5,685 research outputs found

    Semantic concept detection in imbalanced datasets based on different under-sampling strategies

    Get PDF
    Semantic concept detection is a very useful technique for developing powerful retrieval or filtering systems for multimedia data. To date, the methods for concept detection have been converging on generic classification schemes. However, there is often imbalanced dataset or rare class problems in classification algorithms, which deteriorate the performance of many classifiers. In this paper, we adopt three “under-sampling” strategies to handle this imbalanced dataset issue in a SVM classification framework and evaluate their performances on the TRECVid 2007 dataset and additional positive samples from TRECVid 2010 development set. Experimental results show that our well-designed “under-sampling” methods (method SAK) increase the performance of concept detection about 9.6% overall. In cases of extreme imbalance in the collection the proposed methods worsen the performance than a baseline sampling method (method SI), however in the majority of cases, our proposed methods increase the performance of concept detection substantially. We also conclude that method SAK is a promising solution to address the SVM classification with not extremely imbalanced datasets

    The Challenge of Non-Technical Loss Detection using Artificial Intelligence: A Survey

    Get PDF
    Detection of non-technical losses (NTL) which include electricity theft, faulty meters or billing errors has attracted increasing attention from researchers in electrical engineering and computer science. NTLs cause significant harm to the economy, as in some countries they may range up to 40% of the total electricity distributed. The predominant research direction is employing artificial intelligence to predict whether a customer causes NTL. This paper first provides an overview of how NTLs are defined and their impact on economies, which include loss of revenue and profit of electricity providers and decrease of the stability and reliability of electrical power grids. It then surveys the state-of-the-art research efforts in a up-to-date and comprehensive review of algorithms, features and data sets used. It finally identifies the key scientific and engineering challenges in NTL detection and suggests how they could be addressed in the future

    Multiple Instance Learning: A Survey of Problem Characteristics and Applications

    Full text link
    Multiple instance learning (MIL) is a form of weakly supervised learning where training instances are arranged in sets, called bags, and a label is provided for the entire bag. This formulation is gaining interest because it naturally fits various problems and allows to leverage weakly labeled data. Consequently, it has been used in diverse application fields such as computer vision and document classification. However, learning from bags raises important challenges that are unique to MIL. This paper provides a comprehensive survey of the characteristics which define and differentiate the types of MIL problems. Until now, these problem characteristics have not been formally identified and described. As a result, the variations in performance of MIL algorithms from one data set to another are difficult to explain. In this paper, MIL problem characteristics are grouped into four broad categories: the composition of the bags, the types of data distribution, the ambiguity of instance labels, and the task to be performed. Methods specialized to address each category are reviewed. Then, the extent to which these characteristics manifest themselves in key MIL application areas are described. Finally, experiments are conducted to compare the performance of 16 state-of-the-art MIL methods on selected problem characteristics. This paper provides insight on how the problem characteristics affect MIL algorithms, recommendations for future benchmarking and promising avenues for research

    Fast Machine Learning Algorithms for Massive Datasets with Applications in the Biomedical Domain

    Get PDF
    The continuous increase in the size of datasets introduces computational challenges for machine learning algorithms. In this dissertation, we cover the machine learning algorithms and applications in large-scale data analysis in manufacturing and healthcare. We begin with introducing a multilevel framework to scale the support vector machine (SVM), a popular supervised learning algorithm with a few tunable hyperparameters and highly accurate prediction. The computational complexity of nonlinear SVM is prohibitive on large-scale datasets compared to the linear SVM, which is more scalable for massive datasets. The nonlinear SVM has shown to produce significantly higher classification quality on complex and highly imbalanced datasets. However, a higher classification quality requires a computationally expensive quadratic programming solver and extra kernel parameters for model selection. We introduce a generalized fast multilevel framework for regular, weighted, and instance weighted SVM that achieves similar or better classification quality compared to the state-of-the-art SVM libraries such as LIBSVM. Our framework improves the runtime more than two orders of magnitude for some of the well-known benchmark datasets. We cover multiple versions of our proposed framework and its implementation in detail. The framework is implemented using PETSc library which allows easy integration with scientific computing tasks. Next, we propose an adaptive multilevel learning framework for SVM to reduce the variance between prediction qualities across the levels, improve the overall prediction accuracy, and boost the runtime. We implement multi-threaded support to speed up the parameter fitting runtime that results in more than an order of magnitude speed-up. We design an early stopping criteria to reduce the extra computational cost when we achieve expected prediction quality. This approach provides significant speed-up, especially for massive datasets. Finally, we propose an efficient low dimensional feature extraction over massive knowledge networks. Knowledge networks are becoming more popular in the biomedical domain for knowledge representation. Each layer in knowledge networks can store the information from one or multiple sources of data. The relationships between concepts or between layers represent valuable information. The proposed feature engineering approach provides an efficient and highly accurate prediction of the relationship between biomedical concepts on massive datasets. Our proposed approach utilizes semantics and probabilities to reduce the potential search space for the exploration and learning of machine learning algorithms. The calculation of probabilities is highly scalable with the size of the knowledge network. The number of features is fixed and equivalent to the number of relationships or classes in the data. A comprehensive comparison of well-known classifiers such as random forest, SVM, and deep learning over various features extracted from the same dataset, provides an overview for performance and computational trade-offs. Our source code, documentation and parameters will be available at https://github.com/esadr/

    Rails Quality Data Modelling via Machine Learning-Based Paradigms

    Get PDF

    A factorized model for multiple SVM and multi-label classification for large scale multimedia indexing

    No full text
    International audienceThis paper presents a set of improvements for SVM-based large scale multimedia indexing. The proposed method is particularly suited for the detection of many target concepts at once and for highly imbalanced classes (very infrequent concepts). The method is based on the use of multiple SVMs (MSVM) for dealing with the class imbalance and on some adaptations of this approach in order to allow for an efficient implementation using optimized linear algebra routines. The implementation also involves hashed structures allowing the factorization of computations between the multiple SVMs and the multiple target concepts, and is denoted as Factorized-MSVM.Experiments were conducted on a large-scale dataset, namely TRECVid 2012 semantic indexing task. Results show that the Factorized-MSVM performs as well as the original MSVM, but it is significantly much faster. Speed-ups by factors of several hundreds were obtained for the simultaneous classification of 346 concepts, when compared to the original MSVM implementation using the popular libSVM implementation

    An effective biomedical document classification scheme in support of biocuration: addressing class imbalance.

    Get PDF
    Published literature is an important source of knowledge supporting biomedical research. Given the large and increasing number of publications, automated document classification plays an important role in biomedical research. Effective biomedical document classifiers are especially needed for bio-databases, in which the information stems from many thousands of biomedical publications that curators must read in detail and annotate. In addition, biomedical document classification often amounts to identifying a small subset of relevant publications within a much larger collection of available documents. As such, addressing class imbalance is essential to a practical classifier. We present here an effective classification scheme for automatically identifying papers among a large pool of biomedical publications that contain information relevant to a specific topic, which the curators are interested in annotating. The proposed scheme is based on a meta-classification framework using cluster-based under-sampling combined with named-entity recognition and statistical feature selection strategies. We examined the performance of our method over a large imbalanced data set that was originally manually curated by the Jackson Laboratory\u27s Gene Expression Database (GXD). The set consists of more than 90 000 PubMed abstracts, of which about 13 000 documents are labeled as relevant to GXD while the others are not relevant. Our results, 0.72 precision, 0.80 recall and 0.75 f-measure, demonstrate that our proposed classification scheme effectively categorizes such a large data set in the face of data imbalance

    On the role of pre and post-processing in environmental data mining

    Get PDF
    The quality of discovered knowledge is highly depending on data quality. Unfortunately real data use to contain noise, uncertainty, errors, redundancies or even irrelevant information. The more complex is the reality to be analyzed, the higher the risk of getting low quality data. Knowledge Discovery from Databases (KDD) offers a global framework to prepare data in the right form to perform correct analyses. On the other hand, the quality of decisions taken upon KDD results, depend not only on the quality of the results themselves, but on the capacity of the system to communicate those results in an understandable form. Environmental systems are particularly complex and environmental users particularly require clarity in their results. In this paper some details about how this can be achieved are provided. The role of the pre and post processing in the whole process of Knowledge Discovery in environmental systems is discussed
    corecore