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Abstract

Neuro-genetic systems are biologically inspired com-

putational models that use evolutionary algorithms (EAs)

in conjunction with neural networks (NNs) to solve prob-

lems. They are especially useful in classification problems

in which classifier systems are not able to provide easy an-

swers. In this paper a novel neuro-genetic approach is used

in order to predict a known classification problem, related

to dermatology diseases.

1. Introduction

Evolutionary algorithms represent a more integrated

and rational way of designing Artificial Neural Networks

(ANNs) as classifier systems, and are especially useful for

complex optimization problems where the number of para-

meters is large and the analytical solutions are difficult to

obtain, without requiring expert knowledge of the problem.

In this work a multi-classifier system has been presented,

based on the evolution of artificial neural networks, that are

useful in those classification problems in which classifier

systems are not able to provide easy answers. The neuro-

genetic algorithm used in this setting has been previously

presented in [2, 1]. The novelty in this paper is that we carry

out classification in presence of white noise in the dataset

and implement a novel fitness function in the evolutionary

process. This improves the general approach since it re-

duces the algorithm parameters and it is able to classify data

affected by noise without reducing the algorithm perfor-

mances and obtaining better results then other approaches

used in literature to face the same biological problem [5].

The aim of the dermatology classification problem con-

sidered in this work is to determine the type of eryhemato-

squamous diseases when 34 clinical and histopatological

features are defined as inputs.

2. Dermatology Classification Problem

The differential diagnosis of the dermatology problem

related to the well-known erythemato-squamous diseases

is a difficult problem in medicine, since all these diseases

share the clinical features of erythema and scaling, with

very little differences. The diseases regard psoriasis, sebor-

eic dermatitis, lichen planus, pityriasis rosea, cronic der-

matitis, and pityriasis rubra pilaris. Usually a biopsy is

necessary for the diagnosis but unfortunately these diseases

share many histopathological features as well. Another dif-

ficulty for the differential diagnosis is that a disease may

show the features of another disease at the beginning stage

and may have the characteristic features at the following

stages.

Several works have been carried out in the literature

[3, 5, 6] in order to define classifier systems able to solve

this problem. In this work we present a novel neuro-genetic

approach, that uses evolutionary algorithms to optimize a

particular kind of neural networks, that would work as

multi-classifier systems in this dermatological application.

2.1 Neuro-Genetic Algorithm

The primary aim of the neuro-genetic approach consid-

ered in this work concerns the optimization of neural net-

work design, basing on the simultaneous evolution of net-

work weights and topology.

The neuro-genetic approach considered in this applica-

tion has been presented in the literature and it has been

validated on different benchmarks and real-world problems

[2, 1]. Our approach takes advantage of the Backpropaga-

tion (BP) as local search optimization algorithm. The idea

is to exploit the ability of the EA to find a solution close

enough to the global optimum, together with the ability of

the BP algorithm to finely tune a solution and reach the

nearest local minimum. In the overall evolutionary process

BP is used to decode a genotype into a phenotype NN. Ac-

cordingly, it is the genotype which undergoes the genetic
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operators and which reproduces itself, whereas the pheno-

type is used only for calculating the genotype’s fitness.
The overall evolutionary process can be described by the

following pseudo-code:

1. Initialize the population by generating new random individ-

uals.

2. Create for each genotype the corresponding MLP, and calcu-

late its fitness value.

3. Save the best individual as the best-so-far individual.

4. While not termination condition do

(a) Apply the genetic operators to each network.

(b) Decode each new genotype into the corresponding net-

work.

(c) Compute the fitness value for each network.

(d) Save statistics.

Then, in the evolutionary process, the genetic core im-

plemented is applied to each neural network by the follow-

ing pseudo-code:

1. Select from the population (of size n) ⌊n/2⌋ individuals by

truncation and create a new population of size n with copies

of the selected individuals.

2. For all individuals in the population:

(a) Perform crossover with probability pcross.

(b) Mutate the topology and the weights of the offspring.

(c) Train the resulting network.

(d) Calculate the training fitness f and the test fitness f̂ .

(e) Save the individual with lowest f̂ as the best-so-far in-

dividual if the f̂ of the previously saved best-so-far in-

dividual is higher (worse).

3. Save statistics.

2.2 Initialization

Our evolutionary approach considers Multi Layer Per-

ceptron, (MLPs), for individual encoding. They are a kind

of feedforward NNs with a layer of input neurons, a layer of

one or more output neurons and zero or more ‘hidden’ (i.e.,

internal) layers of neurons in between; neurons in a layer

can take inputs from the previous layer only.
When a new population is generated, the networks cor-

responding to the genotype will be initialized with different
hidden layer sizes, using two exponential distributions to
define the number of hidden layers and the corresponding
number of neurons for each layer. This process is carried
out by the following pseudo-code:

NumLayers = ‖−h ∗ ln(rand(1))‖
if NumLayers = 0
NumLayers = 1

k = ln(Ninput/Noutput)/NumLayers

for i = 1 to NumLayers do

MeanNeurons = Ninput e(−ki) − 1
Phenotype(i) = ‖−MeanNeurons ∗ ln(rand(1))‖ + 1

where NumLayers corresponds to the number of hidden

layers, and h is the mean for the exponential distribution

used for the hidden layer definition. k is the parameter used

to define MeanNeurons, corresponding to the mean value

of neurons set in each layer i, and which are defined into

the corresponding array Phenotype(i). Finally, Ninput
and Noutput refer, respectively, to the number of input and

output neurons. They are two of the algorithm parameters,

set at first time during the initialization and maintained con-

stant for all individuals during the entire simulation.

Then we use a normal distribution to determine the

weights and bias values for each individual at the initializa-

tion step. Variance matrices are also defined for all weights

and bias matrices, that will be applied in conjunction with

evolutionary strategies in order to perturb network weights

and bias. Variance matrices are initialized with matrices of

all ones.

Unlike other approaches [7], in the neuro-genetic al-

gorithm the maximum size and the number of the hidden

layers are not determined in advance, nor bounded, even

though the evolution may penalize large networks.

Table 1 lists all the parameters of the algorithm, and

specifies the default values that they assume in this work

at the initialization step.

Table 1. Parameters of the Algorithm.

Symbol Meaning Default Value

n Population size 60

seed Previously saved population none

bp Backpropagation selection 1

p
+
layer

Probability to insert a hidden layer *

p
−

layer
Probability to delete a hidden layer *

p+
neuron Probability to insert a neuron in a hidden

layer

*

pcross Probability to crossover 0

r Parameter for use in weight mutation for

neuron elimination

1.5

h Mean for the exponential distribution 2

*) Simulations with several settings.

Note that the use of the bp parameter set to 1 allows to

employ indirect encoding of networks, where the phenotype

is obtained by the training of an initial (embryonic) network

using BP.

Each individual is then encoded in a structure in which

basic information are maintained as illustrated in Table 2.

During the entire evolution, the dimension, on average, of

each individual is about 20 Kbytes.

The values of all these parameters are affected by the ge-

netic operators during evolution, in order to perform incre-
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Table 2. Individual Representation.

Element Description

l Length of the topology string, corresponding to the number

of layers.

topology String of integer values that represent the number of neurons

in each layer.

W
(0) Weights matrix of the input layer neurons of the network.

Var
(0) Variance matrix of the input layer neurons of the network.

W
(i) Weights matrix for the ith layer, i = 1, . . . , l.

Var
(i) Variance matrix for the ith layer, i = 1, . . . , l.

bij Bias of the jth neuron in the ith layer.

V ar(bij) Variance of the bias of the jth neuron in the ith layer.

mental (adding hidden neurons or hidden layers) and decre-

mental (pruning hidden neurons or hidden layers) learning.

2.3 Fitness Function

Although it is customary in EAs to assume that better in-

dividuals have higher fitness, in this case we adopt the con-

vention that a lower fitness means a better NN. This maps

directly to the objective function of our problem, which is a

fitness minimization problem.

A novel aspect of this approach is that, despite other pre-

vious approaches [2, 1], the fitness of an individual is not

given by the overall cost and the mean square error (mse)

of each neural network, but based on the confusion matrix,

in order to decrease the algorithm parameters and conse-

quently reduce the fitness function complexity.

Indeed, in this approach the fitness function is defined

as:

f = Noutput − Trace (1)

where Noutput has been already set to the number of

possible classes of membership, Trace corresponds to the

sum of the diagonal elements of the normalized confusion

matrix. Generally, a confusion matrix is defined as a vi-

sualization tool typically used in supervised learning, and

contains information about actual and predicted classifica-

tions done by a classification system. Each column of the

matrix represents the instances in a predicted class, while

each row represents the instances in an actual class. The

performance of such systems is commonly evaluated using

the data in the matrix, and the ideal results are obtained

when all elements of the confusion matrix belong to the

diagonal of that matrix. This matrix represents the condi-

tional probability between the predicted outputs obtained

from the neuro-genetic approach, and the desired outputs,

defined as target values in the database. In this work we

consider, for the Trace computation, the normalized con-

fusion matrix, since the normalization process ables us to

solve many of the problems related to the classification of

unbalanced datasets, as in this application.

One of the main advantages of using this fitness is related

to the remarkable reduction of algorithm parameters, that

were necessary, during the evolutionary process, for net-

work cost and accuracy definition. Furthermore, this kind of

fitness also penalizes large networks in a satisfactory way,

avoiding to check the mse for each neural network.

In this approach the Trace value is calculated for

each individual during the overall evolutionary process and

shows the goodness of such neural network as a multi-

classifier system. The best individual will have the lowest

fitness value (since we have defined our as a fitness mini-

mization problem), and the corresponding normalized con-

fusion matrix would be near as soon as possible to an Iden-

tity matrix.

In the neuro-genetic approach two fitness values are ac-

tually calculated for each individual: the fitness f , used by

the selection operator, and a test fitness f̂ .

Then, following the commonly accepted practice of ma-

chine learning, the problem data are partitioned into three

sets: training set, used to train the network, test set, used to

decide when to stop the training and avoid overfitting, and

finally, a validation set, to test the generalization capabilities

of a network.

Now, f̂ is calculated according to Equation 1 by using

the Trace value over the test set. When BP is used, i.e., if

bp = 1, f = f̂ ; otherwise (bp = 0), f is calculated accord-

ing to Equation 1 by using the Trace over the training and

test sets together.

2.4 Genetic Operators

The evolutionary process is based on the genetic oper-

ators of selection and mutation. Here they are briefly pre-

sented, while a detailed description of such operators is re-

ported in the literature [2, 1].

• Selection The selection method implemented in this

work follows the breeder genetic algorithm [1]. The

selection strategy used by the algorithm is truncation,

in which, starting from a population of n individuals,

the worst ⌊n/2⌋ (with respect to f ) are eliminated. The

remaining individuals are then duplicated in order to

replace those eliminated, and finally, the population is

randomly permuted.

• Mutation The two mutation operators implemented in

the genetic core refer to Weight Mutation, that is ap-

plied before the BP learning rule and perturbs the

weights and biases of the network by using variance

matrices and evolutionary strategies applied to the

number of synapses of the entire network. During the

evolutionary process, after this perturbation has been

used, neurons whose contribution to the network out-

puts is negligible are eliminated from the correspond-

ing structure. Topology Mutation considers three mu-

tation operators that affect the network architecture
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(i.e., the number of neurons in each layer and the num-

ber of hidden layers), with three different independent

probabilities, respectively, p+
layer, p−layer, and p+

neuron,

that refer to the insertion and the elimination of one

hidden layer, and the insertion of one neuron. The case

of neuron elimination is considered, as indicated in

Weight Mutation, like a contribution-dependent prob-

ability.

3 An Application to erythemato-squamous

disease

As previously reported in Sect. 2, the differential diagno-

sis of erythemato-squamous diseases is a difficult problem

in dermatology, since such diseases all share the clinical

features of erythema and scale with very few differences.

Furthermore a disease may show the histopathological fea-

tures of another disease at the beginning stage and may have

the characteristic features at the following stages.

For this reason, we implement the neuro-genetic ap-

proach in order to carry out, without any human expert in-

tervention, this diseases classification problem. The evo-

lutionary neural networks considered in this approach, the

MLPs, will be defined, as previously reported in Sect. 2.2,

with 34 neurons in the input layer and 6 neurons in the out-

put layer. During the evolutionary process, the output, i.e.

the class of membership, obtained from each neural network

will correspond to the highest activation value of the 6 out-

put neurons of the network.

3.1 Dataset

All data included in the training, validation and test sets

are acquired from the UCI Machine Learning Repository

[4]. It is a repository of databases and data generators that

are used by the machine learning community for the em-

pirical analysis of machine learning algorithms. In this

repository, different and several benchmark problems are

collected and all the corresponding data can be fully down-

loaded. As previously described, the dataset has been di-

vided into the three datasets corresponding to training, test

and validation set, with respectively, 200, 100 and 66 cases.

For each instance the first 34 attributes are considered as

input to the neural networks, containing 12 clinical fea-

tures and 22 histopathological features, while the follow-

ing 6 values refer to the target output. Samples with target

outputs psoriasis, seboreic dermatitis, lichen planus, pityri-

asis rosea, chronic dermatitis, and pityriasis rubra pilaris are

given the binary target values of (1,0,0,0,0,0), (0,1,0,0,0,0),

(0,0,1,0,0,0), (0,0,0,1,0,0), (0,0,0,0,1,0), and (0,0,0,0,0,1),

respectively.

Furthermore, in order to study the capabilities of our ap-

proach in presence of white noise in the dataset, some miss-

ing data are also added into the three datasets, by randomly

setting some input feature values to −1.

3.2 Experimental Results

In this application some experiments have been carried

out in order to find the evolutionary MLP that works as good

classifier. All the parameters of the algorithm are set to the

default values shown in Table 1, and several runs of this

approach have been carried out in order to find out optimal

settings of the genetic parameters p+
layer, p

−

layer, and p+
neuron.

For each run of the evolutionary algorithm, up to 200000

network evaluations (i.e., simulations of the network on the

whole training set) have been allowed, including those per-

formed by the backpropagation algorithm, with an average

computational time of about 15 minutes. The results ob-

tained are presented in Table 3: here are reported data about

the average and the standard deviation of the test fitness val-

ues about the best solutions found for each parameter set-

tings over 10 runs.

Table 3. Dermatology Disease Classification

Experimental Results.

Setting Parameter Setting BP=1

p
+
layer

p
−

layer
p+
neuron avg stdev

1 0.05 0.05 0.05 0.4155 0.0627

2 0.05 0.05 0.1 0.3642 0.0642

3 0.05 0.05 0.2 0.3824 0.0982

4 0.05 0.1 0.05 0.3922 0.0554

5 0.05 0.1 0.1 0.4332 0.0911

6 0.05 0.1 0.2 0.4266 0.0722

7 0.05 0.2 0.05 0.4004 0.1163

8 0.05 0.2 0.1 0.4456 0.0716

9 0.05 0.2 0.2 0.3822 0.0814

10 0.1 0.05 0.05 0.3864 0.1208

11 0.1 0.05 0.1 0.4134 0.0955

12 0.1 0.05 0.2 0.4075 0.2813

13 0.1 0.1 0.05 0.4108 0.0650

14 0.1 0.1 0.1 0.4355 0.0770

15 0.1 0.1 0.2 0.3994 0.0632

16 0.1 0.2 0.05 0.4108 0.0650

17 0.1 0.2 0.1 0.4355 0.0771

18 0.1 0.2 0.2 0.4135 0.0453

19 0.2 0.05 0.05 0.40337 0.0832

20 0.2 0.05 0.1 0.3775 0.0981

21 0.2 0.05 0.2 0.3810 0.0968

22 0.2 0.1 0.05 0.4097 0.0762

23 0.2 0.1 0.1 0.3797 0.0638

24 0.2 0.1 0.2 0.3293 0.0806

25 0.2 0.2 0.05 0.3871 0.0560

26 0.2 0.2 0.1 0.3631 0.0481

27 0.2 0.2 0.2 0.3726 0.0656

The best solutions, on average, have been found with

p+
layer = 0.2, p−layer = 0.1, and p+

neuron = 0.2. The best

model is a multi-layer perceptron with a phenotype of type

[5,6], which obtained a Trace value equal to 0.1736 for

the test set and to 0.19643 for the validation set. The per-

formance and the accuracy obtained with the best solution

found are defined by the statistical sensitivity parameter cal-
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culated on the validation set, explained in Table 4, that cor-

respond to the percentage of the number of true positive de-

cisions over the number of actually positive cases. A graph-

ical representation of the best classification results is also

shown in Figure 1. This figure outlines how most of the

results are concentrated on the diagonal of the normalized

confusion matrix and therefore our algorithm performs par-

ticularly well.

in Table 4, we can see how our approach generally per-

forms better than the approaches reported in recent litera-

ture [5, 6]. Even if this neuro-genetic approach considers

the same dataset used in these other approaches, no a direct

comparison is showed in this section, since white noises and

different distributions for train, test and validation sets are

used in this approach.

However, in order to provide a more satisfactory idea

about results obtained in this evolutionary approach, we

also report the sensitivity values obtained from the ex-

periments presented in [5]. In particular, in that work,

the authors showed that the sensitivity values for the six

erythemato-squamous diseases were equal respectively to

96.4% for psoriasis, 96.7% for seboreic dermatitis, 97.1%

for lichen planus, 91.7% for pityriasis rosea, 95.8% for

chronic dermatitis, and 90.0% for pityriasis rubra pilaris

disease.

Table 4. Sensitivity of the best solution found

with data affected by white noise.

Setting Sensitivity (%)

Psoriasis 100

Seboreic dermatitis 100

Lichen planus 100

Pityriasis rosea 92.8

Chronic dermatitis 87.5

Pityriasis rubra pilaris 100

4. Conclusions

The work described in this paper demonstrates an ap-

proach to the joint optimization of neural networks weights

and topology which takes advantage of both evolutionary

algorithms and the backpropagation algorithm. Its effec-

tiveness has been validated by applying this approach to

the well-known erythemato-squamous diseases classifica-

tion problem. The experiments show very satisfactory re-

sults obtained from the best MLP neural network identified

by the evolutionary algorithm, together with a comparison

with other approaches previously discussed in the literature.
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