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Abstract We present a computational model for the

analogical mapping of compositional structures that com-

bines two existing ideas known as holistic mapping vectors

and sparse distributed memory. The model enables inte-

gration of structural and semantic constraints when learn-

ing mappings of the type xi ! yi and computing analogies

xj ! yj for novel inputs xj. The model has a one-shot

learning process, is randomly initialized, and has three

exogenous parameters: the dimensionality D of represen-

tations, the memory size S, and the probability v for acti-

vation of the memory. After learning three examples, the

model generalizes correctly to novel examples. We find

minima in the probability of generalization error for certain

values of v, S, and the number of different mapping

examples learned. These results indicate that the optimal

size of the memory scales with the number of different

mapping examples learned and that the sparseness of the

memory is important. The optimal dimensionality of binary

representations is of the order 104, which is consistent with

a known analytical estimate and the synapse count for most

cortical neurons. We demonstrate that the model can learn

analogical mappings of generic two-place relationships,

and we calculate the error probabilities for recall and

generalization.
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Introduction

Computers have excellent quantitative information pro-

cessing mechanisms, which can be programmed to execute

algorithms on numbers at a high rate. Technology is less

evolved in terms of qualitative reasoning and learning by

experience. In that context, biology excels. Intelligent

systems that interact with humans and the environment

need to deal with imprecise information and learn from

examples. A key function is analogy [1–6], the process of

using knowledge from similar experiences in the past to

solve a new problem without a known solution. Analogy-

making is a high-level cognitive function that is well

developed in humans [5, 7]. More formally, analogical

mapping is the process of mapping relations and objects

from one situation (a source), x, to another (a target), y; M :
x! y [7, 8]. The source is familiar or known, whereas the

target is a novel composition of relations or objects that is

not among the learned examples.

Present theories of analogy-making usually divide this

process into three or four stages. In this work, we follow [7]

and describe analogy-making as a three-step process con-

sisting of: retrieval, mapping, and application. As in the

previous computational models of analogy-making, see

section ‘‘Related Work’’, this paper focuses mainly on the

challenging mapping stage. We present a model that is based

on a well-known mechanism for analogical mapping with

high-dimensional vectors, which are commonly referred to

as mapping vectors. By integrating this mechanism with a

model of associative memory, known as sparse distributed

memory (SDM), we obtain an improved model that can

learn multiple mapping vectors. The proposed model can

learn mappings xk;z ! yk;z, where k denotes different

examples of one particular relationship z. If xk,z is in the
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training set, the model retrieves a mapping vector that

transforms xk,z to an approximation of the learned yk,z,

otherwise xk,z is transformed to an approximate generaliza-

tion (an analog), yk,z, of learned examples corresponding to

the relationship z. The mechanism that enables the possi-

bility to learn multiple mapping vectors that can be used for

analogy-making is the major contribution of this paper.

An SDM operates on high-dimensional binary vectors so

that associative and episodic mappings can be learned and

retrieved [9–13]. Such high-dimensional vectors are useful

representations of compositional structures [14–18]. For

further details and references, see [19–22]. With an appro-

priate choice of operators, it is possible to create, combine,

and extract compositional structures represented by such

vectors. It is also possible to create mapping vectors that

transform one compositional structure into another compo-

sitional structure [14, 17, 18]. Such mapping vectors can

generalize to structures composed of novel elements [14,

17] and to structures of higher complexity than those in the

training set [18]. The idea of holistic mapping vectors and

the results referenced above are interesting because they

describe a simple mechanism that enables computers to

integrate the structural and semantic constraints that are

required to perform analogical mapping. In this paper, we

integrate the idea of holistic mapping vectors with the SDM

model of associative memory into one ‘‘analogical mapping

unit (AMU), which enables learning and application of

mappings in a simple way. The ability to learn unrelated

mapping examples with an associative memory is a novel

feature of the AMU model. The AMU also provides an

abstraction that, in principle, enables visualization of the

higher-level cognitive system architecture.

In the following subsection, we briefly summarize the

related work on analogical mapping. In section ‘‘Back-

ground,’’ we introduce the theoretical background and key

references needed to understand and implement the AMU

model. The AMU model is presented in section ‘‘Model’’.

In section ‘‘Simulation Experiments,’’ we present numeri-

cal results that characterize some properties of the AMU

model. Finally, we discuss our results in the context of the

related work and raise some questions for further research.

Related Work

Research on computational modeling of analogy-making

traces back to the classical works in the 60s by Evans [23]

and Reitman [24] and since then many approaches have

been developed. In this section, we introduce some models

that either have been influential or are closely related to the

work presented here. For comprehensive surveys see [25,

26], where computational models of analogy are catego-

rized as symbolic, connectionist, or symbolic-connectionist

hybrids.

A well-known symbolic model is the Structure Mapping

Engine (SME) [27], which implements a well-known the-

ory of analogy-making called Structure Mapping Theory

(SMT) [1]. With SMT, the emphasis in analogy-making

shifted from attributes to structural similarity between the

source and target domains. The AMU, like most present

models, incorporates the two major principles underlying

SMT: relation-matching and systematicity (see section

‘‘Simulation Experiments’’). However, in contrast to SMT

and other symbolic models, the AMU satisfies semantic

constraints, thereby allowing the model to handle the

problem of similar but not identical compositional struc-

tures. Satisfying semantic constraints reduces the number

of potential correspondence mappings significantly, to a

level that is psychologically more plausible [7, 28] and

computationally feasible [26].

Connectionist models of analogy-making include the

Analogical Constraint Mapping Engine (ACME) [4] and

Learning and Inference with Schemas and Analogies

(LISA) [29]. The Distributed Representation Analogy

MApper (Drama) [7] is a more recent connectionist model

that is based on holographic reduced representations

(HRR). This makes Drama similar to the AMU in terms of

the theoretical basis. A detailed comparison between

ACME, LISA, and Drama in terms of performance and

neural and psychological plausibility is made by [7]. Here,

we briefly summarize results in [7], add some points that

were not mentioned in that work, and comment on the

differences between the AMU and Drama.

ACME is sometimes referred to as a connectionist

model, but it is more similar to symbolic models. Like the

SME, it uses localist representations, while the search

mechanism for mappings is based on a connectionist

approach. In ACME, semantics is considered after struc-

tural constraints have been satisfied. In contrast to ACME,

the AMU and Drama implement semantic and structural

constraints in parallel, thereby allowing both aspects to

influence the mapping process. In comparison with the

previous models, Drama integrates structure and semantics

to a degree that is more in accordance with human cogni-

tion [7]. Semantics are not decomposable in ACME. For

example, ACME would be unable to determine whether the

‘‘Dollar of Sweden’’ (Krona) is similar to the ‘‘Dollar of

Mexico‘‘ (Peso), whereas that is possible with the AMU

and Drama because the distributed representations allow

compositional concepts to be encoded and decomposed [7,

14, 17, 18, 20, 22]. LISA is a connectionist model that is

based on distributed representations and dynamic binding

to associate relevant structures. Like the AMU and Drama,

LISA is semantically driven, stochastic, and designed with

connectionist principles. However, LISA has a complex

architecture that represents propositions in working mem-

ory by dynamically binding roles to their fillers and
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encoding those bindings in long-term memory. It is unclear

whether this model scales well and is able to handle

complex analogies [7, 26, 30].

The third category of computational models for analogy-

making is the ‘‘hybrid approach’’, where both symbolic and

connectionist parts are incorporated [25, 26]. Well-known

examples of such models include Copycat [31], Tabletop

[32], Metacat [33], and AMBR [34].

Other related work that should be mentioned here

includes models based on Recursive Auto-Associative

Memory (RAAM) [35] and models based on HRR [19].

RAAM is a connectionist network architecture that uses

backpropagation to learn representations of compositional

structures in a fixed-length vector. HRR is a convolution-

based distributed representation scheme for compositional

structures. In [35], a RAAM network that maps simple

propositions like (LOVED X Y) to (LOVE Y X) in a

holistic way (without decomposition of the representations)

is presented. In [36], a feed-forward neural network that

maps reduced representations of simple passive sentences

to reduced representations of active sentences using a

RAAM network is presented. In [37], a feed-forward net-

work is trained to perform inference on logical relation-

ships, for example, the mapping of reduced representations

of expressions of the form ðx! yÞ to corresponding

reduced representations of the form ð:x _ yÞ. Similar tasks

have been solved with HRR [18, 19]. In particular, Neu-

mann replicates the results by Niklasson and van Gelder

using HRR and she demonstrates that HRR mappings

generalize to novel compositional structures that are more

complex than those in the training set. The significance of

relation-matching in human evaluation of similarity is

demonstrated in [38] by asking people to evaluate the

relative similarity of pairs of geometric shapes. In [19],

distributed representations (HRR) for each of these pairs of

geometric shapes are constructed, and it is found that the

similarity of the representations is consistent with the

judgement by human test subjects.

From our point of view, there are two issues that have

limited the further development of these analogical map-

ping techniques. One is the ‘‘encoding problem’’, see for

example [39, 40]. In this particular context, it is the

problem of how to encode compositional structures from

low-level (sensor) information without the mediation of an

external interpreter. This problem includes the extraction

of elementary representations of objects and events, and the

construction of representations of invariant features of

object and event categories. Examples demonstrating some

specific technique are typically based on hand-constructed

structures, which makes the step to real-world applications

non-trivial, because it is not known whether the success of

the technique is due to the hand-crafting of the represen-

tations and there is no demonstration of the feasibility of

mechanically generating the representations. The second

issue is that mapping vectors are explicitly created and that

there is no framework to learn and organize multiple ana-

logical mappings. The construction of an explicit vector for

each analogical mapping in former studies is excellent for

the purpose of demonstrating the properties of such map-

pings. However, in practical applications, the method needs

to be generalized so that a system can learn and use mul-

tiple mappings in a simple way.

Learning of multiple mappings from examples is made

possible with the AMU model that is presented in this

paper. The proposed model automates the process of cre-

ating, storing, and retrieving mapping vectors. The basic

idea is that mapping examples are fed to an SDM so that

mapping vectors are formed successively in the storage

locations of the SDM. After learning one or two examples,

the system is able to recall, but it typically cannot gener-

alize. With additional related mapping examples stored in

the SDM, the ability of the AMU to generalize to novel

inputs increases, which means that the probability of gen-

eralization error decreases with the number of examples

learned.

Background

This section introduces the theoretical background and key

references needed to understand and implement the AMU

model, which is presented in section ‘‘Model’’.

Vector Symbolic Architectures

The AMU is an example of a vector symbolic architecture

(VSA) [41], or perhaps more appropriately named a VSA

‘‘component’’ in the spirit of component-based software

design. In general, a VSA is based on a set of operators on

high-dimensional vectors of fixed dimensionality, so-called

reduced descriptions/representations of a full concept [42].

The fixed length of vectors for all representations implies

that new compositional structures can be formed from

simpler structures without increasing the size of the rep-

resentations, at the cost of increasing the noise level. In a

VSA, all representations of conceptual entities such as

ontological roles, fillers, and relations have the same fixed

dimensionality. These vectors are sometimes referred to as

holistic vectors [16] and operations on them are a form of

holistic processing [18, 43]. Reduced representations in

cognitive models are essentially manipulated with two

operators, named binding and bundling. Binding is similar

to the idea of neural binding in that it creates a represen-

tation of the structural combination of component repre-

sentations. It combines two vectors into a new vector,

which is indifferent (approximately orthogonal) to the two
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original vectors. The defining property of the binding

operation is that given the bound representation and one of

the component representations, it is possible to recover the

other component representation. The implementation of the

binding operator and the assumptions about the nature of

the vector elements are model specific. The bundling

operator is analogous to superposition in that it creates a

representation of the simultaneous presence of multiple

component representations without them being structurally

combined. It typically is the algebraic sum of vectors,

which may or may not be normalized. Bundling and

binding are used to create compositional structures and

mapping vectors. Well-known examples of VSAs are the

Holographic Reduced Representation (HRR) [14, 19, 20]

and the Binary Spatter Code (BSC) [15–17]. The term

‘‘holographic’’ in this context refers to a convolution-based

binding operator, which resembles the mathematics of

holography. Historical developments in this direction

include the early holography-inspired models of associa-

tive memory [44–47]. Note that the BSC is mathematically

related to frequency-domain HRR [48], because the con-

volution-style operators of HRR are equivalent to element-

wise operations in frequency space.

The work in VSA has been inspired by cognitive

behavior in humans and the approximate structure of certain

brain circuits in the cerebellum and cortex, but these models

are not intended to be accurate models of neurobiology. In

particular, these VSA models typically discard the temporal

dynamics of neural systems and instead use sequential

processing of high-dimensional representations. The recent

implementation of HRR in a network of integrate-and-fire

neurons [49] is, however, one example of how these cog-

nitive models eventually may be unified with more realistic

dynamical models of neural circuits.

In the following description of the AMU we use the

Binary Spatter Code (BSC), because it is straightforward to

store BSC representations in an SDM and it is more simple

than the HRR which is based on real- or complex-valued

vectors. It is not clear how to construct an associative

memory that enables a similar approach with HRR, but we

see no reason why that should be impossible. In a BSC,

roles, fillers, relations, and compositional structures are

represented by a binary vector, xk, of dimensionality D
xk 2 BD; xk ¼ ðxk;1; xk;2; xk;3; . . .; xk;DÞ: ð1Þ

The binding operator, �, is defined as the element-wise

binary XOR operation. Bundling of multiple vectors xk is

defined as an element-wise binary average

Xn

k¼1

xk;i

* +
¼ H

1

n

Xn

k¼1

xk;i

 !
; ð2Þ

where HðxÞ is a binary threshold function

HðxÞ ¼
1 for x [ 0:5;
0 for x\0:5;

random otherwise:

8
<

: ð3Þ

This is an element-wise majority rule. When an even

number of vectors are bundled, there may be ties. These

elements are populated randomly with an equal probability

of zeros and ones. Structures are typically constructed from

randomly generated names, roles, and fillers by applying

the binding and bundling operators. For example, the

concept in Fig. 1 can be encoded by the two-place relation

haþ a1 ��þ a2 ��i, where a is the relation name

(‘‘above’’), a1 and a2 are roles of the relation, and the

geometric shapes are fillers indicating what is related.

All terms and factors in this representation are high-

dimensional binary vectors, as defined in (1). Vectors are

typically initialized randomly, or they may be composi-

tions of other random vectors. In a full-featured VSA

application, this encoding step is to be automated with

other methods, for example, by feature extraction using

deep learning networks or receptive fields in combination

with randomized fan-out projections and superpositions of

patterns. A key thing to realize in this context is that the

AMU, and VSAs in general, operate on high-dimensional

random distributed representations. This makes the VSA

approach robust to noise, and in principle and practice,

it enables operation with approximate compositional

structures.

Holistic Mapping Vectors

The starting point for the development of the AMU is the

idea of holistic mapping vectors, see [17–19]. In [17], a

BSC mapping of the form ‘‘X is the mother of Y’’! ‘‘X is

the parent of Y’’ is presented. This mapping is mathe-

matically similar to the above–below relation illustrated in

Fig. 1, with the exception that the mother–parent mapping

is unidirectional because a parent is not necessarily a

mother. The above–below relationship is bidirectional

because a mapping between ‘‘the circle is above the

square’’ and ‘‘the square is below the circle’’ is true in both

directions. We think that the geometric example illustrated

Fig. 1 The circle is above the square. This implies that the square is

below the circle. The analogical mapping unit (AMU) can learn this

simple ‘‘above–below’’ relation from examples and successfully

apply it to novel representations, see sections ‘‘Model’’ and ‘‘Sim-

ulation Experiments’’

Cogn Comput

123



here is somewhat simpler to explain and we therefore use

that. The key idea presented in [17] is that a mapping

vector, M, can be constructed so that it performs a mapping

of the type: ‘‘If the circle is above the square, then the

square is below the circle’’. If the mapping vector is

defined in this way

M ¼ �"�# ��#�"; ð4Þ

then it follows that

M ��"�# ¼ �#�"; ð5Þ

because the XOR-based binding operator is an involuntary

(self-inverse) function. The representations of these par-

ticular descriptions are illustrated in Table 1 and are cho-

sen to be mathematically identical to the mother-parent

representations in [17].

Making Analogies with Mapping Vectors

A more remarkable property appears when bundling sev-

eral mapping examples

M ¼ h�"�# ��#�" þ�"N# � N#�" þ � � �i; ð6Þ

because in this case the mapping vector generalizes

correctly to novel representations

M �F"�# � �#F": ð7Þ

The symbols F and t have not been involved in the

construction of M, but the mapping results in an

analogically correct compositional structure. This is an

example of analogy-making because the information about

above–below relations can be applied to novel

representations.

The left- and right-hand side of (7) are similar compo-

sitional structures, but they are not identical. The result is

correct in the sense that it is close to the expected result, for

example, in terms of the Hamming distance or correlation

between the actual output vector and expected result, see

[17] for details. In real-world applications, the expected

mapping results could well be unknown. It is still possible

to interpret the result of an analogical mapping if parts of

the resulting compositional structure are known. For

example, the interpretation of an analogical mapping result

can be made using a VSA operation called probing, which

extracts known parts of a compositional structure (which

by themselves may be compositional structures). This

process can be realized with a ‘‘clean-up memory’’, see

[p. 102, 14]. A mapping result that does not contain any

previously known structure is interpreted as noise.

Observe that the analogical mapping (7) is not simply a

matter of reordering the vectors representing the five-

pointed star and diamond symbols. The source and target of

this mapping are two nearly uncorrelated vectors, with

different but analogical interpretations. In principle, this

mechanism can also generalize to compositional structures

of higher complexity than those in the training set, see [18]

for examples. These interesting results motivated the

development of the AMU.

Making Inferences with Mapping Vectors

Note that (4) is symmetric in the sense that the mapping is

bidirectional. It can perform the two mappings M � d:

j; = j; d: and M � j ; d: = d: j; equally well.

This is a consequence of the commutative property of the

binding operator. In this particular example that does not

pose a problem, because both mappings are true. In the

parent–mother example in [17], it implies that ‘‘parent’’ is

mapped to ‘‘mother’’, which is not necessarily a good

thing. A more severe problem with bidirectional mappings

appears in the context of inference and learning of

sequences, which requires strictly unidirectional mappings.

To enable robust analogical mapping, and inference in

general, the mapping direction of BSC mapping vectors

must be controlled. This problem is solved by the inte-

gration of an associative memory in the AMU model, see

section ‘‘Learning Circuit’’.

Sparse Distributed Memory

To make practical use of mapping vectors, we need a

method to create, store, and query them. In particular, this

involves the difficulty of knowing how to bundle new

mapping vectors with the historical record. How should the

system keep the examples organized without involving a

homunculus (which could just as well do the mappings for

us)? Fortunately, a suitable framework has already been

developed for another purpose. The development presented

here rests on the idea that an SDM used in an appropriate

way is a suitable memory for storage of analogical map-

ping vectors, which automatically bundles similar mapping

examples into well-organized mapping vectors. The SDM

Table 1 Two different representations of the geometric composition

presented in Fig. 1

Relation Representation

Circle is above the square �"�# ¼ haþ a1 ��þ a2 ��i
Square is below the circle �#�" ¼ hbþ b1 ��þ b2 ��i
All terms and factors in these expressions are high-dimensional binary

vectors, and the two states of each element in these vectors are

equally likely. See the text for definitions of the operators. A mapping

vector, M, can be constructed that maps one of the representations

into the other [17]. The AMU that is presented below can learn the

mapping vectors between many different representations like these
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model of associative and episodic memory is well descri-

bed in the seminal book by Kanerva. Various modifications

of the SDM model have been proposed [50–54] but here

we use the original SDM model [9].

Architecture and Initialization

An SDM essentially consists of two parts, which can be

thought of as two matrices: a binary address matrix, A, and

an integer content matrix, C. These two matrices are ini-

tialized as follows: The matrix A is populated randomly

with zeros and ones (equiprobably), and the matrix C is

initialized with zeros. The rows of the matrix A are so-

called address vectors, and the rows of the matrix C are

counter vectors. There is a one-to-one link between address

vectors and counter vectors, so that an activated address

vector is always accompanied by one particular activated

counter vector. The address and counter vectors have

dimensionality D. The number of address vectors and

counter vectors defines the size of the memory, S.

The SDM can be described algebraically as follows. If

the address and counter vectors have dimensionality D, the

address matrix, A, can be defined as

A ¼

a11 a12 . . . a1D
a21 a22 . . . a2D
. . .
aS1 aS2 . . . aSD

2
664

3
775; ð8Þ

where ai;j 2 fi ¼ 1; 2; . . .; S; j ¼ 1; 2; . . .;Dg are random

bits (short for binary digits) with equal probability for the

two states. The content matrix, C, is defined as

C ¼

c11 c12 . . . c1D
c21 c22 . . . c2D
. . .
cS1 cS2 . . . cSD

2

664

3

775; ð9Þ

where ai;j 2 fi ¼ 1; 2; . . .; S; j ¼ 1; 2; . . .;Dg are integer

numbers that are initialized to zero in an empty memory.

Storage Operation

When a vector is stored in the SDM, the content matrix C is

updated, but the address matrix A is static. It is typically

sufficient to have six or seven bits of precision in the ele-

ments of the content matrix [9]. The random nature of the

compositional structures makes saturation of counter vec-

tors unlikely with that precision.

Two input vectors are needed to store a new vector in

the SDM: a query vector, x ¼ ðx1; x2. . .; xDÞ, and a data

vector, d ¼ fd1; d2. . .; dDg. The query vector, x, is com-

pared with all address vectors, ai, using the Hamming

distance, d. The Hamming distance between two binary

vectors x and a is defined as

dðx; aÞ ¼
XD

i¼1

Iðxi; aiÞ ð10Þ

where I is a bit-wise XOR operation

Iðxi; aiÞ ¼
1; xi 6¼ ai

0; xi ¼ ai:

�
ð11Þ

The Hamming distance between two vectors is related to

the Pearson correlation coefficient, q, by q = 1 - 2d [16].

A predefined threshold value, T, is used to calculate a new

vector s ¼ fs1; s2. . .; sSg so that

si ¼
1; dðs; aiÞ\T
0; dðs; aiÞ� T:

�
ð12Þ

The non-zero elements of s are used to activate a sparse

subset of the counter vectors in C. In other words, the

indices of non-zero elements in s are the row-indices of

activated counter vectors in the matrix C. With this defi-

nition of s, the activated counter vectors correspond to

address vectors that are close to the query vector, x.

In a writing operation, the activated counter vectors are

updated using the data vector, d. For every bit that is 1 in

the data vector, the corresponding elements in the activated

counter vectors are increased by one, and for every bit that

is 0, the corresponding counters are decreased by one. This

means that the elements, ci,j, of the matrix C are updated so

that

ci;j  
ci;j þ 1 si ¼ 1; dj ¼ 1

ci;j � 1 si ¼ 0; dj ¼ 1

ci;j si ¼ 0

8
<

: ð13Þ

The details of why this is a reasonable storage operation in

a binary model of associative memory are well described in

[9].

Various modifications of the SDM model have been

presented in the literature that address the problem of

storing non-random patterns and localist representations in

an SDM without saturating the counter vectors. In our

perspective, low-level structured inputs from sensors need

to be preprocessed with other methods, such as methods for

invariant feature extraction. There are good reasons to

operate with random representations at the higher cognitive

level [9, 55], and this is a typical prerequisite of VSAs.

Retrieval Operation

In a retrieval operation, the SDM functions in a way that is

similar to the storage operation except that an approximate

data vector, d, is retrieved from the SDM rather than supplied

to it as input. For a given query vector, x ¼ ðx1; x2. . .; xDÞ,
the Hamming distances, d(x, ai), between x and all address

vectors, ai, are calculated. A threshold condition (12) is used
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to activate counter vectors in C with addresses that are suf-

ficiently close to the query vector. The activated counter

vectors in C are summed,

hj ¼
XS

i¼1

sicij; ð14Þ

and the resulting integer vector, hj, is converted to a binary

output vector, d, with the rule

dj ¼
1; hj [ 0

0; hj\0

random otherwise:

8
<

: ð15Þ

In this paper, we use the term recall for the process of

retrieving a data vector from the SDM that previously has

been stored. An SDM retrieval operation is analogous to

bundling (2) of all vectors stored with an address vector

that is similar to the query vector.

Implementation

An SDM can be visualized as suggested in Fig. 2, with two

inputs and one output. The open circle denotes the query

vector, which is supplied both when storing and retrieving

information. The open square denotes the input data vector,

which is supplied when storing information in the SDM.

The solid square denotes the output data vector, which is

generated when retrieving information. For software sim-

ulation purposes, for example in Matlab, the VSA operators

and the SDM can be implemented in an alternative way if

binary vectors are replaced with bipolar vectors accord-

ing to the mapping f0! 1; 1! �1g. In that case, the

XOR binding operator is replaced with element-wise

multiplication.

The number of counter vectors that are activated during

one storage or retrieval operation depends on the threshold

value, T. In this work, we choose to calculate this param-

eter so that a given fraction, v, of the storage locations of

the SDM is activated. Therefore, v is the average proba-

bility of activating a row in the matrices A and C, which we

also refer to as one storage location of the SDM. The

number of activated locations in each storage or retrieval

operation is exactly v S. When storing multiple mapping

vectors in an SDM, it is possible that a subset of the

counter vectors are updated with several mapping vectors,

which can correspond to different mapping examples. On

average, the probability for overlap of two different map-

ping vectors in a location of the SDM is of the order v2.

Next, we present the AMU model, which incorporates

an SDM for the storage and retrieval of analogical mapping

vectors.

Model

The AMU consists of one SDM with an additional input–

output circuit. First, we introduce the learning and mapping

parts of this circuit, and then, we combine these parts into a

complete circuit that represents the AMU.

Learning Circuit

The AMU stores vectors in a process that is similar to the

bundling of examples in (6), provided that the addresses of

the mapping examples are similar. If the addresses are

uncorrelated, the individual mapping examples will be

stored in different locations of the SDM and no bundling

takes place, which prevents generalization and analogical

mapping. A simple approach is therefore to define the

query vector of a mapping, xk ! yk, as the variable xk. This

implies that mappings with similar xk are, qualitatively

speaking, bundled together within the SDM. The mapping

vector xk � yk is the data vector supplied to the SDM, and

it is bundled in counter vectors with addresses that are

close to xk. A schematic diagram illustrating this learning

circuit is shown in Fig. 3.

This circuit avoids the problem of bidirectionality dis-

cussed in section ‘‘Making Inferences with Mapping Vec-

tors’’ because the SDM locations that are activated by the

query vector xk are different from the locations that are

activated by the query vector yk of the reversed mapping.

The forward and reversed mappings are therefore stored in

different SDM locations. Therefore, the output of a query

with yk is nonsense (noise) if the reversed mapping is not

explicitly stored in the SDM. In other words, the reversed

mapping yk ! xk is not implicitly learned.

Note that different types of mappings have different xk.

Queries with different xk activate different locations in the

SDM. Therefore, given a sufficiently large memory, it is

possible to store multiple types of mappings in one SDM.

This is illustrated with simulations in section ‘‘Simulation

Experiments’’.

Fig. 2 Schematic illustration of a sparse distributed memory (SDM),

which is an associative memory for random high-dimensional binary

vectors [9]

Fig. 3 Schematic diagram of learning circuit for mappings of type

xk ! yk . Learning can be supervised or unsupervised, for example, in

the form of coincidence (Hebbian) learning
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Mapping Circuit

The learning mechanism in combination with the basic idea

of analogical mapping (7) suggests that the mapping circuit

should be defined as illustrated in Fig. 4. This circuit binds

the input, xk, with the bundled mapping vector of similar

mapping examples that is stored in the SDM. The result is

an output vector y0k. If the mapping xk ! yk is stored in the

SDM, then y0k & yk.

When a number of similar mapping examples are stored

in the SDM, this circuit can generalize correctly to novel

compositional structures. In such cases, yk
0 is an approxi-

mate analogical mapping of xk. This is illustrated with

simulations in the next section.

The Analogical Mapping Unit

The AMU includes one SDM and a combination of the

learning and mapping circuits that are presented in the

former two subsections, see Fig. 5. It is a computational

unit for the mapping of distributed representations of

compositional structures that takes two binary input vectors

and provides one binary output vector, much like the SDM

does, but with a different result and interpretation. If the

input to the AMU is xk the corresponding output vector y0k
is calculated (mapping mode). With two input vectors, xk

and yk, the AMU stores the corresponding mapping vector

in the SDM (learning mode). In total, the AMU has three

exogenous parameters: S, v, and the dimensionality D of

the VSA, see Table 2. In principle, the SDM of the AMU

can be shared with other VSA components, provided that

the mappings are encoded in a suitable way. Next, we

present simulation results that characterize some important

and interesting properties of the AMU.

Simulation Experiments

An important measure for the quality of an intelligent

system is its ability to generalize with the acquired

knowledge [56]. To test this aspect, we generate previously

unseen examples of the ‘‘above–below relation using the

sequence shown in Fig. 6. The relations between the items

in this sequence are encoded in a similar way to those

outlined in Table 1, with the only difference being that the

fillers are different, see Table 3.

Comparison with Other Results

Our mapping approach is similar to that in [17], but differs

from that in three ways. First, mapping examples are fed to

an SDM so that multiple mapping vectors are stored in the

SDM, instead of defining explicit mapping vectors for each

mapping. Second, the model uses binary spatter codes to

represent mappings, which means that the mapping vectors

generated by the AMU are binary vectors and not integer

vectors. Third, the dimensionality D is set to a somewhat

low value of 1,000 in most simulations presented here, and

we illustrate the effect of higher dimensionality at the end

of this section. We adopt the method in [17] to calculate the
Fig. 4 Schematic diagram of circuit for mappings of type xk ! y0k .

Here, y0k & yk when xk ! yk is in the training set. Otherwise yk

0
is an

approximate analogical mapping of xk, or noise if xk is unrelated to the

learned mappings

Fig. 5 The analogical mapping unit (AMU), which includes the

learning and mapping circuits introduced above. This unit learns

mappings of the type xk ! yk from examples and uses bundled

mapping vectors stored in the SDM to calculate the output vector y0k

Table 2 Summary of exogenous parameters of the AMU

Expression Description

S Memory size, number of address and counter vectors

D Dimensionality of vector symbolic representations

v Average probability for activating an SDM location

A
B
C...

Fig. 6 A sequence of novel ‘‘above–below’’ relations that is used to

test the ability of the AMU to generalize

Table 3 Representation of ‘‘above–below’’ relations between novel

structures

Relation Representation

A is above B A"B# ¼ haþ a1 � Aþ a2 � Bi
B is below A B#A" ¼ hbþ b1 � Bþ b2 � Ai
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similarity between the output of the AMU and alternative

mappings with the correlation coefficient, q, see section

‘‘Storage Operation’’. Randomly selected structures, such

as: a; b; a1; a2; b1; b2;d;�. . . A, B are uncorrelated, q & 0.

That is true also for xi and yi, such as: d: j; and j; d:.

However, d: j; and A: B; include the same relation

name, a, in the composition, and these vectors are therefore

correlated, q & 0.25.

The AMU learns mappings between compositional

structures according to the circuit shown in Fig. 3, and the

output y0k of the AMU is determined according to Fig. 4

and related text. The output, y0k, is compared with a set of

alternative mapping results in terms of the correlation

coefficient, q, both for recall and generalization. The

number of training examples is denoted with Ne. To esti-

mate the average performance of the AMU, we repeat each

simulation 5000 times with independently initialized

AMUs. This is sufficient to estimate the correlation coef-

ficients with a relative error of about ± 10-2.

In order to compare our model with [17], we first set the

parameters of the AMU to S ¼ 1;D ¼ 1; 000 and v = 1.

This implies that the AMU has one location that is acti-

vated in each storage and retrieval operation. The result of

this simulation is presented in Fig. 7. Figure 7a shows the

average correlation between the output y0k resulting from

the input, xk = d: j;, which is in the training set, and four

alternative compositional structures. Figure 7b shows the

average correlation between four alternative compositional

structures and the AMU output resulting from a novel

input, xk = A:B;. The alternative with the highest corre-

lation is selected as the correct answer. With more training

examples, the ability of the AMU to generalize increases,

because the correlations with wrong alternatives decrease

with increasing Ne. The alternative with the highest cor-

relation always corresponds to the correct result in this

simulation, even in the case of generalization from three

training examples only.

These results demonstrate that the number of training

examples affects the ability of the AMU to generalize. This

conclusion is consistent with the results (see Fig. 1) and the

related discussion in [17]. The constant correlation with the

correct mapping alternative in Fig. 7b is one quantitative

difference between our result and the result in [17]. In our

model, the correlation of the correct generalization alter-

native does not increase with Ne, but the correlations with

incorrect alternatives decrease with increasing Ne. This

difference is caused by the use of binary mapping vectors

within the AMU, instead of integer mapping vectors. If we

use the integer mapping vectors (14) that are generated

within the SDM of the AMU, we reproduce the quantitative

results obtained in [17]. Integer mapping vectors can be

implemented in our model by modifying the normalization

condition (15). The correlation with correct mappings can

be improved in some cases with the use of integer mapping

vectors, but the use of binary representations of both com-

positional structures and mapping vectors is more simple,

and it makes it possible to use an ordinary SDM for the AMU.

By explicitly calculating the probability of error from the

simulation results, we conclude that the use of binary map-

ping vectors is sufficient. (We return to this point below.)

In principle, there are many other ‘‘wrong’’ mapping

alternatives that are highly correlated with the AMU out-

put, y0k, in addition to the four alternatives that are con-

sidered above. However, the probability that such incorrect

alternatives or interpretations would emerge spontaneously

is practically zero due to the high dimensionality and

random nature of the compositional structures [9]. This is a

key feature and design principle of VSAs.

Storage of Mapping Vectors in a Sparse Distributed

Memory

Next, we increase the size of the SDM to S = 100, which

implies that there are one hundred storage locations. The
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Fig. 7 The correlation, q, between the output of the analogical

mapping unit (AMU) and alternative compositional structures versus

the number of training examples, Ne, for a recall of learned mappings;

b generalization from novel inputs. The parameters of the AMU are

S = 1, v = 1 and D ¼ 1; 000
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possibility to have S [ 1 is a novel feature of the AMU

model, which was not considered in former studies [14, 17,

18, 20, 22]. We investigate the effect of different values of

v and present results for v = 0.05 and v = 0.25. That is,

when the AMU activates 5% and 25% of the SDM to learn

each mapping vector. Figure 8 shows that the effect of

increasing v is similar to training with more examples, in

the sense that it improves generalization and reduces the

accuracy of recall. This figure is analogous to Fig. 7, with

the only difference being that here the AMU parameters are

S = 100 and v = 0.05 or v = 0.25. Figure 8a, c show the

average correlation between the output y0k resulting from

the input, xk = d: j;, which is in the training set, and four

alternative compositional structures for, respectively,

v = 0.05 and v = 0.25. Figure 8b, d shows the average

correlation between four alternative compositional struc-

tures and the AMU output resulting from a novel input,

xk = A:B;. When retrieving learned examples for

v = 0.05 and v = 0.25, the alternative with the highest

correlation always corresponds to the correct result in this

simulation experiment. See Fig. 7 and related text for

details of how the average correlations are calculated. A

high value of v enables generalization with fewer training

examples, but there is a trade-off with the number of dif-

ferent two-place relations that are learned by the AMU. We

return to that below.

Probability of Error

The correlations between the output of the AMU and the

alternative compositional structures varies from one sim-

ulation experiment to the next because the AMU is ran-

domly initialized. The distribution functions for these

variations have a non-trivial structure. It is difficult to

translate average correlation coefficients and variances into

tail probabilities of error. Therefore, we estimate the

probability of error numerically from the error rate in the

simulation experiments. An error occurs when the output of

the AMU has the highest correlation with a compositional

structure that represents an incorrect mapping. The prob-

ability of error is defined as the number of errors divided by

the total number of simulated mappings, NeNrNs, where Ne

is the number of training examples for each particular two-

place relation, Nr is the number of different two-place

relations (unrelated sets of mapping examples), and

Ns = 5,000 is the number of simulation experiments per-

formed with independent AMUs. We test all Ne mappings

of each two-place relation in the training set, and we test

equally many generalization mappings in each simulation

experiment. This is why the factors Ne and Nr enter the

expression for the total number of simulated mappings. The

Ne different xk and yk are generated in the same way for the

training and generalization sets, by using a common set of
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Fig. 8 Correlations between alternative compositional structures and

the output of an AMU versus the number of examples in the training

set, Ne, for a recall with v = 0.05; b Generalization with v = 0.05;

c Recall with v = 0.25; d Generalization with v = 0.25. The size of

the SDM is S = 100 in all four cases
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names and roles but different fillers for the training and

generalization sets. Different two-place relations are gen-

erated by different sets of names and roles, see section

‘‘Storing Multiple Relations’’.

When the probability of error is low, we have verified

the estimate of the probability by increasing the number of

simulation experiments, Ns. For example, this is sometimes

the case when estimating the probability of error for

mappings that are in the training set. As mentioned in

section ‘‘Comparison with Other Results,’’ this is why we

choose a suboptimal and low value for the dimensionality

of the representations, D. The probability of error is lower

with high-dimensional representations, which is good for

applications of the model but makes estimation of the

probability of error costly. Figure 9 presents an interesting

and expected effect of the probability of error during

generalization versus the number of training examples. The

probability of activating a storage location, v, affects the

probability of generalization error significantly. For

v = 0.25 and Ne = 30, the AMU provides more than 99.9%

correct mappings. Therefore, that point has poor precision

and is excluded from the figure.

In Fig. 7, all mapping vectors are bundled in one single

storage location, while Fig. 9 is generated with AMUs that

have an SDM of size S = 100 so that each mapping vector

is stored in multiple locations. Figures 8 and 9 are com-

plementary because the parameters of the AMUs used to

generate these figures are identical. For v = 0.25 the AMU

generalizes correctly with fewer training examples com-

pared to the results for the lower value of v = 0.05. This

result is consistent with Fig. 8, which suggests that the

AMU with v = 0.25 generalizes with fewer training

examples. The rationale of this result is that a higher value

of v gives more overlap between different mapping vectors

stored in the AMU, and multiple overlapping (bundled)

mapping vectors are required for generalization, see (7).

This effect is visible also in Fig. 7, where the AMU

provides the correct generalization after learning three

examples.

Storing Multiple Relations

Since mapping vectors are bundled in a fraction of the

storage locations of the SDM, it is reasonable to expect that

the AMU can store additional mapping vectors, which could

be something else than ‘‘above–below’’ relations. To test

this idea, we introduce a number, Nr, of different two-place

relations. The above–below relation considered above is

one example of such a two-place relation, see Tables 1, 3. In

general, names and roles can be generated randomly for

each particular two-place relation, see Table 4, in the same

way as the names and roles are generated for the above–

below relations. For each two-place relation, we generate Ne

training examples and Ne test (generalization) examples, see

the discussion in section ‘‘Probability of Error’’ for further

details. This way we can simulate the effect of storing

multiple two-place relations in one AMU.

An interesting effect appears when varying the number of

two-place relations, Nr, and the size of the SDM, see

Fig. 10a. The size of the SDM, S, and the average proba-

bility of activating a storage location, v, affect the proba-

bility of generalization error. Provided that the SDM is

sufficiently large and that Ne is not too high, there is a

minimum in the probability of error for some value of Nr. A

minimum appears at Nr = 3 - 4 for v = 0.05 and

S = 1,000 in Fig. 10a. Figure 10b has a minimum at Nr = 2

for chi = 0.25 and S = 100. Generalization with few

examples requires that the number of storage locations is

matched to the number of two-place relations that are

learned. The existence of a minimum in the probability of

error can be interpreted qualitatively in the following way.

The results in Figs. 7, 8, 9 illustrate that a low probability of

generalization error requires that many mapping vectors are

bundled. The probability of error decreases with increasing

Ne because the correlation between the AMU output and the

incorrect compositional structures decreases with Ne. This is

not so for the correlation between the output and the correct
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Fig. 9 The probability of generalization error versus the number of

training examples, Ne, for v = 0.05 and v = 0.25

Table 4 Representation of generic two-place relations, labeled by z,

between two compositional structures represented by the fillers f1,k,z

and f2,k,z

Relation Representation

Source, xk,z hn1;z þ r11;z � f1;k;z þ r12;z � f2;k;zi
Target, yk,z hn2;z þ r21;z � f1;k;z þ r22;z � f2;k;zi

Training examples are indexed by k 2 ½1;Ne� and there are equally

many test (generalization) examples k 2 ½Ne þ 1; 2Ne�, which implies

that 2Ne mapping examples are created for each two-place relation.

The names, ni,z, and roles, rij,z, are unique for each two-place relation.

By definition z 2 ½1;Nr�
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compositional structure, which is constant. This suggests

that one effect of bundling additional mapping vectors,

which adds noise to any particular mapping vector that has

been stored in the AMU, is a reduction of the correlation

between the AMU output and incorrect compositional

structures. A similar effect apparently exists when bundling

mapping vectors of unrelated two-place relations. The noise

introduced mainly reduces the correlation between the

AMU output and compositional structures representing

incorrect alternatives.

Another minimum in the probability of error appears

when we vary the average probability of activating a

storage location, v, see Fig. 11. In this figure, we illustrate

the worst-case scenario in Fig. 10, S = 100 and

Ne = Nr = 10, for different values of v. A minimum

appears in the probability of error for v& 0.2. This result

shows that the (partial) bundling of mapping vectors,

including bundling of unrelated mapping vectors, can

reduce the probability of generalization error.

The interpretation of these results in a neural-network

perspective on SDM and binary VSAs is that the sparseness of

the neural codes for analogical mapping is important. In par-

ticular, the sparseness of the activated address decoder neu-

rons in the SDM [9] is important for the probability of

generalization error. A similar effect is visible in Fig. 9, where

v = 0.25 gives a lower probability of error than v = 0.05.

Effect of Dimensionality

All simulations that are summarized above are based on a

low dimensionality of compositional structures,

D ¼ 1; 000, which is one order of magnitude lower than

the preferred value. A higher dimensionality results in a

lower probability of error. Therefore, it would be a tedious

task to estimate the probability of error with simulations for

higher values of D. We illustrate the effect of varying

dimensionality in Fig. 12. By choosing a dimensionality of

order 104, the probabilities of errors reported in this work

can be lowered significantly, but that would make the task

to estimate the probability of error for different values of

the parameters S, v, Ne, and Nr more tedious. The analyt-

ical results obtained by [9, 17, 22] suggest that the optimal

choice for the dimensionality of binary vector symbolic

representations is of order 104, and this conclusion remains

true for the AMU model. A slightly higher dimensionality

than 104 may be motivated, but 105 is too much because it

does not improve the probability of error much and

requires more storage space and computation. Kanerva

derived this result from basic statistical properties of hy-

perdimensional binary spaces, which is an interesting result

in a cognitive computation context because that number

matches the number of excitatory synapses observed on

pyramidal cells in cortex.

Discussion

Earlier work on analogical mapping of compositional

structures deals with isolated mapping vectors that are hand-
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Fig. 10 The probability of generalization error versus the number of different two-place relations, Nr, for a S = 100 and S = 1,000 when

v = 0.05; b v = 0.05 and v = 0.25 when S = 100. Other parameters are D ¼ 1; 000 and Ne = 10
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coded or learned from examples [7, 14, 17, 18, 20, 22]. The

aim of this work is to investigate whether such mapping

vectors can be stored in an associative memory so that

multiple mappings can be learnt from examples and applied

to novel inputs, which in principle can be unlabeled. We

show that this is possible and demonstrate the solution using

compositional structures that are similar to those considered

by others. The proposed model integrates two existing ideas

into one novel computational unit, which we call the Ana-

logical Mapping Unit (AMU). The AMU integrates a model

of associative memory known as sparse distributed memory

(SDM) [9] with the idea of holistic mapping vectors [17–19]

for binary compositional structures that generalize to novel

inputs. By extending the original SDM model with a novel

input–output circuit, the AMU can store multiple mapping

vectors obtained from similar and unrelated training

examples. The AMU is designed to separate the mapping

vectors of unrelated mappings into different storage loca-

tions of the SDM.

The AMU has a one-shot learning process and it is able

to recall mappings that are in the training set. After

learning many mapping examples, no specific mapping is

recalled and the AMU provides the correct mapping by

analogy. The ability of the AMU to recall specific map-

pings increases with the size of the SDM. We find that the

ability of the AMU to generalize does not increase

monotonically with the size of the memory; It is optimal

when the number of storage locations is matched to the

number of different mappings learnt. The relative number

of storage locations that are activated when one mapping is

stored or retrieved is also important for the ability of the

AMU to generalize. This can be understood qualitatively

by a thought experiment: If the SDM is too small, there is

much interference between the mapping vectors, and the

output of the AMU is essentially noise. If the SDM is

infinitely large, each mapping vector is stored in a unique

subset of storage locations and the retrieved mapping

vectors are exact copies of those learnt from the training

examples. Generalization is possible when related mapping

vectors are combined into new (bundled) mapping vectors,

which integrate structural and semantic constraints from

similar mapping examples (7). In other words, there can be

no generalization when the retrieved mapping vectors are

exact copies of examples learnt. Bundling of too many

unrelated mapping vectors is also undesirable because it

leads to a high level of noise in the output, which prevents

application of the result. Therefore, a balance between the

probability of activating and allocating storage locations is

required to obtain a minimum probability of error when the

AMU generalizes.

The probability of activating storage locations of the

AMU, v, is related to the ‘‘sparseness of the representation

of mapping vectors. A qualitative interpretation of this

parameter in terms of the sparseness of neural coding is

discussed in [9]. We find that when the representations are

too sparse the AMU makes perfect recall of known map-

pings but is unable to generalize. A less sparse represen-

tation results in more interference between the stored

mapping vectors. This enables generalization and has a

negative effect on recall. We find that the optimal sparse-

ness for generalization depends in a non-trivial way on

other parameters and details, such as the size of the SDM,

the number of unrelated mappings learnt, and the dimen-

sionality of the representations. The optimal parameters for

the AMU also depend on the complexity of the composi-

tional structures, which is related to the encoding and

grounding of compositional structures. This is an open

problem that needs further research.

A final note concerns the representation of mapping

vectors in former work versus the mapping vectors stored

by an AMU. In [17], integer mapping vectors for binary

compositional structures are used to improve the correla-

tion between mapping results and the expected answers. An

identical approach is possible with the AMU if the nor-

malization in (15) is omitted. However, by calculating the

probability of error in the simulation experiments, we

conclude that it is sufficient to use binary mapping vectors.

This is appealing because it enables us to represent map-

ping vectors in the same form as other compositional

structures. Kanervas estimate that the optimal dimension-

ality for the compositional structures is of order 104

remains true for the AMU. The probability of errors made

by the AMU decreases with increasing dimensionality up

to that order and remains practically constant at higher

dimensionality.

There is much that remains to understand concerning

binary vector symbolic models, for example, whether these

discrete models are compatible with cortical networks and
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Fig. 12 The probability of generalization error versus the dimen-

sionality of binary compositional structures, D. Other parameters are

S = 100, v = 0.05, Ne = 10 and Nr = 10. The optimal dimension-

ality is of the order D ¼ 104
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to what extent they can describe cognitive function in the

brain. At a more pragmatic level, the problem of how to

encode and ground compositional structures automatically

needs further work, for example, in the form of receptive

fields and deep learning networks. Given an encoding unit

for binary compositional structures the AMU is ready to be

used in applications. Therefore, this paper is a small but

potentially important step toward a future generation of

digital devices that compute with qualitative relationships

and adapt to the environment with minimal assistance from

humans.
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