A Computational Model of
Creative Design as a Sociocultural Process

Involving the Evolution of Language

Anhong Zhang

A thesis submitted in fulfilment of the requirements
for the degree of Doctor of Philosophy

Design Lab
Faculty of Architecture, Design and Planning
University of Sydney

May 2017

Statement of Originality

This is to certify that to the best of my knowledge, the content of this thesis is my own

work. This thesis has not been submitted for any degree or other purposes.

This thesis contains material published in (Zhang and Saunders, 2012) and (Zhang and
Saunders, 2014). The former is section 4.2 Compositional Representation of Rectilinear
Relation; and the latter is section 5.1 Ambiguity. I am the corresponding author of the

two papers.

I certify that the intellectual content of this thesis is the product of my own work and that

all the assistance received in preparing this thesis and sources have been acknowledged.

Anhong Zhang

Acknowledgements

First and foremost, I would like to express my sincerest gratitude to my supervisor,
Professor Rob Saunders, who has led me into a wonderful new world, Computational
Creativity, which is filled with numerous surprising and exciting research topics. His
insights and profound knowledge of the field provided me with an invaluable guide as I
sought to understand the principles hidden behind phenomena. To make new ideas easy
to understand, he drew diagrams and wrote descriptions directing my future study that
impressed me every time. Under his guidance, I have published my work in a highly
respected forum in our research field. He also helped me to clarify the keystone and
structure of my thesis, taught me various invaluable writing techniques and provided
numerous important recommendations for revising my thesis. The research study would

not have been completed without his kind, insightful and diligent guidance.

My associate supervisor, Dr Oliver Bown, also gave me great support and helped me to
publish and present my paper. Sincere thanks to Dr Bown for his kindness, wisdom and
patience. Also thanks to Professor Martin Tomitsch for his great and generous support

on completing my study.

Thanks to Professor Simon Colton for his precious comments on my submitted paper
and many other academics for their excellent presentations and discussions at the confer-
ence on Computational Creativity. Thanks to Professor Richard de Dear and Professor
William Martens for teaching me Modes of Inquiry: Research and Scholarship. T still
remember the story of the “black swan and white swan” that Professor Martens told
in the statistics course. Also thanks to Professor Paul Jones for discussing my annual
progress. He always encouraged me to study hard and energised me. Thanks to Profes-
sor John S. Gero, Professor Mary Lou Maher, Professor Andy Dong, Honorary Associate
Paul Murty, Dr Somwrita Sarkar and Dr Lian Loke for their wonderful presentations
and insightful discussions. Also thanks to my college mates for their great advice and

interesting discussions.

I would also like to thank Dr Cherry Russell for doing such a phenomenal job of editing
my thesis, Dr Ricardo Sosa, Dr Kathryn Merrick and Dr Nick Kelly - my examiners,
for their invaluable comments and recommendations greatly improving the quality of
my thesis, and the Student Administration Centre for their great support with research
documentation and facilities as well as the many people I never met for their contribu-
tions to numerous open source libraries and research tools, in particular the community

of Python and Common Lisp.

Last but not least, I am grateful to my family and friends for their complete support

throughout my candidature.

Abstract

The aim of this research is to investigate the mechanisms of creative design within
the context of an evolving language through computational modelling. Computational
Creativity is a subfield of Artificial Intelligence that focuses on modelling creative be-
haviours. Typically, research in Computational Creativity has treated language as a
medium, e.g., poetry, rather than an active component of the creative process. Previ-
ous research studying the role of language in creative design has relied on interviewing
human participants, limiting opportunities for computational modelling. This thesis
explores the potential for language to play an active role in computational creativity
by connecting computational models of the evolution of artificial languages and creative

design processes.

Multi-agent simulations based on the Domain-Individual-Field-Interaction framework
are employed to evolve artificial languages with features that may support creative de-
signing including ambiguity, incongruity, exaggeration and elaboration. The simulation
process consists of three steps: (1) constructing representations associating topics, mean-
ings and utterances; (2) structured communication of utterances and meanings through
the playing of “language games”; and (3) evaluation of design briefs and works. The use
of individual agents with different evaluation criteria, preferences and roles enriches the

scope and diversity of the simulations.

The results of the experiments conducted with artificial creative language systems demon-
strate the expansion of design spaces by generating compositional utterances represent-
ing novel concepts among design agents using language features and weighted context
free grammars. They can be used to computationally explore the roles of language in
creative design, and possibly point to computational applications. Understanding the
evolution of artificial languages may provide insights into human languages, especially

those features that support creativity.

ii

Contents

Acknowledgements
Abstract

Contents
Abbreviations

1 Introduction

1.1 Motivation and Research Questions
1.1.1 The Evolution of Artificial Languages for Design
1.1.2 The Application of Language Features in Design
1.1.3 Social Creativity Using Artificial Languages

1.2 Aims and Objectives L

1.3 Research Contributions
1.3.1 Computational Model of Evolving Language for Creative Design
1.3.2 Metrics of Evolving Language for Social Creativity
1.3.3 Knowledge Generated Through Experiments

1.4 Significance of the Study 0oL

1.5 Thesis Overview

2 Background
2.1 Models of Creativity
2.1.1 Cognitive Models of Creativity
2.1.2 Models of Social Creativity
2.1.3 Systems Models of Social Creativity
2.2 Computational Simulation 0oL
2.2.1 Simulation with Theory and Reality
2.2.2 Process of Computational Simulation
2.2.3 Types of Computational Simulation
2.2.4 The Application of Computational Simulation.
2.3 Computational Creativity
2.3.1 Computational Models of Individual Creativity
2.3.2 Computational Models of Social Creativity
2.3.3 Evaluation of Computational Creativity
2.4 Language and Creativity 0 o
2.4.1 Evolution of Language
2.4.2 Language Ecology

iii

iv CONTENTS
2.4.3 Creative Features of Language 37
2.4.4 Language and Design 42

2.5 Computational Models of Language and Social Creativity 43
2.5.1 Imitation Game Lo 45
2.5.2 Guessing Game o 45
2.5.3 Generation Game Lo 46

2.6 Conclusion e 47

3 Computational Model 49

3.1 A Computational Model of the DIFI Framework 50
3.1.1 Domain L e 50
3.1.2 Individual 51
3.1.3 Fieldo e 52

3.2 Representation 52
3.2.1 Association Between Meanings and Utterances 53
3.2.2 Compression via Holographic Reduced Representations 55
3.2.3 Expansion via Weighted Context Free Grammar 60

3.3 Communication L e 63
3.3.1 Communication in Guessing Games 65
3.3.2 Communication in Generation Games 65

3.4 Evaluation L Lo 66
3.4.1 Novelty e 67
3.4.2 Appropriateness 67
3.4.3 Influence 68
3.4.4 Diversity 68
3.4.5 Efficiency 70
3.4.6 Conclusion 70

3.5 Multi-Agent Simulations 71
3.5.1 Self-Organisation and Collective Intelligence 71
3.5.2 General Implementation of Simulations 72
3.5.3 Agents’ Functions L 74
3.5.4 Simulation with Graph Networks 76

3.6 Machine Learning 78
3.6.1 Short Term Memory 78
3.6.2 Long Term Memory 78

3.7 The Methods of Evaluating Interest 81
3.7.1 Variation of Wundt Curve (Sine Curve) 82
3.7.2 Euclidean Distance and Cosine Distance 85

3.8 Conclusion L 85

4 Evolving Compositional Languages for Creative Design 89

4.1 Compositional and Holistic Language 89
4.1.1 Subjectso 90
4.1.2 Implementation 90
4.1.3 Results e 92
4.14 Conclusion L Lo 97

4.2 Compositional Representation of Rectilinear Relation. 97

CONTENTS v
4.2.1 Subjectso 97
4.2.2 Implementation Lo 98
423 Results 100
424 Conclusion 106

4.3 Compositional Language for Shape Combination 106
4.3.1 Subjectso 107
4.3.2 Implementation Lo 107
4.3.3 Results e 112
4.3.4 Conclusion 117

4.4 Conclusion e 117

5 Exploring Creative Features of Language 119

51 Ambiguity 119
5.1.1 Subjects 119
5.1.2 TImplementation L Lo 119
5.1.3 Experiment Settings oL 121
5.1.4 Experiment Procedures 121
51.5 Results e 125
5.1.6 Discussion 129
5.1.7 Conclusion e 130

5.2 Scalability 130
5.2.1 Subjects 131
5.2.2 Implementation oL oL 131
5.2.3 Results of Simulation Type 1 140
5.2.4 Results of Simulation Type 2, 146
5.2.5 Conclusion e 149

5.3 Incongruity L e 149
5.3.1 Subjects e 149
5.3.2 Implementation 150
5.3.3 Results 156
5.3.4 Conclusion e 159

5.4 Extensibility and Other Features 160
5.4.1 Subjects e 160
5.4.2 Implementation 160
54.3 Results 165
5.4.4 Discussiono e 168
54.5 Conclusion e 174

5.5 Conclusion e e e 174

6 Exploring Social Creativity 175

6.1 Growing Population o 175
6.1.1 Subjects 175
6.1.2 Implementation oL 175
6.1.3 Results 176
6.1.4 Conclusion e 177

6.2 Education in Guessing Game o000 178
6.2.1 Subjects 178

vi CONTENTS
6.2.2 Implementation Lo 178

6.2.3 Results 179

6.2.4 Conclusion e 180

6.3 Clique Formation 181
6.3.1 Subjects 182

6.3.2 Implementation 182

6.3.3 Results 184

6.3.4 Discussion 187

6.3.5 Conclusion 189

6.4 Conclusion e 189

7 Discussion 191
7.1 An Artificial Language System for Creative Design 192
7.2 Significance of Experiments and Results 192
7.2.1 Evolution of Compositional Languages for Creative Design 192

7.2.2 Exploration of Language Features for Creative Design 193

7.2.3 Exploration of Social Creativity in Designing 194

7.3 Comparison of the Experiments 195
7.3.1 General Settings 195

7.3.2 Representations and Categorisations 197

7.3.3 Evaluation and Analysis 198

7.3.4 Advantages and Disadvantages 200

7.4 Reflection on the Research, 204
7.4.1 Reflection on the Evolution of Compositional Languages 204

7.4.2 Reflection on the Exploration of Language Features 205

7.4.3 Reflection on the Exploration of Social Creativity 206

7.5 Evaluation of the Results 207
7.5.1 Linguistic Conceptualisation 207

7.5.2 Language as Social Process 207

7.5.3 Social Creativity 208

7.5.4 Computational Simulation L. 208

7.6 Conclusion e 209

8 Conclusions and Future Work 211
8.1 Conclusions e 211
8.2 Future Research 212
8.2.1 Meta-Creativity 213

8.2.2 Positive Learning Lo 215

8.2.3 Complex Simulations 216

8.2.4 Autonomous Creative System 218

8.3 Summary L 219
References 220
A Algorithms of Agents’ Functions 235
A.1 Primary Functions o 235
A.1.1 Categorisation 235

A.1.2 Parsing and Production 235

CONTENTS vii

A.1.3 Tracing Forward/Backward 237
A.1.4 Learning/Unlearning Association Rules 237
A15 Others 237
A.2 Functions for Playing Guessing Games 238
A.2.1 Selecting Topic 238
A.2.2 Mapping Utterance to Topic 239
A.2.3 Guessing Topic 245
A.3 Functions for Playing Generation Games 245
A.3.1 Generating Utterance, 245
A.3.2 Generating Design oo 246
A.3.3 Selecting Design 247
A4 Conclusion e 247

B Algorithms of Graph Networks 249

Abbreviations

Abbr. Meaning

ACDL Artificial Creative Design Language

ANN Artificial Neural Networks

ART Adaptive Resonance Theory

CAD Computer Aided/Automated Design

CFG Context Free Grammar

CSC Computational Social Creativity

CSG Context Sensitive Grammar

DARCI Digital ARtist Communicating Intention

DIFI Domain-Individual-Field-Interaction framework
FACE Framing-Aesthetic-Concept-Expression creative act
FBS Function-Behaviour-Structure process

gs guessing game

gt generation game

GA Genetic Algorithm

GN Graph Network

GNG Growing Neuron Gas

HCI Human-Computer Interaction

HRRs Holographic Reduced Representations

HSOM the Habituating Self-Organising Map

IDEA Iterative-Development-Execution- Appreciation cycle
LTM Long Term Memory

OpenCV Open Source Computer Vision

RFBSD Requirement-Function-Behaviour-Structure-Design
RGBA Red-Green-Blue-Alpha

SOM Self-Organising Map

SPECS Standardised Procedure for Evaluating Creative Systems
STM Short Term Memory

WCFG Weighted Context Free Grammar

ix

Chapter 1

Introduction

Language is a critical part of human creativity (Noble and Davidson, 1996), particularly
when creativity is considered as a social phenomenon (Csikszentmihalyi, 1999; Gard-
ner, 2011; Vygotsky, 1986). A number of psychological experiments were conducted
to discover the role of language in creativity for individuals (Carter and McCarthy,
2004; Glenberg and Kaschak, 2002; Zwaan et al., 2002; Patel et al., 1998). For exam-
ple, Carter and McCarthy (2004) recorded and analysed informal conversations using

creative language related with metaphor, simile and mimicry.

Traditionally, a conceptual design relies on the sketch, which lacks a linguistic level of
creativity supported by symbolic connections generated from both words associations
exploring new ideas and day-to-day conversations leading to the emergence of creative
concepts, i.e., a natural language communication adds significantly to the creative pro-
cess beyond sketching. As Mitchell (1995) suggested, “language, narrative, and discourse
can never—should never—be excluded” from conceptualisation although an image (or
idea) may be “abstract” (p. 226). Language can be used to not only emphasise spe-
cific design qualities and bring the narrative element in a concept to the fore, but also
evolve creative concepts through conversation and communication with association ob-
jects (Vyas et al., 2013).

The mechanism involved in the social process of design related to representation and
communication remains poorly understood (Stacey et al., 1999). An important part of
the design process is expressing and exchanging interesting ideas between participants.
In order to brainstorm and evaluate novel concepts successfully, and reach a common
creative vision, a shared language needs to be developed. Designers and artists would
benefit from the ability to reuse successful metaphors or to learn from unsuccessful ones

based on their shared language (Mamykina et al., 2002).

The studies presented in this dissertation address the issues mentioned above by using

computational simulations of the evolution of language (Kirby et al., 2008; Steels, 1995;

2 Chapter 1 Introduction

Vogt, 2005) in artificial creative systems (Saunders, 2011). The studies are developed
to support the reasoning about the role that language plays in creative design, and the
principle features and mechanisms of language for social creativity. The computational
model is developed to be as simple as possible while maintaining the critical elements
of using “grounded” languages, which are the combinations of arbitrary utterances and
basic referents related with states and events where meanings are generated by the
contextual broadening of grounded symbols from sensorimotor projections of objects in
particular situations (MacDorman, 2007). In simulations of the evolution of language

“erounded” languages are learned as a consequence of use in “language games”.

Wittgenstein (1958) developed the concept of “language games”. As a thought ex-
periment, Wittgenstein (1958) describes how the meaning of a word/sentence may be
generated in a way that is analogous to making a move in a game. Wittgenstein (1958)
provided two examples including the description of “five red apples” to a seller for com-
pleting a shopping task, and the communication between a master and his assistant for
implementing cooperative actions. Through these two examples, Wittgenstein (1958)
suggested that a language evolves in a shared context using repeated language games
with the cycling of asking, answering and confirmation. In each game, one individual
called initiator points to an object; another individual called learner names the object by
uttering it; then the initiator confirms the answer (Wittgenstein, 1958). Another type
of process can be the learner repeating the words after the teacher (Wittgenstein, 1958).
Both of the two processes may lead to the assimilation of language, which is learned
by ostensive teaching from representing objects to counting objects, e.g. “a, b, ¢ slabs”
representing “one, two, three slabs”, and signifying objects, such as “this, that, here,
there” (Wittgenstein, 1958). Through language games, the ambiguity of languages occur
due to both the multiple mappings between utterances and meanings, and simplified
representations. For example, “Slab!” could mean “Bring me the slab”, or just identify
“It is a slab” (Wittgenstein, 1958).

By repeated playing of language games, Wittgenstein (1958) suggested that different
meanings may be produced as a consequence of trying various behaviours in response to
the same word/sentence. Consequently, Wittgenstein (1958) suggested that meanings
are dynamic instead of predefined in terms of changeable actions and contexts. By
varying the rules different types of language games can be devised. Several types of
language games were implemented in simulation, including “guessing games” (Steels,
1995) and “imitation games” (de Boer, 2000). Further, Saunders and Grace (2008)
developed “generation games” and applied them to the modelling of creative designing.
The computational simulations implemented in this dissertation explore the features of
languages, such as composition and ambiguity, for creative conceptual design by utilising

language games.

Chapter 1 Introduction 3

1.1 Motivation and Research Questions

The motivation for this study is to enable and augment the exploration of artificial
languages for creative design. It is related with language evolution, the creative features
of language, and its social dimensions. The following questions form the basis of this
research: How to evolve artificial languages to support creative designing? How to use
the creative features of language in design? How do artificial languages support social
creativity? What can be learned about exploring the role that language plays in creative

designing through computational simulations?

1.1.1 The Evolution of Artificial Languages for Design

How does the evolution of artificial languages support designing? The process of evolving
an artificial language for design may be initialised by having agents connect randomly
generated utterances with the features of designs, then exchange and share their repre-
sentations. Over time, the shared representations become a new part of the language,
grounded in use, as more complex compositional symbols develop to describe designs.
Through the computational simulation of these phases, the artificial languages suitable
for supporting creative design can evolve to provide a platform for addressing the ques-
tions about the relationship between language and design. For example, in the evolution
of artificial languages, what factors might determine the generation of different language

structures suitable for supporting creative design?

How does creative designing affect the evolution of language? The evolution of languages
can be used in the creative design process, e.g. in the articulation of a new design brief
to drive a generation of novel design works. Such creative production, by definition,
produces novel artefacts and these may require a new language to be used to describe
them, expanding the repertoire of language that may be used in the future. Thus,
language evolution and creative design can be seen as connected creative processes of

exploration in different domains.

1.1.2 The Application of Language Features in Design

How to improve design creativity by using the language features such as ambiguity,
incongruity, scalability and extensibility? Ambiguity is related with polysemy and syn-
onymy. It enables the development of new concepts by connecting different utterances
and meanings. Incongruity occurs when generating unusual combinations of objects and
contexts. Scalability is the capability of using adverbs to exaggerate meanings. And ex-
tensibility can be used to elaborate original representations to more complicated and

interesting descriptions with abundant meanings.

4 Chapter 1 Introduction

How to realise the creative features of language? The mechanisms of language are com-
position, decomposition and recursion, which generate the dynamic and hierarchical
structure of language. Regarding the hierarchical structure, novel concepts can be pro-
duced via the combination of different symbols, the replacement of one symbol with
another one, the variation of symbols, and the decomposition of symbols as well as
the recursion and iteration of symbols. Through these operations, the creative features
of language can be realised in the production of new interesting design representations.
For example, an incongruent representation, “fish in sky”, can be generated by replacing
“bird” with “fish” in the phrase “bird in sky”.

1.1.3 Social Creativity Using Artificial Languages

How do artificial languages support social creativity? Language plays an important
role in the social creative process, cultural inheritance and innovation beyond being
a medium for creative expression, e.g., poetry, and personal creative thinking, e.g.,
ideation. Language is dynamic: utterances, meanings and their associations change over
time according to the specific context, the experiences and interactions of individuals.
The dynamic nature of language makes social communication diverse, which can be

studied in computational simulations as a means of generating novel concepts.

There are various forms of creative social communication, including imitation, guessing
and generation among individuals with different roles, such as clients and designers.
Individuals may have different cognitive styles and experience various environmental
conditions. This dissertation explores how the simulation of social creativity may be en-
hanced via communication between different types of individuals with different strategies

in the evolution of artificial languages.

1.2 Aims and Objectives

The broad aim of the research presented here has been to explore the evolution of ar-
tificial languages in social creative systems. The approach taken has been to develop
simulations of artificial creative systems using curious design agents, which have previ-
ously been developed by Saunders (2002) to simulate creative design behaviours and the
emergence of social creativity (see Section 2.3.2.2). The curious design agents developed
in this research support both the evolution of artificial languages and the generation and
transmission of designs as a form of social creativity, similar to those initially presented
by Saunders (2011).

The curious design agents developed in this research go beyond those of Saunders (2011)
by supporting language features not previously supported, e.g. ambiguity and compo-

sitionality. To achieve this the agents in the simulations use much more sophisticated

Chapter 1 Introduction 5

methods to map between utterances and concepts. To this end, the features of artifi-
cial languages for creative design are analysed, and the mechanisms of the evolution of

artificial languages for social creativity are investigated.

Curious design agents play two roles in the co-evolution of artificial languages and de-
signs. In relation to the evolution of artificial languages, they observe the environment
and communicate with each other. In relation to the use of language features and
continuing to evolve artificial languages, they interact, cooperate with each other and
generate new design concepts. Hence the research sets out to apply language games to
the computational modelling of social creativity in design. Its main contribution lies in
the extent to which it explores the features of language that can be important in creative

design and can be modelled computationally.

To achieve this aim the following objectives were set:

e To develop a computational process of the evolution of grounded language that

supports the application of creative features of language in design.

e To investigate the effects of different features of language in computational simu-

lations for creative design using curious agents.

e To develop a computational model of social creative systems that incorporates the

evolution of artificial languages.

1.3 Research Contributions

This dissertation contributes to three aspects including the development of a compu-
tational model of evolving artificial languages for creative design, the development of
metrics for the evolution of artificial languages at the sociocultural level, and new Knowl-

edge generated through experiments.

1.3.1 Computational Model of Evolving Language for Creative Design

A computational model of evolving artificial languages based on the Domain-Individual-
Field-Interaction (DIFI) framework has been developed to evolve compositional lan-
guages by combining and transforming diverse associations of utterances and design
concepts among multi-agents using language games. In other words, a model of an ar-
tificial creative system has been developed via the evolution of compositional languages

for creative design at the sociocultural level.

6 Chapter 1 Introduction

1.3.2 Metrics of Evolving Language for Social Creativity

A computational process, representation-communication-evaluation (see Sec. 3.2, 3.3,
3.4 and Fig. 4.20 as an example), has been developed to evolve grounded language for

creative design via guessing games and generation games;

The structure and functions of an agent for playing language games are developed to
explore language features and generate interesting designs (see Sec. 3.5.3 and Appendix
A).

Graph networks are integrated into multi-agent simulations for storing association rules
(see Sec. 5.2, 5.3 and 5.4), evaluating association rules (see Sec. 5.3), and are utilised

to analyse the results of simulations (see Sec. 5.1).

1.3.3 Knowledge Generated Through Experiments

Section 4.1 Compositional and Holistic Language: Compositional language is more ef-
ficient (see Fig. 4.4) and creative (see Fig. 4.6) than holistic language. And several
methods of selecting topics are explored. Results show that “random” selection is good
at distinguishing topics while “common” selection can improve consistency of an evolved

language.

Section 4.2 Compositional Representation of Rectilinear Relation: Holographic Reduced
Representations can be used to represent geometric relations (see Table 4.10), which can

be mapped to compositoinal utterances via Self-Organising Map (see Fig. 4.14).

Section 4.3 Compositional Language for Shape Combination: Interesting designs can be
generated in the evolution of compositional languages (see Fig. 4.21). And the number
of designs collected by a client-agent is affected by the agent’s preference of novelty. It

could collect more designs when its preference is not too low or too high.

Section 5.1 Ambiguity: Design briefs may be more influential than design works due to

the ambiguity of language (see Fig. 5.8) and the role of direction played by client agents.

Section 5.2 Scalability: Exaggeration can be used to expand a design space, differentiate

and overlap design categories (see Fig. 5.18).

Section 5.3 Incongruity: Incongruent combinations can be obtained by inverse weighted

random choice of possible combinations (see Section 5.3.4).

Section 5.4 Extensibility and Other Features: Elaboration can be used to generate com-

plicated concepts via the recursion of context free grammar (see Table 5.19).

Chapter 1 Introduction 7

Section 6.1 Growing Population: Growing population mixed with mature and naive
individuals can be more efficient than fixed population in the evolution of language (see
Fig. 6.3).

Section 6.2 Education in Guessing Game: Appropriate two-way education is more cre-

ative than unidirectional learning (see Fig. 6.5, 6.6) .

Section 6.3 Clique Formation: The evolution of cliques generating specific designs is
affected by individuals’ tolerances, communication preferences and the success thresholds

of language games (see Fig. 6.15).

1.4 Significance of the Study

The study of artificial creative design languages evolving in computational simulations
is important for two main reasons. First, it helps to clarify possible mechanisms of the
relationship between language and creativity that are not easily investigated through
traditional experiments with humans, e.g. in cognitive science. Secondly, by simulating
the evolution of language in a multi-agent environment, it is possible to investigate and

clarify the principles of developing social creativity via interaction and communication.

1.5 Thesis Overview

Chapter 2 provides the background information about research relevant to this study
from different fields. Previous work on models of creativity, computational simula-
tion, computational creativity, the relationship between language and creativity, com-
putational models of language and social creativity are reviewed in this chapter. It
presents cognitive models, social models and systems models of creativity, in partic-
ular the Requirement-Function-Behaviour-Structure (RFBS) process and the Domain-
Individual-Field-Interaction (DIFI) framework. Both computational individual creativ-
ity and computational social creativity are discussed; and the evaluation of compu-
tational creativity and relevant models are reviewed. The chapter then provides the
description of the evolution of language, language ecology and the creative features of
language such as composition and ambiguity in relation to connecting and generating de-
sign concepts. Finally, the models based on social creative systems engaged in language

games are reviewed.

Chapter 3 describes a computational model of social creativity based on the Domain-
Individual-Field-Interaction (DIFI) framework that incorporates the evolution of lan-
guage as a multi-agent system. The main processes involved in this computational model
are representation, communication and evaluation. Three types of representations are

described: (1) simple associations between meanings and utterances, (2) Holographic

8 Chapter 1 Introduction

Reduced Representations and (3) the representations based on Weighted Context Free
Grammar (WCFG). Besides the three types of representations, the communication is
developed by learning/unlearning the results of guessing games and generation games.
The evaluation of the creative system is related to both individual and social levels. The
evaluation at each level relies on similar attributes, including novelty (originality), ap-
propriateness (utility), influence, diversity and efficiency. This chapter also describes the
implementation of the computational framework using multi-agent simulations, artificial
neural networks, and hedonic functions. A multi-agent system is developed to simulate
the communications among individuals, monitor the progress of simulations and collect
data for analysis. The evaluation of creativity in this artificial creative system is imple-
mented using both the Wundt curve and its variation based on the measurement of the

Euclidean distance or cosine similarity between prototype and design/art works.

Chapters 4, 5 and 6 describe the experiments, which address, respectively, the evolution
of compositional languages, the creative features of language, and sociocultural creativ-
ity. In Chapter 4, the efficiency, discrimination, consistency and density of compositional
and holistic languages are compared; geometric meanings are mapped to compositional
utterances using different representation mechanisms; and language games are simulated
to evolve domain compositional languages in guessing games and recombine or expand

the languages to produce interesting works in generation games.

Chapter 5 explores several creative features of language including ambiguity, scalability,
incongruity and extensibility. Ambiguity is applied to find new concepts by connecting
multiple utterances and meanings and produce interesting results. Scalability is realised
by adding modifiers and combining basic sizes with dynamic categorisation. Incongruity
is generated using inversely weighted random selection of the possible relations between
objects and context. The last creative feature, extensibility, is implemented with recur-

sive combinations from WCFG.

Three further experiments, described in Chapter 6, explore the creativity of language at
the sociocultural level. The first experiment compares the efficiency of a gradually in-
creasing population and a large fixed population in the evolution of artificial languages.
The second experiment explores a computational model of peer learning and, within
the bounds of the simulation, demonstrates that double-direction education is supe-
rior to single-direction teaching. The last experiment explores the mechanism of clique
formations in the evolution of multiple languages and the influence of individual toler-
ances, communication preferences, the number of games being played and the diversity

of design/art works.

In Chapter 7, the significance of experiments and results is described. The procedures
and results of the experiments are compared and evaluated. The strengths and limita-

tions of the experiments are discussed. The reflections on the research are presented.

Chapter 1 Introduction 9

Four aspects related with the results of the experiments including linguistic conceptual-
isation, language as social process, social creativity, and computational simulation are

evaluated.

In Chapter 8, the conclusions of the thesis of developing a computational model of cre-
ative design as a sociocultural process involving the evolution of language are provided,
and possible directions for future study, including meta-creativity, positive learning,

complex simulations and autonomous creative system, are presented.

Chapter 2
Background

The previous work on models of creativity, computational simulation, computational
creativity, the evaluation of creativity, the relationship between language and creativity,
and social creative systems involving language games are reviewed in this chapter. It
describes three types of models of creativity consisting of cognitive models, social mod-
els and systems models. Both computational individual creativity and computational
social creativity are discussed. This is followed by a discussion of the evaluation of
computational creativity and a review of several evaluation models. Then it describes
language ecology and some creative features of language in relation to connecting and
generating concepts, and discusses the study of the “evolution of language” based on
Wittgenstein’s “language games” (Wittgenstein, 1958). Finally, a discussion of compu-
tational models of language and social creativity is provided and three types of language

games—imitation, guessing and generation games—are presented.

2.1 Models of Creativity

Boden (2004) proposed that creativity can be divided into P-Creativity and H-Creativity;
P-Creativity (Psychological or Personal Creativity) is the judgement by an isolated in-
dividual that an idea is novel or surprising and valuable, without reference to other
individuals. H-Creativity (Historical Creativity) is a judgement that an idea is unique
to not only the innovator but also to other people in the world, at least when compared
with the historic materials (Boden, 2004). An individual may be either P-Creative, when
his/her work is judged by himself/herself, or H-Creative, when his/her work is judged by
society to have made an historic contribution (Boden, 2004). Genius is someone who is
able to innovate or generate great unpredicted ideas compared with the average level by
using personal capabilities including human intelligence, characters and skills as well as
the appropriate context or environment for incubating and stimulating the individual’s

creative capabilities (Simonton, 1999).

11

12 Chapter 2 Background

Perceptions of creativity do not necessarily remain constant over time but change ac-
cording to background context and the influence of others. An example of this is Johann
Sebastian Bach’s music, which was considered outmoded and was largely ignored dur-
ing and in the years after Bach’s death (31 March 1685 — 28 July 1750), with popular
interest only revived several decades later (from 1750 to around 1830) when musical

compositional styles had moved on (Temperley and Temperley, 2011).

The following subsections discuss in more detail three approaches to modelling creativity:

cognitive models, social models, and systems models.

2.1.1 Cognitive Models of Creativity

One of the most influential cognitive models of creativity is Guilford (1967)’s “Structure
of Intellect” model, which provided a fundamental structure of creative cognition theory,
and impacted on later models of creativity such as Torrance (1968)’s model of divergent
thinking that builds on it. The “Structure of Intellect” model organises various cognitive
abilities along three dimensions: content, product, and process. Content is related with
visual, auditory, symbolic, semantic and behavioural aspects; product includes units,
classes, relations, systems, transformations and implications; process consists of cogni-
tion, memory, divergent production, convergent production, and evaluation (Guilford,
1967). Cognitive creative behaviours occur during the interactions between different
contents such as the associations between symbolic and semantic aspects, and the trans-

formations between divergent production and convergent production.

Guilford’s theories of creativity invoke divergent thinking rather than convergent think-
ing (Guilford, 1967) partially because ill-defined problems offer a great deal of latitude
in the way they can be represented or defined diversely (Hayes, 1989). The features of
divergent thinking consist of fluency, flexibility, originality, and elaboration which were
widely used in the measurement of creative thinking tests from kindergarten to graduate
students (Torrance, 1968). Fluency is measured with the number of relevant ideas such
as figural images; flexibility is scored by the variety of categories of relevant responses;
originality is evaluated with the number of statistically infrequent ideas related with
uncommon or unique responses; and elaboration is tested by the number of added ideas

demonstrating the ability of concept development (Kim, 2006).

Other cognitive models emphasising the creative process were developed by Poincaré
(1913), Wallas (1926) and Hayes (1989). Poincaré’s four-stage model of creativity con-
sists of conscious thought, unconscious thought (or incubation), illumination and veri-

fication (Poincaré, 1913). Wallas (1926) described the creative process as preparation,

Chapter 2 Background 13

incubation, intimation, illumination, and verification. Hayes (1989) described the cre-
ative process as preparation, finding problems, searching solutions and revision!. Hayes’

four step model of creativity is described below.

2.1.1.1 Hayes’ Model of the Cognitive Processes of Creativity

Hayes’ model of the cognitive processes of creativity is composed of four steps includ-
ing preparation, finding problems, searching solutions, and revision. The first step,
preparation, is a necessary stage for accumulating domain knowledge besides general
knowledge and become familiar with certain conditions such as the benchmarks used in
the standards of great artworks which could be developed or broken through in later
steps (Hayes, 1989). The capability of problem recognition is obtained by accumulat-
ing enough domain knowledge that makes a novice become potential creative expert
(Csikszentmihalyi, 1996).

The second step, finding problems, is to research the knowledge learned from the first
stage and analyse relevant situations and personal experience to find confusions. Einstein
and Infeld (1971) claimed that the “formulation of a problem is often more essential than
its solution, which may be merely a matter of mathematical or experimental skill. To
raise new questions, new possibilities, to regard old problems from a new perspective
requires creative imagination and marks real advances in science”. Good representations
of problems can improve the efficiency of finding solutions and be more creative (Lesgold,
1988). Therefore, defining and framing the design problem is a key step of creativity. The
more time a subject spent in understanding the problem to form conceptual structures,

the better may creative results could be achieved (Dorst and Cross, 2001).

The third step, searching solutions, is composed of two stages, divergent thinking and
convergent thinking. As Gero (1994) proposed, a design process can be divided into
two stages: conceptual designing and detail designing. The former is likely to explore
possibilities while the latter focuses on matching criteria. In the early stage, an initial
concept may not be fully formed. Therefore, new areas could be explored to enrich
the concept, create novel and useful structures and shapes, and even generate new
insights. Three features of designing are finding the possibility, suspending judgment
and inspiring imagination. If a judgment is performed too soon, the potential creative
“seed” has no chance to reveal its creativity. Therefore, delaying evaluation could be
an appropriate strategy. Hence, divergent thinking plays the main role in digging up

more potentials. Defocused attention related to diversity refers to the ability to consider

'Hayes’ model not only matches the process aspect of fundamental cognition theory provided by
Guilford (1967) very well, but also clarifies the process to be more logical and complete compared with
other cognitive models such as Poincare’s model, which lacks an important creative factor, questioning.
More recent cognitive models mainly follow Hayes’ model such as Plattner et al. (2010)’s design thinking
model including five phases: (re)defining the problem, needfinding and benchmarking, ideating, building,
and testing.

14 Chapter 2 Background

numerous elements simultaneously, rather than limiting attention to only a few elements
(Kaufman and Sternberg, 2010).

Convergent thinking includes grouping, prioritizing and filtering that are used to find
appropriate solutions. Similar ideas and concepts become grouped together and the im-
portance of each group of concepts may be ranked to improve the efficiency of collection
and analysis. Further, filtering may be useful to eliminate several possibilities for next
evaluation (Wheaton, 2014).

The fourth step, revision, is to make cognition more efficient and prepare for future cre-
ative events. Effective action can be taken to revise the shortcomings that are evaluated

based on the result of previous cognition behaviours (Hayes, 1989).

2.1.1.2 Gero’s Model of Cognitive Processes in Creative Design

Gero (1990) put forward that the cognitive processes in creative designing consist of goal-
oriented, constrained, decision-making, exploration, and learning activities that operate
within a context. The context is changeable due to both the dynamic nature of an
environment and the generated design becoming part of a new context, which is affected
by the designers’ perceptions. Creative design is capable of producing paradigm shifts
by introducing new variables into a design prototype that consequently generate novel

design prototypes (Gero, 1990).

To identify the mechanisms of creative design, Gero (1994) developed the process of
Function-Behaviour-Structure (FBS); then, Christophe et al. (2010) extended FBS to
RFBS (see Fig. 2.1). Designers begin with the required functions or structures pro-
vided by clients. The transformation between functions and structures are realised by
comparing and evaluating the expected behaviours resulting from functions and the be-
haviours derived from structures. A function can be realised using different structures
while a structure can be used to realise different functions due to both various expected

behaviours and derived behaviours.

As can be seen from Fig. 2.1, function is transformed from requirement besides being
retrieved from structure while structure is embodied into new design. The relationship
between Function, Behaviour and Structure are developed by several methods including
formulation, synthesis, analysis, evaluation, documentation and reformulation (Gero,
1990). Reformulation occur when behaviours are adjusted and changed repeatedly that
leads to finding novel and appropriate structures. Creative behaviours contain several
phases including concept formation, feasibility, definition, design and production. They
may overlap, and in each phase, divergent thinking for exploring possibilities and con-

vergent thinking for finding solutions could occur.

Chapter 2 Background 15

Be = expected behaviour —+ = transformation
Bs = behaviour derived from structure <> = comparison

D = design description

F = function

S = structure

FIGURE 2.1: The Function-Behaviour-Structure (FBS) process of creative design

Gero (1994) proposed that creative design methods based on the FBS framework include
first principle, combination (crossover), mutation, analogy (association and transforma-
tion) and emergence. First principles are fundamental underlying principles such as
postulates in philosophy, axioms in mathematics and established laws in physics (Cush-
ing, 1998). Combination and mutation can be used to generate new designs by mixing
and integrating existing components, or mutating them with homogeneous operators.
Analogy, which is related to association, leads to the transformation of structure (i.e.,
transformational analogy) and process (i.e., derivational analogy) from source to target
(Gero, 1994). Emergence is the result of self-organisation on a large scale. Emergence
includes direct emergence and indirect emergence. The former is generated by direct
interactions, e.g. boids (Reynolds, 1986) or a traffic jam, while the latter occurs in the
process known as stigmergy (Narzt et al., 2010) by using completed work as the signal
for more work, e.g. pathways generated by walking on a grassland. Emergence occurs
more easily in non-routine design than in routine design mainly due to the introduction

of new variables into the former (Gero, 1994).

It is possible to reflect the FBS process with language games as the transformation be-
tween utterances and meanings, which contain both expected extension and observed in-
tension. For example, a client-agent’s expected design could be initialised as a prototype
particularly represented as an utterance-like requirement; then designer-agents provide
their designs to client-agent according to its requirement. The client-agent will compare
these observed designs with its expected prototype to select a winning design. Such
transformation from requirement to function might be realised using generation games
developed by Saunders and Grace (2008). The cycle of problem finding and problem
solving might evolve via the communication between client-agents and designer-agents
in generation games. Understanding the features of grounded language for design may
improve the efficiency of design process, in particular the transformation from utterance-
like requirement to function and structure that are related to utterance-extension and

utterance-intension respectively. Besides generation games, some other methods such as

16 Chapter 2 Background

AS-IS and To-Be diagrams, and Fit-GAP analysis can also be used to convert require-
ments into functional specs (Techtarget, 2003). However, generation games are capable
of simulating the transformation between requirements and designs interactively and
dynamically in the evolution of artificial languages that provides more possibilities of

generating creative designs.

The transformation from structure to design is implemented by making components
and their relationships to produce a new artifact. The expected behaviours, which are
probably associated with the extension of design brief, are used to select and combine
the components based on a knowledge of the behaviours produced by structure (Gero,

1994) that may be associated with the intension of design description.

2.1.2 Models of Social Creativity

Creative activity grows out of the relationship between an individual and the
world of his or her work, as well as from the ties between an individual and
other human beings. Much human creativity arises from activities that take
place in a social context in which interaction with other people and the arti-
facts that embody group knowledge are important contributors to the process.
Creativity does not happen inside a person’s head, but in the interaction be-

tween a person’s thoughts and a socio-cultural context. (Fischer, 2005b)

The mechanism of interaction between creative individuals and their sociocultural en-
vironment is identified by Vygotsky (1971) in his systems theory. As Vygotsky (1971)
stated, creative individuals not just are affected by their experiences of the sociocultural
context but also cause changes in their environment by taking actions (Lindqvist, 2003;
Saunders and Bown, 2015). A living society continually renews itself via the lifelong
learning undertaken by individuals who face continuous emerging challenges from both

themselves and the environment (Dewey, 2004).

Sociocultural systems were studied primarily in two aspects including synchronic view
and diachronic way. Synchronic view was emphasised on the study of particular points
in time and space while diachronic way focused on the processes involved in the de-
velopment of particular cultures. The former is related with functional systems and
structural-function systems. Functional systems see culture as a tool which could be
used to satisfy human needs; and structural-function systems regard culture as an adap-
tive mechanism enabling human beings to live as a well-ordered community in a given

environment (Allaire and Firsirotu, 1984).

The second aspect, diachronic research, includes the study of ecological-adaptation sys-
tems and that of historical-diffusion systems. In ecological-adaptation systems, the

environment not only constrains the cultural development but also channels the cultural

Chapter 2 Background 17

evolution which, in turn, affects the environmental features. In historical-diffusion sys-
tems, temporal, interactive, superorganic and autonomous formations are generated by
historical conditions and procedures; thus sociocultural systems result from accultura-
tion and assimilation processes (Allaire and Firsirotu, 1984). To explore the evolution
of artificial languages for social creativity, this thesis mainly utilises diachronic mech-
anisms including the dialectical interplay between environment and culture, and social

interactions to acculturation and assimilation.

Torrance (1968) argued that creativity is a combination of person, process and product,
at least one of which is evaluated as creative. Here, the processes include retrieval,
association, transformation, analogical transfer and categorical reduction. These are
also described in Finke et al.’s Geneplore model (Finke et al., 1992). Boden (1996)
suggested that transformational creativity expands the space by breaking one or more
of the defining characteristics or even transforms concepts from the existing space to a

new space, while exploratory creativity searches within the space.

Rhodes (1961) introduced the 4Ps model of creativity consisting of Person, Process,
Press and Products. The four strands can only operate functionally in unity although
each of them has an unique identity (Rhodes, 1961). The first “P” is Person. The most
creative people are those who can be very original and yet work within the constraints
of the construct (Kaufman and Sternberg, 2010).

The second “P” is Process. According to Kaufman and Sternberg (2010), the creative
process consists of three steps: The first step is selective encoding, which involves sifting
out relevant information from irrelevant information. The second step is selective com-
bination, which involves combining what might originally seem to be isolated pieces of
information into a unified whole that may or may not resemble its parts. The last step

is selective comparison, where newly acquired information is related to old information.

The third “P” is Press of the Environment. A person who is creative in one cultural
context will not necessarily be so in another. The press of the environment affects how
creativity is evaluated by the individual while evaluation is one of the most direct ways

for the environment to affect an individual.

The fourth “P” is Products. Kaufman (2009) identified eight types of creative prod-
ucts: replication, redefinition, forward incrementation, advance forward incrementation,

redirection, reconstruction, re-initiation, and synthesis.

Besides the 4Ps, persuasion and potential may also be important ways of approaching
creativity (Kaufman, 2009). Simonton (1990) proposed “persuasion” with the logic
that creative people impact the way others think. Persuasion could also be associated
with using ancillary information to help people understand the value of novel artifacts.
Runco (2003a) argued that “potential” should be one of the P’s. Creative potential is the

primary concern rather than unambiguous creative performance. Creativity is widely

18 Chapter 2 Background

distributed and could be found in almost every individual. The key is to transform
creative potential to creative behaviour by targeting personal interpretations involving
the construction of a new meaning of problem finding and problem solving (Runco,
2003b).

Relationships between different Ps are (1) the relationship between novices and experts
(e.g. as novices, children learn from their families and peers), (2) the relationship be-
tween individuals and the works in which they are engaged in (i.e., individuals master the
knowledge of products, and labour in producing new products, then ultimately revise the
nature of their domains), and (3) the relationship between individuals in their world, i.e.,

people communicate with their rivals, judges, supporters in the field (Gardner, 2011).

2.1.3 Systems Models of Social Creativity

According to Feldman et al. (1994), creativity has three main forms, four levels and four
attributes which can be studied in 48 (3 x 4 x 4) directions. The three forms are trait,
process and product adopted to manifest creative process; the levels consist of culture,
institution, working group and person; and the attributes are quantitative, qualitative,

empirical and normative.

As Piaget (1977) claimed, intelligence can be defined as the state of equilibrium towards
which tend all successive adaptations of cognitive development from the sensory-motor
stage to mature cognition, as well as all assimilatory (organism — environment) and
accommodatory (environment — organism) interactions between the organism and the
environment, i.e., the balance between assimilation and accommodation. The growth of
intelligence is thus the growth of the ability to achieve equilibrium at an increasingly

high level of complexity (Helmore, 1969).

Vygotsky (1971) argued that social environment bridges individuals and the outside
world. It refracts and directs the stimuli acting upon the individual and guides all the
reactions that emanate from the individual. Individuals never act alone but instead are
always working within cultural and historical channels of practice that mediate their
perception of reality and the worldview which is developed through one’s interrelated
activity in social practices. The works within a genre is taken as a form of social action.
“Imagination is also a necessary, integral aspect of realistic thinking” (Vygotsky, 1971).
It links art conception and emotion to the spectacle of daily life and its role in socially

situated personal growth (Smagorinsky, 2011).

Dewey and Small (1897) claimed that education and schooling are instrumental in cre-
ating social change and reform; and “education is a regulation of the process of coming
to share in the social consciousness; and that the adjustment of individual activity on

the basis of this social consciousness is the only sure method of social reconstruction”.

Chapter 2 Background 19

2.1.3.1 Autopoietic Creative System

“Autopoiesis” was introduced by Maturana and Varela (1991) to identify the concept
of self-maintaining living cells. Autopoiesis was also utilised in systems theory and

sociology.

An autopoietic machine is a machine organized (defined as a unity) as a net-
work of processes of production (transformation and destruction) of compo-
nents which: (i) through their interactions and transformations continuously
regenerate and realize the network of processes (relations) that produced them;
and (ii) constitute it (the machine) as a concrete unity in space in which they
(the components) exist by specifying the topological domain of its realization

as such a network (Maturana and Varela, 1991).

The space defined by an autopoietic system is self-contained and cannot be
described by using dimensions that define another space. When we refer to
our interactions with a concrete autopoietic system, however, we project this
system on the space of our manipulations and make a description of this

projection (Maturana and Varela, 1991).

As Luhmann (1995) suggested, “an autopoietic system reproduces both its reproduc-
tion and the conditions for its reproduction”. In an autopoietic system, processes and
structures are interdependent. Autopoietic systems may be regarded as historical sys-
tems (Iba, 2010). The historical structures occur during the process of self-renewal and
within the interactions among elements. Then the structure, which is the whole pattern
of the relationships among the elements, could affect process. Therefore, processes breed

structures while structures guide processes.

Luhmann (1995) applied ideas of autopoiesis to society across many domains, in particu-
lar creative domains. “Society is an autopoietic system whose element is communication;
and mind is an autopoietic system whose element is consciousness” (Luhmann, 1995).
Through social communication and individual consciousness, two-levels of autopoiesis
are generated in Luhmann’s model. “Elements emerge only when a synthesis of three se-
lections occurs: the selections of hetero-reference and self-reference, and the combination
of both”. Hence, self-development can occur through inner “mutation” (self-reference)
and outer trigger (hetero-reference)? (Luhmann, 1995; Iba, 2010).

Luhmann (1995) claimed that communication should be considered as the social phe-
nomenon related to meaning. The same information can be associated with different
meanings in different autopoietic systems or in different generations of the same autopoi-

etic system. For example, the colour green looks cold against an orange background,

2Hetero-reference means any reference which references entities other than the system itself (such as
the environment)

20 Chapter 2 Background

whereas the same colour looks warm against a blue background. In other words, differ-
ent meanings are obtained in association with different contexts. People coming from
different environments share various experiences about the same concept, leading to
new meanings of the concept and even new concepts. However, they need to share the
same language as a bridge to clarify and transform their thoughts. But the synthesis of
information, utterances and understandings cannot be preprogrammed by language. It
has to be recreated from the situation by referring to the previous communications and
to the possibilities of further communications, which are to be restricted by the actual
event (Luhmann, 1995). This operation requires self-reference (Luhmann, 1986), which
is emphasised on the function of language within the self-reproductive economy of social

communication systems (Luhmann, 1995).

Luhmann (1995) put froward three functions of a language: presentation, expression
and appeal. Presentation is the selection of information while expression is the selec-
tion of utterances. Appeal is the acception of these selections. The difference between
information and utterances in communication impels the evolution of language, which

provides the reflexivity of the communication process leading to self-steering.

Iba (2010) claimed that design concepts can be generated and updated iteratively via
the loop, “ask-explore-answer-ask-explore...”. This consequence is the combination of
association (self-reference) and idea (alter-reference) that contributes to the emergence of
discoveries which are the elements of a creative autopoietic system. The three selections
consisting of idea, association and consequence exist only inside the system. Idea is
hetero-reference to the environment while association is self-reference to the system itself.
Therefore, “creative systems are recursively-closed systems with respect to discoveries”,
and the selections result in the reduction of complexity in contingent situations (Iba,
2010).

2.1.3.2 Domain-Individual-Field-Interaction Framework

To identify the structure and process of social creativity, Csikszentmihalyi (1999) de-
veloped the Domain-Individual-Field-Interaction (DIFI) framework (see Fig. 2.2). Ac-
cording to this model, individuals create a great number of variations; the field selects
some of them and puts them into the domain. Then the domain transmits the selected

variants to a new generation of individuals, mainly by training and learning.

In the DIFI framework, Domain, Individual and Field play different roles (Csikszent-
mihalyi, 1999). Domain takes the responsibility for storing certified knowledge such as
structures, processes, rules and cultures, as well as classifying and categorising them. A
domain can import resources from other domains (Feldman et al., 1994), e.g. mapping

natural ecosystems to human economy.

Chapter 2 Background 21

O\)\—T UR4 ¢
% 4,
b %
5 &
3 o
3 LUATIO, z
(@] E\J Al NS
4 m
« oy)
24
% o4
¢ Nom———® &
OVEL wORK

FIGURE 2.2: The Domain-Individual-Field-Interaction (DIFI) framework (Saunders
after Csikszentmihalyi)

Individuals play the role of generating various works by learning from the domain, the
external environment and themselves. Individuals not only master the knowledge con-
tained in a domain, but also practise within the social constraints of a field, which
requires them to play the role of boundary pushing to expand the domain knowledge by
taking advantage of the constraints (Feldman et al., 1994). Due to differences in person-
ality, individuals can be categorised as “keepers” repeating and strengthening existing
design patterns, “makers” creating and developing new design models, and “breakers”
breaking existing design rules and creating novel designs. In addition, they can commu-
nicate with each other, modify and improve their works. Creativity can increase with
expertise or naivety, that is, when people know “a lot” or “very little” about the activity
they are engaged in (Candy and Bilda, 2009). Creativity could also increase during the

interactions between naive individuals and experts.

Fields provide a platform for assessing and selecting design works via the interactions and
communications between creators, clients, customers, experts, professionals, authorities
and institutions. Within this framework, assimilation, accommodation and transforma-
tion (Feldman et al., 1994) could occur. Assimilation refers to the tendency to keep
reality just as it is, while accommodation represents the tendency to make adjustments
in how reality is interpreted when it becomes impossible to live with the distortions
that assimilation demands. Transformation refers to the change from one level/space to
another level/space related with new processing, status, rules and knowledge based on

learning and interaction (Feldman et al., 1994).

2.2 Computational Simulation

Computational simulation is useful when the phenomenon to be studied is not directly
accessible or is difficult to observe (Davidsson, 2002). Simulation helps to study the
emergence of macro-level phenomena driven by individual actions, the influence of macro

structure on individual behaviours, the consequences of social networks and interactions,

22 Chapter 2 Background

and the implications of learning and adaptation. It allows the development of tools that

can inform practical actions and contribute to scientific theory (Gilbert, 1999).

2.2.1 Simulation with Theory and Reality

Computational simulation is a mediator between theory and data to help to explain
social phenomena (Sawyer, 2004). Unlike mathematical modeling, computational mod-
eling is not limited by traditional mathematical tools. It enjoys expressive power while
remaining precise (Sun and Naveh, 2007). Agent-based modeling is appropriate for the
domains characterized by a high degree of localisation and distribution and dominated
by discrete decisions. Equation-based modeling is naturally applied to systems that can
be modeled centrally, and in which the dynamics are dominated by physical laws rather
than information processing (Davidsson, 2002). Both equation-based and agent-based
modelling have empirical connections and have value in understanding complex societies
(Byrne and Callaghan, 2013). Computational models score well on internal validity, sta-
tistical conclusion validity, external validity and construct validity when compared with
field experiments and laboratory experiments, except for a subcategory of correspon-
dence of the model where field experiments are better. This is the concern for realism

and why realism must be addressed in computational modeling (Burton and Obel, 1995).

Computational simulation is connected with the real world by processing data collected
from society and the environment. A data-driven simulation is the interaction between
multi-agent simulations and real world. The frequency of interaction increases as new
sources of data become available. The simulation models such as agent-based models can
be constructed to support persistent run-time interactions between computer agents and
real-world entities via general types of input-output data streams. In this way, agent-
based models become data-driven dynamic application systems entailing the capability of
incorporating additional data into an executable application and, vice versa, the ability

of applications to dynamically steer the measurement process (Conte et al., 2012).

2.2.2 Process of Computational Simulation

The process of developments unfolding through time is an essential basis for understand-
ing complex systems. Process-tracing is a methodology well-suited for testing theories in
a world marked by multiple interaction effects, where it is difficult to explain outcomes
in terms of a small number of independent variables (Byrne and Callaghan, 2013). The
model statement of variables, parameters, relations and the computational process need
to be matched. A experimental design is to try different initial settings of simulations
to find the best strategy to satisfy purpose while the data analysis is the analysis of

comparisons for different parameter values for testing a hypothesis (Burton and Obel,

Chapter 2 Background 23

1995). The process of computational simulation started from initial settings and ended

by data analysis mainly follows bottom-up and top-down directions.

A complex system may be simulated to emerge from a collection of interacting objects.
The process of simulating complex systems is describing, exploring, modelling, and es-
tablishing causality. In a complex system, a structure is the result of actions by objects
within the simulation rather than something pre-existing. But a structure may have a
causal potential in relation to the possibility of future actions (Byrne and Callaghan,
2013). Complex social systems are characterised by multiple ontological levels with
multi-directional connections. The processes are not only from the micro to the macro-
scopic levels but also back from the macro to the micro-levels (Conte et al., 2012). The
Micro-Macro link is the loop process by which behaviour at the individual level gener-
ates higher-level structures, i.e., bottom-up process, which feedback to the lower level,

i.e., top-down process (Conte et al., 2012).

A probability distribution exists on the upper level while the realisation of this probabil-
ity distribution is determined on the lower level. The attributes of the population and of
the individuals are interdependent (Gilbert and Troitzsch, 2005). In a macro simulation,
the set of individuals is viewed as a structure that can be characterized by a number
of variables, whereas in a micro simulation, the structure is viewed as emergence from
the interactions between the individuals (Davidsson, 2002). These simulations need to
be accompanied by the micro-macro-loop theories, i.e., the theories of mechanisms at
the individual level that affect the global behaviour, and the theories of loop-closing

downward effects or second-order emergence (Conte et al., 2012).

The study of emergent social behaviour has benefited from computational simulation.
Hierarchical and multilevel cultural models are needed to take into account the interde-
pendence of cultural features and the interconnection of cultural dynamics with other

social processes (Conte et al., 2012).

2.2.3 Types of Computational Simulation

Computational Simulations may not only be used to simulate the reality to predict the
future trend or explain existing phenomena, but also be utilised to build up abstract
models to explore the principles of social emergence. The former can be named “thick”
simulations while the latter can be called “thin” simulations (Kliemt, 1996). Regarding
to different causes, the computational simulations can be used to explore the sequence
of causes and results to explain existing phenomena. In terms of different purposes,
computational simulations may be used to test hypotheses, train managers, understand

decision making design organisations etc.

24 Chapter 2 Background

2.2.3.1 “Thick” and “Thin” Simulations

Kliemt (1996) put forward that computational simulations could be “thick” or “thin”,
where “thick” simulations are detailed, draw on abundant empirical data, and tell the
investigator a lot about a specific question. Such simulations are useful in domains
which employed case studies traditionally. “Thin” simulations are the tools for “con-
trolled speculation”, useful in disciplining theory formation, simplifying and distorting
assumptions (Gotts et al., 2003).

In order to clarify which aspects of a specific situation to be modelled are likely to be
most important in understanding its dynamics, the use of “thin” simulations may help to
prevent the over-interpretation of results from “thick” ones. Because understanding how
such systems are distinctive requires understanding of how complex effects can result
from interactions between much simpler elements via “thin” simulations (Gotts et al.,
2003).

Burton and Obel (1995) discussed the balance of reality and simplicity between “thick”
simulations and “thin” simulations. The reality of the model is a central issue. But how
close must a model be to "reality” is relative. The balance between “thick” simulations
and “thin” simulations should be considered according the purposes and issues which
need to be addressed (Burton and Obel, 1995).

2.2.3.2 Cause-Driven Simulations

The causes of phenomena should be identified to clarify the questions: what might
cause changes in the future state of the system and what changes would result from
such causes. And the causes should be used by agents to take action, which will result
in some particular results. The adjustment of parameters has profound causal power in
relation to the outcome states, which emerge from interactive agents with the capability

of organisation and decision making (Byrne and Callaghan, 2013).

The evaluation of causes is about what worked as a basis of saying what would work,
and realist evaluation is always framed contextually and makes claims constructed in
applicable conditions (Byrne and Callaghan, 2013). A great number of quantitative
variations may result in qualitative changes, i.e., the changes of kind which are more

significant than the changes of degree (Byrne and Callaghan, 2013).

Selection pressures cause evolutionary social change, which is a process of increasing
structural differentiation to upgrade its longer-term flexibility and adaptability. Social
systems are open-ended dynamic wholes interacting with their environments, including
other systems (Byrne and Callaghan, 2013). A new adoption is a response to the current

level of adoption, and the evolutionary model, in which competing innovations owe their

Chapter 2 Background 25

relative adoption success to extrinsic, environmental factors applying selection pressures

(Watts and Gilbert, 2014).

2.2.3.3 Purpose-Driven Simulations

A purpose could be to formulate theories which explain why existing oragnisations be-
haved in particular ways, to test these theories by comparing the observed past be-
haviours with the simulated behaviours generated by the models, and to predict how
these organisations would behave in the future (Burton and Obel, 1995). The models
used for predictive purposes are related with certain mechanisms. They are output-
oriented since, for a given set of initial conditions, to show the state of the system
evolving in time (Conte et al., 2012). In addition, abstract approaches could be im-
proved using real data as the basis for specifying an agent-based model (Byrne and
Callaghan, 2013).

Another purpose might be to explore the implications of reasonable assumptions about
organisational behaviours, in order to determine what the world is like when these
assumptions are true (Burton and Obel, 1995). For example, if the prevalence of two
sex organisms needs to be explained, what the biological world would be like if there

were three sexes can be studied (Conte et al., 2012).

Some other purposes could be to determine which organisation forms are suited to
particular goals, or to train people to function better in organisational settings and
operations (Burton and Obel, 1995).

2.2.4 The Application of Computational Simulation

The identification of a plausible generative mechanism through simulation is not the
end of research, but rather a step to further researches and developments (Watts and
Gilbert, 2014). The application of simulation in education and engineering is an open-

ended process of modification, updating and improvement.

In the 1980s, computational simulation was applied in the development of education tools
to help students complete their courses such as physics, chemistry and architecture.
In the early stages, the simulation tools used in physics and chemistry reduced the
opportunities of understanding the real process of physics and chemistry phenomena for
students because early simulation software packages were developed as “black boxes”.
Students were only allowed to input data, and the final result would be output directly
without any explanation and illustration. Thus they did not know how the result was
generated. Over time the simulation software improved. Students could experience
each step of virtual experiment and be asked to find errors in the simulations. Similar

improvement occurred in the development of simulations for computer aided design tools.

26 Chapter 2 Background

The early architecture software made students feel like engineers rather than designers
when using these tools. But the tools were continually updated and new functions
embedded into them to enhance the user experience. Consequently, the simulation
used in architecture and civil engineering improved the efficiency and possibilities of

generating more interesting concepts and structures (Turkle et al., 2009).

Computational simulations have also been applied in the evolution of artificial languages
to explore the origin of language and related mechanisms. Computational linguistics,
which develops concrete operational models of the processing, can sustain language as a
complex adaptive system (Steels, 2012). The language games as a type of computational
simulation for social science are mainly used to explore the relationship between the
evolution of language and social creativity (Saunders and Bown, 2015). To improve social
creativity, the analysis of conversations are important for understanding the functions
well described on a specific body of knowledge accumulated through communications.
Conversations produce ordered accounts of particular phenomena instead of rules. Thus
conversation analysis should be treated as useful data rather than as a prescription for
designers (Luff et al., 2014).

Although computational simulation is widely used in a number of fields, it has some
limits. The iterative calculations involved in numerical simulations often produce accu-
mulation errors. Such errors have the potential of misleading the evaluation of results
and the validity of the model. In addition, simulation is limited with the memory
space and computational performance that cause optimising initial settings and pro-

cesses (Cangelosi and Parisi, 2012). Thus only partial realities are likely to be reflected.

2.3 Computational Creativity

Computational creativity is a subfield of Artificial Intelligence. It is emphasised on
studying creative behaviours and events resulting from the simulation and generation
of curious agents in computational systems (Saunders, 2002), and developing creative
software using artificial tools and networks to improve human creativity and expand the

possibilities of creativity (Colton et al., 2009).

The study of computational models of creative systems that exhibit properties associ-
ated with creativity is not necessary requiring that the systems “produce” artefacts for
human consumption. In other words, it can become self-evaluation of an autonomous

system, which can model creativity-as-it-could-be rather than creativity-as-it-is (Saun-
ders, 2011).

The development of Painting Fool generates structural elements using constraint solving,
predicts and controls similarity by machine learning, and evolves art pieces and concepts

for the invention of fitness functions for generating works via evolutionary methods. In

Chapter 2 Background 27

the process of invention, less fit individuals are often more interesting in unpredictable

ways than the fitter ones (Colton et al., 2012), which leads to more creative behaviours.

Therefore, Computational creativity is the research and development of artificial cre-
ative behaviours and events to explore the possibilities of creativity even beyond human

creativity. Some definitions of computational creativity are listed below.

o Computational creativity is the study and support, through computa-
tional means and methods, of behaviour exhibited by natural and arti-
ficial systems, which would be deemed creative if exhibited by humans
(Wiggins, 2006b).

o Computational creativity is the study of building software that exhibits
behavior that would be deemed creative in humans. Such creative soft-
ware can be used for autonomous creative tasks, such as inventing math-
ematical theories, writing poems, painting pictures, and composing mu-
sic. However, computational creativity studies also enable us to under-
stand human creativity and to produce programs for creative people to
use, where the software acts as a creative collaborator rather than a
mere tool (Colton et al., 2009).

o Computational creativity is a subfield of Al, in which researchers aim to
model creative thought by building programs which can produce ideas and
artefacts which are novel, surprising and valuable, either autonomously

or in conjunction with humans (Pease and Colton, 2011).

o Computational creativity is defined as the philosophy, science and en-
gineering of computational systems which, by taking on particular re-
sponsibilities, exhibit behaviours that unbiased observers would deem to
be creative (Colton et al., 2012).

Some common features of computational creativity are mentioned in these definitions.
They are the study and support of artificial creative behaviours, the evaluation of com-
putational creativity by human beings or autonomous systems. Artificial creative be-
haviours could reflect individual creativity or social creativity, and they need to be
evaluated based on some criteria. Three aspects of computational creativity including

individual creativity, social creativity and evaluation of creativity are investigated below.

2.3.1 Computational Models of Individual Creativity

Computational individual creativity was implemented in a number of experiments and
applications. For example, the Painting Fool developed by Colton (2012) focused on

the creative tripod (see Section 2.3.3.3) composed of skill, imagination and appreciation

28 Chapter 2 Background

(Colton, 2008). To improve its creative capability, a number of existing applications
were integrated into Painting Fool (Colton, 2012) such as Context Free Design Grammar
(CFDG)? generative art software (Machado et al., 2010). And the novelty principle, i.e.,
the production of similar-yet-different artefacts (Saunders, 2002), was utilised to evolve
artworks. For instance, only fitness functions with an average between a specific range

of novelty values were accepted (Colton, 2012).

Individual computational creativity, however, might need assistance of external networks
to grow up. The Painting Fool has to be connected to the Internet for exploring abundant
resources and trained via the judgment of human beings to remedy its own limitation
(Colton, 2012). Individual creativity does not only come from the unique perspective
that the individual brings to bear in the current problem or situation and the individual’s
personal interest associated with a particular situation, but also result from its life
experience, culture, education, background knowledge and social connections (Fischer,
2005b).

An example of improving individual computational creativity to support human cre-
ativity by using domain knowledge is IBM Food Truck, from which customers picked up
machine-generated surprising and tasty dishes, which were finally prepared by Institute
of Culinary Education (ICE) chef. This work shows how bringing data sources from
the creative domain and from hedonic psychophysics together with big data analytics
techniques can overcome an individual’s self-limited selections to yield a creative system.
In such system, numerous and continually updated novel and high-quality dishes can be
produced based on cognitive cloud platform (Varshney et al., 2013). Initially, the sys-
tem learns about ingredient and cuisine pairing, and dish composition by combing huge
numbers of existing recipes through the Internet. Then it generates quintillions® of pos-
sible recipes according to the cross-referencing data on the chemistry of the ingredients
and hedonic perception theory, i.e., the psychology of people’s preference. Finally, the
recipes are narrowed down to around 5,000 options by employing sampling techniques
(Murali, 2014).

2.3.2 Computational Models of Social Creativity

To explore the emergence of social creativity in computational systems, Saunders and
Bown (2015) developed the framework of Computational Social Creativity (CSC), which
is based on the Domain-Individual-Field-Interaction (DIFI) model of creative system
(Csikszentmihalyi, 1999). The DIFI model builds up a creative system involving the

interactions of components consist of the domain, which is a library storing particular

3Context Free Design Grammar (CFDG) is a micro-language designed by Chris Coyne to define
2-dimensional shape grammars based on L-systems.

4The figure is provided by Pavankumar Murali, an IBM Research staff member in Business Solutions
and Mathematical Sciences (IBM Research Blog, 6 March, 2014).

Chapter 2 Background 29

knowledge related with certain culture, the individuals who learn the domain knowl-
edge and transform them to new ideas and concepts, and the field with numbers of
social institutions filtering out non-creative outputs and refresh the domain by adding
new knowledge and updating valuable knowledge related with big-C creativity which is
required by the whole system to occur (see Fig. 2.2) (Saunders and Bown, 2015). In
brief, the social creative system includes individual innovators, their knowledge about a
domain, and a field or community of experts who decide which individuals and products
are valued as creative, for example by using the Wundt curve to illustrate Hedonic Value
(Saunders and Grace, 2008). As Csikszentmihalyi (1999) suggested, creativity is an in-
teraction between (1) the person, (2) the domain in which the individual is working,
and (3) the field of knowledge experts who evaluate works in the domain. All possible
interactions between the three components could enhance social creativity. For example,
an individual may be judged creative to the extent that it exhibits several asynchronies

and yet can withstand the concomitant strain (Gardner, 1993).

According to the DIFI model, creativity in design can be evaluated by a target popu-
lation, selected by opinion leaders, and recognised by colleagues. Innovation could be
the diffusion of a design solution across a social group. Variation of preferences enables
different decisions based on the shared interpret actions (Sosa and Gero, 2005). Collec-
tive conditions may affect individual actions, which in turn stimulate structural social
changes. A situational fact or that regulates the way in which individuals interact may

heavily impact on the operations of designers and social groups (Sosa and Gero, 2005).

Social creativity might be only a mirage without considering individual creativity. How-
ever, the emergence of multi-individual creativity not only is beyond single individual
creativity but also can evolve by the interactions of individuals without fitness func-
tion (Kirby, 2001). Strong CSC, put forward by Saunders and Bown (2015), requires
an artificial creative social system to remain creative even when its individual agents
are minimally cognitive. Therefore Computational Social Creativity is similar to Ar-
tificial Life occurring from the interactions of simple individual behaviours to complex

emergence (Saunders and Bown, 2015) without considering individual creativity.

As Saunders (2002) stated, computational models of social creativity should identify
how individuals interact. The simplest computational model of individual creativity is
the generate-and-test model with the cycling of self-generation and self-evaluation. Liu
(2000) extended this model to social creativity with the dual generate-and-test model
including individual self-test and external authorised-test of generated works. When the
works are finally judged as creative by monolithic field with experts, i.e., gatekeepers,

the new knowledge of the accepted works will be embedded into domain.

Kahl and Hansen (2015) claimed that social creativity is influenced by contextual factors
such as evaluation strategies and informational diversity. The novelty of an artifact is

evaluated and socially validated by the field in order to be included in the domain, which

30 Chapter 2 Background

provides reference to creators and evaluators. The individuals can change the domain’s
contents by creating and attributing meanings. Consequently, practice in the target
domain would be stimulated and refined (Kahl and Hansen, 2015).

Based on the DIFT framework (Csikszentmihalyi, 1999) and the mechanism of Artificial
Life (Langton et al., 1989), Saunders (2002) developed the model of computational so-
cial creative system and applied it into artificial creative design via the interactions of
curious agents without considering a authorised group. The local interactive behaviours
of creative agents without centralised judgment may lead to the emergence of computa-
tional creativity on a large scale. Artificial creative societies provide the opportunity for

exploring and creating novel designs that might not exist in the real world (Saunders,
2011).

2.3.2.1 Rules for Artificial Creative Systems

Saunders (2011) put forward the concept of distributed domain knowledge and its impact
on the evolution of language. Normally, the formation of a domain occurs when the
members of a field agree upon a stable lexicon for describing a group of works. In
this case, a central repository of all knowledge is not required; rather, the domain is
distributed among the members of the field, such that no individual has a complete
record of the domain. There are different models of the interaction between domains as
individuals migrate between their associated fields. The movement allows individuals to
both adapt to the lexicons used in different domains and also affects the development of

language as agents transport meanings and words from one domain to another (Saunders,
2011).

The rules for an artificial creative system are based on the mechanism of self-organisation
and the DIFI framework (Saunders, 2002) adapting the rules proposed by Langton et al.
(1989) for Artificial Life. They are described as follows (Saunders, 2002).

- The model contains a society of agents situated in a cultural environment
- There is no agent that can direct the behaviour of all of the other agents

- There are no rules in the agents or the environment that dictate global

behaviour
- Agents interact with other agents to exchange artefacts and evaluations
- Agents interact with the environment to access cultural symbols

- Agents evaluate the creativity of artefacts and other agents

These rules are important for the study of design creativity emerging from simple to

complex that is essential for realising the objectives of this thesis including exploring a

Chapter 2 Background 31

minimal set of grounded features of language for creative design and the process of evolv-
ing language for creative designing. In terms of the strong social attributes of language,
this thesis is emphasised on sociocultural events evolved via the interactions between in-
dividuals who are self-controlled and implement simple local behaviours rather than the
result of personal genius or authorised groups with predefined complex rules. The former
is more natural and radical than the latter because the former can be used to discover
the mechanism of creative emergence from simple to complex both for the evolution of
language reaching abstract level and the generation of creative works via sociocultural
interactions of agents based on the primary generate-and-test model without predefined

global rules and authority-controlled behaviours.

2.3.2.2 Curious Agents

An active part of the artificial creative design system, curious agents were researched
and developed by Saunders (2002). A single curious design agent is developed from a
learning agent with long-term memory to recognise novelty by learning an initial set
of pattern categories (Saunders and Gero, 2001b). Multi-agents are developed to not
only simulate the emergence of design behaviours but also to evaluate the creativity
of artifacts and other agents via communication and interaction. Curious design agents
were applied to different models of designing such as direct manipulation and parametric
design. Effective models of curious design agents were developed to distinguish novel

artifacts from normal products (Saunders, 2002).

Curiosity can be either diverse or specific (see Fig. 2.3). The former addresses boredom
and ambiguity to explore diverse creativity while the latter focuses on specific goals to

enhance the efficiency of the process of finding creative design sub-spaces.

_-y» 0 specific

diverse

FIGURE 2.3: Diverse curiosity and specific curiosity (after Saunders)

Diverse curiosity is driven by boredom, which is the result of many expected experiences,
i.e., an agent is able to predict the results of its actions accurately. When a curious agent
feels bored, it will try to do something different to explore new areas to find interesting,

novel and surprising designs evaluated using the Wundt curve.

32 Chapter 2 Background

Specific curiosity is driven by goals. Generating specific designs such as incongruent
artworks may be a goal for curious agents to explore, e.g., by combining different objects
and backgrounds. Some sophisticated design concepts may also be generated using a

goal driven model to address embodied design.

Hence, both diverse curiosity and specific curiosity can be utilised by curious agents to
explore new design fields. And the development of artificial creativity can benefit from

research into new features of diverse curiosity and specific curiosity (Saunders, 2011).

2.3.3 Evaluation of Computational Creativity

Creativity is a process of discovering and creating novel artifacts as well as creating
and discovering new values of these artifacts. In terms of both quality and quantity,
creativity should be evaluated in several aspects related to novelty, diversity and utility.
Among them, higher novelty may be related with deeper and more surprising associ-
ations. For instance, Einstein went back to first principles in setting for himself the
fundamental problems and in looking for the comprehensive yet simplifying explanatory
axioms (Gardner, 2011). Diversity is not only related with the differentiation of results
but also relating to divergent processing. Guilford’s creative model identifies four compo-
nents of divergent processing: fluency (i.e., performing intellectual operations smoothly
and automatically to produce many ideas) (Sternberg, 1985); flexibility (i.e., producing
many different ideas); originality (i.e., producing unusual ideas); and elaboration (i.e.,

developing these ideas) (Kaufman, 2009).

Within computational creativity Wiggins (2006b) proposed that creativity needs at least
two dimensions—novelty and value. Both of them are context dependent (Wiggins,
2006a). Ritchie (2007) added a third dimension, typicality. Novelty addresses the ques-
tion, “To what extent is the produced item dissimilar to existing examples of that genre?”
Quality is related to the question, “To what extent is the produced item a high-quality
example of that genre?” However, quality is only a basic essential factor of measuring
creativity. Value might be more important than quality for determining the utility of
a creative product because the function of comparative performance may depend on
value more than the quality of the product. Typicality refers to the extent, “to which
the produced item is an example of the artifact class in question?”. For example, “Is
a generated item a joke or some other creative genre, and how creative is it?” (Ritchie,
2007). Typicality is not only the benchmark of its represented genre for comparing and
measuring novelty of new products belonging to the same genre, but also the criteria of
creative level compared with different genres or categories, e.g. artworks may have more

potential to be creative than standardised daily necessities.

A four-stage model of creativity consists of (i) preparation, (ii) incubation, (iii) illu-

mination and (iv) verification. The final stage, where an idea is consciously verified,

Chapter 2 Background 33

elaborated and applied, may be carried out by either the creator or by the community.
Creativity is a function of knowledge, imagination and evaluation (Pease et al., 2001).
The criteria of evaluating computational creativity were studied and developed by a
number of researchers including Ritchie (2001), Pease et al. (2001), Pearce and Wiggins
(2007), Ventura (2008), Colton et al. (2011), Maher (2012) and Jordanous (2013) etc.
Among them, Ritchie (2001) identified the evaluation of both products and process; Jor-
danous (2013) developed the Standardised Procedure for Evaluating Creative Systems
(SPECS) while Colton et al. (2011) developed the framework of Creativity Tripod.

2.3.3.1 Ritchie’s Formal Evaluation of Creative Systems

According to Ritchie (2001), creative systems can be evaluated in relation to product,
process or both. The former is evaluated on the basis of novelty (untypical) and appro-
priateness (valuable) while the latter is rated according to general analyses and specific
implementations such as efficiency and simplicity. Novelty may be evaluated using the
concept of a prototype. Prototype theory is based on the fact that humans categorise
everyday objects. For example, a robin is a highly typical example of the category bird,

but an ostrich or a penguin would be untypical and novel (Ritchie, 2006).

Ritchie (2007) developed a rating scheme to mapping features into the interval [a,b]
which could be simplified to [0,1]. Firstly, the typicality of a product is rated as certain
genre (poem, story, picture, joke or melody etc) to some extent, e.g. “Is this item a joke
or a melody?”. Then, novelty is related with untypicality or innovation. Lastly, quality
is rated with value. High quality is a good instance of a type of artefact, e.g. “How
funny is this joke?” Ritchie (2007)’s evaluation of creativity is primarily based on the
comparison of new items with instances (examples), namely an inspiring set, according
to two variables which are typicality and value. An item could be novel if it does not
replicate the instance. Criteria (Table 2.1) were developed based on the comparison of
inspiring set and new items. Among them, criteria 1, 2, 5, 9, 10a, 11, 13, 15, 17 reward
typicality while criteria 6, 7, 8, 18 give high scores to atypicality. In addition, criteria 1
to 7 take no account of past artefacts, i.e., the inspiring set, whereas criteria 11 to 18

consider novel results outside the inspiring set (Ritchie, 2007).

Although a number of criteria of evaluation of creativity related with typicality and qual-
ity were developed by Ritchie (2007), he also put forward several issues to be addressed
including the lack of measuring similarity, the interventions of designer, self-rating, mul-

tiple runs, and random generation (Ritchie, 2007).

The measurement of similarity: The evaluation of novelty should involve a similarity
measure for events, a probability distribution over events, and the causes of creative

events rather than single difference from a inspiring set (Pease et al., 2001). It should

34 Chapter 2 Background

TABLE 2.1: The criteria of evaluating creativity by Ritchie

Criterion(s) Evaluation(s) Program behaviour(s)

1,2 Typical? Basic success

3,4 Quality? Unrestrained quality

5 Typical and quality? Conventional skill (exploratory creativity)
6,7, 8 Untypical and quality? Unconventional skill (transformational creativity)
9 Typical? Basic success

10a Typical and interesting? Avoiding replication

11, 13, 15 Typical? Basic success, avoiding replication

12,14, 16 Quality? Unrestrained quality, avoiding replication
17 Typical and quality? Conventional skill, avoiding replication

18 Untypical and quality? Unconventional skill, avoiding replication

be possible to devise a suitable definition of the distance of an item from a set, or even

the overall distance of one set of items from another set (Ritchie, 2007).

The contribution of the designer: How to measure the accurate creativity of pro-
gram taking into account the contributions of the designer of the system? The creativity
of program may be measured by comparing the running results and designer’s expected
results. If the running results surpass the designer’s expectation, in particular through
evolution, development and multi-agent simulation leading to emergence, the designer’s
contribution may be not important. However, the program structures and initial settings

made by the designer could affect the results fundamentally.

Self-rating of output: The program’s rating of its own output ought to consider not
only its own behaviours but also the correlation with corresponding external ratings

particularly from human judgements.

Multiple Runs: The multiple runs may not be creative if the latter run just repeats

the previous one or the runs obey certain expected sequences of change.

Random generation: Statistical tests could be applied to evaluate the distinctions of
these sets of ratings. Random generation may be better than fixed settings due to its

potentials of exploring a great number of design spaces without bias.

In addition, Ritchie’s model doesn’t explicitly address the social aspects of creativity
evaluation such as diversity, emergence, systemical self-renew, the speed and scale of

sociocultural development etc (Fischer, 2005a).

2.3.3.2 SPECS Model

Jordanous (2013) conducted a comprehensive and rigorous review to date of the evalu-
ation of computational creativity, and developed the Standardised Procedure for Eval-

uating Creative Systems (SPECS), which focuses on assessing computational creativity

Chapter 2 Background 35

through expert evaluation. Jordanous (2013) identified the following 14 key creative

components (see Table 2.2):

TABLE 2.2: The creative components of the standardised procedure for evaluating
creative systems (SPECS)

—
B
(o]
@
"

Component

Active involvement and persistence

Generation of results which are novel and appropriate as well as valuable
Dealing with uncertainty

Domain competence (skills on expert level to generating new ideas)

General intellect

Independence and freedom (break the existing bondage of context and culture)
Intention and emotional involvement

Originality

Progression and development

© 00 N Ot W

10 Social interaction and communication (social influence)

11 Spontaneity/subconscious processing (fluency, acting without thinking)

12 Thinking and evaluation

13 Value (influential and useful)

14 Variety, divergence and experimentation (multi-tasking, divergence without bias)

These components may be grouped into three categories that are concise and clear for
efficient expert evaluation: individual process, social process and results (see Table 2.3).
Among them, efficiency means that the program should be regarded as more creative
than a comparable program which takes longer to produce the same results (Ritchie,
2007) and which requires more effort from the user to justify its results and methods
(Pease et al., 2001). Uncertainty can be taken as a creative source for more uncertain

and interesting behaviours.

As can be seen from Table 2.3, General Intellect is not included in any one category
because some other aspects also require intelligence and so it may not be an independent
attribute. In addition, some individual and social processes are interchangeable and

affect each other, i.e., the concepts of individual and social process are relative.

TABLE 2.3: The Categorised Components of Creativity

Categorisation Attribute Indexes Explain
uncertainty 3, 6

Individual efficiency 4,7,11 time and effort
evaluation 5, 12

Social autopoiesis 1, 7,9 independence, self-production
divergence 14 divergence & convergence
novelty 2,8

Result utility 2,13 useful and appropriate

influence 10 benchmark for next generation

36 Chapter 2 Background

Similar research was conducted by Irwing (2010) who suggested that the creative profile
can be explained by four primary creativity traits consisting of Idea Generation (origi-
nality, fluency, incubation and illumination), Personality (curiosity and tolerance for am-
biguity), Motivation (intrinsic, extrinsic and achievement), and Confidence (producing,
sharing and implementing). They can help to achieve four goals including “Incubate”
(long-term development), “Imagine” (breakthrough ideas), “Improve” (incremental ad-
justments) and “Invest” (short-term Goals) (DeGraff and Lawrence, 2002).

The process of evaluation is standardised into three steps: defining creativity, standardis-
ing the evaluation of domain creativity, and evaluating creativity. In relation to defining
a domain creativity, e.g. design creativity, some components should be strengthened,
whereas some others can be ignored due to the specific domain context. The style of
personal creativity, however, may remain the same in different domains. Forms of repre-
sentations and topics, as well as process, can serve as the sources of individual difference.
Certain components tend more often to operate on certain kinds of representations and
topics (Sternberg, 1985).

The results of evaluation from different components (see Table 2.3) made by various
experts need to be considered at different levels. More weight should be assigned to
important components and experts. The evaluation should include not only the final

score but also all sub-test results.

Pease et al. (2013) applied SPECS to the notion of serendipity. The evaluation standards
themselves were subject to evaluation, to make sure that they both reflect the intuitive
notion of serendipity and are practical to apply to computational creative systems (Pease
et al., 2013). However, the process of SPECS (defining, standardising and evaluating
creativity) could be too abstract, i.e., for simply describing practical implementations
in any empirical investigation (Corneli, 2016). The issue would be addressed by using
different ways and with different emphases to suit various purposes (Jordanous and
Keller, 2012).

To improve the efficiency of using SPECS, Jordanous (2013) also proposed three future
tasks for simplifying and clarifying creative components. They are reducing the number
of components used to define creativity, improving the presentation of the component
evaluation results to compensate the scarification of useful details caused by the reduc-
tion of components, and making the components easier to understand and more clearly

defined to eliminate ambiguity and reduce learning curve.

Among all of these components, social interaction, communication and domain com-
petence were shown to be very important in understanding how musical improvisation

creativity is manifested (Jordanous and Keller, 2012).

Chapter 2 Background 37

2.3.3.3 FACE/IDEA Model

Colton (2008) introduced the notion of Creative Tripod representing three essential
behaviours: skill, appreciation and imagination as a set of necessary conditions for eval-
uating creativity. According to Creative Tripod, if a program was skillful, appreciative
and imaginative, then, regardless of the behaviour of the consumer or programmer, the
software should be considered creative when it does not lack any of the three behaviours
(Colton, 2008).

Based on Creative Tripod, the FACE/IDEA model was developed to implement four
stages: framing the system; judging the aesthetics of the framework; conceptualising
within the judgment; and expressing concepts (Pease et al., 2001). The expression
of concepts can be represented as algorithms, equations or procedures. Every stage
includes the processes and artifacts that implement a loop of evaluating and creating,
i.e., a continuous cycle of sensing, thinking and passive or positive action. FACE can

also involve a chain of framing, processing and patterning (Pease et al., 2001).

IDEA is a cycle of Iteration, Development, Execution and Appreciation, within which
software is engineered and its behaviour is exposed to an audience (Pease et al., 2001)
to discover how such creative acts can have an impact on audience and society (Colton
et al., 2011). A necessarily iterative process of generation and evaluation is the central
feedback loop of creativity. Internal and external evaluation of a product according to
aesthetic and framing considerations means that creative product acts as a trigger of

creative evaluation and evaluation itself becomes a valuable product (Pease et al., 2001).

Dynamic as opposed to static evaluation reflects social influence (Colton et al., 2011).
Rather than comparing only the output of systems, the model proposes to compare
entire creative acts, including details of output and processes. Rather than assessing
the value of artifacts produced with respect to given aesthetic measures, the model is
intended to assess the impact of creative acts, where aesthetic measures may be invented,
e.g. designers’ works affect client’s evaluation rules. Rather than describing/assessing
individual generative acts, the model focuses on studying the tuples of generative acts
comprising creative acts (Colton et al., 2011). The criteria for evaluating creativity
continue to change when individuals experience and discuss novel experiences/works
which could become more and more familiar and finally lose novelty. The IDEA model
does not yet capture how creative acts can have impact by changing people’s opinions,
e.g. by introducing them to new aesthetics, nor does it model how people’s opinions
change through group discussion. Colton et al. (2011) suggested it would be a more

powerful tool if group dynamics and causal elements were included.

38 Chapter 2 Background

2.4 Language and Creativity

Language is not only a communication tool but also an activator that stimulates brains
to resolve advanced cognitive problems and guides human behaviours (Clark, 1997). In
other words, language is a process of organising and exchanging information for per-
forming situated actions (Barsalou, 1999) at the sociocultural level. Language contains
signifier and signified. The former is represented as utterances while the latter is what
the utterances denote such as object, event, human-beings and agents. Thus language
is a process of associating meanings with utterances which are generated and evolved

through the interactions between individuals and the environment.

Hockett and Altmann (1968) identified various features of language, of which seman-
ticity, arbitrariness, discreteness, displacement, productivity (composition), duality and
reflexiveness are important to creativity. In terms of semanticity, hyponymy can be
used to replace one word with another word belonging to the same superordinate such
as “cocks laying eggs” instead of “hens laying eggs”; prototype can be used to find un-
usual meanings such as “penguin” compared with “pigeon” which is a prototype of bird;
synonymy, polysemy and homonymy can be used to connect various concepts by tracing
between words and meanings (Bagha, 2011). The indirect connection between signals
and their meanings (arbitrariness) may lead to ambiguity. Displacement and exchange
can generate novel utterances by exploring alternatives. Novel concepts can be produced
from existing concepts by breaking, connecting, recombining and compressing existing
utterances. The quality of reflexiveness allows an abstract level to be reached using

meta-language.

In computational creativity, language is often studied as a creative medium, e.g. po-
etry. But the primary function of language is not to archive information; it is instead
to prepare individuals for situated action (Barsalou, 1999). In addition, memory and
information processing related to language comprehension are the results of evolution-
ary history (i.e., language is a production of evolution). Its purpose is not to process
information but to help individuals to cooperate to adapt to the environment efficiently
and creatively (Barsalou, 1999). Therefore, language should be inextricably linked with

computational creativity as a social process.

2.4.1 Evolution of Language

Language is a distributed and self-organising system that evolves from simple combina-
tion and transformation of utterances to a complex entity (Steels, 2000) via composition,
decomposition and recursion. Simple utterances can evolve through natural selection
such as a bird-call which can be genetically coded, replicated and variated, then selected
by nature. But complex utterances have to evolve in the cultural environment by learn-

ing. For example, the juvenile male bird replicates his father’s song, which might also

Chapter 2 Background 39

be variated and propagated to others. Human language is a culturally evolving system,
in which speech, meanings and their relations change rapidly while different words are
organised to express more meanings. A language with expressive power, great commu-

nicative success and a minimization of cognitive effort could survive and continue to
evolve (Steels, 2016).

The evolution of computational complex systems might start from the combination and
association of random distributions and the selection of entities with probabilities. In
an evolutionary process, the contextual environment provides resources that languages

adapt to and take advantage of to enrich the cultural environment.

In the evolution of language, a word can denote several relevant meanings relating to
functions and structures. For example, “round”, which represents a structural shape,
also represents functions and behaviours such as “rotate” and “dynamic”. Kirby et al.
(2008) conducted the “alien language experiment” in which 100 people were asked to
match random shapes and words to evolve an “alien” language. As a result, a non-
random alignment of signals and meanings occurred partly due to underlying cognitive

biases that iteratively shape the language.

Based on single words, “combinatorial” utterances could be generated to extend mean-
ings matching new states of the environment (Scott-Phillips and Blythe, 2013). For
example, putty-nosed monkeys can combine two alarm calls, “pyow” and “hack”, to
“pyow—hack” which directs the monkeys to a new location instead of simply combin-
ing the behaviour of climbing up to avoid leopards with “pyow” and the behaviour of
climbing down to avoid eagles with “hack”. However, such compositional signal is coded
that has only one fixed meaning. In terms of context sensitivity, an ostensive “combi-
natorial” signal has more than one meaning matching different situations. For example,
baby Karen may combine two gestures, pointing and twist, to ask parents to open an
out-of-reach object, or just show parents their behaviours of opening the object. The dif-
ferent intentions can be shared among human-beings that make human language unique
and powerful (Scott-Phillips and Blythe, 2013). In addition, a large set of languages
can be transmitted through a narrow learning bottleneck by the aid of compositional
rules, which enable learners to learn an almost infinitely expressive linguistic system
(Kirby et al., 2014). Based on the compositionality of language, a number of interesting
features such as incongruity, exaggeration, elaboration and recursion can be used in the

simulation of evolving language for creative design.

2.4.2 Language Ecology

The interactions between language and diverse natural and sociocultural environments

lead to the ecology of language besides symbolic ecology and cognitive ecology (Steffensen

40 Chapter 2 Background

and Fill, 2014). The diversity of language ecology provides a number of potentials of cre-
ative events by generating, transmitting and renewing information between individuals
and environments. Communities evolving in an open-ended system can not only adapt
to new environments but also take advantage of various contexts to improve the environ-
ments by exchanging information. For example, ants find food using chemical trails; and
human beings cooperate using messages. Intelligence is used to structure our environ-
ment via physical action, language and culture so that human beings can be successful
with less “intelligence” (Clark, 1997). In particular, speech is a specific and efficient
cognitive tool that can be used to highlight new situations and shape problem-solving

actions.

The efficient transmission of environmental information depends on activity in multi-
ple situations dealing with different goals. Regarding language, the same meaning can
be represented by different symbols and combinations thereof. This results in language
diversity. Due to the encoded symbolic combinations saving memory and building mean-
ingful associations, individuals are likely to construct complicated knowledge by using
words or symbols directly besides transforming ideas to words. These symbols have the

ability to attract and position additional intellectual elements (Clark, 1997).

2.4.3 Creative Features of Language

According to Clark (1997), language is the “ultimate artifact” whose primary purpose is
not to communicate ideas between individuals but to overcome cognitive limitations of
the human brain through the externalisation of complex thought in a grounded symbolic
form. The creative symbolic forms can be developed using several features of language,
which are divided into three categories: micro features, macro features and mechanism.
The micro features consist of ambiguity, incompleteness, incongruity, scalability and
extensibility while the macro features include dynamics and diversity. Mechanism refers

to the role of composition and transformation in realising both micro and macro features.

2.4.3.1 Micro Features

The fundamental nature of language is the generation of associations between words
and meanings. Multiple associations could become ambiguous, and can be extended
to become elaborated, and rematched to become incongruent. In addition, the lack of
partial associations may leave the space for developing new meanings and ideas. In brief,
the features of language at the micro-level can be ambiguity, incompleteness, incongruity,

scalability and extensibility.

Ambiguity: The prime property of language for creative design is ambiguity, such

that a small stock of meaningless sounds can be combined in numerous permutations

Chapter 2 Background 41

to make up a large number of meaningful units (Fortuny, 2010). A single word may
have multiple meanings and different words may have the same meaning (see Fig. 2.4)
that result into the many-to-many mapping. Familiar words might also have unfamiliar
meanings. Although such ambiguity may lead to misunderstanding, it can become,
along with diversity, a source of creativity. Saunders (2011)’s multi-agent experiments
showed that the variety of meanings held by a field for a single word increases greatly
as a consequence of individuals searching for novel topics. In particular, the ambiguities
that arise in domain-specific languages evolved from the perspective of modeling these

languages (Saunders, 2011).

llbull
meaning C
"ba" meaning A
"bu" meaning B &7 meaning E
g meaning C meaning F
(2) One utterance represents multiple meanings
"lo" meaning D
. llbull
"ka" meaning E %
"he" meaning F
(1) Many to many mapping of utterances & meanings lo
meaning E
"het

(3) Multiple utterances represent one meaning

FIGURE 2.4: Many-to-many mapping of utterances & meanings

Practically, the many-to-many mapping generated by connecting multiple utterances
and multiple meanings can be utilised to explore creative concepts. The path between
seemingly unrelated concepts can be found in the many-to-many mapping. As shown
in Figure 2.5, meaning B and meaning D are connected using the utterances including
“ka”, “di” and “he”. In addition, the same brief provided by a client-agent may relate
to different meanings for various designer-agents. This reflects the social diversity and
creativity of situated agents (Gero and Fujii, 2000) and memory changes in habituation
(Marsland et al., 1999).

meaning A
meaning B~
Ildill ‘l

1
U

meaning D~
Ilkall

"he"

F1GURE 2.5: Connecting seemingly unrelated concepts via many-to-many mapping

Incompleteness: Incompleteness includes inevitable incompleteness and intentional

incompleteness.

42 Chapter 2 Background

Inevitable incompleteness such as incomplete knowledge, mis-encoded information and
incorrect representation may lead to mis-decoding meanings. The missing part might
be generated by guessing or replaced with a new conceptual space (Sternberg, 1985)
resulting in novel meanings affected by individuals’ experiences and different contexts.
The inheritance of languages from one generation to another is also incomplete, thus
creating a “bottleneck” (Vogt, 2005). This may result in social creativity by evolving

new parts of languages.

Intentional incompleteness (Herrmann, 1997) results from erasing or blocking out parts
of memory and reshuffling or reorganising current knowledge that would create oppor-
tunities to discover new conceptual spaces. “Loss” of parts of the memory, which might

be constraints on creativity, could let agents be more open to new possibilities.

Scalability (Exaggeration): The meaning of an utterance can be exaggerated without
having seen an example by adding modifiers like “very” to this utterance. For example,
“very small” is the exaggeration of “small”. The meanings of some other adjectives such
as “medium, large, soft and hard” can also be exaggerated. Interesting designs may
potentially be selected by adding a modifier to produce new utterances. A fuzzy set
could be used to categorise flexible degrees such as “very small” and “extremely small”

with fuzzy boundaries.

Incongruity: Some inconsistent combinations such as unusual embedment of objects
into certain contexts, e.g. the composition of fish and sky, may become creative ideas
(Berlyne, 1971). Incongruity can also be generated by combining different parts of an

artifact such as a suit consisting of a straw hat, a business coat and a colourful skirt.

Extensibility (Elaboration): The existing utterances can be recombined into new
utterances or replaced with more complicated sequences via recursive combinations to
obtain interesting abundant meanings. For example, the utterances “ka” and “he” can
be composed to “ke” via crossover or combined to “kahe” (see Fig. 2.6), as well as

“kakahehe” via recursion, which may represent new meanings.

Elaboration also occurs when a sentence is changed by conjoining or embedding (Den
Ouden, 1975). For example, the sentence, “A cat is in a whale’s stomach”, can be
changed into a more complicated sentence, “A cat with wings is flying in a whale’s
stomach”, by conjoining, or made longer by embedding a clause, “A cat with wings is
flying in a whale’s stomach, which is filled with a lot of fish”. It can also be transformed

into a simpler sentence, “A cat is flying”, via deduction and by deleting some details.

2.4.3.2 Macro Features

The flexibility and vitality of language can be represented with the features of dynamic

and diversity resulting from emergence of communications on a large scale.

Chapter 2 Background 43

'_Ilkall
+ X
'—"he"
"ke" —————— meaning newl
'kahe" —————— meaning new2

FIGURE 2.6: The extensibility of compositional language

Dynamic: Individuals communicate with each other to propel change in the associa-
tions between utterances and meanings through divergent and convergent behaviours.
The relations between meanings and utterances are uncertain and changeable due to

continuous interactions between individuals, communities and environments.

Diversity: Creativity is related to the diversity of language since different symbols and
their combinations can not only represent the same meaning but mutate the meaning to
adapt to different situations. The evolution of diverse meanings which are open-ended

rather than pre-determined is adaptive to reflexive behaviours.

2.4.3.3 Mechanisms

Different algorithms for combination and association can be used to develop various
structures of language. A number of compositional operations including crossover, mu-
tation, overlapping and functional division, and transformations such as analogy and
projection can be applied into the evolution of language for generating creative con-

cepts.

Composition: Composition is the integration of combination and association (see Table
2.4). Combination generates a chain of units into long utterances while association links
words to all the others that might appear in the same place (Barthes, 1977). Association
is related with associability and identity. Associability means that the same results may
be obtained by combining units in different ways, or by transforming from one concept
to another concept; identity means combining an element with its inverse annuls it, i.e.,
finding the opposite concept to identify the concept itself (Helmore, 1969). For example,
the colour red can be visually strengthened by comparing with its complementary colour

green, and be reduced by combining with green.

Creative meanings occur when associating different symbolic combinations. For example,
“K-L-M” may be mapped to “N-O-P”, but the new sequence “N-O-P” may not represent

the same meaning as the sequence “K-L-M”. Some interesting combinations can be

44 Chapter 2 Background

generated using genetic algorithm such as “I am a banana” instead of “I eat a banana”

by mutation as well as “flying fish” and “swimming birds” by crossover.

TABLE 2.4: The relationship between combination (row) and association (column)

Article Colour Noun Verb

A red hat fly
The green helmet run
Any blue cap swim

The overlapping of two patterns rather than the projection between two spaces might
provide additional possibilities for generating creative products, because two separated
concepts can be connected by the items in the overlapping area. Overlapping could
be used in multi-domains, which include both spatial and historical dimensions—for
instance, between two cultures or between early and later stages of one culture. In ad-
dition, collective comprehensiveness may be established by the overlapping parts, i.e.,
boundary objects, in a way that is dynamic for adapting to local needs and constraints
while robust enough to maintain a common identity across domains for shared recogni-
tion (Fischer et al., 2005).

A language can evolve as a hierarchical structure by composition and decomposition.
Decomposition is a process of separation of concepts from general to embodied detail by
tracking their associations and categories. For example, “combination” may be decom-
posed to “overlapping” and “touching”. In addition, “overlapping” can be separated
as “intersecting” and “corner overlapping”. High-level combination can be produced
by combining words with different types such as the combination of “fly” (verb) and
“fish” (noun) to generate new concepts. Combining words with the same type could
also generate new ideas. For example, the combination of “road” (noun) and “train”
(noun) translates the idea of a train to run on the road in the form of very long trucks.
Further, the features of hierarchy and recursion of language could be simulated via bio-
inspired algorithms such as developmental systems and cellular automaton (Floreano
and Mattiussi, 2008).

Transformation: The transformation of representations can be realised by discerning
the similarities between pair vectors based on the same structure. For example, given
the matrix of words in Table 2.4, “a red hat” can be transformed to “any blue helmet”
or “some big cap” with different associations, or, as studies of synaesthesia suggest, can
be transformed to other signal types such as sound, music and colour as well as shape
(Ramachandran and Hubbard, 2001).

The translation from one domain-specific language to another may be completed via the
replacement of relevant symbols from each language that represent the same or similar
meanings. Consequently, communication may be established and developed between

different domains.

Chapter 2 Background 45

Transformation can be used for concept projection: Expect change in conceptual system
A — explore new system B — find appropriate concept in system B — replace a con-
cept in system A with the discovered concept in system B — test if failed, restore the
original system. — run next cycle... (Sternberg, 1985). During projection, a missing
or mismatching part of one space can be represented with a new part or by merging
some parts reflected in another space. The transformation of conceptual space may be
realised via the separation of rules of representation from search space (Wiggins, 2006a),

such that, a new conceptual space may be created by changing the existing rules.

2.4.4 Language and Design

A language is a set of symbols, which reference knowledge. Knowledge includes direct
experiential knowledge and indirect conceptual knowledge. The former is received from
the environment through senses while the latter is constructed from the former with
experiences and imagination. For example, the concept “purple cows” is generated by
combining direct knowledge “purple” and “cows”. The relationship between languages
and concepts is that the former reference the latter while the latter enrich the former.
Human knowledge is first and foremost experiential then embellished by logic, reflection
and imagination. Words are not the things they represent but tools that help people to
explore concepts (Sherzer, 2009).

It can be creative to search descriptions of design spaces besides searching design spaces
directly. One meaning and multiple utterances are analogous to one concept and multiple
forms. Interesting designs may be found by operating on utterances using composition,
decomposition, analogy-making, crossover and mutation. The meanings of these ut-
terances may be different from those of their “parents”. Similar utterances may also

generate different meanings representing new design spaces.

Concepts are connections between symbols and chunks (Hori, 1994). A chunk is a group
of information bound together into a meaningful whole that was used in short term
memory and long term memory for efficiently collecting, storing and extracting data
(Neath, 1998). For example, the symbolic combination “sports-car” is connected with
the chunks, “the power of the car” and “the shape of the car”. The meaning of a concept
is affected by its relations to other concepts (Borensztajn, 2006). Structured concepts
can be developed through classification and categorisation, and represented using com-
positional languages. Structured design concepts are meaningful and dynamic which
can be recombined into novel designs by using the features of compositional language

such as ambiguity and incongruity.

Hori (1994) developed a computational system for uncovering conceptual relations which
are not apparent to humans by connecting words with different associative distances.

The users only need to provide some basic symbols and a few of relations. A word “C”

46 Chapter 2 Background

may approach “A” when “A” has relation to “B” and “B” has relation to “C”. This
may surprise a user who is unaware of the relation between “A” and “C”. Existing
words are mapped onto Euclidean space, which can be taken as a stimulus for detecting
relations. The system provides multiple planes for arranging words in different contexts.
A number of words from plane-A can be copied to plane-B, and new words are put on
plane-B to make new connections with the old words. On each plane, a row corresponds
to a state while a column corresponds to a type of words. Besides these two dimensions,

multi-dimensional presentations can be realised as a spatial arrangement (Hori, 1994).

The system can be used in the process of product development (experiment — measure-
ment — calculation — consideration — design — production). Other processes, such as
characteristics-state-aspect-function-performance-theory and object-action-effect, were
embedded into the system to facilitate the generation of new concepts. To strengthen
the role of connection, the function of setting the weights of words, i.e., the importance
of words, the weight of connection, i.e., the importance of relations, and the direction of
connection can be added (Hori, 1994).

The application of language in design described above is emphasised on using a system
of rules and principles mainly related with syntax and semantics to explore novel concep-
tual relations. Concepts may represent natural objects, artifacts or abstract ideas and
knowledge. a concept does not depend on language but needs to be expressed by lan-
guage. Novel concepts could be revealed by recombining experienced meanings, which
may still be embodied objects but indicate several abstract meanings such as surprising,
unusual, incongruent. This thesis is emphasised on compositing the utterances evolved
in the experience of “physical” world related with colours, shapes and their relations
to get new interesting colours, shapes and relations. Thus only grounded languages re-
lated with simple rules and certain interesting meanings are explored without evolving

abstract meanings or meta-concepts such as logical structure.

In terms of the social aspect of design, language as a form of communication can be
utilised such that design may be modelled as a process of conversations between clients
and designers. Conceptual design may be modelled as the analysis of client requirements
and the generation of design concepts using a suitable mechanism, e.g., Hori (1994)’s
method of spatial arrangement of words. In addition, conversations between designers
and clients can be modelled using different types of “language games” such as “guessing
games” (Steels, 1995) or “generation games” (Saunders and Grace, 2008). The next

section discusses this approach to modelling the social aspects of creative design.

Chapter 2 Background 47

2.5 Computational Models of Language and Social Cre-
ativity

Wittgenstein’s original proposition that languages can be learned through “language
games” (Wittgenstein, 1958) is the foundation of the computational models of the evo-
lution of artificial languages, which were developed by Steels (1995), Kirby (1998) and
Vogt (2005). Steels (1995) utilised language games, such as Talking Heads, to evolve ar-
tificial language in multi-agent systems. In a guessing game, the initiator-agent describes
an object using a simple utterance to the recipient-agent, who attempts to identify the
topic of the utterance based on its experience of the previous utterances (Steels, 1995).
Consequently, language games can generate a shared lexicon of words and their associ-
ated meanings (Kirby, 1998). Steels (1995) showed that repeated playing of language
games is capable of evolving languages grounded in shared experiences. Vogt (2005)
used language games to evolve artificial languages based on the mechanisms including

chunking, exploration and exploitation.

The evolution of grounded language for creative design can start from distributing sym-
bolic units randomly. Then various utterances evolve to represent different meanings,
which could be connected to adapt surroundings to embodied design requirements. Saun-
ders and Grace (2008) introduced a new type of language game, generation game, to
model a common form of interaction in design at sociocultural level. The introduction
of generation games to an artificial creative system enable agents to not only exchange

artifacts and evaluations but to negotiate descriptions and meanings for their products.

As Steels (2006b) claimed, the evolution of language through language games is a dual
process of alignment and innovation. In terms of alignment, a common language is
evolved and shard among agents to maintain a stable community, in which a single in-
dividual leaving or joining does not affect the stability of the shared language among
enough agents acting as a collective memory. Regarding innovation, new utterances rep-
resenting new meanings are continually generated to adapt to the open-ended dynamic
environment and propel the linguistic system forward (Steels, 2006b). The system may
evolve from naming objects to representing categories at a more abstract level. Lan-
guage games are grounded in symbols connected with abstract concepts by categorising
the objects and identifying their relationship within context. The evolved abstract com-
ponents are contributed by the features of language mainly including composition and
ambiguity, which support multiple mappings between ontologies and lexicons (Steels,
2006b). Ontologies may contain abstract concepts, compositional meanings and unit-
meanings. Their relationship can be established using association rules connecting roots
and expansions, which construct a hierarchical recursive conceptual network. The roots
could be abstract and compositional concepts (e.g incongruent scene) whilst the ex-
pansions may be abstract or embodied in particular for terminal expansions such as

the primary features of an object including shape, colour, size, location and direction.

48 Chapter 2 Background

The relations between these ontologies and lexicons can be represented using association
rules connecting meanings and multiple weighted utterances. The evolved association
rules as grounded representations are superior for simulations of creative societies than
predefined conceptual representations because of their ability to serve a critical role in
generative systems. Using such a grounded representation it is possible to construct an
entirely new utterance, which can form a goal for a design agent despite the realisation

of the utterance being non-trivial.

Various possible ideas and answers can be generated from ill-defined problems given
ambiguous conditions via the evolution of artificial language using language games at
sociocultural level rather than logical reasoning which might lack flexibility and adapt-
ability. Saunders and Grace (2008) demonstrated that language games can become
optimised as a method of communication between client and designer agents in multi-
agent simulations for evolving artificial languages, in which coherent lexicons may be
developed via the spread of concepts and bias pressure among individuals. In addition,
the evolution of specific languages related with certain domains can be used to explore
particular “interesting” works. Further, Saunders and Grace (2008) proposed to use
the adaptable capacity of curious agents to develop the models of multiple domains
that agents can move between. This type of movement may enhance the diversity and

creativity of artificial social systems.

The computational models of language for social creativity described above are com-
posed of three types of language games consisting of imitation game, guessing game and

generation game, which are described below.

2.5.1 Imitation Game

An imitation game is played by a producer-agent and an imitator-agent (Steels, 2000).
The producer provides an utterance randomly generated or selected from its memory
while the imitator recognises it based on its own associative memory and then reproduces
the utterance. Then the producer tries to identify the imitator’s utterance. When it is
similar to its own, the game succeeds otherwise it fails. Consequently, the two agents

evolve and share a language throughout numerous imitation games (Steels, 2000).

Imitation may be used to computationally model creativity since repetition can be re-
garded as a resource by means of which conversationalists together create a discourse,
a relationship and a world. Imitation game was used to explore the self-organisation of
vowel systems (De Boer, 2001) and the evolution of music (Miranda et al., 2003). In
these systems, agents imitate each other by producing expressions of the sounds they
perceive. The goal of the vowel-formation systems (De Boer, 2001) was to investigate
the structural tendencies of vowel systems and to determine where a coherent vowel

system could emerge in a simulation.

Chapter 2 Background 49

2.5.2 Guessing Game

A guessing game comprises an initiator-agent, a recipient-agent and a context including
several topics such as shapes, colours and objects. In the game, the initiator (i.e.,
speaker) selects a topic from the context, represents it with an utterance, and sends
the utterance to the recipient (i.e., listener), who attempts to identify the topic of the
utterance based on its experience of the previous utterances (Steels, 2001a). In other
words, the answer is guessed by associating the existing concepts and accessing the
answer via the coherence of each agent’s own symbolic system. If the guess is correct,
the relationship between the topic and utterance is strengthened by increasing its weight.
If the guess is incorrect, the relationship between the topic and utterance built by the
initiator (i.e., speaker) is learned by the recipient (i.e., listener) while the relationship of
the same utterance with different topic built by the recipient (i.e., listener) is weakened

by decreasing its weight.

After playing the guessing game a number of runs, agents can complete the game with
a high degree of success using the language evolved as a result of the learned mappings

from utterances and topics.

Agents continue to reduce misunderstanding and develop a shared domain language
during guessing games. Guessing games were also used to discriminate between different
agents, between other topics in the agents’ context and between real objects as presented
to a pair of robotic “Talking Heads” (Steels, 1998) driving the emergence of a shared

lexicon.

2.5.3 Generation Game

A generation game is played by a client-agent and a number of designer-agents. In the
game, the client-agent expresses the requirements to the designer-agents by encoding the
values of features of requirements which could be creative; then designer-agents decode
the requirements and produce actions based on their own experiences, and generate de-
signs to the client. If the products satisfy a client’s requirements, the game succeeds,
the participants will learn the relation between the requirement and the accepted de-
signs; otherwise, they will unlearn the relation (Saunders and Grace, 2008). The more

sophisticated the requirements are, the more solutions may be produced.

The difference between guessing games and generation games is that the recipient agents
in guessing games select the topics from existing contexts, whereas the designer agents in
generation games generate objects based on their experiences and client’s requirements.
Compared to guessing games, generation games are more open since multiple solutions
may be generated by designer-agents (e.g. various shapes generated via the variation of

prototypes) that can satisfy the requirement. If the novelty of the new shape falls into

50 Chapter 2 Background

the preferred range for the client agent, the shape may be selected. The preferred range
of novelty for an agent is defined by an internal model of preference based on the Wundt
curve (see Section 3.7), where similar-yet-different perceptual experiences are preferred
(Saunders, 2011).

In generation games, the combination or reconstruction of existing words generated by
client-agents may represent new ideas and questions to guide designer-agents in exploring
new design areas and realise novel ideas. Some design briefs may be generated by
combining several symbols. For example, the combination, “kika + ajad”, would provide
some new ideas and design problems that need to be revealed and resolved. Similarly,
“black triangle” is generated from the reconstruction of existing combinations, “black
square” and “white triangle”. These linguistic combinations are generated by agents
who see the relevant shapes. Then “black triangle”, which does not have a real relevant
shape in advance, could be a result of problem finding (client’s design brief). A new
shape will be generated to match the meaning, “black triangle”, which is different from
existing shapes including “black square” and “white triangle”. Through such processes,
a number of new designs could be generated by designer-agents to satisfy the client-
agent’s requirements. Consequently, generation games evolve with the conversations

between client-agents and designer-agents who learn from each other.

Most studies of language games are emphasised on the evolution of languages (Steels,
2016) (Vogt, 2005) without considering some specific features of languages related with
design creativity except the generation games developed for social creativity (Saunders
and Grace, 2008). This thesis focuses on the social creativity (see Chapter 6) of designing
supported by language games. And the language features such as ambiguity (see Sec.
5.1), compositionality (see Chapter 4), exaggeration (see Sec. 5.2) and incongruity (see

Sec. 5.3) are explored to fill the gap between communication and creative design.

2.6 Conclusion

Two aspects of background knowledge including the models of creativity and compu-
tational creativity, and the relationship between language and creativity as well as the
related computational models are reviewed. Firstly, the models of creativity related with
cognitive behaviours and social interactions are described and the systems models of so-
cial creativity, in particular, Domain-Individual-Field-Interaction Framework (DIFI) are
reviewed. Then, the computational models of individual creativity and social creativity,
and the evaluation of computational creativity were discussed. Secondly, the relation-
ships between language and creativity are described. The evolution of language and the
features of language related with creativity including ambiguity, diversity and composi-
tion etc., are discussed and the computational models of language and social creativity

consisting of imitation game, guessing game and generation game are presented.

Chapter 2 Background 51

Linguistic researchers mainly focus on evolving language and exploring the originality
of language but not consider the creative features related with generating new com-
positional concepts and transmitting creative design information between individuals.
Design researchers normally take language as a medium of processing design or study
design language such as shape grammar. In other words, the connection between lan-
guage and design is mainly related with design expression and description that lacks
deep understanding of the creative role of language played in design communication.
This thesis tries to fill the research gap between communication and creative design via
multi-agent simulations of the evolution of language in design contexts, and take lan-
guage as a creative social tool for design more than a medium, design syntax or artifact

semantics.

The next chapter presents a computational model building on the background research

covered in this chapter to provide a foundation for the experiments presented in Chapters
4,5 & 6.

Chapter 3
Computational Model

This chapter describes a computational model of evolving language for creative design
based on the DIFI framework (see Sections 2.1.3.2 and 2.3.2) and the implementation
of this model used to simulate language games for social creativity in the experiments
described in the following chapters. Firstly, a computational model of the DIFI frame-
work (Saunders, 2002) is presented. Secondly, the computational model expands on
earlier attempts completed by Saunders and Grace (2008) to model the DIFI framework
by incorporating different types of interactions such as guessing/learning, encoding/de-
coding, and generating/producing in the evolution of language. At last, the implemen-
tations of the computational model makes use of artificial neural networks including
Self-Organising Maps (SOM), Adaptive Resonance Theory (ART) networks and Grow-
ing Neural Gases (GNG), to generate symbols and transmit information through the
communication of multi-agents with both short-term memory (STM) and long-term
memory (LTM).

To evolve artificial languages for knowledge representation and creative designing, a com-
putational framework is developed to implement three processes consisting of represen-
tation, communication and evaluation. The first is to generate “utterances” and match
them with some existing design knowledge, e.g. the generation of consonant-vowel pairs
matching different combinations of topics such as colours and shapes using associative
neural networks. It requires the establishment of appropriate representations of design
knowledge and “utterances”. The second is to produce new “utterances” by recombin-
ing existing artificial utterances and transforming them to new design concepts related
to novel design spaces via the communication of client-agents and designer-agents, e.g.
“house” — “movable house” (recreational vehicle). Effective communication requires
the selection of suitable computational algorithms to satisfy the requirements of compli-
cated transformations, i.e., the mapping from utterances to concepts (design knowledge)
through inductive means in language games. Finally, the criteria for evaluating design
creativity are relative to the design requirements. Appropriate criteria for the evaluation

of design creativity include criteria for the evaluation of designs, e.g. novelty and value

53

54 Chapter 3 Computational Model

considerations, or the process of designing, e.g. novel techniques. In this model, one
of important criteria for the evaluation of creativity is the unexpectedness of a design
given its description in the form of an utterance. Unexpectedness is determined by an
agent’s ability to predict an as-yet-unseen event (Saunders, 2002). For example, the pre-
dictions made by client-agents about future designs do not match the designs provided

by designer-agents in generation games. Such unexpectedness could indicate novelty.

3.1 A Computational Model of the DIFI Framework

The computational model presented here is based on the Domain-Individual-Field-
Interaction (DIFI) framework (see Fig. 3.1). In this computational model, agents
develop an artificial language by negotiating and obtaining a mainly group-accepted,
e.g. more than 70%!, scheme that maps utterances to design features. Divergent gener-
ation of works is completed by individuals; convergent collection is made by field; and
individuals are trained by exposure to a domain. Some parts of the scheme will be
different in each agent’s associative memories although for communicative success they
are likely to share a significant part of the language. The individual differences can be

the sources of social creativity in multi-agent simulations.

oOTYRg,
Y
S
& Z
AN
5 2
I)
o z
) N ALUAT] on S
4 o
4 kY
2 &
o) S
) M d
OVEL wORK

FIGURE 3.1: The Domain-Individual-Field-Interaction (DIFI) framework (Saunders
after Csikszentmihalyi)

3.1.1 Domain

The computational model of a domain is a repository for shared knowledge, including
the accepted design works and shared symbolic representations, e.g. the domain-specific
languages developed to improve communication between agents (Saunders, 2011). The
languages include simple design grammars and relevant semantics that reflect design
structures and features particularly in the experiments, Incongruity (see Section 5.3) and

Extensibility and Other Features (see Section 5.4). Different domains or sub-domains

170% is sufficient for agents to share a common language while retaining individual differences.

Chapter 3 Computational Model 55

can be subsequently used as initial settings for the production of new generations of
designs (Saunders, 2011). The interaction of domains is implemented in the experiment,

Clique Formation (see Section 6.3).

Design knowledge is composed of a number of rules such as repetition, variation, con-
trast, rhythm, self similarity etc. For example, the specific constructing rules of rec-
tilinear volumes mainly include piercing, wedging and cradling. These structures can
be represented by utterance combinations such as “co-we-ya” and “fe-ge-ge”, which are
generated and shared by interactions between individuals, field and domain (Saunders,

2011). And these combinations can be mapped to different designs.

Domain knowledge can be generated in a connectionist model to impose constraints on
solutions such as Boolean operations on geometric shapes in the experiment, Compo-
sitional Language for Shape Combination (see Section 4.3). The domain knowledge is
distributed among individuals rather than being stored in the central repository that in
such cases the domain is considered to be that part of the learned meaning of utterances

that is shared by a significant proportion of a field (Saunders, 2011).

Designs and languages are shared in a public or local domain. Different clients can have
different evaluation criteria. Some clients can even adopt the failed works rejected by

other clients that results into local domain and clique formation.

3.1.2 Individual

The types of individuals include adaptive agents and curious agents. The former such as
listener-agents evolve basic domain languages in guessing games while the latter includ-
ing client-agents and designer-agents evolve creative design briefs and works respectively
in generation games. Curious agents are capable of evaluating and selecting topics, utter-
ances and designs, and extracting interesting features based on the evaluation of novelty

using hedonic functions.

In guessing games, agents can also be curious when selecting interesting topics or gener-
ating novel utterances representing these topics. A curious speaker-agent is capable of
selecting a novel but not too novel topic by comparing current topics with the topics it
has experienced in using hedonic functions. It can also choose a unique topic from cur-
rent topics by comparing their features such as the differences of shapes, colours or sizes.
Thus an interesting topic can be selected according to its novelty and distinctiveness. A
novel utterance can also be generated by selecting a different combination of characters
compared with the utterances which are stored in its memory, or by combining some of

these stored utterances to a new compositional utterance.

In generation games, designer-agents learn basic rules and methods from the domain,

then generate new works and modify them to satisfy clients’ requirements in the field.

56 Chapter 3 Computational Model

Agents adjust the preference of communication and categorise topics using short-term

memory and long-term memory respectively (Saunders, 2002).

The process of communication among multi-agents is generating, exchanging and eval-
uating messages between addressers and receivers in various contextual environments
(Lidov, 1999). Statements are mainly generated by initiator/speaker-agents and client-
agents. These statements constitute several features such as ambiguity, scalability and
extensibility, which can be used to generate novel works by designer-agents. These works
are sent to client-agents for evaluation. The repeated communications among agents lead
to semantic assimilation and grow a full-blown artificial language by generating utter-

ances and expanding relevant meanings (Saunders, 2011).

3.1.3 Field

Field is responsible for assessing generated designs, extracting interesting works, and
sending them to the Domain. The assessment criteria identify the difference between
objects and the relationships among them (Hannah, 2002). The evaluations of generated
works obey some common criteria such as similar-yet-different although different indi-
viduals make various judgments according to their own experiences and roles. Not only
the designs generated by designer-agents but also the utterances generated by speaker-
agents and client-agents can be evaluated. For example, “babadula” is more interesting
than “babababa” as a design brief. Such accumulated successful works and relevant

representations evaluated and extracted from the Field enrich the Domain.

In the computational model of the DIFI framework, individuals learn about the common
knowledge of the Domain while retaining their personalities due to the differences in the
sequence of experiences that they have, i.e., the situatedness of the agents (Gero and
Fujii, 2000). This leads to sustainable creative behaviours by exchanging knowledge and
re-generating new knowledge. Emergence occurs via large scale communications from

local niches (Saunders, 2002) via the evolution of language in the Field.

3.2 Representation

The representations of topics and works include extracted meanings, linguistic utter-
ances and their relationships. The transformation between meanings and utterances is a
process of production and parsing. Firstly, an object such as a square is represented as a
vector containing several dimensions such as coordinates and size, e.g. [x:0.1, y:0.3, size:
0.5]. Then the vector is mapped with a compositional utterance, e.g. “ba-du-la”. A num-
ber of vectors with the same topic, e.g. square, can be generated to form a context for
playing language games. A context composed of several features could be represented in

multi-dimensions, where each dimension denotes a feature. For example, a 2-dimensional

Chapter 3 Computational Model 57

context is {colour: [0.09 0.56 0.38 0.09 0.99 0.92 0.99 0.93], size: [0.6 0.6 0.59 0.28 0.01
0.84 0.22 0.83]}. The representation of objects is transformed through a mapping process
to a representation of utterances. Lastly, utterances are generated to represent meanings
in compositional and hierarchical structures. For example, the sequences “civicivi...”
could be generated by combining consonants, “bcdfghjklmnpqrstvwxyz”, and vowels,
“aeiou”, such as“qojila”. A new (imagined) object may be generated by recombining
existing utterances and transforming this into a representation for the utterance that

can be mapped back into a representation.

Thus the relationships between conceptual representations (meanings) and languages
(utterances) can be established and developed by many-to-many mapping. Each con-
nection of a meaning and an utterance can be weighted according to the frequency of
usage or different context. Based on many-to-many mapping, compositional sequences
representing containment or coordinate meanings can be constructed. In this thesis, the
associations between holistic/compositional utterances and meanings are represented us-
ing weighted associations, Holographic Reduced Representations and Weighted Context

Free Grammar.

3.2.1 Association Between Meanings and Utterances

The primary representations utilised in the following experiments are weighted associa-
tions between meanings and utterances®. A meaning can be represented with a number
of weighted utterances while an utterance may be associated with several meanings. For
example, square could be associated with three weighted utterances, “ba 0.12”, “ki 0.34”
and “lu 0.23”. Among these, “ki” is much more easily selected to represent square due
to its higher weight. The probability of selecting “ki” is 49.3% <« 0.34 / (0.12 + 0.34
+ 0.23) while that of selecting “lu” is 33.3% and that of selecting “ba” is 17.4%. “ki”
could also represent other meanings such as triangle (weight: 0.11) and circle (weight:
0.02). Combination can be represented using compositional utterances. For instance,
blue square can be represented as “du-ki”, which is the combination of “du” representing

“blue” and “ki” denoting “square”.

The combinations of colours and shapes can be associated with compositional utterances.
New meanings may be generated by recombining these utterances. For example, a new
utterance, “red triangle” can be generated by crossing over “red square” and “blue
triangle”. New utterances can also be generated by recombining topics in the same
dimension. For instance, the combination of “red” and “green” could represent “reddish

green”, which is different from “greenish red”.

2“Meanings” are meaningful words (e.g. “square”) directly representing the signified meanings while
“utterances” are artificial words (e.g. “ki”) generated by computational agents to associate with the
“meanings” in the evolution of artificial languages.

58 Chapter 3 Computational Model

General compositional representations are utilised in most of the experiments including
Compositional and Holistic Language (see Section 4.1), Compositional Language for
Shape Combination (see Section 4.3), Ambiguity (see Section 5.1), Growing Population
(see Section 6.1), Education in Guessing Game (see Section 6.2) and Clique Formation

(see Section 6.3). Some examples of the representations are described below.
(1) Compositional and Holistic Language (see Fig. 4.3)

Compositional language:
rule = {size: {“a”: 0.54, “0”: 0.03}, colour: {“e”: 0.12, “i”: 0.34}, shape: {“u”: 0.79,
“a”: 0.35}, red: {“m”: 0.63, “f’: 0.02},...}

[1 k)

utterances feature = {size: a”, colour:

73}
1

, shape: “u”}
utterancesgtripute = {small: “b”, red: “m”, triangle: “k”}

small-red-triangle — “bamiku”

Holistic language:
rule = {small-red-triangle: {“xs”: 0.92, “cj”: 0.14}, medium-yellow-square: {“gj’:
0.02, “rx”: 0.67},...}

small-red-triangle —

“XS”

(2) Compositional Language for Shape Combination (see Fig. 4.20)

boolean = {union: 0.01, intersection: 0.02, dif ference: 0.01}
nodespezagon = {[0,1]: 0.11, [1,2]: 0.03,...}
nodesstqr = {[10,1]: 0.24, [1,2]: 0.03,...}

combine(hexagon, star) — intersection(hexagonl0,1], star[10,1])

rule = {hexagon: {“c”: 0.67, “v": 0.03,...}, star: {“g": 0.12, “p”: 0.34,...},...}

hexagon-star — “cp”
(3) Ambiguity (see Fig. 5.2, 5.3)

A rule is a dictionary that contains feature, utterances, category and weight, e.g.

{feature: “shape”, utterance: “a”, category: 0, weight: 0.01},

An instance is also a dictionary that contains prototype, utterance and frequency, e.g.

{prototype: [0.1,0.3], utterance: “ab”, frequency: 1}.

A prototype is a combination of colour and shape, while frequency is the number of

times that the same relation between a prototype and utterance is used and accepted.
(4) Growing Population and Education in Guessing Game

A colour is represented with four features including red, green, blue and alpha. Each
feature is connected with a number of weighted rules associating its categories and
utterances. An example of generating a compositional utterance using four selected

rules is described as follows.

Chapter 3 Computational Model 59

rule,.q = {category: 1, utterance: “ce”, weight: 0.32}

rulegreen = {category: 0, utterance: “yi”, weight: 0.21}
ruleyye = {category: 2, utterance: “xa”, weight: 0.57}
ruleqphe = {category: 1, utterance: “re”, weight: 0.11}

combine(red, green, blue, alpha) — “ceyixare”
(5) Clique Formation

A vase is represented with four features including r1,72,r3 and r4. Each feature is
connected with a number of weighted rules associating its categories and utterances. An
example of generating a compositional utterance using four selected rules is described

below.

vase = [rl,r2,r3, rd]

rule,1 = {category: 2, utterance: “se”, weight: 0.27}
rule.o = {category: 1, utterance: “ro”, weight: 0.14}
rule,s = {category: 1, utterance: “lu”, weight: 0.28}
rulery = {category: 0, utterance: “ta”, weight: 0.61}

combine(rl, r2, r3, rd) — “seroluta”

A building is represented with five features including length, width, height, scale and
twist. Each feature is also connected with a number of weighted rules associating its
different value ranges (i.e., categories) and utterances. An example of generating a

compositional utterance using five of these rules is described as follows.

building = [length,width, height, scale, twist] (see Fig. 6.9, 6.11)

rulejength = {rangeyqare: {3: 0.9, 4: 1, 5: 0.9}, utterance: “hu”, weight: 0.72}
ruleyiatn = {rangeyque: {2: 0.9, 3: 1, 4: 0.9}, utterance: “ro”, weight: 0.84}
rulepeight = {rangeyqrue: {6: 0.9, 7: 1, 8: 0.9}, utterance: “ji”, weight: 0.45}
rulescale = {rangeyane: {1: 0.9, 2: 1, 3: 0.9}, utterance: “ru”, weight: 0.23}

ruleppist = {rangeyarue: {5: 0.9, 6: 1, 7: 0.9}, utterance: “si”, weight: 0.49}

combine(length, width, height, scale, twist) — “hurojirusi”

3.2.2 Compression via Holographic Reduced Representations

Compositional representations such as the representations of compositional geometric
meanings can be generated using Holographic Reduced Representations (HRRs) (see
Fig. 3.2) compressing several basic representations with the same length of sequence
(Plate, 2003)3. The differences between the representations generated by HRRs can be
easily measured using Cosine Similarity. Two representations are more different when

the cosine of the angle between the two vector-representations is smaller. HRRs are

3The capability of representing and differentiating different topics by Holographic Reduced Repre-
sentations is based on the generated vectors which are different from each other. Each one contains a
great number (e.g. 1024) of randomly generated numbers in range [0,1].

60 Chapter 3 Computational Model

capable of associating relative concepts, organising the clusters of ideas and concepts,
and using memory efficiently (Plate, 2003). These capabilities are useful for representing
compositional meanings such as geometric relations. For example, a square A containing
another square B (V4, Veontain, VB) can be represented as anmm(A,B) with the same
length of each vector using circular convolution that saves memory. At the same time,
the relation Vioptain(a,) can be distinguished from other relations such as Vigucn(4,B)
and Vipsersect(4,B) €asily. Their differences can be measured using cosine similarity. Thus

HRRs help evolving hierarchical compositional representations efficiently.

A language can evolve to a complex hierarchical network via composition and decom-
position within Holographic Reduced Representations (HRRs). High-level combination
can be produced by combining several words to generate innovative concepts. Complex
design concepts can also be decomposed into embodied elements by tracking their asso-
ciations and categories. Both of these are realised using circular convolution (¢t = ¢® z,
see Equation 1) composing items, and circular correlation (y = ¢ @ t, see Equation 3)

decoding convolution (Plate, 1995).

3.2.2.1 Circular Convolution and Correlation

Y2 Y Yo

FIGURE 3.2: Circular convolution and circular correlation (Plate, 1995)

HRRs use circular convolution to associate items represented with vectors. The rep-
resentation of an association is a vector with the same dimensions as the associated
vectors. Arbitrary variable bindings, short sequences of various lengths, simple frame-
like structures and reduced representations can be represented in a vector with fixed
dimensions. It allows the construction of representations of objects with compositional
structure. For example, associations between the vectors, “red” and “triangle”, can be

combined via circular convolution (Plate, 1995).

n—1
tj = chx]’,k (1)
k=0

for j=0 to (n-1) (Subscripts are modulo-n)

Chapter 3 Computational Model 61

to = coxg + cox1 + c1x2
t1 = c1wo + Ccox1 + Cc2T2 (2)

t2 = C2X(+ C1I1 + CoI2

The result of circular convolution, vector ¢, can be obtained by operating vector ¢ and
vector z using Equation 1. In this equation, ¢; is the Gt item of t, ¢, is the k" item of ¢,
and x;_y is the (j—k)™ item of . The three vectors t, ¢ and x have the same dimensions,

n. If n = 3, the result can be expressed as Equation 2, in which ¢t = [t, t1, t2].

n—1

i =Y Crtjsk (3)

k=0

for j=0 to (n-1) (Subscripts are modulo-n)

Yo = coto + c1t1 + coto
y1 = cato + cot1 + cita (4)
Y2 = c1tp + oty + coto

The result of circular correlation, vector ¢, can be obtained by operating vector ¢ and
vector ¢ using Equation 3. In this equation, y; is the Gt item of y, ¢, is the k" item of ¢,
and ¢, is the (j + k)" item of t. The three vectors y, ¢ and t have the same dimensions,

n. If n = 3, the result can be expressed as Equation 4, in which y = [yo, y1, 2]

Algorithm 1 Circular Convolution and Circular Correlation

1: function CONVOLVECORRELATE(z, y, type)

2 n < length(x)

3 result < emptyList

4 for j=0—(n—1) do

5: item < 0

6 for k=0—(n—1) do

7 if type =" convolve then

8 item < item + z[k] x y[mod((j — k + n),n)]
9 else if type =’ correlate then

10: item < item + z[k] x y[mod((j + k), n)]
11: end if

12: end for

13: result <— append(result, item)

14: end for

15: return result

16: end function

Circular convolution (see Equation 1 and 2) and circular correlation (see Equation 3 and

4) can be implemented using Algorithm 1. In both of them, the elements are summed

62 Chapter 3 Computational Model

along the indicated transdiagonals (see Fig. 3.2). circular correlation is an approximate
inverse operation of circular convolution. If a pair of vectors (e,) is convolved together
to give a memory trace t, then one member of the pair, e.g. ¢, can be correlated with

the trace t to get the other member, e.g. y ~ z, of the pair (Plate, 1995).

The alternative of circular convolution is addition, which is simple and functional (Plate,
1995). But addition memory may produce ambiguity, particularly for multiple objects.
Such ambiguity should be avoided, especially when a vector representing an object needs
to be extracted from the compositional vector representing multiple objects. Addition
memory, however, can be used to build up the associations between pair-vectors since
adding together two high dimensional vectors gives a vector in which each is similar to

the other, that can be used to distinguish the pair-vectors from other unrelated concepts.

A desirable feature of HRRs employed here is their ability to encode recursive structures
of arbitrary complexity. Recursive representations such as “Hunger caused Mark to eat
the fish” can be realised via HRRs, which are described below (Plate, 1995).

S1 = eat + eatqgr @ Mark + eatyy; @ fish
Sy = cause + causeqgr @ hunger + causeqy; ® St
Sy = cause + causeq,gr @ hunger + causeqy; @ eat + causeqp; @ eatyqr @ Mark + causeqp; @

eatopj @ fish

Hence, hierarchical meanings can be represented and clarified by HRRs. For example,
“square inside triangle” can be distinguished from “square inside circle” via HRRs:
(inside + insides) ® square + insidesy @ triangle) is different from (inside + insides; ®
square + insidegs @ circle). Topological relations can also be represented as R(a, b, c) =
PR F,+ P, ® F,+ P3® F.. Here, R denotes relation, P denotes relative position and

F is the features of an object.

3.2.2.2 The Evaluation of HRRs

Cosine similarity can be used to evaluate two vectors represented by HRRs with the
same dimensions. The two vectors are the same when the result of cosine similarity is
one (cos(0) = 1). If it is less than one, they are different. When the result becomes
smaller, the difference between them becomes greater. Therefore the cosine of the angle
between two vectors can be used to measure the similarity between geometric relations
represented via HRRs (Pang-Ning et al., 2006).

3.2.2.3 Interleaving Representations

Circular convolution might not be capable of distinguishing accurate meanings such

Wi "

as the distance among topological relations “in”, “touched-in”, “intersect”, “on” and

Chapter 3 Computational Model 63

“to” (see Fig. 3.3). Alternatively, interleaving technique, i.e., values of taken from
the two vectors to be combined with equal probability, may be used to do “accurate”

representations.

FIGURE 3.3: Topological relations (0: intersect, -1: touched-in, -2: in, 1: on, 2: to)

As can be seen from Fig. 3.3, the relation “in”(-2) is far away from “to”(2), whereas
“touched-in" (-1) is close to “on”(1), and they overlap “intersect” (0). The HRR repre-
sentations of these relations can start from “intersect”, and recursively operate on it

with “inward” to “touched-in” and “in”

, and with “outward” to “on” and “to” (see
Table 3.1). Three operators including circular convolution, addition and interleaving
are used respectively to represent the relations. Then the cosine distances* between the

relations are measured (see Table 3.2).

TABLE 3.1: The rules of representing topological relations

No. Rule Expansion
0 operator — convolve / add / interleave
1 inward — (normal-randomize 1024)
2 outward — (normal-randomize 1024)
3 intersect — (normal-randomize 1024)
4 touched-in — (operator inward intersect)
5 in — (operator inward touched-in)
6 on — (operator outward intersect)
7 to — (operator outward on)

TABLE 3.2: Cosine distances between topological relations

Cosine-distance Convolve | Add | Interleave
D¢osine(in, touched — in) | 1.030 0.051 | 0.240
Dcosine(in, intersect) 1.016 0.548 | 0.738
Dcosine(in, on) 0.998 0.671 | 0.842
Dcosine(in, to) 1.032 0.787 | 0.902
Dcosine(on, to) 1.027 0.052 | 0.232

The results of cosine distances (see Table 3.2) show that similar topological relations are
represented by more similar vectors generated using interleave technique® than circular
convolution. For example, the distance between “in” and “touched-in” is smaller than

that between “in” and “intersect”, and the distance between “in” and “intersect” is

4Cosine distance is opposite to Cosine similarity. The vectors are more similar to each other when
their Cosine distance is smaller, whereas they are more different when their Cosine similarity is smaller.

5The mechanism of interleaving makes the results from the same data a little different each time but
in an acceptable range.

64 Chapter 3 Computational Model

smaller than that between “in” and “on”. The differences between these distances are
matched very well by using interleaving technique instead of circular convolution. the
results of addition also matches the differences between the relations, but the distribution

of the results is more uneven than that generated by interleaving technique.

HRRs are utilised in the experiment Compositional Representation of Rectilinear Re-
lation (see Section 4.2) to test the possibility of representing compositional geometric

meanings. An example of the representation is described below.

Two rectangles share a corner (see Equation 14 and 15):

ecica = (edge + shape; ® corner + shapes @ corner) + axis(0)

utterancelecicg] = chari[m| @ charg[0] + chari[n] ® chary[1] + chars[u] + charslv] —
“fabeji”

3.2.3 Expansion via Weighted Context Free Grammar

Grammars have a long history of use in computational studies of design, e.g., both
design grammars and shape grammars (Stiny et al., 1980). A context-free grammar
(CFG) (Sipser, 1997), which is a set of recursive rewriting rules, i.e., productions, can
be utilised to generate strings or patterns representing designs. A CFG contains 4
components (see Equation 5). They are a set of nonterminal symbols V', a set of terminal
symbols ¥, a set of production rules R and a start symbol S (Sipser, 1997). Interesting
representations of designs could be generated using CFG. For example, “house on boat
in sky” can be generated using the following rules: S — (N PN), PN — (P N), N — [S,
“house”, “boat”, “sky”]|, P — [“on”, “in”]. The process is S — (N PN) — (N (P N)) —
(S(PN)) - ((NPN) (PN)) —» (N(PN))(PN)) - (NP NP N) — “house on boat
in sky”.

G=(V,5,R,S) (5)

Weighted Context Free Grammar (WCFG) is similar to Probabilistic Context Free
Grammar (Charniak, 1997). Weight rather than probability is used to denote the influ-
ence of the expansion compared with other expansions of the same rule. Probabilities
always have to sum to 1.0 within a grammar, whereas weights do not have this limita-
tion. The expansion with higher weight has more opportunities to be selected during the
process of tracing forward its rule. The weight can be strengthened or weakened after
each successful or failed language game. Utterances and their combinations are saved
in individuals’ memory. They use these symbols to expand meanings (expanding the
meanings of the words considering different weights or even based on different contexts).

The speed of expansion could be exponentially fast.

Chapter 3 Computational Model 65

TABLE 3.3: A sample of context free grammar

No. Rule Expansion

0 S — (NPVD)

1 NP - (DAN)

2 VP - (VPP)

3 PP — (PNP)

4 D — a /an / the

6 A — red / yellow / green / blue

10 N — fish / bird / duck / cat / dog / sky / sea / land
18 V — fly / swim / walk / jump
22 P — in / on / over

Some generated phrases using Context Free Grammar (CFG) (see Table 3.3) could be
meaningful, e.g. “a yellow duck swims on the sea”, but most look very unusual, e.g. “a
cat walks in a big fish”, strange, e.g. “a sky flies over a bird”, or even meaningless. In
regular use of WCFG, the weight of normal composition is very high, whereas that of
an unusual composition is very low and that of a strange composition® is extremely low
or even zero. Interesting and creative results rather than normal compositions may be

obtained by selecting the compositions with low weight.

FElaborated representations and tree-like structures can be developed using CFG with S-
expressions. Hierarchical compositional structure can be elaborated by tracing-forward
or simplified by tracing-backward. Tracing-forward (TF) is the process of expanding
rules to a complicated nested chain using CFG started from a symbol, which does not
have to be a root. The process of generating “house on boat in sky” is tracing-forward.
Tracing-backward (TB) is the opposite process of tracing-forward, e.g. “house on boat
in sky” - (NP NP N) - ... — S. By combining tracing-backward and tracing-
forward, some new compositions based on “house on boat in sky” could be generated.
For example, “house on boat in sky” — “house” P N “in sky” — “house” P S “in
sky” — “house” P (N PN) “in sky” — “house” P (N (P N)) “in sky” — “house” P
N P N “in sky” — “house in boat in house in sky”. In this example, the first step is

tracing-backward (i.e., depthrp = 1) while the remaining steps are tracing-forward.

Novel compositions could be generated if inverse weighted random choice is used to
select the candidates on some tracing-steps. For example, firstly, a number of weighted
compositions are generated using WCFG based on experience of the real world, such as
“bird in sky”, “cloud in sky”, “fish in sea” and “cat in house on land”. Then in the
process of tracing-backward & forward of “bird in sky” — N “in sky”, “fish” has more

chance than “cloud” to be selected due to the low weight of association between “fish”

SA simple composition may denote a relation between two objects. An unusual composition would
occur when changing object(s); and a strange composition might be generated when changing relation.
For example, given on(roof, wall), an unusual composition on(roof,tree) is generated by replacing wall
with tree while a strange composition under(roof, wall) is produced by replacing on with under. But
the meanings of the two types of composition could be overlapping. For example, given in(fish, sea), the
meaning of unusual composition in(fish, sky) is similar as that of strange composition above(fish, sea).

66 Chapter 3 Computational Model

and “sky” if inverse weighted random choice is used. So, a novel composition, “fish in
sky” could be generated. This strategy may be used to generate novel designs which

could be unusual, strange or incongruent.

The extension of context free grammar is used to generate compositional rules which
associate labels and utterances. Labels are also associated with different categories
or prototypes or features. A nested dictionary, including functions, can be embedded
in CFG. The following example is an expanded compositional structure. The original
door is “(rectangle up large)” while the elaborated door could be “((in up) ((intersect
left) (triangle right small) (circle up medium)) (rectangle up large))” by using three
rules—“object — (relation object object)”, “relation — (topological-relation direction)”,

and “object — (shape direction size)”.

An example of using a weighted context free grammar (WCFG) in language games
for creative designing is described as follows. A few operators consisting of <,=, >
, —,+,and, or can be used to generate s-expressions representing compositional features
of a scene-sample. For example, if (> y h) represents “sky”, where y is the vertical
position of a point in a scene and h is the position of the horizon; then (> (- y. r.) h)
may represent “circle in the sky”, where 7. is the radius of the circle, which could be
simplified to “circle sky” by connecting two nodes “circle” and “sky” with a graph-edge

representing “in”.

In addition, some more complicated compositional utterances may
evolve such as “large square across large sky and small sea” related to the equation
(and (large rs) (< (- ys 75) (small h)) (< (small h) (4+ ys 75))). In this equation, ry is
the radius of the inscribed circle of “square”, ys is the y-coordinate of “square”, h is
the height of “ground”. Such expressions represent various instances. Some instances
could occur more frequently than others. For example, the weight, W (Circle | Sky)
would be higher than W (Triangle | Sky) after a number of guessing games. These
results of weights of instances can be stored in each agent’s memory. Then, agents can
evaluate whether a new instance is incongruent or exaggerated in new guessing games,
or whether a new generated compositional utterance such as “square sea” is unusual in

new generation games.

WCFG is utilised in the experiments, Scalability (see Section 5.2), Incongruity (see
Section 5.3) and Extensibility and Other Features (see Section 5.4) to explore the creative
features of language and apply them in compositional conceptual design. Some examples

of the representations are described below.
(1) Scalability
Scalability 1 (see Fig. 5.11, 5.12)

size € [0.25,0.75]
rulesizen.257 = {prototype: 0.257, tolerance: 0.15, utterance: “za”, weight: 0.995}

Chapter 3 Computational Model 67

Sizeexaggerated S (07 1]

SiZ€cgaggerated — |Size, very] — [0.257, very] — [“za

77, “VO”] _> “Z&VO”

Scalability 2 (see Fig. 5.13, 5.14)

size € (0,1]
rulesman = {size: small, utterance: {“bo”: 0.01, “sa”: 0.28, “do”: 0.92}}

7

8i2€czaggerated — [very, small] — [“ya”,“do”] — “yado
(2) Incongruity

circle = {x: 0.31, y: 0.72, r: 0.13}

square = {x: 0.48, y: 0.45, r: 0.11}

triangle = {z: 0.75, y: 0.24, r: 0.12}

heightgng = 0.46

rule = {relation: (< (—yh)r), shape: {circle: 0, square: 0.51, triangle: 0.83}}

weighted-random-choice(rule) — triangle
[triangle, (< (—yh)r)]

[13)]

— {triangle: “rena”, (: “do”, <: “mico”, —: “ke”, y: “la”, h: “ni”, r: “guce”,):

43

va }

— “rena do mico do ke la ni va guce va”

[incongruent, (< (—yh)r)]
— {incongruent: “gi”, (< (—yh)r): “do mico do ke la ni va guce va’}
— “gi do mico do ke la ni va guce va”

inverse-weighted-random-choice(rule) — circle
(3) Extensibility and Other Features (see Table 5.18 and Fig. 5.34)

Tule(house, land) = {relation: (on house land), utterance: “jite qiku wuse wowi gigi” }
rulepoyse = {relation: (on roof (contain wall (window door))), utterance: “jite giku
su jite ka xuko jite ma geha gigi gigi gigi” }

ruleyoor = {features: {shape: triangle, direction: up, size: medium }, utterance:
“su”, weight: 0.01}

elaboration: (triangle up medium)

— ((on (right up)) (triangle up medium) (triangle le ft medium)) (see Table 5.19)
unusualness: (in fish sea) — (in fish sky) (see Table 5.20)

strangeness: ((on up) roof wall) — ((in up) roof wall) (see Table 5.21)
exaggeration: (triangle up medium) — (triangle up (very (very large))) (see Table
5.22)

incongruence: (intersect boat sea) — (intersect tree sea) (see Table 5.23)

68 Chapter 3 Computational Model

3.3 Communication

The communication in this thesis is the process of evolving languages and generating
interesting design works among agents playing different roles, such as speaker and listener
in guessing games, and client and designer in generation games. In each language game,
the agents learn successful relations between topics and utterances using Equation 6
(initial weight: wo = 0.01, learning rate: n = 0.1) to strengthen their weights, and

unlearn failed relations using Equation 7 to weaken their weights.

wen+(1-—n) xw (6)

w4 (1—n) xw (7)

In each language game, weighted random choice (i.e., weighted choice using roulette
wheel selection p(z) = w,/ Y 1, w;) of utterances or designs is typically better than
either “best” choice (i.e., choosing the item with the highest weight) or random choice
(i.e., equal probability of choosing any item). Compared with “best” choice, weighted
random choice enables an item with low weight still having a small chance of being

selected; compared with random choice, it provides more reasonable results.

Whether to end or continue language games is determined by success rate (e.g. when
ratesyccess > 0.7, the game will stop and new type of game will start) and the number
of games being played (e.g. npmin = 100, Npmae = 1000, Npin <= 1 <= Nypge. Setting

Nmin 18 to avoid premature success). The success rate is calculated using Equation 8.

rs =ng/n (8)

rs 18 the current success rate, ns is the number of successful games while n is the total

number of games played by agents.

The processes of communication involve serial processes and parallel processes. In serial
processes, artifacts are created and brought into a social venue so that others can build
on them. During parallel processes, components are produced separately then brought
together and combined into one new product. Something new could be jointly created by
multi-agents simultaneously (Fischer et al., 2005). Analogically, a complicated utterance
could be generated by the cooperation of multi-agents obeying a chain rule, a star-like
rule or a mixture of both. In the chain rule, one agent initiates a small utterance, then
other agents one by one adjust or extend the utterance changed by the previous agent.
In the star-like rule, each agent generates its own part of the utterance and all of these

would then be combined in various ways.

With the development of artificial languages for creative design, two types of language

games are conducted: guessing games between speaker-agents and listener-agents to

Chapter 3 Computational Model 69

evolve grounded language; and generation games between client-agents and designer-

agents seeking to generate creative designs in the evolution of compositional languages.

3.3.1 Communication in Guessing Games

9 quessed foD/
p ¢

A 1. utterance A
speaker & .—»O listener
N

.....

. . A
“~8valuatiof

~~ -

FIGURE 3.4: Guessing game (after Saunders and Grace (2008))

Normally, two individuals play the roles of speaker and listener respectively when they
communicate in guessing games (see Fig. 3.4) to evolve a grounded language based on
context and previous simple utterances initially generated via random selection’. They
would develop and share a domain language representing certain topics such as colour
and shape by continuing to name what they see, “talk about” what they get and learn

from each other. The general process of a guessing game is described as follows.

Firstly, the speaker-agent A, selects a topic Ts from the context Ci, which contains a
number of topics such as shapes and colours, and describes the topic Ts with an utter-
ance Us. Then this utterance is sent to the listener-agent A; who parses it to a guessed
topic T; based on the context C;. When speaker A, receives listener’s guessed topic 71j,
it compares its own topic Ts with the listener’s topic T;. If the guessed topic is accepted
by the speaker according to its criteria such as the same or in the same category, both
speaker and listener learn (see Equation 6) their own representations of the association
between topic (instance) and descriptions, including the extracted meaning and gener-
ated utterance (As: learn(association T Us), A;: learn(association 7} Us)). Otherwise,
the listener unlearns (see Equation 7) its representation (A;: unlearn(association 7; Us))
and learns the association between the speaker’s selected topic with related meaning

and utterance (A;: learn(association T Us)).

3.3.2 Communication in Generation Games

Language can be continually developed and applied in generation games played by a
client-agent and several designer-agents (see Fig. 3.5) based on the grounded language
evolved in guessing games. In each generation game, the client-agent A. generates a new

utterance U, by crossing over, mutating or elaborating existing utterances according

"In early stage of guessing games, most utterances are generated randomly to represent selected
topics due to agents’ initial empty memories. Once one or more associations between utterances and
topics are memorised by participant-agents in the previous guessing games, they will try to find relevant
utterances from these memorised associations in next guessing games. If relevant utterances can not be
found, they will still be generated randomly. The mappings of utterances to topics are thus transformed
from random connections to relevant associations gradually according to agents’ accumulated experiences
during guessing games.

70 Chapter 3 Computational Model

designers

FIGURE 3.5: Generation game (after Saunders and Grace (2008))

to the frequency of current utterances or the weights of various associations between
prototypes P., meanings M. and utterances U,; in other words, based on its memorised
associations and the criteria of evaluating the interestingness of utterances or prototypes.
When the designer-agent Ay receives the client’s requirement, i.e., the new generated
utterance U, it generates a new design Dy by parsing the utterance to relevant meanings
My which could relate to certain prototypes Py in terms of its own criteria of evaluating
novelty and utility based on previous experience. After all designs, which are likely
to be different from each other due to designers’ different experiences, are generated
and submitted to the client-agent, the client-agent evaluates each design according to
its criteria of creativity related to hedonic functions or certain definitions of specific
interesting concepts such as incongruity and exaggeration. If a designer-agent’s work is
accepted, both the client-agent and the designer-agent learn the new association between
the design-works and requirement (A.: learn(association Dy U.), Ag: learn(association
D, U.)). Otherwise, the designer-agent would unlearn its representation of the design
(Ag: unlearn(association Dy U.)) and try to learn some other designer-agents’ works,
in particular the best design selected by the client-agent (A4: learn(association Dyinner
U.)) (Saunders, 2011).

The relationship between client-agents and designer-agents, and the mechanics of their
communication can be investigated to improve the efficiency of transforming clients’
description language, i.e., requirements, to design concepts. During the repeated gener-
ation games, some complex linguistic combinations may emerge to support complicated

design briefs encouraging creative meanings.

3.4 Evaluation

The process of evaluation is dynamic insofar as the evaluation of creativity is relative
to the continuous change of individuals, context and the interactions among them. For
instance, the novelty of artworks based on changing experiences is explored and measured
continuously via the Habituating Self-Organising Map (HSOM) (Marsland et al., 2000).

Through evaluation, individuals should learn to capitalise on their strengths at the same

Chapter 3 Computational Model 71

time as they compensate for their weaknesses in whatever ways are available (Sternberg,
1985). To make dynamic and flexible evaluation, variations can be used in the criteria

to define creativity and judge the output items (Ritchie, 2001).

A number of features including novelty, appropriateness, influence, diversity and ef-
ficiency will be evaluated respectively in two aspects, individual and society. Some
features could be more important than others due to different types of simulation and
different stages of the same simulation. These features or evaluation guidelines can be
tested by comparing the evaluation results with those from human beings (Jordanous,
2013) or vice versa. The evaluations are completed by both curious agents themselves

and by systemic evaluation.

3.4.1 Novelty

Novelty is the fundamental feature for evaluating creativity. Individual novelty relates to
the artifacts and utterances generated by each agent while societal novelty includes social
structures and the ratio of novel artifacts/requirements over normal products/utterances

generated by all participants.

Individual novelty is the novelty of artifacts, concepts and utterances, i.e., designs and
requirements, which can be evaluated using linear or nonlinear hedonic functions trans-
forming novelty into interest. A novelty detector is used to detect novelty, e.g., a neural
network like a SOM. For example, the Euclidean distances between designs and original
prototypes are measured, then these distances are evaluated using hedonic functions to
get the value of interest based on novelty. The design with the highest score on the

evaluation will be selected.

Societal novelty contains novel social structures and novel social processes. The former
can be new types of networks, new types (roles) of agents, new relationships between
these agents, the communication density between agents, and the density of creative
agents, designs and utterances. Among them, the density of interesting utterances can
be evaluated by the frequency of the utterances, the similarity between the utterances,
and the frequency of characters in all utterances collected from all participants. The
latter can be new types of communication, new mechanisms of evaluation, and new

chains of creative events in group etc.

3.4.2 Appropriateness

Appropriateness is an essential feature of creativity. Suitable representations can make
new concepts really become creative. And creative social interactions depend on not

only their novelty but also their constructiveness.

72 Chapter 3 Computational Model

Relevant associations between utterances and topics/designs can be evaluated via the
degree of discrimination and that of consistency. The former refers to how much the
topics are distinguished from each other by the evolved languages while the later refers

to the extent to which agents share the same language (see Section 4.1).

Societal appropriateness denotes appropriate ratio of agents with different roles, rational
methods of communication in different stages, and suitable communication strategies etc.
For example, the appropriateness of education game is evaluated by comparing different
ratio of teacher-agents and student-agents (see Section 6.2). The appropriate process
of evolving creative artificial language is from guessing games to generation games (see
Section 5.1). And a strategy of selecting suitable participants can be based on previous

communication success rates (see Section 6.3).

3.4.3 Influence

Influence is the impact of an individual’s or a group’s behaviours on others’ behaviours
through communication and exhibition using generated utterances or designs. Great
influence is related with high transmitting speed, large scale of affection, and maintaining
the affection for a long period. It can be evaluated at individual level and at societal

level respectively.

Individual influence is the impact of an agent on other agents through its generated
utterance-like requirements or designs which are accepted by other agents. For example,
a client-agent’s influence can be evaluated by calculating the number of its utterances
accepted by designer-agents. A designer-agent’s influence can be evaluated by calculat-
ing the number of its designs accepted by client agents and other designer-agents. An
individual’s influence may also be measured according to the number of its neighbours

of a graph network and their successful communications.

Societal influence is the whole strength of spreading utterances and designs through
networks. It depends on the structure of networks developed by agents communicating
with each other. It can be evaluated by calculating the density of the structure, the level
of information flow, and the inheritance of knowledge from one generation to another

generation.

3.4.4 Diversity

Diversity could open up more opportunities for creativity (Gassmann, 2001). An indi-
vidual could produce more abundant products with more potential of generating novel
and interesting artifacts if it was experienced with diverse prototypes. Similarly, a com-
munity or society could be more creative if it was composed of diverse and complex

individuals and groups.

Chapter 3 Computational Model 73

Individual diversity is measured with the ratio of an individual’s stored meanings to
all agents’ stored meanings (see Equation 9), that of an individual’s stored utterances
to all agents’ stored utterances (see Equation 10), and that of an individual’s stored
connections of meanings and utterances to all agents’ stored connections of meanings
and utterances (see Equation 11). Individual diversity is also influenced by the size of

the neighbourhood and the differences among the neighbours (Liu et al., 2010).

Tui = nm/Nu (10)
Tei = nci/NC (11)

rmi denotes Agent i’s individual diversity of stored meanings, n,,; is the number of Agent
i’s stored meanings while NV, is the total number of all agents’ stored meanings. 7,
denotes Agent i’s individual diversity of stored utterances, n,; is the number of Agent
i’s stored utterances while N, is the total number of all agents’ stored utterances. rg;
denotes Agent i’s individual diversity of stored connections of meanings and utterances
(CMU), ng; is the number of Agent i’s stored CMU while N, is the total number of all
agents’ stored CMU.

Societal diversity can be measured by social division, that is, the degree of variation
among individuals and groups. Diversity may not be applicable to the comparison
of the creativity of holistic and compositional languages because composition biases
complexity. It could, however, be used to confirm that composition produces greater
diversity than holism. Diversity is not an essential feature of creativity. However, the
more diverse the space is, the less predictable are its contents and their locations, and
the more value observers are likely to place on them when they are found (Wiggins,
2006a).

Simpson (1949) ’s Diversity Index (see Equation 12, 13), which takes into account rich-
ness and evenness, can be utilised to calculate both individual and societal diversity.
For individuals, this comprises the number of instances related to each category and the
total number of instances, the number of each utterance and the total number of utter-
ances in instances, and the number of each prototype (meaning) and the total number
of prototypes (meanings) in instances. For society, this comprises the number of each
type of agent (e.g. clients/designers, teachers/students and naive/mature agents) and

the total number of agents.

Zf:l ni X (n; —1)
N x (N —1)

Isp=1-— (12)

74 Chapter 3 Computational Model

k
N=>n (13)

Isp denotes Simpson Diversity Index, which ranges between 0 and 1. The diversity
is greater when the value is higher. n; is the number of Object ¢ while N is the total

number of all objects. k is the number of object-types.

The diversity of utterances and representations (Bird et al., 2009) and entropy (Kan and

Gero, 2009) can also be evaluated.

3.4.5 Efficiency

Efficiency and fluency are not necessary for measuring P-creativity. But if the same
creative result was generated by two agents, and agent A spent less time or used fewer
resources or a more concise method than agent B, agent A is more likely to realise

H-creativity.

Individual efficiency refers to the speed with which an agent generates rules associating
utterances with topics, and instances (i.e., the shortest time spent generating interesting

concepts and the degree of interestingness).

Societal efficiency can be evaluated by measuring the speed of social development such
as the speed of accumulating and updating domain knowledge as well as its transmis-
sion speed, e.g. fluent communication among individuals. Societal efficiency may be
affected by the rules of communication between agents, and different structures of or-
ganisations such as hierarchical, flat or mixed structures (see Section 6.1). In terms of
the DIFI framework, societal efficiency depends on the speed and span of transforming

and transmitting information among individuals, filed and domain.

3.4.6 Conclusion

Computational creativity can be evaluated by measuring the novelty, appropriateness,
influence, diversity and efficiency of both results and processes at individual and social
levels. Suitable novelty, i.e., the combination of novelty and appropriateness, is the

primary criterion for evaluating creative design briefs and design works.

In this thesis, hedonic functions related to the Wundt curve are used to evaluate similar-
yet-different works in the experiments, Ambiguity (see Section 5.1) and Clique Forma-
tion (see Section 6.3). Cosine similarity is used to measure the differences between
compositional topological relations of two rectangles to evaluate the utility of HRRs

in the experiment, Compositional Representation of Rectilinear Relation (see Section

Chapter 3 Computational Model 75

4.2). Inverse weighted random choice is utilised to select interesting incongruent art-
works in the experiment, Incongruity (see Section 5.3). The diversity of artworks is
evaluated by calculating the number of collected shapes and their types with different
selecting-thresholds in the experiment, Compositional Language for Shape Combina-
tion (see Section 4.3). Social creativity is evaluated by analysing gaming times in the
experiments, Compositional and Holistic Language (see Section 4.1) and Education in
Guessing Game (see Section 6.2); and by measuring discrimination, consistency, and
density of utterances in the experiment, Compositional and Holistic Language (see Sec-
tion 4.1), as well as the average max degree of graph networks, i.e., the average of all
agents’ greatest numbers of connections of a node (meaning or utterance) to other nodes,
in the experiment, Ambiguity (see Section 5.1). Cultural creativity is evaluated using
a distance map to measure the hierarchical relations of agents forming cliques in the

experiment, Clique Formation (see Section 6.3).

3.5 Multi-Agent Simulations

Multi-agent simulations consist of multiple software programs, called agents, that inter-
act with each other and environment (Wooldridge, 2002). Multi-agent systems can be
used to solve problems that are difficult for an individual agent or a monolithic system
to solve. Most of the following experiments use multi-agent simulations with the agents
using neural networks to engage in language games. In a multi-agent environment, each
individual agent follows a set of unique rules for the generation and evaluation of works
(designs/artworks) while the shared domain rules are contributed by all agents, in par-
ticular expert agents (Wiggins, 2006a). The domain rules can also be distributed to
each agent. The result of each game is evaluated by the participating agents to inform

how their rules of generation and evaluation may be adjusted and changed.

Multi-agent simulations can be used to test the results of different strategies of choosing
various probabilities by different agents who may be highly desirous of extremely novel
compositions or may only require a slightly different composition based on its experiences
and goals. Unusual compositions may be related with imagination, which is thinking
about concepts that are not present in the context, e.g. the context provided in the

guessing game, but associated with the context.

3.5.1 Self-Organisation and Collective Intelligence

Multi-agent simulations are based on self-organisation through which emerging complex
behaviours that represent more intelligence than that of the predefined behaviours (Flo-
reano and Mattiussi, 2008). To make a multi-agent simulation successful, the evolution

of a complex system requires some constraints. Initially, several simple but necessary

76 Chapter 3 Computational Model

constraints are important for coordinating agents’ behaviours, since these constraints
can both inhibit and propel different activities which support a succession of recursive
responses to solve problems. Guidance from these constraints would lead to the max-
imisation of rewards for some structures. When the basic structure is established, the
regularly accumulated historical and cultural resources would take the main role in the
evolution of a complex system such as language (Clark, 1997). Given the interaction
with environments, open-ended artificial evolution is similar to reinforcement of neural
networks to exploit existing resources and explore new space. The evolution of language
is affected by both the communication between individuals and the interaction with

external environments (Clark, 1997).

As a type of social intelligence, collective intelligence has several advantages resulting
from the dynamic interactions through bottom-up and top-down processes. Each agent
gradually receives the whole map of information via communication. In other words,
agents might obtain an overall global perspective by sharing their local views. Hence, not
only is the precision of the overall solution increased by sharing results, but results could
also be received more quickly by sharing solutions, and new tasks can be completed more
efficiently. As a kind of collective intelligence, partial global planning has three aspects:
(1) each agent has its own goals and short term plans; (2) goals and plans interact
via information exchange; (3) the activities of agents could be better coordinated by
altering local plans (Wooldridge, 2002). Multi-agent decision making involves making
group decisions, forming coalitions, allocating scarce resources, bargaining (negotiation)
and arguing based on multi-agent interaction with its logical foundations (Wooldridge,
2009).

Multi-agent simulation is also based on the principle of the transformation between part
and whole (Clark, 1997). The whole is composed of numbers of parts whose interactions
contribute to the overall behaviour, which could also affect the behaviour of each part.
The stability of the whole depends on the dynamic balance between two sets or multi-
sets of forces that influence and maintain each other. The meaning can change even if
the form does not because the environment is dynamic as the results of both globali-
sation and localisation. Multi-agent simulation is the exchange of information between
different local settings and dynamic nodes. The relations between games and agents
are the relations of global and local patterns from the perspective of a graph network,
which could be a large hierarchical neural network, in which society and individuals are

analogised to brain and neurons.®

8A type of graph network has been developed with hash tables and utilised in the experiments,
“Incongruity” and “Extensibility and Other Features”

Chapter 3 Computational Model 77

3.5.2 General Implementation of Simulations

The simulations in this thesis aim to explore the role of grounded language played for
design in artificial creative systems. The process of simulation is illustrated in Figure
3.6. Firstly, a game environment is initialised by setting the number of agents, context
size, the number of designers for each generation game, the success thresholds of guessing
games and generation games, minimal game runs and maximal game runs. Then the loop
of guessing games is implemented. when the success rate of guessing games reaches its
threshold, the loop is stopped and new loop for generation games are implemented. After

the success rate of generation games gets to its threshold, the simulation is completed.

Initialisation

Guessing Game

success_rate > threshold?

Generation Game

success_rate > threshold?

FIGURE 3.6: The Process of Multi-Agent Simulation for Evolving Languages

The agents in these simulations have the ability to produce simple utterances and their
combinations, assess the utterances generated by other agents or themselves, and use
these utterances to generate new designs and evaluate them. Through simulation, arti-
ficial languages may evolve via neural networks with distributed representations. Goals
can be fed to language games for specific curiosity such as incongruence, exaggeration

and elaboration.

Colours, shapes and geometric relations are used as sample-subjects. Numerous topics
can be generated based on different weight settings and random variations of the sam-

ples. Agents generate utterances to represent new topics which could become designs

78 Chapter 3 Computational Model

or artworks. The many-to-many mappings between utterances and meanings (i.e., top-
ics) evolve through repeated language games. In guessing games, if 70% to 80% of
communication succeeded, i.e., most of associations between utterances and meanings
are shared by agents, they can start playing generation games to generate requirements

(i.e., new utterances) and new designs based on the shared languages.

In the simulations, the associations between utterances and their represented design
features, relations and combinations are strengthened or weakened through repeated
language games. Consequently, some representations become knowledge stored in the
domain for training next generations. A group of agents would prefer a certain set of
combinations and evolve particular representations that are likely to develop a culture

based on their shared languages forming a clique.

3.5.3 Agents’ Functions

To satisfy the requirements of the multi-aget simulations for evolving languages, a num-
ber of functions are developed for agents to play language games. For guessing games,
agents are capable of selecting topics from contexts, generating utterances to represent
the topics, and guessing topics according to their related utterances and contexts. To
save memory and build up relations between different topics, the topics need to be cat-
egorised. Each category may be associated with a few of weighted utterances. These
associations can be regulated as association rules stored in agents’ long term memories.
The methods of categorisation can be artificial neural networks or the usage of general

prototypes and tolerances.

For generation games, agents should be able to generate compositional utterances repre-
senting certain design briefs as requirements, generate designs according to the require-
ments, and select designs by the aid of certain evaluation technologies such as hedonic
functions. To organise and process compositional meanings and utterances, a number
of rules based on context free grammar may be developed. Compositional utterances
can be generated by tracing forward rules to expansions, then mapping the expansions
to relevant utterances by the function named production. On the contrary, new designs
could be generated by parsing the utterances to terminal meanings, which could be
traced backward to certain rules, then tracing forward these rules to get new terminal
meanings. In addition, some hierarchical relations could be stored in graph networks,

and new designs could be generated by tracing edges through different paths.

To realise the above functions and some communication strategies, short term memory
(STM) and long term memory (LTM) are used by each agent. The former is mainly

used to store the last communication histories (see Algorithm 3) such as the last ten

970% to 80% is suitable for agents to share a common language while retaining some ambiguity for
creative actions in the following generation games.

Chapter 3 Computational Model 79

results of playing language games with other agents. This information can be used to
select its partners for next language games that has been used in the simulation of clique
formation (see Sec. 6.3). And STM is also utilised to store the keys of active rules and
related active expansions, and the keys of active terminal meanings and related active
utterances for un/learning them at the end of each language game. The latter, long
term memory, is utilised to not only store categories generated by the evaluation based
on general prototypes and tolerances/variances or artificial neural networks such as Self-
Organising Map, the network based on Adaptive Resonance Theory, or Growing Neural
Gas, but also store association rules and instances of topics and their related utterances.
Association rules include the associations between meanings/categories and utterances
such as {small:[(0.37,”qe”),(0.09, "po”),(0.98, "hu”)]}, the associations between rules
and expansions such as {rule:compoSize, expansions: [(0.34 very size), (0.12 size very),
(0.45 size size)]}. The numbers in the rules are the weights of associations. The instances
contain all accepted associations between topics/designs and utterances with frequency

which can be used to select familiar utterances.

The abstract structure of an agent’s functions is illustrated in Figure 3.7. The proce-
dures of related functions are described in Appendix A including primary functions, the

functions for playing guessing games and the functions for playing generation games.

accept | reject

T
1
i
YYW V¥

learn [unlearn

requirement

FI1GURE 3.7: The structure of an agent for playing language games

In Figure 3.7, “m” is meaning, which could be the category of selected topic from context,

the category of guessed topic, or the category of design. “u” is utterance, which may be
the name of selected topic or the design brief of client-agent’s requirement. The pair of
“m” and “u” is the active associations between meanings and utterances, Aa(m,u). “r”

is rule while “e” is expansion. the pair of “r” and “e” is the active associations between

80 Chapter 3 Computational Model

rules and expansions, Aa(r,e). Both Aa(m,u) and Aa(r,e) are stored in Short Term
Memory (STM). “M” is a set of collected meanings while “U” is a group of accumulated
utterances. “R” means rules while “E” means expansions. The associations of “M” and
“U”, A(M,U), and the associations of “R” and “E”, A(R,E), are stored in Long Term
Memory (LTM). A(M,U) and A(R,E) are the collections of a number of A(m,u) and
A(r,e) respectively through language games while A(m,u) and A(r,e) are generated in

each language game or extracted from A(M,U) and A(R,E).

The structure of an association between a meaning and utterances is A(m,u) = {meaning,
a number of weighted utterances, prototype, tolerance}. For example, the association
of small size and utterances could be {small: [(0.37,”qe”),(0.09, "po”),(0.98, "hu”)],
prototype:0.2, tolerance:0.2}. As can be seen from this example, a weighted utterance
= [weight, utterance]. In addition, a meaning can not only be a unit-meaning repre-
sented by a unit-utterance but also be a combination of unit-meanings represented by a

compositional utterance, i.e., a sequence of unit-utterances.

The structure of an association of a rule and expansions is A(r,e) = {rule, a number
of weighted expansions}. For instance, the association rule of compositional size could
be {compo-size: [(0.34, very, size), (0.21, size, very), (0.27, size, size)]}. The number
of recursions should be considered for some rules such as {very: [(0.01, very, very, (1
2))]}, which is limited with max-depth 2: “very” — “very very very very”. 1 means this
rule has been used once: “very” — “very very”. Thus a weighted expansion = [weight,

expansion, max-depth]. An expansion is a set of sub-rules or a number of unit-meanings.

The procedures of playing a guessing game and a generation game are illustrated with
solid arrows and dashed arrows respectively (see Fig. 3.7). Solid black arrows represent
the flow of selecting topic from context (see Algorithm 31, 32, 33) and naming the
topic (see Algorithm 34) by playing the role of speaker. Solid red arrows show the
procedure of guessing topic from its name and context (see Algorithm 35), and learning
(see Algorithm 25, 27) or unlearning (see Algorithm 26, 28) the game result by playing
the role of listener. And solid blue arrows direct the flow of evaluating guessed topic by
comparing it with “m” which may be the selected topic or category, and learning (see

Algorithm 25, 27) the succeeded game result by playing the role of speaker.

Dashed black arrows display the process of generating requirement (see Algorithm 36) by
playing the role of client. The start point can be the combination of existing utterances
(see “U” in Fig. 3.7) or generating a compositional prototype by tracing forward the
associations of rules and expansions (see “R” — “E” — “M” in Fig. 3.7). Dashed red
arrows represent the procedure of generating deign for the requirement (see Algorithm
37) and learning (see Algorithm 25, 27) or unlearning (see Algorithm 26, 28) the game
result by playing the role of designer. If the rules of Context Free Grammar, i.e., the
associations of rules and expansions are used by tracing backward the meanings parsed

from requirement to certain rules (see “M” — “E” — “R” in Fig. 3.7), then tracing

Chapter 3 Computational Model 81

forward the rules to new meanings (see “R” — “E” — “M” in Fig. 3.7), interesting novel
design could be generated. Dashed blue arrows instruct the procedure of evaluating
design (see Algorithm 38, 6), and learning (see Algorithm 25, 27) the succeeded game
result by playing the role of client. At the end of each language game, long term
memory (LTM) mainly including the associations between meanings and utterances and

the associations between rules and expansions are updated.

3.5.4 Simulation with Graph Networks

A multi-agent simulation can be implemented using graph networks to store the structure
of simulation, run the simulation and evaluate the results. Both the environmental
settings such as the context of subjects and population, and the memories of agents
related with the communication recording, representations of design prototypes with the
association between topics and utterances, and context free grammar rules for generating
designs and utterances can be stored in graph networks. For example, some edges of
the networks are the rules of connecting nodes of operators and operands to generate
and expand new designs. The storage of simulation using graph networks has been

implemented in the experiment, Extensibility and Other Features (see Section 5.4).

Besides storing data, graph networks can be used to run simulations by selecting and
implementing functions using conditional edges. For example, functions and their input
and output are represented as nodes while conditions for filtering functions and con-
necting or disconnecting different functions are represented as edges. This can be easily
realised using s-expressions because they take functions (operations) as data (e.g. ‘(let
((n (car (get-hash-value ,g ’(nodes b input))))) (if (< n 10) (incf n) (progn (remhash
'ba (get-hash-value ,g ’edges)) n)))). A test of running functions in a graph network is
presented in Algorithm 2. Two nodes ‘a and 'b are added in a graph network. They
are connected with edge('a,’b) and edge(’b, a) that means an infinite loop occurs as
'a =" b —" a —... To prevent from the infinite cycling, some functions are added into
the nodes, For node ’a, its input is updated from the output of node ’b, and its output
maintains the same as the first item of its input by running its own function. For node
'b, its input is updated from the output of node 'a, and its output is updated by running
its own function. Each time, the output is increased 1, when it reaches 10, edge('d, a)
is removed that breaks the cycle ‘a-'b-a and the tracing process is stopped. Thus the
loop is broken after running 10 times via implementing the functions embedded in the
nodes. The related algorithms of graph networks are listed in Appendix B. More prac-
tical implementations of integrating functions in the graph networks would be explored

in future work.

After completing simulations, the results can be evaluated using graph networks. For
example, the degree of instances is the number of associations between design prototypes

and utterances. The centrality of a network could be used to uncover some mechanisms of

82 Chapter 3 Computational Model

Algorithm 2 Running Functions in A Graph Network

1: procedure RUNFUNCTIONSGN
2: g < makeGraph()
3: g < addNode(g, 'a, {"input : [0], function : (return "input[0]), 'output : 0})
4: g + addNode(g, 'b, {"input : [0], ' function : (n < input[0], if n < 10 : n +
n+ 1, else: removeEdge('ba, g['edges]), endlf, return n), ‘output : 0})
g + addEdge(g, 'ab, ['a, b))
g < addEdge(g, 'ba, ['b, a])
trace < traceForwardNodes(g, ['b])
return trace
end procedure

social creativity. The evaluation using graph networks has been successfully implemented

in the experiment, Ambiguity (see Section 5.1)

3.6 Machine Learning

Topics are categorised using machine learning to find unusual and interesting concepts in
the evolution of artificial languages. Compositional languages evolve at a sociocultural

1'° using both short- and long-term memory'! related with three types of artifi-

leve
cial neural networks: Self-Organising Map, the network based on Adaptive Resonance

Theory, and Growing Neural Gas combined with probability theory.

3.6.1 Short Term Memory

Short term memory (STM) is used to store flexible, sensitive and dynamic data facil-
itating adaptation to real-time changes. Timely information such as current activated
CFG rules in the games used to explore incongruity (see Sec. 5.3) and extensibility (see
Sec. 5.4) can be stored in STM. STM is also used in the simulation, Clique Formation
(see Section 6.3), to adjust communication preferences simultaneously according to the
last seven number of gaming results with each agent (see Algorithm 3). In other words,
an agent’s success rates of recent language games can be stored in its STM for selecting

whom to play with in next language game.

1°To model a sociocultural system, ecological-adaptation is realised by both guessing games (see
Section 3.3.1) adapting to the environment and generation games (see Section 3.3.2) influencing the
environment. Firstly, a number of objects in context are categorised and named, and the categories and
names are adjusted and shared among agents through guessing games; then the agents generate new
utterances based on their shared languages to drive the production of novel designs through generation
games, some novel designs would become new parts of the environment. In addition, historical-diffusion is
reflected by the communication between mature agents and naive agents (see Section 6.1 and 6.2) and the
acculturation of multi-cultures influenced by the tolerance of agents and the number of communications
(see Section 6.3).

" Communication preference and categorisation are implemented by storing and updating data in
short term memory and long term memory, respectively.

Chapter 3 Computational Model 83

Algorithm 3 Updating Short Term Memory

1: function UPDATESTM/(stm, gamingResult, other Agent)

2 if other Agent ¢ hashKeys(stm) then

3 stm[other Agent] < [0,0,0,0,0,0, 0]

4: end if

5 stmOA < stmother Agent][1 :] > remove the first item of stmOA

6 stmOA « append(stmOA, gamingResult) > add new gaming result at the end
of stmOA

7: stm[other Agent] < stmOA

8: return stm

9: end function

3.6.2 Long Term Memory

Long term memory (LTM) is for storing relative stable information which are filtered and
categorised compared with that stored using short term memory (STM). STM is capable
of responding timely change of communication and storing provisional information which
may be not necessary to be retrieved in future. On the contrary, LTM is responsible
of collecting information over a long period of time for evaluating current results based
on previous categorised data and predicting future trends. It is important for curious
agents to grow from naive to mature, and develop complex networks for dealing with the
environmental change on a macro-level using LTM, which is partly supported by STM

providing raw information and the results of timely responses.

In this thesis, LTM is operated using neural networks including Self-Organising Map
(SOM), the network based on Adaptive Resonance Theory (ART), and Growing Neural
Gas (GNG) for categorisation. The categorisation with prototypes can be adjusted by

setting different tolerances.

3.6.2.1 General Neural Networks

Self-Organising Map (SOM) is used as a general neural network to map utterances
on objects as well as their compositions. Categories and relevant nodes (prototypes)
are continually being adjusted to map samples such as 2D coordinates. For example,
in the simulation, Compositional Representation of Rectilinear Relation (see Section
4.2), several utterances compete to signify a given geometric meaning. Both utterances
and geometric meanings are represented by HRRs using high dimensional vectors. The
network develops systematically regular mappings between meanings and utterances

through a number of generations.

The combination of HRRs and SOM could be an explanatory mechanism for both lan-
guage evolution and acquisition due to the potential of neural-like representations for

addressing the symbol-grounding problem (Levy and Kirby, 2006). The generated SOM

84 Chapter 3 Computational Model

would be taken as an attractor and trigger to generate new SOMs by mutating, crossing-

over, mirroring and reversing etc.

In SOM, the number of nodes (i.e., neurons or units), however, is fixed, which limits the
function of categorising a continuously growing data space. To address this issue, some

extensible neural networks are implemented.

3.6.2.2 Extensible Neural Networks

Extensible Neural Networks used in this thesis are the network based on Adaptive Res-
onance Theory (ART), and Growing Neural Gas (GNG).

ART network (Grossberg, 1976) is applied to the categorisation of multi-dimensional
data consisting of different topics such as colours and shapes, and their relations. The
advantage of ART is that it not only retains existing categories but also adds new
categories for unfamiliar input that is useful for categorising the growing number of

utterances and meanings generated in language games.

GNG is based on Self-Organising Map but has the ability to extend categorisations
dynamically by adding more neurons when new input surpasses the threshold of tolerance
of existing neurons (Fritzke et al., 1995). It has advantages over both SOM which is not
extensible, and ART which lacks the ability to predict unseen situations based on the
inputs (Saunders, 2002).

3.6.2.3 Prototype and Tolerance

The number of categorisations is not only determined by the scale of input data but also
affected by the tolerance of a neural network. In this thesis, the change of tolerances
and generated prototypes is regulated in the normal range [0,1], which can be applied
using the probability density function of truncated normal distribution (see Fig. 5.18
and Fig. 5.19) based on probability theory.

The degree of “similar-yet-different” can be adjusted by setting different tolerance values.
Each prototype is the middle point of a fuzzy range (Zadeh, 1996) while the width of the
range is determined by tolerance. These fuzzy ranges may overlap each other. With the
aid of fuzzy sets, the boundaries of initialised categories become flexible. In addition,
fuzzy categorisation may be used to represent the ambiguous meanings of different sizes,
such as “very small” or “large”. The primary representations can be developed via
the evolution of holographic reduced representations of number 0 to 10 mapping to the
range [0,1] for fuzzy logic and categorisation. The overlap of these categories could be
the source of creativity. Further, mapping one feature with another feature belonging

to different categories could be accomplished by matching, swapping and displacing

Chapter 3 Computational Model 85

relative degrees of these features, e.g. “red”: D gour(0.1) — “triangle”: Dgpape(0.1).
Exaggeration may also be implemented, e.g. “very red”: Di,odifier(0.9) @ Deojour(0.1)
and “little red”: Dymogs fier (0.1) @ Dopour(0.1).

Hierarchical categorisations can be developed by setting up different tolerances of neu-
rons to a neural-network with various levels. A neuron with more tolerance is looser
and more ambiguous that is capable of covering more areas with fuzzy boundary. By
contrast, a neuron with less tolerance is more accurate and stricter that is good at differ-
entiating meanings with small differences. For example, three levels of neural networks
can be developed by dividing neurons into three parts with different tolerances—0.1 (ac-
curate), 0.3 and 0.5 (loose)—thus allowing concepts to be connected by more tolerable
neurons, and differentiated by less tolerable neurons. An application of this method
could be categorising sizes on different levels (see Table 5.20). Further, different cate-
gorisations for the same input data could be realised by the aid of multiple tags related

to the attributes of quality and quantity.

3.7 The Methods of Evaluating Interest

The methods of evaluating the interestingness of designs and utterances in this thesis
are using hedonic functions (Saunders and Gero, 2001a) and graph networks (West
et al., 2001). Hedonic functions include linear hedonic function and nonlinear hedonic
function based on the Wundt curve (see Fig. 3.8). Several Wundt curves with different
extrema and different points of inflection, or only part of a Wundt curve, such as reward
or punishment, can be utilised to evaluate interestingness (see Algorithm 4). Graph
networks can be used to construct the relationship between utterances and meanings (e.g.
design prototypes), and evaluate the change of their structures, specifically in relation
to new utterances, novel meanings and new links between utterances and meanings in

language games.

The calculation of the hedonic value of novelty can be implemented using Algorithm
4. Given novelR = 0.25, novelP = 0.5, maxR = 0.85, mazxP = 0.95, pR = 2, pP =
2, scale = 10, the Wundt curve in range [0,1] can be generated as Figure 3.8. novel R and
novel P determine the x-coordinate of peak-point, i.e., preferred novelty, of the Wundt
curve. The relationship between them is novel R < preferredNovelty < novel P. And
the distance between novelR and novel P affects the shape of the peak area, which
becomes flat when the distance increases, whereas it becomes sharp when the distance
decreases. max R is the max value of reward while max P is the max value of punishment.
Too novel design could be evaluated as negative interesting design because maxP >
maxR. The smoothness of the curve is influenced by pR and pP. Small pR and pP

make the curve very smooth even flat.

86 Chapter 3 Computational Model

5
a' =T Reward
>
)
= 05}
(]
)
w
I
O b—==C Interest
N
N\
AN
\
N
\
\
\
0.5} k
\
\
\
N\
N
\\
RN Punish
-1 1 - o _~__l _________
0 0.2 0.4 0.6 0.8 1
NOVELTY

FIGURE 3.8: The Wundt curve

Algorithm 4 The Wundt Curve

function WuNDTCURVE(novelty, novel R, novel P, max R, max P, pR, pP, scale)
novelty < novelty X scale
novel R < novel R X scale

1:
2
3
4: novel P < novel P X scale

5: RO <+ mazR/(1 + exp(pR x novelR))
6 PO < maxP/(1 + exp(pP x novelP))
7
8
9

R <+ mazR/(1 + exp(—pR x (novelty — novel R))) > Key line

P <« maxP/(1 + exp(—pP X (novelty — novel P))) > Key line

: R+ R— RO > R = 0 when novelty =0
10: P+ P—-P0 > P = 0 when novelty = 0

11: return R — P
12: end function

If a designer-agent uses a hedonic function, it will motivate the search of the space of
possible designs to locate novel designed objects which can be measured by the distance
from a set of prototypes constructed from previously generated patterns (Saunders,
2011). Random combinations of words might produce new ideas and questions. These
ideas could be realised by agents fitting these words into a particular design space, which
can be evaluated using hedonic functions. It is possible to integrate language games with
models of individual and social creativity without undermining the grounding of words

for describing works within an evolving language (Saunders, 2011).

Some features of a graph network such as degree and centrality could be used to evaluate
interest. To evaluate the interest of an artificial language, a network of the language
should be generated by connecting the nodes representing meanings and utterances.
The connections are many-to-many because a meaning can be represented with several
utterances while an utterance can represent several meanings. The degree of a node is
the number of edges connecting the node with other nodes. The difference between the

highest degree and the lowest degree, as well as average degree, may be used to evaluate

Chapter 3 Computational Model 87

novelty and appropriateness. The centrality of the nodes, such as closeness centrality or

degree of centrality, can be measured to find the most interesting nodes.

3.7.1 Variation of Wundt Curve (Sine Curve)

The Wundt Curve can be simplified to a sine curve [0,1] for convenience in computation
of dynamic change of interesting peak-points (see Fig. 3.9 and Fig. 3.10). Preferred
similarity (i.e., the opposite of novelty) can be easily changed by adjusting the peak-
point of sine curve (see Fig. 3.10). And threshold is added into sine curve to constrain
the selecting range (see Fig. 3.9) that can take the role of negative impact of excess

novelty shown in the Wundt Curve (see Fig. 3.8).

In sine curve, novelty is evaluated by measuring the similarity between design and pro-
totype. And similarity is regulated into range [0,1]. Interesting design can be selected
by checking if the measured similarity was in the range of client-agent’s preferred sim-
ilarity. So it is not necessary to consider the negative impact of excess novelty, which
may also be realised in sine curve by adjusting the range of y-axis: INTEREST from
[0,1] to [-1,1].

G Threshold
[T R N
o AS_min
B oosl
=

0.6

0.4

0.2} PS: Preferred Similarity

AS: Acceptable Similarity
0 L L L L
0 0.2 0.4 0.6 0.8 1

SIMILARITY

FIGURE 3.9: Sine curve (preferredSimilarity=0.7, selectionThreshold=0.9)

As can be seen form Figure 3.9, the preferred similarity (peak-position) of prototype
and design is set to 0.7, which means that the difference between original object and
new works should be only 0.3; the selection threshold is set to 0.9, which means that

the tolerance of preferred similarity is 0.288 (min:0.560, max:0.848).

The algorithm of sine curve [0,1] used to compare the similarity of prototype and design
(x denotes similarity) with the preferred similarity (zo denotes preferred similarity) is
described in Algorithm 5.

The similarity of prototype and design, especially their outlines, can be measured using
OpenCV (Open Source Computer Vision) (Bradski et al., 2000). If the score obtained by

88 Chapter 3 Computational Model

1.0

INTEREST

0.8

0.6 -

0.4}

0.2}

0.0 0.2 0.4 0.6 0.8 1.0

SIMILARITY

FIGURE 3.10: Sine curves

Algorithm 5 Sine Curve

1: function SINECURVE(z, z)
2 A+ 1/2

3 w4 —7/2

4 D+ 1/2

5: if zg < 0.5 then
6 x4+ (1—2xuz)

7 To+— 1—x9

8 end if

9: w 4+ /X0

10: return A x sin(w X z +) + D
11: end function

comparing the measured similarity with the preferred similarity via sine curve surpasses
the selection threshold, the design becomes a candidate. The design with the highest
score among the candidates is selected as the winning design. The procedure of selecting
design using sine curve is described in Algorithm 6. In this algorithm, the given value
of threshold and that of preferredSimilarity, and the calculated value of similarity and

that of score are all in range [0,1]. The Wundt curve can also be used in this algorithm.

To test the impact of various evaluation criteria on design creativity, it is useful to
combine preferred similarity with selection threshold to simulate the dynamic change of
preferred similarity from small difference to great difference by gradually adjusting the
preferred similarity from 0.9 to 0.1 (see Fig. 3.10). At the same time, the tolerance can

be narrowed or expanded by increasing or decreasing the selection threshold respectively.

3.7.2 Euclidean Distance and Cosine Distance

Both the Euclidean distance and cosine distance are used to measure the distance be-
tween two numerical arrays in the same dimensions, which denote topics or designs. If

the difference of the whole change of the data is more important than the difference

Chapter 3 Computational Model 89

Algorithm 6 Interesting Choice

1:
2
3
4
5:
6
7
8
9

10:
11:
12:
13:

14:
15:
16:
17:
18:
19:
20:
21:
22:

function INTERESTINGCHOICE(designs, prototype, threshold, di f ferencepe fer, curve)

candidates < emptyList
for design in designs do
d < dif ference(prototype, design)
if curve = wundt then
dif ferencereward, dif ferencepunisn < dif ferencepreyer
score < wundtCurve(d, dif ferencereward, dif ferencepunish)
else if curve = ’sine then
similarity < 1/(d + 0.000001)
sSIMilaritypre fer < 1/dif ferenceprefer
score < sineCurve(similarity, similarityprefer)
end if
if score > threshold then
candidates < append(candidates, [score,design])
end if
end for
if candidates then
winningDesign < weightedChoice(candidates)
else
winningDesign <— False
end if
return winningDesign

23: end function

of each item, cosine distance may be better than the Euclidean distance. For exam-
ple, given a = {0.2,0.4,0.1,0.6}, by = {0.3,0.3,0.2,0.5}, bs = {0.3,0.6,0.3,0.9}, the
results of their cosine distances and the Euclidean distances are D¢pgine(a, b1) = 0.034,
Dcosine(a, ba) = 0.008, Dpycidean(a, b1) = 0.2, Dpyciidean(a, b2) = 0.424. As can be seen

from these results, the cosine distance between a and b1 is greater than that between

a and by. They match the fluctuation differences (see Fig. 3.11) very well compared

with the results of the Euclidean distance. But the Euclidean distance can be used to

measure the accumulated distances between each pair of items.

0.9

a
bl
b2

VALUE

0.8

0.7

06

05 |

04

0.3

0.2

0.1

0 1 2 3
INDEX

FIGURE 3.11: The difference between Cosine distance and Euclidean distance

90 Chapter 3 Computational Model

To test the creativity of the evolved languages, besides the represented designs, symbol-
ised rules and utterances may also need to be evaluated using String Metric algorithms,
which include Levenshtein distance (Levenshtein, 1966) and Damerau-Levenshtein dis-
tance (Brill and Moore, 2000), Hamming Distance (Forney, 1966), Smith—Waterman
algorithm (Mott, 2005), Sgrensen-Dice coefficient (Duarte et al., 1999), Jaro-Winkler
distance (Cohen et al., 2003), and Most frequent k characters (Seker et al., 2014) etc.

3.8 Conclusion

The evolution of artificial languages for creative designing is based on the Domain-
Individual-Field-Interaction framework and implemented by following the processes of
representation, communication and evaluation. In the DIFI model, individuals play
the main roles of discovering new meanings, generating representations and developing
knowledge via the cycling of domain, individual and field. The procedure (i.e., repre-
sentation — communication — evaluation) is also a cycling process because it not only
continually updates and accumulates representations, exchanges information through
guessing games and generation games, but also maintains creativity and activity via
the evaluation of design briefs and design works using continually updated similar-yet-

different criteria.

The experiments described in this thesis are implemented in multi-agent simulations
to simulate the communication between speaker-agents (initiators) and listener-agents
(recipients) in guessing games and that between client-agents and designer-agents in gen-
eration games to evolve artificial languages for conceptual designing. In the evolution
of artificial languages, weighted associations between utterances and meanings, Holo-
graphic Reduced Representations and Weighted Context Free Grammar are utilised to
represent topics, designs and association rules. To evolve communication from random
selection to specific selection of players, short term memory is used to store and update
the newest successful or failed communications among agents. To categorise continuous
input samples or generated works during simulation, long term memory is adopted to
store categories, prototypes, association rules and instances and update them based on
several machine learning algorithms including Self-Organising Map (SOM), the network
based on Adaptive Resonance Theory (ART) and Growing Neural Gas (GNG). Inter-
estingness is evaluated using hedonic functions based on the Wundt Curve and its sine
curve variation with the measurement of difference between prototype and designs using

cosine similarity and the Euclidean distance.

The computational model is developed based on existing work including the DIFI frame-
work (Csikszentmihalyi, 1999), guessing games (Steels, 1998), generation games (Saun-
ders and Grace, 2008) and curious agents (Saunders, 2002). The contributions of this

thesis are listed below.

Chapter 3 Computational Model 91

e A process of evolving compositional artificial languages for creative design via the
combination of guessing games and generation games (see Fig. 3.6) is established

based on the framework introduced by Saunders and Grace (2008).

e A basic model of curious design agent (see Sec. 3.5.3) for exploring creative features
of language in design communication is built up based on curious agents developed

by Saunders (2002).

e Weighted Context Free Grammar (WCFG) (see Sec. 3.2.3) is developed to gener-
ate elaborated representations which could be interesting (i.e., unusual, strange,

incongruent) by the aid of inverse weighted random choice of rules.

e Interleaving Representation (see Sec. 3.2.2.3) is suggested to be an alternative of

circular convolution for more “accurate” representations.

e Sine Curve in range [0,1] (see Sec. 3.7.1) is developed for the convenience of

measuring interest based on the dynamic change of interesting peak-points.

e The evaluation of creativity (see Sec. 3.4) is established at two levels, individual
level and societal level. The measurement of individual diversity is developed using
Equation 9, 10, and 11.

e Some features of a graph network such as degree and centrality are used to evaluate
interest (see Sec. 3.5.4).

e Cosine distance rather than the Euclidean distance is suggested to be used when
the difference of the whole change of the data is more important than the difference
of each item (see Sec. 3.7.2).

Chapter 4

Evolving Compositional

Languages for Creative Design

Achermann et al. (2001) identified three aspects of compositional language: components,
connectors and compositional rules. Connectors are transformed to a part of more com-
plicated components via the evolution of compositional language towards hierarchical
structures with continuously generated new meanings and representations reflecting cre-
ative features such as ambiguity, scalability and extensibility. In brief, not only can the
extraction of meanings from objects be innovative but the composition of new mean-
ings and new descriptions in a hierarchical structure can be more creative. The rules
of connecting syntax and semantic ontology and the mechanism of evolving them to
complex networks can be realised via multi-agent simulations doing both “observation”

(discovering) and “thinking” (creating and rediscovering).

4.1 Compositional and Holistic Language

The aims of this experiment are to test whether compositional language is more efficient
and useful than holistic language in design creativity and to evaluate different methods of
topic selection. The difference between holistic language and compositional language is
related to different generation processes. For example, as holistic language, “small-red-
triangle” is obtained by finding the relevant part in three-dimensional space (axis-x: size,
axis-y: colour, axis-z: shape) directly. As a compositional language, “small-red-triangle”
is generated by combining the previously generated utterances “ba-lo-ke” related to
the meanings, “small”, “red” with “triangle”. The relationship between holistic and
composition could be explained as Gestalt, “the whole is other than the parts instead

of rather than the parts or more than the parts” (Roser and Hebela, 2015).

93

94 Chapter 4 Evolving Compositional Languages for Creative Design

4.1.1 Subjects

The subjects of this experiment comprise three sizes — small, medium and large, six
colours — red, yellow, green, cyan, blue and magenta, and five regular shapes — triangle,
square, hexagon, circle and star. 90 samples are generated by combining them (see Fig.
4.1).

VYRl EX] EXI ER 3 ¢

WYSE] EXI EXI EB 3 ¢

WYSE]l EX] EXI ER 3 ¢

A,‘Al‘o ..t **

FIGURE 4.1: The combinations of size, colour and shape

4.1.2 Implementation

The experiment is implemented using guessing games based on the DIFI framework to

test the effectiveness of both compositional language and holistic language (see Fig. 4.2).

Compositional & Holistic Language)

size color shape

SPEAKERS
LISTENERS

FIGURE 4.2: The Domain-Individual-Field-Interaction (DIFI) framework of evolving
compositional and holistic language

Six agents continue playing guessing games (see Fig. 4.3) to represent the combinations
of size, colour and shape with compositional utterances (see Table 4.1) and holistic ut-

terances, respectively, until the success rate reaches 70%. To test the impact of topic

Chapter 4 Evolving Compositional Languages for Creative Design 95

selections on the efficiency of language games, several methods of selecting topics are
adopted, including “random, common, different, confident and unconfident” (see Table
4.2). “Common” means selecting the most common one, which is the most difficult
to distinguish from others; “different” is the opposite of “common”; “confident” means
that the speaker-agent always selects the one it feels confident about, i.e., the associa-
tion between the selected topic and the related utterance is very strong in its memory;

“unconfident” is the opposite of “confident”.

TABLE 4.1: Compositional representations (size, colour & shape)

Association Feature (F) Attribute (A)

size small, medium, large
Meaning colour red, yellow, green, cyan, blue, magenta
shape triangle, square, hexagon, circle, star
Utterance vowel (V) consonant (C)

Compositional representation:

AsizerizeAcoloucholourAshaperhape — CsizeVsizeCcolour ‘/colourcshapev:@hape

Holistic representation:

AsizeFsizeAcolourFcolourAshaperhape — ChCLT‘()ChCLTl

TABLE 4.2: Topic selection

SelectTopic Random Common Different Confident Unconfident
Composition cRm cCn cDn cCt cUt
Holistic hRm hCn hDn hCt hUt

Existing utterances are recombined to generate novel utterances for testing the creativity
of compositional languages. For example, “reddish yellow” is the combination of “red”
and “yellow” relating to the holistic colour “orange”. In addition, if the order of a
sequence or the proportion of pigments is considered, “reddish green” could be different
from “greenish red” (see Table 4.3). In language games, the objects can be pairs of
coloured shapes such as “blue triangle and blue circle”, “green circle and red triangle”.
Agents evaluate the similarity or difference between each item of the compositional
objects to find relevant meanings such as the same colour (“blue”) and different shapes

(“triangle” and “circle”).

TABLE 4.3: The rules of combining colours

No. Rule Expansion
0 combine colour — (operator colour colour)
1 operator — gradiate / mix / blend
2 colour — red / green / blue
3 reddish green =~ — (operator red green)
4 greenish red — (operator green red)

96

Chapter 4 Evolving Compositional Languages for Creative Design

Guessing game for exploring composition

Listener(L)

1 [

Spea Ifer(S)

Context contains 8 random combinations of size, colour and shape
e.g. small-red-triangle, large-blue-circle,...

features: size, colour, shape

attributes_size: small, medium, large

attributes_colour: red, yellow, green, cyan, blue, magenta
attributes_shape: triangle, square, hexagon, circle, star

select(Context, preference) -> topic[S]
select a topic from Context with one of
the following preferences:
1.random
2.common: select the most similar one
by measuring similarity between each other
3.different: opposite to common
4.confident: select the one with totally
greatest weight of stored associations
5.unconfident: opposite to confident

if evolve compositional language?
filter/create(cAssociations[S], features) -> featureNames
e.g. cAssociations: the compositional associations
between features/attributes and weighted utterances.
{size: {"a":0.54, "0":0.03}, colour: {"e":0.12, "i":0.34},
shape: {"u":0.79, "a":0.35}, red: {"m":0.63, "f":0.02},...}
e.g. featureNames: ["a":size, "i":colour, "u":shape]
filter/create(cAssociations[S], topic[S]) -> attributeNames
e.g. attributeNames: ["b":small, "m":red, "k":triangle]
combine(attributeNames, featureNames) -> utterance
e.g. ["b","m","k"1&"a","i","u"] -> "bamiku"
else (evolve holistic language)
filter/create(hAssociations[S], topic[S]) -> utterance
e.g. hAssociations (holistic):
{small-red-triangle: {"xs":0.92, "cj":0.14},
medium-yellow-square: {"gj":0.02, "rx":0.67},...}
e.g. utterance: "xs"

topic[S]

utterance

_ topic[L]

loop 0 <=i < length(Context)
if evolve compositional language?
filter/create(cAssociations[L], features) -> featureNamesl[i]
filter/create(cAssociations[L], Context[i]) -> attributeNames[i]
combine(attributeNames[i], featureNamesli]) -> utterances[L][i
else (evolve holistic language)
filter/create(hAssociations[L], Context[i]) -> utterances[L][i]
if utterances[L][i] == utterance?
Context[i] -> topic[L]
return
if null(topic[L])?
mostSimilar(utterances[L], utterance) -> utterances[L][n]
map(utterances[L][n]) -> context[n] -> topic[L]

alt _/ [topic[L] == topic[SI?]
success -
learn(topicl[S], utterance)
learn(topic[L], utterance)
failure, topic[S] -

unlearn(topic[L], utterance)

learn(topic[S], utterance)

learn/unlearn composition:
associations[features, utteranceUnit],
associations[topicAttributes, utteranceUnit]
learn/unlearn holistic:

association[topic, utterance]

(un)learn

FIGURE 4.3: Guessing game of compositional & holistic language

4.1.3 Results

Four types of data—the number of games being played, discrimination, consistency, and

density of utterances— are collected and analysed.

Chapter 4 Evolving Compositional Languages for Creative Design 97

TABLE 4.4: The number of games being played

No. Type Sim1 Sim2 Sim3 Sim4 Sim5 Sim6 Sim7 Sim8 Sim9 Siml0 Mean
0 cRm 460 390 194 320 220 327 423 337 303 230 320
1 cCn 283 566 243 586 287 327 287 440 290 233 354
2 cDn 134 243 223 87 127 240 240 110 184 380 196
3 cCt 44 7 107 34 60 21 164 80 84 37 70
4 cUt 759 2466 3325 2383 4157 1092 1132 889 962 1218 1838
5 hRm 4496 4047 3827 3924 4287 4932 3834 3618 4446 4094 4150
6 hCn 4456 4283 4087 3312 3688 4047 3441 4310 4443 4177 4024
7 hDn 4167 4024 3788 3654 3744 3821 4014 3741 4030 4506 3948
8 hCt 380 483 476 530 423 430 453 480 453 387 449
9 hUt 264932 262633 329365 289109 291981 287604

4.1.3.1 The Number of Games Being Played

Data are collected on the number of guessing games being played in 10 types of simula-
tions (see Table 4.4). The results show that the guessing games evolving compositional
languages are more efficient than that evolving holistic languages (see Fig. 4.4). The
average cost of the former is 70 to 1838 runs while the average cost of the latter cost is
449 to 287604.

Although compositional language is more efficient than holistic language, in both simu-
lations agents need to play a large number of guessing games to reach the success rate,
0.7, when the speaker-agent selects an unconfident topic in each game. By contrast,
agents can reach the success rate by playing only a small number of guessing games
when the speaker-agent selects a confident topic in each game (see Fig. 4.5). This is
because it is easy to be successful when the speaker-agent selects the most familiar topic

to communicate with the listener-agent each time.

In the games of evolving compositional languages, “common” selection costs more times
than “different” selection to achieve success whereas both “common” and “different”
selections cost almost the same number of runs in the games of evolving holistic language
(see Fig. 4.5). This is because a holistic language takes every sample as an independent
topic, so it does not matter whether the selected topic is the most common or the most
different compared to other samples. A compositional language, by contrast, generates
each utterance representing different topics by combining their shared features. The most
common sample shares more similar attributes than the most different one compared
with other samples in context. Therefore, it is easier for the listener-agent to make

mistakes when guessing the common topic.

4.1.3.2 Discrimination

Discrimination refers to how much these 90 samples are distinguished from each other

by the evolved languages. The results show that all types of simulations surpass 75% of

98 Chapter 4 Evolving Compositional Languages for Creative Design

10 T T
+
10°¢ 5
10°L .
] =
= ;
~10%t £ 1
*
10°} g |
|
101 1 1
composition holistic

composition and holistic

FIGURE 4.4: The number of games being played (general composition and holistic)

10

10° 1

10 ¢ E

times

107 | E
=R =
i
cRm cCn cDn cCt cUt hRm hCn hDn hCt hut
composition and holistic

107

FIGURE 4.5: The number of games being played (detailed composition and holistic)

successful discrimination (see Table 4.5 and Fig.4.6). The average lowest result is ob-
tained for the “confident” topic selection in the compositional languages and the average
highest result is obtained for the “unconfident” selection in the holistic languages. The
former may be due to the pre-mature evolution of the compositional languages when
agents only play guessing games on familiar topics, and vice versa. Arguably, the most
interesting result is that random topic selection in the compositional languages obtains
the highest discrimination score of all selections in the compositional languages. This
might mean that topic selection without preference could get the most diverse topics
for evolving compositional languages since it reaches higher discrimination during the

simulation.

4.1.3.3 Consistency

Consistency refers to the extent to which agents share the same language. As can be seen
from Table 4.6 and Fig. 4.7, the results for most types of topic selections surpass 85%
consistency with the exception of the “confident” selection in both the compositional

languages and the holistic languages, which averages 73% and 36% respectively. The

Chapter 4 Evolving Compositional Languages for Creative Design 99

TABLE 4.5: Discrimination

No. Type Siml Sim2 Sim3 Sim4 Sim5 Sim6 Sim7 Sim8 Sim9 Siml0 Mean
0 cRm 0865 0.938 0906 0.917 0.844 0.99 0.938 0.813 0.896 0.854 0.896
1 cCn 0.885 0.813 0.865 0.771 0.792 0917 0.75 0.833 0.969 0.938 0.853
2 cDn 0792 0.844 0.865 0.896 0.781 0.802 0.75 0.792 0.854 0.823 0.820
3 cCt 0.833 0.771 0.875 0.813 0.823 0.823 0.771 0.802 0.781 0.813 0.810
4 cUt 0.906 0.844 0.875 0.771 0.844 0.875 0.771 0.906 0.844 0.833 0.847
5 hRm 0948 0.966 0.927 097 097 0.944 0979 0.953 0.978 0.931 0.957
6 hCn 0934 0921 0929 0.961 0.908 0.985 0.949 0.88 0.94 0.94 0.935
7 hDn 0948 0.961 0.927 0.959 0.94 0942 0955 0.938 0.961 0.942 0.947
8 hCt 0.985 0.964 0.978 0.957 0978 0.983 0974 0.966 0.976 0.976 0.974
9 hUt 0.985 1.0 0.994 0.998 1.0 0.995

1.05 T T T T T T

-= -
{IH
ER

BRI
Hh

discrimination
o
o
o
"
I
~1
.

wlb DT
I PE

+

I I
o7t
cRm cCn ¢Dn cCt cUt hRm hCn hDn hCt hUt

composition and holistic

FIGURE 4.6: Discrimination (composition and holistic)

cause of low consistency is probably that agents focus on playing guessing games with
familiar topics. When a speaker-agent meets a listener-agent who has the same familiar
topic as that selected by the speaker, it will be easy to achieve success, and vice versa.
Hence, some of the 30% failure rate may be attributable to those occasions in guessing
games on which the speaker-agent selects a confident topic on which the listener-agent is
not confident. Another reason for the low consistency of the holistic languages evolved
via “confident” topic selection could be their early-maturing evolution. The data show
that, on average, guessing games are played only 449 times before 70% success rate
is achieved. This is much less than the result for other selections evolving holistic
languages. However, cliques may be easily formed using the strategy of “confident”

topic selection.

4.1.3.4 Density of Evolved Language

The density of a evolved language refers to how many features (for composition) or sam-
ples (for holistic) are covered by the total utterances from all agents at the completion
of the guessing games. Results show that most types of topic selections in both the com-

positional languages and the holistic languages achieve 100% density with the exception

100 Chapter 4 Evolving Compositional Languages for Creative Design
TABLE 4.6: Consistency
No. Type Siml Sim2 Sim3 Sim4 Sim5 Sim6 Sim7 Sim8 Sim9 Siml0 Mean
0 cRm 0941 0.953 0.941 0.835 0.929 0.941 0.929 0.953 0.918 0.965 0.930
1 ¢Cn 0.929 0976 0918 0.953 0.953 0.941 0918 0.941 0.953 0.918 0.940
2 ¢cDn 0.871 0929 0.871 0.847 0.847 0.871 0929 0.835 0.859 0.906 0.876
3 cCt 0.718 0.718 0.847 0.659 0.753 0.565 0.835 0.824 0.776 0.612 0.731
4 cUt 0.918 0906 0.882 0.941 0.871 0.906 0.953 0.894 0.953 0.918 0.914
5 hRm 0.951 0.933 0.953 0.938 0.949 0.94 0.942 0.964 0.953 0.942 0.947
6 hCn 0.949 0938 0.933 0.947 0.929 0.947 0.931 0.949 0.94 0.956 0.942
7 hDn 0.956 0942 0.947 0.947 0.931 0.936 0.938 0.953 0.949 0.942 0.944
8 hCt 0.311 0.358 0.367 0.389 0.36 0.353 0.356 0.382 0.376 0.318 0.357
9 hUt 0.88 0.898 0.929 0.942 0.933 0.916
10— ‘
== = = =
09} gl l%l =l
o8l 1
>
E 07} 1
206} \ 1
8 —_
0.5} 1
0.4 |
=
cRm cCn cDn cCt cUt hRm hCn hDn hCt hUt
composition and holistic
FIGURE 4.7: Consistency (composition and holistic)
TABLE 4.7: The density of all agents’ utterances
No. Type Siml Sim2 Sim3 Sim4 Sim5 Sim6 Sim7 Sim8 Sim9 Siml0 Mean
0 cRm 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.000
1 cCn 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.000
2 cDn 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.000
3 cCt 1.0 1.0 1.0 1.0 1.0 0.99 1.0 1.0 1.0 0.941 0.993
4 cUt 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.000
5 hRm 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.000
6 hCn 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.000
7 hDn 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.000
8 hCt 0.996 1.0 0.998 0.998 0.994 0.998 1.0 1.0 1.0 0.996 0.998
9 hUt 1.0 1.0 1.0 1.0 1.0 1.000

of the “confident” topic selection which achieves 99.3% and 99.8% density respectively

(see Table 4.7). This may be mainly due to the early-maturing evolution of languages

when using “confident” topic selection. The “confident” selection only costs 35.7% and

11.4% of runs costed by the second lowest, “different” selection, in the compositional

languages and the holistic languages respectively.

Chapter 4 Evolving Compositional Languages for Creative Design 101

4.1.4 Conclusion

Compositional languages are more efficient than holistic languages regarding the num-
ber of games being played (see Fig. 4.4). Compositional languages may also be more
creative than holistic languages due to the ambiguity of the former is greater than that
of the later (see Fig.4.6, less discrimination means more ambiguity, which is a creative
feature of language). In the evolution of compositional languages, both “random” and
“common” topic selections are the winning strategies for the efficient and appropriate
development of artificial languages. This is because they spend smaller time-steps to
complete guessing games compared with the evolution of holistic languages and, at the
same time, they obtain higher discrimination and consistency of utterances as well as
higher coverage of topics compared with other topic selections in the evolution of com-
positional language. “Common” topic selection can be chosen if consistency is preferred
while “random” topic selection may be adopted if the capability of distinguishing topics
is preferred. Therefore, compositional languages are more effective and efficient than

holistic languages for evolving artificial languages.

4.2 Compositional Representation of Rectilinear Relation

To find useful methods of representing compositional geometrical shapes for the evolu-
tion of languages in creative design, a hybrid computational model composed of Holo-
graphic Reduced Representations (HRRs) (Plate, 1995) and Self-Organising Map (SOM)
(Kononen, 1990) are developed and tested. A similar model was used successfully by
Levy and Kirby (2006) in their experiment to develop regular mappings between mean-

ings and sequences.

Geometrical relations can be represented using associative representations, and be ex-
plored and enriched via machine learning to find new geometric relations based on the
matched “utterances” with basic geometric relations. Such hybrid system could be-
come an important part of the “brain” of a curious agent playing language games with
other agents in a multi-agent environment to develop artificial languages based on the

Domain-Individual-Field-Interaction framework (Csikszentmihalyi, 1999).

102 Chapter 4 Evolving Compositional Languages for Creative Design

4.2.1 Subjects

To simplify the experiments and focus on testing the possibility of transformation be-
tween geometric relations and compositional utterances, rectilinear areas’ (two dimen-
sions), rather than rectilinear volumes (three dimensions) are selected as the experimen-
tal subjects (see Fig. 4.8).

ec,c,

es,s, ac,c,

N
9

ac,s, as,s,

em,w, aM;,s.

am,s, am,m,

&

Vi) & |

ew,W,A as;s,A aw,s,A aw,m,A aw,w,A

19626969099 %.%%,

96269096 %:%%%

R

19626269692 %%%

R

96269696 %:%%%,

19026969 %% %%

RS
aw,c, aw,M,
aw,C,

FIGURE 4.8: The relations between two rectangles

4.2.2 Implementation

Holographic Reduced Representations (HRRs) and the artificial neural network, Self-
Organising Map (SOM) are utilised to implement the transformation from geometric

representations to generative utterances.

In the computational experiments of rectilinear areas, the default setting for each HRR
vector is the composition of 1024 (32 x 32) random numbers between 0 and 1. Both

geometric meanings and symbolic sequences are represented by high dimensional vectors

it is simplified from Rectilinear Volumes (Hannah, 2002) which is a classical design exercise for
organising boxlike geometries to realize various relationships between multiple forms that is very helpful
for novice students mastering the skills of space design.

Chapter 4 Evolving Compositional Languages for Creative Design 103

of real numbers generated using circular convolution. The geometric meanings are the
topological relations of two rectangles (see Equation 14) such as intersection or touch
while the symbolic sequences are the compositions of simple utterances (see Equation
15).

R(Tl,TQ) =85+ 711X Sp1 + 72 & Sp2 + Sq (14)

In Equation 14, r; and ro are the HRR vectors of two rectangles. Their relationship
R(rq,72) is represented with the combination of three attributes including sy, s, and s,.
s4 means sharing certain geometry such as edge or area; s, denotes sharing at least part
of each rectangle such as corner, side or a middle part; and s, identifies whether the two
rectangles share an axis. + is the addition of vectors while ® is the circular convolution

of a shape and its shared part.

U:CL'@Vll+Clj®V12—|—C2m+V2n (15)

In Equation 15, U denotes a compositional utterance, which is combined with two sets
of consonants (C1, C2) and two sets of vowels (V1, V2). Totally 144 utterances are
generated using this equation (also see Algorithm 9). These utterance-vectors are used as
the neurons of a Self-Organising Map with 12 x 12 network, which will be mapped to the
geometric-vectors, i.e., the HRRs of the geometric relationships between two rectangles
R(ry,7m2).

The utterance-vectors and geometric-vectors are matched using SOM (see Algorithm 7,
8 and Fig. 4.9). The initial settings of SOM are described as follows: initial radius
70 = \/Tineurons/2, initial learning rate Iy = 0.9, epochs = 40, and iterationsepocr, = 400.
Among them, Npeyrons 1S the number of neurons, i.e., units, used in SOM. They are 144
HRRs of compositional utterances distributed in a 12 x 12 network. After running SOM,
the network develops systematically regular mapping between the utterances and the

meanings of rectilinear relations (see Fig. 4.14).

4.2.3 Results

Through this experiment, the topological relations of two rectangles (see Fig. 4.8) are
successfully categorised via HRRs. Following HRRs, the representations of rectangular

relations are successfully matched with a number of HRR~utterances via SOM.

104 Chapter 4 Evolving Compositional Languages for Creative Design

Algorithm 7 Self-Organising Map

1: samples <— 18 HRR geometricVectors
2: units < 144 HRR utteranceVectors
3: Ty \/M/Q

4: initial LearningRate < 0.9

5: cateqoriesyecent < range(5)

6: timeconstant < epochs/In(rg)

7: dterationSepoch <— 400

8:
9:

epochs < 40
epoch < 0
10: do
11: epoch < epoch + 1
12: radius < ro X exp(—epoch/time onstant)
13: learningRate < initial LearningRate x exp(—epoch/(epochs — epoch))
14: for i =1 — iterationscpocn, do
15: sample < randomChoice(samples)
16: bmu < best M atchingUnit(units, sample)
17: for unit in units do
18: distance < EuclideanDistance(unit, bmu)
19: if distance < radius then
20: influence < exp(—distance/(2 X radius))
21: for j =1 — length(unit) do
22: unit; < unitj + in fluence x learningRate x (sample; — unit;)
23: end for
24: end if
25: end for
26: end for
27: categoriesyecent < rest(categoriesyecent)
28: newCategories < map(sample — best MatchingUnit(units, sample), samples)
29: cateqoriespecent < append(categoriesyecent, newCategories)

30: while (epoch < epochs) A (length(removeDuplicates(categoriesyecent)) 7 1)

Algorithm 8 Finding Best Matching Unit

1: function BESTMATCHINGUNIT(units, sample)

2 bmu <+ units;

3 distance0 < EuclideanDistance(unitsy, sample)

4 for i = 2 — length(units) do

5: distance < EuclideanDistance(units;, sample)
6

7

8

9

if distance < distance0 then
distance(< distance
bmu < units;
end if
10: end for
11: return bmu
12: end function

Chapter 4 Evolving Compositional Languages for Creative Design

105

Q8 &

HRRS of rectangular relat|ons (18 samples)

0000

S

ep
ep

OM

initial-radius r0 = sqrt(num_neurons)/2

ochs = 40
och-iterations = 400

initial-learning-rate LO = 0.9

Best Matching Units

@ awlw2A

amlm2

baceji |bacejo(b kiibacekol| t

O

aclc2

Yololo

\

/

bafeji

bafejo

XKfeki

bafeko| bageji |bagejo

) bah%i

bahej

bahekifbahek

cabeji

cabejo

cab&\

cabeko| caceji | cacejo cac+ caceko|cadeji

cadejo

cadeki|cadeko

D

cafeji

cafejo

cafeki

fcafeko| cageji |cagejo ran’lki ageko| caheji

cahejo

caheki|caheko

dabeji

dabejo|dat

ildabekol| daceji |dacejo|dacek ildaceko| dadeji

dadejo|dad

dafeji

dafejo

dafeki

dafeko| dageji |dagejo|dagek ko| daheji

joldahekildahek
—

fabeji

fabejo

fabeki

fabeko| faceji | facejo | faceki |faceko| fadeji

fadejo

®

fadeki|fadeko

fafeji

>

fafeki

fafeko | fageji | fagejo | fageki |fageko| faheji

fahejo

faheki|faheko

gabeji

gabejo

gaceji |gacejo| gaceki|gaceko| gadeji

gadejo

gafeji

gafejo

gafeki

ejo

gafeko| gageji ?égejo

gaheki gaheko

habeji

habejo

hacejiffhacejo|hacekilhaceko h/deﬂ

hadejo

hadekifhadeks

hafeji

hafejo

hafeki

hafeko hag ji [hagejo|hagekijhageko| haheji

hahej

ihahek

S

HRRs of compositional utterances

144 neurons (12 x 12)

FI1GURE 4.9: Mapping utterances to geometric relations using Self-Organising Map

4.2.3.1 Representations of Rectangular Relations

The topological relations between two rectangles are defined by three features: (1) the

types of geometry including edge and area shared by two rectangles, (2) different parts

including corner, side, middle, mid-side, centre and the whole shared with them (see Fig.

4.10), and (3) the axis shared by some rectangular relations (see Fig. 4.11). To begin

with, each general feature such as shape, share-geometry, share-part and share-axis is

represented as a random vector with 1024 (32 x 32) dimensions (see Table 4.8 and Fig.

4.12). Secondly, detailed elements are generated via addition or circular convolution

with these general features (see Table 4.9 and Fig. 4.12). Then, 18 rectangular relations

106 Chapter 4 Evolving Compositional Languages for Creative Design

are represented by combining these elements via addition and circular convolution of

HRRs (see Table 4.10).

share share edge share area
es,w, |emw, [ew,w,A|aw,s,A law,m,A

whole \ %7
2 \a ||

D

aw,c,

Z
am.s,

%Q
Q

es;s, | esw,

side @ y

corner

middle
Z

mid-side

center

ew,W,A as,s,A aw,s,A aw,m,A aw,w,
o

_____ N % %>_

v

2
N\
N\

FIGURE 4.11: Share axis

TABLE 4.8: Holographic reduced representations (HRRs) of general features of rectan-
gular relations

Shape HRR(“shape”, randomy())
shareGeometry HRR(“geometry”, random())
sharePart HRR/(“part”, random())
shareAxis HRR(“axis”, randomy())

Each name of these rectangular relations is generated with three or four characters. The
first character is selected between “e” and “a”; “e” means two rectangles share at least
part of edge while “a” means they share at least part of area. The second and third
characters are selected from “c”, “s”, “m”, “M”, “C” and “w”. “c” means corner; “s”
means side; “m” means middle; “M”, which means partial middle (mid-side), is only
for sharing area (see the vertical brick of aMjsy compared with that of amisy at the
centre of Fig. 4.8); “C” means centre; and “w” means whole. For example, aw;Cs
means one rectangle shares its whole area while another only shares its centre (see the
bottom relation in Fig. 4.8); ecico means the two shapes both share a “corner” of their
edges while acjco means the two shapes both share a corner of their areas (see the top
relations in Fig. 4.8). Some names have the fourth character, “A”, which means two
rectangles share at least one axis regardless of change in their sizes or in the ratio of

width to height (see Fig. 4.11). In Table 4.10, “axis(0)” means it is not essential to

Chapter 4 Evolving Compositional Languages for Creative Design 107

TABLE 4.9: Holographic reduced representations (HRRs) of detailed elements of rect-
angular relations

Shape shape 1 = shape + HRR(“shapel”, random())
shape 2 = shape + HRR(“shape2”, random())
ShareGeometry edge = shareGeometry ® HRR(“edge”, random())
area = shareGeometry ® HRR(“area”, random())
SharePart corner = sharePart ® HRR(“corner”, randomy())
side = sharePart ® HRR(“side”, random())
middle = sharePart ® HRR(“middle”, random())
midside = sharePart ® HRR(“midSide”, random())
center = sharePart @ HRR(“center”, randomy())
whole = sharePart ® HRR(“whole”, random())
ShareAxis axis(0) = shareAxis ® HRR(“axis(off)”, random())
axis(1) = shareAxis ® HRR(“axis(on)”, random())

7

share axis, or no axis is shared while “axis(1)” indicates that at least one axis should be

shared.

TABLE 4.10: Holographic reduced representations (HRRs) of the relations between two
rectangles

Name HRRs

eci1c (edge + shapel ® corner + shape2 ® corner) + axis(0)
€5152 (edge + shapel ® side + shape2 ® side) + axis(0)
acica (area 4 shapel ® corner + shape2 ® corner) + axis(0)
es1wy (edge + shapel ® side + shape2 ® whole) + axis(0)
aci sy (area + shapel ® corner 4+ shape2 ® side) + axis(0)
asi sy (area 4 shapel ® side + shape2 ® side) + axis(0)
emiws (edge + shapel ® middle + shape2 ® whole) + axis(0)
alM sy (area + shapel ® midside + shape2 ® side) + axis(0)
ams so (area + shapel ® middle + shape2 ® side) + axis(0)
amimg (area + shapel ® middle + shape2 ® middle) + axis(0)
ewjwg A (edge + shapel ® whole + shape2 ® whole) + axis(1)
as1saA (area + shapel ® side + shape2 ® side) + axis(1)
awispA (area + shapel ® whole + shape2 ® side) + axis(1)
awymeA (area + shapel ® whole + shape2 ® middle) + axis(1)
awywyA (area + shapel ® whole + shape2 ® whole) + axis(1)
awico (area + shapel ® whole + shape2 ® corner) + axis(0)
awi; My (area + shapel ® whole + shape2 ® midside) + axis(0)
aw1Co (area + shapel ® whole + shape2 ® center) + axis(0)

To clarify the process of HRRs for representing rectangular relations, a tree structure
of the representation of the rectangular relation named acj ss is illustrated in Fig. 4.12.
As can be seen, the process consists of three steps. The first step is to generate general
features shown on level 1. Each feature is represented by a list of random numbers
with 32 x 32 dimensions. The second step is to produce elements shown on level 3
by combining relevant features and some new lists of random numbers shown on level

2. For example, “area” is generated via the convolution of “shareGeometry” and a

108 Chapter 4 Evolving Compositional Languages for Creative Design

new list of random numbers named “area_”. This convolution and another convolution
of “shareGeometry” and some other new list for “edge” can be used to clarify the
relationships between “shareGeometry”, “area” and “edge”. Among these, “area” and
“edge” are two types of geometric share. In this example, area instead of only edge is
shared between two rectangles. So “area” is selected to represent this relation. After
all elements are generated, the third step is to select appropriate elements and combine
them into one list of numbers with the same dimensions. In this example, “corner”
is combined with “shapel” to produce “cornerl (c1)” while “side” is combined with
“shape2” to generate “side2 (s2)”. Then “cornerl (c¢1)” and “side2 (s3)” are combined
with “area (a)” to generate a new list, which is combined with “axis(0)” to produce the
final list named “acise”. Here, “A” is not added into this name because two rectangles

do not share axis, i.e., axis(0), in this relation.

«— 32—

Fe| side2

area shapel

area_

share hape share share
Geometry Part Axis

FIGURE 4.12: An example of the process of Holographic reduced representations
(HRRs)

4.2.3.2 Results of Representations

The results of HRRs are clarified by using cosine similarity to analyse the difference
between 18 rectangular relations. The similarities of these relations are shown in Fig.
4.13. The similarity between two relations is greater when the colour is lighter. The
difference between each is clarified in relation to the range of similarities from 0.19 to 1.00
covering 81% of the whole possible distributed area. Therefore, the relations between

two rectangles are represented clearly and successfully using HRRs.

Chapter 4 Evolving Compositional Languages for Creative Design 109

- < < < < -
G ¢ ¢ £ 4 4 2 4 4 E 2 F 7 E ¢ =g
S 4 o & ¢ o E = E E £ 4 = £ ¥ 2 £ %
ﬂJ [o U © © [© © © [© © © © © o ©

]
2
=4

FIGURE 4.13: Cosine similarities between relations of two rectangles

4.2.3.3 Mapping Utterances to Rectangular Relations

The utterances for mapping are also generated via HRRs. Each utterance such as
“fabeji” is composed of six elements selected from different sets including C1(“b”, “c”,
“d7, “fr) “g” “h”), C2(%7, “k7), V1(“a”, “e”) and V2(“i", “0”). By combining all
of these elements (6 x 6 x 2 x 2), 144 utterances are generated for SOM to map the
representations of 18 rectangular relations. The procedure of generating HRR-utterances
is described in Algorithm 9.

Algorithm 9 Generating HRR-utterances (units) for SOM

L C1« list(“b”, “c”, “d”, “f", “g”, “h”)

2: C2 « list(“j”, “k”)

3: V1« list(“a”, “e”)

4: V2 < list(“i”, “0”)

5. units <— emptyList

6: for i =1 — Cl.length do

7: for j =1 — Cl.length do

8: for m =1 — C2.length do

9: for n =1 — V2.length do
10: newUm't<—C’1i®V11+Clj®V12+02m+V2n
11: units < append(units, newUnit)
12: end for
13: end for
14: end for
15: end for

In the process of mapping, 49 epochs are implemented. Each epoch includes 400 itera-
tions. As illustrated in Fig. 4.14, the process can be divided into three stages. The first
stage is from epoch 1 to 17. In this stage, the mapping between relations and utterances
is unstable in terms of extreme change of mapping from one epoch to another epoch.
The average success rate is lower than 1.3%. In addition, an average of 16% of relations
is not distinguished from others as shown with the degrees of difference; i.e., almost
three relations are mapped with the same utterance in each epoch. In the second stage
from epoch 18 to 26, the success rate increases sharply from 5.6% to 100%; and each

relation is mapped to a different utterance. The last stage is from epoch 27 to 49. In

110 Chapter 4 Evolving Compositional Languages for Creative Design

this stage, the mapping between relations and utterances becomes stable. No mapping

is changed and each relation is mapped to the final appropriate utterance.

NN 4

Success rate (%)

Epochs
45 49

fabeji

19"~ 40

fabeko

& R R

Y 19

gafeji

N

daceki

&

N

habeko

0
D 49 A

N

gacejo

&’b

cafeko

&
§4»§ 2

gaheji
cafeji

babeji

caheko
babeko
baceki
badeki

cadeji

haheki

gadeko

dahejo

FIGURE 4.14: The process of mapping utterances to rectangular relations

4.2.3.4 Results of Mapping

Most results of mapping are obtained before half of the total epochs are executed (see
Table. 4.11). The average number of epochs for obtaining results is 22 which accounts for
45% of the total epochs. In addition, The representation of each relation is distinguished
by a different utterance in the early stage, i.e., the 18th epoch occurring 37% of the total
epochs (see degrees of difference in Fig. 4.14). Initially, random utterances are selected
to represent these relations. An utterance might represent more than one relation.
After running 18 times, an utterance only represents one relation; other relations are
represented by other utterances with higher associated weight. Therefore, The mapping
of compositional utterances and geometric relations is realised using Self-Organising
Map.

Chapter 4 Evolving Compositional Languages for Creative Design 111

TABLE 4.11: The number of epochs when obtaining each final mapping result

Rectangular relation | Utterance | Epochs (total: 49)
ecycy fabeji 20
€8189 fabeko 20
acicy gafeji 20
es1wWo daceki 26
aciso habeko 24
as1S9 gacejo 23
emiws cafeko 20
aMs9 gaheji 23
am1S89 cafeji 18
amims babeji 21
ewiwo A caheko 20
as1s9A babeko 22
awiss A baceki 23
awimeoA badeki 24
awiwy A cadeji 24
aw1cy haheki 24
awi My gadeko 21
aw1Cy dahejo 26

4.2.4 Conclusion

The mappings between rectangular relations and artificial utterances are completed by
using the hybrid system integrating HRRs and SOM. The success is mainly contributed
by the compact structure of the HRRs of both geometric relations and utterances as well
as the mapping between them using SOM. Each geometric relation is represented by two
circular convolutions and three additions (see Table 4.10) while each utterance (unit) is
generated with similar structure to that of rectangular relation. The total of utterances
is 144, which is enough for matching appropriate units labelled with utterances to the
18 relative relations of two rectangles. In brief, the results of this experiment suggest
the possibility of transforming between artificial languages and design concepts via the

hybrid system within associative memories and artificial neural networks.

4.3 Compositional Language for Shape Combination

The aim is to evolve compositional languages for generating novel shapes based on
original shapes via several operations such as “touch”, “overlap” and “contain/in”. If
agents achieve 70% success rate on the representations of these types of connection, the
agents will enter next stage to generate new designs guided by the generation of new

compositional utterances based on previous evolved languages.

112 Chapter 4 Evolving Compositional Languages for Creative Design

4.3.1 Subjects

The subjects of this experiment are regular shapes including triangle, square, hexagon,

circle and star.

4.3.2 Implementation

This experiment is emphasised on the composition of utterances representing the same
dimension that differs from those in the experiment, Compositional and Holistic Lan-
guage (see Section 4.1), which is based on the combination of words denoting different
dimensions including colour, shape and size. New interesting meanings can also be gen-
erated by combining utterances associated with different meanings belonging to the same
dimension. For example, “roundish square” is the combination of “circle” and “square”

in the same dimension, shape.

This experiment is implemented using both guessing games and generation games based
on the DIFT framework (see Fig. 4.15). Firstly, primary shared utterances represent-
ing the compositions of shapes evolve in guessing games. Then these utterances are

recombined to new utterances representing new interesting compositions of shapes.

shape composition

curious client (sine curve))

Generation game
Guessing game

= Leorks_—~

FIGURE 4.15: The Domain-Individual-Field-Interaction (DIFI) framework for gener-
ating compositional shapes

Two main rules including deformation and combination (see Rule 5 and Rule 6 in Table
4.12) can be used to generate new compositional works. These works are new shapes
such as squished circle and roundish square, or new relations such as the intersection

between circle and rectangle.

4.3.2.1 Deformation of Shapes

A polygon can be deformed to a closed string composed of continuous connected Bezier
curves using Equations 16, 17, 18, 19, and 20 (see Fig. 4.16). The curve can be adjusted

by changing the values, n; and n.. Given n; = 2, if n, = 0.2, it will be twisted; if

Chapter 4 Evolving Compositional Languages for Creative Design 113

TABLE 4.12: The rules of generating compositional shapes

No. Rule Expansion Example
0 new-work operator shape shape
1 operator deform / Boolean-operation
2 shape triangle / square / hexagon / circle / star
3 deform change-Bezier-curve
4 Boolean-operation union / intersection / difference
5 new-shape deform shape shape rounded rectangle
6 new-relation topological-relate shape shape circle intersecting rectangle

n. = 0.8, it would be similar to the original polygon although each corner is smoothed;

if n. = 1.8, it will become very rounded (see Fig. 4.17).

f(a,byn)=a+ (b—a)/n (16)
710, Yo = f (w0, 21,Mm¢) 5 f (Yo, Y1, 11) (17)
ri1, Y0 = f (1, 22,m4) 5 f (Y1, Y2, 14) (18)
Teo, Yoo = f (740, 71, 1¢) 5 (Y10, Y1, 1c) (19)
Tet, Y1 = f(@e1,21,1¢) 5 f (Ye1, 91, ne) (20)

* (X2, ¥2)
« (X0, Yo)
(Xe1s Ya)

(Xtor Yeo) &

o
N (Xe1r Yer)
(Xcor YCO). ‘ ‘

(X1, y1)

FIGURE 4.16: Bezier curve

Nl =

n-=0.2 n-= 0.8 n-=1.8

FIGURE 4.17: The mechanism of shape deformation (n; = 2)

The samples of deformed simple shapes can be seen from Fig. 4.18.

114 Chapter 4 Evolving Compositional Languages for Creative Design

LOIAIGIAIT] 2 O
ﬂ [AMMIDI

0.84
\p\, \/
I\""/\ AN

trlangle tri- star square sQ- tr| sQ- tr|2 sq sQ- star pentagon pnt- star pnt- starx

FIGURE 4.18: Shape deformation (n; = 2,n, = 0.2,0.8,1.8)
4.3.2.2 Combination of Shapes

New compositional shapes can be generated using Boolean (union, intersection and

difference) operation on two shapes connected with different edges or branches. For

29

example, “triangle-hexagon [0, 2][1, 0] i” is the intersection of two shapes connected
with the edge(0,2) of a triangle and the edge(1,0) of a hexagon (see Fig. 4.19). Each
shape has a centre node connecting several terminal nodes with edges and branches (see

Table 4.13).

FIGURE 4.19: An example of combining shapes

TABLE 4.13: The attribute settings of regular shapes

Shape Edges Branches Branch-lengths Terminals

Triangle 3 6 2 3/6
Square 4 8 2 4/8
Hexagon 6 6 1 6/6
Circle 1 4 1 1/4
Star 10 10 2 10/10

Therefore, there are two steps in implementing of the combination of shapes. The first
step is to connect the shapes by selecting and joining relevant nodes (centres, terminals),
branches and edges. For examples, the centres of two shapes are joined; one centre and
one terminal are joined; one edge/branch is joined with another edge/branch; or one
branch/edge is joined with another edge/branch. Geometric transformation including

rotation, scaling and moving are used to match two points with different coordinates or

Chapter 4 Evolving Compositional Languages for Creative Design 115

two edges/branches of different lengths. The second setp is to operate on the connected

shapes using intersection, difference or union.

Besides the combination of shapes described above, single shape can also be operated on
via addition, displacement and subtraction (Di Mari, 2013). For example, a “trianglish-
quadrangle” could be produced by cutting off the small top of a triangle. It may also
become a star-like shape by changing every edge of a quadrangle to two edges of a

triangle with acute angle.

4.3.2.3 Evaluation of Generated Shapes

The variation of the Wundt curve, Sine curve, is used by client-agents to evaluate the
novelty of the compositional shapes generated by designer-agents. To study the impact of
similarity-preference and selection-threshold (i.e., tolerance) on collecting design works,
different combinations of similarity-preference and selection-threshold are tested (see
Table 4.16, 4.17, 4.18).

The mechanism for measuring the difference between two shapes is the use of contour
functions (Kindratenko, 1997). OpenCV is adopted to measure the similarities of con-
tours (Bradski et al., 2000). The proportion of two combined shapes, i.e., distinguishing

the primary shape from the secondary shape, is not considered in this experiment.

4.3.2.4 Guessing Game for Initialising Compositional Utterance

The process of guessing game is the same as that (see Fig. 4.3) implemented in the exper-
iment, Compositional and Holistic Language. Here, only random topic selection is used;
only compositional languages evolve; and only the evolved representations of shapes are
used in generation games. The evolved utterances representing shapes through guessing
games can be seen from Table 4.14. The first agent, who could plays the role of client
in generation games, uses the same utterance“v” to represent both hexagon and circle
while others use “c” to represent hexagon. The third agent uses “k” representing square
o

while others use “w”. These ambiguities may affect the results of this experiment for

testing consistency although it makes the simulation more realistic.

TABLE 4.14: The results of guessing games for combining shapes

Agent 1 2 3 4 5 6
SHAPE a a a a a a
Triangle v y y vy vy vy
Square w w k w w w
Hexagon v ¢ ¢ ¢ ¢ ¢
Circle Vv VvV V VvV VvV vV
Star P P P P P P

116 Chapter 4 Evolving Compositional Languages for Creative Design

4.3.2.5 Generation Game for Generating Compositional Shapes

In each simulation of generation games, the generation runs are set to 1000; population
is 6; and only the first agent is taken as client. The operation of original shapes is
mainly combining two regular shapes using union, intersection and difference. These
Boolean-types are measured but not represented that is for evaluating the creativity of
compositional shapes related with the same utterance (e.g. triangle-square (union 0.3,

intersection 0.1, difference 0.5) — “ya-wa”).

The process of the generation game is illustrated in Figure 4.20. First, client-agent
selects a pair of shapes randomly, then maps it to a relevant compositional utterance
(i.e., design brief) and compositional object (i.e., prototype). Designer-agents start to
parse the design brief to pair-shapes and generate new compositional objects as designs
matching the pair-shapes. Then client-agent selects the winning-design from these new
designs. If there is a winning-design, both the client-agent and the designer-agents
strengthen the association between the winning-design and design brief. At the same
time, the designer-agents who fail will weaken the associations between their own designs
and client-agent’s design brief. If there is no winning-design, all designer-agents will

weaken the associations between their own designs and client-agent’s design brief.

The process of selecting winning-design by comparing client-agent’s prototype and designer-
agents’ works is as follows: measuring similarity between prototype and designs with
their contours — measuring interestingness of designs using sine curve — a design be-
comes a candidate if the score of its creativity is equal to or greater than the selection-
threshold — selecting the design with the highest score as the winning-design if there

are candidates, otherwise selecting nothing, i.e., no winning-design.

4.3.3 Results

At the completion of the generation games, information on the number of combined
shapes is stored in the client-agent’s association memory. As can be seen from Table
4.15 and Fig. 4.21, the client-agent, whose selection threshold is 0.7 and preference of
difference is 60%, collects 52 compo-shapes with a total of 25 types of combinations in

(1))

a simulation. In Table 4.15 the operation of union is represented as “u”, intersection is

[15%2)

represented as “i” and difference is represented as “d”.

Client-agent’s different selection preferences and selection thresholds affect the success

rates of language games, and the collection of both designs and design types.

Chapter 4 Evolving Compositional Languages for Creative Design

117

Generation game for exploring composition

O

Clienlt(C)

randomCombine(shapes) -> pairShapes[C]
e.g.{triangle, square, hexagon, circle, star}
->[hexagon, star]
filter(associations[C], pairShapes[C]) -> requirement
e.g.asso[hexagon]: {"c":0.67, "v":0.03,...}
asso[starl: {"g":0.12, "p":0.34,...}
[hexagon, star] -> "cp"

requirement (e.g. utterance:"cp") _

join(pairShapes[C]) -> pair[C]

e.g. [hexagon, star] -> hs

combine(pair[C], associations[C])

e.g. associations[hs]

boolean:{uni.:0.01, int.:0.02, dif.:0.01}
nodes[h]:{[0,1]:0.11, [1,2]:0.03},
nodes[s]:{[10,11:0.24, [1,2]:0.03}

-> prototype

e.g. [hs,[0,1]_[10,1]_int.]
coords[0,1]:branch[h]==coords[10,1]:edge[s]

prototype

_ design[D]

Desigr}er(D)

filter(associations[D], requirement) -> pairShapes[D]
join(pairShapes[D]) -> pair[D]
combine(pair[D], associations[D]) -> design[D]

scores=[]

loop 0 <=i < count(designs)
openCV_compare(designsli], prototype) -> distanceli]
sineCurve(distanceli], preferredDistance) -> score[i]
if score[i] >= threshold?

push(scoreli], scores)

if scores?

max(scores) -> winnerDesign

_ other designs

evaluation

alt

/ [winnerDesign?]

success, winnerDesign

>
>

learn(winnerDesign, requirement)

if design[D] == winnerDesign?
learn(design[D], requirement)
else
unlearn(design[D], requirement)
learn(winnerDesign, requirement)

(un)learn

failure

unlearn(design[D], requirement)

FIGURE 4.20: Generation game of compositional language

4.3.3.1 Success Rates

Results show that it is easy to be successful when the client-agent selects a design that is

similar to its own prototype (see Table 4.16 and Fig. 4.22). The success rate surpasses

85% when the client-agent prefers to selecting the design that does not differ from its

own prototype or only differs by around 20% after the generation game has been played
1000 times with both 0.7 and 0.9 selection threshold, although the former’s success rate

is higher than the latter’s because of its greater tolerance. The success rate is below

60% when client’s favourite design is more than 60% different from his own prototype

118 Chapter 4 Evolving Compositional Languages for Creative Design

TABLE 4.15: Client’s collected compositional shapes in a simulation (u: union, i:
intersection, d: difference)

Compo-shapes Utterance Artwork 1 Artwork 2 Artwork 3 Artwork 4
triangle-triangle “yaya” 1, 2][4, 1

d [Lo]6 2 [4, 1L, 8d [4, 2][L, 4]i

triangle-square “yawa”

]

[1, 4][t, 2]
triangle-hexagon “yava” [0, 2][1, 0)i [6, 1][0, 1]i [2, 1][0, 1]d
triangle-circle “yava” [1, 0][1, 3]u
triangle-star “yapa” [0, 2][1, 6]u
square-triangle “waya [1, 6][1, 0]d [4, 2]2, 1]u
square-square “wawa 2, 6][1, 4]i [0, 1][1, 4]u
square-hexagon “wava” [4, 1][1, 2Ju [4, 1][1, O]
square-circle “wava” [1,0][1, 3]d [4,2][3, 1]d [1, 8][0, 1]u
square-star “wapa” 6, 1][2, 1]d [1, 2][1, 4]d
hexagon-triangle “vaya” 1, 2][4, 2)i [1,4][1, 3]i [2, 1]]0, 1]d
hexagon-square “vawa” (3, 1][1, 0)d [1, 2][0, 1]i
hexagon-hexagon “vava” [1, 3]0, 1]d
hexagon-circle “vava” 1, 4][3, 1Ju [2, 1][1, 2]d
hexagon-star “vapa’ [1, 4][2, 6]u [0, 1][1,10]u
circle-triangle “vaya” 2, 1][1, 3]i
circle-square “vawa [1, 2][2, OJu
circle-hexagon “vava” [1,2][3, 1}Ji [1, 2]J[1, OJu |3, 1][1, 2]u
circle-circle “vava [0, 1]]2, 1]d
circle-star “vapa” [0, 1][2, 0]i
star-triangle “paya” [10,1][1, 4]i [2, 6][2, 1]i [1,10][1, 6]d [1, O][1, 6]i
star-square “pawa’ 1, 8][2, 1]d [1, 5][4, 1Ju [0, 1][1, O]u
star-hexagon “pava’ [2, 0][1, 2]i [10,1][3, 1]d
star-circle “pava’” [1, 6][0, 1]u [1, 8][1, 2]i [4, 2][1, 0]d
star-star “papa” [1, 5][2, 1]i [5, 1][3, 1]i

with 0.7 selection threshold and when his favourite design is only more than 40% dif-
ferent from his own with 0.9 selection threshold. This is because the designer-agents
in this experiment only generate designs matching the client-agent’s requirement based
on their previous experiences, which result in similar designs rather than quite differ-
ent ones. Therefore, even multiple designer-agents with considerably different designs
cannot satisfy the client-agent’s requirement, which is “too” novel. This could change
if the designer-agents can catch up with the client-agent’s preference for similarity then

adjust their designs to match the difference.

4.3.3.2 Different Evaluations of Collecting Shapes

Results (see Table 4.17 and Fig. 4.23) show that the client-agent collects more designs
when its difference preference is between 0.2 and 0.6. By contrast, when its difference
preference is very low, such as 0, or very high, such as 0.8 and 1, it collects a comparably
small number of designs. This is because if it only selects the design that is the same as

its own prediction, there would be no further change in its association memory and no

Chapter 4 Evolving Compositional Languages for Creative Design

119

triangle

square

circle|

star |

A 4 AA
Nl
Der I

«

_—

b e

T
triangle

square

hexagon

T
circle

T
star

FIGURE 4.21: A result of client’s collected compositional shapes

TABLE 4.16: Success rates

Index SelectThre. Prefer Siml Sim2 Sim3 Sim4 Sim5 Mean
1 0.7 0 099 0925 094 0.947 0.976 0.956
2 0.7 0.2 0.994 0.993 0.983 1.0 1.0 0.994
3 0.7 0.4 0.807 0.824 0.807 0.756 0.688 0.776
4 0.7 0.6 0.762 0.608 0.58 0.563 0.59 0.621
5 0.7 0.8 0.461 0.68 0.516 0.506 0.56 0.545
6 0.7 1 053 0.648 0.442 0.676 0.532 0.566
7 0.9 0 0.852 0.923 0.93 0.804 0.913 0.884
8 0.9 0.2 0901 0.88 0.835 0914 0.771 0.861
9 0.9 04 0.681 0.69 0.774 0.616 0.461 0.644
10 0.9 0.6 0483 0.367 0.538 0.482 0.405 0.455
11 0.9 0.8 0.486 0.404 0.342 0.505 0.6 0.467
12 0.9 1 0365 0.526 0.617 0.29 0.309 0.421

other new designs will be collected

. On the other hand, if it requires a design that is too

novel and therefore surpasses the designer-agents’ capability and the difference between

each collected design work is too great, this will produce more designs that may be very

similar to each other. Both of these factors (i.e., the client-agent’s novelty requirement

being very low or seriously high) may lead to fewer collections. Further, when the client-

agent’s selection threshold is lower, e.g. 0.7, it can collect more works with the same

level of difference preference except for the couple of 0.9 selection threshold and 0.2

difference preference. The exception means that comparable higher selection threshold

with considerably lower difference preference could result in more acceptable works from

the designers in these generation games.

120 Chapter 4 Evolving Compositional Languages for Creative Design

1.o;|_1_

{H

FL
-{Th A
|

success rates
o o o
o o
HIJ

N I
{1+

I
IS

0 .

7|0 7/0.2 7/0.4 7|0.6 7/0.8 7|1 9]0 9]0.2 9]0.4 9]0.6 9]0.8 9|1
client's preference of novelty

o
w

FIGURE 4.22: Success rates of generation games (x-axis e.g. 7/0 means selection-
Threshold = 0.7, differencePreference = 0.0)

TABLE 4.17: The total number of compositional shapes in client’s association memory

Index SelectThre. Prefer Siml Sim2 Sim3 Sim4 Simb5 Mean
1 0.7 0 39 50 45 41 47 44
2 0.7 0.2 65 52 50 55 52 55
3 0.7 0.4 51 50 49 52 51 51
4 0.7 0.6 43 58 56 52 53 52
5 0.7 0.8 47 52 42 42 36 44
6 0.7 1 43 43 48 48 50 46
7 0.9 0 44 42 38 37 42 41
8 0.9 0.2 59 51 60 58 53 56
9 0.9 0.4 51 48 49 52 50 50

10 0.9 0.6 47 43 46 52 54 48
11 0.9 0.8 46 42 37 41 39 41
12 0.9 1 41 40 41 39 39 40

4.3.3.3 Different Evaluations of Collecting Types of Shapes

In this experiment, a total of 25 combinations of two types of shapes from among tri-
angle, square, circle, hexagon and star are provided. As the results show (see Table
4.18 and Fig. 4.24), the client-agent covers an average 24 compositional shapes when
using 0.9 selection threshold with 0.2 difference preference or 0.7 threshold with 0.6
preference. Although 0.7 threshold with 0.8 preference gets all the compositional shapes
(totally 25) in a simulation, this couple of strategies is not stable. Only an average of
22 compositional shapes are collected when the client-agent uses 0.7 threshold with the

preference of no difference or 0.9 threshold with 0.8 difference preference.

4.3.4 Conclusion

New designs of combining two shapes, i.e., the combinations in the same dimension, are

successfully generated in the evolution of compositional languages. The results suggest

Chapter 4 Evolving Compositional Languages for Creative Design 121

65 —

-3
=]

v
4

0.8, 0,
D Q

w
=)

S
G

number of compo-shapes

_r
35

710 7/0.2 7/0.4 7|0.6 7\08 7\1 9\0 9]0.2 9/0.4 9\06 9|0.s 9|1
client's preference of novelty

~
o

FIGURE 4.23: Client’s collected compositional shapes through generation games (x-axis
e.g. 7/0 means selectionThreshold = 0.7, differencePreference = 0.0)

TABLE 4.18: The total number of compo-shape-types in client’s association memory

Index SelectThre. Prefer Siml Sim2 Sim3 Sim4 Simb5 Mean
1 0.7 0 22 22 22 23 23 22

2 0.7 0.2 23 23 23 23 23 23
3 0.7 0.4 23 23 23 22 23 23
4 0.7 0.6 23 23 22 25 25 24
) 0.7 0.8 25 23 23 24 22 23
6 0.7 1 22 23 24 23 24 23
7 0.9 0 23 22 23 22 23 23
8 0.9 0.2 24 23 24 24 23 24
9 0.9 0.4 23 23 23 23 22 23
10 0.9 0.6 23 23 23 22 24 23
11 0.9 0.8 23 23 21 22 21 22
12 0.9 1 23 22 23 24 22 23

that the associations of items in the same dimension can produce creative designs and
expand the design space when recombining the utterances representing the same or
different attributes. In addition, the novelty principle, i.e., the production of similar-
yet-different artefacts (Saunders, 2002), is realised in this experiment under the condition
of the designer-agents generating designs only matching their previous experiences, i.e.,
the client-agent may collect more designs when its selection threshold is around medium

rather than too low or too high.

4.4 Conclusion

The mechanism of composition is tested and discussed in this chapter. Results show that
compositional languages can be more creative than holistic languages because the former
is far more efficient and a little more ambiguous than the latter. Mapping hierarchical
meanings to compositional utterances has been realised by using the combination of
SOM and HRRs. The completion of an entire simulation of evolving compositional

languages with guessing games and generation games to produce creative combinations of

122 Chapter 4 Evolving Compositional Languages for Creative Design

25— T T -

1--nq
1t
11
L]
-4
l=---4----1
_}----

s

N
IN]

number of compo-shape-types

N
=

20l
7|0 70.2 7|0.4 706 7[0.8 7|1 9]0 9|0.2 9|0.4 9]0.6 9]0.8 9|1
client's preference of novelty

FIGURE 4.24: Client’s collected compo-shape types through generation games (x-axis
e.g. 7/0 means selectionThreshold = 0.7, differencePreference = 0.0)

shapes suggests the novelty principle, i.e., the production of similar-yet-different artefacts
(Saunders, 2002), since a client-agent collects more interesting design works when its

selection threshold is moderate rather than too low or too high.

Chapter 5

Exploring Creative Features of

Language

To evaluate the utility and effectiveness of language and to find mechanisms for applying
the creative features of language in designing, four main topics—ambiguity, scalability,
incongruity and extensibility—are explored. At the completion of these experiments, the
core features of grounded language for design are clarified and artificial compositional
languages have evolved to facilitate both routine design such as parametric design and
non-routine design in which design rules and principles are developed via the communi-

cations among curious agents.

5.1 Ambiguity

To test the ambiguity of compositional language for creative design, a many-to-many
network of associations between topics and utterances, i.e., polysemy and synonymy,
is evolved by multi-agents playing language games to generate interesting designs and

interesting utterances.

5.1.1 Subjects

The combinations of 11 colours and 11 shapes represented with [0.0, 0.1, 0.2, 0.3, 0.4,
0.5, 0.6, 0.7, 0.8, 0.9, 1.0] in each respect are used in this experiment.

5.1.2 Implementation

This experiment is implemented by recombining existing utterances to generate new

utterances representing interesting meanings through the communication between agents

123

124 Chapter 5 Exploring Creative Features of Language

who play the roles of speaker and listener in guessing games as well as client and designer

in generation games (see Fig. 5.1).

The language games used in this experiment produce compositional utterances, which
can be used to denote new concepts. For example, given the previous utterances “red
triangle”, “red square” and “blue triangle” on a four-quadrant diagram (x-axis: colour
including red and blue, y-axis: shapes including triangle and square), new utterances
such as “blue square” on the top-right quadrant can be generated by recombining the

sub-utterances “blue” and “square”.

color & shape

p

FIGURE 5.1: The Domain-Individual-Field-Interaction (DIFI) framework of exploring
ambiguity

The agents in the simulation use the networks based on Adaptive Resonance Theory
(ART) to categorise utterances and concepts. ART networks are both stable and dy-
namic; they can not only retain existing categories but also add new categories for
unfamiliar inputs which exceed the threshold of existing neurons (Saunders, 2002). In
language games, both rules and instances are stored in agents’ memory. A rule is a dic-
tionary that contains feature, utterances, category and weight, e.g. {feature=“shape”,
utterance=*“a”, category=0, weight=0.01}, whilst an instance is also a dictionary that
contains prototype, utterance and frequency, e.g. {prototype=[0.1,0.3], utterance=“ab”,
frequency=1}. A prototype is a combination of colour and shape, while frequency is the
number of times that the same relation between a prototype and utterance is used and

accepted.

The interest of design requirements (i.e., utterances) and design works are evaluated
using the Wundt curve. This hedonic function can be used to explore the questions,
“How confident is an agent of its prediction of the experience that is described by an
utterance or provided with a design/art work?” and “How novel is the most interesting

topic?”

Chapter 5 Exploring Creative Features of Language 125

5.1.3 Experiment Settings
5.1.3.1 Initial Settings

The first set of experiments is initialised with 50 samples randomly selected from 121
objects, which are generated by combining 11 colours and 11 shapes. Each object is
represented by a pair of decimals belonging to [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,
0.9, 1.0]. The language game uses one combination rule combining two features including
colour and shape. Each feature is represented by one character as its name. So the length
of an utterance is limited to 2. For example, {colour:0.2, shape:0.3}’s utterance may be

“ha”. The population of agents is set to 6.

5.1.3.2 Settings of Guessing Game

In each guessing game, 2 agents are randomly selected from 6 agents to play the role of
speaker and listener respectively. The context is composed of 8 topics randomly selected
from the initialised 50 samples. When the success rate of guessing games is above 60%!,

guessing games are completed; and agents start to play generation games.

5.1.3.3 Settings of Generation Game

In generation games, four types of procedures by the client-agent are implemented with
or without evaluation of the interestingness of requirements (i.e., utterances) or works
using the Wundt curve (see Fig. 3.8). The default ratio of difference over similarity, i.e.,
the most interesting distance between novel design and normal design, is set to 0.364,
which could be adjusted to be more conservative or progressive in the Wundt curve.
Each cycle is repeated 1000 times. The last agent always plays the role of client while
others play the role of designer.

5.1.4 Experiment Procedures

The experiment procedures consist of the procedure of guessing games for evolving a
grounded language representing the compositions of colours and shapes and the proce-

dures of generation games for generating interesting or normal requirements and designs.

1t is difficult to reach a higher success rate such as 70% possibly owing to the settings of the ART
network. So the success threshold is set to 60% in this experiment.

126 Chapter 5 Exploring Creative Features of Language

5.1.4.1 Procedure of Guessing Games (Procedure 1)

Guessing games (see Fig. 5.2) are implemented repeatedly till the success rate reaches

60%. Each guessing game consists of 4 steps described as below.
Step 1: Speaker selects a topic randomly from randomly generated context.

Step 2: Speaker generates an utterance representing the selected topic and “tells” listener

the utterance.

Step 3: Listener guesses the topic by exploring its stored associations between utterances
and the ART categories. If an appropriate association cannot be found, a new association
between the utterance and a topic in current context is generated. Then the listener

“tells” the speaker its guess.

Step 4: If guessing succeeded, both speaker and listener increase the weight of their
associations between the topic’s ART category and the utterance, and increase the
frequency of each related instance or generate a new association connecting the selected
topic with the utterance. If guessing failed, the listener decreases the weight of the
related association and generates a new association between the topic’s ART category
and the utterance, then increases the weight of the newly generated association and

generates a new instance connecting the correct topic and the utterance.

After completing guessing games, the agents (Group A) are cloned three times to get
three new groups of agents (Group B, Group C and Group D) to implement different

procedures for generation games.

5.1.4.2 Procedures of Generation Games (Procedure 2, 3, 4, and 5)

The generation games (see Fig. 5.3) are simulated in four different situations: (1)
without evaluating the interest of requirements (i.e., client-generated utterances) and
designers’ works by the client; (2) only evaluating the interest of designers’ works by the
client; (3) only evaluating the interest of requirements (i.e., client-generated utterances)
by the client itself; and (4) evaluating the interest of both requirements and works by
the client. These four situations are represented in the horizontal axis (see Fig. 5.5
and Fig. 5.6). So, there are four results from both the client and designers. Their
average instances in the four situations are shown in Fig. 5.5, and the average max
degrees of connections of their instances are shown in Fig. 5.6. The max degree of
connections means the largest number of meanings represented by an utterance or the
largest number of utterances representing a meaning. An agent’s instances consist of all
its own associations between utterances and meanings. For example, an agent’s instances
may be {“da”:[colour 0.2, shape 0.4],“ku”:[colour 0.7, shape 0.3],“gi”:[colour 0.6, shape

0.5],...}. As can be seen from Fig. 5.5, the first column shows that the client’s average

Chapter 5 Exploring Creative Features of Language

127

Guessing game for exploring ambiguity

Listenler(L)

1 [

Spealfer(S)

Context includes
8 random combinations of colour and shape
e.g.[[0.3,0.5], [0.1,0.8], [0.7,0.2],...]

randomChoice(Context) || |- topic[S]

categorize(context) -> categories[LC]
All subjects in the context are categorised using ARTnet

categories[S] =[]

e.g. ARTnet

->categories: [1, 2]
e.g. pairRule

shape: {utter:"a

-> utterance (e.g. "ba")

loop 0 <=i < length(topic[S])
train(ARTnet[S][i], topic[S][i]) -> category[i]
push(category[i], categories[S])

ARTnetColour: [0.5, 0.2, 0.8]
ARTnetShape: [0.1, 0.4, 0.9]
category = the index of each item
e.g. topic: {colour:0.1, shape:0.8}
->prototype: {colour:0.2, shape:0.9}

filter/create(rules[S],categories[S]) -> pairRule[S]
colour: {utter:"b", category:1, weight:0.32}

, category:2, weight:0.01}
weight:0.01 could be related with a new rule

utterance (e.g."ba")

candidateRules=[]
loop 0 <=i< count(categories[LC])
filter(rules[L], categories[LC][i], utterance) -> rules]i]
if rules[i]?
push(rules[i], candidateRules)
if candidateRules?
bestChoice(candidateRules) -> pairRule[L], topic[L]

topic[L.
 topiciL] loop 0 <=j < length(pairRule[L])
if null(pairRule[LI[j])?
createRule(categories[LC][topic[L]][j], utterance[j])
->pairRule[L][j]
else
randomChoice(context) -> topic[L]
createRules(categories[LC][topic[L]], utterance) -> pairRule[L]
alt / [topic[L] == topic[S]?]
success
learn(pairRule[S])
addInstance(topic[S], utterance) learn
e.g. instance
{colour:0.1, shape:0.8, utterance:"ba", frequency:1}
learn |learn(pairRule[L])
; addInstance(topic[L], utterance)
failure, topic[S] -
unlearn(pairRule[L])
categorise(topic[S]) -> categories[LS]
(un)learn |filter/create(rules[L], categories[LS], utterance
-> newPairRule[L]
learn(newPairRule[L])
addInstance(topic[S], utterance)

FIGURE 5.2: Guessing game for exploring ambiguity

number of instances is 364 without interest evaluation. The four different procedures of

generation games are described below.

Procedure 2: Generation games without evaluation of interest

Generation games are implemented 1000 times by Group A without evaluating the in-

terest of requirements and works.

128

Chapter 5 Exploring Creative Features of Language

Generation game for exploring ambiguity

O

Client(C) Designer(D)

if need interesting requirement?
randomCombine(rulesColour, rulesShape) -> n(<=10) pairRules
map(pairRules, instances[C]) -> pairInstanceFrequencies
e.g. instance
{colour:0.3, shape:0.8, utterance:"ba", frequence:1}
proportion(pairInstanceFrequencies) -> pairInstanceRatios
WundtCurve(pairInstanceRatios) -> winnerPairInstanceRatio
filter(pairRules, winnerPairInstanceRatio) -> pairRule[C]
e.g. pairRule
colour: {utter:"b", category:1, weight:0.32}
shape: {utter:"a", category:2, weight:0.11}
else
[random(rulesColour), random(rulesShape)l->pairRule[C]
extract(pairRule[C]) -> requirement (e.g. utterance:"ba")

requirement (e.g. "ba")

map(pairRule[C], ARTnet[C]) -> prototype[C]
e.g. ARTnet

ARTnetColour: [0.5,0.2,0.8]

ARTnetShape: [0.1,0.4,0.9]

category = the index of each item
e.g. prototype

{colour:0.2, shape:0.9} -> category: [1,2]

prototype[C]

design[D]

other designs

pairRule[D]=[], design[D]=[]
loop 0 <=i < count(features)
features include colour and shape.
filter(requirement(i], rules[D]) -> rule[i]
if null(rule[i])?
mostDifferentFrom(ARTnet[i][prototypes]) -> newSamplel[i]
train(ARTnet[i],newSample[i]) -> category[i]
update/create(rules[D], category[i], requirement(i]) -> rule[i]
push(rule[i], pairRule[D])
filter(ARTnet[i],rulefi]) -> prototypeli]
variate(prototypel[i]) -> design[i]
push(designl[il, design[D])

compare(designs, prototype[C]) -> distances

if need interesting design?
regulate(distances) into range[0,1]
WundtCurve(distances) -> winnerDesign

else
min(distances) -> candidateDesign
train(ARTnet[C], candidateDesign) -> categories[CD]
train(ARTnet[C], prototype[C]) -> categories[CC]
if categories[CD] == categories[CC]?

candidateDesign -> winnerDesign

evaluation

alt / [winnerDesign?]

success, winnerDesign

train(ARTnet[C], winnerDesign) -> categories[CD]
filter/create(rules[C], categories[CD], requirement),

|
-> newPairRule[C] cam
learn(newPairRule[C])
addInstance(winnerDesign, requirement)
if design[D] == winnerDesign?
learn(pairRule[D])
|
(un)iearn addInstance(design[D], requirement)
else
unlearn(pairRule[D])
failure

unlearn(pairRule[D])

FIGURE 5.3: Generation game for exploring ambiguity

Step 1: The client-agent generates an utterance by combining two randomly selected

names of the ART categories (prototypes) related with colour and shape without eval-

uation.

Step 2: Each designer-agent generates a set of design works by searching existing as-

sociations or generating a new association connecting a related ART category with the

client-agent’s requirement (i.e., utte

rance).

Chapter 5 Exploring Creative Features of Language 129

Step 3: The client-agent selects the most similar design compared with its requirement-
associated topic. If the most similar design does not belong to the same ART category
as the client-agent’s associated topic, the game fails and all designer-agents decrease
the weights of their own selected associations. Otherwise the game succeeds, the client-
agent finds its own relevant association or generates a new association connecting its
own ART category of the selected design and the utterance, then increases the weight
of the association and increases the frequency of the related instance or generates a new
instance connecting the design and the utterance. At the same time, successful designer-
agents increase the weight of the related rule and increase the frequency of the related
instance or generate a new instance while other designer-agents decrease the weights of

the associations related with the designs rejected by client-agent.
Procedure 3: Generation games with evaluation of the interest of works

Generation games are implemented 1000 times by Group B. The procedure is the same
as Procedure 2 except that the client-agent selects design works using the Wundt curve.
In the process of selecting design works, the distances between the features of each
design works and the features of client-agent’s original topic are measured. Then their
hedonic value is evaluated. The design with the highest positive interest is selected by

the client-agent. If all interests are negative, the generation game fails.
Procedure 4: Generation games with evaluation of the interest of requirements

Generation games are implemented 1000 times by Group C. Each time, the procedure
is the same as Procedure 2 except that the client-agent generates several requirements
(i.e., utterances) and selects the most interesting one using the Wundt curve. Firstly,
the weight of each single utterance in every requirement is calculated by summing the
frequencies of the utterances used in all instances. Then the interest values of these
requirements are calculated by summing the interests of their own utterances. Finally,

the requirement with the highest interest is selected.

Procedure 5: Generation games with evaluation of both the interest of requirements
and that of works

Generation games are implemented 1000 times by Group D. In each generation game,
the procedure is the same as Procedure 2 except for the generation of interesting re-
quirements and the selection of interesting works by the client-agent. The process of
generating interesting utterances is the same as in Procedure 4. The process of selecting

interesting works is the same as in Procedure 3.

5.1.5 Results

In Figure 5.4, the radius of each circle represents the frequency of an instance used by

an agent. If a topic is associated with more than one utterance, several circles will be

130 Chapter 5 Exploring Creative Features of Language

drawn at the same place resulting in a darker colour.

C1 D1
1.0 1 1.0 1
—
w o8 08
— e
5 06 L] 0.6
= °
8 o4 04
o L
E 02 02
0.0 0.0
23 2 0.0 0.2 04 0.6 o8 10 23 2 0.0 0.2 04 0.6 o8 10
Cc2 D2
10 * @ L 10 s
~ o ®e o0 * e
o8 0 & e e e 08 ° > .
z H ss o
= s ® o @ RN 06
=l e®e @0 e ® e)
g. ; »
o . °
J— 02 0.2
n—. ® L
oo 00
2 2 0.0 0.2 04 06 0.8 10 24 .2 0.0 0.2 04 0.6 0.8 10
10 N R N e s ® 10 °
o ®® e o ® °
N o
@ 08 (30 N NN N NN NN 08 J ® [}]
— [e o ® 00 e e
3 o TEERERE I oew o6
= . ETEEEEEREERETY o . o e
8 04 e ® ® e @ 0 LN N) 04 e @ ®
o @ e B e e d . o o @
E 0.2 [] o] £ 3 0.2
B [] L]
00 > 8@ @ o e @ 00
23 .2 0.0 0.2 o4 0.6 L) 10 02 2 0.0 0.2 04 o6 0.8 10
c4 D4
10 1 10 1
<t © e
o ° . ° 08 @ .
] o
% 06 <) c e 0 06
® ° ° ° e
8 0.4 \ 0.4
o ® *
J— 02 02
=¥
0o 00
2 2 0.0 0.2 04 0.6 oe 10 = 2 0.0 0.2 04 06 08 10
C5 D5
10 L] 10
Vo] .o
08 ° @ ° 8 08 ®
v . e
= o [] L o 8e 0.6
o ° MO Ry °
8 04 3 8 * [} 04
o L] @ &
=~ 02 @ 02
=¥
00 [] 00
22 .2 0.0 0.2 04 X3 o8 10 2z .2 0.0 0.2 04 06 0.8 10
. e . .
Client's instances Designer's instances

FIGURE 5.4: An example of the distributions of agents’ instances

The results of the experiments show that agents explore a greater number of new topics
and generate more instances (the associations between topics and utterances) when the
client-agent uses the Wundt curve only for selecting interesting design works (see Fig. 5.4
(C3)). But the frequency differences between the instances are not distinctive compared

with when the client-agent uses the Wundt curve not only for selecting interesting works,

Chapter 5 Exploring Creative Features of Language 131

but also for generating interesting requirements (see Fig. 5.4 (C5)). This suggests
that the client-agent prefers using a small set of interesting utterances frequently for
generating interesting requirements. So, the frequency-distribution of instances is non-

uniform.

The number of designer-agent’s instances is less than that of the client-agent’s in-
stances (see Fig. 5.4(C2-D5)) except that which is generated in guessing games (see
Fig. 5.4(C1,D1)) because only one designer-agent’s design could be accepted by the
client-agent in a successful generation game. At the same time, other designer-agents
have no opportunity to update their instances while the client-agent can update its in-
stances every successful time in generation games. In future experiments, the losers
may be able to learn the winning-design, and update their instances in each time when

client-agent selects a winning-design.

The average number of instances generated by client-agent and designer-agents in a
generation game is shown in Figure 5.5. The number of instances increases sharply
especially for the client-agent when only the Wundt curve is used to assess the interest
of design works. However, when the Wundt curve is used to evaluate not only the
interest of design works but also that of utterances, the number of instances decreases
even below that of instances generated without evaluation of interest. The exception is
the average number of designer’s instances generated in Procedure 5, which is slightly
higher than that in Procedure 2 but still lower than that in Procedure 3.

800

700
600

M client m designer

INSTANCES

500
400
300
200
100

0

works requirements requirements
& works

EVALUATION OF INTEREST

FIGURE 5.5: The average number of agents’ instances generated with or without eval-
uation of interest in generation games

The average max degree of the graph networks of instances generated by client-agent
and designer-agents respectively are illustrated in Figure 5.6. As can be seen, the highest
average max degree belongs to the instances generated using the Wundt curve to select
both interesting requirements and interesting works. The average max degree related
to the evaluation of only requirements is higher than that of only works. Therefore,
evaluation of the interest of requirements (i.e., utterances) may be more important than
that of works.

It is worth mentioning that the agents, especially the client-agent, still explores the

vast majority of topics although the guessing game starts with only 10 samples (see

132 Chapter 5 Exploring Creative Features of Language

70

60 | mclient m designer
50 1
40 -|

30

AVERAGE MAX DEGREE

20

10

no works requirements requirements
& works

EVALUATION OF INTEREST

FI1GURE 5.6: The average max degree of the graph networks of agents’ instances gen-
erated with or without evaluation of interest in generation games

Fig. 5.7). This is not only because designers generate design works around suitable
prototypes instead of choosing the prototypes directly, but also because the clients select
design works using the Wundt curve. However, the distribution of instances becomes
non-uniform (see Fig. 5.7 (C3, D3, C5, D5)) when the client generates interesting

requirements using the Wundt curve instead of generating requirements randomly.

Client’s instances Designer’s instances
Cl D1

“Guessing (107;érﬁﬂplé’s) B

c2 D2
o o . o .
N . o . N .
B . .
o L . L]
. sk
generation (no interest)
c3 D3
M . 8 M
. .

generation (requireinent interest)
C4 D4

seee
cse
ses
cee
e
cossss

.
@ecmcscecne

oo

T
Ty
e oo
o
e
0o

7 generation (works interest)
s D5

. °
tesl®

" generation (both interest)

FIGURE 5.7: Another example of the distributions of agents’ instances

Chapter 5 Exploring Creative Features of Language 133

5.1.6 Discussion

Based on the results of the simulations, client’s requirements may be more important
than designers’ works because the final pattern of the distribution of utterances and
design works is primarily determined by the client-agent rather than by the designer-
agents (see Fig. 5.8 2). In addition, the average max degree related to the evaluation
of requirements is higher than that of woks (see Fig. 5.6). Therefore, the evaluation of
the interest of requirements may be more important than that of works. Furthermore,
interesting requirements may narrow the combination area of utterances initially gen-
erated by crossing over two randomly selected utterances, resulting in the selection of

interesting artifacts.

10 10
LI
08 @ L = 08
° L]
06 ® e 0 06
°] L]
0.4 =) ® 04
® L]
02 02
0.0 00
&3 00 02 04 06 08 10 3 0.0 0z 0a 06 08 10
Client's instances Designer's instances

FIGURE 5.8: The instances with evaluation of both requirement & design interest

According to the illustrations of both Figure 5.5 and Figure 5.6, “less is more” is realised
as less instances and more connections (see Fig. 5.9). In other words, many more
meanings are associated with one utterance while the total number of utterances can be
relatively small when using a hedonic function to select randomly combined utterances.

Consequently, more connections may lead to discovering more new concepts.

More
800

700 mclient mdesigner 60 mclient mdesigner

600

INSTANCES

500
400

AVERAGE MAX DEGREE

300
200
100

works requirements requirements works requirements requirements
& works & works

EVALUATION OF INTEREST EVALUATION OF INTEREST

FIGURE 5.9: Less is more

The procedures of language games implemented in this experiment could therefore be

adopted in brainstorming by both clients and designers to evolve original requirements

2The horizontal axis represents the value of shape while the vertical axis represents the value of
colour. Each meaning, which is combined with the two features, shape and colour, is represented by zero
or at least one utterance. Each representation (the association between a meaning and an utterance) is
an instance. if a meaning is represented by more than one utterances, the utterances illustrated as blue
circles will overlap to become darker. If an utterance is used a lot of times, the circle will become bigger.

134 Chapter 5 Exploring Creative Features of Language

and novel concepts. The combination of guessing games and generation games can also
be utilised in an artificial collaborative system to evolve compositional languages for

creative design.

5.1.7 Conclusion

The results of the simulations® suggest that the ambiguity of language, especially the
ambiguity resulting from polysemy, may play an important role in creative communi-
cation by using compositional languages. The number of instances is reduced when
using one utterance representing more meanings; at the same time more connections
between the instances (i.e., max degree) are generated that leads to connecting more
new concepts (see Fig. 5.9). In addition, the direction of exploring conceptual space
is affected by using hedonic functions with different settings to evaluate the interest of
utterances. As can be seen from Fig. 5.7, the evaluation of the interest of requirements
(i.e., utterances) “narrows” the design area (see C3 of Fig. 5.7) compared with others
(see C2 and C4 of Fig. 5.7). Further, client-demand driven design may be more im-
portant than content driven design in social creative systems due to the distribution of
instances mainly determined by the client-agent (see Fig. 5.8) and more connections of

the instances resulting from the evaluation of the interest of requirements (see Fig. 5.6).

5.2 Scalability

The aim of this experiment is to expand the abundance of design concepts using the
scalability of language. In language games, the meaning of an utterance can be exag-
gerated without an example having been seen, such as by extending the size of a design

to get new spatial functions through the use of modifiers (e.g. “very”, “so”).

Initially, the utterances representing different sizes or angles (e.g. small, medium, large)
or various soft and hard materials could be generated and shared among agents through

guessing games. Then modifier-utterances (e.g. “very” — “vo”) and their related con-

9 99

text free grammar rules (e.g. “very-size” — “very” “size” or “size” “very”) can be added
into agents’ association memory. The relevant prototypes will be generated using condi-
tional rules to distinguish similar meanings such as “very small”, “small small”, “small”

and “small medium”.

3In this experiment, the evaluation tool based on Graph Theory is used to evaluate the results of
language games such as the average max degree of the graph networks of agents’ utterance instances.

Chapter 5 Exploring Creative Features of Language 135

5.2.1 Subjects

Simulation type 1: Size-samples are randomly generated between 0.25 and 0.75 in guess-
ing games. The sizes smaller than 0.25 and larger than 0.75 are explored using the
exaggeration method by combining the modifier, “very”, with existing utterances rep-

resenting “small” and “large” in generation games.

Simulation type 2: Size-samples are randomly generated between 0 and 1 in guessing
games. These samples are categorised into three sets (small, medium and large). Then
they are subdivided into smaller segments such as “very small” and “very large” in

generation games.

5.2.2 Implementation

This experiment is implemented using both guessing games evolving a size-domain lan-
guage and generation games producing exaggerated sizes via weighted context free gram-
mar (WCFG) with graph network (GN) based on the DIFI framework (see Fig. 5.10).

sizes [0.25, 0.75] (0, 1]
E\,a\uatlons

FIGURE 5.10: The Domain-Individual-Field-Interaction (DIFI) framework of exploring
scalability

curious client (exaggerated brief))

GNG (probability density)

Generation game
Guessing game

Works

5.2.2.1 Implementation for Simulation Type 1

The agents without language modifiers may be limited to categories without relationship
between them. By contrast, the agents with language modifiers can learn how categories
being changed via the influence of other categories. For example, a new category in-
volving a modifier such as “very small” is not only determined by “very” and “small”
but also influenced by “medium” and “large” when Equation 21 is used. This means
the categories of “very small”, “very medium” and “very large” build up relationship

between “small”, “medium” and “large”.

n

=5+ (s—S)/d (21)

i=1

136 Chapter 5 Exploring Creative Features of Language

S is a list of sizes consisting of small, medium and large etc. n is the length of the list.
s is one item in the list. d is a factor adjusting the impact of other sizes on the current
size, s. s’ is the exaggerated size of s. An example of exaggerating prototypes is shown
below (see Equations 22, 23, 24).

VS =S8+ ((S—8)+(S—M)+(S—L))/d (22)
VM =M+ (M —S)+ (M — M)+ (M—L))/d (23)
VL=L+((L—S)+(L—M)+(L—-L)/d (24)

The procedure of modifying size is described in Algorithm 10. Given size = 0.257,
sizes = [0.257,0.454,0.633] and d = 4, the exaggerated size namely “very small” can be
calculated using this algorithm resulting in 0.114 (see Table 5.1). Not only the prototype
but also min, max, mean and variance of the exaggerated size can be calculated by

changing the type of items of S to min, max, mean and variance of the original sizes.

Algorithm 10 Size Modification

1: function MODIFYSIZE(size, sizes, d)
2 A+0

3 for i =1 — length(sizes) do

4: A+ A+ (size — sizes;)

5 end for

6 return size + A/d

7: end function

As can be seen from Table 5.1, new categories are generated using the equations 22, 23
and 24 with d = 4 and variance factor = 50%. If d is greater than 4, the impact of other
categories on VS (“Very Small”) may be smaller, and VS will be closer to S (“Small”)
whereas if d is less than 4, VS will be far away from S, even less than 0 (here, “small”
is certainly small, at most containing only part of the range of “very small”). In an
extreme example, if d = 0.01, the result will be VS = -57.043, VM = 2.254, and VL =
56.133. This can be very interesting for extending the range of size to generate novel
spatial concepts. In the experiment, the min of “very small” is set to be greater than 0
and the max of “very large” is normally set to be less than 1. This can be adjusted by
decreasing d or increasing variance, or adding more modifiers such as “very very small”
reaching 0 and “very very large” reaching or even over 1; or just by extending “very

small” and “very large” to 0 and 1 respectively.

The impact of the existing categories on new categories adjusted by modifiers might be
dynamically diffuse. For example, the range of very small is affected by that of small,
medium and large with different affecting weights (W.small > W.medium > W.large for

“very small”). In addition, the modifier itself will evolve and develop new categories

Chapter 5 Exploring Creative Features of Language 137

TABLE 5.1: Categories with language modifier

Size Mean (prototype) | Variance | Min | Max
Small (S) 0.257 0.150 0.107 | 0.407
Medium (M) 0.454 0.150 0.304 | 0.604
Large (L) 0.633 0.150 0.483 | 0.783
Very Small (VS) 0.114 0.075 0.039 | 0.189
Very Medium (VM) 0.458 0.075 0.383 | 0.533
Very Large (VL) 0.772 0.075 0.697 | 0.847

dynamically by giving agents a range of numbers to select for categorisation instead of

setting a certain range in advance.

In this experiment, exaggerational languages evolve by generating compositional utter-
ances using a weighted context free grammar (WCFG). For example, “za vo” represent-
ing the meaning of “very small” is collected during the following process (see Table 5.3),
“compo-size” — “very-size” — “size & very” (weight: 0.871) rather than “very & size”
(weight: 0.152) — “size0.257” & “vo” (weight: 0.892) rather than “so” (weight: 0.010)
— “za” (weight: 0.995) & “vo” — “za vo”. In generation games, a client-agent may
select rules via direct weighted selection or roulette selection to generate appropriate

compositional utterances.

An agent’s association rules include basic rules and compositional rules. The former
rules are primarily generated in guessing games while the latter rules are developed in
generation games. In guessing games, new categories related to basic rules are generated
when a new topic is out of the area of existing categories. Each category is defined with
prototype and tolerance; for example, the category with prototype, 0.2 and tolerance, 0.1
is [0.2-0.1, 0.2+40.1] — [0.1,0.3]. Another category could be [0.25,0.55] from prototype,
0.4 and tolerance 0.15. 0.27 is more likely to belong to category [0.1,0.3] than to category
[0.25,0.55] because the distance between 0.27 and prototype 0.2 is less than that of
prototype 0.4. The overlap of categories could be a source of creativity. In generation
games, new categories associated with compositional rules are generated temporally
based on the previous generated categories related to the basic rules. In this experiment,
the compositional categories are generated according to the following conditional rules
(see Equations 25, 26, 27, 28, 29). The related function, getting the prototype and

tolerance of an exaggerated size, is presented in Algorithm 11.

0.5t if VS,VL,VM
t'=907xt if S, MM,LL (25)
(t1 +t2)/2 if SM,SL, ML e.g. SM: (ts+ tar)/2

138 Chapter 5 Exploring Creative Features of Language

P+ (p—P)/4 VS, VL, VM,MM
P=<Sp+>r (p—P)/7 if SS,LL (26)
(p1+ p2)/2 if SM,SL, ML e.g. SM: (ps + par)/2

, maz(0,p’) if VS SS
P = (27)
min(1,p’) if VL, LL

y_ J @ +1)/2 if VSA(p —t #0)
h (28)
L+ —t)/2 EVLAQP +t #£1)
o)@ H1)/2 ifVSA (@ —t #0))

11— =t)/2 VLA +t #1)

S: small, M: medium, L: large, V: very — e.g. V.S: very small

t: tolerance, t': the tolerance of exaggerated size, t”: the regulated tolerance of exagger-
ated size

p: a size-prototype, p’: the prototype of exaggerated size, p”: the regulated prototype

of exaggerated size, P: a list of size-prototypes

The process of the guessing game for Simulation Type 1 is illustrated in Figure 5.11.
First, the speaker-agent selects a random-topic and maps it to a relevant rule or creates
a new rule in which the associated utterance can be obtained. This utterance will be
sent to the listener-agent who compares the utterance with all samples in the context,
finds a relevant rule and then maps it to a topic. This guessed topic will be categorised
in the normal way by speaker-agent and compared with the categories of the speaker’s
selected topic. If the two sets of categories share at least one category, the guessing
game succeeds. Both speaker and listener learn their respective rules. Otherwise, the
listener unlearn its rule, then generate a new rule related to the speaker’s selected topic

and utterance, and learn the new generated rule.

The process of the generation game (see Fig. 5.12) for Simulation Type 1 is described as
follows. First, the client-agent traces forward the rule, “compositional size”, to obtain a
compositional utterance (i.e., requirement) and several rules related to the tracing-path.
A pair of terminal rules are extracted from these rules and categorised to find relevant
prototype and tolerance by the client-agent. Then the designer-agent traces backward
the client’s requirement to get a number of rules, extracts a pair of terminal rules from
them, and then categorises the pair of rules to get another couple of prototype and
tolerance which is used to generate a specific design. This design and other designers’

design works are compared with the client’s prototype. If the distance between the

Chapter 5 Exploring Creative Features of Language 139

Algorithm 11 Getting The Prototype and Tolerance of An Exaggerated Size

1:
2
3
4
5:
6
7
8
9

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:

function GETEXAGGERPROTOL(agent, exagger Rule)

if exaggerRule € [vs,vm,vl, sv, mv,lv] then
size0 < remove(v, exagger Rule)
tolerance < agent|'nodes|[size0]['tolerance] x 0.5
else if exaggerRule € [ss,mm,[l] then
size0 < exagger Rule[0]
tolerance < agent|'nodes|[size0]['tolerance] x 0.7
else if exaggerRule € [sm, sl,ml, ms,1s,lm| then
size0 < exagger Rule[0]
sizel < exagger Rule[1]
tolerance0 <+ agent|'nodes|[size0|[tolerance]
tolerancel + agent|'nodes|[sizel]['tolerance]
tolerance < (tolerance0 + tolerancel)/2
end if
if exaggerRule € [vs,vm,vl, sv, mv,lv,mm] then
size0 < remove(v, exagger Rule)
p < agent|'nodes][size0][prototype]
A« sum(map(z — (p — agent['nodes]|x]['prototype)), [s,m,1]))
prototype < p + A/4
else if exaggerRule € [ss,ll] then
size0 < exagger Rule[0]
p < agent|'nodes|[size0|[prototype]
A « sum(map(z — (p — agent['nodes]|x][prototype)), [s,m,]))
prototype < p+ A/7
else if exaggerRule € [sm, sl,ml, ms,1s,lm] then
size0 < exagger Rule[0]
sizel < exagger Rule[l]
p0 < agent['nodes][size0|[prototype]
pl < agent['nodes][sizel]| prototype]
prototype < (p0 + pl)/2
end if
if exaggerRule € [vs, sv, ss] then
prototype < max (0, prototype)
else if exaggerRule € [vl,lv,ll] then
prototype < min(1, prototype)
end if
if (exzaggerRule € [vs, sv]) A (prototype — tolerance) # 0 then
prototype < (prototype + tolerance)/2
tolerance < prototype
else if (exaggerRule € [vl,lv]) A (prototype + tolerance) # 1 then
prototypel < prototype
tolerancel < tolerance
prototype < (1 + (prototypel — tolerancel))/2
tolerance < (1 — (prototypel — tolerancel))/2
end if

return {'prototype : prototype, "tolerance : tolerance}

47: end function

140 Chapter 5 Exploring Creative Features of Language

Guessing game for exploring scalability 1

Speakler(S) Listenler(L)

i} 1 i}

Context includes

8 random decimals in range [0.25,0.75]
representing different sizes

e.g.[0.442, 0.257, 0.593,...]

1
randomChoice(Context) topic[S] !

categorise(topic[S]) -> activeRule[S]

e.g. {rule:SIZE0.257, expansion:"za", weight:0.995,
prototype:0.257, tolerance:0.15, compare?:True}
if topic does not match any existing rule,

newRule(prototype=topic) -> activeRule
activeRule[S][expansion] -> utterance

utterance (e.g."za")

activeRules[L]=[], utterances[L]=[]
loop 0 <=i<length(Context)
categorise(context[i]) -> activeRulel[i]
activeRule[i][expansion] -> utterancel[i]
push(activeRule[i], activeRules[L])
push(utterancel[i], utterances[L])
topic[L] if utteran.ce[i]==u.tterance?
context[i] -> topic[L]
activeRule[i] -> activeRule[L]
return
if null(topic[L])?

utterances[L][n] -> context[n] -> topic[L]
utterances[L][n] -> activeRules[L][n] -> activeRule[L]

mostSimilar(utterances[L], utterance) -> utterances[L][n

nCategorise(topic[S]) -> rules[S][S]
nCategorise(topic[L]) -> rules[S][L]

nCategorise means selecting all accepted categories
instead of only the most matched category.
intersection(rules[S][S], rules[S][L])

evaluation

alt _/ [intersection(rules[S][S], rules[SI[L])?]
success

> |
>

learn(activeRule[S])

learn(activeRule[L])

failure, topic[S]

Y

unlearn(activeRule[L])
(un)learn | categorise(topic[S], utterance)
->newActiveRule[L]
learn(newActiveRule[L])

FIGURE 5.11: Guessing game (type-1) for exploring scalability

prototype and a design is in the range of client’s tolerance, the design is accepted. After
all the designs have been compared with the client’s prototype, if there is at least one
accepted design, the game succeeds and the client learns its own rules. At the same time
the designer also learns its own rules if its design is a member of the accepted designs.
Otherwise it unlearns the rules, generates new terminal rules based on the best design
and the requirement, and then learns the new terminal rules. If there is no accepted

design, the game fails and the designer-agents unlearn their respective rules.

Chapter 5 Exploring Creative Features of Language 141

Generation game for exploring scalability 1

O

Client(C) Designer(D)

traceForward(compoSize, [best]) using WCFG
->activeRules[C], requirement(utterance)
[best] means selecting the rule with greatest weight.
e.g. compoSize -> verySize -> [size,very] requirement (e.g. "za-vo")
-> [size0.257,very] -> ["za","v0"] >
activeRules: [compoSize:verySize, verySize:[size,very],
size:size0.257, size0.257:"za", very:"vo"]
requirement: "za-vo"

loop 0 <=i<length(requirement)
if not(in(requirement][i], terminalRules[D]))?
mostSimilar(requirement[i], terminalRules[D])
-> terminalRules[D][n]
addTerminalRule(requirement[i], terminalRules[D][n])
e.g. terminalRules
[very, size0.257, size0.454, size0.633]
e.g. a terminalRule
design[D] {rule:size0.257, expansion:"za", weight:0.001,
prototype:0.257, tolerance:0.15, compare?:True}
traceBackward(requirement, [best])
->rootRule:compoSize, activeRules[D]
filter(requirement, activeRules[D]) -> pairTerminalRules[D]
e.g. pairTerminalRules
[size0.257, very] means "very small"
categorise(pairTerminalRules[D]) -> prototype[D], tolerance[D]
variate(prototype[D]) with tolerance[D] -> design[D]

other designs
filter(requirement, activeRules[C]) -> pairTerminalRules[C] evaluation
categorise(pairTerminalRules[C]) -> prototype[C], tolerance[C]
filter(designs, prototype[C], tolerance[C]) -> winnerDesigns
alt [winnerDesigns?]
sort(winnerDesigns) success, winnerDesigns
the best is the first with shortest distance| - 8 >

learn(activeRules[C])

if member(design[D], winnerDesigns)?
learn(activeRules[D])

else
unlearn(activeRules[D])
categorise(winnerDesigns[0], utterance)
->newPairTerminalRules[D]
winnerDesigns[0] is the best design with
shortest distance to client's prototype.
learn(newPairTerminalRules[D])

(un)learn

failure

unlearn(activeRules[D])

FIGURE 5.12: Generation game (type-1) for exploring scalability

5.2.2.2 Implementation for Simulation Type 2

Another way of representing sizes and exaggerated sizes is to use range, which is the
combination of prototype (i.e., mean) and tolerance (i.e., variance). “very” is the result
of increasing the difference of a category from other categories. New exaggerated feature
categories can be generated by adding modifiers to existing categories. For example, the
range of “very medium” can be generated by calculating the mean of medium size to
maximise the distance to other categories such as small and large (If the range of medium
was [0.304, 0.604], the mean will be 0.454) and reducing the variance of medium size by a
factor (50%). If the variance of medium was 0.15, the variance of “very medium” will be
0.075. Here, the original size is equal to the general size, which contains the exaggerated

size. For instance, very large is a part of large. The range of “very large” could be

142 Chapter 5 Exploring Creative Features of Language

[0.8, 1] derived from “large”, [0.6, 1] via 1 — 0.5 x (1 — 0.6) while the range of “very
small” would be (0, 0.2] derived from “small”, (0, 0.4] via 0.5 x 0.4. The equations for
calculating the range of exaggerated sizes with smally;, =0 and large,x=1 are described
below (see Equations 30, 31; R’ is the range of exaggerated size while R is the range of

original size. a is the factor for reducing the variance of original size. 0 < a < 1).

0 if R is small

Fin = Romin + (1 — a)(Rmaz — Rmin)/2 if R is medium (30)
1—ax(1— Rmnin) if R is large
a* Ryae if R is small

Riae = Romaw — (1 — a)(Rmaz — Rmin)/2 if R is medium (31)
1 if R is large

To calculate the exaggerated sizes more dynamically, the probability density function of
the truncated normal distribution between 0 and 1 is utilised. The probability density
function of the truncated normal distribution (probability-t-pdf) is given by Equation
32 (also see Algorithm 12, default settings: v = 0.0, sigma = 1.0, a = 0.0, b = 1.0).

f(:c;,u, U7a7b) = b—pu (32)

Algorithm 12 Probability Density Function of the Truncated Normal Distribution

1: function TPDF(z,u, sigma, a,b)

2: return (sPdf((z — w)/sigma)/sigma)/(sCdf (b — u)/sigma) — sCdf((a —
u)/sigma))

3: end function

Where ¢() is the standard normal distribution, which is defined as Equation 33 (also
see Algorithm 13).

1
V2T

H() = ——expl(— 5€) (33)

Algorithm 13 Probability Density Function of the Standard Normal Distribution

1: function sSPDF(z)
2: return exp(—0.5 x x x z)/1/(2 x 7)
3: end function

And ®(z) is the cumulative distribution function of the standard normal definition,

which is defined as Equation 34 (also see Algorithm 14 4).

“The algorithm is translated from https://www.johndcook.com/blog/python_phi/

https://www.johndcook.com/blog/python_phi/

Chapter 5 Exploring Creative Features of Language 143

1
O(x) =05+ —"¢

Ver

—x2/2

ZE5 x2n+1

.%‘3
Tt gttty TR

@n s (34)

Algorithm 14 Cumulative Distribution Function of the Standard Normal Distribution

1:
2
3
4
5:
6
7
8
9

10:
11:
12:
13:
14:
15:

function sCpr(x)

a1 + 0.254829592
as + —0.284496736
as < 1.421413741
as + —1.453152027
as < 1.061405429
p « 0.3275911

sign +— 1

if £ < 0 then
sign < —1

end if

x < abs(z)/sqrt(2)
z+1/(1+pxuz)

y<—1—(((((as X z4+a4) X z4+a3) X z+a2) X z+a1) X z X exp(—x X x))
return 0.5 x (1 + sign x y)
16: end function

The artificial neural network Growing Neural Gas (GNG) is utilised to categorise the

samples with different sizes. As can be seen from Table 5.2, nine nodes (n0, nl,..., n8)

of a GNG network are utilised to categorise basic sizes including “small” (S), “medium”

(M) and “large” (L), and exaggerated sizes such as “very small” (VS) and “small small”

(SS). The categories of these sizes will be updated in time after training the GNG

network with each sample. Therefore, both prototypes and tolerances of the categories

change dynamically instead of being fixed.

TABLE 5.2: Categorizing sizes using GNG & probability density

Size Prototype Variation(sigma)
S nl (nl + n4)/4
M n4 (n7-nl)/4

L n7 (2-nd-n7)/4
VS 0.0 n0

VM n4 (n5 - n3)/8
VL 1.0 1-n8

SS n0 (n0 + nl)/4
MS nl (n2 - n0)/4

LS n2 (n3 -nl)/4
SM n3 (n4 - n2)/4
MM n4 (n5 - n3)/4
LM nb (n6 - n4)/4

SL n6 (n7 - nb)/4
ML n7 (n8 - n6)/4
LL n8 (2-n7-n8)/4

144 Chapter 5 Exploring Creative Features of Language

As can be seen from Figure 5.13, the guessing game for Simulation Type 2 also starts
from random topic selection by the speaker-agent, who categorises this topic to a relevant
category-rule using GNG. Then an utterance relating to the rule is generated and sent
to the listener-agent, who generates its own rule based on the utterance and the samples
in the context, then match the rule to a relevant topic. The listener’s rule is compared
with the speaker’s rule. If they are the same, the game succeeds, and both speaker and
listener learn their respective associations between the rules and utterance. Otherwise,
the listener unlearns the association between its own rule and utterance, then generates
a new rule based on the speaker’s selected topic and utterance, and learns the association

between the new rule and the utterance.

The generation game for Simulation Type 2 (see Fig. 5.14) also starts from tracing
forward the rule, “compositional size”, to obtain a compositional utterance (i.e., re-
quirement), a list of associations between rules and their expansions (i.e., active-rule-
expansions) related to the tracing path as well as the category-rule by a client-agent.
Then a designer-agent traces backward the client-agent’s requirement to get its own
active-rule-expansions and category-rule. This category-rule is used to generate a spe-
cific design. Then the client categorises all designs to relevant category-rules and com-
pare these rules with its original category-rule. If they are the same, the related design
will be accepted. After evaluating all the designs, if there is at least one accepted
design, the game succeeds, and the client learns its own active-rule-expansions. The
designer also learns its own active-rule-expansions if its design is one of the accepted
designs; otherwise, the designer unlearns the active-rule-expansions and generates new
active-rule-expansions based on the best design and the requirement, then learns the
new active-rule-expansions. If there is no accepted design, all designers unlearn their

respective active-rule-expansions.

5.2.3 Results of Simulation Type 1

During simulation, speaker and listener are randomly selected from 6 agents before each
guessing game while one client and three designers are randomly selected from 6 agents
before each generation game. At the completion of a simulation, 23 basic utterances are
generated. Among these, “za” and “ge” are successfully associated with the meaning,
“small”; “wu” and “hoxo” mainly represent the meaning, “medium”; “xufa” repre-
sents “large”; and “vo” represents “very”. Each agent generates three basic categories:
“small”, “medium” and “large”, although the range of the same category generated
from each agent differs slightly owing to their different experiences on various topics and

different sequences of these topics.

Chapter 5 Exploring Creative Features of Language

145

Guessing game for exploring scalability 2

O

randomChoice(Context)

train(GNGnet[S], topic[S])
relevant nodes of GNGnet[S] are adjusted
according to topic[S].
updateCategories(categories[S], GNGnet[S])
The prototype & variation(sigma) of each category are
updated based on the adjusted nodes in GNGnet.
categories: [S,M,L,VSVM,VL,SS,MS,LS,SM,MM,LM,SL,ML,LL
SS,MS,LS,SM,MM,LM,SL,ML and LL are directly mapped tq|
the 9 nodes of GNGnet
categorise(topic[S]) -> category[S]
e.g. 0.49 -> medium(prototype:0.51, sigma:0.16)
Function categorise(topic):
map(tPDF(topic, categoriesli]), categories) -> scores
filter/max([scores,categories], [S,M,L]) -> category
e.g. category: M(medium)
tPDF is the probability density function of
truncated normal distribution in range[0,1]
bestMatch(category[S]) -> utterance
e.g. {rulexmedium, expansion:
{"b0":0.01,"sa":0.28,"d0":0.92}} -> "do"

[category[S], utterance] -> activeRule[S]

train(GNGnet[S], topic[L])
updateCategories(categories[S], GNGnet[S])
categorise(topic[L]) -> category[SL]

Listener(L)
T i

Speaker(S)
)
Context includes
8 random decimals in range (0,1]
representing different sizes
e.g.[0.264, 0.616, 0.195,...]
J
ctopiclS] .
N LIS >
utterance (e.g. "do") -
activeRules[L] =[], utterances[L] =[]
loop 0 <=i<length(Context)
train(GNGnet[L], Context[i])
updateCategories(categories[L], GNGnet[L])
categorise(context[i]) -> categoryl[i]
bestMatch(category[i]) -> utterancel[i]
push(utteranceli], utterances[L])
. [categoryl[i], utterance[i]] -> activeRule[i]
topic[L] push(activeRule[i], activeRules[L])
if utterance[i] == utterance?
context[i] -> topic[L]
activeRulel[i] -> activeRule[L]
return
if null(topic[L])?
mostSimilar(utterances|[L], utterance) -> utterances[L][n
utterances[L][n] -> context[n] -> topic[L]
utterances[L][n] -> activeRules[L][n] -> activeRule[L]
evaluation
alt / [category[SL] == category[S]?]
success o
learn(activeRule[S])
learn(activeRule[L])
failure, topic[S] -
unlearn(activeRule[L])
train(GNGnet[L], topic[S])
(un)learn updateCategories(categories[L], GNGnet[L])
categorise(topic[S]) -> category[LS]
addRule(category[LS], utterance)
->newActiveRule[L]
learn(newActiveRule[L])

FIGURE 5.13: Guessing game (type-2) for exploring scalability

5.2.3.1 Individual’s Rules

After completing the generation games, each individual collects a number of association

rules. As can be seen from Table 5.3, an agent collects 30 rules associating compositional

rules with terminal rules and utterances. If Compare? is 1, the related rule may be

compared with other rules with the same rule name. For example, rule-2 and rule-3

146 Chapter 5 Exploring Creative Features of Language

Generation game for exploring scalability 2

O

Client(C) Designer(D)

traceForward(compoSize, [best]) using WCFG
-> activeRules[C], category[C], requirement(utterance)
e.g. compoSize -> [very,size] -> ["bo",small] -> ["bo","doho"]
activeRules: [compoSize:[very,size], size:small, requirement (e.g. "bo-doho") _ |
very:"bo", small:"doho"] i
category: very-small
requirement: "bo-doho"

loop 0<=i<length(requirement)
if not(in(requirement][i], terminalRules[D]))?
randomChoice(terminalRules[D]) -> tRule[D]
addTerminalRule(requirement(i], tRule[D])
e.g. requirement[i] = "bo"
terminalRules = [very, small, medium, large]
-[randomChoice]-> small
{rule:small, expan:{"sa":0.28, "do":0.92}}
-> {rule:small, expan:{"sa":0.28, "d0":0.92, "b0":0.01}
traceBackward(requirement, [best])
design[D] ->rootRule:compoSize, activeRules[D], category[D]
[tag0] random(1.0) -> tempDesign
train(GNGnet[D], tempDesign)
updateCategories(categories[D], GNGnet[D])
categorise(tempDesign) -> tempCategory
addRules(tempCategory, requirement)
e.g. [very-small, "bo-doho"]->
{very:"bo"} and {small:"doho"}
if tempCategory == category[D]?
tempDesign -> design[D]
else
go to [tag0] to generate another temporary design

other designs

winnerDesigns=[]
loop 0 <=i < count(designs)
train(GNGnet[C], designs[i])
updateCategories(categories[C], GNGnet[C])
categorise(designsli]) -> dCategory[i]
addRules(dCategory[i], requirement)
if dCategory[i] == category[C]?
abs(designsi] - category[C][prototype]) -> distance[i]
push([distance[i], designs[il], winnerDesigns)

evaluation

alt / (winnerDesigns?]

sort(winnerDesigns) success, winnerDesigns
the best is the first with shortest distance| - g >

learn(activeRules[C])

if member(design[D], winnerDesigns)?
learn(activeRules[D])
else
unlearn(activeRules[D])
train(GNGnet[D], winnerDesigns[0])
(un)learn | winnerDesigns[0] is the best design with
shortest distance to client's prototype.
updateCategories(categories[D], GNGnet[D])

addRules(newCategory[D], requirement)
-> newActiveRules[D]
learn(newActiveRules[D])

categorise(winnerDesigns[0]) -> newCategory[D]

failure

Y

unlearn(activeRules[D])

FIGURE 5.14: Generation game (type-2) for exploring scalability

with the same rule name, “very-size”, could be compared by the client-agent who prefers
to select rule-3, which has higher weight. Three terminal categories—size0.257 (small),
size0.454 (medium) and size0.633 (large)—are generated. Each category is associated
with several utterances which can be compared and selected according to their different
weights. The final result shows that the associations [“very”,“vo”], [“size0.257",“ge”],
[“size0.2577 “za”|, [“size0.454”,“wu”], [“size0.454”,“hoxo”], [“size0.633”, “xufa”] could

be selected more often than other rules due to their high weights.

Chapter 5 Exploring Creative Features of Language 147

TABLE 5.3: An agent’s association rules

No. Rule Expansion Weight Prototype Tolerance Compare?
0 COMPO-SIZE VERY-SIZE 0.871 N/A N/A 0
1 COMPO-SIZE SIZE-SIZE 0.938 N/A N/A 0
2 VERY-SIZE VERY,SIZE 0.152 N/A N/A 1
3 VERY-SIZE SIZE,VERY 0.871 N/A N/A 1
4 SIZE-SIZE SIZE,SIZE 0.938 N/A N/A 0
5 SIZE SIZE0.257 0.995 N/A N/A 0
6 SIZE SIZE0.454 0.950 N/A N/A 0
7 SIZE SIZE0.633 0.836 N/A N/A 0
8 VERY “so” 0.010 N/A N/A 1
9 VERY “vo” 0.892 N/A N/A 1

10 SIZE0.257 “ho” 0.009 0.257 0.15 1
11 SIZE0.257 “la” 0.010 0.257 0.15 1
12 SIZE0.257 “pa” 0.108 0.257 0.15 1
13 SIZE0.257 “hoxo” 0.109 0.257 0.15 1
14 SIZE0.257 “xufa” 0.109 0.257 0.15 1
15 SIZE0.257 “zira” 0.109 0.257 0.15 1
16 SIZE0.257 “ge” 0.970 0.257 0.15 1
17 SIZE0.257 “za 0.995 0.257 0.15 1
18 SIZE0.454 “ve” 0.010 0.454 0.15 1
19 SIZE0.454 “xufa” 0.109 0.454 0.15 1
20 SIZE0.454 “ge” 0.415 0.454 0.15 1
21 SIZE0.454 “wu” 0.931 0.454 0.15 1
22 SIZE0.454 “hoxo” 0.980 0.454 0.15 1
23 SIZE0.633 “ge” 0.009 0.633 0.15 1
24 SIZE0.633 “vo” 0.009 0.633 0.15 1
25 SIZE0.633 “hoxo” 0.098 0.633 0.15 1
26 SIZE0.633 “ho” 0.109 0.633 0.15 1
27 SIZE0.633 “mewi” 0.109 0.633 0.15 1
28 SIZE0.633 “wu” 0.109 0.633 0.15 1
29 SIZE0.633 “xufa” 0.879 0.633 0.15 1

5.2.3.2 Utterances and Prototypes

The most successful associations between utterances and prototypes for all agents are
listed in Table 5.4. Most of these utterances represent the same categories of each agent

’ “medium”

except “wu”, which is related to Agent-5’s “small” category and other agents
categories, probably because the prototype (0.282) of Agent-5’s “small” category is very
close to other agents’ “medium” categories. In terms of various weights of the asso-
ciations between the utterances and the prototypes, “za” is related to a little smaller
size than “ge” while “wu” relates to a smaller size than “hoxo” although both of them
represent the meaning of medium size; large size is only represented by “xufa” (see Ta-
ble 5.4 and Fig. 5.15). Further, regarding the history of generating rules, “xufa” was

also related to ¢

‘very”; “vo” was used to represent medium size (0.492 by Agent-5) then
changed to mainly represent “very”. Even when a meaning has been mainly represented
by certain utterances, it is still possible to evolve new associations between existing or
new utterances and this meaning. For instance, a new association between “ziza” and
size0.282 occurs after “za” and “wu” primarily representing Agent-5’s size0.282. The di-
versity of dynamic changeable representations related to ambiguity may lead to creative

communication and designing.

148 Chapter 5 Exploring Creative Features of Language

TABLE 5.4: Main associations between utterances and prototypes
(P: prototype, PO: Agent-0’s prototype, W: weight, T: tolerance)

Utter. PO WO P1 W1 P2 W2 P3 W3 P4 W4 P5 W5 T
“za” 0.269 0.907 0.256 0.995 0.261 0.995 0.257 0.995 0.256 0.983 0.282 0.941 0.15
“ge” 0.269 0.978 0.256 0.874 0.261 0.908 0.257 0.970 0.256 0.970 0.282 0.978 0.15
“wu” 0.448 0.995 0421 0970 0413 0995 0454 0931 0412 0.980 0.282 0.800 0.15
“hoxo” 0.448 0.912 0421 0901 0413 0942 0454 0980 0412 0.863 0.492 0.995 0.15
“xufa” 0.669 0.911 0.643 0.968 0.684 0991 0.633 0879 0.619 0.88 0.734 0.991 0.15

1.0 T T T T

0.9+ E

0.8+ .

0.7+ —

0.6 —_— 1 4

categories
o
w
T
.

T
0.2} | 4

0_ O L L I L L
za ge wu hoxo xufa
utterances

FIGURE 5.15: The associations between utterances & categories

5.2.3.3 Exaggerational Rules

After generation games, each agent’s exaggerational rules (see Table 5.5 and Fig. 5.16)
are generated based on the basic rules associated with “small”, “medium” and “large”.
The exaggerational rule, “very small”, covers smaller size to 0 while “very large” rep-
resents larger size to 1. “Very medium” is associated with the same prototype as
“medium” but less tolerance while the tolerance of “medium medium” is between that
of “very medium” and “medium”; “large large” and “small small” has the same toler-
ance as “medium medium” but a slightly bigger or smaller prototype-size than “large”
and “small” respectively. In addition, the pair-combinations of “small”, “medium” and
“large” are related to the intermediate areas of each pair, e.g. the prototype of “small
medium” is the average of those of “small” and “medium”. Further, the exaggerational
rule, “size very”, evolves to be more preferred than “very size” in this simulation (see

Table 5.6).

5.2.3.4 Exaggerational Rules Generated in Another Simulation

Exaggerational rules can be generated efficiently by setting d with an appropriate value
in equation 21. As can be seen from Table 5.7 and Figure 5.17, the prototypes of VS,
VM, MM and VL are calculated with d = 4 and those of SS and LL are generated with

Chapter 5 Exploring Creative Features of Language

149

TABLE 5.5: An agent’s exaggerational rules

Rule ab. Utterance Prototype Tolerance
Very Small VS “vo za” (“vo ge”) 0.110 0.110
Small Small SS “za za” (“ge ge”) 0.163 0.120
Small S “za” (“ge”) 0.257 0.150
Small Medium SM “za wu”(“za hoxo”,“ge wu”,“ge hoxo”) 0.356 0.150
Medium M “wu” (“hoxo”) 0.454 0.150
Very Medium VM “vo wu”(“vo hoxo”) 0.454 0.105
Medium Medium MM “wu wu”(“hoxo hoxo”) 0.454 0.120
Small Large SL “za xufa” (“ge xufa”) 0.454 0.150
Medium Large ML “wu xufa” (“hoxo xufa”) 0.544 0.150
Large L “xufa” 0.633 0.150
Large Large LL “xufa xufa” 0.727 0.120
Very Large VL “yo xufa” 0.836 0.164
11
10} -
0.9+
g 08} — |
g 0.7 T El L7
% 06} - T B - 1
T o5} - B . B H
% 04} - E E E 4
2 03] - H LT
2 02} - El B -
0.1t E| +
ool ~ 7
0.1

Vs

SM M

VM MM

SL

ML L

Exaggerational representations

VL

FIGURE 5.16: An agent’s exaggerational categories

TABLE 5.6: The weights of “very-size” rules

Agent “size very” “very size”
0 0.869 0.177
1 0.944 0.350
2 0.993 0.325
3 0.871 0.152
4 0.834 0.010
5 0.928 0.415

d = 7, which makes the ranges of SS and LL closer to S and L than to VS and VL
respectively. “Very small” is extended to 0 by keeping max (0.184 + 0.150) = 0.334

but changing tolerance 0.334/2 = 0.167 and prototype to 0.167, while “very large” is
expanded to 1 by keeping min (0.782 - 0.150) = 0.632 but changing tolerance ((1 - 0.632)
/ 2) = 0.184 and prototype (1 - 0.184) = 0.816. After such adjustments, the tolerances
of both VS and VL are greater than those of S and V because the prototypes of S and

V are considerably far away from 0 and 1, respectively, in this simulation.

150 Chapter 5 Exploring Creative Features of Language
TABLE 5.7: An agent’s exaggerational rules in another simulation
Rule ab. Utterance Prototype Tolerance
Very Small VS “se fu” (“gi fu”) 0.167 0.167
Small Small SS “fu fu” 0.237 0.120
Small S “fu” 0.309 0.150
Small Medium SM “fu wita” (“fu saro”) 0.388 0.150
Medium M “wita” (“saro”) 0.468 0.150
Very Medium VM “se wita”(“gi wita”’, “se saro”, “gi saro”) 0.462 0.105
Medium Medium MM “wita wita” (“saro saro”) 0.462 0.120
Small Large SL “fu ku” (“fu qeva”) 0.480 0.150
Medium Large ML “wita ku” (“saro ku”, “wita qeva”,“saro qeva”) 0.560 0.150
Large L “ku” (“qeva”) 0.651 0.150
Large Large LL “ku ku” (“geva geva”) 0.726 0.120
Very Large VL “se ku” (“se qeva”, “gi ku”, “gi qeva”) 0.816 0.184

All variances are the same as the settings of the former simulation except that the
variance of very medium is changed to (0.7 X variance) instead of (0.5 X variance)

because tightening the range hinders the success of language games.

11

10| —
09 |
0.8l -]
07] El |
0.6 B -

0.5]

-

04} E

03F T B 4
4

0.2}

01} :

00F L —

0.1~ 1 L . 1 . 1 1
VS 5SS S SM M VM MM SL ML L LL VL

Exaggerational representations

Exaggerational categories

FIGURE 5.17: An agent’s exaggerational categories in another simulation

5.2.4 Results of Simulation Type 2

The mean and deviation of each category of an agent are dynamically changed and
adjusted when categorising new samples in guessing games and designs in generation
games. In detail, the positions of three categorising nodes, including the one that is
closest to the sample or design, and its two neighbours are adjusted using the algorithm
of Growing Neural Gas (GNG), which is similar to that of SOM but is extensible.

Chapter 5 Exploring Creative Features of Language 151

TABLE 5.8: An agent’s weighted association rules

Rule Compo-size | Size | Very S M L
expan. | [very, size] | S “bo” 0.86 | “doho” 0.98 | “sa” 0.96 | “ca” 0.82
[size, size] M “sa” 0.28 | “ga” 0.42 | “ye” 0.71 | “ga” 0.42
L “ca” 0.20 | “sa” 0.28 | “ga” 0.47 | “lizu” 0.20
“doho” 0.01 | “ha” 0.11 | “ca” 0.28 | “fale” 0.11
“ye” 0.01 | “fa” 0.01 | “bo” 0.27 | “bo” 0.01
“ga” 0.01 | “bo” 0.01 | “wu” 0.11 | “doho” 0.01
“ve” 0.01 | “ca” 0.01 | “ha” 0.11 | “sa” 0.01
“fale” 0.01 | “lizu” 0.01 | “wu” 0.01
“ye” 0.01 | “doho” 0.01 | “ye” 0.01

5.2.4.1 Individual’s Rules

In simulation type 2, each agent also stores a number of association rules based on
context free grammar. These rules include root/branch rules: “compo-size” & “size”,
and terminal rules: “very”, “small”, “medium” & “large” related to weighted utterances,
e.g. very: {“bo”: 0.86, “sa”: 0.28, “ca”: 0.20,...} (see Table 5.8). After completing
the language games, almost all agents share the primary utterances, “bo” representing

“very”, “doho” related to “small”, “sa” relating to “medium”, and “ca” denoting “large”.

5.2.4.2 Categories with GNNG and Probability Density

To match the changing samples during language games, the tolerance (i.e., sigma, vari-
ation, threshold, deviation) is dynamically changed according to the changing distances
between the nodes (i.e., prototypes) in the GNG network (see Fig. 5.18 and Fig. 5.19)
instead of fixed values such as 0.2 for {S,M,L}, 0.03 for {VS,VM,VL}, and 0.1 for
{SS,MS,LS,SM,MM,LM,SL,ML,LL}.

Initially, nine nodes with random-uniform between 0.0 and 1.0 are generated and sorted
as the means of “small-small”, “medium-small”, “large-small”, “small-medium”, “medium-
medium”, “large-medium”, “small-large”, “medium-large” and “large-large” for each
agent. The means of “small”, “medium” and “large” are the same as those of “medium-
small”, “medium-medium” and “medium-large”. For the modifier, “very”, the mean of
“very-small” is set to 0.0 while that of “very-large” is set as 1.0; the mean of “very-
medium” is the same as that of “medium” as well as “medium-medium” but their
deviations are different: dy s < dyryr < dpr (VM: very-medium, MM: medium-medium,

M: medium).

In guessing games, only the categories of “small”, “medium” and “large” are used to
evolve basic utterances which will be utilised as the units of compositional utterances

generated to represent exaggerated-meanings such as “very-small” in generation games.

152 Chapter 5 Exploring Creative Features of Language

25 T T T

T
!S u:0.171 sigma:0.1675
'M u:0.499 sigma:0.1647
'L u:0.830 sigma:0.1678
'V_!S u:0.000 sigma:0.0575
'V_IM u:0.499 sigma:0.0281
'V_!Lu:1.000 sigma:0.0601
20 1S_1S u:0.058 sigma:0.0571
'M_!S u:0.171 sigma:0.0547
'L !S u:0.276 sigma:0.0515
!S_'M u:0.377 sigma:0.0558
'M_!'M u:0.499 sigma:0.0562
'L_'Mu:0.602 sigma:0.0553
15 | !S_!Lu:0.721 sigma:0.0570

!M_!L u:0.830 sigma:0.0548
'L 'L u:0.940 sigma:0.0576

10 B
s |
0
0 0.2 0.4 0.6 0.8 1
FIGURE 5.18: An agent’s categories
25 T T T

T
!S u:0.189 sigma:0.1766
IM u:0.518 sigma:0.1596
'L u:0.827 sigma:0.1638
'V_!S u:0.000 sigma:0.0751
'V_IM u:0.518 sigma:0.0234
'V_!Lu:1.000 sigma:0.0606
20 15715 u:0.075 sigma:0.0659
!M_!S u:0.189 sigma:0.0595
'L 'S u:0.313 sigma:0.0623
!S_!M u:0.438 sigma:0.0512
'M_!M u:0.518 sigma:0.0469
'L_'Mu:0.625 sigma:0.0499
15 | !S_ILu:0.717 sigma:0.0504

'M_!L u:0.827 sigma:0.0555
'L_'Lu:0.939 sigma:0.0584

10 1

FIGURE 5.19: Another agent’s categories

As can be seen from Fig. 5.18 ® and Fig. 5.19, after the generation games are completed,
the results of two agents’ categories, which are generated with the probability density
function of truncated normal distribution between 0 and 1, are a little different due
to their different experiences with samples and designs, and different initial settings
of the positions of the nine categorising nodes. During language games, these nodes
are continually adjusted to become more and more similar to other agents’ categorising

nodes.

It is worth considering that size can be subdivided into small parts (see Fig. 5.20)

according to the categorising rules based on the GNG network described above.

"Red curves: !S(small), M(medium) and !L(large); Blue curves: !V_IS(very-small), !V_IM(very-
medium) and !V_IL(very-large); Green curves: !S_IS(small-small), !M_IS(medium-small), !L_IS(large-
small), !S_M(small-medium), !M_IM(medium-medium), !L_IM(large-medium), !S_!L(small-large),
IM_IL(medium-large) and !L_!L(large-large).

Chapter 5 Exploring Creative Features of Language 153

S (VS) M (VM) L (VL)

SS (VSS) MS (VMS) LS (VLS) SM (VSM) MM (VMM) LM (VLM) SL (VSL) ML (VML) LL (VLL)

SSS ‘MSS‘ LSS SMSIMMS‘LMS SLS ‘MLSI LLS SSM‘MSM‘LSM SMM‘MMMILMM SLM ‘MLM| LLM SSL‘MSLI LSL SML‘MML‘LML SLL ‘ MLLI LLL

0 1

FIGURE 5.20: The subdivision of sizes

5.2.5 Conclusion

The exaggeration feature of language can be utilised not only to expand design space and
generate new dynamic categories but also to differentiate existing categories into more
specific categories or combine them to obtain some new intermediate categories. For
the former, “very large” and “very small” extend the concepts of “large” and “small”;
for the latter, “very medium” narrows the concept of “medium”; and “small medium”
is associated with a new bridging area between “small” and “medium”. Therefore, new
interesting exaggerated concepts such as “so large duck in a very small harbour” would
be generated using context free grammar. Other dimensions such as colour and shape

could also be exaggerated using this method.

5.3 Incongruity

The aim of this experiment is to explore design creativity using the feature of com-
positional language, incongruity. Incongruent sequences could occur by breaking self-
similarity and continuous repetition, e.g. “balabalabala” — “balabalaqgila”. Incongruent
topics can also be generated by breaking normal combinations of utterances, which may
represent the relationship between objects and background, and recombining them based

on inverse weighted random choice.

5.3.1 Subjects

A simplified landscape is taken as the reference for generating incongruent compositions
based on the relationships of objects (circle, square and triangle) and contexts (sky and
ground) (see Fig. 5.21).

FIGURE 5.21: A simplified scene

154 Chapter 5 Exploring Creative Features of Language

TABLE 5.9: The data of scene generated using normal random variables
(h: height of ground, c: circle, s: square, t: triangle)

Feature Min Max Mean Deviation Sample 1 Sample 2
h 0.01 1 1/2 1/24 0.465 0.517
Te 0.01 1 1/4 1/24 0.316 0.253
Ye 0.01 1 h+(1-h)/2 (1-h)/24 0.735 0.764
Te 0.01 1/2 (1-h)/4 (1-h)/24 0.131 0.076
T 0.01 1 1/2 1/24 0.484 0.511
Ys 0.01 1 h min((1-h)/24, h/24) 0.450 0.500
Ts 0.01 1/2 min((1-h)/2, h/2) min((1-h)/24, h/24) 0.110 0.206
Ty 0.01 1 3/4 1/24 0.752 0.742
im 0.01 1 h/2 h/24 0.240 0.257
T 0.01 1/2 h/35 h/24 0.108 0.163

The original scene is a unit square with corners at the four points (0, 0), (1, 0), (0,
1), and (1, 1). The scene can be scaled unevenly to facilitate visualisation, but the
proportion of each object in the scene retains the same. A number of features consisting
of the height(h) of green “ground”, the coordinates of circle (z., y.), the coordinates of
square (x5, ys), the coordinates of triangle (x¢, y;), and the “r” of these three shapes
(re: the radius of the circle, rs: the radius of the inscribed circle of the square, ry: the
radius of the circumcircle of the triangle) are generated as data samples which are a
little different for each guessing game since the data are obtained via normal random
generation (see Table 5.9, sample 1 is a little different from sample 2). This is used to

simulate real-like data.

5.3.2 Implementation

This experiment is implemented using both guessing games evolving domain language
(i.e., the representation of relations between shapes and backgrounds) and generation
games producing incongruent scenes via inverse weighted random choice based on the
DIFI framework (see Fig. 5.22).

A scene can be represented via hierarchical representations of the relations between a
number of features using context free grammar (see Table 5.10) based on weighted graph
networks. For example, a hierarchical representation could be (and (> y. r.) (< re (—

h yc))), which denotes an incongruent scene: “sun (i.e., circle) in the ground”.

5.3.2.1 Representation of Incongruity

The incongruence of the relationship between objects and context is tested using lan-

guage games —guessing games for recognition and generation games for incongruent

Chapter 5 Exploring Creative Features of Language 155

shapes and background

Generation game
Guessing game

curious client (incongruent brief))

inverse weighted random choice)

Graph tree expressing relations)

e Works_~

FIGURE 5.22: The Domain-Individual-Field-Interaction (DIFI) framework of exploring
incongruity

TABLE 5.10: Basic rules of representing a scene

No. | Rule Expansion

0 | operation | (operator var var)
1 | operator | <
2 | operator | and
3 | operator | +
4 | operator | -
5 | var y
6 | var r
7 | var h
8 | var operation
9 | object circle

10 | object square

11 | object triangle

12 | relation (object operation)

generation. Incongruence relies on expectations from context with particular shapes
related to low probability. Building the relationships between shapes and context using

Equation 35 based on probability theory can be used to generate incongruence.

P(S[C) < I, (35)

S denotes subject such as shape or colour; C represents context such as a scene or a group
of harmony shapes or colours; and Iy, is the threshold of incongruence. A relation is
incongruent when its probability is less than I;;,. The procedure of finding incongruent
subject(s) is described in Algorithm 15. Given subjects = [circle,triangle, square],
relation(subject, context) = {coordYgupject < heightground}, thresholdipcongruence =

0.2, the incongruent subject could be circle (see No. 2 in Table 5.15).

The meaning of incongruence is relative. It is not enough that P(S | C') is low; there must
also exist some S’ such that P(S’ | C') is high (i.e., with high confidence of congruence)

(see Equation 36) to compare with incongruence.

156 Chapter 5 Exploring Creative Features of Language

Algorithm 15 Finding Incongruity

1: function FINDINCONGRUITY (subjects, context, thresholdincongruence)

2 incongruentSubjects < emptyList

3 for i =1 — length(subjects) do

4 if probability(relation(subjects;, context)) < thresholdincongruence then
5: incongruentSubjects < append(incongruentSubjects, subjects;)

6 end if

7 end for

8 return incongruentSubjects

9: end function

P(S"|C) > I, (36)

An incongruous composition could be generated by crossing over several consistent com-
positions. For example, the incongruent composition, “dark triangle and circle + light
background”, is produced by recombining “dark”, “triangle”, “circle”, “light” and “back-
ground” from two consistent compositions—“light triangle and square + dark back-

ground” and “dark eclipse and circle + light background”.

Incongruity can also be represented by different contexts based on the same subject
(see Equation 37). For example, “sea supporting a house” instead of “land supporting
a house” keeps the object unchanged but replaces the context, “land”, with “sea” to

become incongruent.

P(C|8S) < Iy, (37)

Some examples of representing incongruent scenes and incongruent shapes are described
as follows. As can be seen from Fig. 5.23, incongruent scenes occur by replacing circle
with triangle or yellow cloud (see Equation 38). The scenery could be interpreted by
describing the colours and locations of both shapes and background (see Table 5.11) and
their relations (see Table 5.12).

i’ s

FIGURE 5.23: Example of incongruent scenes 1

F if P(circleyeiow | C) > It
incongruence = < T if P(triangleyeuow | C) < Iy (38)
T if P(cloudyelion | C) < It

Chapter 5 Exploring Creative Features of Language 157

TABLE 5.11: The features of scenes 1

Colour Shape Background Location
yellow /orange circle top-left
black/blue square center
light blue/white. .. sky top

green /red ground bottom

TABLE 5.12: The relations of items in scenes 1

Relations | Circle Square | Sky Ground
Circle separate | in separate
Square separate intersect | intersect
Sky contain | intersect touch
Ground separate | intersect | touch

Incongruent scenery may also be generated by replacing green triangle with circle (see
Fig. 5.24, Equation 39). The scenery can be represented using the colours and locations
of both shapes and background (see Table 5.13) and their relations (see Table 5.14).

i‘i

F1cURE 5.24: Example of incongruent scenes 2

, F if P(triangle | C) > Iy,
incongruence = (39)
T if P(circle | C) < Iy

TABLE 5.13: The features of scenes 2

Colour Shape Background Location
green circle top-right
brown rectangle middle-right
light blue/white. .. sky top
green/red ground bottom

TABLE 5.14: The relations of items in scenes 2

Relations | Circle | Rectangle | Sky Ground
Circle touch in separate
Rectangle | touch intersect | intersect
Sky contain | intersect touch
Ground separate | intersect touch

Incongruent shapes may be generated by replacing one shape in a group of cornered
shapes with a rounded shape (see Fig. 5.25, Equations 40, 41). The difference between

two shapes can be compared without the effect of scale and rotation via Scale-Invariant

158 Chapter 5 Exploring Creative Features of Language

Feature Transform (SIFT) and Harris Corner Detection (HCD) in OpenCV (Bradski
et al., 2000).

FIGURE 5.25: The incongruity of shapes

{A,B} @ {C,D} — {C, B} (40)

{Scornere(b Ccornered} ® {Sroundedy Crounded} — {Sroundech Ccornered} (41)

5.3.2.2 Procedure of Language Games

The procedure of language games is from guessing games evolving congruent expressions

to generation games developing incongruent artworks.

e Guessing Games

The process of a guessing game is illustrated in Figure 5.26. Initially, a few basic
rules (see Table 5.10) are predefined for generating random expressions denoting
the relations between object (circle, square and triangle) and context (“sky” and
“ground”). In each guessing game, the speaker-agent generates a random expres-
sion using these rules via context free grammar to match the objects. For example,
an object, square, is (zs = 0.484, ys = 0.450, ry = 0.110) with h = 0.465; and
the generated s-expression is (and (< y h) (< ry)). The result, which is obtained
by substituting values in this expression, is true if the expression matches the ob-
ject. After all objects are tested, if the expression matches at least one of these
objects but not all of them, an object will be selected from the matched object(s)
randomly, e.g. [square, triangle] — square — appropriate topic: “(square (and (<
yh) (< ry)))”. Otherwise, the speaker-agent will generate another expression to
match the criteria. Then the appropriate topic will be mapped to a list of utter-

EE A 9« bYAN1A L bY AN 9w

ances such as (“fi” “pa” “tepa” “pa” “mu” “kini” “hagi” “aq” “pa” “mu” “rola”
“ya” “aq” “aq”) via weighted random choice of existing utterances or generating
new utterances. In the list of utterances, “pa” represents “(” while “aq” represents
“)77 .

After finishing the production, the speaker-agent tells the listener-agent the utter-
ances. The listener-agent will start to parse the utterances to the combination of
object and the corresponding expression via weighted random choice of existing

relations between these elements and utterances. If some parts of the utterances

Chapter 5 Exploring Creative Features of Language 159

do not exist, the listener will match these parts to random elements and regulate

them to satisfy the format of expression.

Then the guessed topic is sent to the speaker-agent who will compare it with
its own topic. If the two topics are the same, both speaker and listener learn
to strengthen the weights of the associations between each utterance and element.
Otherwise, the listener unlearns the relations between guessed topic and utterances
by weakening the related weights and learns the relations between the speaker’s

topic and utterances.

After a number of guessing games, both the instances (see Table 5.15) of Rule
12 in Table 5.10 and the utterances representing terminal-elements including <,
“and”, “+7, -7 “y? o’ “h”, “circle”, “square” and “triangle” are generated and
accumulated. For example, an agent could represent the operator “+” with three
weighted utterances including “bi: 0.783”, “poxi: 0.511” and “di: 0.198” that
means “bi” is likely to be selected more than “poxi” and “di” to represent “+”.
Some of these weights will continue to be adjusted after each guessing game, leading
to more successful communication next time. When the success rate is above the
threshold (0.65) of the guessing game, agents will start to play generation games

by changing their roles to client and designer.

e Generation Games

In each generation game (see Fig. 5.27), a client-agent and one or more designer-
agent(s) are randomly selected from the agents. First, the client-agent selects an
instance of Rule “operation — (operator var var)” (see the relations in Table 5.15)
such as “(< y h)”. Then the selected instance is combined with the meaning,

“Incongruent”, to become “incongruent (< y h)”, which will be mapped to ut-

P14 9

terances such as (“inco” “pa” “tepa” “mu” “kini” “aq”). After completing the
generation of utterances, the client-agent sends the requirement (utterances) to

the designer-agent(s).

Then a designer-agent starts to parse the requirement into two parts. The first
part is the interesting type® while the remainder is the relevant expression obtained
via weighted random choice of the relations between the utterances and elements.
If the expression is a part of the instances of Rule (see Table 5.15), “relation —
(object operation) — (circle/square/triangle operation)”, the object will be se-
lected via inverse weighted random choice of the relevant instances. For example,
“circle” would have much more chance of being selected than “square” and “tri-
angle” from the instance-rule, “(object (< y h)) — (((0.0 circle) (0.714 square)
(0.758 triangle)) (< y h))”, to satisfy the client’s requirement of incongruity. If
the expression is not a member of the existing instances, a new instance-rule will

be generated by calculating the results of this expression with the related variables

51n this experiment, only incongruence is considered. In the nex experiment, some other interesting
types including extensible, exaggerational, unusual and strange are added.

160

Chapter 5 Exploring Creative Features of Language

Guessing game for exploring incongruity

Listenler(L)

1 [

Spealfer(S)

Context is a scene including
objects(triangle, square, circle) & background(sky, land)
e.g. circle: {x:0.31, y:0.72, :0.13}

square: {x:0.484, y:0.450, r:0.11}

triangle: {x:0.75, y:0.24, r:0.12}

height[land]: 0.46

-> (< (operator var var) r) -> (< (-y h) r)
while not(match(expression[S], object(s
traceForward(operation) -> expression[

e.g. (< (-y h) r) -> square, triangle
-[randomChoice]-> triangle

e.g. [triangle, (< (-y h))]

traceForward(operation) -> expression[S]
e.g. traceForward with Context Free Grammar
operation -> (operator var var) -> (< operation r)

randomChoice(matchedObjects) -> object[S]

combine(object[S],expression[S]) -> topic[S]

2
sl .t

if null(rules[L])? addRules(Context)

filter(topic[S], rules[S]) -> activeRule[S]
e.g. [triangle, (< (-y h) r)] -> rules[10]:
{rule:[object, (< (-y h))],
expan:[[square, (< (- y h) r), weight:0.504],
[triangle, (< (- y h) r), weight:0.811]]}
filter(topic[S], nodes[S]) -> activeNodes[S]

e.g. activeNodes are pairs of meaning and utterance,
{triangle:"rena", '(:"do", <:"mico", -:"ke", y:"1a",

h:"ni", r:"guce", '):"va"}
map(topic[S], activeNodes[S]) -> utterance
e.g. [triangle, (<(-y h) r)]
->"rena do mico do ke la ni va guce va"

utterance (e.g."rena..va")

else

_ topic[L]

parse(utterance, nodes[L]) -> object[L], expression[L]
if match(expression[L], object(s))?
if not(match(expression[L], object[L]))?
randomChoice(matchedObjects) -> object[L]

traceForward(operation) -> expression[L]
while not(match(expression[L], object(s)))?
traceForward(operation) -> expression[L]
randomChoice(matchedObjects) -> object[L]
combine(object[L], expression[L]) -> topic[L]
map(topic[L], utterance) -> activeNodes[L]
filter(topic[L], rules[L]) -> activeRule[L]

alt / [topic[L] == topic]

[S12]
success

Y

| learn(activeNodes[S], activeRuIe[S])l

learn

le

ﬁ |Iearn(activeNodes[L], activeRule[L]),

failure, topic[S]

Y

(un)learn

unlearn(activeNodes[L], activeRule[L])
filter/create(topic[S], utterance, rules[L], nodes[L])
->newActiveRule[L], newActiveNodes[L]
learn(newActiveNodes[L], newActiveRule[L])

FIGURE 5.26: Guessing game for exploring incongruity

extracted from a scene-sample; and an incongruent object will be selected from

the calculated results.

After the designer-agent has finished finding the incongruent topic, it will send the

topic to the client-agent who will check whether the topic is incongruent or not

by comparing its own result of inverse weighted random choice of its instance-rule

such as “(< y h)”.

Chapter 5 Exploring Creative Features of Language 161

Generation game for exploring incongruity

Clieqt(C) Desigqer(D)

randomChoice(expressions[C]) -> expression[C] .
combine(incongruent, expression[C]) requirement
-[utterance]-> requirement

>
>

if member(expression[D], expressions[D])?
filter(expression[D], rules[D]) -> rule[D]
if contain(rule[D][expan], all_objects)?

< design[D] e-I:edESign[D]

else if match(expression[D], all_objects)?
randomChoice(all_objects) -> design[D]
else

parse(requirement) -> [incongruent, expression[D]]

inverseWeightedRandomChoice(rule[D][expan])

randomChoice(uncontained_objects) -> design[D]

randomChoice(unmatched_objects) -> design[D]

_ other designs

filter(expression[C], rules[C]) -> rule[C]
if contain(rule[C][expan], all_objects)?
minWeightedChoice(rule[C][expan]) -> prototype
else
uncontained_object(s) -> prototype(s)
acceptedDesigns=[]
loop 0 <=i < count(designs)
if same/member(designs]i], prototype(s))?
push(designsli], acceptedDesigns)

evaluation

alt / [acceptedDesigns?]
success, acceptedDesigns

failure

— an

FI1GURE 5.27: Generation game for exploring incongruity

5.3.3 Results

Results include the results of guessing games for evolving languages via context free

grammar, and that of generation games for generating incongruent compositions.

5.3.3.1 The Results of Guessing Games

Compositional languages representing the relations between objects and contexts have
evolved based on graph networks through guessing games. The structure of a graph
network for developing the rules of context free grammar is combined with a number
of nodes and their relations. Each node has a property of “utterance” containing a few
of utterances with different weights which have been changed and evolved in guessing
games; for example, {node: <, utterances: ((0.741 “zafe”) (0.848 “vi”) (0.77 “tijo”)
(0.825 “wafe”) (0.864 “rewa”))}. Each relation includes a list of rule-nodes and its
expansion containing a few expanded-nodes with weights, which are also generated and
evolved, e.g. {rule: operator, expansions: ((0.01 <) (0.01 and) (0.01 +) (0.01 -))}.
Another more complicated example is that the rule, (object (< (-yh)r)), is expanded

162 Chapter 5 Exploring Creative Features of Language

TABLE 5.15: An agent’s relation rules
(Cir.: circle, Sq.: square, Tri.: triangle, int: intersect, gr.: ground)

No. Relation Meaning Cir. Sq. Tri
0 (<(-YHR) int/in gr. 504 811
1 (<HY) over/int gr. 892 518
2 (<YH) int/in gr. 714758
3 (<R(-YR)) over bottom 795 547 108
4 (<(+RHY) over gr. 913
5 (<R(-YH) over gr. .900
6 (AND(<HY) (<R (-YH))) over gr. 875
7 (AND (<HY) (<R (-YR))) over/int gr. 870 .732
8 (<(-Y(-(+RH)H))H) in/int gr. ATT 657
9 (<H(+YY)) int/over m-gr. .592 .629

10 (AND (< (- YH)R) (< HY)) int gr. 789

11 (AND (<R (-YR)) (<R (-YH))) overgr. 968

12 (AND (<R (- YR)) (< Y H)) int/in gr. 855 526
13 (<H((H+YR) over/int gr. 697 .696

14 (AND (<R (- Y H)) (< HY)) over gr. 845

15 (AND (<HY) (<R (+ YR))) over/int gr. 706 .467

16 (AND (<R (+YR)) (<Y H)) in/int gr. A15 752
17 (AND (< HY) (<R (+ Y H))) over/int gr. 714277

18 (<H(-YR)) over gr. .690

19 (AND (< R(-YR)) (<R (+YH))) overbottom .716 .328 .109
20 (AND (<R (+YH))(<HY)) over/int gr. 773414

21 (AND(<R(+YR)) (<R (-YH))) overgr. 764

22 (< (+Y(-(+RH)H))H) in gr. 568

to ((0.504 square (< (-y h)r)) (0.811 triangle (< (- y h) r)))), which is similar to

context sensitivity.

The context free grammar of each agent is initialised with 13 basic rules (see Table 5.10).
Some complicated rules such as “(and (< (-yr)h) (> (+yr)h))” can be generated
using Rule 0 and Rule 8 (see Table 5.10) to represent the intersection of “square” and
“ground” (see Fig. 5.21). This meaning has been represented by a similar relation rule,
“land (< (-yh)r) (<hy))”, which is generated (see Table 5.15) in a guessing

game.

As can be seen from Table 5.15, only square matches Rule 10, which means only square
is across “sky” and “ground”. All objects match Rule 3, which means the radius is
less than the subtraction of y-coord (object-height) with radius. But their weights are
different, Weircie > Wiquare > Wiriangle- It means that triangle is probably lower than
square, which is probably lower than circle regarding their relative similar radius. Here,
weight is analogised with probability. So, the result of different probabilities provide a

basis for evolving incongruent language in the next stage running generation games.

Chapter 5 Exploring Creative Features of Language 163

5.3.3.2 The Results of Generation Games

The success rate of generation games is very high (> 0.9) from the early stage partially
because only one type of interesting requirement, incongruence, needs to be satisfied;
and relevant relations may be captured more easily via the representations with long
sequences that can provide abundant information for filtering topics. In this experiment,
the process of learning/unlearning is not implemented in generation games because the
client’s evaluation is fixed so that it always compares the results evolved in the previ-
ous stage with guessing games. In a future experiment, the evaluation would become

dynamic by changing the incongruent combinations accumulated in generation games.

Incongruent scenes are generated by inverse weighted random choice. In each generation
game, the client-agent randomly selects one of existing relation rules (see Table 5.15), i.e.,
expressions, to generate compositional meaning, and map it to a relevant requirement,
i.e., a sequence of utterances. A designer-agent then parses this requirement to related
CFG rule, selects one of the connections of the rule via inverse weighted random choice,
and generates a new design opposite to the congruent rule. For example, when P(circle |
sky) > Iy, and P(rectangle | sky) << I, normally, the combination of circle and sky
is likely to be selected. On the contrary, in order to obtain an incongruent composition,
the combination of rectangle and sky is selected due to its low probability (see Fig.
5.28).

e

F1GURE 5.28: The illustration of some incongruent results of generation games
5.3.4 Conclusion
Incongruent composition can be produced by inverse weighted random choice of rules

generated via context free grammar. To begin with, the normal rules associated with

objects and context are collected through guessing games. Then, in generation games,

164 Chapter 5 Exploring Creative Features of Language

incongruent compositions are generated by using inverse weighted random choice of the
accumulated relation rules, i.e., incongruent artworks are generated by selecting the

combinations of objects and contexts with low probability.

5.4 Extensibility and Other Features

The aim of this experiment is to explore design creativity using the feature of com-
positional language, extensibility. Representations can be expanded using context free

grammar to obtain interesting topics such as elaboration, unusualness and strangeness.

To explore interesting replacement and combination in a scene (see Fig. 5.29), designer-
agents will learn the meanings of elaboration (extensibility, or describing an object with
numbers of other objects), unusualness (the replacement of objects), strangeness (the
replacement of relations), incongruence (the mismatch between object and background)
and exaggeration (scaling up/down size). These meanings are provided by client-agents

using relevant utterances in generation games.

5.4.1 Subjects

A simplified nature scene (see Fig. 5.29) is used as the subject of this experiment. To
simplify the operation of the items on the scene and their relations, only regular triangle,
rectangle, and circle are used to represent house, tree, boat, fish, sun and land. Most of

the shapes touch each other except that the boat intersects with the sea.

O

Elika

P

FIGURE 5.29: A sample of scene

Chapter 5 Exploring Creative Features of Language 165

5.4.2 Implementation

Interesting topics such as elaborated objects are produced by tracing and generating
rules with related utterances and compositional items based on context free grammar
and graph networks. A domain language evolves in guessing games; and interesting novel
scenes are generated via elaboration, composition and replacement of original topological

relations in generation games (see Fig. 5.30).

compo-shapes & background)

<
¥
S
>
<
o
o1
o
<

galuations

Generation game
Guessing game

elaboration

e torks_—~

FIGURE 5.30: The Domain-Individual-Field-Interaction (DIFI) framework of exploring
extensibility & other features

5.4.2.1 Initialisation

Before running language games, the features of the sample-scene are extracted in four
steps. First, basic objects such as roof, wall, window and door are associated with
appropriate qualified-features and represented by randomly generated utterances. For
example, the features of a roof are composed in a dictionary {shape: triangle, direction:
up, size: medium} and its utterance could be “guzu” with initial weight 0.01. Then,
related pairs of the objects will be collected if their topological relationship is “touch”
or “in/contain”, e.g. the pair of roof and wall. Thirdly, each connection of these pair-
objects will be integrated into a composed object such as “house” which is obtained from
the chain, “(touch roof (contain wall (window door)))”. Finally, the relations between
these compositional objects and related context will be developed. For example, the
relation between house and land is “(on house land)” and that between sun and sky is

“(in sun sky)”.

5.4.2.2 Guessing Game

In each guessing game (see Fig. 5.31), both speaker-agent and listener-agent are ran-
domly selected from 6 agents. First, the speaker-agent selects a topic such as fish, roof or

sky randomly and selects a corresponding utterance via weighted random choice. When

166 Chapter 5 Exploring Creative Features of Language

the utterance is selected, the speaker-agent sends this utterance to the listener-agent

who will parse it to a guessed topic.

Then, the listener-agent sends the guessed topic back to the speaker-agent. If it is
the same as the speaker’s topic, both speaker-agent and listener-agent strengthen the
weight of the relation between the utterance and the topic. Otherwise, the listener firstly
weakens the weight of the relation between the utterance and the guessed topic and then

strengthens that of the utterance and the speaker’s selected topic.

After a number of guessing games, when the success rate is above the threshold of guess-
ing game (0.8), the game will be changed to a generation game for generating novel ut-
terances to find interesting designs. Due to the application of compositional languages,
the topics such as house are represented with two kinds of utterances—compositional
utterances generated from its components and their relations, and a holistic word rep-

resenting house.

Guessing game of exploring extensibility

Q Context Q

Speaker(S) Listener(L)
= ! =
Context is a scene including
objects (sun, boat, fish, house, tree)
and background (sky, sea, land)
1

randomChoice(topics) -> topic[S] topicS] |
e.g. fish, roof or sky ... [Gommrmreetetees X
I________________>
topic[S] -> utterance || | utterance >
filter(utterance, topics) -> candidateTopics
. if candidateTopics?
< topic[L] selectBest(candidateTopics) -> topic[L]
else
randomChoice(topics) -> topic[L]
alt [topic[L] == topic[S]?]
success o
| learn(association(topic[S], utterance)) | learn
learn - -
:, |Iearn(assouatlon(toplc[L], utterance))
failure, topic[S] o
(un)learn | unlearn(association(topic[L], utterance))
; learn(association(topic[S], utterance))

F1GURE 5.31: Guessing game for exploring extensibility & other features

Chapter 5 Exploring Creative Features of Language 167

5.4.2.3 Generation Game

In each generation game (see Fig. 5.32 7), the first agent always plays the role of client
while 3 or 4 designers will be selected randomly from the other agents. The client-
agent requests a new scene with an interesting type such as incongruence by providing
designers an utterance, which is generated randomly in advance, then converged to

certain utterance during generation games.

In the early stage of generation games, designers randomly select one of the following
topics: object (e.g. bow), compositional object (e.g. boat), the relations between two
objects (e.g. “(on up) roof wall”), and the relationship between object and background
(e.g. “(in sun sky)”). Then an instance is obtained by tracing forward the topic (e.g.
object — door — (rectangle up medium)). The instance could be changed partially
or wholly according to a randomly generated number (-1 <= number < the length of
expanded topic). If the number is -1, the whole instance will be changed to a new instance
with the same or more complicated details. For instance, “rectangle up medium” is
converted to “triangle right small” via Rule 0 (see Table 5.16); and it can be expanded
to “(on left) (rectangle up medium) (triangle right small)” via Rule 1 (see Table 5.16).
Otherwise, the number is taken as the index of an item of the instance. This item will be
replaced with a new item via relevant rules including Rule 3, 4, 5, 6, 7 and 9 (see Table
5.16). For example, “rectangle” could be replaced with “triangle” by tracing backward
“rectangle” to “shape” then tracing forward “shape” to “triangle”. When the change
is finished, the designer-agent provides the design, i.e., the modified instance, to the

client-agent.

If the design is accepted by the client-agent, the designer-agent memorises the association
(see Table 5.17) between the selected topic and the changed position and the client’s
utterance, and strengthens the weight of the relations. Otherwise the weight of the
relations will be weakened. After at least one relation is memorised, a designer will first
search the memorised relation(s) to match the client’s requirements in next generation

games.

5.4.2.4 Operations on Topics

In this experiment, three main operations on topics are used. They are replacement,
elaboration and composition. Replacement includes replacing operators and operands
(e.g. “on tree land” — “in tree land” involves changing the operator while “on tree land”
— “on tree sea” involves the replacement of sea with land). Elaboration enhances the

abundance of the original topics by expanding the topic to a new relation of new object

"A path from refer-instance to design-instance instead of design-instance is stored in an agent’s
memory when game succeeds. It is for convenience in generating a new design via mutating a path using
context free grammar in next generation game.

168 Chapter 5 Exploring Creative Features of Language

Generation game of exploring extensibility

@)

CIier}t(C) Desigqer(D)

randomChoice(types) -[utterance]-> requirement .
types=[elaborated?, exaggerated?, incongruent?, requirement
strange?, unusual?]

>
>

if in(requirement, memory)? & random(10) /= 0?
filter(requirement, topics) -> topic & index
topics:
shape (e.g. roof)
object (e.g. house) single/multi-shape(s)
relation(shape1, shape2) (e.g. roof_wall)
relation(object, background) (e.g. house_land).

e.g. (on house land) -> [-1, 0, 1, 2]
-1:elaborate(on house land)
O:replace(on), 1:replace(house), 2:replace(land)
else
design & refer_instance randomChoice(topics) -> topic & index
< = filter(refer_instances, topic) -> refer_instance
A refer_instance is the combination of features or
a topological relation. (collected in guessing games)
e.g. roof:(tria up medium), house:(tria up medium),

if index == -1? (elaboration)
if relevant design_instance?
mutate(design_instance) -> design
else
traceBackward&Forward(refer_instance) -> design
else (replacement)
refer_instance[index] -> item
traceBackward&Forward(item) -> new_item -> design

Index is selected from [-1, range(length(refer_instance))]

roof_wall:([on up] roof wall), house_land:(on house land)

evaluate(design & refer_instance)

(refer_instance: abbr. refer)

elaborated?

member(refer[0], [triangle, rectangle, circle])
list?(design[-1])

length(design[-1]) == len(design) == len(refer) == 3
exaggerated?

refer[-1] == medium

design[-1] /= medium

design[:-1] == refer[:-1]
incongruent? evaluation
not(member(design, normalRelations(object, bg.)))
member(design[-1], [sky, sea, land])
strange?

member(refer[0], [in, touched-in, intersect, on, to])
design[0] /= refer[0]

design[1:] == refer[1:]
unusual?

member(refer[0], [in, touched-in, intersect, on, to])
design[0] == refer[0]

design[1:] /= refer[1:]

length(design[1:]) == length(refer[1:])

alt__/ [satisfy requirement?]
success

Y

learn(associations) |associations: [requirement, topic,
refer_instance, index, design]

failure

Y

unlearn(associations)

FIGURE 5.32: Generation game for exploring extensibility & other features

with the topic (e.g. “on roof wall” — “on (in (round window) roof) wall”). Composition
is used to generate a compositional object such as a house with roof, wall, window and
door, to represent a long phrase describing a scene (e.g. (on house land) — (on (and (on
roof wall) (in window wall) (in door wall)) land)), and to combine modifier and size in

a exaggerated form. Consequently, a hierarchical structure of representing the sample

Chapter 5 Exploring Creative Features of Language 169

TABLE 5.16: The rules of representing a scene
(tin: touched-in, int: intersect)

No. Rule Expansion Example
0 object (shape direction size) bow — (triangle left medium)
1 object (location object object) bow-hull — ((on left) bow hull)
2 object (and object object .. .) boat — (and bow-hull stern-hull sail-hull)
3 shape triangle / rectangle / ellipse
4 direction up / down / right / left
5 direction (direction direction) (up right)
6 size small / medium / large
7 size (very size) (very (very small))
8 location (relation direction) (in (up right))
9 relation in /tin /int / on / to

TABLE 5.17: An example of associations for (un)learning after each generation game

Association Example

Requirement elaborated? — utterance: “po”

Topic shape

Refer-instance (tria up medium)

Index -1

Design ((on (right up)) (tria up medium) (tria left medium))

scene and newly generated novel scenes are developed.

5.4.3 Results

Before guessing games, each agent generates a number of instance-rules (see Table 5.18)
consisting of all single objects (such as roof and window) with their features (e.g. roof —
{shape: triangle, direction: up, size: medium}), all touched pair-objects such as “wall &
roof” and their relations (e.g. “wall & roof” — ([on down] wall roof)), four components
(fish, boat, tree and house) and their features (e.g. fish — {shape: triangle, direction:
left, size: medium}) and their relationship with the background (e.g. “fish & sea” — (in
fish sea)). Although each agent’s initialised instance-rules are the same, the associated

utterances are different.

5.4.3.1 Results of Guessing Games

In one of the simulations, the success rate reaches the threshold of the guessing game
(0.8) after nearly 3921 iterations (see Fig. 5.33). As can be seen from Fig. 5.34, the
points outside the diagonal are very sparse, which means that most of the utterances

representing elements are distinguished from each other very well.

170

Chapter 5 Exploring Creative Features of Language

TABLE 5.18: An agent’s initial rules and instance-rules

(obj: object, wal: wall, rof: roof, win: window, dor: door, trk: trunk, cro: crown,
crw: crown2, hul: hull, pop: poop, sal: sail, fad: fish-head, fdy: fish-body, fil: fish-tail,
fye: fish-eye, tria: triangle, compo-obj: compositional object, int: intersect, lan: land,

obj-bg: object-background, bg: background, sce: scene)

No. Rule Expansion

0 size (very size) max-depth:2
1 direction (direction direction) max-depth:1
2 obj (relation obj obj) max-depth:1
3 obj sun/wal/rof/win/dor/trk/cro/crw/hul/bow/pop/sal/fad/fdy /fil/fye
4 rof (tria up medium)
5 pair-obj (relation obj obj)
6 pair-obj wal.rof /rof.wal/win.wal/dor.wal/trk.cro/cro.trk/cro.crw/crw.cro
7 pair-obj hul.bow/hul.pop/hul.sal/bow.hul/pop.hul/sal.hul
8 pair-obj fad.fdy/fdy.fad/fdy.fil/fil.fdy /fye.fad
9 walrof ([on down] wal rof)

10 (components fish) (and fad.fdy fdy.fil fye.fad)

11 (components boat) (and sal.hul bow.hul hul.pop)

12 (components tree) (and cro.trk crw.cro)

13 (components house) (and rof.wal dor.wal win.wal)

14 compo-obj fish/boat /tree/house

15 fish (tria left medium)

16 fish.sea (in fish sea)

17 boat.sea (int boat sea)

18 house.lan (on house lan)

19 sun.sky (in sun sky)

20 tree.lan (on tree lan)

21 obj-bg sun.sky /house.lan/tree.lan/fish.sea/boat.sea

22 bg sce/sky/sea/lan

5.4.3.2 Results of Generation Games

When generation games are played by a client and 3 or 4 designers about 1000 times,

the success rate surpasses 0.9 (see Fig. 5.35).

0.9

0.8

0.7

0.6

05

0.4 -

03

0.2

0.1

0

success-rates-gs

0

L L L L L L L
500 1000 1500 2000 2500 3000 3500 4000

FIGURE 5.33: the success rates of guessing games

Chapter 5 Exploring Creative Features of Language 171

Elements

Utterances

F1GURE 5.34: The relations between elements and utterances from one agent

1

T T
success-rates-gt

09
08
0.7

0.6

f
05
0.4 f
03

0.2 —‘

0.1

0

L L L L L
0 200 400 600 800 1000 1200

FIGURE 5.35: the success rates of generation games

Some results for novel designs related to extensibility and other interesting topics are
illustrated in Figures 5.36, 5.37, 5.38, 5.39 and 5.40. For example, the original shape of
the roof is an up triangle with medium size. After elaboration at one level with Rule
“object — (location object object)”, the roof is changed to more abundant compositional
shapes such as “((on (right up)) (triangle up medium) (triangle left medium))” (see Table
5.19).

To obtain other novel types, several different criteria are established. For instance, a new
generated design could be “unusual” when one of its operands differs from the original
topic; for example, “(in fish sea) — (in fish sky)” via changing “sea” to “sky” (see Table
5.20). It could also be “strange” when its operator is not the same as the original one;
for example, “((on up) roof wall) — ((in up) roof wall)” via replacing “on” with “in” (see
Table 5.21). The design might also be an exaggerated topic if its size is different from
the original one (see Table 5.22). It is likely to become incongruent when the object or
the context or the relation between object and context is replaced with other elements;

for example, “(intersect boat sea) — (intersect boat land)” (see Table 5.23).

172

Chapter 5 Exploring Creative Features of Language

Therefore, different interesting topics can be differentiated via various criteria although

some of them are somewhat similar to each other or even the same; for example, the

result of unusualness, “(in fish sea) — (in fish sky)”, is also incongruent.

O

=~
PN

| B, LT

O I~ || O

> Ll

FIGURE 5.36: Elaborated samples

TABLE 5.19: The results of elaboration

No. Rule Expansion
0 (tria up medium) — ((on (right up)) (tria up medium) (tria left medium))
1 (tria up medium) — ((in right) (tria right medium) (tria (up left) medium))
2 (tria up medium) — ((in (up left)) (rect up medium) (rect right medium))
3 (tria up medium) — ((to up) (tria up medium) (tria up medium))
4 (tria up medium) — ((int (left right)) (tria right medium) (tria left medium))

O O

" J|ED

FIGURE 5.37: Unusual samples

TABLE 5.20: The results of unusualness

No. Rule Expansion
0 (in fish sea) — (in fish sky)
1 (in fish sea) — (in boat sea)
2 (in fish sea) — (in fish lan)
3 (in fish sea) — (in house sea)
4 (in fish sea) — (in fish sce)
5 (in fish sea) — (in tree sea)

5.4.4 Discussion

Although the experiment is completed successfully, some aspects including the satisfac-

tion of different requirements, the collection of the information of sample scenes, and

the evaluation of generated products related with different topics should be discussed

and enhanced in future experiments.

Chapter 5 Exploring Creative Features of Language

173

O
5 £

|5

Sk

1 L&]

o © o
FIGURE 5.38: Strange samples
TABLE 5.21: The results of strangeness
No. Rule Expansion
0 ((on up) rof wal) — ((in up) rof wal)
1 ((on up) rof wal) — ((on (down right)) rof wal)
2 ((on up) rof wal) — ((on (up right)) rof wal)
3 ((on up) rof wal) — ((on (down left)) rof wal)
4 ((on up) rof wal) — ((int up) rof wal)
5 ((on up) rof wal) — ((tin up) rof wal)
6 ((on up) rof wal) — ((on right) rof wal)
7 ((on up) rof wal) — ((to up) rof wal)

O O O

_%_Pﬁ%_ b, POT

Lo L >

5 Pt

FIGURE 5.39: Exaggerational samples

TABLE 5.22: The results of exaggeration

No. Rule Expansion
0 (tria up medium) — (tria up (very (very large)))
1 (tria up medium) — (tria up (very (very small)))
2 (tria up medium) — (tria up (very (very medium)))
3 (tria up medium) — (tria up (very large))
4 (tria up medium) — (tria up (very medium))
5 (tria up medium) — (tria up large)
6 (tria up medium) — (tria up small)
7 (tria up medium) — (tria up (very small))

5.4.4.1 Requirements

Among the interesting requirements, “elaboration” is particularly difficult to be satisfied
by only memorising the relation of selected topic and changed position (which is learned
to be -1) due to the multiple rules of “object” (see Rule 0, 1 and 2 of Table 5.16), in

174 Chapter 5 Exploring Creative Features of Language

FIGURE 5.40: Incongruent samples

TABLE 5.23: The results of incongruence

No. Rule Expansion

0 (int boat sea) — (int tree sea)
1 (int boat sea) — (int fish sea)

2 (int boat sea) — (to boat sea)
3 (int boat sea) — (int boat lan)
4 (int boat sea) — (int house sea)
5 (int boat sea) — (on boat sea)
6 (int boat sea) — (tin boat sea)
7 (int boat sea) — (int boat sky)
8 (int boat sea) — (in boat sea)

which Rule 0 only generates the features of an object without expanding the object to

more combinations.

This issue is addressed by using additional memory to store the traced paths of success-
ful modified instances; for example, the path from “triangle up medium” to “(in left)
(triangle (up right) medium) (ellipse right medium)” is [-34, -114, 23, 20, 8, 10, 17, 108,
117, 28, 37]. In the path, a negative number means tracing backward. In the following
generation games, this path (particularly the last part) would be mutated a little via
gradient mutation (i.e., the mutation rate of the next item is higher than that of the
previous one) and used for a new design if the instance is the same as the memorised
instance-reference of this path. In future generation games, the paths would be analysed
to find their shared part matching a certain rule (such as Rule 1 rather than Rule 0) to

satisfy the requirement, “elaboration”, more easily and flexibly.

This problem can also be resolved by measuring both max-depth and max-breadth of
a design (i.e., a nested list of s-expressions) because the complexity of the elaborated

instance should be higher than that of the original instance.

On the other hand, the requirements, “strangeness” and “unusualness” are comparably
easy to be satisfied due to the utility of s-expressions representing relation rules. The
replacement of the first part of an s-expression may match the meaning of “strangeness”
while changing the rest of the s-expression could satisfy the brief, “unusualness”. Fur-

ther, “incongruence” is realised by replacing the object with a particular background

Chapter 5 Exploring Creative Features of Language 175

or replacing their relations with others. For example, “in boat sky” is generated by

replacing “sun” of “in sun sky” with “boat”.

5.4.4.2 Sample Scene

In the current experiment, a sample scene (see Fig. 5.29) consists of a number of records.
Each record represents the features of an object. For example, “(bow (shape triangle)
(x 13) (y 34) (14 4) (ry 4) (angle 1/4) (type object))” consists of the attributes of the
bow. Here z and y are the coordinates of the object while r, and r, are related to
its length and width. The range of angle is from -1 to 1 (i.e., degrees [-180, 180]).
So 1/4 means “up right”. Here, rx and ry have the same size 4, which means “bow” is
simplified to an isosceles right triangle. Based on the data of the objects, the geometrical
relations between each are calculated. Then compositional objects are generated in
terms of their relations; for example, “house” is combined with “[in left] window wall”,
“[touched-in right] door wall” and “Jon up] roof wall”. Finally, the relations between
these compositional objects and the background (sky, sea and land) are evaluated, e.g.

“on house land”.

All the information is embedded in each agent’s memory before guessing games and
generation games are played. In future experiments, it would be preferable for agents
themselves to collect the relevant information piece by piece during language games. In
addition, the scene is fixed in each guessing game. The compositional objects could be
animated to obtain more real-like geometric data in future experiments. For example,
a “boat” can move from the left side of “sea” to the right side and even “sink” to the

bottom of “sea”, which may change the result of evaluating incongruence.

5.4.4.3 Evaluation

In future experiments, the differences among these requirements would be measured by
using cosine-similarity with Holographic Reduced Representations. The terminal mea-
surable elements consist of topological relations (see Table 5.24), directions (see Table
5.25) and sizes (see Table 5.26). If n=>5, the result of representing sizes of the ob-
jects in the scene is shown in Table 5.27. The meanings of strangeness, unusualness,
incongruence, exaggeration and elaboration could be learned by measuring the differ-
ences between original instances and the modified or expanded instances based on the
dot-product of two sequences obtained from expanded rules as well as their different
complexity, which may be evaluated according to the number of levels and the amount
of items at each level of a nested list of expanded rules. Therefore, the interesting

requirements could be learned rather than being defined in advance.

176 Chapter 5 Exploring Creative Features of Language

TABLE 5.24: The rules of representing topological relations

No. | Rule Expansion Expansion2
0 | start intersection
1 | operator increment(inc.) / decrement(dec.)
2 | touched-in | (dec. intersection)
3 | in (dec. touched-in) (dec. (dec. intersection))
4 | on (inc. intersection)
5| to (inc. on) (inc. (inc. intersection))
TABLE 5.25: The categorizations of directions
No. | Meaning Angle(a) (range:[0,1] — degree[0,180])
0 | right (<=1/8a1/8)
1 | (up right) (<=1/8 a3/8)
2 | up (<=3/8a5/8)
3 | (up left) (<=5/82a7/8)
4 | left (or (<=7/84a8/8) (<=8/8a7/8))
5 | (down left) | (<=7/8a5/8)
6 | down (<=5/8a3/8)
7 | (down right) | (<= 3/8 a 1/8)
TABLE 5.26: The rules of representing sizes
No. | Rule Expansion
0 | start default-size
1 | medium (* default-size 1)
2 | small (/ default-size n)
3 | large (* default-size n)
4 | (very (very small)) | (/ (/ (/ default-size n) n) n)

TABLE 5.27: The rules of representing sizes for the scene (n=5)

Size-name | Scale Size Example
(very (very large)) | 1 10000 | scene
(very large) | 1/5 2000
large | 1/25 400 wall
medium | 1/125 80
small | 1/625 16
(very small) | 1/3125 | 16/5
(very (very small)) | 1/15625 | 16/25 | fish-eye

The evaluation of creativity may be implemented by measuring the distance (or similar-
ity) between the reference and new designs and the complexity of the designs. The differ-
ence related to novelty could be measured from quality to quantity. The real combined
features and “imagined” features that are generated via replacement and elaboration
might be compared. For example, roof:real (triangle up medium) — roof:imagine (circle
up medium) is via replacement while roof:real (triangle up medium) — roof:imagine ((in

up) (circle up small) (triangle up medium)) is via elaboration. Their distance can be

Chapter 5 Exploring Creative Features of Language 177

calculated by comparing the relevant features between real sequence and “imagined” se-
quence and measuring the complexity of these sequences. The distance can be measured
based on the regulated ranges of directions (see Equation 42 ®), topological relations
(see Equation 43 ?) and sizes (see Equation 44 19). All distances are regulated in the

range [-1, 1].

{L,DL,D,DR,R,UR,U,UL,L} = {—1,-3/4,—1/2,—1/4,0,1/4,1/2,3/4,1} (42)

{IN, TIN, INT, ON, TO} = {—1, —1/2, 0, 1/2, 1} (43)

{(VVS, VS, S, M, L, VL, VVL} = {1, —=2/3, =1/3,0,1/3,2/3, 1} (44)

As can be seen from Table 5.28, the distance between an object and its elaboration can
be calculated using these equations and the function named “distance-elaboration” as

shown below (code in Common Lisp).

(defun distance-elaboration (&key (obj ’(rect right medium))
(elaboration ’((on up) (tria up small) (rect right medium))))
;3°tin: ’touched-in, (second obj): direction
(setf obj (list (list ’tin (second obj)) obj obj))
(average (mapcar (lambda (x y) (abs (- x y)))
(flatten (quantify obj))
(flatten (quantify elaboration)))))

An example of using this function is “obj (rect right medium)” — “((tin right) (rect right
medium) (rect right medium))”. the direction of relations is the same as the direction
of obj (i.e., object). the topological relation is always “tin” (i.e., touched-in), “obj0” is
the same as “obj1” which is the original object. Then this expanded object could be
used to compare with the elaborated object. The function, “quantify”, in the function

“distance-elaboration” uses Equations 42, 43 and 44.

Besides measuring the distance-related novelty, the complexity of a nested list (hierar-
chical structure) of s-expressions can be measured using max-depth and max-breadth.
For example, the max-depth of “((IN U) ((INT L) (SIR S) (S2 U M)) (S3 U L))” is 2
while its max-breadth is 3. Entropy could also be used to measure complexity. Further,
predefined interesting criteria in quality could be transformed by generating relevant
expressions representing these definitions in quantity that is similar as the relation rules

(see Table 5.15) generated in the experiment, Incongruity.

8U: up, D: down, R: right, L: left
9TIN: touched-in, INT: intersect
10V: very, S: small, M: medium, L: large

178 Chapter 5 Exploring Creative Features of Language

TABLE 5.28: The distances between objects and their elaborations

No. Rule Expansion Distance
0 hull (rect right small)
1 elaborate hull ((in left) (elli (up left) (very (very small))) (rect right small)) 415
2 elaborate hull ((tin down) (rect up small) (rect right small)) 125
3 door (rect up medium)
4 elaborate door ((int left) (rect down medium) (rect up medium)) .250
5 crown (tria up small)
6 elaborate crown ((on up) (tria up small) (tria up small)) 125

5.4.5 Conclusion

The extensibility of language in terms of its compositional and recursive nature is utilised
to combine sub-rules and elaborate these rules to generate abundant compositions that
illustrate the original meanings in more detail. The rules generated using Context Free
Grammar (CFG) are easily extended and spread in graph networks. CFG is also used
to produce incongruent and exaggerated works as well as some other interesting scenes
by replacing operators or operands. Conditional functions can also be embedded into
graph networks to select different tracing paths according to different situations; and
this could be extended to Context Sensitive Grammar (CSG).

5.5 Conclusion

The creative features of language—ambiguity, scalability, incongruity and extensibil-
ity—are tested and discussed in this chapter. Ambiguity makes it possible to connect
seemingly unrelated concepts via multiple mapping of utterances and meanings. As
can be seen from the experiment, Ambiguity (see Section 5.1), with the initial input of
only 8.3% of samples, the client-agent still collects the vast majority of topics at the
end of the simulation by benefiting from ambiguous connections. Scalability is utilised
to generate exaggerated representations with the aid of modifiers in combination with
existing sizes such as “small” — “very small” and the technique of range extension
(see Section 5.2). Incongruity is applied to produce interesting new scenes by combin-
ing shapes with certain contexts with low possibilities based on the collected expressions
representing topological relations using weighted context free grammar (see Section 5.3).
Extensibility is tested and realised by recursive combination of CFG rules to produce
elaborated objects based on the original scene samples. Some other interesting topics
such as unusualness and strangeness are also explored in the last experiment (see Section
5.4).

Chapter 6
Exploring Social Creativity

Social creativity could be strengthened by increasing the scale of population and us-
ing different types of communication. Some parameters are tested to find appropriate
strategies of increasing population and selecting efficient communication methods. The
evolution of languages at a multi-culture level may result into diversity and emergence.
Each domain evolves its own knowledge and culture carried by a domain language. The
information from different cultures can be exchanged by the communication of individ-

uals from different domains to improve the diversity of new artworks and designs.

6.1 Growing Population

To enhance the efficiency of the evolution of artificial languages in a large population,
different strategies are tested, and two questions are proposed to be answered: Is a
step-by-step evolution more efficient than a “direct” evolution? What are the roles of

mature agents and naive agents in a growing population?

6.1.1 Subjects

The subjects of this experiment are RGBA colours with four dimensions—red, green,

blue and alpha.

6.1.2 Implementation
Guessing games are used in the simulations, which are the same as those in the exper-

iment, Ambiguity (see Fig. 5.2). Two different strategies — a fixed population with

initial large scale and a growing population with initial small population that grows to

179

180 Chapter 6 Exploring Social Creativity

the same large scale as the former one — are adopted. Growing population is imple-
mented by adding the same number of naive agents with mature agents at each stage

(see Fig. 6.1). For example, 4 naive + 4 mature — 8 naive + 8 mature — 16 naive +

16 naive ...

FIGURE 6.1: Growing population (gray: mature, white: naive)

The experiment is implemented 36 times! for each number of populations (4, 8, 16, 32
and 64)? based on the DIFI framework (see Fig. 6.2). The growing population starts
from 4 naive agents. Then the number of agents are doubled (see Fig. 6.1) each time

when the success rate of guessing games surpasses 70%>.

colors [RGBA]

INDIVIDUALS

Mature
\Woiks/

FIGURE 6.2: The Domain-Individual-Field-Interaction (DIFI) framework of growing
population

6.1.3 Results

Results show that a growing population is more efficient than the fixed population on
a large scale in the evolution of artificial languages. The language games played by

a mixed population of mature and naive agents that grows larger in each generation

136 times of implementation is to make sure that the calculated average gaming times are credible.

2The population starting from 4 is because each guessing game needs 2 agents, and the remaining
2 agents can be candidates for next games. Double population is for the convenience of comparison of
growing population and fixed population. Some other growth ratios such as triple population can also
be used, but double population is simple enough to implement the experiment. When doubling to 64, it
costs about 19000 times to complete the language games based on fixed population. If the population
was continually doubled to 128 and 356 etc, it could cost too much time but contribute little to clarifying
the experiment results. Five populations stages from 4 to 64 is enough to compare the two strategies,
growing population and fixed population.

3There is no need to set the threshold of success rate greater than 70%. A common language has
been shared by agents when the success rate reaches 70%.

Chapter 6 Exploring Social Creativity

181

TABLE 6.1: The average gaming times of evolving language with different population

strategies

Fixed population (FP)

Growing population (GP) Gaming times of FP

Gaming times of GP

4 (naive) 4 (naive) 137 133
8 (naive) 4 (mature) + 4 (naive) 499 395
16 (naive) 8 (mature) + 8 (naive) 1596 1043
32 (naive) 16 (mature) + 16 (naive) 5739 2563
64 (naive) 32 (mature) + 32 (naive) 19500 5742

succeed more quickly than those played by a fixed population of naive agents on the

same scale (see Table 6.1 and Fig. 6.3).

20000

O

~ <

8 c

= 9

53

» 15000 % &
5} a o
£ o oo
= Q £
j=) T =
£ ig
© M
(=)} o o
(4] wv (%]
(=] v
© EE
9] ==
2 10000 %O téo
€ E

© ©

o U

I |

5000
0 — -
4 8 16 32
Population

64

FIGURE 6.3: The average gaming times of evolving language with fixed population and
growing population

6.1.4 Conclusion

The strategy of mixing mature and naive agents in a growing population is more efficient

than that of using only naive agents in a fixed population especially on large scale for

evolving artificial languages. It is probably because, after the first generation, there

are already half of the “growing” population (i.e., mature agents) sharing a common

language before implementing language games in a new generation compared with the

“fixed” population full of naive agents. And when more generations are simulated in

the “growing” population, a more common language may evolve and be shared among

182 Chapter 6 Exploring Social Creativity

mature agents that results into more efficient evolution of languages in next generation.
But whether the increase in efficiency of the “growing” population would continue or

not after a great number of generations needs to be tested for future work.

6.2 Education in Guessing Game

To explore the efficiency and creativity of education particularly in the conversation
between teachers and students, a number of ratios of playing initiator between teacher-
agents (i.e., mature agents) and student-agents (i.e., naive agents) with different stu-

dent—teacher ratios are tested.

6.2.1 Subjects

The subjects of this experiment are RGBA colours with four dimensions, i.e., red, green,

blue and alpha.

6.2.2 Implementation

Teacher-agents (TAs) are mature agents developed in initial guessing games while student-
agents (SAs) are naive agents. The guessing games used in these simulations are similar

to those in the experiment, Ambiguity (see Fig. 5.2). A specific aspect of the imple-

mentation is that speakers (i.e., initiators) are selected from both teacher-agents and

student-agents by weighted random choice. The weight is based on a predefined ratio

(see Table 6.2). Different ratios of playing initiator between teacher-agents and student-

agents with several student—teacher ratios are tested based on the DIFI framework (see

Fig. 6.4).

colors [RGBA]

FIGURE 6.4: The Domain-Individual-Field-Interaction (DIFI) framework of education
in guessing games

Chapter 6 Exploring Social Creativity 183

TABLE 6.2: Average number of games being played with different ratios of playing
initiator between teacher-agents (TAs) and student-agents (SAs)

Ratio of initiators (TA:SA) 10:0 9:1 8:2 7:3 6:4 5:5 4:6 3:7 2:8 1:9
Population: 20 SAs + 1 TA 589 877 1355 1268 2934 2621 4737 6818 11002 12448
Population: 20 SAs + 2 TAs 1082 1308 1997 1808 2461 3464 6185 9158 10321 8878
Population: 20 SAs + 4 TAs 2035 2778 2647 3315 3218 5026 7290 11107 19934 23197
Population: 20 SAs + 10 TAs 2928 3207 3592 4419 4621 6447 10565 17383 24910 33563
Population: 20 SAs + 20 TAs 4545 4281 4868 5047 5919 9428 15239 23611 42763 65885

The experiment is implemented 20 times for each ratio of playing the role of initiator
(i.e., speaker) between teacher-agents and student-agents from 10:0 to 1:9 with different
student—teacher ratios including 20:1, 10:1, 5:1, 2:1 and 1:1 (see Table 6.2).

6.2.3 Results

The smallest average number of games played to success is 589, which is completed
when the ratio of playing initiator between TA and SA is 10:0 and the student-teacher
ratio is 20:1 with the smallest population compared with other populations (see Table
6.2 and Fig. 6.5, 6.7). This means that the guessing games in education could be
efficient when the role of initiator is played by only one teacher-agent. It is because
all the student-agents learn from the same teacher-agent in high consistency without
other teacher-agents’ “disturbance”, and the student-agents do not play the initiators to
generate new utterances which could “disturb” the teacher-agent with its own language.
However, there is few creative behaviours occur in such one-direction teaching by only
one teacher-agent that can be seen from Figure 6.6. A teacher-agent’s original language
is the same as its language after education games when the initiator is played only by
the teacher-agent, i.e., the ratio of initiator (TA:SA) is 10:0 (see Fig. 6.6).

70000

20 students + 1 teacher mmmm
60000 | 20 students + 2 teachers ——
20 students + 4 teachers m=m
20 students + 10 teachers =

50000 |- 20 students + 20 teachers ===

40000 [

30000 |

20000

Average number of games

10000 |-

10:0 9:1 8:2 7:3 6:4 5:5 4:6 3.7 2:8 1:9
Ratio of initiators (teacher : student)

FIGURE 6.5: Average number of games being played in education model

184 Chapter 6 Exploring Social Creativity

A teacher-agent’s language becomes evolve when the ratio of playing initiator between
a teacher-agent and a student-agent is changed from 10:0 to 9:1. In addition, when the
ratio becomes smaller, the evolved language in education games is more different from
the original language, even totally different when the ratio reaches 2:8 and 1:9 with some
high student-teacher ratios (see Fig. 6.6). It means that more new utterances could be
generated when a student-agent plays the role of initiator more. Such new utterances
are learned by a teacher-agent. It also costs more time on assimilating and sharing the

new utterances (see Fig. 6.5).

20 students + 1teacher mmmm
20 students + 2 teachers ——=
20 students + 4 teachers m==
20 students + 10 teachers =

081 20 students + 20 teachers ==]

0.6 5

0.4t —

0.2 1

Difference between a teacher-agent's original utterances

and its utterances after education games

10:0 9:1 8:2 7:3 6:4 5:5 4:6 37 2:8 1:9
Ratio of initiators (teacher : student)

FIGURE 6.6: Difference between a teacher-agent’s original utterances and its utterances
after education games

As can be seen from Figure 6.7, the number of games that need to be played becomes
greater and more unstable when the ratio of playing the initiator between a teacher-agent
and a student-agent becomes smaller, i.e., when a student-agent has more opportunities
of playing the role of speaker. Such change becomes faster when the ratio is less than 6:4
especially with lower student—teacher ratio such as 2:1 (e.g. 20 students and 10 teachers)
and 1:1 (e.g. 20 students and 20 teachers).

6.2.4 Conclusion

Double-direction education is more creative than single-direction teaching due to student-
agents’ novel behaviours, i.e., the potential of associating existing context with new
meanings. In terms of the efficiency of education, a teacher should play the main role
of initiator with appropriate ratios such as 7:3 or 6:4 while a student takes part in the
conversations positively rather than passively only as recipient. A suitable ratio can not
only drive creative behaviours but also prevent from extremely generating too many new

utterances which could cost too much time on assimilation.

The student—teacher ratio also affects creative behaviours. New languages could evolve

easily with higher student—teacher ratio (see Fig. 6.6) because a comparable great

Chapter 6 Exploring Social Creativity 185
45000 - 25000
+
40000 |- population: 20 students + 1 teacher + population: 20 students + 2 teachers
35000 | 20000 | -
v + T " | +
o 30000 \] | - T
& | £ 15000 | T
o 25000 | | - o + \ |
s , | s |
20000 f | IR -
£ . £ 10000 | !
2 15000 1 2
- + l
10000 | 1 5000 | + - | e
* + + + _ \ _
5000 | + - % %LI 1 i 5 $ B
Yy T = Lk
oL > > - - LS = .
100 91 82 73 64 46 3:7 28 19 10:0 91 8 7 3 64 55 46 37 28 19
Ratio of initiators (teacher : student) Ratio of initiators (teacher : student)
60000 T 60000
population: 20 students + 4 teachers + population: 20 students + 10 teachers
50000 | — 50000 | T
| + |
! |
© 40000 |- ! @ 40000 |- T <
E ! E |
3 - 1|8 .
5 30000 | : {1 6 30000 |
5 5 .
a a)
£ + £
2 20000 2 20000 [
= — = - -
[
1
10000 | E I 10000 | . N + - .
. L L 5 - 2 = =
0 % .é % % T L L L L 0 % % i L i _.h L L L
100 91 82 73 64 55 46 37 28 19 100 91 S 2 7 3 64 55 46 37 28 19
Ratio of initiators (teacher : student) Ratio of initiators (teacher : student)
120000 T T T T T T T T T T
+
population: 20 students + 20 teachers
100000 | T
|
1
© 80000 | I
'S 60000 |-
b .
a
g [
2 40000 - o
Q B
20000 | +
+ ¥ + + .
o= = =+ R
100 91 82 73 4 5:5 37 28 19

Ratio of initiators (teacher : student)

FIGURE 6.7: The number of games being played in education model with different
student—teacher ratios

number of students may have more influences on generating novel utterances associating

new meanings rather than using the existing utterances repeatedly by teacher-agents if

the teacher-agents share a same language with little diversity in advance.

6.3 Clique Formation

To improve design diversity and creativity at the sociocultural level, the evolution of mul-

tiple domain languages resulting into clique formation are simulated. This experiment

aims to simulate the evolution of artificial languages between different cultures.

Via

186 Chapter 6 Exploring Social Creativity

the simulation, the grounded language could be expanded to different local languages
which are helpful for investigating specific features impacting on different designs or

the convergence of multiple languages to one language with more complicated patterns
resulting into new design styles.

Creativity may increase when an individual adapts to an unexpected situation during
a “creative activity” (Candy and Bilda, 2009). Exchanging agents between different

environments and cultures could increase creativity.

6.3.1 Subjects

The subjects of this experiment are parametric designs of vases and simple buildings
with 4 to 5 parameters which can be adjusted to alter their shapes. Four sectional
radius can be changed to alter the shape of a vase (see Fig. 6.14), and five variables
including length, width, height, scale, and the angle of twist can be modified to adjust
the shape of a simple building (see Fig. 6.16).

6.3.2 Implementation

Generally, two groups of agents communicate with each other after they have evolved
their own languages (see Fig. 6.8). Initiated with random choice in the interactions of
multi-agents, some associations would be strengthened while others might be weakened.
Agents firstly communicate randomly with other agents. Then they may prefer to com-
municate with certain agents according to the familiarity based on their communication
frequency or the success rate of their communications. In terms of different communi-
cation strategies, some agents may prefer to interact with similar and familiar agents

while others prefer to interact with agents that are very different from themselves.

(%S
W"% @é\ﬂo
&
&

L

Eva,
L) e Mgy,
"~~~./.‘."7f/ons ""'~~-ff°

25

N

¥
@0
N
pece® %

FIGURE 6.8: The Domain-Individual-Field-Interaction (DIFI) framework with multi-
domains

Gopew o

\“io(mation

Chapter 6 Exploring Social Creativity 187

The experiment is implemented using the combination of guessing games and generation
games adjusted via the bias of agents’ selection identified by their previous communica-
tion experiences. First, the basic languages evolve via guessing games between speaker-
agents and listener-agents. Fach time, a speaker is randomly selected from a group of
agents, then the speaker randomly selects a listener, or chooses a listener who might be
the best listener in their previous communications when the bias of communication is

set to be true.

When the success rate of the guessing games reaches 70%, generation games start run-
ning for 1000 times. Each time, a randomly selected client selects designers randomly,
or prefers to choose the designers with whom it previously had more successful commu-
nication when the bias of communication is set to be true. The designers with different
preferences (different styles) parse the client’s requirement, generate various designs and
submit them to the client, who will make the assessment. Two types of simulations are

implemented. They are described below.

6.3.2.1 Implementation of Simulation 1

The processes of guessing games and generation games in Simulation 1 are similar to
those of the experiment, Ambiguity (see Fig. 5.2 & 5.3). The network based on Adaptive
Resonance Theory (ART) is used to learn 4-dimensional samples mapping to 4 sectional

radius of a vase through language games among 10 agents.

6.3.2.2 Implementation of Simulation 2

The processes of guessing games (see Fig. 6.9) and generation games (see Fig. 6.11) in
Simulation 2 are different from those in Simulation 1. There is no ART machine learning;
rather, the combination of value-range and tolerance is used to categorise 5-dimensional

samples mapping to simple buildings.

A number of dictionaries are used to store the weighted relations (i.e., rules) between
categories (i.e., value-range) and utterances. Each dictionary contains value-range, ut-
terance and weight, e.g. {value-range = {3: 0.9, 4: 1, 5: 0.9}, utterance = “s”, weight
= 0.01}.

The strengthening and weakening equations are used twice in learning (see Equations
45, 46) and unlearning (see Equations 47, 48) respectively. In the equations, w, is the
weight of a rule while w, is the weight of a value in the value-range of the rule; for
example, w, = 0.01, 3: 0.9 — value = 3, w, = 0.9 in the rule: {value-range={3: 0.9, 4:
1, 5: 0.9}, utterance=*“s”, weight=0.01}.

wy N+ (1—n) X w, (45)

188 Chapter 6 Exploring Social Creativity

Wy N+ (1 —=1n) X w, (46)
wy < (1 =n) X w, (47)
Wy (1= 1) X w, (48)

In guessing games (see Fig. 6.9), 16 agents are divided into two groups (see Fig. 6.10)

to play their own language games respectively, and evolve their own domain languages.
Guessing game for clique formation

> o,
Spealfer(S) Llstenler(L)

- 1 -
Context contains eight topics. e.g. [2, 8,3, 10,9, 7, 6, 5]
It will be extended to n-Dimensions in generation game.

1
randomChoice(Context) || | topiclS] '

filter(topic[S], rules[S]) -> rule[S] -> utterance
e.g. rule: utterance (e.g."a")

{valueRange:{3:0.9, 4:1, 5:0.9}, utterance:"a", weight:0.27

filter/create(utterance, Context, rules[L]) -> rule[L.

topic[L]
< piciL] match(rule[L], utterance, Context) -> topic[L]

alt _ / [in(topic[L], rule[S][valueRange])?]
success

>
>

learn(rule[S], topic[S])

learn(rule[L], topic[L])

failure, topic[S]

\ 4

unlearn(rule[L], topic[L])
(un)learn |filter(utterance, topic[S], rules[L])
->newRule[L]

learn(newRule[L], topic[S])

FIGURE 6.9: Guessing game of clique formation

In generation games (see Fig. 6.11), a client-agent is randomly selected from all the 16
agents. Then one or two more designer-agents are selected by the client-agent based on
its previous communication success rate with the designer-agents. The designer-agents
whose works are not accepted may or may not learn from the winner-designer according

to different strategies.

6.3.3 Results

The results of Simulation 1 (see Table 6.3) show that 10 agents evolve into several cliques
through generation games according to the differences between their evolved languages
(see Fig. 6.12). The differences of languages may impact on the diversity of designs (see
Fig. 6.13 and Fig. 6.14). The differences between agents’ utterances and designs are

measured using cosine similarity and visualised with the distance map of hierarchical

Chapter 6 Exploring Social Creativity 189

[1]

~ o o U N & = W

[T 1171

FIGURE 6.10: Two groups evolve languages in guessing games

clustering. As can be seen from Fig. 6.12, Fig. 6.13 and Table 6.3, the result of
hierarchical clustering of the evolved languages is very similar to that of the collected
designs. It means that communication bias may not only strengthen the differences
between languages and that between designs but also reinforce the domain cultures by
improving the relationships between their languages and related designs, i.e., languages
and designs reflect each other. However, the reflection is not strict due to a few of
mismatches between certain languages and designs. For example, agent-2 shares the
same language with clique-1 but has the same design taste as that of clique-3 leading to
the overlap between clique-1 and clique-3, and agent-6 shares the same design preference
with clique-1 but shares the same language with clique-2 that results in the intersection

of clique-1 and clique-2 (see Table 6.3).

TABLE 6.3: Clique formation based on the differences of languages and designs

Clique index 1 2 3
Members of each clique (based on their languages) [0,2,8,9] [1,3,6,7] [4,5]
Members of each clique (based on their stored designs) [0,6,8,9] [1,3,7] [2,4,5]

The results of Simulation 2 (see Fig. 6.15) show that agents who are more tolerant are
more capable of accepting languages that differ from their own. This leads to mixing
two different languages to one new language with a number of sub-languages at different
levels related with different cliques (see Setting 1 and 2 of Fig. 6.15). Two languages
almost merge to one language when the success rate of generation games, which are
played by tolerant agents, reaches 90% (see Setting 2 of Fig. 6.15) compared with 80%
(see Setting 1 of Fig. 6.15).

190 Chapter 6 Exploring Social Creativity

Generation game for clique formation

O

CIieqt(C) Designer(D)

combine(n randomSelectedUtterances) -> requirement .
n is the number of desgin features requirement >
e.g. n=5 with [length, width, height, scale, twist]

filter(requirement, rules[D]) -> activeRules[D]

activeRules contain n rules relating to n design features

e.g.

feature(0):{valueRange:{3:0.9, 4:1, 5:0.9}, utterance:"a", weight:0.27

design[D,
gniD] feature(1):{valueRange:{6:0.9, 7:1, 8:0.9}, utterance:"d", weight:0.81

feature(n):{valueRange:{1:0.9, 2:1, 3:0.9}, utterance:"k", weight:0.67;
generate(activeRules[D]) -> design[D]

other designs

filter(requirement, rules[C]) -> activeRules[C]
evaluate(designs, activeRules[C]) -> scores
if max(scores) > 0: winnerDesign

evaluation

alt _/ [winnerDesign?]

success, winnerDesign

learn
l learn(activeRules[C], winnerDesign) l

if design[D] == winnerDesign?
updateSTM(1, iC, iD)
1:success (-1:failure), iC:index_Client, iD:index_Designer
e.g. remove first one, push new one into last position
STM_before:[-1,1,-1,1,-1, 1, 1]
STM_after:[1,-1,1,-1,1,1,1]
relation[iC][iD] += 1
+= 1: strengthen relation, -= 1: weaken relation
relation[iC][iD] is for hierarchical clustering.
learn(activeRules[D], design[D])
else
updateSTM(-1, iC, iD)
relation[iC][iD] -= 1
(un)learn | learningSwitch = 1
if STM_bias? & randomChoice(STMIiC, iD]) == -1?
learningSwitch = 0
0 means designer with learning bias will not learn due to
previous failed communication (random(STM) == -1)
if learningSwitch == 1?
loop 0 <=i<length(design[D])
if in(design[D][i], activeRules[C][i][valueRange])?
and same/better(design[D][i], winnerDesign[i])?
learn(activeRules[D][i], design[D][i])
else
unlearn(activeRules[D][i], design[D][i])
get(requirement[i], winnerDesign([i], rules[D])
-> newActiveRules[D][i]
learn(newActiveRules[D][i], winnerDesign[i])

failure

Y

updateSTM(-1, iC, iD)
relation[iC][iD] -= 1
learningSwitch =1
if STM_bias? & randomChoice(STM[iC, iD]) == -1?
learningSwitch = 0
if learningSwitch == 1?
loop 0 <=i < length(design[D])
if bestMatch(design[D][i], activeRules[C][i][valueRange])?
learn(activeRules[D][i], design[D][il)
else
unlearn(activeRules[D][i], design[D][i])

(un)learn

FIGURE 6.11: Generation game of clique formation

By contrast, when agents’ tolerances are very low (such as 0.01 compared with 0.1 in
this experiment), it is difficult to merge two languages into one (see Setting 3 and 4 of
Fig. 6.15). A number of simple buildings related with different utterances are generated

in Simulation 2 (see Fig. 6.16).

Chapter 6 Exploring Social Creativity 191

FIGURE 6.13: The hierarchical clustering of agents based on their stored designs

Jllls E?BL!

FIGURE 6.14: The designs generated by averaging each agent’s stored prototypes

6.3.4 Discussion

Based on the results of Simulation 1, it may be very helpful for building interesting rela-
tionships between cliques by the aid of the mismatches between domain languages and
designs. Some interesting concepts might be developed by the agents who share their
languages and designs with different cliques respectively. In terms of the ambiguity
of languages, two individuals, who share the same utterances but associate them with
different meanings, may generate some interesting novel ideas when they connect these
meanings during their conversations. Hence, the creative relationships between differ-
ences (i.e., different cliques) could be strengthened when the differences themselves (i.e.,
the differences between cliques) are increased via the interactions between the languages

and designs belonging to various domains.

According to the results of Simulation 2, clique formation can be affected by three
factors: tolerance, learning bias and the success threshold of language games. If an
agent’s tolerance is great, i.e., the threshold for new categorisation is high, an utterance

can represent a broad value range. For example, if tolerance=0.1, each category contains

192 Chapter 6 Exploring Social Creativity

Setting 1 2 3 4
Tolerance (t) 0.1 0.1 0.01 0.01
Threshold (gs) 0.9 0.9 0.8 0.9
Threshold (gt) 0.8 0.9 0.8 0.8
LearningBias (b) 1 1 1 1

Result

FIGURE 6.16: Some results of generated buildings

three values, the value range could be from 0.2 to 0.4 including 0.2, 0.3 and 0.4. If
tolerance=0.01, only one value is included in a category such as “b” only representing
0.3. The function of getting value range is shown in Algorithm 16. It is difficult to
mix two groups when their tolerances are very low such as 0.01 (see Setting 3 and 4 of
Fig. 6.15). Otherwise the two groups will mix with each other to form more than two
sub-groups (cliques) or even integrate into one group when their tolerances are equal to
or greater than 0.1 (see Setting 1 and 2 of Fig. 6.15).

Algorithm 16 Get Value Range

1: function GETVALUERANGE(value, tolerance, range)
2 valueRange < {}

3 base < rangemaz — raNgemin
4 for v in range do

5: pos <+ (v — rangemin)/base
6 peakPos «+ (value — rangem;,)/base
7 score + sineCurve(pos, peakPos)

8 if score >=1 — tolerance then

9: valueRange, < score % 0.1

10: end if

11: end for
12: return value Range

13: end function

Learning bias also affects clique formation. A loser-designer may or may not learn from

Chapter 6 Exploring Social Creativity 193

the winner-designer or the client depending on their previous communication records. If
the success rate of their previous communication is high, the loser would learn from the
winner; otherwise the loser may refuse to learn from the winner. Therefore, this factor
could affect the evolution of shared languages. It may impede change in the number of
cliques or evolving sub-cliques, or prefer to retain the current status. The status will
change, however, when the members of two different groups communicate for a very long
time and increase the success rate of communications from 0.8 to 0.9. More commonly,

two groups mix into several sub-groups when the success rate reaches about 0.7 to 0.8.

Last but not least, the success threshold of language games may influence the result
of clique formation. Two groups with different languages would merge or mix more
easily when their own languages are less mature resulting from lower success threshold
of guessing games (see Setting 3 compared with Setting 4 of Fig. 6.15). In addition,
the individuals from two different groups would assimilate each other after playing a
great number of language games even their own languages are very mature (see Setting
2 compared with Setting 1 of Fig. 6.15)

6.3.5 Conclusion

Cliques are developed by the communication between a number of groups of agents with
different cultures, i.e., domain languages. Clique formation results in diverse and cre-
ative designs which are more similar in one clique than in others but all differ from each
other due to different combinations of utterance-like requirements and various experi-
ences of designers. A few of mismatches between domain languages and designs might
increase the social creativity of the interactions between different cliques. Technically,
not only individuals’ tolerances and communication preferences based on their previ-
ous experiences can influence the results of clique formation, but also different success
thresholds of language games and the number of language games played by agents could

affect the results of the interaction of multiple languages.

6.4 Conclusion

Three social phenomena related to creativity are simulated and discussed in this chapter.
First, the process in which the population mixed with naive and mature individuals grows
in an orderly way from generation to generation is more efficient than one-generation
process for the evolution of artificial languages on a large scale. Secondly, the simulation
of educational conversation in guessing games shows that two-way interaction between
teachers and students may be more creative than single direction teaching, particularly
when the ratio of playing initiator between teachers and students is 7:3 or 6:4. Finally,
clique formation occurs during the interaction between multiple languages leading to

social diverse creativity.

Chapter 7

Discussion

The main objective of this thesis is to enable and augment the exploration of creative
features of language and develop an artificial language system for creative designing at
the sociocultural level. This objective has been realised by developing three aspects
of multi-agent simulations (see Chapter 4, 5 and 6) based on the computational DIFI
framework (see Section 3.1) and the procedure of representation, communication and

evaluation (see Section 3.2, 3.3, 3.4 and Fig. 4.20 as an example).

The first aspect, evolving compositional languages (see Chapter 4), shows that compo-
sitional languages are more efficient (see Fig. 4.4) and creative (see Fig. 4.6 !) than
holistic languages; Holographic Reduced Representations can be used to represent geo-
metric relations (see Table 4.10), which can be mapped to compositional utterances via
Self Organising Map (see Fig. 4.14); and interesting designs can be generated in the
evolution of compositional languages (see Fig. 4.21). The second aspect, exploring lan-
guage features (see Chapter 5), indicates that design brief may be more influential than
design works partially due to the ambiguity of language (see Fig. 5.8); exaggeration can
be used to expand a design space, differentiate and overlap design categories (see Fig.
5.18); incongruent combinations can be obtained by inverse weighted random choice
of possible combinations (see Section 5.3.4); and elaboration can be used to generate
complicated concepts via the recursion of context free grammar (see Table 5.19). The
last aspect, exploring social creativity (see Chapter 6), suggests that growing population
mixed with mature and naive individuals can be more efficient than fixed population in
the evolution of language (see Fig. 6.3); appropriate two-way education is better than
unidirectional learning (see Fig. 6.5, 6.6); and the evolution of cliques generating specific
designs is affected by individuals’ tolerances, communication preferences and the success
thresholds of language games (see Fig. 6.15). Based on these results of the three aspects

of simulations, the main contributions of this thesis are summarised as follows:

'Less discrimination means more ambiguity, which is a creative feature of language.

195

196 Chapter 7 Discussion

e A computational process, representation-communication-evaluation (see Section
3.2, 3.3, 3.4 and Fig. 4.20 as an example), has been developed to evolve grounded

language for creative design via guessing games and generation games;

e Several language features including ambiguity, scalability, incongruity and exten-
sibility (see Section 5.1, 5.2, 5.3 and 5.4) have been implemented and tested in
computational simulations to support reasoning about these features in the con-

text of creative design;

e A computational model of social creative system (see Section 3.1) based on the
DIFI framework has been developed to incorporate the evolution of artificial lan-

guages for improving sociocultural creativity.

7.1 An Artificial Language System for Creative Design

An artificial language system based on the Domain-Individual-Field-Interaction (DIFI)
framework has been developed to evolve compositional languages by combining and
transforming diverse associations of utterances and design concepts among multi-agents
using language games. In other words, a model of an artificial creative system has
been developed via the evolution of compositional language for creative design at a so-
ciocultural level, and the features of language—ambiguity, scalability, incongruity and
extensibility—have been investigated and applied to design conceptualisation and com-
munication through guessing games and generation games. Various views and different
experiences of curious agents reflect the social diversity that resulted in cooperative

design creativity.

7.2 Significance of Experiments and Results

The significance of experiments and results are the evolution of compositional languages,
the exploration of creative features of language, and the strategies of evolving languages

at sociocultural level for creative design.

7.2.1 Evolution of Compositional Languages for Creative Design

Chapter 4 describes three experiments: the comparison of compositional languages and
holistic languages, Holographic Reduced Representations of topological relations of two
rectangles and mapping them to compositional utterances, and the evolution of com-
positional languages for generating interesting combinations of regular shapes. Results
show that:

Chapter 7 Discussion 197

e The evolution of compositional languages is more efficient than that of holistic
languages (see Table 4.4). The feature, ambiguity, occurs in both but it is stronger

in the former due to its lower discrimination (see Table 4.5).

e Topological relations can be represented by Holographic Reduced Representations
(HRRs), and the distances between these relations can be clarified by measuring

cosine similarities of their HRRs;

e Mapping between HRR geometric relations and HRR represented utterances can
be accomplished using SOM, which establishes the feasibility of transformation

between artificial languages and design concepts (see Section 4.2).

e The evolution of compositional languages can be used to generate designs, espe-
cially when a client-agent selects similar-yet-different designs rather than highly

familiar or highly different designs (see Section 4.3).

7.2.2 Exploration of Language Features for Creative Design

Four experiments related to the features of language—ambiguity, scalability (exaggera-
tion), incongruity and extensibility (elaboration)—have been implemented and applied

in conceptual design (Chapter 5). The key results from these experiments are:

e The ambiguity of language caused by polysemy may play an important role in
creative designing at the social level aided by hedonic selection. This leads to fewer
utterances representing more concepts suggesting that in systems with ambiguous
languages design briefs may be more influential than design works (see Section
5.1).

e Exaggerated concepts are generated by using modifiers such as “very” to ex-
pand the range of topics, differentiate existing categories such as “very medium”
from “medium”, and overlap basic categories to get more dynamic meanings, e.g.
“small-medium” and “medium-small” (see Section 5.2). A design space can be
expanded and more options could be provided to designers for exploring inter-
esting combinations of different sizes to generate novel designs by extending and

differentiating existing categories via exaggeration.

e Incongruent combinations can be computationally modelled by inverse weighted

“realﬂ

random choice of possible combinations in generation games based on the
congruent combinations accumulated in guessing games (see Section 5.3). It could
be used for the computational modelling of conceptual design to explore the in-

congruent recombinations of existing products and usage situations.

198 Chapter 7 Discussion

e Elaborated combinations and other interesting (unusual, strange) relations can be
generated via the recursion of context free grammar and the replacement of oper-
ators and operands (see Section 5.4). Elaborated combinations can be modelled
computationally to provide human designers abundant raw concepts for choosing

and refining.

In brief, four creative features of language have been used to evolve compositional lan-
guages for generating interesting designs mainly aided by weighted context free grammar

with graph networks (see Section 3.2.3).

7.2.3 Exploration of Social Creativity in Designing

Three experiments—growing population, education in guessing games and clique for-
mation—are described in Chapter 6. These experiments explore the evolution of com-
positional languages in dynamic populations, education model and multiple cultures.
The aim of these experiments was to develop a computational model to study the role
of compositional languages in the social aspects of creative designing. The key results

from these experiments are:

e The results of the experiment, Growing Population (see Section 6.1), demonstrated
that gradual staged evolution of languages in a mixed population of mature and
naive individuals can be more efficient than the direct evolution of languages in

an initially large population of naive individuals (see Section 6.1).

e Positive two-way education can be better than passive unidirectional learning, as
demonstrated by simulating Education in Guessing Games with different ratios of

playing initiator between teachers and students (see Section 6.2).

e The interactions among individuals from different cultural backgrounds, reflected
in different languages, can evolve cliques generating specific design works (see
Section 6.3). The number of cliques and the degree of difference between the
cliques are affected by individuals’ tolerances and communication preferences based

on their previous experiences (see Section 6.3.4).

These experiments have expanded the range of social behaviours that can be computa-
tionally studied. Given the success of these experiments, the ability of language evolution
as a way to expand the range of social and cultural phenomena surrounding design can

be computationally modelled.

Chapter 7 Discussion 199

7.3 Comparison of the Experiments

This dissertation has explored three aspects of language and design. First, the pro-
cesses supporting the evolution of compositional languages in design has been explored.
Then, the features of language including ambiguity, scalability, incongruity and exten-
sibility have been identified and applied to design. Finally, several models of evolving
artificial languages for designing at the sociocultural level are explored. Most of the ex-
periments have been based on a computational model based on the Domain-Individual-
Field-Interaction (DIFI) framework. This section provides an overview of the outcomes
of the experiments related with their general settings, representations and categorisa-

tions, evaluation and analysis, and advantages and disadvantages.

7.3.1 General Settings

As can be seen from Table 7.1, both guessing games for evolving domain languages
and generation games for generating designs are used in most simulations, although the
experiment, Compositional and Holistic Language (see Section 4.1), uses only guessing
games to compare the efficiency of compositional languages and holistic languages in
evolving languages. The experiment, Compositional Representation of Rectilinear Re-
lation (see Section 4.2), does not use any language games because its goal is to test

mapping HRR meanings to HRR utterances; this is achieved using SOM.

Most of these experiments are set with a small population with 6 individuals, except for
the experiments that explore social creativity with 10 to 64 agents (see Table 7.1). These
settings are suitable for exploring grounded features of language. Large scale with more
than 1000 agents may be useful to study the impact of diversity of languages on creative
design leading to emergence. A large-scale agent system is highly dynamic due to both
the heterogeneity and interoperability of agents and the great number of (inter)actions
(Wijngaards et al., 2002). To adapt to large scale simulations for diverse creativity, the

personality and flexibility of agents may need to be strengthened.

The success threshold of most simulations with guessing games and generation games is
set to 0.7 or higher. There are two exceptions. In the experiment, Ambiguity (see Section
5.1), it is set to 0.6 because it is difficult to reach a high success rate (0.7) possibly due
to the settings of the ART network. The vigilance parameter may need to be adjusted
to increase the robustness of categorisation (Carpenter and Grossberg, 2016). In the
experiment, Incongruity (see Section 5.3), the long sequence of utterances representing
a long length of expressions with 21 items makes it difficult to achieve a high success
rate in guessing games, so the success threshold is set to 0.65. However, the final success
rate of the generation games in the experiment, Incongruity (see Section 5.3), surpasses
0.9 after only about 1000 iterations; this might also be because the long sequences of

representations make them easily distinguishable from each other. In other words, it

200 Chapter 7 Discussion

TABLE 7.1: General settings of the experiments
(abbr.: Compo.&Holistic: Compositional and Holistic Language, Compo-Represen.:
Compositional Representation of Rectilinear Relation, Compo-Shape: Compositional
Language for Shape Combination, Extensibility: Extensibility and Other Features,
Growing Pop: Growing Population, Education Game: Education in Guessing Games,
Clique Form.: Clique Formation, gs: guessing game, gt: generation game, T:8 S:16: 8
teachers and 16 students)

Experiment GameType Population Rate(gs) Rate(gt) Num(gs) Num(gt)
Compo.&Holistic gs 6 0.7 N/A N/A N/A
Compo-Represen. N/A N/A N/A N/A N/A N/A
Compo-Shape gs, gt 6 0.7 0.7 Max:1000 Max:1000
Ambiguity gs, gt 6 0.6 N/A N/A Max:1000
Scalability gs, gt 6 0.7 0.7 Min:1000 Min:1000
Incongruity gs, gt 6 0.65 N/A Min:1000 Max:300000
Extensibility gs, gt 6 0.8 0.8 Min:1000 Min:1000
Growing Pop. gs 4,8,16,32,64 0.7 N/A Min:20 N/A
Education Game gs T:8 S:16 0.7 N/A Min:20 N/A
Clique Form. gs, gt 10, 16 0.8,0.9 0.8,0.9 Min:20 Min:20

is easy for a client’s long brief to be matched to the relevant topological relations only
if the designer-agent decoded part of the requirement correctly; then the designer can
produce unusual relations by inverse weighted choice. The max number of generation
games (see Num(gt) in Table 7.1) in this experiment is set very high (to 300000) only
for convenience in testing the trend of the success rate. The setting of min number for

language games (see Num(gs) in Table 7.1) is to prevent premature high success rate.

Regular shapes (e.g. triangle, square and circle), colours, sizes and simple 3D objects
with 4 to 5 parameters are used as subjects and design materials in the experiments (see
Table 7.2). The values of most extracted features of these subjects are regulated into

normal range [0,1] (see Table 7.2 and 7.3) for convenience in calculation and comparison.

The size of context, i.e., the number of samples, in each guessing game is set to 8 in most
experiments, except for the experiment, Incongruity (see Section 5.3), in which only four
samples (circle, square, triangle and the height of ground) are involved. Each shape has
three features (coord-x, coord-y and radius), 10 features in total; and the values of these
features are changed in a range in each guessing game. So, the context size of this
experiment is sufficient for evolving grounded languages. There is no context size in the
experiment, Extensibility and Other Features (see Section 5.4), because the features of
the sample scene (single shapes, compositional objects and the relations between these
objects and backgrounds) are extracted and generated before running guessing games.
The guessing games in this experiment are only used to evolve shared languages among
agents. On the sample scene, core features and relations are generated before running
guessing games to avoid generating too many possible topics related with a speaker’s
utterances. For future work in this area, it may be better to allow agents to explore

features step-by-step during guessing games.

Chapter 7 Discussion 201

TABLE 7.2: The subjects (samples) and selection methods of the experiments

Experiment Subjects Context Topic Selection
Compo.&Holistic 3sizes*6colours*5shapes=90 8 rand.,(un)common,(un)confident
Compo-Represen. Rectilinear Areas N/A N/A
Compo-Shape Tri, squ, hex, circ&star 8 rand.
Ambiguity 11colours*11shapes=121(50) 8 rand.
Scalability Size [0.25, 0.75] or (0,1] 8 rand.
Incongruity Cir, squ, tri, Hground 4 rand.
Extensibility Shapes,sky,land,sea pre-extracted rand.

Growing Pop. RGBA colours 8 rand.
Education Game RGBA colours 8 rand.

Clique Form. 4 to 5 dimensional data 8 rand.

Most of the experiments adopt the random topic-selection method because of its conve-
nience and objectivity. Random topic-selection is also more helpful for testing language
games than other methods, such as uncommon, confident and unconfident topic selec-
tions, although the common topic selection is shown to be effective in the experiment,

Compositional and Holistic Language (see Section 4.1).

7.3.2 Representations and Categorisations

The methods of representation in most experiments are general associations between
meanings and compositional utterances (see Table 7.3). For example, “(in bird sky)”
is represented as “vi-gu-wa”. In addition, more than one artificial language can be
represented using a graph network by connecting the same meaning with a number of
utterances belonging to various languages (i.e., meanings — language 1 — language 2 —
language 3 ...). This may be very useful for obtaining interesting sequences by crossing
over the utterances of different languages, or to get new connections between unfamiliar
meanings by tracing the path of these mapped languages or comparing their phonemes

and forms.

The experiment, Compositional and Holistic Language (see Section 4.1), is implemented
to explore the different effects of compositional languages and holistic languages. The
results show that compositional languages are far more efficient and a little more am-
biguous than holistic languages. Ambiguity is a creative feature of language. So, compo-
sitional languages may be better than holistic languages for clients to generate creative
requirements and for designers to describe their designs in a novel way. A compositional
language is a mapping of a relational signal space to a structural meaning space (Smith
et al., 2003) that could be useful to explore new relations between different meanings
connected by associated utterances. Weighted context free grammar (WCFG) based on
graph networks (GN) is used to evolve compositional languages to explore the creative
features: scalability, incongruity and extensibility because of its support for expansion

in multiple ways.

202 Chapter 7 Discussion

TABLE 7.3: The representations of the experiments

Experiment Representation
Compo.&Holistic [size, colour, shape] — holistic/compo-utters
Compo-Represen. HRR (1024,float0 ~ 1)

Compo-Shape [shapel, shape2] — compo-utters e.g. triangle-square — “yawa”
Ambiguity [colour, shape](range[0,1]) — compo-utters. e.g. {0.2,0.3} — “ha”
Scalability WCFG&GN bridging sizes and compo-utters

Incongruity WCFG&GN bridging [object, background] and compo-utters
Extensibility WCFG&GN bridging compo-object/background and compo-utters
Growing Pop. [R,G,B,A] — compo-utters e.g. “balagugi”

Education Game [R,G,B,A] — compo-utters e.g. “balagugi”

Clique Form. Building[length,width,height,scale,twist]&vase(4 radius) — compo-utters

Table 7.4 summarises the general categorisation method using prototype and tolerance
applied in the experiments, Compositional Language for Shape Combination (see Section
4.3) and Scalability (see Section 5.2), aided by the variation of the Wundt curve (sine
curve) and GNG respectively. The neural network based on ART is used to categorise
topics in the experiments on exploring social creativity and the experiment, Ambiguity
(see Section 5.1), due to the extensibility of ART to generate more categorisations when
new topics surpass the tolerance of existing categories. SOM is used in the experiment,
Compositional Representation of Rectilinear Relation (see Section 4.2), to map differ-
ent types of rectangular areas to compositional utterances. The categorisations in the
experiment, Incongruity (see Section 5.3), are related to topological relations between
shapes and backgrounds generated by the evolution of expressions using WCFG, while
in the experiment, Extensibility and Other Features (see Section 5.4), hierarchical cat-
egorisations are generated with basic shapes and compositional objects as well as the
relations between these objects and different contexts. Then new designs are compared
with the original topics with changed locations, the complexity of representations and

scaled sizes in this experiment.

Interesting design works are produced by the cooperation of clients and designers. Client-
agents provide design briefs and filter the products while designer-agents generate prod-
ucts, learn the responses of client-agents and affect client-agents’ future requirements.
The types of design works consist of the combinations of colours and shapes, the combina-
tions of shapes, the combinations of objects and contexts, deformed shapes, exaggerated

shapes, elaborated shapes, and simple 3D buildings and vases (see Table 7.4).

7.3.3 Evaluation and Analysis

The evaluation of designs is completed by a client-agent in each generation game. Fixing
the role of some agents as client means that certain agent(s) always play(s) the role of
client while other agents only play the role of designer in every generation game (see

Table 7.5). This is done for convenience in studying the impact of client behaviours

Chapter 7 Discussion 203

TABLE 7.4: The categorization methods and designs of the experiments

Experiment Categorization Design/art works
Compo.&Holistic Predefined sizes(3),colours(6),shapes(5) N/A

Compo-Represen. SOM N/A

Compo-Shape Prototype and preferred similarity Deformation(Bezier), Boolean
Ambiguity ART Combining colour and shape
Scalability GNG,prototype&tolerance(probability density) Exaggerated sizes
Incongruity Evolve expressions — topological relations New relations(shape,context)
Extensibility Compare prototype&design[loca.,complex,size] Elaborated&interesting works
Growing Pop. ART N/A

Education Game ART N/A

Clique Form. ART and Tolerance (0.1, 0.01) 3D buildings & vases

on generating works in a consistent way, especially in the experiments, Compositional
Language for Shape Combination (see Section 4.3), Ambiguity (see Section 5.1), and
Extensibility and Other Features (see Section 5.4).

In guessing games, the criteria of evaluation are whether the topic guessed by the lis-
tener is the same as the topic selected by the speaker, or whether the guessed topic
and the selected topic belong to the same category. In generation games, the hedonic
function based on Wundt curve is utilised in the experiments, Ambiguity (see Section
5.1) and Clique Formation (see Section 6.3), while sine curve is used in the experiment,
Compositional Language for Shape Combination (see Section 4.3), to select similar-yet-
different artworks. The other experiments use specific evaluation methods. For example,
client-agents prefer to select new relations of shapes and context with lower weight to
get unusual and incongruent scene works in the experiment, Incongruity (see Section
5.3).

Most experiments focus on evaluating the novelty of artworks (see Table 7.5) rather
than the novelty of utterances, except the experiment, Ambiguity (see Section 5.1).
The characters and forms of utterances might be analysed with more different views to
capture interesting sequences and sentences in terms of their own forms rather than their
represented meanings. A similar work has been done by Vogt (2005) in his language
games using chunking and similarity of utterances as well as related sound etc., but not

for generating creative utterances and designs.

The evaluation of language games in this thesis mainly uses non-linear hedonic functions
with fixed peak-position. The functions with changeable peak-position, linear hedonic
functions and heuristic functions or some other methods may be used to develop more
diverse and flexible mechanisms of evaluation. For example, the peak of the Wundt
curve can be positioned anywhere along the novelty axis by changing the thresholds of
the reward and punishment (Saunders and Gero, 2001a). As can be seen from Algo-

rithm 4, the peak-point can be adjusted by altering the value of novel R and novel P.

204 Chapter 7 Discussion

TABLE 7.5: The comparison of client-agents and evaluation in the experiments

Experiment Fixing client Preferred-difference Evaluation

Compo.&Holistic N/A N/A Guessed the same topic?
Compo-Represen. N/A N/A Cosine similarity(topological relations)
Compo-Shape 1 Preferred similarity = 0.7, 1 Selection threshold=0.7,0.9(sine curve)
Ambiguity 1 0.364 (Wundt curve) With/without hedonic function
Scalability 0 dvsyvmmmyve =4,dss,. =7 Euclidean distance of prototype&design
Incongruity 0 Relations with low weight P(Shape | Context)

Extensibility 1 Predefined criteria Unusual/strange/exten. /exagger. /incon.
Growing Pop. N/A N/A Guessed the same topic?

Education Game N/A N/A Guessed the same topic?

Clique Form. 0 0.364 (Wundt curve) Compare prototype&design (tolerance)

The variation of the Wundt curve named Sine Curve can also be used dynamically by

adjusting the value of x¢, i.e., the preferred similarity in range [0,1] (see Algorithm 5).

General statistical methods and some graph-theoretic functions (West et al., 2001) such
as degree and distance map have been used to analyse the process of simulations and
their results (see Table 7.6). For example, the number of games being played are analysed
in the experiment, Compositional and Holistic Language (see Section 4.1), to compare
the efficiency of compositional language and holistic language, and in the experiment,
Growing Population (see Section 6.1), to compare the efficiency of dynamic population
and fixed population. Discrimination, consistency, density and the length of represen-
tations are used to analyse the ambiguity, completeness and extensibility of the evolved
languages. The weights of relations between objects and expressions are analysed to clar-
ify congruent and incongruent combinations in the experiment, Incongruity (see Section
5.3). The quality and quantity of collected works are analysed to find the impact of
client’s preference on final products in the experiment, Compositional Language for
Shape Combination (see Section 4.3). Average max-degree of instances is analysed to
find different effects of using hedonic functions for evaluating utterances and designs.
Distance map is utilised to analyse the hierarchical structure of the evolution of multi-
languages with different styles of generated design works at the sociocultural level in the

experiment, Clique Formation (see Section 6.3).

7.3.4 Advantages and Disadvantages

Several key results are obtained via multi-agent simulations and statistical analysis (see
Table 7.7). For example, the conclusion “question may be more important than answer”
is analogised to the result “client’s creative requirements (design briefs) may have more
influence on interesting products than creative designing”. This is obtained by compar-
ing the degrees of instances generated in different situations, including interest evaluation
of only requirements and interest evaluation of only designs. They clarify the importance

of creative requirements. If client requirements remain similar or identical without any

Chapter 7 Discussion

205

TABLE 7.6: The analysis of the experiments

Experiment

Analysis

Compo.&Holistic

Compo-Represen.

Compo-Shape
Ambiguity
Scalability
Incongruity
Extensibility
Growing Pop.
Education Game
Clique Form.

Gaming-times, discrimination, consistency, density of utterances
Topological relations mapping compositional utterances

Success rates, the number of collected shapes&types(select-thresholds)
Ambiguity of utterances, average max-degree of instances

The range of exaggerated sizes

The weights of each object related with different expressions

The procedure of elaboration

Gaming-times with growing population and fixed large population
Ratioinitiator [teachers : students]

Hierarchical relations of agents (distance map of languages&designs)

TABLE 7.7: The results/conclusions of the experiments

Experiment

Results/conclusions

Compo.&Holistic
Compo-Represen.
Compo-Shape
Ambiguity
Scalability
Incongruity
Extensibility
Growing Pop.
Education Game
Clique Form.

Compositional language is more efficient&ambiguous than holistic lang.

HRRs represent topological relations & clarify their relationship
Client collects more types of works when requirements are moderate
Question(requirement) may be more important than answer(design)
Exaggerated sizes are generated and differentiated with modifier
Incongruent scenes are generated via reversed probability density
Objects are elaborated, moved, rotated or scaled

Growing population evolves more fast than initial large population
Double-direction education is better than single-direction teaching
Clique formation is affected by agents’ tolerance & preference

interesting change, even different new solutions which are developed time after time can
not improve creativity because their related requirements are fixed (Blayse and Manley,
2004). Incongruent combinations can be obtained by inverse weighted random choice
of existing combinations and non-existent combinations with existent elements because
incongruence is the opposite of congruence, as imagination is likely to be the opposite

or “mirror” of reality.

Some advantages of these experiments are listed in Table 7.8. In particular, the weights
of associations between meanings and utterances can change dynamically by applying
effective learning algorithms (see Algorithm 25, 27, 26, 28) in both guessing games and
generation games. Short term memory for communication preference has been used in
the experiment, Clique Formation (see Section 6.3). And long term memory for dynamic
categorisation have been implemented in most of the experiments, particularly Growing
Neural Gas, combining the advantages of both SOM and ART, has been utilised to cat-
egorise exaggerational topics in the experiment Scalability (see Section 5.2). Weighted
context free grammar has been efficiently used to extract design features and expand
them to interesting compositional design concepts in the experiments Scalability (see
Section 5.2), Incongruity (see Section 5.3) and Extensibility and Other Features (see
Section 5.4). The hedonic functions based on the Wundt curve (see Algorithm 4) and a

newly developed variation of the Wundt curve, sine curve (see Algorithm 5), have been

206 Chapter 7 Discussion

TABLE 7.8: The advantages of the experiments

Experiment Advantages
Compo.&Holistic ~ Composition, multiple topic-selections
Compo-Represen. HRR representations of geometric relations

Compo-Shape Deformation and combination

Ambiguity Analysis of degree of Graph Network

Scalability Dynamic categorisation of sizes with probability density
Incongruity Inverse weighted random choice of WCFG

Extensibility WCFG & GN, gradient mutation

Growing Pop. dynamic population, mixing naive and mature agents
Education Game Different ratio settings for comparison

Clique Form. STM and LTM for communication preference

utilised to evaluate the creativity of requirements or designs in the experiments, Com-
positional Language for Shape Combination (see Section 4.3), Ambiguity (see Section

5.1) and Clique Formation (see Section 6.3).

Several limitations of these experiments are listed in Table 7.9. For example, in the
experiment of Compositional & Holistic Languages, although compositional languages
are more efficient and ambiguous than holistic languages, what is the role of holistic
language in the evolution of language and social creativity and what is the relationship
between holistic languages and compositional languages? For example, the relation
between “orange” and “reddish-yellow” could be interesting. Both of them represent the
same basic meaning but may be used in different situations to express specific semantics.
Is it possible that evolved languages can be more creative and robust by combining

holistic and composition?

A number of topological relations are pre-generated before simulating language games
in the experiment Extensibility and Other Features (see Section 5.4) compared with
the experiment, Incongruity (see Section 5.3), in which the relations are developed by
generating relevant expressions during guessing games because there are only a few of
simple subjects (a circle, a square, a triangle and a ground). In future experiments, more
various features of relations among objects, and between objects and context might be
explored, extracted and generated by individuals themselves in language games that

may become more diverse and creative with more possibilities.

In the experiment, Scalability (see Section 5.2), every agent has the same basic setting
of the range of new exaggerated sizes in each simulation. For example, “very small”
may be only related to the range [0, 0.1]. Future simulations might develop ways of
letting agents categorise the same meaning with different ranges as a consequence of
experience to evolve more diverse languages to study the relationship between diversity
and creativity relating to the extension of forming cliques, i.e., the improvement of

heterogeneity (Wijngaards et al., 2002).

Chapter 7 Discussion 207

TABLE 7.9: The disadvantages of the experiments

Experiment Disadvantages/future work
Compo.&Holistic ~ The role of holistic language though composition is more efficient?
Compo-Represen. Predefined topological relations. HRRs for quantity representations?

Compo-Shape Only considering the difference of outlines

Ambiguity Entropy or technology driven design besides demand driven?

Scalability Great differences between individual categorizations for creative work?
Incongruity How to grow the length of an expression to get more complex relations?
Extensibility Predefined interesting criteria, pre-generated topological relations
Growing Pop. Only guessing games without generation games evolving works
Education Game Different education stages with dynamic ratio of initiator?

Clique Form. Cliques for social creativity (diverse? Autopoiesis?)

A very long s-expression can be easily generated using a context free grammar with
recursion. It is, however, necessary to explore how to control the length of expression to
get meaningful topics and evolve from simple to complex meanings and representations
steadily. In the experiment, Education in Guessing Games (see Section 6.2), more situa-
tions may need to be considered. For example, different stages of language games might
need different strategies rather than a fixed ratio of playing initiator between teachers
and students. Clique formation may be an appropriate start for studying autopoiesis and
the interactions of multiple autopoietic systems in the evolution of artificial languages

for creative designing.

The artificial languages evolved in the experiments are languages with limited size that
emerge by a number of communications of multi-agents. Normally, they are the result
of distributed conversational processes like human languages without being consciously
formed (Steels, 2006a) except the involvement of context free grammar (CFG) in Ex-
periment 5.2, 5.3 and 5.4. However most of the rules based on CFG are evolved through

the simulations.

The evolved compositional languages have not been re-used outside the experiments so
far. The differences between these languages and human languages are their limited
size, “toy” functions and short-lived nature (Steels, 2006a). To address the limitations
of these languages, more complicated association rules should be developed such as
the mappings between different phrases and sentences. In other words, the model in
this dissertation should be extended from generating simple compositional utterances
to collecting, evaluating and building up the relationships between these compositional
utterances by developing a vector space representing the frequency of combinations of
different utterances such as phrases and sentences, and analogical mapping the com-
binations of utterances with the same or similar structures. Thus new interesting and
more complicated design briefs could be generated in language games by using analo-
gies or exploring rare combinations based on the developed vector space storing various
relationships among unit-utterances and phrase-utterances. Mikolov et al. (2013a) de-

veloped a robust vector space representing the relationships of human words and phrases

208 Chapter 7 Discussion

by using the word2vec approaches including the continuous bag-of-words (CBOW) ar-
chitecture (Mikolov et al., 2013a) and the Skip-gram model (Mikolov et al., 2013b).
The vector space was enriched by using a huge number of news data for training. It
connected numerous words and phrases with probabilities that can be used to find a
relevant word/phase with a provided context using CBOW architecture (Mikolov et al.,
2013a), find the neighbors of a word/phase, and find the fourth word by providing the
first three words such as “Germany”, “Berlin”, “France” — “Paris” using analogy based
on the Skip-gram model (Mikolov et al., 2013b).

In addition, the interaction between artificial languages and human languages might
improve the capability of artificial languages for communication between agents and
humans. Steels (2001b) put forward three requirements of communications between hu-
mans and robots, which are with shared situation in the real world, open-ended and
speech-based. Some examples of conversations between humans and robots based on
human languages were provided (Steels, 2001b). Mubin et al. (2012) designed an ar-
tificial language named Robot Interaction Language (ROILA) using the combinations
of consonants and vowels such as “koloke” representing the meaning “forward” to im-
prove the recognition of sound by robots. For example, the sound of “koloke” is clearer
than that of “forward”. Results showed that the human-students who learned ROILA
communicated with robots using ROILA more successfully than using human languages
(Mubin et al., 2012).

In terms of the same mechanism of resulting languages via distributed conversational
processes, the evolution of artificial languages may be a useful method for reflecting

human languages and developing some specific features in computational environment.

7.4 Reflection on the Research

A number of human phenomena could be reflected by the experiments completed in this
dissertation. Based on the results of simulations, three aspects including the reflection
on the evolution of compositional language, that on the exploration of language features,

and that on the exploration of social creativity are discussed as follows.

7.4.1 Reflection on the Evolution of Compositional Languages

A compositional languages is more powerful than a holistic language (see Sec. 4.1) for
communicating because the former enables a person to understand a sentence that s/he
has never heard before. There is a one-to-one correspondence between holistic rules and
meanings but a one-to-many correspondence between compositional rules and meanings
that makes compositional language more expressive and creative (Putman, 2006). In

addition, compositional languages reflect the structured real world such as the mapping

Chapter 7 Discussion 209

of compositional utterances to geometric relations in the experiment of compositional

representation of rectilinear relation (see Sec. 4.2).

“Random” selection is good at distinguishing topics (see Sec. 4.1). Analogically, No
strategy might be an ideal strategy for exploring a topic completely due to its non-bias.
Certain strategies could have bias and limitation that result in incomplete exploration.
On the contrary, random actions without strategies, i.e., doing whatever can be done
could explore the environment more completely and identify the differences between
each items. “Common” selection can improve consistency of an evolved language (see
Sec. 4.1). It means that always selecting a common topic which shares the most number

of features with other topics could enhance the consistency of a conversation.

Design could be more productive when the strategy of evaluating design is to keep a
balance between mediocrity and novelty (see Sec. 4.3), i.e., improving design creativity
step by step. In addition, clients’ requirements may strongly affect design creativity (see
Sec. 5.1). If their requirements and evaluation did not focus on creativity, the demand-
driven design could not be creative. Even something novel occurs but may probably
fail to be selected by the clients. So a good client is a creative client who can enhance
the creativity of designers and value creative works. A creative designer can produce
interesting designs to affect the client’s evaluation standard. Therefore, innovation is
a process of creative interactions between clients/customers and designers instead of

designers’ sole job.

7.4.2 Reflection on the Exploration of Language Features

Ambiguity (see Sec. 5.1) provides a space for imagination and exploring interesting
concepts which may not exist in the real world. Scalability (see Sec. 5.2) supports
the clarification of meanings and their relationships because they are strengthened by
exaggerating them since exaggerated concepts help to distinguish different concepts ef-

fectively.

Jokes could be made or a problem could be resolved by using incongruity (see Sec. 5.3).
In a number of jokes, incongruity occurs between the set-up and the punch line. For
example, {set-up: [Two fish in a tank]|, punch: [One turns to the other and says: “Do
you know how to drive this?”]}2. In this example, the meaning of “tank” has changed
from “a fish tank” to “a vehicle tank” via punch line that surprises people. In other
words, a scene can be changed by swapping the meaning of the same word to another
meaning. An incongruent composition might occur when a new meaning of the scene
is combined with the same object. When the incongruent meaning is clarified, people
start laughing. Therefore, incongruity may cause issues but also can be used to generate

interesting concepts. As the incongruity theory states, humor is perceived at the moment

2The joke is cited from http://www.richardwiseman.com/LaughLab/incon.html

http://www.richardwiseman.com/LaughLab/incon.html

210 Chapter 7 Discussion

of realization of incongruity between a concept involved in a certain situation and the

real objects thought to be in some relation to the concept (Mulder and Nijholt, 2002).

An interesting mechanism of extensibility for language is recursion (see Sec. 5.4), which
is distinguished from looping and repetition by embedding a structure within another
structure of the same type. For example, [John believes [Mary thinks [Joe is handsome]]]
is a result of right embedded recursion using pairs of formal notations including [S —
NP, VP], and [VP — V, S]. Another example, “The cat [that the dog [that the man hit]
chased] meowed” is a center embedded recursion®. This provides a way of understanding
the creativity of language—the unbounded number of grammatical sentences being of
arbitrary length. Recursion has also been used in artworks such as Escher’s graphic
work (Escher et al., 1982) and designs.

7.4.3 Reflection on the Exploration of Social Creativity

The result of the experiment, Growing Population (see Sec. 6.1), may reflect a creative
strategy of developing a large scale company. A company could grow faster by recruiting
new employees step by step and arranging co-workers with experienced employees and
new naive workers rather than recruiting a great number of people once that may cost

much more time for settling down as a company.

The experiment results of Education in Guessing Game (see Sec. 6.2) reflect creative
human education, in which teachers encourage students to learn knowledge positively
by questioning, finding new ways of understanding certain knowledge and generating
new knowledge by stimulating their curiosity for the potential of developing new insight
of the world due to their naive with little burden of existing knowledge. At the same
time, teachers are so open minded that they can accept new valuable ideas generated
by students and learn form them. However, teachers should still play the main role in
education by guiding students’ learning for the efficiency of knowledge transmission. In
other words, a balance between self-learning and supervised learning should be consid-

ered for improving the efficiency of creative education.

Language is a tool of communication for creating, transmitting and sharing knowledge.
In terms of different subjects involved in various communications, domain-specified lan-
guages for representing certain knowledge evolve (see Sec. 6.3). For example, an artist’s
language may be different from a scientist’s language although they share some daily
vocabulary. A physicist’s language could also be something different from a biologist’s
language. When they meet together, some misunderstanding is likely to happen. But
at the same time, novel ideas could be generated by comparing and connecting different

new meanings exported from various domain languages. Some domain languages may

3The right embedded recursion and the center embedded recursion are cited from https://www.
quora.com/In-what-sense-is-the-term-recursion-used-in-linguistics

https://www.quora.com/In-what-sense-is-the-term-recursion-used-in-linguistics
https://www.quora.com/In-what-sense-is-the-term-recursion-used-in-linguistics

Chapter 7 Discussion 211

be merged and regulated to a new language which becomes a new communication tool
of studying and developing a novel disciplinary. The creativity of interaction between
different domain languages may depend on the similarity of these languages, their com-
plementarity, the subjects being discussed, and the participants’ tolerances, curiosity

and the breath of knowledge they mastered.

7.5 Evaluation of the Results

The results of this research support the creativity of evolving multiple associations be-
tween words and meanings in linguistic conceptualisation. Language as a social process
could be more powerful than that as a medium for creative designing; social creativity
can be more useful than individual creativity for design emergence on a large scale; and
computational simulation could provide more freedom of exploring design creativity with
comparable small cost compared with traditional investigation. This section describes

these key results.

7.5.1 Linguistic Conceptualisation

The results of linguistic conceptualisation support the creative potential of multiple
mappings between utterances and meanings, and the capability of emergence of com-
plex concepts using language rules such as recursion and composition. They have been
explored in the experiments of evolving compositional languages for creative design (see
Chapter 4) and the exploration of creative features of language, in particular ambigu-
ity with many-to-many mapping (see Section 5.1) and elaboration using context free

grammar (see Section 5.4).

The cooperation of linguistic representation and visual conceptualisation such as sketch
may be more productive by compensating for the limitations of each other to enlighten
ideas and guide the flow of thoughts through both symbolic and visual responses. As
Jackendoff (1987) claimed, linguistic representation is good at describing algebraic char-
acteristics such as the type-token distinction while visual representation is expert in
clarifying geometric characteristics such as the distinction between jogging and loping.
Creative concepts could be better expressed by the coordination between linguistic rep-

resentation and visual illustration.

7.5.2 Language as Social Process

The results of generating abundant interesting products and utterances through language
games suggest that language as a social process may be more powerful for computational

creativity than language as a medium, which is a form of creative output compared with

212 Chapter 7 Discussion

the former being an “engine” of creativity. As Lebuda et al. (2016) stated, linguistic
social interaction is important for creativity. FEven deadlocks in communication can
become opportunities for creative problem solving. Language games have been utilised
in most of the experiments to simulate the communication of initiators and receivers,
and that of clients and designers, which lead to the evolution of artificial languages and

a number of interesting conceptual designs (see Section 4.3, 5.1, 5.3, 5.4, and 6.3).

However, the utility of languages as both processes and mediums could be more dynamic
and productive in terms of the grounded functions of languages as communication tools
and idea catalysts. “Design briefs” may be strong catalysts for creative search and
they may also be creative in themselves. This would suggest that design briefs may be
both creative mediums for developing interesting creative briefs and creative tools for

communication and stimulating creative search.

7.5.3 Social Creativity

Different strategies of social communications have been implemented and tested in the
experiments, Growing Population (see Section 6.1), Education in Guessing Game (see
Section 6.2) and Clique Formation (see Section 6.3), for exploring design creativity
and diversity. Results show that participants with different roles, the inheritance of
generations, and the conversation between educators and learners in double directions
as well as the formation of cliques based on multi-linguistic evolution may generate
designs more efficient and diverse compared with fixed population, singular direction
of education and single group. Therefore, social creativity may be more effective for
design communication on a large scale with dynamic change leading to emergence by
the cooperation of multi-agents than individual creativity. In addition, social creativity
is not only related with collaborative process but also affected by particular spatial and

temporal contexts as well as cultural norms (Lebuda et al., 2016).

Individuals as the units of social communities, their personal creativity and cognitive
creativity result into aggregation effect which could become either positive via coopera-
tion or negative due to conflict to some extent. So it is important to adopt appropriate
mechanisms of communication between individuals to engage individual creativity, even
though the intelligence of specific individuals may not be important for social creativ-
ity. As Kratzer et al. (2004) suggested, too much communication may hinder creative
behaviours due to the emergence of “group-think”. And the centralization of commu-
nication results into information imbalance which could also hamper social creativity.
Hence, sufficient information may need to be distributed to all entities instead of being

overloaded to dominators (Kratzer et al., 2004).

Chapter 7 Discussion 213

7.5.4 Computational Simulation

Compared with traditional linguistic investigation, the data including process-data and
result-data collected from the computational simulation of language evolution are more
transparent and abundant. The initial settings provide more adjustable options. And
it is considerably easier to implement the experiments repeatedly with small cost com-
pared with traditional interview and real language games in which the collected data is
normally on a small scale and incomplete like a “black box”, which can only be analysed

through the output rather than the inner information.

Although the computational simulation of the evolution of language provides more free-
dom and efficiency of exploring design creativity, its results still need to be tested in real
world, which is filled with possibilities and uncertain influencing factors compared with a
simplified computational environment. Though a simplified simulation can dramatically
reduce the simulation time, it might also decrease the accuracy of the results (Craig,
1996). Even if the simulation results matched the results of the real environment, the
mechanisms of the simulation may not be the same as that in the real world. In addition,
it is still difficult to grasp the logical route connecting initial settings and final results
in a simulation compared with mathematical reasoning. Thus computational simulation
might lack a deep level of understanding the real world and computation itself although

the “inner” process of evolving artificial languages could be investigated.

To enhance the practical value of simulation, it needs to be validated and adapted to the
real environment. For example, Zagal and Ruiz-Del-Solar (2007) tried to develop the
structural coupling between simulation and the real environment to increase the speed
of evolving robots’ adaptive behaviours. And results showed that the average difference
of individual’s fitness obtained in simulation versus their corresponding fitness resulting
from the evaluation in the real environment decreased during the adaptation process.

This provided a feasible method to integrate simulation into the real environment.

7.6 Conclusion

A computational model of evolving language for creative design at the sociocultural
level has been developed and tested in the experiments of evolving compositional lan-
guages, exploring the creative features of language, e.g. ambiguity and incongruity, in
conceptual design, and exploring sociocultural creativity. Results show that the impact
of artificial languages on both the process and outcome of creative conceptualisation at
the sociocultural level through multi-agent simulation is probably competitive with vi-
sual conceptualisation, language only as a medium, individual creativity and traditional
linguistic investigation of creativity. However, the combination of linguistic conceptual-

isation and visual illustration, the usage of language as both process and medium, the

214 Chapter 7 Discussion

consideration of individual creativity when developing social creativity, and the coop-
eration of computational simulation and investigation may be more effective for design

creativity than a single mode.

Chapter 8

Conclusions and Future Work

An artificial language system based on the Domain-Individual-Field-Interaction (DIFT)
framework for creative designing at the sociocultural level has been developed in this
research. And the language features including compositionality, ambiguity, incongruity,
exaggeration and elaboration have been explored to generate creative conceptual designs
in this system. Based on the results of this research related with its potentials and lim-
itations, several topics including meta-creativity, positive learning, complex simulations

and autonomous creative system could be explored in future study.

8.1 Conclusions

The goal of this research is to develop an artificial language system based on the Domain-
Individual-Field-Interaction (DIFI) framework for creative designing that addresses some
of the issues in traditional conceptual design and the currently limited application of
language in computational creativity. This has been achieved by exploring grounded
creative features of language with multi-agent simulation, and applying them in con-
ceptual designing at the sociocultural level. The grounded features of language such as
ambiguity, incongruity, exaggeration and elaboration at the micro-level, diversity and
dynamics at the macro-level, and composition and transformation as mechanisms have
been explored in this system. Ambiguity, incongruity and scalability have been eval-
uated and applied in conceptual design while dynamics and transformation have been

tested and discussed.

In addition, the methods of representation, communication and evaluation in the evo-
lution of artificial languages have been developed and applied to produce creative and
successful results in the system. In particular, weighted context free grammar has been
efficiently utilised to extract design features and expand them to interesting composi-

tional concepts and surprising design results with the aid of inverse weighted random

215

216 Chapter 8 Conclusions and Future Work

choice. Both short term memory for topic selection and communication preference and
long term memory for dynamic categorisation have been embedded in this system. In
particular, Growing Neural Gas, combining the advantages of both SOM and ART, has
been utilised to categorise exaggerational topics with the aid of probability density. The
weights of associations between meanings and utterances can change dynamically by
applying effective learning algorithms in both guessing games and generation games.
The hedonic functions based on the Wundt curve and a newly developed variation of
the Wundt curve, sine curve, have been utilised to evaluate the creativity of both prod-
ucts and utterances, aided by the measurement of cosine similarity and the Euclidian

distance to address different situations.

The whole system can be abstracted to a hierarchical partial graph network (see Section
3.5.4) including the nodes of environment and agents, and the edges connecting features,
such as the rules of generating compositional utterances and designs using context free
grammar (see Section 3.2.3) particularly in the experiment, Incongruity (see Section
5.3) and the experiment, Extensibility and Other Features (see Section 5.4). The data
structure of the system using only hash-table has not only enhanced the efficiency of
exchanging data through each “corner” of the system but also made the results available
to map to various design forms such as simplified buildings and vases sharing the same
data structure. In addition, this structure also provides the potential of storing multiple
languages and mapping them with each other (see Section 7.3.2). Further, it is possible
to update the system to become a complete graph network including both structures
and functions. The former have been realised in this thesis while the latter are tested

(see Algorithm 2) and is capable of being implemented.

8.2 Future Research

This system has potential of being extended to the transformation of design space related
to meta-creativity. In addition, positive rather than passive learning would be embed-
ded into the system to develop designer-agents’ capability of predicting clients’ future
demands. More complicated multi-agent simulations of evolving artificial languages for
creative designing could be studied by developing new game types, individual roles and
machine learning methods as well as increasing the data samples and population to a
larger scale. Consequently, it might be possible to develop deeper and broader appli-
cations of the creative features of language in CAD and HCI based on this system to

enhance human creativity.

Future Research may include investigations into meta-creativity for finding new design
spaces, positive learning for predicting clients’ future demands, complex simulations for
exploring design emergence and diverse creativity, and the development of autonomous

creative system for exploring strong artificial social intelligence.

Chapter 8 Conclusions and Future Work 217

8.2.1 Meta-Creativity

An important topic for future research is the development of computational models of
meta-creativity relating to transformational creativity (Boden, 1996) and the evolution
of language grammars and rules to expand design dimensions, and find new design
spaces. Meta-creativity may be used to address the issue illustrated in Fig. 8.1. It
shows that individuals “feel bored” after becoming familiar with all designs in a domain.
This could easily occur in a small domain with simple artefacts which may be explored

completely in a short time without exhausting the collective memory of agents.

Fremm—r— wSuccss sop 181 Fra——
' ' '
o8 o8 o8
04 08 08
o o1 02 03 o4 05 05 07 08 09 1 "0 o102 03 04 05 0s 07 08 09 1 0 o1 02 03 o4 o5 o6 07 08 09
o1 02 03 0s 05 o8 o7 08 09 1
o102 03 04 05 o6 o7 08 09 1
Pre—"

0.1

0.6

o
o

W The average novelty of design

Average novelty »

M The average novelty of reference

0.4

| |
! !
| |
I I
| |
[}

|
I I
| |
|

i
| |
| |
| |
T T
| |
I I
| |
1 1
| |
I I
| | -
+ + 906
| |
I I
| |
|)
8 2

i o
b - ‘ | | | | | | | | | |
!
548 625 0 a1 a2 a3 oa a6 o1 o8 08 1

FI1GURE 8.1: The trend of interestingness change

Fig. 8.1 illustrates the trend in the assessment of novelty by individual agents. The
assessment relates to interestingness, via the application of a hedonic function, and
creativity when combined with value. The graph illustrates three stages: the growing
stage, the mature period and the decline stage. Most of explorations, i.e., generation and
evaluation of novelty, occur in the first stage, at the end of which many of the designs in
particular domain have been generated and evaluated. This leads to continuous increase
in the criteria for evaluating interestingness although the relative level of interestingness
might remain stable. For example, a client-agent’s interested design works may be
at a similar-yet-different range such as [0.3, 0.4] given the whole range as [0,1]. The
individual’s experience changes when some “new” designs are generated. These “new”
designs become “old” after more similar “new” works are experienced. Compared with
the initial situation, the individual’s absolute interesting degree may appear to have
risen, e.g., [0.35, 0.45], although the relative interesting range remains at the same level
e.g. [0.3, 0.4].

When the experiences of all designs become mature, e.g. the degree of familiarity of

all designs surpasses 0.6, both the success-data-averages and active-data-averages stop

218 Chapter 8 Conclusions and Future Work

increasing. This means that the client is “bored” by the “new” generated designs,
which are almost all familiar. At this point, it is worthless to continue to play language
games in the same way (see from step 132 to 625 in Fig. 8.1). Ideally the agents
should adapt to the new environment by adapting their strategies for the generation
of novelty. The designer-agents should explore new features and combinations while
the client-agents should try to find new requirements related to new conceptual spaces.
The exploration of novelty is related with Martindale (1990) ’s “clockwork muse”. The
ability to successfully communicate might support the sawtooth pattern of innovation
and revolution (Martindale, 1990).

To explore new design spaces, a meta-language composed of rules is proposed to evolve
using extensible neural networks with the support of interactions among multi-cultural
groups. New concepts would be generated and classified based on relevant new detected
features which could be found using existing techniques that have been shown to be able
to produce feature detectors, e.g., genetic programming (Belpaeme, 1999). These new
detected features would be used to classify and categorise existing designs in novel ways

to stimulate new ideas.

New features could be extracted from raw materials to obtain abstract concepts. Then
they would be transformed to another domain using analogy (Grace et al., 2011). For
example, when people find that the function of a computer is like a human brain, some
compositional utterances such as “electrical brain”, “bio-inspired brain” and “watery
brain” can be generated to represent similar-yet-different meanings to clarify their re-
lationships (Goertzel et al., 2010), thus leading to new innovations. The transfer of
knowledge between domains could also be completed based on the same structure of
a graph network and via the interaction between multi-cultures (i.e., multi-languages)

which has been explored in the experiment, Clique Formation (see Section 6.3).

Both language rules and design rules may be detected and evolved from simple ran-
dom elements (Wiggins, 2006a). For operative design, each operational concept can
be represented with compositional languages using HRRs (see Section 3.2.2) aided by
graph networks (see Section 3.5.4). To evolve feature detectors and decision trees via
multi-agent cooperation, the agents would generate sentences representing programs or
meta-programs. For example, “(> (- z11 zo1) (+ ®12 Zo2))” could be a relation between
two edges with terminals zg1, g2, 11, £12. More complicated expressions may contain
both functions +, —, %, /,>, <, =, and conditions such as if-else and case. Building on
the work presented in experiments Incongruity (see Section 5.3) and Extensibility and
Other Features (see Section 5.4) agents using language games may be able to generate

representations of such structures using compositional languages.

The direction of language evolution could be from embodiment to abstract meanings,

and from detailed graphic symbols to abstract signals (Sternberg, 1985). For example,

Chapter 8 Conclusions and Future Work 219

schematic pictures include signs while geometric forms include shapes. Lakoff and John-
son (1999) argue that many features of natural language arise from analogies with our
embodied selves and our physical understanding of our relationship to the world. Hence,
grounding in the specific may be an excellent basis for the development of more abstract
concepts. More abstract signals, grounded in specifics, provides a basis for knowledge
transfer between domains. Language evolution can support knowledge transfer between
creative domains by supporting the development of languages that capture abstract sig-
nals in such a way that it supports high level mechanisms such as analogical mapping
(e.g. {1,2} — {3,7}), completions (e.g. {1,2,3,?}) and classifications (e.g. {1,2 - 3,4 or
1,3-240r 14 - 2,3 or 7}) that can be translated between domains.

The direction of evolution might also be from statistics to reasoning. creative activity is
often more about the process of creation than achieving a desired result that is related
with the work of Amabile (1988) on the importance of intrinsic motivation in creative
work. Younger children tend to rely more heavily on word association, i.e., statistical
learning rather than inherent structure learning, and less heavily on logical inference
(Sternberg, 1985). Sternberg (1985) suggests that statistical association might be more
creative than logical reasoning in terms of most new utterances created by young gen-
erations. One source of the observed decline in error rates with age is the increased use
of more nearly complete information processing and a more reflective and less impulsive
cognitive style. Fewer mistakes are likely to be related to less progress (Sternberg, 1985).

Is this the case, or do we need to consider different types of mistakes?

8.2.2 Positive Learning

A client’s brief may be parsed to similar meanings mapping to design works. It is
necessary, however, to address the question of how to predict the client’s taste in novelty
(i.e., the ratio of similar to difference) to generate satisfied works. The learning strategy
in this thesis might be described as passive learning because change in the weights of
relevant meanings is followed by strengthening or weakening the successful topics or the
failure topics as decided by the client. Future research would investigate how designer-
agents can analyse the history of interactions with the client to predict the client’s future
requirements. For example, an agent who is capable of anticipating the aesthetic tastes
of other agents would be more successful than other agents. This seems very reasonable.
But there is some nuance to this, for example, should an agent learn the aesthetic tastes
of individual agents and optimise for them, or should they attempt to learn general
aesthetic preferences to appeal to as many potential consumers as possible in a system

that support designer-consumer relations besides client-designer ones?

The recent development of approaches to using neural networks to build “world models”
can inform the predictive abilities of a system within a smaller domain. This is a

potentially interesting approach to the development of curious agents. For example, the

220 Chapter 8 Conclusions and Future Work

development of grounded descriptions of colours based on 20 million images is important
because agents exposed to such databases can take advantage of these types of grounded
representations to play more sophisticated language games; it also potentially opens up
the ability for artificial agents to communicate in grounded ways with humans exploring
a domain, e.g., that of colours or images. Google and other companies used similar
technology to revolutionise the way people search for images. This would be an approach
to “positive learning” because it is an approach to grounding language in a common set
of experiences that are available to both artificial agents and humans. This type of
“positive learning” is about learning general biases as a foundation for exploring specific
features of a creative domain. Hadjeres and Pachet (2016) used deep learning and style
transfer in music. It shows that “world models” in neural networks can significantly

benefit the exploration of creative domains.

The availability of large data sets to learn from is driving deep learning but work still
needs to be done to realise the potential of these systems as the foundation for creative

computational systems.

8.2.3 Complex Simulations

Future research could explore more complicated interactions between individuals in ar-
tificial creative systems. First, different types of language games can be implemented in
parallel rather than series. For instance, if the success rate of communication between
two agents is over 70%, and they have already successfully communicated many times,
an appropriate strategy may be for these agents to play generation games while other

agents continue to play guessing games.

New language games could also be developed, e.g., such a language game might involve
three seemingly unrelated words being presented to see if an agent can derive a fourth

word connecting them (Kaufman, 2009).

Each agent’s categorisations could be generated by selecting different machine learning
methods depending on the change in the success rate. And the parameters of each
method could be adjusted, e.g. ART tolerance depends on adjustable vigilance. Hybrid
machine learning systems might provide a promising model. In terms of the composi-
tion of a field, it would allow for learners to specialise in different techniques and for
fields to change strategies over time. At the same time, the novelty of categorisation,
i.e., the results of machine learning, may be evaluated by comparing new categorisa-
tions with previous categorisations according to the measurement of their similarity.
The adaptation of learning parameters and novelty categorisation as a type of machine
learning, i.e., Hyperparameter Optimisation (Bergstra et al., 2011), has been sufficiently
well-established. This concept would need to be adapted to take into account the intrin-

sically motivated nature of curious agents and the continuous learning required, which

Chapter 8 Conclusions and Future Work 221

hasn’t been the focus of this type of optimisation to date—presenting an opportunity

for future research.

More complicated individual roles (e.g. customers, consultants, sales people and engi-
neers as well as clients and designers) and types (e.g. naive and mature, nature and
nurture) could be simulated to explore the impact of role structure on social creativ-
ity. For example, some individual divisions may be senior designers and junior designers
(mature and naive, competitive and cooperative) as well as naive clients and experienced

clients, etc.

Another simulation involves mixing nature with nurture, i.e., next generation generated
by genetic algorithm or by educating naive agents. By utilising genetic algorithm, more
descendants will be generated via the crossover of two agents due to their high commu-
nication success rate (> 70%), high communication frequency and high success rates of
playing language games with other agents, as well as the mutation of creative agents.
Alternatively, one could try to keep evolving parts of failure agents and adjust the ratio
of loser-descendants and winner-descendants to determine the best ratio under different
conditions. To explore the potential for exploring the effects of combining inherited
and learned traits, a possible simulation might combine the generation of individuals
using evolutionary algorithms combined with varying implementations of education (see
Section 6.2). This might permit the exploration of the evolution of different traits that
allow an agent to take advantage of the education system used by an artificial creative

system, and explore the different strategies for selecting parents of a new individual.

More large scale populations (e.g. with more than 1000 individuals) can be simulated
dynamically as in the Experiment, Growing Population (see Section 6.1). This could
provide a basis for the study of dynamic populations with extensible agent-roles to ad-
dress the following questions: Does social creativity or a high level of social creativity
depend on the size of a population? What population size is required for certain kinds
of creativity? The emergence of creative behaviours may occur relatively easily in large
populations for three reasons. Firstly, given a diversity of agent experiences there are
greater opportunities for agents to specialise to serve a sub-population, potentially lead-
ing to different roles emerging for agents across the population. Within the context of
communication networks global communication has increasingly allowed creative indi-
viduals to reach a sufficiently large (but highly selective) sub-population of consumers
that they can support themselves without the need to cater to mass tastes (Kelly, 2008).
Secondly, increasing demands are placed on technology to exploit the environment more
fully. Thirdly, with large-scale and long-running simulations there is the potential to
explore features of H-creativity (Boden, 2004), such as the re-discovery of previously
unheralded creative ideas, or ideas that only become creative when considered within
a later social context. In addition, the sudden illumination, in which grand ideas ap-
pear, occurs only after a long incubation period of subconscious exploration. It could

be regarded as historical emergence.

222 Chapter 8 Conclusions and Future Work

8.2.4 Autonomous Creative System

An autonomous creative system (Smithers, 1997) is self-governing and open to commu-
nication. Free from interference, an autonomous creative system can develop its own
values, meanings, languages and practices. An autonomous creative system could be de-
veloped by starting with a few of simple rules and iteratively evolving rules that govern
the processes of generation, evaluation and communication (Saunders, 2012). Oudeyer
and Kaplan (2006) conducted an experiment in which an autonomous system was de-

veloped from a few fixed rules into a complicated structure.

Interacting with an autonomous creative system requires a period of mutual learning
and negotiation through repeated communications (Smithers, 1997). Any autonomous
creative system may have the features of one or more coupled autopoietic systems;
specifically, the creative process could be confined to its boundary. This raises significant
challenges for the evaluation of the creativity of an autonomous system. Clearly, ad hoc
evaluations based on versions of the Turing Test could be of little or no use in determining
the creativity of such systems. Even if, as Pease et al. (2001) suggest, these tests include
an interactive component, the products of the system and the responses of its members
cannot be assessed by humans uncoupled from the system. Thus, the evaluation of the
creativity of autopoietic systems would require us to first achieve a coupling between the
system and artificial agents or humans, as a means of establishing the necessary shared

frame of reference (Saunders, 2012).

In an autonomous system, the role of social communication in designing, could be per-
formed via large scale simulation of curious design agents who form the system that
is large enough to allow individuals to join and leave while the system remains intact
(Saunders, 2002). At the same time, the system could evolve and renew based on both
its own recycling structure and its response to other autonomous systems and the en-
vironment. The simulations may suggest the importance of communications between
different domains for design creativity. The simulation of a simple autonomous sys-
tem is proposed to test the relationship between autopoiesis and design creativity while
the simulation of dual autonomous systems interacting with each other would be used
to study the creativity of interacting multiple design systems via merger, interchange,

cooperation and heterogeneity.

Multiple autonomous systems might be connected and integrated by breaking their
borders. Each autonomous system is in harmony and has its own identity. However, a
mature system could collapse and be replaced by a new system or it could evolve into a
new system by changing the borders and recombining different sub-systems. Thus, new
meanings are beyond different self-identity. Sub-systems could be presented via new
compositions of topics and contexts in different domains. This approach can raise the

study of creativity from the interaction of individuals to the interaction of fields. The

Chapter 8 Conclusions and Future Work 223

studies of super-organisms in a-life (Ruiz-Mirazo et al., 2000) would ground this idea of

simulation at both the level of the individual and the field at the same time.

8.3 Summary

A computational model of creative design based on the Domain-Individual-Field-Interaction
(DIFI) framework as a sociocultural process involving the evolution of language has been
developed to investigate the role of language as a process rather than a medium in con-
ceptual designing. The language games including guessing games and generation games

are integrated in the process of representation, communication and evaluation of designs.

Based on the computational model, three aspects of experiments have been completed to
support the role of the evolution of language in social creativity for designing. First, the
experiments of evolving compositional languages show that composition is more efficient
than holistic for evolving associations between utterances and designs with the similar-
yet-different selection criteria. Then, the experiments of exploring creative features of
language have applied ambiguity, exaggeration, incongruence and elaboration in creative
designing. Last but not least, the experiments of evolving language at the sociocultural
level have developed some strategies for improving the efficiency and diversity of creative

design.

Bibliography

Achermann, F., Lumpe, M., Schneider, J.-G., and Nierstrasz, O. (2001). Piccola-a
small composition language. Formal Methods for Distributed Processing—A Survey
of Object-Oriented Approaches, pages 403—426.

Allaire, Y. and Firsirotu, M. E. (1984). Theories of organizational culture. Organization
studies, 5(3):193-226.

Amabile, T. (1988). The intrinsic motivation principle of creativity. Research in orga-

nizational behavior, 10.

Bagha, K. N. (2011). A short introduction to semantics. Journal of Language Teaching
and Research, 2(6):1411-1419.

Barsalou, L. W. (1999). Language comprehension: Archival memory or preparation for

situated action?
Barthes, R. (1977). Elements of semiology. Macmillan.

Belpaeme, T. (1999). Evolution of visual feature detectors. In University of Birmingham

School of Computer Science technical. Citeseer.

Bergstra, J. S., Bardenet, R., Bengio, Y., and Kégl, B. (2011). Algorithms for hyper-
parameter optimization. In Advances in Neural Information Processing Systems, pages
2546-2554.

Berlyne, D. E. (1971). Aesthetics and psychobiology, volume 336. JSTOR.

Bird, S., Klein, E., and Loper, E. (2009). Natural language processing with python—

analyzing text with the natural language toolkit o’reilly media.

Blayse, A. M. and Manley, K. (2004). Key influences on construction innovation. Con-
struction innovation, 4(3):143-154.

Boden, M. A. (1996). Dimensions of creativity. MIT Press.
Boden, M. A. (2004). The creative mind: Myths and mechanisms. Routledge.

Borensztajn, G. (2006). Luc steels, the talking heads experiment and cognitive philoso-
phy. Philosophy, pages 1-13.

225

226 BIBLIOGRAPHY

Bradski, G. et al. (2000). The opencv library. Doctor Dobbs Journal, 25(11):120-126.

Brill, E. and Moore, R. C. (2000). An improved error model for noisy channel spelling
correction. In Proceedings of the 38th Annual Meeting on Association for Computa-

tional Linguistics, pages 286-293. Association for Computational Linguistics.

Burton, R. M. and Obel, B. (1995). The validity of computational models in organization
science: From model realism to purpose of the model. Computational & Mathematical
Organization Theory, 1(1):57-71.

Byrne, D. and Callaghan, G. (2013). Complezity theory and the social sciences: The
state of the art. Routledge.

Candy, L. and Bilda, Z. (2009). Understanding and evaluating creativity. In Proceedings
of the seventh ACM conference on Creativity and cognition, pages 497-498. ACM.

Cangelosi, A. (2001). Evolution of communication and language using signals, symbols,
and words. Evolutionary Computation, IEEE Transactions on, 5(2):93-101.

Cangelosi, A. and Parisi, D. (2012). Simulating the evolution of language. Springer

Science & Business Media.

Carpenter, G. A. and Grossberg, S. (2016). Adaptive resonance theory. In Encyclopedia
of Machine Learning and Data Mining, pages 1-17. Springer.

Carter, R. and McCarthy, M. (2004). Talking, creating: interactional language, creativ-
ity, and context. Applied Linguistics, 25(1):62-88.

Charniak, E. (1997). Statistical parsing with a context-free grammar and word statistics.
AAAI/TAAL 2005(598-603):18.

Christophe, F., Bernard, A., and Coatanéa, E. (2010). Rfbs: A model for knowledge rep-
resentation of conceptual design. CIRP Annals-Manufacturing Technology, 59(1):155—
158.

Clark, A. (1997). Being there: Putting brain, body, and world together again. MIT press.

Cohen, W., Ravikumar, P., and Fienberg, S. (2003). A comparison of string metrics for
matching names and records. In Kdd workshop on data cleaning and object consoli-

dation, volume 3, pages 73-78.

Colton, S. (2008). Creativity versus the perception of creativity in computational sys-

tems. In AAAI spring symposium: creative intelligent systems, pages 14—20.

Colton, S. (2012). The painting fool: Stories from building an automated painter. In
Computers and creativity, pages 3—38. Springer.

Colton, S., de Méntaras, R. L., Stock, O., et al. (2009). Computational creativity:
Coming of age. Al Magazine, 30(3):11-14.

BIBLIOGRAPHY 227

Colton, S., Pease, A., and Charnley, J. (2011). Computational creativity theory: The
face and idea descriptive models. In Proceedings of the Second International Confer-

ence on Computational Creativity, pages 90-95.

Colton, S., Wiggins, G. A., et al. (2012). Computational creativity: The final frontier?
In ECAI volume 12, pages 21-26.

Conte, R., Gilbert, N., Bonelli, G., Cioffi-Revilla, C., Deffuant, G., Kertesz, J., Loreto,
V., Moat, S., Nadal, J.-P., Sanchez, A., et al. (2012). Manifesto of computational
social science. The FEuropean Physical Journal Special Topics, 214(1):325-346.

Corneli, J. (2016). An institutional approach to computational social creativity. arXiv
preprint arXiv:1605.02309.

Craig, D. C. (1996). FEuztensible hierarchical object-oriented logic simulation with an

adaptable graphical user interface. PhD thesis, Memorial University of Newfoundland.

Csikszentmihalyi, M. (1996). Creativity: The work and lives of 91 eminent people.
HarperCollins Publishers.

Csikszentmihalyi, M. (1999). A Systems Perspective on Creativity, pages 313-335. Cam-
bridge University Press, Cambridge.

Cushing, J. T. (1998). Philosophical concepts in physics. Cambridge: CUP.

Davidsson, P. (2002). Agent based social simulation: A computer science view. Journal

of artificial societies and social simulation, 5(1).

de Boer, B. (2000). Emergence of vowel systems through self-organisation. AI Commu-
nications, 13(1):27-39.

De Boer, B. (2001). The origins of vowel systems. Number 1. Oxford University Press.

DeGraff, J. and Lawrence, K. A. (2002). Creativity at work: Developing the right prac-

tices to make innovation happen, volume 28. John Wiley & Sons.
Den Ouden, B. (1975). Language and creativity. De Ridder.
Dewey, J. (2004). Democracy and education. Courier Corporation.

Dewey, J. and Small, A. W. (1897). My pedagogic creed. Number 25. EL Kellogg &
Company.

Di Mari, A. (2013). Operative design: a catalogue of spatial verbs. BIS Publishers.

Dorst, K. and Cross, N. (2001). Creativity in the design process: co-evolution of
problem-solution. Design studies, 22(5):425-437.

228 BIBLIOGRAPHY

Duarte, J. M., Santos, J. B. d., and Melo, L. C. (1999). Comparison of similarity
coefficients based on rapd markers in the common bean. Genetics and Molecular
Biology, 22(3):427-432.

Einstein, A. and Infeld, L. (1971). The evolution of physics: The growth of ideas from

early concepts to relativity and quanta. CUP Archive.

Escher, M. C., Bool, F., and Locher, J. (1982). MC Escher: His Life and Complete
Graphic Work: with a Fully Illustrated Catalogue. HN Abrams New York.

Feldman, D. H., Csikszentmihalyi, M., and Gardner, H. (1994). Changing the world:
A framework for the study of creativity. Praeger Publishers/Greenwood Publishing
Group.

Finke, R. A., Ward, T. B., and Smith, S. M. (1992). Creative cognition: Theory,

research, and applications.

Fischer, G. (2005a). Distances and diversity: sources for social creativity. In Proceedings
of the 5th conference on Creativity € cognition, pages 128-136. ACM.

Fischer, G. (2005b). Social creativity: Making all voices heard. Citeseer.

Fischer, G., Giaccardi, E., Eden, H., Sugimoto, M., and Ye, Y. (2005). Beyond binary
choices: Integrating individual and social creativity. International Journal of Human-
Computer Studies, 63(4):482-512.

Floreano, D. and Mattiussi, C. (2008). Bio-inspired artificial intelligence: theories,
methods, and technologies. MIT Press.

Forney, G. (1966). Generalized minimum distance decoding. IEEE Transactions on
Information Theory, 12(2):125-131.

Fortuny, J. (2010). On the duality of patterning. Structure Preserved: Studies in syntax
for Jan Koster, 164:131-140.

Fritzke, B. et al. (1995). A growing neural gas network learns topologies. Advances in

neural information processing systems, 7:625—632.

Gardner, H. (1993). Creating minds: an anatomy as seenthrough the lives of Freud,

FEinstein, Picasso, Stravinsky, Eliot, Graham and Gandhi. HarperCollinsPublishers.

Gardner, H. (2011). Creating minds: An anatomy of creativity seen through the lives of
Freud, Einstein, Picasso, Stravinsky, Eliot, Graham, and Gandhi. Basic Books.

Gassmann, O. (2001). Multicultural teams: Increasing creativity and innovation by

diversity. Creativity and Innovation Management, 10(2):88-95.

Gero, J. (1994). Computational models of creative design processes. AI in Creativity.
Kluwer, Dordrecht, pages 269-281.

BIBLIOGRAPHY 229

Gero, J. S. (1990). Design prototypes: a knowledge representation schema for design.
Al magazine, 11(4):26.

Gero, J. S. and Fujii, H. (2000). A computational framework for concept formation for
a situated design agent. Knowledge-Based Systems, 13(6):361-368.

Gilbert, N. (1999). Simulation: A new way of doing social science. American Behavioral
Scientist, 42(10):1485-1487.

Gilbert, N. and Troitzsch, K. (2005). Simulation for the social scientist. McGraw-Hill
Education (UK).

Glenberg, A. M. and Kaschak, M. P. (2002). Grounding language in action. Psychonomic
bulletin & review, 9(3):558-565.

Goertzel, B., Lian, R., Arel, I., De Garis, H., and Chen, S. (2010). A world survey of
artificial brain projects, part ii: Biologically inspired cognitive architectures. Neuro-
computing, 74(1):30-49.

Gotts, N. M., Polhill, J. G., and Law, A. N. R. (2003). Agent-based simulation in the
study of social dilemmas. Artificial Intelligence Review, 19(1):3-92.

Grace, K., Saunders, R., and Gero, J. (2011). Interpretation-driven visual association.
In Proceedings of the Second International Conference on Computational Creativity,
pages 132-134. Citeseer.

Grossberg, S. (1976). Adaptive pattern classification and universal recoding: I. parallel
development and coding of neural feature detectors. Biological cybernetics, 23(3):121—
134.

Guilford, J. P. (1967). The nature of human intelligence. McGraw-Hill.

Hadjeres, G. and Pachet, F. (2016). Deepbach: a steerable model for bach chorales
generation. arXiw preprint arXiw:1612.01010.

Hannah, G. G. (2002). Elements of design: Rowena Reed Kostellow and the structure

of visual relationships. Princeton Architectural Pr.
Hayes, J. R. (1989). Cognitive processes in creativity. Springer.
Helmore, G. A. (1969). Piaget-a practical consideration. Pergamon Press.

Herrmann, T. (1997). Communicable models for cooperative processes. In HCI (1),
pages 285—288.

Hockett, C. F. and Altmann, S. A. (1968). A note on design features. Animal commu-

nication: Techniques of study and results of research, pages 61-72.

230 BIBLIOGRAPHY

Hori, K. (1994). A system for aiding creative concept formation. Systems, Man and
Cybernetics, IEEE Transactions on, 24(6):882-894.

Iba, T. (2010). An autopoietic systems theory for creativity. Procedia-Social and Be-
havioral Sciences, 2(4):6610-6625.

Irwing, B. . (2010). http://www.e-metrixx.com/creativity-profit/me2-spec/.

Jackendoff, R. (1987). On beyond zebra: The relation of linguistic and visual informa-
tion. Cognition, 26(2):89-114.

Jordanous, A. and Keller, B. (2012). What makes musical improvisation creative. Jour-
nal of Interdisciplinary Music Studies, 6(2):151-175.

Jordanous, A. K. (2013). Ewvaluating computational creativity: a standardised procedure

for evaluating creative systems and its application. PhD thesis, University of Sussex.

Kahl, C. H. and Hansen, H. (2015). Simulating creativity from a systems perspective:
Cresy. Journal of Artificial Societies and Social Simulation, 18(1):4.

Kan, J. W. and Gero, J. S. (2009). Using entropy to measure design creativity.
Kaufman, J. C. (2009). Creativity 101. Springer Publishing Company.

Kaufman, J. C. and Sternberg, R. J. (2010). The Cambridge handbook of creativity.
Cambridge University Press.

Kelly, K. (2008). One thousand true fans. KK. org. March, 4.

Kim, K. H. (2006). Can we trust creativity tests? a review of the torrance tests of

creative thinking (ttct). Creativity research journal, 18(1):3-14.

Kindratenko, V. (1997). Development and Application of Image Analysis Techniques for
Identification and Classification of Microscopic Particles. PhD thesis, University of
Antwerp, Belgium.

Kirby, S. (1998). Learning , bottlenecks and the evolution of recursive syntax. Evolution.

Kirby, S. (2001). Spontaneous evolution of linguistic structure-an iterated learning model
of the emergence of regularity and irregularity. IFEFE Transactions on Fvolutionary
Computation, 5(2):102-110.

Kirby, S., Cornish, H., and Smith, K. (2008). Cumulative cultural evolution in the
laboratory: An experimental approach to the origins of structure in human language.
Proceedings of the National Academy of Sciences, 105(31):10681-10686.

Kirby, S., Griffiths, T., and Smith, K. (2014). Iterated learning and the evolution of

language. Current opinion in neurobiology, 28:108-114.

BIBLIOGRAPHY 231

Kliemt, H. (1996). Simulation and rational practice. In Modelling and Simulation in the
Social Sciences from the Philosophy of Science Point of View, pages 13-27. Springer.

Kononen, T. (1990). The self-organizing map. Proceedings of the IEEE, 78(9).

Kratzer, J., Leenders, O. T. A., and Van Engelen, J. M. (2004). Stimulating the poten-
tial: Creative performance and communication in innovation teams. Creativity and
Innovation Management, 13(1):63-71.

Lakoff, G. and Johnson, M. (1999). Philosophy in the flesh: The embodied mind and its

challenge to western thought. Basic books.

Langton, C. G. et al. (1989). Artificial life. Addison-Wesley Publishing Company Red-
wood City, CA.

Lebuda, I., Galewska-Kustra, M., and Glaveanu, V. P. (2016). Creativity and social
interactions. Creativity. Theories—Research-Applications, 3(2):187-193.

Lesgold, A. (1988). 7 problem solving. The psychology of human thought, page 188.

Levenshtein, V. I. (1966). Binary codes capable of correcting deletions, insertions and

reversals. In Soviet physics doklady, volume 10, page 707.

Levy, S. D. and Kirby, S. (2006). Evolving distributed representations for language with
self-organizing maps. In Symbol Grounding and Beyond, pages 57—71. Springer.

Lidov, D. (1999). Elements of semiotics. Palgrave Macmillan.

Lindqvist, G. (2003). Vygotsky’s theory of creativity. Creativity Research Journal,
15(2-3):245-251.

Liu, L., Zhu, F., Chen, C., Yan, X., Han, J., Philip, S. Y., and Yang, S. (2010). Mining
diversity on networks. In Database Systems for Advanced Applications, pages 384—398.
Springer.

Liu, Y.-T. (2000). Creativity or novelty?: Cognitive-computational versus social-
cultural. Design Studies, 21(3):261-276.

Luff, P., Frohlich, D., and Gilbert, N. G. (2014). Computers and conversation. Elsevier.

Luhmann, N. (1986). The autopoiesis of social systems. Sociocybernetic paradozes, pages
172-192.

Luhmann, N. (1995). Social systems. Stanford University Press.

MacDorman, K. F. (2007). Life after the symbol system metaphor. Interaction Studies
8.1.

232 BIBLIOGRAPHY

Machado, P., Nunes, H., and Romero, J. (2010). Graph-based evolution of visual lan-
guages. In European Conference on the Applications of Evolutionary Computation,

pages 271-280. Springer.

Maher, M. L. (2012). Computational and collective creativity: Who'’s being creative. In

International Conference on Computational Creativity, pages 67-71. Citeseer.

Mamykina, L., Candy, L., and Edmonds, E. (2002). Collaborative creativity. Commu-
nications of the ACM, 45(10):96-99.

Marsland, S., Nehmzow, U., and Shapiro, J. (1999). A model of habituation applied to
mobile robots. Proceedings of Towards Intelligent Mobile Robots.

Marsland, S., Nehmzow, U., and Shapiro, J. (2000). Detecting novel features of an

environment using habituation. In Proc. Simulation of Adaptive Behavior.

Martindale, C. (1990). The clockwork muse: The predictability of artistic change. Basic
Books.

Maturana, H. R. and Varela, F. J. (1991). Autopoiesis and cognition: The realization of

the living, volume 42. Springer Science & Business Media.

Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013a). Efficient estimation of word

representations in vector space. arXiv preprint arXiv:1301.3781.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J. (2013b). Distributed
representations of words and phrases and their compositionality. In Advances in neural

information processing systems, pages 3111-3119.

Miranda, E. R., Kirby, S., and Todd, P. (2003). On computational models of the
evolution of music: From the origins of musical taste to the emergence of grammars.
Contemporary Music Review, 22(3):91-111.

Mitchell, W. T. (1995). Picture theory: Essays on verbal and visual representation.
University of Chicago Press.

Mott, R. (2005). Smith-waterman algorithm. eLS.

Mubin, O., Bartneck, C., Feijs, L., Hooft van Huysduynen, H., Hu, J., and Muelver, J.
(2012). Improving speech recognition with the robot interaction language. Disruptive
Science and Technology, 1(2):79-88.

Mulder, M. P. and Nijholt, A. (2002). Humour research: State of art. Technical report,

University of Twente, Centre for Telematics and Information Technology.

Murali, P. (2014). Cognitive cooking: Applying computational creativity to recipe gen-
eration. IBM Research Blog.

BIBLIOGRAPHY 233

Narzt, W., Wilflingseder, U., Pomberger, G., Kolb, D., and Hortner, H. (2010). Self-
organising congestion evasion strategies using ant-based pheromones. IET Intelligent
Transport Systems, 4(1):93-102.

Neath, I. (1998). Human memory: An introduction to research, data, and theory. Thom-
son Brooks/Cole Publishing Co.

Noble, W. and Davidson, I. (1996). Human evolution, language and mind: a psycholog-

ical and archaeological inquiry. CUP Archive.

Oudeyer, P.-Y. and Kaplan, F. (2006). Discovering communication. Connection Science,
18(2):189-206.

Pang-Ning, T., Steinbach, M., Kumar, V., et al. (2006). Introduction to data mining.
In Library of Congress, page 74.

Patel, A. X., Gibson, E., Ratner, J., Besson, M., and Holcomb, P. J. (1998). Processing
syntactic relations in language and music: An event-related potential study. Cognitive
Neuroscience, Journal of, 10(6):717-733.

Pearce, M. T. and Wiggins, G. A. (2007). Evaluating cognitive models of musical
composition. In Proceedings of the 4th international joint workshop on computational

creativity, pages 73-80. Goldsmiths, University of London.

Pease, A. and Colton, S. (2011). On impact and evaluation in computational creativity:
A discussion of the turing test and an alternative proposal. In Proceedings of the AISB

symposium on Al and Philosophy.

Pease, A., Colton, S., Ramezani, R., Charnley, J., and Reed, K. (2013). A discussion on
serendipity in creative systems. In Proceedings of the fourth international conference

on computational creativity, pages 64-71.

Pease, A., Winterstein, D., and Colton, S. (2001). Evaluating machine creativity. In
Workshop on Creative Systems, 4th International Conference on Case Based Reason-

ing, pages 129-137.

Piaget, J. (1977). The development of thought: Equilibration of cognitive struc-
tures.(Trans A. Rosin). Viking.

Plate, T. A. (1995). Holographic reduced representations. Neural Networks, IEEE
Transactions on, 6(3):623-641.

Plate, T. A. (2003). Holographic Reduced Representation: Distributed representation for
cognitive structures. CSLI Publications Stanford, CA, USA.

Plattner, H., Meinel, C., and Leifer, L. (2010). Design thinking: understand—improve—
apply. Springer Science & Business Media.

234 BIBLIOGRAPHY

Poincaré, H. (1913). The foundations of science: Science and hypothesis. English Trans.
Putman, R. (2006). The emergence of language. Physics 569: Emergent States of Matter.

Ramachandran, V. S. and Hubbard, E. M. (2001). Synaesthesia—a window into percep-
tion, thought and language. Journal of Consciousness Studies, 8(12):3-34.

Reynolds, C. (1986). Boids: Flocks. Herds and Schools—a Distributed Behavorial Model.
Rhodes, M. (1961). An analysis of creativity. The Phi Delta Kappan, 42(7):305-310.
Ritchie, G. (2001). Assessing creativity. In Proc. of AISB’01 Symposium. Citeseer.

Ritchie, G. (2006). The transformational creativity hypothesis. New Generation Com-
puting, 24(3):241-266.

Ritchie, G. (2007). Some empirical criteria for attributing creativity to a computer
program. Minds and Machines, 17(1):67-99.

Roser, F. and Hebela, N. M. (2015). The whole is other than the sum of the parts.

World neurosurgery.

Ruiz-Mirazo, K., Etxeberria, A., Moreno, A., and Ibanez, J. (2000). Organisms and
their place in biology. Theory in biosciences, 119(3-4):209-233.

Runco, M. A. (2003a). Creativity, cognition, and their educational implications. The
educational psychology of creativity, pages 25-56.

Runco, M. A. (2003b). Education for creative potential. Scandinavian Journal of Edu-
cational Research, 47(3):317-324.

Saunders, R. (2002). Curious Design Agents and Artificial Creativity: A Synthetic
Approach to the Study of Creative Behaviour. PhD thesis, The University of Sydney.

Saunders, R. (2011). Artificial creative systems and the evolution of language. In
Proceedings of the second international conference on computational creativity. México
Clity, pages 36—41.

Saunders, R. (2012). Towards autonomous creative systems: A computational approach.
Cognitive Computation, 4(3):216-225.

Saunders, R. and Bown, O. (2015). Computational social creativity. Artificial life,
21(3):366-378.

Saunders, R. and Gero, J. S. (2001a). Artificial creativity: A synthetic approach to the
study of creative behaviour. Computational and Cognitive Models of Creative Design
V, Key Centre of Design Computing and Cognition, University of Sydney, Sydney,
pages 113-139.

BIBLIOGRAPHY 235

Saunders, R. and Gero, J. S. (2001b). A curious design agent. In CAADRIA, volume 1,
pages 345-350.

Saunders, R. and Grace, K. (2008). Towards a computational model of creative cultures.

In AAAI Spring Symposium: Creative Intelligent Systems, pages 67-74.

Sawyer, R. K. (2004). Social explanation and computational simulation. Philosophical
Ezplorations, 7(3):219-231.

Scott-Phillips, T. C. and Blythe, R. A. (2013). Why is combinatorial communication
rare in the natural world, and why is language an exception to this trend? Journal
of The Royal Society Interface, 10(88):20130520.

Seker, S. E., Altun, O., Ayan, U., and Mert, C. (2014). A novel string distance function
based on most frequent k characters. arXiv preprint arXiv:1401.6596.

Sherzer, L. (2009). The Key to Language: An Essay on the Meaning That Exists Prior

to and Independent of Language. Laurence Sherzer.

Simonton, D. K. (1990). Psychology, science, and history: An introduction to histori-

ometry. Yale University Press.

Simonton, D. K. (1999). Origins of genius: Darwinian perspectives on creativity. Oxford

University Press.
Simpson, E. H. (1949). Measurement of diversity. Nature.

Sipser, M. (1997). Introduction to the theory of computation. Boston, MA: PWS Pub.,
49.

Smagorinsky, P. (2011). Vygotsky’s stage theory: The psychology of art and the actor
under the direction of perezhivanie. Mind, Culture, and Activity, 18(4):319-341.

Smith, K., Kirby, S., and Brighton, H. (2003). Iterated learning: A framework for the
emergence of language. Artificial life, 9(4):371-386.

Smithers, T. (1997). Autonomy in robots and other agents. Brain and Cognition,
34(1):88-106.

Sosa, R. and Gero, J. S. (2005). A computational study of creativity in design: The role
of society. AIE EDAM, 19(04):229-244.

Stacey, M., Eckert, C., and McFadzean, J. (1999). Sketch interpretation in design
communication. In Proceedings of the 12th International Conference on Engineering

Design, volume 2, pages 923-928.

Steels, L. (1995). A self-organizing spatial vocabulary. Artificial life, 2(3):319-332.

236 BIBLIOGRAPHY

Steels, L. (1998). The origins of ontologies and communication conventions in multi-

agent systems. Autonomous Agents and Multi-Agent Systems, 1(2):169-194.

Steels, L. (2000). Language as a complex adaptive system. In International Conference

on Parallel Problem Solving from Nature, pages 17-26. Springer.

Steels, L. (2001a). Language games for autonomous robots. IEEE Intelligent systems,
16(5):16-22.

Steels, L. (2001b). Social learning and verbal communication with humanoid robots. In
Proceedings of the IEEE-RAS International Conference on Humanoid Robots, pages
335—-342.

Steels, L. (2006a). How to do experiments in artificial language evolution and why. In
Proceedings of the 6th International Conference on the Fvolution of Language, pages
323-332.

Steels, L. (2006b). Semiotic dynamics for embodied agents. IEEE Intelligent Systems,
21(3):32-38.

Steels, L. (2012). Ezperiments in cultural language evolution, volume 3. John Benjamins
Publishing.

Steels, L. (2016). Human language is a culturally evolving system. Psychonomic Bulletin

& Review, pages 1-4.

Steffensen, S. V. and Fill, A. (2014). Ecolinguistics: the state of the art and future

horizons. Language sciences, 41:6-25.

Sternberg, R. J. (1985). Beyond 1Q: A triarchic theory of human intelligence. CUP
Archive.

Stiny, G. et al. (1980). Introduction to shape and shape grammars. Environment and
planning B, 7(3):343-351.

Sun, R. and Naveh, 1. (2007). Social institution, cognition, and survival: a cognitive-
social simulation. Mind & Society, 6(2):115-142.

Swenson, R. (1992). Autocatakinetics, yes—autopoiesis, no: Steps toward a unified
theory of evolutionary ordering. International Journal Of General System, 21(2):207—
228.

Techtarget (2003). Converting business requirements into functional specs.
http://searchsap.techtarget.com/answer/Converting-business-requirements-into-

functional-specs.

Temperley, N. and Temperley, D. (2011). Music-language correlations and the “scotch
snap”. Music Perception, 29(1):51-63.

BIBLIOGRAPHY 237

Torrance, E. P. (1968). Torrance tests of creative thinking. Personnel Press, Incorpo-
rated.

Turkle, S., Clancey, W. J., Helmreich, S., Loukissas, Y. A., and Myers, N. (2009).

Simulation and its Discontents. mit Press Cambridge, MA.

Varshney, L. R., Pinel, F., Varshney, K. R., Bhattacharjya, D., Schoergendorfer, A., and
Chee, Y.-M. (2013). A big data approach to computational creativity. arXiv preprint
arXw:1811.1213.

Ventura, D. A. (2008). A reductio ad absurdum experiment in sufficiency for evaluating

(computational) creative systems. Computational Creativity.

Vogt, P. (2005). The emergence of compositional structures in perceptually grounded

language games. Artificial intelligence, 167(1):206-242.

Vyas, D., van der Veer, G., and Nijholt, A. (2013). Creative practices in the design
studio culture: collaboration and communication. Cognition, Technology €& Work,
15(4):415-443.

Vygotsky, L. (1971). The psychology of art (scripta technica, inc., trans.). Cambridge,
MA 8c London: MIT press.(Original work published 1925).

Vygotsky, L. S. (1986). Thought and language (rev. ed.). Cambridge, MA: MIT Press.
Wallas, G. (1926). The art of thought. J. Cape.

Watts, C. and Gilbert, N. (2014). Simulating innovation: Computer-based tools for
rethinking innovation. Edward Elgar Publishing.

West, D. B. et al. (2001). Introduction to graph theory, volume 2. Prentice hall Upper
Saddle River.

Wheaton, K. (2014). Three convergent thinking techniques every analyst should mas-
ter. hitp://sourcesandmethods.blogspot.com.au/2014/09/three-convergent-thinking-

techniques.html.

Wiggins, G. A. (2006a). A preliminary framework for description, analysis and compar-

ison of creative systems. Knowledge-Based Systems, 19(7):449-458.

Wiggins, G. A. (2006b). Searching for computational creativity. New Generation Com-
puting, 24(3):209-222.

Wijngaards, N. J., Overeinder, B. J., van Steen, M., and Brazier, F. M. (2002). Support-
ing internet-scale multi-agent systems. Data € Knowledge Engineering, 41(2):229-245.

Wittgenstein, L. (1958). Philosophical investigations. Blackwell Oxford.

Wooldridge, M. (2009). An introduction to multiagent systems. John Wiley & Sons.

238 BIBLIOGRAPHY

Wooldridge, M. J. (2002). An introduction to multiagent systems. Wiley.

Zadeh, L. A. (1996). Fuzzy sets, fuzzy logic, and fuzzy systems: selected papers by Lotfi
A Zadeh, volume 6. World Scientific.

Zagal, J. C. and Ruiz-Del-Solar, J. (2007). Combining simulation and reality in evolu-
tionary robotics. Journal of Intelligent € Robotic Systems, 50(1):19-39.

Zhang, A. and Saunders, R. (2012). Towards the evolution of a language for creative
design. In 2012 IEEE Congress on Evolutionary Computation, pages 1-6. IEEE.

Zhang, A. and Saunders, R. (2014). Exploring conceptual space in language games using

hedonic functions. Fifth International Conference on Computational Creativity.

Zwaan, R. A., Stanfield, R. A., and Yaxley, R. H. (2002). Language comprehenders
mentally represent the shapes of objects. Psychological science, 13(2):168-171.

Appendix A

Algorithms of Agents’ Functions

A.1 Primary Functions

A.1.1 Categorisation

In Algorithm 17, Method ANN] i.e., Artificial Neural Network can be Self-Organising
Map (SOM), the network based on Adaptive Resonance Theory (ART), or Growing
Neural Gas (GNG). BMU is the Abbreviation of Best Matching Unit, which is a neuron
having the shortest distance with an input sample compared with other neurons. This
neuron can be found and adjusted in SOM, ART and GNG or created in ART and GNG.
Besides using ANN, general combination of prototypes and tolerances/variances can be
used to make simple categorisations although they lack dynamic change and update
compared with ANN.

This function can be used to categorise a whole topic, or categorise each dimension
of the topic for the convenience of evolving compositional languages. For example, A
colour with four dimensions, red, green, blue and alpha, can be categorised using four
separated ANN. These categorisations of the four features can be used to generate new

compositional colours represented by compositional utterances.

A.1.2 Parsing and Production
Parsing (see Algorithm 18) is the process of mapping utterances to relevant meanings/-

categories, whereas production (see Algorithm 19) is the procedure of transforming

meanings/categories to relevant utterances.

239

240 Appendix A Algorithms of Agents’ Functions

Algorithm 17 Categorising Topic

1: function CATEGORISE(topic, method, utterance)

2 if method is ANN then > ANN includes SOM, ART and GNG
3 BMU <« make/ findBMU (topic, ANN)

4: ANN < update(ANN, BMU)

5: category < updated BMU

6 else

7 dif ferences < compare(topic, prototypes)

8 candidates + filter(prototypes, dif ferences, tolerance)
9: if candidates then

10: category < mostSimilarCandidate(candidates, topic)
11: else

12: prototypes < append(prototypes, topic)

13: category < topic

14: end if

15: end if

16: if utterance then

17: add/update(relation(category, utterance))

18: end if

19: return category

20: end function

Algorithm 18 Parsing

1. function PARSING(utterance, type)

2 meaning <— emptyList

3 for utter in utterance do

4 candidates < emptyList

5: for unitMeaning in storedMeanings do

6 if utter € storedUtterancesynitMeaning then

7 candidates < append(candidates, unitMeaning)
8

9

end if

: end for
10: if candidates then
11: if type =' best then
12: unitM <« weightedChoice(candidates, utter)
13: else if type =" roulette then
14: unitM <+ weighted RandomChoice(candidates, utter)
15: else
16: unitM < randomChoice(candidates, utter)
17: end if
18: else
19: unitM < randomChoice(storedMeanings)
20: end if
21: meaning < append(meaning, unitM)
22: end for
23: return meaning

24: end function

Appendix A Algorithms of Agents’ Functions 241

Algorithm 19 Production

1: function PRODUCTION(meaning, type)

2 for unitMeaning in storedMeanings do

3 if member(unitMeaning, meaning) then

4 U < storedUtterancesunitMeaning

5: if type =’ best then

6 unitUtterance <— weightedChoice(U)

7 else if type =' roulette then

8 unitUtterance <— weighted RandomChoice(U)
9

: else
10: unitUtterance <— randomChoice(U)
11: end if
12: meaning <— replace(unitMeaning, unitUtterance, meaning)
13: end if
14: end for
15: utterance < meaning
16: return utterance

17: end function

A.1.3 Tracing Forward/Backward

The function, Tracing Forward (see Algorithm 20, 22, 23 and 24), is used to trace a rule
sequence, which includes > 1 rule(s), to a sequence of terminal rules or sub-rules using
Context Free Grammar (CFG). For example, given ruleChain = [compoSize], rules =
{0 : {rule : [compoSize|, expan : [(0.21, very, size), (0.01, size, very), (0.19, size, size)|}, 1 :
{rule : [size], expan : [(0.21,small),(0.11, medium), (0.01, large)]}}, [compoSize]
could be traced forward to [very small]. Sub-rules rather than terminal rules may

be generated when certain step is given to limit the number of recursions.

On the contrary, Tracing Backward (see Algorithm 21) is utilised to trace a sequence of
expansions, which could be terminal rules or sub-rules to a sequence of parent rules or

a root rule affected by the argument step.

A.1.4 Learning/Unlearning Association Rules

Association rules include the weighted associations between meanings/categories and
utterances, and the weighted relations between rules and their expansions. These rules
can be learned/strengthened by increasing their weights using Function 25, 27 or un-

learned /weakened by decreasing their weights using Function 26, 28.

A.1.5 Others

Some other primary algorithms include the function of weighted random choice (see
Algorithm 29), e.g. weightedRandomChoice([(0.2, 2, b), (0.3, 3, ¢), (0.1, 1, a)]) — (0.3,

242 Appendix A Algorithms of Agents’ Functions

Algorithm 20 Tracing Forward

1: function TRACEFORWARD(ruleChain, rules, activeRules, familiar?, step, type)

2 ruleNodes < emptyList

3 for k in hashKeys(rules) do

4 ruleNodes < append(ruleNodes, [k, rules|k]['rule]]) > e.g. [0,’size]

5: end for

6 ruleChain0 < copy(ruleChain)

7 ruleNodes < sort(ruleNodes, 'listLength >)

8 rrra < replace RuleChain(ruleChain, ruleNodes, rules, activeRules, familiar?, type)
9 ruleChain < rrral0]

10: ruleNodes < rrra[l]

11: rules < rrral2]

12: activeRules < rrra[3]

13: subRule? <— False

14: for rule in ruleNodes do

15: if isSubList(rule[l], ruleChain) then > (’size, ['very, 'size])
16: subRule? < True

17 break

18: end if

19: end for

20: if ((ruleChain # ruleChain0)V subRule?) A ((step = False) V (step > 0)) then
21: if step then

22: step < step — 1

23: end if

24: ruleChain + traceForward(ruleChain, rules, activeRules, familiar?, step, type)
25: end if

26: return ruleChain

27: end function

3, ¢), and that of simplifying a list (see Algorithm 30), e.g. simplifyList(][(((’"down)),
(’right))]) — ['down, ’right], .

A.2 Functions for Playing Guessing Games

A.2.1 Selecting Topic

The function of selecting topic (see Algorithm 31, 32, 33) is mainly used by a speaker-
agent to select a topic from context in different ways such as randomly selecting a
topic, selecting the most common or different topic, or selecting the most confident or
unconfident topic based on the stored meanings or instances collected from previous

guessing games.

Appendix A Algorithms of Agents’ Functions 243

Algorithm 21 Tracing Backward

1: function TRACEBACKWARD (exzpanChain, rules, activeRules, step)

2 expanNodes < emptyList

3 expanChain0 < copy(expanChain) > for if-recursion
4 for k in hashKeys(rules) do

5: for e in rules[k]['exzpan| do

6 expanNodes < append(expanNodes, [k, e]) > e.g. [0,[0.01,’small]]
7 end for

8 end for

9 expanNodes < sort(expanNodes, 'listLen >) > to replace longer expan firstly
10: for expan in expanNodes do

11: if isSubList(expan([l][l :], expanChain) then

12: k < expan|0]

13: expanChain < replace(expan[l][1 :], rules[k]['rule], expanChain) >

Key Line

14: activeRules < append(activeRules, [k,expan[1][1 :]])

15: end if

16: end for

17: subExpan? < False

18: for expan in expanNodes do

19: if isSubList(expan[l][l :], expanChain) then
20: subExpan? <+ True
21: break
22: end if
23: end for

24: if ((expanChain # expanChain0)V subExpan?) A ((step = False) V (step > 0))
then

25: if step then

26: step < step — 1

27: end if

28: expanChain < trace Backward(expanChain, rules, activeRules, step)
29: end if

30: return expanChain

31: end function

A.2.2 Mapping Utterance to Topic

The procedure of mapping utterance to topic (see Algorithm 34) is implemented by a
speaker-agent from categorising topic (see Algorithm 17) to making utterance via Func-
tion, production(category) (see Algorithm 19). Categories are related with meanings.
If topic has only one dimension, only one unit-meaning needs to be used. Some ex-
periments may use topics directly without categorising them, e.g., the experiment of

exploring incongruity (see Sec. 5.3).

244 Appendix A Algorithms of Agents’ Functions

Algorithm 22 Replacing Rule Chain

1: function REPLACERULECHAIN(ruleChain, ruleNodes, rules, activeRules, familiar?, type)
2 for rule in ruleNodes do
3 while isSubList(rule[l], ruleChain) do
4: k < rulel0]
5 expans + copy(rules[k][' expansion])
6 expan < getExpan(expans, familiar?, type) > expan=|weight,
sequence, optional:maxDepth]
7: max Depth < expan|[—1] > maxDepth=[depth, threshold] or the last

item of sequence
switch < True
: while switch do
10: if isList?(maxDepth) then

11: if maxDepth|0] < maxDepth[l] then > update depth

12: iExpan + position(expan, rules[k]['expansion])

13: expans < copy(ruleslk][expansion))

14: max Depth[0] <— maz Depth[0] + 1

15: expan|—1] <— max Depth

16: expans[iExpan] < expan

17: rules[k][' expansion] < expans

18: expan < expan[l : —1]

19: switch < False

20: else > get new expansion

21: expan <+ getExpan(expans, familiar?, type)

22: maz Depth < expan[—1]

23: end if

24: else

25: expan < expan]l :]

26: switch < False

27: end if

28: end while

29: if member({, expan) then

30: expan < eval Expan(expan)

31: end if

32: if member({, rule) then

33: eval Expan(rule)

34: end if

35: ruleChain < replace(rule[l], expan, ruleChain) > rule[l] is rule name

36: activeRules < append(activeRules, [rule[0], expan]) > rule[0] is rule
key

37: end while

38: end for

39: return [ruleChain, ruleNodes, rules, active Rules]

40: end function

Appendix A Algorithms of Agents’ Functions 245

Algorithm 23 Getting Expansion

1:
2
3
4
5:
6
7
8
9

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:

function GETEXPAN(expans, familiar?, type)
if member(nil, map(x — x[0], expans)) then > nil means no competition
type < random
end if
if type = best then
if familiar? then
expan + first(sort(expans, 'list >))
else
expan + first(sort(expans, 'list <))
end if
else if type = roulette then
if familiar? then
expan < weighted RandomChoice(expans, reverse? = False)
else
expan < weighted RandomChoice(expans, reverse? = True)
end if
else
expan < randomChoice(expans)
end if
return expan
end function

Algorithm 24 Evaluating Expansion

1:

e e e
A

16:
17:

function EVALEXPAN(expan) > e.g.
expan < (direction? { — 21 } 0bj0 { first [123] } objl)
funStarts < emptyList
funEnds < emptyList
for i = 1 — length(expan) do
if expan[i] = { then
funStarts < append(funStarts, 1)
else if expan|i] =} then
funEnds < append(funEnds, 1)
end if
end for
for j =1 — length(funStarts) do
expression < expan|(funStarts[j] + 1) : funEnds[j]]
expan < replace(expression, eval(expression), expan)

end for
expan < removel f(x — (x ={) V (x =}), expan)
return expan > e.g. expan « (direction? 1 0bj0 1 obj1)

end function

246 Appendix A Algorithms of Agents’ Functions

Algorithm 25 Learning

1: function LEARN(Ay, Ape, Tate) > Ap,y: associations of meaning and utterance,
A,: associations of rule and expansion

2 weights,,, < emptyList

3 weights,. < emptyList

4 if A,,, then

5 for a in A,,, do

6: w < strengthen(weight,, rate)

7 weightsmy < append(weightsmy, w)
8 end for

9: end if

10: if A,. then

11: for a in A,. do

12: w < strengthen(weight,, rate)

13: weights,e < append(weights,e, w)
14: end for

15: end if

16: return [weight s, weights,]

17: end function

Algorithm 26 Unlearning

1: function UNLEARN(A,., Are, rate) > A associations of meaning and
utterance, A,.: associations of rule and expansion

2 weights,, < emptyList

3 weightsy. < emptyList

4 if A,,, then

5 for a in A,,, do

6: w <+ weaken(weight,, rate)

7 weightsmy, < append(weightsy,, w)

8 end for

9: end if

10: if A,. then

11: for ¢ in A,. do

12: w <+ weaken(weight,, rate)

13: weightsye < append(weightsye, w)

14: end for

15: end if

16: return [weightsy,, weights,.|

17: end function

Algorithm 27 Strengthen

1: function STRENGTHEN(w, r) > w: weight, r: learning rate
2: return r+ (1 —r) x w
3: end function

Algorithm 28 Weaken

1: function WEAKEN(w, 7) > w: weight, r: learning rate
2: return (1 —7) x w
3: end function

Appendix A Algorithms of Agents’ Functions 247

Algorithm 29 Weighted Random Choice

1: function WEIGHTEDRANDOMCHOICE(weightedItems, reverse?)

2 if reverse? then

3: weightedltems < map(x — [1/z]0], z[1 :]], weightedItems)

4 end if

5 max < sum(map(x — z[0], weightedItems)) > x[0] is weight, e.g. x = [0.21,
'very, ’small]

6: pick < random(max)

7: current < 0

8: for = in weightedltems do
9: current < current + x[0]
10: if current > pick then
11: if reverse? then

12: result < [1/z[0], z[1 :]]
13: else

14: result < x

15: end if

16: Break

17: end if

18: end for

19: return result

20: end function

Algorithm 30 simplifying A List

1: function SIMPLIFYLIST(Ist)

2 if length(lst) = 1 then

3 Ist < Ist[0]

4 if isList?(lst) then

5: Ist < simplifyList(lst)

6 end if

7 else

8 Istl < emptyList

9 for item in lst do

10: if isList?(item) then

11: Istl < append(lstl, simplifyList(item))
12: else

13: Istl < append(lstl,item)
14: end if

15: end for

16: st < Istl

17: end if

18: return Ist

19: end function

248 Appendix A Algorithms of Agents’ Functions

Algorithm 31 Selecting Topic

1: function SELECTTOPIC(context, type)

2 if type =" random then

3 topic <— randomChoice(context)

4: else if type = common then

5: dif ferences < dif fer EachOther(context)

6 iCommon <« position(min(dif ferences), dif ferences)
7 topic <— context;Common

8 else if type =' dif ferent then

9 dif ferences < dif fer EachOther(context)

10: iDif ferent < position(max(dif ferences), dif ferences)
11: topic <= context;pif ferent

12: else if type =’ confident then

13: con fidences < con fidenceContext(context)

14: iCon fident < position(maz(con fidences), con fidences)
15: topic < contextcon fident

16: else if type =" unconfident then

17 confidences < con fidenceContext(context)

18: iUncon fident < position(min(con fidences), confidences)
19: topic <= context;uncon fident

20: else

21: topic < randomChoice(context)

22: end if

23: return topic

24: end function

Algorithm 32 Differences Between FEach Other

1: function DIFFEREACHOTHER (context)
2 dif ferences <+ emptyList

3 for i =1 — length(context) do

4 d<+0

5: for j =1 — length(context) do
6

7

8

9

d < d + dif ference(context;, context;)
end for
dif ferences < append(dif ferences, d)
end for
10: return dif ferences
11: end function

Appendix A Algorithms of Agents’ Functions 249

Algorithm 33 Measuring Confidence of Context

1: function CONFIDENCECONTEXT(context)

2 con fidences < emptyList

3 for topic in context do

4 c+0

5: for unitMeaning in topic do

6 if member(unitMeaning, storedMeanings) then
7 ¢ < ¢+ weight(unitMeaning, storedMeanings)
8 end if

9 end for

10: con fidences < append(con fidences, c)

11: end for

12: return confidences

13: end function

Algorithm 34 Getting Utterance
1: function GETUTTER(topic)

2: category < categorise(topic)
3: utterance < production(category)
4: return utterance

5. end function

A.2.3 Guessing Topic

The algorithm of guessing topic according to the provided utterance and context (see
Algorithm 35) is processed by a listener-agent with two methods. The first method
is parsing the utterance to relevant category, and finding samples matching the cate-
gory from context. If > 1 sample(s) match the category, one of them is selected as the
guessed topic via a choice technique such as random-choice, interesting-choice (see Al-
gorithm 6), weighted-choice or weighted-random-choice (see Algorithm 29). Otherwise,
another method is adopted. It is getting the utterances of all samples in context via
Function getUtter(topic) (see Algorithm 34), comparing the generated utterances with
the provided utterance to find the most similar one, then selecting the related sample

as the guessed topic.

A.3 Functions for Playing Generation Games

A.3.1 Generating Utterance

The function of generating a compositional utterance (see Algorithm 36) is realised with
two steps. First, a root rule or a sequence of parent rules are traced forward (see Algo-
rithm 20) to a sequence of terminal rules, i.e., a compositional prototype. Then the pro-

totype is mapped to a compositional utterance via Function production(compoPrototype)

250 Appendix A Algorithms of Agents’ Functions

Algorithm 35 Getting Topic

1. function GETTOPIC(utterance, context, type)

2 category < parsing(utterance)

3 candidates < emptyList

4 for sample in context do

5: if sample € category then

6 candidates < append(candidates, sample)

7 end if

8 end for

9: if candidates then

10: if type =' interesting then

11: design < interestingChoice(candidates, category)
12: else if type =' best then

13: topic < weightedChoice(candidates, category)
14: else if type =' roulette then

15: topic < weighted RandomChoice(candidates, category)
16: else

17: topic <— randomChoice(candidates)

18: end if

19: else
20: distances < emptyList
21: for sample in context do
22: utter « getUtterance(sample)
23: d < LevenshteinDistance(utter, utterance)
24: distances < append(distances, d)

25: end for

26: iTopic < position(min(distances), distances)

27: topic <= context;Topic

28: end if

29: return topic

30: end function

(see Algorithm 19). The function, Generating Utterance, is used by client-agents to gen-

erate design briefs, i.e., requirements.

Algorithm 36 Generating Utterance

1: function GENERATEUTTERANCE(rule)

2: compoPrototype <+ traceForward(rule)
3: utterance < production(compoPrototype)
4: return utterance

5. end function

A.3.2 Generating Design

The procedure of generating design (see Algorithm 37) is implemented by a designer-
agent in three steps. At first, an utterance, i.e., the client-agent’s requirement, is parsed

to a relevant meaning. Secondly, the meaning is categorised to a category. Then a

Appendix A Algorithms of Agents’ Functions 251

design is generated to match the category with a generation type such as interesting
design (see Algorithm 6) or best matched design. If the argument, CFG?, is True, the
meaning parsed in the first step is traced to a new meaning before running the second
step. New compositional meanings could be generated by processing association rules
via the cooperation of tracing forward (see Algorithm 20) and tracing backward (see

Algorithm 21). The rules are generated using Context Free Grammar (CFG).

Algorithm 37 Generating Design

1: function GENERATEDESIGN (utterance, type, CFG?)

2 meaning < parsing(utterance)

3 if CFG? then

4 rule < trace Backward(meaning)

5: meaning < traceForward(rule) > new meaning
6 end if > weighted-CFG can generate interesting meaning
7 category < categorise(meaning)

8 if type =’ interesting then

9: design «+ interestingChoice(rangecategory)

10: else if type =" best then

11: design « weightedChoice(rangecategory)

12: else if type =' roulette then

13: design < weighted RandomChoice(range ategory)

14: else

15: design < randomChoice(range ategory)

16: end if

17: return design

18: end function

A.3.3 Selecting Design

In the algorithm of selecting design (see Algorithm 38), two methods are used to select
winning design(s). The first method is interestingChoice(designs) (see Algorithm 6)
for the selection type, “interesting”. The second method is removing the designs which
are not in the acceptable range, then selecting a winning-design from the remaining
designs using a selection method such as weighted-choice, weighted-random-choice or
random-choice. Besides the two methods, some other methods may be used to satisfy
client-agents’ specific requirements such as incongruity (see Sec. 5.3) by using inverse-
weighted-random-choice and elaboration (see Sec. 5.4) by matching certain criteria

settings.

A.4 Conclusion

The algorithms of agents’ functions consist of basic functions, the functions for playing

guessing games and the functions for playing generation games. They can be used to

252 Appendix A Algorithms of Agents’ Functions

Algorithm 38 Selecting Design

1: function SELECTDESIGN(designs, prototype, type)

2 if type =' interesting then

3 winningDesign < interestingChoice(designs, prototype)
4 else

5: candidates < emptyList

6 for design in designs do

7 distan < distance(design, prototype)

8 if distan < tolerance then

9: if distan = 0 then

10: distan < 0.000001

11: end if

12: candidates < append(candidates, [1/distan, design])
13: end if

14: end for

15: if candidates then

16: if type =’ best then

17: winningDesign < weightedChoice(candidates)
18: else if type =’ roulette then

19: winningDesign < weighted RandomC hoice(candidates)
20: else
21: winningDesign < randomChoice(candidates)
22: end if
23: else
24: winningDesign < False
25: end if
26: end if
27: return winningDesign

28: end function

establish a computational model of design agents based on curious agents (Saunders,
2002) to evolve artificial languages for creative design at the sociocultural level. These
algorithms may need to be adjusted or modified to match the requirements of different
experiments. And some other specific functions may need to be added to address certain
conditions of the experiments such as developing graph networks (see Appendix B) by

adding edges (see Algorithm 41) connecting compositional objects in Experiment 5.4.

Appendix B

Algorithms of Graph Networks

Algorithm 39 Making Graph

1:
2:
3:
4
5

function MAKEGRAPH

nodes <— makeHashT able()

edges < makeHashTable()

el < emptyList

return {'nodes : nodes, 'edges : edges, 'activeNodes

el, "traceEnd : el, 'path : el}
6: end function

el

"traceStart :

Algorithm 40 Adding A Node

1:
2
3
4
5:
6
7
8
9

10:
11:
12:
13:

function ADDNODE(graph, node, props, utter?)

if —node then
node <+ count(graph|'nodes))
end if
if utter? then
if isList?(utter?) V isString?(utter?) then
props|utter] < [[0.01, utter?]]
else
props|utter| < [[0.01, randomUtterance()]]
end if
end if
graph|'nodes|[node] < props
return graph

14: end function

253

254 Appendix B Algorithms of Graph Networks

Algorithm 41 Adding An Edge

1: function ADDEDGE(graph, edge, nodes, props, utter?, weight)
2 if nodes then

3 props|['nodes| + nodes

4 if isList?(nodes|0]) then

5: for node in flatten(nodes) do

6 if node ¢ hashKeys(graph['nodes]) then

7 graph < addN ode(graph,node, { }, utter?)

8

9

end if

: end for
10: else if isList?(nodes[1]) then
11: for node in flatten(nodesl1 :]) do
12: if node ¢ hashKeys(graph|'nodes)) then
13: graph < addNode(graph,node, {}, utter?)
14: end if
15: end for
16: if nodes[0] ¢ hashKeys(graph['nodes]) then
17: graph < addNode(graph, nodes|0], {}, utter?)
18: end if
19: else
20: if nodes[0] ¢ hashKeys(graph['nodes]) then
21: graph < addN ode(graph,nodes|0],{}, utter?)
22: end if
23: if nodes[1] ¢ hashKeys(graph[nodes]) then
24: graph < addNode(graph,nodes(1],{}, utter?)
25: end if
26: end if

27 end if
28: if weight then

29: props[weight] < weight

30: end if

31: switch < True

32: for e in hashValues(graph['edges|) do
33: if e = props then

34: switch < False

35: Break

36: end if

37: end for
38: if switch then

39: if —edge then

40: edge < count(graph['edges])
41: end if

42: graphl'edges|[edge] < props

43: end if

44: return graph
45: end function

Appendix B Algorithms of Graph Networks 255

Algorithm 42 Tracing Forward Nodes

1: function TRACEFORWARDNODES(graph, nodes, choice, start, nonterminal?, level)
2 start2 < start > default setting: start = True
3 if start then
4 graphl'trace End) + emptyList
5: cleanDepth(graph)
6 start < False
7 end if
8 for node in nodes do
9: runNode(graph, node)
10: end for
11: trace <— emptyList
12: for node in nodes do
13: newNodes < getOutNodes(graph,node, choice)
14: if newNodes A ((—level) V (level > 0)) then
15: if nonterminal? then
16: trace < append(trace, runN ode(graph,node))
17: end if
18: if level then
19: level < level — 1
20: end if
21: trace2 < traceForwardN odes(graph, newNodes, choice, start, nonterminal?, level)
22: if trace2 then
23: trace < append(trace, trace2)
24: end if
25: else
26: trace < append(trace, runN ode(graph,node))
27: end if
28: end for
29: trace < simplifyList(trace)
30: if start2 A trace then
31: graphl'trace End) <+ trace
32: end if
33: return trace

34: end function

256 Appendix B Algorithms of Graph Networks

Algorithm 43 Running A Node

1: function RUNNODE(graph, node)

2 if ' function € hashKeys(graph['nodes|[node]) then
3 if "input € hashKeys(graph['nodes|[node]) then
4 newlInput < getInput(graph,node)

5: if newInput A ('noData ¢ newlInput) then

6 graph|'nodes|[node][input] < newInput

7 end if

8 end if

9 graph|'nodes|[node][output] < eval(graph['nodes|[node][function])
10: result < graph['nodes|[node]| output]

11: else

12: result < False

13: end if

14: return result

15: end function

Algorithm 44 Getting Input

1: function GETINPUT(graph,node)
2 nput < emptyList

3 nodesIn < getInNodes(graph,node)
4 if nodesIn then

5: for n in nodesin do
6 if ‘output € hashKeys(graph|'nodes][n]) then

7 input < append(input, graph|'nodes|[n][output])
8

9

else
: input < append(input,’ noData)
10: end if
11: end for
12: end if
13: return nput

14: end function

Algorithm 45 Getting In-Nodes

1: function GETINNODES(graph, node, choice)

2 nodesIn < emptyList

3 edgesIn < getInEdges(graph,node, choice)

4 if edgesIn then

5: for edge in edgesIn do

6 nodesIn < append(nodesIn, graph[edges|[edge][nodes][0])
7 end for

8 end if

9: return flatten(nodesIn)

10: end function

Appendix B Algorithms of Graph Networks 257

Algorithm 46 Getting Out-Nodes

1: function GETOUTNODES(graph, node, choice)

2 nodesOut < emptyList

3 edgesOut < getOutEdges(graph, node, choice)

4 if edgesOut then

5: for edge in edgesOut do

6 nodesOut + append(nodesOut, graph[edges|[edge][nodes][1])
7 end for

8 end if

9: return flatten(nodesOut)

10: end function

Algorithm 47 Getting In-Edges

1: function GETINEDGES(graph,node, choice)

2 edgesIn < emptyList

3 for k in hashKeys(graph['edges]) do

4 if node € graph['edges][k]['nodes][1] then

5: edgesIn < append(edgesIn, [graph['edges][k]['weight], k])

6 end if

7 end for

8 if edgesIn A (choice =" weighted RandomChoice) then

9 edgeln < second(weighted RandomC hoice(edgesIn))

10: if ("maxDepth € hashKeys(graph['edges]ledgeln])) A

graph|'edges|[edgeIn|['maxDepth| then
11: if graphl'edges]ledgeln]['maxDepth] > graph|edges|edgeln][depth]
then

12: graph['edges|[edgeln]['depth] « graph|'edges][edgeln](depth] + 1
13: else

14: go to 9

15: end if

16: end if

17: edgesIn < [edgeln)

18: else if edgesIn then

19: edgesIn < map(x — x[1], edgesin)
20: end if
21: return edgesin

22: end function

258 Appendix B Algorithms of Graph Networks

Algorithm 48 Getting Out-Edges

1: function GETOUTEDGES(graph, node, choice)

2 edgesOut < emptyList

3 for k in hashKeys(graph['edges]) do

4 if node € graph['edges][k]['nodes][0] then

5: edgesOut + append(edgesOut, [graph['edges] k][weight], k])

6 end if

7 end for

8 if edgesOut A (choice =" weighted RandomChoice) then

9 edgeOut <+ second(weighted RandomChoice(edgesOut))

10: if ("maxDepth € hashKeys(graph['edges]ledgeOut])) A
graph|'edges|[edgeOut|['maxDepth] then

11: if graph[edges)|edgeOut]|['maxDepth] > graph|edges|[edgeOut]['depth]
then

12: graph['edges||edgeOut]['depth] <— graph|'edges][edgeOut]['depth]| + 1

13: else

14: go to 9

15: end if

16: end if

17: edgesOut <+ [edgeOut]

18: else if edgesOut then

19: edgesOut < map(xz — x[1], edgesOut)

20: end if

21: return edgesOut

22: end function

Algorithm 49 Cleaning Depth

1: function CLEANDEPTH(graph)

2 for edge in hashKeys(graph|'edges]) do

3 if 'depth € hashKeys(graph|edges]ledge]) then
4: graph[edges|[edge]['depth] + 0

5: end if

6 end for

7 return graph

8: end function

	Acknowledgements
	Abstract
	Contents
	Abbreviations
	1 Introduction
	1.1 Motivation and Research Questions
	1.1.1 The Evolution of Artificial Languages for Design
	1.1.2 The Application of Language Features in Design
	1.1.3 Social Creativity Using Artificial Languages

	1.2 Aims and Objectives
	1.3 Research Contributions
	1.3.1 Computational Model of Evolving Language for Creative Design
	1.3.2 Metrics of Evolving Language for Social Creativity
	1.3.3 Knowledge Generated Through Experiments

	1.4 Significance of the Study
	1.5 Thesis Overview

	2 Background
	2.1 Models of Creativity
	2.1.1 Cognitive Models of Creativity
	2.1.2 Models of Social Creativity
	2.1.3 Systems Models of Social Creativity

	2.2 Computational Simulation
	2.2.1 Simulation with Theory and Reality
	2.2.2 Process of Computational Simulation
	2.2.3 Types of Computational Simulation
	2.2.4 The Application of Computational Simulation

	2.3 Computational Creativity
	2.3.1 Computational Models of Individual Creativity
	2.3.2 Computational Models of Social Creativity
	2.3.3 Evaluation of Computational Creativity

	2.4 Language and Creativity
	2.4.1 Evolution of Language
	2.4.2 Language Ecology
	2.4.3 Creative Features of Language
	2.4.4 Language and Design

	2.5 Computational Models of Language and Social Creativity
	2.5.1 Imitation Game
	2.5.2 Guessing Game
	2.5.3 Generation Game

	2.6 Conclusion

	3 Computational Model
	3.1 A Computational Model of the DIFI Framework
	3.1.1 Domain
	3.1.2 Individual
	3.1.3 Field

	3.2 Representation
	3.2.1 Association Between Meanings and Utterances
	3.2.2 Compression via Holographic Reduced Representations
	3.2.3 Expansion via Weighted Context Free Grammar

	3.3 Communication
	3.3.1 Communication in Guessing Games
	3.3.2 Communication in Generation Games

	3.4 Evaluation
	3.4.1 Novelty
	3.4.2 Appropriateness
	3.4.3 Influence
	3.4.4 Diversity
	3.4.5 Efficiency
	3.4.6 Conclusion

	3.5 Multi-Agent Simulations
	3.5.1 Self-Organisation and Collective Intelligence
	3.5.2 General Implementation of Simulations
	3.5.3 Agents' Functions
	3.5.4 Simulation with Graph Networks

	3.6 Machine Learning
	3.6.1 Short Term Memory
	3.6.2 Long Term Memory

	3.7 The Methods of Evaluating Interest
	3.7.1 Variation of Wundt Curve (Sine Curve)
	3.7.2 Euclidean Distance and Cosine Distance

	3.8 Conclusion

	4 Evolving Compositional Languages for Creative Design
	4.1 Compositional and Holistic Language
	4.1.1 Subjects
	4.1.2 Implementation
	4.1.3 Results
	4.1.4 Conclusion

	4.2 Compositional Representation of Rectilinear Relation
	4.2.1 Subjects
	4.2.2 Implementation
	4.2.3 Results
	4.2.4 Conclusion

	4.3 Compositional Language for Shape Combination
	4.3.1 Subjects
	4.3.2 Implementation
	4.3.3 Results
	4.3.4 Conclusion

	4.4 Conclusion

	5 Exploring Creative Features of Language
	5.1 Ambiguity
	5.1.1 Subjects
	5.1.2 Implementation
	5.1.3 Experiment Settings
	5.1.4 Experiment Procedures
	5.1.5 Results
	5.1.6 Discussion
	5.1.7 Conclusion

	5.2 Scalability
	5.2.1 Subjects
	5.2.2 Implementation
	5.2.3 Results of Simulation Type 1
	5.2.4 Results of Simulation Type 2
	5.2.5 Conclusion

	5.3 Incongruity
	5.3.1 Subjects
	5.3.2 Implementation
	5.3.3 Results
	5.3.4 Conclusion

	5.4 Extensibility and Other Features
	5.4.1 Subjects
	5.4.2 Implementation
	5.4.3 Results
	5.4.4 Discussion
	5.4.5 Conclusion

	5.5 Conclusion

	6 Exploring Social Creativity
	6.1 Growing Population
	6.1.1 Subjects
	6.1.2 Implementation
	6.1.3 Results
	6.1.4 Conclusion

	6.2 Education in Guessing Game
	6.2.1 Subjects
	6.2.2 Implementation
	6.2.3 Results
	6.2.4 Conclusion

	6.3 Clique Formation
	6.3.1 Subjects
	6.3.2 Implementation
	6.3.3 Results
	6.3.4 Discussion
	6.3.5 Conclusion

	6.4 Conclusion

	7 Discussion
	7.1 An Artificial Language System for Creative Design
	7.2 Significance of Experiments and Results
	7.2.1 Evolution of Compositional Languages for Creative Design
	7.2.2 Exploration of Language Features for Creative Design
	7.2.3 Exploration of Social Creativity in Designing

	7.3 Comparison of the Experiments
	7.3.1 General Settings
	7.3.2 Representations and Categorisations
	7.3.3 Evaluation and Analysis
	7.3.4 Advantages and Disadvantages

	7.4 Reflection on the Research
	7.4.1 Reflection on the Evolution of Compositional Languages
	7.4.2 Reflection on the Exploration of Language Features
	7.4.3 Reflection on the Exploration of Social Creativity

	7.5 Evaluation of the Results
	7.5.1 Linguistic Conceptualisation
	7.5.2 Language as Social Process
	7.5.3 Social Creativity
	7.5.4 Computational Simulation

	7.6 Conclusion

	8 Conclusions and Future Work
	8.1 Conclusions
	8.2 Future Research
	8.2.1 Meta-Creativity
	8.2.2 Positive Learning
	8.2.3 Complex Simulations
	8.2.4 Autonomous Creative System

	8.3 Summary

	References
	A Algorithms of Agents' Functions
	A.1 Primary Functions
	A.1.1 Categorisation
	A.1.2 Parsing and Production
	A.1.3 Tracing Forward/Backward
	A.1.4 Learning/Unlearning Association Rules
	A.1.5 Others

	A.2 Functions for Playing Guessing Games
	A.2.1 Selecting Topic
	A.2.2 Mapping Utterance to Topic
	A.2.3 Guessing Topic

	A.3 Functions for Playing Generation Games
	A.3.1 Generating Utterance
	A.3.2 Generating Design
	A.3.3 Selecting Design

	A.4 Conclusion

	B Algorithms of Graph Networks

