43,282 research outputs found

    Machine Learning from Imbalanced Data Sets 101

    Get PDF
    Invited paper for the AAAI'2000 Workshop on Imbalanced Data Sets.For research to progress most effectively, we first should establish common ground regarding just what is the problem that imbalanced data sets present to machine learning systems. Why and when should imbalanced data sets be problematic? When is the problem simply an artifact of easily rectified design choices? I will try to pick the low-hanging fruit and share them with the rest of the workshop participants. Specifically, I would like to discuss what the problem is not. I hope this will lead to a profitable discussion of what the problem indeed is, and how it might be addressed most effectively.NYU, Stern School of Business, IOMS Department, Center for Digital Economy Researc

    Improving Risk Predictions by Preprocessing Imbalanced Credit Data

    Get PDF
    Imbalanced credit data sets refer to databases in which the class of defaulters is heavily under-represented in comparison to the class of non-defaulters. This is a very common situation in real-life credit scoring applications, but it has still received little attention. This paper investigates whether data resampling can be used to improve the performance of learners built from imbalanced credit data sets, and whether the effectiveness of resampling is related to the type of classifier. Experimental results demonstrate that learning with the resampled sets consistently outperforms the use of the original imbalanced credit data, independently of the classifier used

    Imbalanced Ensemble Classifier for learning from imbalanced business school data set

    Full text link
    Private business schools in India face a common problem of selecting quality students for their MBA programs to achieve the desired placement percentage. Generally, such data sets are biased towards one class, i.e., imbalanced in nature. And learning from the imbalanced dataset is a difficult proposition. This paper proposes an imbalanced ensemble classifier which can handle the imbalanced nature of the dataset and achieves higher accuracy in case of the feature selection (selection of important characteristics of students) cum classification problem (prediction of placements based on the students' characteristics) for Indian business school dataset. The optimal value of an important model parameter is found. Numerical evidence is also provided using Indian business school dataset to assess the outstanding performance of the proposed classifier

    Surrounding neighborhood-based SMOTE for learning from imbalanced data sets

    Get PDF
    Many traditional approaches to pattern classifi- cation assume that the problem classes share similar prior probabilities. However, in many real-life applications, this assumption is grossly violated. Often, the ratios of prior probabilities between classes are extremely skewed. This situation is known as the class imbalance problem. One of the strategies to tackle this problem consists of balancing the classes by resampling the original data set. The SMOTE algorithm is probably the most popular technique to increase the size of the minority class by generating synthetic instances. From the idea of the original SMOTE, we here propose the use of three approaches to surrounding neighborhood with the aim of generating artificial minority instances, but taking into account both the proximity and the spatial distribution of the examples. Experiments over a large collection of databases and using three different classifiers demonstrate that the new surrounding neighborhood-based SMOTE procedures significantly outperform other existing over-sampling algorithms

    A Selective Sampling Method for Imbalanced Data Learning on Support Vector Machines

    Get PDF
    The class imbalance problem in classification has been recognized as a significant research problem in recent years and a number of methods have been introduced to improve classification results. Rebalancing class distributions (such as over-sampling or under-sampling of learning datasets) has been popular due to its ease of implementation and relatively good performance. For the Support Vector Machine (SVM) classification algorithm, research efforts have focused on reducing the size of learning sets because of the algorithm\u27s sensitivity to the size of the dataset. In this dissertation, we propose a metaheuristic approach (Genetic Algorithm) for under-sampling of an imbalanced dataset in the context of a SVM classifier. The goal of this approach is to find an optimal learning set from imbalanced datasets without empirical studies that are normally required to find an optimal class distribution. Experimental results using real datasets indicate that this metaheuristic under-sampling performed well in rebalancing class distributions. Furthermore, an iterative sampling methodology was used to produce smaller learning sets by removing redundant instances. It incorporates informative and the representative under-sampling mechanisms to speed up the learning procedure for imbalanced data learning with a SVM. When compared with existing rebalancing methods and the metaheuristic approach to under-sampling, this iterative methodology not only provides good performance but also enables a SVM classifier to learn using very small learning sets for imbalanced data learning. For large-scale imbalanced datasets, this methodology provides an efficient and effective solution for imbalanced data learning with an SVM

    Learning from Imbalanced Multi-label Data Sets by Using Ensemble Strategies

    Get PDF
    Multi-label classification is an extension of conventional classification in which a single instance can be associated with multiple labels. Problems of this type are ubiquitous in everyday life. Such as, a movie can be categorized as action, crime, and thriller. Most algorithms on multi-label classification learning are designed for balanced data and don’t work well on imbalanced data. On the other hand, in real applications, most datasets are imbalanced. Therefore, we focused to improve multi-label classification performance on imbalanced datasets. In this paper, a state-of-the-art multi-label classification algorithm, which called IBLR_ML, is employed. This algorithm is produced from combination of k-nearest neighbor and logistic regression algorithms. Logistic regression part of this algorithm is combined with two ensemble learning algorithms, Bagging and Boosting. My approach is called IB-ELR. In this paper, for the first time, the ensemble bagging method whit stable learning as the base learner and imbalanced data sets as the training data is examined. Finally, to evaluate the proposed methods; they are implemented in JAVA language. Experimental results show the effectiveness of proposed methods. Keywords: Multi-label classification, Imbalanced data set, Ensemble learning, Stable algorithm, Logistic regression, Bagging, Boostin

    Class imbalance ensemble learning based on the margin theory

    Get PDF
    The proportion of instances belonging to each class in a data-set plays an important role in machine learning. However, the real world data often suffer from class imbalance. Dealing with multi-class tasks with different misclassification costs of classes is harder than dealing with two-class ones. Undersampling and oversampling are two of the most popular data preprocessing techniques dealing with imbalanced data-sets. Ensemble classifiers have been shown to be more effective than data sampling techniques to enhance the classification performance of imbalanced data. Moreover, the combination of ensemble learning with sampling methods to tackle the class imbalance problem has led to several proposals in the literature, with positive results. The ensemble margin is a fundamental concept in ensemble learning. Several studies have shown that the generalization performance of an ensemble classifier is related to the distribution of its margins on the training examples. In this paper, we propose a novel ensemble margin based algorithm, which handles imbalanced classification by employing more low margin examples which are more informative than high margin samples. This algorithm combines ensemble learning with undersampling, but instead of balancing classes randomly such as UnderBagging, our method pays attention to constructing higher quality balanced sets for each base classifier. In order to demonstrate the effectiveness of the proposed method in handling class imbalanced data, UnderBagging and SMOTEBagging are used in a comparative analysis. In addition, we also compare the performances of different ensemble margin definitions, including both supervised and unsupervised margins, in class imbalance learning
    corecore