61 research outputs found

    The Development of Bio-Inspired Cortical Feature Maps for Robot Sensorimotor Controllers

    Get PDF
    Full version unavailable due to 3rd party copyright restrictions.This project applies principles from the field of Computational Neuroscience to Robotics research, in particular to develop systems inspired by how nature manages to solve sensorimotor coordination tasks. The overall aim has been to build a self-organising sensorimotor system using biologically inspired techniques based upon human cortical development which can in the future be implemented in neuromorphic hardware. This can then deliver the benefits of low power consumption and real time operation but with flexible learning onboard autonomous robots. A core principle is the Self-Organising Feature Map which is based upon the theory of how 2D maps develop in real cortex to represent complex information from the environment. A framework for developing feature maps for both motor and visual directional selectivity representing eight different directions of motion is described as well as how they can be coupled together to make a basic visuomotor system. In contrast to many previous works which use artificially generated visual inputs (for example, image sequences of oriented moving bars or mathematically generated Gaussian bars) a novel feature of the current work is that the visual input is generated by a DVS 128 silicon retina camera which is a neuromorphic device and produces spike events in a frame-free way. One of the main contributions of this work has been to develop a method of autonomous regulation of the map development process which adapts the learning dependent upon input activity. The main results show that distinct directionally selective maps for both the motor and visual modalities are produced under a range of experimental scenarios. The adaptive learning process successfully controls the rate of learning in both motor and visual map development and is used to indicate when sufficient patterns have been presented, thus avoiding the need to define in advance the quantity and range of training data. The coupling training experiments show that the visual input learns to modulate the original motor map response, creating a new visual-motor topological map.EPSRC, University of Plymouth Graduate Schoo

    Enhanced robotic hand-eye coordination inspired from human-like behavioral patterns

    Get PDF
    Robotic hand-eye coordination is recognized as an important skill to deal with complex real environments. Conventional robotic hand-eye coordination methods merely transfer stimulus signals from robotic visual space to hand actuator space. This paper introduces a reverse method: Build another channel that transfers stimulus signals from robotic hand space to visual space. Based on the reverse channel, a human-like behavior pattern: “Stop-to-Fixate”, is imparted to the robot, thereby giving the robot an enhanced reaching ability. A visual processing system inspired by the human retina structure is used to compress visual information so as to reduce the robot’s learning complexity. In addition, two constructive neural networks establish the two sensory delivery channels. The experimental results demonstrate that the robotic system gradually obtains a reaching ability. In particular, when the robotic hand touches an unseen object, the reverse channel successfully drives the visual system to notice the unseen object

    Sensorimotor representation learning for an "active self" in robots: A model survey

    Get PDF
    Safe human-robot interactions require robots to be able to learn how to behave appropriately in \sout{humans' world} \rev{spaces populated by people} and thus to cope with the challenges posed by our dynamic and unstructured environment, rather than being provided a rigid set of rules for operations. In humans, these capabilities are thought to be related to our ability to perceive our body in space, sensing the location of our limbs during movement, being aware of other objects and agents, and controlling our body parts to interact with them intentionally. Toward the next generation of robots with bio-inspired capacities, in this paper, we first review the developmental processes of underlying mechanisms of these abilities: The sensory representations of body schema, peripersonal space, and the active self in humans. Second, we provide a survey of robotics models of these sensory representations and robotics models of the self; and we compare these models with the human counterparts. Finally, we analyse what is missing from these robotics models and propose a theoretical computational framework, which aims to allow the emergence of the sense of self in artificial agents by developing sensory representations through self-exploration

    Sensorimotor Representation Learning for an “Active Self” in Robots: A Model Survey

    Get PDF
    Safe human-robot interactions require robots to be able to learn how to behave appropriately in spaces populated by people and thus to cope with the challenges posed by our dynamic and unstructured environment, rather than being provided a rigid set of rules for operations. In humans, these capabilities are thought to be related to our ability to perceive our body in space, sensing the location of our limbs during movement, being aware of other objects and agents, and controlling our body parts to interact with them intentionally. Toward the next generation of robots with bio-inspired capacities, in this paper, we first review the developmental processes of underlying mechanisms of these abilities: The sensory representations of body schema, peripersonal space, and the active self in humans. Second, we provide a survey of robotics models of these sensory representations and robotics models of the self; and we compare these models with the human counterparts. Finally, we analyze what is missing from these robotics models and propose a theoretical computational framework, which aims to allow the emergence of the sense of self in artificial agents by developing sensory representations through self-exploration.Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659Projekt DEALPeer Reviewe

    Humanoid Robots

    Get PDF
    For many years, the human being has been trying, in all ways, to recreate the complex mechanisms that form the human body. Such task is extremely complicated and the results are not totally satisfactory. However, with increasing technological advances based on theoretical and experimental researches, man gets, in a way, to copy or to imitate some systems of the human body. These researches not only intended to create humanoid robots, great part of them constituting autonomous systems, but also, in some way, to offer a higher knowledge of the systems that form the human body, objectifying possible applications in the technology of rehabilitation of human beings, gathering in a whole studies related not only to Robotics, but also to Biomechanics, Biomimmetics, Cybernetics, among other areas. This book presents a series of researches inspired by this ideal, carried through by various researchers worldwide, looking for to analyze and to discuss diverse subjects related to humanoid robots. The presented contributions explore aspects about robotic hands, learning, language, vision and locomotion

    Modelling Learning to Count in Humanoid Robots

    Get PDF
    In reference to IEEE copyrighted material which is used with permission in this thesis, the IEEE does not endorse any of Plymouth University's products or services. Internal or personal use of this material is permitted. If interested in reprinting/republishing IEEE copyrighted material for advertising or promotional purposes or for creating new collective works for resale or redistribution, please go to http://www.ieee.org/publications_standards/publications/rights/rights_link.html to learn how to obtain a License from RightsLink.This thesis concerns the formulation of novel developmental robotics models of embodied phenomena in number learning. Learning to count is believed to be of paramount importance for the acquisition of the remarkable fluency with which humans are able to manipulate numbers and other abstract concepts derived from them later in life. The ever-increasing amount of evidence for the embodied nature of human mathematical thinking suggests that the investigation of numerical cognition with the use of robotic cognitive models has a high potential of contributing toward the better understanding of the involved mechanisms. This thesis focuses on two particular groups of embodied effects tightly linked with learning to count. The first considered phenomenon is the contribution of the counting gestures to the counting accuracy of young children during the period of their acquisition of the skill. The second phenomenon, which arises over a longer time scale, is the human tendency to internally associate numbers with space that results, among others, in the widely-studied SNARC effect. The PhD research contributes to the knowledge in the subject by formulating novel neuro-robotic cognitive models of these phenomena, and by employing these in two series of simulation experiments. In the context of the counting gestures the simulations provide evidence for the importance of learning the number words prior to learning to count, for the usefulness of the proprioceptive information connected with gestures to improving counting accuracy, and for the significance of the spatial correspondence between the indicative acts and the objects being enumerated. In the context of the model of spatial-numerical associations the simulations demonstrate for the first time that these may arise as a consequence of the consistent spatial biases present when children are learning to count. Finally, based on the experience gathered throughout both modelling experiments, specific guidelines concerning future efforts in the application of robotic modelling in mathematical cognition are formulated.This research has been supported by the EU project RobotDoC (235065) from the FP7 Marie Curie Actions ITN

    Brain-inspired self-organization with cellular neuromorphic computing for multimodal unsupervised learning

    Full text link
    Cortical plasticity is one of the main features that enable our ability to learn and adapt in our environment. Indeed, the cerebral cortex self-organizes itself through structural and synaptic plasticity mechanisms that are very likely at the basis of an extremely interesting characteristic of the human brain development: the multimodal association. In spite of the diversity of the sensory modalities, like sight, sound and touch, the brain arrives at the same concepts (convergence). Moreover, biological observations show that one modality can activate the internal representation of another modality when both are correlated (divergence). In this work, we propose the Reentrant Self-Organizing Map (ReSOM), a brain-inspired neural system based on the reentry theory using Self-Organizing Maps and Hebbian-like learning. We propose and compare different computational methods for unsupervised learning and inference, then quantify the gain of the ReSOM in a multimodal classification task. The divergence mechanism is used to label one modality based on the other, while the convergence mechanism is used to improve the overall accuracy of the system. We perform our experiments on a constructed written/spoken digits database and a DVS/EMG hand gestures database. The proposed model is implemented on a cellular neuromorphic architecture that enables distributed computing with local connectivity. We show the gain of the so-called hardware plasticity induced by the ReSOM, where the system's topology is not fixed by the user but learned along the system's experience through self-organization.Comment: Preprin

    Interactive Concept Acquisition for Embodied Artificial Agents

    Get PDF
    An important capacity that is still lacking in intelligent systems such as robots, is the ability to use concepts in a human-like manner. Indeed, the use of concepts has been recognised as being fundamental to a wide range of cognitive skills, including classification, reasoning and memory. Intricately intertwined with language, concepts are at the core of human cognition; but despite a large body or research, their functioning is as of yet not well understood. Nevertheless it remains clear that if intelligent systems are to achieve a level of cognition comparable to humans, they will have to posses the ability to deal with the fundamental role that concepts play in cognition. A promising manner in which conceptual knowledge can be acquired by an intelligent system is through ongoing, incremental development. In this view, a system is situated in the world and gradually acquires skills and knowledge through interaction with its social and physical environment. Important in this regard is the notion that cognition is embodied. As such, both the physical body and the environment shape the manner in which cognition, including the learning and use of concepts, operates. Through active partaking in the interaction, an intelligent system might influence its learning experience as to be more effective. This work presents experiments which illustrate how these notions of interaction and embodiment can influence the learning process of artificial systems. It shows how an artificial agent can benefit from interactive learning. Rather than passively absorbing knowledge, the system actively partakes in its learning experience, yielding improved learning. Next, the influence of embodiment on perception is further explored in a case study concerning colour perception, which results in an alternative explanation for the question of why human colour experience is very similar amongst individuals despite physiological differences. Finally experiments, in which an artificial agent is embodied in a novel robot that is tailored for human-robot interaction, illustrate how active strategies are also beneficial in an HRI setting in which the robot learns from a human teacher
    • 

    corecore