60 research outputs found

    Learning differential diagnosis of erythemato-squamous diseases using voting feature intervals

    Get PDF
    Cataloged from PDF version of article.A new classification algorithm, called VFI5 (for Voting Feature Intervals), is developed and applied to problem of differential diagnosis of erythemato-squamous diseases. The domain contains records of patients with known diagnosis. Given a training set of such records, the VFI5 classifier learns how to differentiate a new case in the domain. VFI5 represents a concept in the form of feature intervals on each feature dimension separately. classification in the VFI5 algorithm is based on a real-valued voting. Each feature equally participates in the voting process and the class that receives the maximum amount of votes is declared to be the predicted class. The performance of the VFI5 classifier is evaluated empirically in terms of classification accuracy and running time. (C) 1998 Elsevier Science B.V. All rights reserved

    A survey on utilization of data mining approaches for dermatological (skin) diseases prediction

    Get PDF
    Due to recent technology advances, large volumes of medical data is obtained. These data contain valuable information. Therefore data mining techniques can be used to extract useful patterns. This paper is intended to introduce data mining and its various techniques and a survey of the available literature on medical data mining. We emphasize mainly on the application of data mining on skin diseases. A categorization has been provided based on the different data mining techniques. The utility of the various data mining methodologies is highlighted. Generally association mining is suitable for extracting rules. It has been used especially in cancer diagnosis. Classification is a robust method in medical mining. In this paper, we have summarized the different uses of classification in dermatology. It is one of the most important methods for diagnosis of erythemato-squamous diseases. There are different methods like Neural Networks, Genetic Algorithms and fuzzy classifiaction in this topic. Clustering is a useful method in medical images mining. The purpose of clustering techniques is to find a structure for the given data by finding similarities between data according to data characteristics. Clustering has some applications in dermatology. Besides introducing different mining methods, we have investigated some challenges which exist in mining skin data

    An expert system for the differential diagnosis of erythemato-squamous diseases

    Get PDF
    Cataloged from PDF version of article.This paper presents an expert system for differential diagnosis of erythemato-squamous diseases incorporating decisions made by three classification algorithms: nearest neighbor classifier, naive Bayesian classifier and voting feature intervals-5. This tool enables doctors to differentiate six types of erythemato-squamous diseases using clinical and histopathological parameters obtained from a patient. The program also gives explanations for the classifications of each classifier. The patient records are also maintained in a database for further references. (C) 2000 Elsevier Science Ltd. All rights reserved

    Two-stage hybrid feature selection algorithms for diagnosing erythemato-squamous diseases

    Get PDF
    This paper proposes two-stage hybrid feature selection algorithms to build the stable and efficient diagnostic models where a new accuracy measure is introduced to assess the models. The two-stage hybrid algorithms adopt Support Vector Machines (SVM) as a classification tool, and the extended Sequential Forward Search (SFS), Sequential Forward Floating Search (SFFS), and Sequential Backward Floating Search (SBFS), respectively, as search strategies, and the generalized F-score (GF) to evaluate the importance of each feature. The new accuracy measure is used as the criterion to evaluated the performance of a temporary SVM to direct the feature selection algorithms. These hybrid methods combine the advantages of filters and wrappers to select the optimal feature subset from the original feature set to build the stable and efficient classifiers. To get the stable, statistical and optimal classifiers, we conduct 10-fold cross validation experiments in the first stage; then we merge the 10 selected feature subsets of the 10-cross validation experiments, respectively, as the new full feature set to do feature selection in the second stage for each algorithm. We repeat the each hybrid feature selection algorithm in the second stage on the one fold that has got the best result in the first stage. Experimental results show that our proposed two-stage hybrid feature selection algorithms can construct efficient diagnostic models which have got better accuracy than that built by the corresponding hybrid feature selection algorithms without the second stage feature selection procedures. Furthermore our methods have got better classification accuracy when compared with the available algorithms for diagnosing erythemato-squamous diseases

    A Hybrid Deep Learning Approach for Diagnosis of the Erythemato-Squamous Disease

    Full text link
    The diagnosis of the Erythemato-squamous disease (ESD) is accepted as a difficult problem in dermatology. ESD is a form of skin disease. It generally causes redness of the skin and also may cause loss of skin. They are generally due to genetic or environmental factors. ESD comprises six classes of skin conditions namely, pityriasis rubra pilaris, lichen planus, chronic dermatitis, psoriasis, seboreic dermatitis and pityriasis rosea. The automated diagnosis of ESD can help doctors and dermatologists in reducing the efforts from their end and in taking faster decisions for treatment. The literature is replete with works that used conventional machine learning methods for the diagnosis of ESD. However, there isn't much instances of application of Deep learning for the diagnosis of ESD. In this paper, we propose a novel hybrid deep learning approach i.e. Derm2Vec for the diagnosis of the ESD. Derm2Vec is a hybrid deep learning model that consists of both Autoencoders and Deep Neural Networks. We also apply a conventional Deep Neural Network (DNN) for the classification of ESD. We apply both Derm2Vec and DNN along with other traditional machine learning methods on a real world dermatology dataset. The Derm2Vec method is found to be the best performer (when taking the prediction accuracy into account) followed by DNN and Extreme Gradient Boosting.The mean CV score of Derm2Vec, DNN and Extreme Gradient Boosting are 96.92 percent, 96.65 percent and 95.80 percent respectively.Comment: Pre-review version of the paper accepted at the 2020 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT

    Diagnosis of gastric carcinoma by classification on feature projections

    Get PDF
    Cataloged from PDF version of article.A new classification algorithm, called benefit maximizing classifier on feature projections (BCFP), is developed and applied to the problem of diagnosis of gastric carcinoma. The domain contains records of patients with known diagnosis through gastroscopy results. Given a training set of such records, the BCFP classifier learns how to differentiate a new case in the domain. BCFP represents a concept in the form of feature projections on each feature dimension separately. Classification in the BCFP algorithm is based on a voting among the individual predictions made on each feature. In the gastric carcinoma domain, a lesion can be an indicator of one of nine different Levels of gastric carcinoma, from early to late stages. The benefit of correct classification of early levels is much more than that of late cases. Also, the costs of wrong classifications are not symmetric. In the training phase, the BCFP algorithm learns classification rules that maximize the benefit of classification. In the querying phase, using these rules, the BCFP algorithm tries to make a prediction maximizing the benefit. A genetic algorithm is applied to select the relevant features. The performance of the BCFP algorithm is evaluated in terms of accuracy and running time. The rules induced are verified by experts of the domain. (C) 2004 Elsevier B.V. All rights reserved

    Dermatology disease classification via novel evolutionary artificial neural network

    Get PDF
    Neuro-genetic systems are biologically inspired computational models that use evolutionary algorithms (EAs) in conjunction with neural networks (NNs) to solve problems. They are especially useful in classification problems in which classifier systems are not able to provide easy answers. In this paper a novel neuro-genetic approach is used in order to predict a known classification problem, related to dermatology diseases

    Development of Rule-Based Diagnostic Algorithms with Artificial Intelligence Methods to Identify Papulosquamous Diseases

    Get PDF
    Papüloskuamöz deri hastalıkları halk arasında oldukça sık rastlanan ve kendine has morfolojik özellikleri olan deri hastalıkları grubudur. Papüloskuamöz deri hastalıklarının alt gruplarının belirtileri birbirine çok yakın olduğu için teşhis süreci bazı durumlarda zahmetlidir. Hastalığın teşhisi klinik muayenede konulabilir. Klinik muayenenin yetersiz olduğu durumlarda, tanı deri biyopsisi ile histopatolojik değerlendirme ile konulmaktadır. Bu süreçte dermatolog ve patoloğun uyumlu bir şekilde çalışması ve her iki hekimin de teşhis süreci ile ilgili bilgi birikiminin iyi olması gerekir. Bu yüzden Papüloskuamöz deri hastalıklarının tanısı deri biyopsisine ihtiyaç duyulmadan sadece klinik muayene ile dematolog tarafından konulabilmesi için daha basit, yüksek başarı oranına sahip ve klinikte kullanılabilir yöntemlere ihtiyaç duyulmaktadır. Bu çalışmanın amacı Papüloskuamöz deri hastalıklarının yüksek başarı oranı ile tespit edebilecek, klinikte dermatolog tarafından kullanılabilecek, yapay zeka yöntemleriyle geliştirilmiş kural tabanlı algoritma geliştirmektir. Çalışma kapsamında daha önce toplanmış veri seti kullanılmıştır. Veri setinde Papüloskuamöz deri hastalıklarının altı farklı alt grubu için klinik ve histopatolojik bulgular bulunmaktadır. Öncelikle veri seti ikişer sınıflı olacak şekilde gruplandırılmıştır. Daha sonra özellik seçme algoritmalarıyla klinik ve histopatolojik bulgular seçilmiştir. Daha sonra karar ağaçları yardımıyla kural tabanlı teşhis algoritmaları oluşturulmuştur. Çalışma sonucunda, sadece seçilmiş klinik bulgular kullanılarak ortalama %82.98 doğruluk oranı, 0.89 duyarlılık, 0.76 özgüllük oranıyla Papüloskuamöz deri hastalıkları kural tabanlı algoritmalar geliştirilmiştir. Sonuç olarak, bu çalışmada elde edilen sonuçlara göre, çalışma kapsamında geliştirilen algoritmalar, Papüloskuamöz deri hastalıklarının teşhisi için yapay zeka yöntemleriyle geliştirilen yüksek doğruluk oranına sahip kural tabanlı algoritmalar klinikte kullanılabilir.Papulosquamous skin diseases are common skin diseases and have morphological features. The diagnosis process_x000D_ is sometimes troublesome, as the symptoms of the subgroups of papulosquamous skin diseases are very close to_x000D_ each other. The diagnosis of the disease can be made at the clinical examination. In cases where the clinical_x000D_ examination is insufficient, the diagnosis is made by histopathological evaluation by skin biopsy. In this process,_x000D_ dermatologists and pathologists should work in harmony, and both doctors should have a good knowledge of the_x000D_ diagnosis process. Therefore, more uncomplicated, higher success rate, and clinically practical methods are needed_x000D_ in order for Papulosquamous skin diseases to be established only by a clinical examination by a dermatologist_x000D_ without the need for a skin biopsy. This study aims to develop a rule-based algorithm that can detect_x000D_ Papulosquamous skin diseases with a high success rate, can be used by dermatologists in the clinic, developed_x000D_ with artificial intelligence methods. Within the scope of the study, the previously collected data set was used. The_x000D_ data set contains clinical and histopathological findings for six different subgroups of Papulosquamous skin_x000D_ diseases. Firstly, the data set is grouped into two classes. Then, clinical and histopathological findings were_x000D_ selected with feature selection algorithms. Then, rule-based diagnostic algorithms were created with the help of_x000D_ decision trees. As a result of the study, Papulosquamous skin diseases rule-based algorithms have been developed_x000D_ with an average of 82.98% accuracy rate, 0.89 sensitivity, and 0.76 specificity rate using only selected clinical_x000D_ findings. Consequently, according to the results obtained in this study, algorithms developed within the scope of_x000D_ the study, high-accuracy rule-based algorithms developed with artificial intelligence methods can be used in the_x000D_ clinic for the diagnosis of Papulosquamous skin diseases.In job-shop production systems, orders are assigned to work centers according to their routes, and their operations are performed in this order. Production is becoming more and more complex with the increasing number of product lines and work centers with different routes. Decisions to be made according to the realtime monitoring of a dynamic production environment have become important. With the Fourth Industrial Revolution, information technologies are widely used in industries. A large amount of data is obtained from production tools that are capable of communicating with each other by means of Industry 4.0 and the internet of things. In this study, a simulation model of a production system that can collect data in real-time via sensors in work centers has been created and operation conditions have been determined. Then, work center / machine loading strategies were compared according to the delay periods of the jobs. The simulation model with the best loading strategy was run according to three different demand rates. Then data related with the delay status of the orders and the status of the work centers was obtained. The data were evaluated with data mining classification algorithms and rules were determined for delayed jobs. These rules were added to the simulation model as a decision mechanism. When an order is received in this model, the expert system estimates whether or not there will be a delay, and makes a decision to outsource the order’s production if needed. This approach further reduces the number of delayed order
    corecore