical
system, the representations would be trajectoniéisa phase space (pattern of activation
space) of one or several cell assemblies. Thegetnaes can in turn interfere with and
influence the trajectory in the phase space ofratek assemblies. A MCR vector would
model not only a pattern of activation of a ceexmbly, but also a trajectory of these
patterns. For example, if a single neuron in aa&sdlemble has a sequence of activations
in a trajectory of 4 steps (e.g., 1011, where ortezero mean high firing rate and low
firing rate respectively), we may code this seqeemx a single value (11 in the example)
and assign this value to one dimension in our ME&ar. Employing the same
procedure for each neuron in the cell assemblydyres a MCR vector that represent the
trajectory of the pattern. Using an Integer SDMaateanup memory can produce a
previously stored vector from a partial vector, ethwould model the oscillatory and

self-organizing properties of the dynamical systetarpretation. Using random
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permutation or multiplication produces a new vedthat would model the influence from
one cell assembly to another. Although these ideastill under development, using
MCR vectors and the memories proposed herein hasn@uis potential to model
representations and cognitive processes in a molagically plausible way.

Summing up, some of the advantages of Vector LID&radhe current
implementation include a more realistic and biotadly plausible model, better
integration with its episodic memory, better ineggyn with other low level perceptual
processing (such as HMAX Serre et al., 2007), bsttalability, and easier learning

mechanisms.

Limitations

The proposed memory models have the several adyentkescribed herein; however,
they have also some limitations. First, the perfamoe of the memories degrades if the
stored vectors are not uniformly distributed in g#pace. The possible variations in the
hard location activation mechanism mentioned inpiteious section would mitigate this
issue, but a more extensive study has to confiare®pected improvement.

Second, the memories discussed in this work ordgyce a single vector as a
result of the reading operation. Although thisnsegh for a broad range of uses, some
applications (e.g., the procedural memory moduleeictor LIDA) could require
retrieving the set of closest vectors in the memaArgnultilayer hierarchical memory
might provide a possible path for addressing $ssié.

Third, Integer SDM used as a cleanup memory favieiR reduced description

model does not always yield the expected vectortdtiee excessive noise introduced by
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the MCR operations (see examples in Chapter 6erQtays to improve the noise
robustness of the memory need to be explored @ sbis problem.

Finally, MCR vectors can integrate several vectois one, but if the number of
combined vectors is too large, the composite vdmopmes useless due to the noise
introduced in the representation. Exploring spaesgor representations—vectors with a
small number of significant dimensions compareth&total number of dimensions—

might improve the performance of MCR vectors.

Summary of Conclusions

The first variation of SDM presented here, Exten8&dM, increases the hetero-
associativity feature of the memory without dimimig) its auto-associativity. This
variation is particularly efficient for learningggences and other data structures such as
trees. Furthermore, the novel mechanism for sequstacage described in Chapter 4
allows the inclusion of sequences of degree grélaser one, crossing sequences—
sequences with common elements—and sequencefrecald middle point to the end.
Previously, this kind of sequence learning was @ualysible in SDM with complex
architectures such as the one described by Kari@®&8) or the one implemented by
Jockel (2009). | also analyzed the effect of theapeeterk (see Chapter 4) to fine-tune
the behavior of the memory for sequence learnitgs parameter controls the number of
previous elements required to retrieve the nexhefd in a sequence, thereby controlling
the grade of the sequences that the memory cam [Bao papers have already been
accepted or published discussing this memory anapiplications: (Snaider & Franklin,

2011; Snaider & Franklin, 2012a).
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Another extension presented here, the Integer S&#¢nds the domain of the
memory to accept integer vectors, with a rangeoskible values for each dimension.
Real world data are often non-binary, thus a menabtg to store values other than
binary can be more effective for applications tns¢ such values. The integer
representation has several advantages over theylmna. The encoding of values is
simpler, avoiding undesirable effects of other ehegs (Jockel, 2009; Mendes et al.,
2009), and it diminishes the effect of normalizatwhen several vectors are combined,
for example in the storage and retrieval of segeeii€naider & Franklin, 2011). The
benefits of this model are retained when mergetl &wtended SDM into a combination
SDM possessing integer vectors, better suppotidtero-associativity, and improved
sequence learning.

Integer SDM as a cleanup memory is also a good aarop for the Modular
Composite Representation. Reduced descriptiong lemige vectors, such as Spatter
Code and HRR, require an auto-associative memacketm up not only noisy input
vectors, but also those produced as the resulp@fabions between other vectors. These
operations, such as sum or multiplication, oftesdpice noisy versions of the target
vectors. The auto-associative memory helps cleahege vectors.

Both theoretical and empirical analyses of the caypaf Integer SDM were
presented in this dissertation. The results oetleriments match the theoretical
predictions, and demonstrate the potential of yiséesn. A first paper describing this
memory has already been published (Snaider & Firgrik012b). A second paper that
describes the theoretical analysis of this memamy, related experiments, has been

submitted for review (Snaider, Franklin, StrainG&orge, in review).
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| also defined and empirically tested Modular CosifoRepresentation (MCR),

a new reduced description representation basedoolular integers. It improves on two
earlier reduced description models (Hinton, 19¢t):binary Spatter Code (Kanerva,
1994) and the Holographic Reduced Representatiate(PL995, 2003). The former uses
large binary vectors and simple operations, suck@R, to produce a reduced
description model able to represent complex strastor hierarchies as a whole. The use
of binary vectors limits the model’s expressivenessl some required operations such as
normalization introduce excessive noise into th@ams that can diminish the
performance of the model. On the other hand, Halolgic Reduced Representation
(HRR), based on large real-numbered vectors, haf @aepresentation capability, but it
requires complex operations such as circular cartvol. Moreover, the vectors must
follow a normal distribution for each dimension,iaifurther complicates its use. MCR
is an intermediate point between these two mobelsncing representational
expressiveness and implementational simplicity.

The detailed presentation of MCR includes a coreplieiscription of the model
and its operations. Some examples of different asdsapplications were also presented,
including the integration of Integer SDM as a clgamemory. The experiments and
analysis detailed herein have demonstrated MCRfeimeance in a number of scenarios,
empirically validating its anticipated noise romess, representational expressiveness,
and holistic processing capability. The analysithefmeans and variances for the
similarities of representative operations sugggstsMCR has better performance for

these operations than either HRR or Spatter Coitlg ugctors with the same number of
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dimensions. A paper describing the MCR model ieeinew (Snaider & Franklin, in
review).

Chapter 7 demonstrates that the extensions of Si2skpted here are well suited
for parallel implementation. Several implementasiovere described and tested. The first
realization uses a least recently used (LRU) cacltea database. Another
implementation uses a state of the art parallehéaork, the Akka framework, which
implements the actors model (Hewitt et al., 1978)s implementation, able to run as a
multithreading application or in a distributed atebture, outperforms the single-thread
implementation, proving the potential of these Siiiations for running in parallel and
on distributed hardware. Finally, a third implensitn explores the parallel vector
architecture supported by modern GPUs. This contipata paradigm has a SIMD
(Single Instruction Multiple Data) structure thatideal for SDMs due their vector
structure.

Finally, | described further directions and possi@pplications of this research,
including the use of the extended SDM, Integer SM] MCR representations as the
main technologies for implementing the LIDA cogwéiarchitecture. A paper
introducing the LIDA computational framework, thase for future developments, has
already been published (Snaider et al., 2011). pegparing a position paper that
includes the requirements for representations wrealIn challenging Al applications as
described in Chapter 1, and the advantages ofetinLIDA project. This project
shows how all the technologies that comprise tluskwean be used together to enhance
their features. Other possible extensions incluepdearning using Extended SDM and

a multi-layered version of these memories.
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Appendix B: MCR Scripting Language Javacc Grammar

/**

* JavaCC template file created by SF JavaCC plugin 1.5.17+ wizard for
* JavaCC 1.5.0+

*

* @author Javier Snaider

*
*
options

JDK_VERSION ="1.6";
static = false;

}

PARSER_BEGIN(McrParser)

package edu.memphis.ccrg.mvsdm.mcr.parser;
import edu.memphis.ccrg.mvsdm.parser.nodes.*;
import java.util. ArrayList;

import java.util.List;

public class McrParser

{
}

PARSER_END(McrParser)

SKIP :
{ll "

| “\r
| "\t

}
/* OPERATORS */
TOKEN :

{
<PLUS:"+">

}

TOKEN:

{

<INV :"">
}

TOKEN:

{
< MULOP : "™*"["/" >
}

TOKEN:

{

<EXP "\ >
}

TOKEN:

{
<SEP:"">
}
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TOKEN:

< NEW : "newvector" >
< NEWRNDVECTOR : "newrndvector" >
< NEWRND : "newrnd" >
< PRINT : "print" >

< PRINTDISTANCE : "printd" >
< PRINTRANK : "rank" >

TOKEN:
{

< LPAREN : "(" >
}

TOKEN:

{
< RPAREN : ")" >
}

TOKEN:
{
< COMMENT: "//" (~["\n"])* >

}
TOKEN :

< CONSTANT : ("-")? < NUMBER >("." < NUMBER >)(["E"

NUMBER >)? >

| <INTEGER: (("-")? < NUMBER >) >

| <ID:<LETTER> (<LETTER>|<DIGIT>)* >
| <NUMBER : (< DIGIT >)+ >

| <#DIGIT:["0"-"9"]>

| <#LETTER:["_""a"-"z","A"-"Z"] >

| < STRING_LITERAL: "\"" (~["\"","W\","\n","\r"]
(I o s i e \ i i el I O e A I
"3T[O T[0T N>
}

Program program ():

Statement stmt=null;

Program prog=new Program();
}
{

(

(stmt=statement(){
if (stmt!=null){
prog.addStatement(stmt);
}
N+
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)
<EOF>

{

return prog;

}

Statement statement():
{
VecExpression vexp=null;
VecExpression vexp2=null;
List<String> ids = new ArrayList<String>();
Token token=null;
Token token2=null;
}
{

(token = < ID > <EQUALS > vexp=vectorExpression() <

{

return new Assignment(new Vectorldentifier(toke

}

ILOOKAHEAD(3)
(< PRINT > "(" vexp = vectorExpression() ")" < SEP

return new PrintVector(vexp);

}

ILOOKAHEAD(3)
(< PRINT > "(" token = < STRING_LITERAL > ")" < SEP

{

return new
PrintObject(token.image.substring(1,token.image.len

}

| (< PRINTDISTANCE > "(" vexp = vectorExpression()
vectorExpression() ")"
< SEP >)

{

return new PrintVectorDistance(vexp,vexp2);

}
[LOOKAHEAD(3)
(< PRINTRANK > "(" vexp = vectorExpression() "," to
Il)ll < SEP > )

{

return new PrintRank(vexp, new Integer (token.i

}

ILOOKAHEAD(3)
(< PRINTRANK > "(" token = < STRING_LITERAL >""
vexp = vectorExpression() "," token2 = < INTEGER >

{

return new PrintRank(token.image.substring(1,to
1),vexp, new Integer (token2.image));

| (< NEWRND > "(" token=<ID >
213

SEP >)

n.image),vexp);

>)

>)

gth()-1));

,vexp2 =

ken = < INTEGER >

mage));

"Y' < SEP >)

ken.image.length()



("," token2=<ID >

ids.add(token2.image);
}
)*
)" <SEP >)

ids.add(0,token.image);
return new NewRnd(ids);
}

| < SEP >

| <CR>

{

return null;

}

| < COMMENT >< CR >

{
return null;
}
}

VecExpression vectorExpression():
{
VecExpression operl=null;
VecExpression oper2=null;
Token token=null;
char op;
List<VecExpression> ops = new ArrayList<VecExpr

}

{
LOOKAHEAD(2)
operl=term() (op=addop() oper2=term()

{
ops.add(oper2);
D
{
if(ops.size()>0){
ops.add(0,operl);
return new SumOp(ops);
telse{
return operi;
}

}

ILOOKAHEAD(3)
< NEW >"("")"

{

return new NewVectorFact(false);

}
[LOOKAHEAD(4)
< NEW > "(" operl= vectorExpression() ")"

{

return new NewVectorFact(operl);

| <NEW >"(" operl= vectorExpression() "," token
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ession>();

=< INTEGER >")"



{

return new NewVectorFact(operl,new Integer(token.im

}
| < NEWRNDVECTOR > "(")"
{

return new NewVectorFact(true);

}

[LOOKAHEAD(2)
token=< ID >

{

return new Vectorldentifier(token.image);

}
}

char addop():

{
}

{<PLUS>
{
return '+';
}
}

VecExpression term():

{

VecExpression operl=null;
VecExpression oper2=null;
Token token;

}

{
operl=factor() (token=< MULOP > oper2=factor()
{

operl= new MulOp(operl,oper2,(token.image.charA
D
{

return operil,;

}
}

VecExpression factor():

{

VecExpression operl=null;

}

{
operl=icp()
{

return operi,;

}
|[< INV > operl=icp()

{

return new InvOp(operl);

}
}
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age));

(0)==1);



VecExpression icp():

{

VecExpression operl=null;
Token token = null;

}
{

token=<ID >

{

return new Vectorldentifier(token.image);

|< LPAREN > operl=vectorExpression() < RPAREN >
{

return operi,;

}
}
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