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Abstract

The continuous increase in the size of datasets introduces computational challenges for

machine learning algorithms. In this dissertation, we cover the machine learning algorithms and ap-

plications in large-scale data analysis in manufacturing and healthcare. We begin with introducing

a multilevel framework to scale the support vector machine (SVM), a popular supervised learning

algorithm with a few tunable hyperparameters and highly accurate prediction. The computational

complexity of nonlinear SVM is prohibitive on large-scale datasets compared to the linear SVM,

which is more scalable for massive datasets. The nonlinear SVM has shown to produce significantly

higher classification quality on complex and highly imbalanced datasets. However, a higher classifi-

cation quality requires a computationally expensive quadratic programming solver and extra kernel

parameters for model selection. We introduce a generalized fast multilevel framework for regular,

weighted, and instance weighted SVM that achieves similar or better classification quality compared

to the state-of-the-art SVM libraries such as LIBSVM. Our framework improves the runtime more

than two orders of magnitude for some of the well-known benchmark datasets. We cover multiple

versions of our proposed framework and its implementation in detail. The framework is implemented

using PETSc library which allows easy integration with scientific computing tasks. Next, we propose

an adaptive multilevel learning framework for SVM to reduce the variance between prediction quali-

ties across the levels, improve the overall prediction accuracy, and boost the runtime. We implement

multi-threaded support to speed up the parameter fitting runtime that results in more than an order

of magnitude speed-up. We design an early stopping criteria to reduce the extra computational cost

when we achieve expected prediction quality. This approach provides significant speed-up, especially

for massive datasets. Finally, we propose an efficient low dimensional feature extraction over massive

knowledge networks. Knowledge networks are becoming more popular in the biomedical domain for

knowledge representation. Each layer in knowledge networks can store the information from one or
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multiple sources of data. The relationships between concepts or between layers represent valuable

information. The proposed feature engineering approach provides an efficient and highly accurate

prediction of the relationship between biomedical concepts on massive datasets. Our proposed ap-

proach utilizes semantics and probabilities to reduce the potential search space for the exploration

and learning of machine learning algorithms. The calculation of probabilities is highly scalable with

the size of the knowledge network. The number of features is fixed and equivalent to the number of

relationships or classes in the data. A comprehensive comparison of well-known classifiers such as

random forest, SVM, and deep learning over various features extracted from the same dataset, pro-

vides an overview for performance and computational trade-offs. Our source code, documentation

and parameters will be available at https://github.com/esadr/.
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Chapter 1

Introduction

The advances in technologies empower us to collect more high-quality data from new sources 

such as wearable devices, sequencers, digitized systems, and many more. As the size of data grows, 

more efficient and robust machine learning and data analysis pipelines are required to maximize 

the utilization of this new data. Extracting meaningful information and patterns in raw data is 

valuable, but it is getting more complicated for big data. Big data has many challenges, such as 

volume, variety, and velocity, that require more efficient machine learning algorithms to improve 

the quality and reduce the computational cost and runtime. The imbalanced datasets include rare 

events that cause challenges for machine learning algorithms performance. Health-care, finance, 

and cybersecurity are some of the fields with large many imbalanced datasets. For instance, the 

number of samples (instances) of infected people or malicious network packets (cyber-attacks) is 

drastically less than the number of healthy people or regular network packets. Most of the time, 

researchers are not concerned with detecting healthy people or regular network packets. The rare 

events are the most important phenomena which need to be identified correctly and rapidly in a 

massive dataset. The development of efficient machine learning algorithms for such datasets is one 

of the main topics in this dissertation. In chapter 2, we cover our design and development of an 

efficient and robust multilevel framework for the classification of massive datasets with extremely 

imbalanced data. Furthermore, in chapter 3, we demonstrate an improvement in the performance 

and quality of the multilevel predictive framework.

Developing a knowledge network by linking information from multiple related sources can

lead to better knowledge discovery. However, a manifold of data, huge volume, and heterogeneity of
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nodes and relationships introduce modeling and computational challenges. In chapter 4, we propose

a novel feature extraction algorithm along with a data pipeline for relationship type prediction.

We applied our method for predicting the relationship types between concepts in biomedical litera-

ture. We developed multiple feature extraction and compared various classification algorithms. The

probabilistic feature extraction proposed in this work has the potential to reduce similar large scale

data science projects in many directions. The most important outcome is to significantly improve

the quality of machine learning algorithms and reduce the computational cost of dimensionality

reduction techniques.

Biomedical literature is an invaluable source of data; researchers have access to millions of

published papers to learn and follow the latest innovations in their field. However, the volume of

publications is overwhelming, and it is hard to keep track of all relevant papers. For new researchers

in a field or researchers who start to work on a distant area of their earlier works, it is a tedious

and challenging task to link all relevant concepts and their relationships. Moreover, some of the

disciplines are not well connected, and they may not bridge their knowledge of distant concepts. The

information retrieval systems only capable of providing results based on specific keyword searches,

often return thousands of papers for a topic. The manual process of going through all the papers

and extracting useful information is tedious. Literature based discovery or hypothesis generation

systems provide fruitful hypotheses by finding the implicit connections in a large corpus of biomedical

literature. Generated hypotheses can lead research in new directions with more promising results.

The literature based discovery systems first introduced in 1986 by Smalheiser and Swanson [106]

to bridge the concepts from distant domains. Similar systems have been developed and improved

over the last two decades, but there is still a need for more functionality in the existing systems [34,

40]. Our proposed feature extraction method significantly improved the prediction quality for the

relationship type prediction between biomedical concepts.
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Chapter 2

Engineering fast multilevel support

vector machines

2.1 Introduction

Support vector machine (SVM) is one of the most well-known supervised classification meth-

ods that has been extensively used in such fields as disease diagnosis, text categorization, and fraud 

detection. Training nonlinear SVM classifier (such as Gaussian kernel based) requires solving convex 

quadratic programming (QP) model whose running time can be prohibitive for large-scale instances 

without using specialized acceleration techniques such as sampling, boosting, and hierarchical train-

ing. Another typical reason of increased running time is complex data sets (e.g., when the data is 

noisy, imbalanced, or incomplete) that require using model selection techniques for finding the best 

model parameters.

The motivation behind this work was extensive applied experience with hard, large-scale, 

industrial (often highly heterogeneous) data sets for which fast linear SVMs produced extremely low 

quality results (as well as many other fast methods), and various nonlinear SVMs exhibited a strong 

trade off between running time and quality. It has been noticed in multiple works that many different 

real-world data sets have a strong underlying multiscale (in some works called hierarchical) structure 

[56, 49, 57, 98] that can be discovered through careful definitions of coarse-grained resolutions. 

Not surprisingly, we found that among fast methods the hierarchical nonlinear SVM was the best
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candidate for producing most satisfying results in a reasonable time [3]. Although, several successful

hierarchical SVM techniques [127, 39] have been developed since massive popularization of SVM,

we found that most existing algorithms do not sustainably produce high-quality results in a short

running time, and the behavior of hierarchical training is still not well studied. This is in contrast

to a variety of well studied unsupervised multiscale clustering approaches [10, 72, 84].

In this chapter, we discuss several techniques for engineering multilevel SVMs demonstrating

their (dis)advantages and generalizing them in a framework inspired by the algebraic multigrid and

multiscale optimization strategies [11]. We deliberately omit the issues related to parallelization of

multilevel frameworks as it has been discussed in a variety of works related to multilevel clustering,

partitioning, and SVM QP solvers. Our goal is to demonstrate fast and scalable sequential techniques

focusing on different aspects of building and using multilevel learning with regular and weighted

SVM. Also, we focus only on nonlinear SVMs because (a) not much improvement can be introduced

or required in practice to accelerate linear SVMs, and (b) in many hard practical cases, the quality

of linear SVMs is incomparable to that of nonlinear SVMs. The most promising and stable version

of our multilevel SVMs are implemented in PETSc [4] which is a well known scientific computing

library. PETSc was selected because of its scalability of linear algebra computations on large sparse

matrices and available software infrastructure for future parallelization. Our implementation also

addresses a critical need [8] of adding data analysis functionality to broadly used scientific computing

software.

2.1.1 Computational challenges

There is a number of basic challenges one has to address when applying SVM which we

successfully tackle with the multilevel framework, namely, QP solver complexity for large-scale data,

imbalanced data, and SVM model parameter fitting.

Large-scale data The baseline SVM classifier is typically formulated as a convex QP problem

whose solvers scale between O(n2) to O(n3) [36]. For example, the solver we compare our algorithm

with, namely, LibSVM [17], which is one of the most popular and fast QP solvers, scales between

O(nfns
2) to O(nfns

3) subject to how effectively the cache is exploited in practice, where nf and

ns are the number of features and samples, respectively. Clearly, this complexity is prohibitive for

nonlinear SVM models applied on practical big data without using parallelization, high-performance
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computing systems or another special treatment.

Imbalanced data The imbalanced data is one of the issues in which SVM often outperforms

many fast machine learning methods. This problem occurs when the number of instances of one

class (negative or majority class) is substantially larger than the number of instances that belong

to the other class (positive or minority class). In multi-class classification, the problem of imbal-

anced data is even bolder and use of the standard classification methods become problematic in the

presence of big and imbalanced data [65]. This may dramatically deteriorate the performance of the

algorithm. It is worth noticing that there are cases in which correct classification of the smaller class

is more important than misclassification of the larger class [105]. Fault diagnosis [124, 132], anomaly

detection [53, 112], medical diagnosis [68, 6, 7] are some of applications which are known to suffer

of this problem. Imbalanced data was one of our motivating factors because we have noticed that

most standard SVM solvers do not behave well on it. In order to reduce the effect of minority class

misclassification in highly imbalanced data, an extension of SVM, namely, the cost-sensitive SVM

(whose extensions are also known as weighted or fuzzy SVM) [62], was developed for imbalanced

classification problems. In cost-sensitive SVM, a special control of misclassification penalization is

introduced as a part of the SVM model.

Parameter tuning The quality of SVM models is very sensitive to the parameters (such as

penalty factors of misclassified data) especially in case of using kernels that typically introduce

extra parameters. There are many different parameter tuning approaches such as [5, 129, 64, 18,

16, 2, 67, 58]. However, in any case, tuning parameters requires multiple executions of the training

process for different parameters and due to the k-fold cross-validation which significantly increases

the running time of the entire framework. In our experiments with industrial and healthcare data,

not surprisingly, we were unable to find an acceptable quality SVM models without parameter fitting

(also known as model selection [24, 128, 95]) which also motivated our work.

2.1.2 Related work

Multiple approaches have been proposed to improve the performance of SVM solvers. Exam-

ples include efficient serial algorithms that use a cohort of decomposition techniques [73], shrinking

and caching [47], and fast second order working set selection [30]. A popular LibSVM solver [17]
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implements the sequential minimal optimization algorithm. In the cases of simple data for which

nonlinear SVM is not required such approaches as LibLINEAR [29] demonstrate excellent perfor-

mance for linear SVM using a coordinate descent algorithm which is very fast but, typically, not

suitable for complex or imbalanced data. Another approach to accelerate the QP solvers is a chunk-

ing [47], in which the models are solved iteratively on the subsets of training data until the global

optimum is achieved.

A typical acceleration of support vector machines is done through parallelization and train-

ing on high-performance computing systems using interior-point methods (IPM) [69] applied on the

dual problem which is a convex QP. The key idea of the primal-dual IPM is to remove inequality

constraints using a barrier function and then resort to the iterative Newton’s method to solve the

KKT system of the dual problem. For example, in PSVM [130], the algorithm reduces memory

use, and parallelizes data loading and computation in IPM. It improves the decomposition-based

LibSVM from O(n2) to O(np2/m), where m is a number of processors (or heterogeneous machines

used), and p is a column dimension of a factorized matrix that is required for effective distribution

of the data. The HPSVM solver [60] is also based on solving the primal-dual IPM and uses effective

parallelizm of factorization. The approach is specifically designed to take maximal advantage of

the CPU-GPU collaborative computation with the dual buffers 3-stage pipeline mechanism, and

efficiently handles large-scale training datasets. In HPSVM, the heterogeneous hierarchical mem-

ory is explored to optimize the bottleneck of data transfer. The P-packSVM [131] parallelizes the

stochastic gradient descent solver of SVM that directly optimizes the primal objective with the help

of a distributed hash table and sophisticated data packing strategy. Other works utilize many-core

GPUs to accelerate the sequential minimal optimization [75], and other architectures [126].

One of the most well known works in which hierarchical SVM technique was introduced to

improve the performance and quality of a classifier is [127]. The coarsesning consists of creating a

hierarchical clustered representation of the data points that are merged pairwise using Euclidean

distance criterion. In this work, only linear classifiers are discussed and no inheritance and refine-

ment of model parameters was introduced. A similar hierarchical clustering framework was proposed

for non-linear SVM kernels in combination with feature selection techniques to develop an advanced

intrusion detection system [41].Another coarsening approach that uses k-means clustering was in-

troduced in [42]. In all these works, the quality of classifiers strictly depends on how well the data is

clustered using a particular clustering method applied on it. Our coarsening scheme is more gradual
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and flexible than the clustering methods in these papers. Most of them, however, can be generalized

as algebraic multigrid restriction operators (will be discussed further) in special forms. Also, in our

frameworks, we emphasize several important aspects of training such as coarse level models, im-

balanced coarsening, and parameter learning that are typically not considered in hierarchical SVM

frameworks.

Multilevel Divide-and-Conquer SVM (DC-SVM) was developed using adaptive clustering

and early prediction strategy [42]. It outperforms previously mentioned methods, so we compare

the computational performance and quality of classification for both DC-SVM and our proposed

framework. The training time of DC-SVM for a fixed set of parameters is fast. However, in order

to achieve high quality classifiers a parameter fitting is typically required. While DC-SVM with

parameter fitting is faster than state-of-the-art exact SVMs, it is significantly slower than our pro-

posed framework. Our experimental results (that include the parameter fitting component) show

significant performance improvement on benchmark data sets in comparison to DC-SVM.

In several works, a scalable parallelization of hierarchical SVM frameworks is developed to

minimize the communication [125, 36, 25]. Such techniques can be used on top of our framework.

Successful results obtained using hierarchical structures have been shown specifically for multi-class

classification [21, 39, 52, 77]. Another relevant line of research is related to multilevel clustering and

segmentation methods [56, 31, 98]. They produce solutions at different levels of granularity which

makes them suitable for visualization, aggregation of data, and building a hierarchical solution.

2.1.3 Multilevel algorithmic frameworks

In this chapter, we discuss a practical construction of multilevel algorithmic frameworks

(MAF) for SVM. These frameworks are inspired by the multiscale optimization strategies [11]. (We

note that there exist several frameworks termed multilevel SVMs. These, however, correspond to

completely different ideas. We preserve the terminology of multilevel, and multiscale optimization

algorithms.) The main objective of multilevel algorithms is to construct a hierarchy of problems

(coarsening), each approximating the original problem but with fewer degrees of freedom. This is

achieved by introducing a chain of successive restrictions of the problem domain into low-dimensional

or smaller-size domains and solving the coarse problems in them using local processing (uncoarsen-

ing) [66, 27]. The MAF combines solutions obtained by the local processing at different levels of

coarseness into one global solution. Such frameworks have several key advantages that make them
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attractive for applying on large-scale data: they typically exhibit linear complexity (see Sec. 2.3.3),

and are relatively easily parallelized. Another advantage of the MAF is its heterogeneity, expressed

in the ability to incorporate external appropriate optimization algorithms (as a refinement) in the

framework at different levels. For example, if some SVM model selection technique is found to be

particularly successful in parameter finding and obtaining high-quality solutions on some class of

datasets, one can incorporate this technique at all levels of MAF and accelerate it by 1) applying

it locally, 2) combining local solutions into global, and 3) inheriting parameters trained at coarse

levels. These frameworks are extremely successful in various practical machine learning tasks such

as clustering [72], segmentation [98], and dimensionality reduction [66].

The major difference between typical computational optimization MAF [88, 89, 38, 100],

and those that we introduce for SVM is the output of the model. In SVM, the main output is the

set of the support vectors which is usually much smaller at all levels of the multilevel hierarchy than

the total number of data points at the corresponding levels. We use this observation in our methods

by redefining the training set during the uncoarsening and making MAF scalable. In particular, we

inherit the support vectors from the coarse scales, add their neighborhoods, and refine the support

vectors at all scales. In other words, we improve the separating hyperplane throughout the hierarchy

by gradual refinement of the support vectors until a global solution at the finest level is reached. In

addition, we inherit the parameters of model selection and kernel from the coarse levels, and refine

them throughout the uncoarsening.

2.1.4 Our contribution

We introduce novel methods of engineering fast and high quality multilevel frameworks

for efficient and effective training of nonlinear SVM classifiers. We also summarize and generalize

existing [80, 79] approaches. We discuss various coarsening strategies, and introduce the weighted

aggregation framework inspired by the algebraic multigrid [11] which significantly improves and

generalizes all of them. In the weighted aggregation framework, the data points are either partitioned

in hierarchical fashion where small groups of data points are aggregated or split into fractions where

different fractions of the same data point can belong to different aggregates. Without any notable

loss in the quality of classifiers, multilevel SVM frameworks exhibit substantially faster running times

and are able to generate several classifiers at different coarse-grained resolutions in one complete

training iteration which also helps to interpret these classifiers qualitatively (see Section 2.3.4.8).
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Depending on the size and structure of the training set, the resulting final decision rule of our

multilevel classifier will be either exactly the same as in single SVM model or composed as voting

of several smaller SVM models.

The proposed multilevel frameworks are particularly effective on imbalanced data sets where

fitting model parameters is the most computationally expensive component. Our multilevel frame-

works can be parallelized as any algebraic multigrid algorithm and their superiority is demonstrated

on several publicly available and industrial data sets. The performance improvement over the best

sequential state-of-the-art nonlinear SVM libraries with high classification quality is significant. For

example, on the average, for large data sets we boost the performance 491 times over LibSVM and 45

times over the DC-SVM (which was chosen because of its superiority over other hierarchical methods

mentioned above). On some large datasets, a full comparison was impossible because of infeasible

running time of the competitive approaches which demonstrates superiority of the proposed method.

2.2 Preliminaries

We define the optimization problems underlying SVM models for binary classification. Given

a set J that contains n data points xi ∈ Rd, 1 ≤ i ≤ n, we define the corresponding labeled pairs

(xi, yi), where each xi belongs to the class determined by a given label yi ∈ {−1, 1}. Data points

with positive labels are called the minority class which is denoted by C+ with |C+| = n+. The

rest of the points belongs to the majority class which is denoted by C−, where |C−| = n−, i.e.,

J = C+ ∪C−. Solving the following convex optimization problem by finding w, and b produces a

hyperplane with maximum margin between C+, and C−

minimize
1

2
‖w‖2 + C

n∑
i=1

ξi (2.1)

subject to yi(w
Tφ(xi) + b) ≥ 1− ξi, i = 1, . . . , n

ξi ≥ 0, i = 1, . . . , n.

The mapping of data points to higher dimensional space is done by φ : Rd → Rp (d ≤ p) to make two

classes separable by a hyperplane. The term slack variables {ξi}ni=1 are used to penalize misclassified

points. The parameter C > 0 controls the magnitude of the penalization. The primal formulation

is shown at (2.1) which is known as the soft margin SVM [122].
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The weighted SVM (WSVM) addresses imbalanced problems with assigning different weights

to classes with parameters C+ and C−. The set of slack variables is split into two disjoint sets

{ξ+
i }n

+

i=1, and {ξ−i }n
−

i=1, respectively. In WSVM, the objective of (2.1) is changed into

minimize
1

2
‖w‖2 + C+

n+∑
i=1

ξ+
i + C−

n−∑
j=1

ξ−j . (2.2)

Solving the Lagrangian dual problem using kernel functions k(xi,xj) = φ(xi)
T
φ(xj) pro-

duces a reliable convergence which is faster than methods for primal formulations (2.1) and (2.2).

In our framework, we use the sequential minimal optimization solver implemented in LibSVM li-

brary [17]. The role of kernel functions is to measure the similarity for pairs of points xi and xj . We

present computational results with the Gaussian kernel (RBF), exp(−γ||xi − xj ||2), which is known

to be generally reliable when no additional assumptions about the data are known. Experiments

with other kernels exhibit improvements that are similar to those with RBF if compared with regu-

lar (W)SVM solver with the same kernels. Technically, using another kernel requires only switching

to it in the refinement at the uncoarsening stage (see Alg. 3) including parameter inheritance, if

required. We note that some of our experimental datasets are not solved well with non-RBF kernels

used in regular (W)SVM solver, so here we demonstrate the results only for RBF.

In order to achieve an acceptable quality of the classifier, many difficult data sets require

reinforcement of (W)SVM with tuning methods for such model parameters as C, C+, C−, and kernel

function parameters (e.g., the bandwidth parameter γ for RBF kernel function). This is one of the

major sources of running time complexity of (W)SVM models which we are aiming to improve.

In our framework we use the adapted nested uniform design (NUD) model selection algo-

rithm to fit the parameters [44] which is a popular model selection technique for (W)SVM. The main

intuition behind NUD is that it finds the close-to-optimal parameter set in an iterative nested man-

ner. The optimal solution is calculated in terms of maximizing the required performance measure

(such as accuracy and G-mean). Although, we study binary classification problems, it can easily be

extended to the multi-class classification using either directed multi-class classification or transform-

ing the problem into multiple independent binary (W)SVMs that can be processed independently

in parallel.
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Two-level problem In order to describe the (un)coarsening algorithms, we introduce the two-

level problem notation that can be extended into full multilevel hierarchy (see Figure 2.1). We will

use subscript (·)f and (·)c to represent fine and coarse variables, respectively. For example, the data

points of two consecutive levels, namely, fine and coarse, will be denoted by Jf , and Jc, respectively.

The sets of fine and coarse support vectors are denoted by svf , and svc, respectively. We will also

use a subscript in the parentheses to denote the level number in the hierarchy where appropriate.

For example, J(i) will denote the set of data points at level i.

Proximity graphs All multilevel (W)SVM frameworks discussed in subsequent sections are based

on different coarsening schemes for creating a hierarchy of data proximity graphs. Initially, at

the finest level, J is represented as two k-nearest neighbor (kNN) graphs G+
(0) = (C+, E+), and

G−(0) = (C−, E−) for minority and majority classes, respectively, where each xi ∈ C+(−) corresponds

to a node in G
+(−)
(0) . A pair of nodes in G

+(−)
(0) is connected with an edge that belongs to E+(−) if one

of them belongs to a set of k-nearest neighbors of another. In practice, we are using approximate

k-nearest neighbors graphs (AkNN) as our experiments with the exact nearest neighbor graphs

do not demonstrate any improvement in the quality of classifiers whereas computing them is a

time consuming task. In the computational experiments, we used FLANN library [70, 71]. Results

obtained with other approximate nearest neighbor search algorithms are found to be not significantly

different. Throughout the multilevel hierarchies, in two-level representation, the fine and coarse level

graphs will be denoted by G
+(−)
f = (C

+(−)
f , E

+(−)
f ), and G

+(−)
c = (C

+(−)
c , E

+(−)
c ), respectively. All

coarse graphs, except G
+(−)
(0) are obtained using respective coarsening algorithm.

Multiple models In the proposed multilevel frameworks, when the data is too big, independent

training of several subsets of the data will be performed. As a result, a training on k subsets will

produce k models that will be denoted as {(svf , C
+
f , C

−
f , γf )i}ki=1 to avoid introducing additional

index for each parameter.

2.3 Multilevel support vector machines

The multilevel frameworks discussed in this chapter include three phases (see Figure 2.1),

namely, gradual training set coarsening, coarsest support vector learning, and gradual support vector

refinement (uncoarsening). In the training set coarsening phase, we create a hierarchy of coarse
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training set representations, J(i), in which each next-coarser level (i + 1) contains a fewer number

of points than in the previous level (i) such that the coarse level learning problem approximates the

fine level problem. The coarse level training points are not necessarily the same fine level points

(such as in [80]) or their strict small clusters (such as in [127]).

When the size of training set is sufficiently small to apply a high quality training algorithm

for given computational resources, the set of coarsest support vectors and model parameters are

trained. We denote by M+(−) the upper limit for the sizes of coarsest training sets which should

depend on the ability of available computational resources to solve the problem exactly in a reason-

able time. In the uncoarsening, both the support vectors and model parameters are inherited from

the coarse level and improved using local refinement at the fine level. The uncoarsening is continued

from the coarsest to the finest levels as is shown in Figure 2.1. Separate coarsening hierarchies are

created for classes C+, and C−, independently.

The main driving routine, mlsvm-•, of a multilevel (W)SVM framework is presented in

Algorithm 1. The SVM cost-sensitive framework is designed similarly with a parameter C, see Eq.

(2.1). In Algorithm 1, the functions coarsen−•, uncoarsen−•, and refine−• are the building blocks

of the multilevel framework discussed in this chapter. These functions will differ from multilevel

framework to framework. The bullet “•” will be replaced with corresponding method names.

2.3.1 Iterative Independent Set Multilevel Framework

We describe the coarsening only for class C+
f as the same process works for C−f . The

multilevel framework (mlsvm-IIS, Alg. 1) with iterative independent set coarsening applies several

iterative passes in each of which a set of fine points is selected and added to the set of coarse points

C+
c . In order to cover the space of points uniformly, this is done by selecting independent sets of

nodes in G+
f . The independent set is a set of vertices in a graph whose node-induced subgraph has

no edges. We present this coarsening in details in [80].

Coarsening (coarsen-IIS in Alg. 1) We start with selecting a random independent set of nodes (or

points), I0, using one pass over all nodes (i.e., choose a random node to I0, eliminate it with its

neighbors from the graph, and choose the next node). The obtained independent set I0 is added

to the set of coarse points. Then, we remove I0 from the graph and repeat the same process to

find another independent set I1 which is also added to the set of coarse points. The iterations are

repeated until
∑
k |Ik| ≤ Q|C+

f |, where Q is a parameter controlling the size of coarse level space.
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Figure 2.1: Multilevel SVM coarsening-uncoarsening framework scheme.

Algorithm 1 mlsvm-•(C+
f ,C

−
f , G

+
f , G

−
f ,M

+,M−): multilevel (W)SVM main driving routine. The
functions coarsen−•, uncoarsen−•, and refine−• are the building blocks of the multilevel framework.
They will differ from multilevel framework to framework. “•” will be replaced by method names
described in following sections.

1: if |Jf | ≤M+ +M− then . Solve the problem exactly if the data is small
2: (svf , C

+, C−, γ)← train (W)SVM model on Jf (including NUD)
3: else . Create and solve a coarse problem. Then refine its solution at level f .
4: if |C+

f | ≤M+ then C+
c ← C+

f ; G+
c ← G+

f

5: else (C+
c , G

+
c )← coarsen−•(C+

f , G
+
f )

6: if |C−f | ≤M− then C−c ← C−f ; G−c ← G−f
7: else (C−c , G

−
c )← coarsen−•(C−f , G

−
f )

8: (svc, C̃
+, C̃−, γ̃)← mlsvm-•(C+

c ,C
−
c , G+

c , G−c , M+, M−)
9: svf ← uncoarsen−•(svc) . Project support vectors from c to f and add neighbors

. Get one or more (k) models if the data is too big at current level
10: {(svf , C

+, C−, γ)i}ki=1 ← refine−•(svf , C̃
+, C̃−, γ̃)

11: if f is the finest level then
12: Return k models {(svf , C

+, C−, γ)i}ki=1

13: else if f is not the finest level and k = 1
14: Return (svf , C

+, C−, γ)1 . Return a single model with updated parameters
15: else if f is not the finest level and k > 1

. Return all support vectors from all models and last inherited single parameter set
16: Return (∪{svf from model i}ki=1, C̃

+, C̃−, γ̃)
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In our experiments, Q = 0.5. However, experimenting with different Q ∈ [0.4, .., 0.6] does not affect

the quality demonstrating the robustness of this parameter. For too small Q, the coarsening might

be too fast and, thus, similar to clustering-based coarsening. The process for C−f is similar.

Coarsest level (line 2, Alg. 1) At the coarsest level ρ, when |J(r)| ≤ M+ + M− � |J(0)|, we

can apply an exact (or computationally expensive) algorithm for training the coarsest classifier.

Typically, |J(ρ)| depends on the available computational resources. However, one can also consider

some criteria of separability between C+
(ρ), and C−(ρ) [118], i.e., if a fast test exists or some helpful

data properties are known. In all our experiments, we used a simple criterion limiting |J(ρ)| to 500.

Processing the coarsest level includes an application of NUD [44] model selection to get high-quality

classifiers on the difficult data sets. To this end, we obtained a solution of the coarsest level, namely,

sv(ρ), C
+
(ρ), C

−
(ρ), and γ(ρ).

Uncoarsening Given the solution of coarse level c, the primary goal of the uncoarsening is to inter-

polate and refine this solution for the current fine level f . Unlike many other multilevel algorithms,

in which the inherited coarse solution contains projected variables only, in our case, we inherit not

only svc but also parameters for model selection. This is important because the model selection is

an extremely time-consuming component of (W)SVM, and can be prohibitive at fine levels of the

hierarchy. However, at the coarse levels, when the problem is much smaller than the original, we can

apply much heavier methods for the model selection almost without any loss in the total complexity

of the framework.

Algorithm 2 uncoarsen-IIS(svc): uncoarsening at level f

1: (N+
f , N

−
f )← Find nearest neighbors of support vectors svc in G+

f and G−f
2: T ← svc ∪N+

f ∪N
−
f . T is a new training set for refinement

3: Return T

The uncoarsening and refinement are presented in Algorithms 2 and 3, respectively. After

the coarsest level is solved exactly and reinforced by the model selection (line 2 in Alg. 1), the

coarse support vectors svc and their nearest neighbors (in our experiments no more than 5) in both

classes (i.e., N+
f and N−f ) initialize the fine level training set T (lines 1-2 in Alg. 2). This completes

uncoarsen-IIS (the uncoarsening of svc), and T initializes svf .

In Alg. 3, the refinement first verifies if |svf | is still small (relatively to the existing com-

putational resources, and the initial size of the data) for applying model selection, i.e., if it is less

than a parameter Qt, then we use coarse parameters C̃+(−), and γ̃ as initializers for the current level

14



Algorithm 3 refine-IIS(svf , C̃
+, C̃−, γ̃): refinement at level f

1: if |svf | < Qt then

2: CO ← (C̃+, C̃−); γO ← γ̃
3: (svf , C

+
f , C

−
f , γf ) ← train (W)SVM using NUD (or similar technique) initialized with

(CO, γO)
4: Return svf , C+

f , C−f , γf
5: else
6: C+

f ← C̃+; C−f ← C̃−; γf ← γ̃ . Inherit the coarse parameters
7: CL← partition svf into K (almost) equal size clusters
8: ∀k ∈ CL find P nearest opposite-class clusters
9: {(svf , C

+
f , C

−
f , γf )i}ki=1 ← train (W)SVMs on pairs of nearest clusters with inherited initial

parameters C+
f , C−f , γf , and generate k models

10: Return k models {(svf , C
+
f , C

−
f , γf )i}ki=1

11: end if

NUD grid search, and re-train (lines 2-3 in Alg. 3). Otherwise, the coarse C̃+(−), and γ̃ are inherited

in C
+(−)
f , and γf (line 6 in Alg. 3). Then, being large for a direct application of the (W)SVM, T

is partitioned into several equal size clusters (using fast solver of balanced k-partitioning [14]), and

pairs of nearest opposite clusters are trained (see details in Section 2.3.4.6). The obtained K models

are returned (lines 7-10 in Alg. 3). If the current level f is finest then we return all models (line 12

in Alg. 1) otherwise a returned union of support vectors and parameter initializations will pass to

the next level (see line 16 in Alg. 1). We note that partition-based retraining can be done in parallel,

as different pairs of clusters are independent. Moreover, the total complexity of the algorithm does

not suffer from reinforcing the partition-based retraining with model selection.

This coarsening scheme is one of the fastest and easily implementable. While the entire

framework (including uncoarsening) is definitely much faster than a regular (W)SVM solver such

as LibSVM (which is used in our implementation as a refinement), it is not the fastest among the

multilevel SVM frameworks. There is a typical trade-off in discrete multilevel frameworks [22, 90],

namely, when the quality of coarsening suffers, the most work is done at the refinement. A similar

independent set coarsening approach was used in multilevel dimensionality reduction [31]. However,

in contrast to that coarsening scheme, we found that using only one independent set (including

possible maximization of it) does not lead to the best quality of classifiers. Instead, a more gradual

coarsening makes the framework much more robust to the changes in the parameters and the shape

of data manifold.
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2.3.2 AMG multilevel framework

The algebraic multigrid (AMG) (W)SVM multilevel framework (mlsvm-AMG, Alg. 1) is

inspired by the AMG aggregation solvers for computational optimization problems such as [91, 59,

56, 92]. Its first version was briefly presented in [85]. The AMG coarsening generalizes the indepen-

dent set and clustering [42] based approaches leveraging a high quality coarsening and flexibility of

AMG which belongs to the same family of multiscale learning strategies with the same main phases,

namely, coarsening, coarsest scale learning, and uncoarsening. However, instead of eliminating a

subset of the data points, in AMG coarsening, the original problem is gradually restricted to smaller

spaces by creating aggregates of fine data points and their fractions (which is an important feature

of AMG), and turning them into the data points at coarse levels. The main mechanism underlying

the coarsening phase is the AMG [114, 11] which successfully helps to identify the interpolation

operator for obtaining a fine level solution from the coarse aggregates. In the uncoarsening phase,

the solution obtained at the coarsest level (i.e., the support vectors and parameters) is gradually

projected back to the finest level by interpolation and further local refinement of support vectors

and parameters. A critical difference between AMG approach and the earlier work of Razzaghi et

al. [80] is that in AMG approach the coarse level support vectors are not the original data points

prolongated from the finest level. Instead, they are centroids of aggregates that contain both full

fine-level data points and their fractions.

Framework initialization The AMG framework is initialized with G
+(−)
0 with the edge weights

that represent the strength of connectivity between nodes in order to “simulate” the following

interpolation scheme applied at the uncoarsening, in which strongly coupled nodes can interpolate

solution to each other. In the classifier learning problems, this is expressed as a similarity measure

between points. We define a distance function between nodes (or corresponding data points) as an

inverse of the Euclidean distance. More advanced distance measure approaches such as [12, 19, 20, 48]

are often essential in similar multilevel frameworks.

Coarsening Phase (see Algorithm 4, coarsen-AMG) We describe the two-level process of obtaining

the coarse level training set C+
c with correspondingG+

c given the current fine levelG+
f and its training

set (e.g., the transition from level f to c). The majority class is coarsened similarly.

The process is started with selecting seed nodes that will serve as centers of coarse level
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nodes, i.e., the aggregates at level f . Coarse nodes will correspond to the coarse data points at level

c. Structurally, each aggregate must include one full seed f -level point, and possibly several other

f -level points and their fractions. Intuitively, it is equivalent to grouping points in C+
f into many

small subsets allowing intersections, where each subset of nodes corresponds to a coarse point at level

c. During the aggregation process, most coarse points will correspond to aggregates of size greater

than 1 (because, throughout the hierarchy, they accumulate many fine points and their fractions),

so we introduce the notion of a volume vi ∈ R+ for all i ∈ C+
f to reflect the importance of a point or

its capacity that includes finest-level aggregated points and their fractions. We also introduce the

edge weighting function w : E+
f → R≥0 to reflect the strength of connectivity and similarity between

nodes.

In Algorithm 4, we show the details of AMG coarsening. In the first step (line 2), we

compute the future-volumes ϑi for all i ∈ C+
f to determine the order in which f -level points will be

tested for declaring them as seeds, namely,

ϑi = vi +
∑

j∈Γi∩C+
f

vj ·
wji∑

k∈Γj∩C+
f

wjk
, (2.3)

where Γi is the neighborhood of node i in G+
f . The future-volume ϑi is defined as a measure (that

is often used in multilevel frameworks [90]) of how much an aggregate seeded by a point i may

potentially grow at the next level c. This is computed in linear time.

We assume that in the finest level, all volumes are ones. We start with selecting a dominating

set of seed nodes S ⊂ C+
f to initialize aggregates. Nodes that are not selected to S remain in F

such that C+
f = F ∪ S. Initially, the set F is set to be C+

f , and S = ∅ since no seeds have been

selected. After that, points with ϑi > η · ϑ, i.e., those that are exceptionally larger than the average

future volume are transferred to S as the most “representative” points (line 3). Then, all points in

F are accessed in the decreasing order of ϑi updating S iteratively (lines 7-11), namely, if with the

current S, and F , for point i ∈ F ,
∑
j∈S wij/

∑
j∈C+

f
wij is less than or equal to some threshold Q1,

i.e., the point is not strongly coupled to already selected points in S, then i is moved from F to S.

The points with large future-volumes usually have a better chance to serve as seeds and

become centers of future coarse points. Selecting too few seeds (and then coarse level points) causes

“overcompressed” coarser level which typically leads to the classification quality drop. Therefore, in

1Similar parameter Q that controls the speed of coarsening appears in coarsen-IIS.
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order to keep sufficiently many points at the coarse level, the parameter Q is set to 0.4-0.6. It has

been observed that in most AMG algorithms, Q > 0.6 is not required (however, it depends on the

type and goals of aggregation). In our experiments Q = 0.5, and η = 2. Other similar values do not

significantly change the results.

Algorithm 4 coarsen-AMG(C+
f , G

+
f ): AMG coarsening

1: S ← ∅, F ← C+
f . start select seeds for coarse nodes

2: Calculate using Eq. (2.3) ∀i ∈ F ϑi, and the average ϑ̄
3: S ← nodes with ϑi > η · ϑ
4: F ← Vf \ S
5: Recompute ϑi ∀i ∈ F
6: Sort F in descending order of ϑ
7: for i ∈ F do

8: if

∑
j∈S

wij/
∑

j∈J+
f

wij

 ≤ Q then

9: move i from F to S
10: end if
11: end for . end select seeds for coarse nodes
12: Build interpolation matrix P according to Eq. (2.4)
13: Build coarse graph G+

c with edge weights using Eq. (2.5)
14: Define volumes of coarse points using Eq. (2.6)
15: Compute coarse points C+

c using Eq. (2.7)
16: Return (C+

c , G
+
c )

When the set S is selected, we compute the AMG interpolation matrix P ∈ R|C
+
f |×|S| that

is defined as

Pij =


wij/

∑
k∈Γi

wik if i ∈ F , j ∈ Γi

1 if i ∈ S, j = I(i)

0 otherwise


, (2.4)

where Γi = {j ∈ S | ij ∈ E+
f } is the set of ith seed neighbors, and I(i) denotes the index of a coarse

point at level c that corresponds to the fine level aggregate around seed i ∈ S. Typically, in AMG

methods, the number of non-zeros in each row is limited by the parameter called the interpolation

order or caliber [11] (see further discussion about r and Table 2.6). This parameter, r, controls the

complexity of a coarse-scale system (the number of non-zero elements in the matrix of coarse k-NN

graph). It limits the number of fractions a fine point can be divided into (and thus attached to

the coarse points). If a row in P contains too many non-zero elements then it is likely to increase

the number of non-zeros in the coarse graph matrix. In multigrid methods, this number is usually
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controlled by different approaches that measure the strength of connectivity (or importance) between

fine and coarse variables (see discussion and implementation in [83]).

Using the matrix P , the aggregated data points and volumes for the coarse level are calcu-

lated. The edge between points p = I(i) and q = I(j) is assigned with weight

wpq =
∑

k 6=l
Pki · wkl · Plj . (2.5)

The volume for the aggregate I(i) in the coarse graph is computed by

∑
j
vjPji, (2.6)

i.e., the total volume of all points is preserved at all levels during the coarsening. The coarse point

q ∈ C+
c seeded by i = I−1(q) ∈ C+

f is represented by

∑
j∈Ai

Pj,q · j, (2.7)

where Ai is a set of fine points in aggregate i. This set is extracted from the column of P that

corresponds to aggregate i by considering rows j with non-zero values.

The stopping criteria for the coarsening depends on the available computational resources

that can be used in order to train the classifier at the coarsest level. In our experiments, the coarsen-

ing stops when the size is less than a threshold (typically, 500 points) that ensures a fast performance

of the

LibSVM dual solver.

Uncoarsening (see Algorithm 4, uncoarsen-AMG) The uncoarsening of AMG multilevel framework

is similar to that of the mlsvm-IIS. The main difference is in lines 1-2 in Alg. 2. Instead of defining

the training set for the refinement at level f as

T ← svc ∪N+
f ∪N

−
f ,

all coarse support vectors are uncoarsened by adding to T all elements of the corresponding aggre-

gates, namely,
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T ← ∅; ∀p ∈ svc ∀j ∈ Ap T ← T ∪ j. (2.8)

The rule in (2.8) means the following: 1) take all c-level support vectors p, 2) find all f -level points

that are aggregated in c-level support vectors, and 3) add them to T . The basic refinement, refine-

AMG, is similar to refine-IIS.

2.3.3 Complexity of multilevel framework

The complexity of MAF for (W)SVM consists of three parts, namely, generating approx-

imated k-NN graphs of both classes, coarsening and uncoarsening. The complexity of generating

approximate k-NN graphs is based on FLANN library implementation [70, 71] that was used in our

experiments. It includes construction of a k-means tree that is leveraged to search for approximate

nearest neighbors. The overall complexity of FLANN is O(|J | ·d ·(log n′/ logK)) where d is the data

dimensionality, n′ is the number of inner nodes the k-means tree, and K is the number of clusters or

branching factor for the k-means. When we compare the running time of 1 V-cycle of our solver and

that of parallelized FLANN preprocessing, we observe that FLANN does not significantly increases

the running time of the entire framework when we parametrize it to find 10 nearest neighbors.

In the coarsening phase, we need to consider the complexity of coarsening the approximated

k-NN graphs of C+ and C− including aggregation of the data points. The complexity of coarsening

is similar to that of AMG applied on graph G = (V,E) which is proportional to |V | + |E|, where

|E| ≈ k|V |, where k is the number of nearest neighbors. In our experiments, we found that no

data set requires k > 10 to improve the quality of classification. Because we do not anticipate to

obtain exceptionally high-degree nodes during the coarsening, we also do not expect to observe very

fast increasing density of nonzero features (nnz) in data points. Thus, we bound the complexity of

coarsening with O(nnz(J )) (or O(|J |) for low dimensional data) without having hidden coefficients,

in practice.

The complexity of the uncoarsening mostly depends on that of the underlying QP solver

(call it QPS, such as LibSVM) applied at the refinement stage. Another factor that affects the

complexity is the number of support vectors found at each scale which is typically significantly smaller

than the number of data points. Typically, the complexity will be approximately O(nnz(J )) +
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O(QPS(p points)) · |support vectors|/p, where p is the number of parts, the set of support vectors

is split to if partitioning is applied. Typically, if the application does not include very dense data,

the component O(nnz(J )) is much smaller than O(|J | · d). Overall, the complexity of the entire

framework is linear in the number of data points.

The computational time obtained in our experiments and the amount of work per unit is

presented in Section 2.4. In particular, in Table 2.14 we demonstrate the computational time per

data point and per feature value. In particular, in Figure 2.4, we present the change in running time

while training the model with increasingly larger parts of the dataset.

2.3.4 Engineering multilevel framework

The AMG framework generalizes many multilevel approaches by allowing a “soft” weighted

aggregation of points (and their fractions) in contrast to the “strict” clustering [42] and subset

based aggregations such as our mlsvm-IIS [80]. In this section we describe a variety of improvements

we experimented with to further boost the quality of the multilevel classification framework, and

improve the performance of both the training and validation processes in terms of the quality and

running time. All of them are applicable in both “strict” or “soft” coarsening schemes.

2.3.4.1 Imbalanced classification

One of the major advantages of the proposed coarsening scheme is its natural ability to

cope with the imbalanced data in addition to the cost-sensitive and weighted models solved in the

refinement. When the coarsening is performed on both classes simultaneously, and in a small class

the number of points reaches an allowed minimum, this level is simply copied throughout the rest

of levels required to coarsen the big class. Since the number of points at the coarsest level is small,

this does not affect the overall complexity of the framework. Therefore, the numbers of points in

both classes are within the same range at the coarsest level regardless of how imbalanced they were

at the fine levels. Such training on the balanced data mitigates the imbalance effects and improves

the performance quality of trained models.

2.3.4.2 Coarse level density problem

Both mlsvm-IIS and mlsvm-AMG do not change the dimensionality during the coarsening

which potentially may turn into a significant computational bottleneck for a large-scale data. In
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many applications, a high-dimensional data is sparse, and, thus, even if the number of points is large,

the space requirements are still not prohibitive. Examples include text tf-idf data and categorical

features that are converted into a binary representation. While the mlsvm-IIS coarsening selects

original (i.e., sparse) points for the coarse levels, the mlsvm-AMG aggregates points using a linear

combination such as in Eq. 2.7. Even when the original j ∈ Ai are sparse, the points at coarse levels

may eventually become much denser than the original points.

The second type of coarse level density is related to the aggregation itself. When f -level

data points are divided into several parts to join several aggregates, the number of edges in coarse

graphs is increasing when it is generated by Lc ← PTLfP (subject to Lc diagonal entry correction).

Finest level graphs that contain high-degree nodes have a good chance to generate very dense graphs

at the coarse levels if their density is not controlled. This can potentially affect the performance of

the framework.

The coarse level density problem is typical to most AMG and AMG-inspired approaches.

We control it by filtering weak edges and using the order of interpolation in aggregation. The weak

edges not only increase the density of coarse levels but also may affect the quality of the training

process during the refinement. In mlsvm-AMG framework, we eliminate weak edges between i and

j if wij < θ · avgki{wki} and wij < θ · avgkj{wkj} where avg{·} is the average of corresponding

adjacent edge weights. We experimented with different values of θ between 0.001 and 0.005 which

was typically a robust parameter that does not require much attention.

The order of interpolation, r, is the number of nonzeros allowed per row in P . A single

nonzero jth entry in row i, Pij = 1, means that a fine point i fully belongs to aggregate j which

leads to creation of small clusters of fine points without splitting them. Typically, in AMG methods,

increasing r improves the quality of solvers making them, however, slower. We experiment with

different values of r and conclude that high interpolation orders such as 2 and 4 perform better than

1. In the same time, we observed that there is no practical need to increase it more (see further

discussion and example in Sec. 2.4.2).

2.3.4.3 Validation for model selection

The problem of finding optimal parameters (i.e., the model selection) is important for achiev-

ing a better quality on many data sets. Typically, this component is computationally expensive

because repetitive training is required for different choices of parameters. A validation data is then
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required to choose the best trained model. A performance of model selection techniques is affected by

the quality and size of the validation data. (We note that the test data for which the computational

results are presented remains completely isolated from any training and validation.)

The problem of a validation set choice requires a special attention in multilevel frameworks

because the models at the coarse levels should not necessarily be validated on the corresponding

coarse data. As such, we propose different approaches to find the most suitable types of validation

data. We developed the following approaches to choose validation set for multilevel frameworks,

namely, coarse sampling (CS), coarse cross k-fold (CCkF), finest full (FF), and fine sampling (FS).

CS: The data in J +
(i) and J−(i) is sampled and one part of it (in our experiments 10% or 20%) is

selected for a validation set for model selection. In other words, the validation is performed on

the data at the same level. This approach is extremely fast on the data in which the coarsening is

anticipated to be uniform without generating a variability in the density of aggregation in different

parts of the data. Typically, its quality is acceptable on homogeneous data. However, qualitatively,

this approach may suffer from a small size of the validation data in comparison to the size of test

data.

CCkF: In this method we apply a complete k-fold cross validation at all levels using the coarse

data from the same level. The disadvantage of this method is that it is more time consuming but

the quality is typically improved. During the k-fold cross validation, all data is covered. With this

method, the performance measures are improved in comparison to the CS but the quality of the

finest level can degrade because of potential overfitting at the coarse levels.

FF: This method exploits a multilevel framework by combining a coarse training set J +(−)
c with

a validation set that is a whole finest level training set J +(−)
(0) . The idea behind this approach is

to choose the best model which increases a required performance measure (such as accuracy, and

G-mean) of coarse aggregates with respect to the original data rather than the aggregates. This

significantly increases the quality of final models. However, this method is time consuming on very

large data sets as all original points participate in validation.

FS: This method resolves the complexity of FF by sampling J +(−)
(0) to serve as a validation set at

the coarse levels. The size of sampling should depend on computational resources. However, we

note that we have not observed any drop in quality if it is more than 10% of the J +(−)
(0) . Both FF

and FS exhibit the best performance measures.
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2.3.4.4 Underlying solver

At all iterations of the refinement and at the coarsest level we used LibSVM [17] as an

underlying solver by applying it on the small subsets of data (see lines 3 and 9 in Alg. 3). Depending

on the objective Eq. (2.1) or (2.2), SVM or WSVM solvers are applied. In this chapter we report

the results of WSVM in which the objective Eq. (2.2) is given by

minimize
1

2
‖w‖2 + C

(
W+

n+∑
i=1

ξ+
i +W−

n−∑
j=1

ξ−j
)
, (2.9)

where the optimal C and γ are fitted using model selection, and the class importance coefficients

are W+ and W−. While for the single-level WSVM, the typical class importance weighting scheme

is

W+ =
1

|J +|
, W− =

1

|J−|
, (2.10)

in MAF, the aggregated points in each class have different importance due to the different accu-

mulated volume of finer points. The aggregated points which represent more fine points are more

important than aggregated points which represent small number of fine points. Therefore, the MAF

approach for calculating the class weights is based on sum of the volumes in each class, i.e.,

W+ =
1∑

i∈J+

vi
, W− =

1∑
i∈J−

vi
. (2.11)

This method, however, ignores the importance of each point in its class. We find that the

most successful penalty scheme is the one that is personalized per point, and adapt (2.11) to be

∀i ∈ J +(−) Wi = W+(−) vi∑
j∈J+(−)

vj
. (2.12)

In other words, we consider the relative volume of the point in its class but also multiply it by an

inverse of the total volume of the class which gives more weight to a small class. This helps to

improve the correctness of a small class classification.
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2.3.4.5 Expanding training set in refinement

Typically, in many applications, the number of support vectors is much smaller than |J |.

This observation allows some freedom in exploring the space around support vectors inherited from

coarse levels. This can be done by adding more points to the refinement training set in attempt to

improve the quality of a hyperplane. We describe several possible strategies that one can follow in

designing a multilevel (W)SVM framework.

Full disaggregation: This is a basic method presented in (2.8) in which all aggregates of coarse

support vectors contribute all their elements to the training set. It is a default method in mlsvm-

AMG.

k-distant disaggregation: In some cases, the quality can be improved by adding to T the k-distant

neighbors of aggregate elements. In other words, after (2.8), we apply

∀p ∈ T T ← T ∪N+(−)
f (p), (2.13)

where N
+(−)
f (p) is a set of neighbors of p in G

+(−)
f depending on the class of p. Similarly, one can

add points within distance k from the aggregates of inherited support vectors. Clearly, this can only

improve the quality. However, the refinement training is expected to be increasingly slower especially

when the G
+(−)
f contains high-degree nodes. Even if the finest level graph nodes are of a small degree,

this could happen at the coarse levels if a proper edge filtering and limiting interpolation order are

not applied. In very rare cases, we observed a need for adding distance 2 neighbors.

Sampling aggregates: In some cases, the coarse level aggregates may become very dense which

does not improve the quality of refinement training. Instead, it may affect the running time. One

way to avoid of unnecessary complexity is to sample the elements of aggregates. A better way to

sample them than a random sampling (after adding the seed) is to order them by the interpolation

weights Pij . The ascending order which gives a preference to the fine points that are split across

more than one aggregate was the most successful option in our experiments. Fine non-seed points

whose Pij = 1 are likely to have high similarity with the seeds which does not improve the quality

of the support vectors.
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2.3.4.6 Partitioning in the refinement

When the number of uncoarsened support vectors at level f is too big for the available

computational resources, multiple small-size models are trained and either validated or used as a final

output. Small-size models are required for applying model selection in a reasonable computational

time. For this purpose we partition the current level training sets C
+(−)
f (see lines 7-10 in Alg. 3)

into k parts of approximately equal size using fast graph partitioning solvers [14]. Note that applying

similar graph clustering strategies may lead to highly imbalanced parts which will make the whole

process of refinement acceleration useless.

In both mlsvm-AMG and mlsvm-IIS, we leverage the graphs of both classes G+
f and G−f

with the inverses of Euclidean distance between nodes playing the role of edge weights. After both

graphs are partitioned, two sets of approximately equal size partitions, Π+
f and Π−f are created. For

each part πi ∈ Π+
f ∪Π−f we compute its centroid ci in order to estimate the nearest parts of opposite

classes and train multiple models by pairs of parts.

The training by pairs of parts works as follows. For each ci we find the nearest cj such

that i and j are in different classes and evaluate at most |Π+
f |+ |Π

−
f | models for different choices of

(πi, πj) pairs (without repetitions which often appear in practice making the process fast). The set

of all generated models is denoted by Mf . We note that the training of such pairs is independent

and can be easily parallelized.

There are multiple ways one can test (or validate) a point using all models “voting”. The

simplest strategy which performs well on many data sets is a majority voting. However, the most

successful way to generate a prediction was a voting by the relative distance from the test point t

to the weighted center of the segment connecting ci and cj , namely,

xij =
ci
∑
q∈πi

vq + cj
∑
q∈πj

vq∑
q∈πi∪πj

vq
, (2.14)

where vq is the volume of point q. For all pairs of nearest parts i and j, the label of t is computed

as

sign
(∑ij∈Mf

lij(t)d
−1(t, xij)∑

ij∈Mf
d−1(t, xij)

)
, (2.15)

where lij(t) is a label of ij model for point t, and d(·, ·) is a distance function between two points.

We experimented with several distance functions to express the proximity of parts (i.e., the way we
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choose pairs (πi, πj)) and d(·, ·), namely, Euclidean, exponential, and Manhattan. The quality of

final models obtained using Euclidean distance was the highest.

If the partitioning refinement is applied at the finest level then Algorithm 1 outputs all

generated finest level models, and the prediction works according to Eq. (2.15). Otherwise, if the

partitioning refinement occurs in the middle levels then the next finer level will receive a union of all

support vectors from the models (line 16 in Alg. 1) and model parameters inherited from last level

in which a single model was trained. We note that it often might be the case that a partitioning

refinement generates models with relatively small total number of support vectors such that at the

next finer level, their union can be considered as an input to train a single model.

2.3.4.7 Model Selection

The MAF allows a flexible design for model selection techniques such as various types of

parameter grid search [18], NUD [44] that we use in our computational experiments, and other search

approaches [64, 5, 128]. A mechanism that typically works behind most of such search techniques

evaluates different combinations of parameters (such as C+, C−, and γ) and chooses the one that

exhibits the best performance measure. Besides the general applicability of model selection because

the number of inherited and disaggregated support vectors (in the uncoarsening of mlsvm-IIS and

mlsvm-AMG) is typically smaller than that of the corresponding training set, the MAF has the

following advantages.

Fast parameter search: In many cases, there is no need to test all combinations of the parameters.

The inherited c-level parameters can serve as a center point for their refinement only. For example,

NUD suggests two-stage search strategy. In the first stage a wide range of parameters is considered.

In the second stage, the best combination from the first stage is locally refined using a smaller

search range. In MAF, we do not need to apply the first stage as we only refine the inherited c-level

parameters. Other grid search methods can be adjusted in a similar way.

Selecting suitable performance measures for the best model: In MAF, a criterion for

choosing the best model throughout the hierarchy is more influential than that at the finest level

in non-MAF frameworks. Moreover, these criteria can be different at different levels. For example,

when one focuses on highly imbalanced sets, a criteria such as the best G-mean could be more

beneficial than the accuracy. We found that introducing 2-level criteria for imbalanced sets such as

(a) choose the best G-mean, and (b) among the combinations with the best G-mean choose the best
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sensitivity, performs particularly good if applied at the coarse levels when the tie breaker may be

often required.

2.3.4.8 Models at different levels of coarseness

Over- and under-fitting are among the key problems of model selection and classifiers, in

general. The MAF successfully helps to tackle them. Throughout the hierarchy, we solve (W)SVM

models at different levels of coarseness. Intuitively, the coarsening procedure gradually creates

generalized (or summarized) representations of the finest level data which results in generalized

coarse hyperplanes which can also be used as final solutions. Indeed, at the finest level, rich data

can easily lead to over-fitted models, a phenomenon frequently observed in practice [28]. In the same

time, over-compressed data representation may lead to an under-fitted model because no fine details

are considered. In a multilevel framework, one can use models from multiple levels of coarseness

because the most correct validation is done against the fine level data in any case. Our experiments

confirm that more than half of the best models are obtained from the coarse (but not coarsest) and

middle levels which typically prevents over- and under-fitting.

If the best validation was obtained at the middle level and at this level the framework

generated multiple models using partitioning refinement (see Section 2.3.4.6) then these multiple

models will be the output of Alg. 1 and the prediction will work according to Eq. (2.15). In

general, if the best models were produced by the finest and middle levels, we recommend to use the

middle level model to avoid potential over-fitting. This recommendation is based on the observation

that same quality models can be generated by different hyperplanes but finest models may contain

a large number of support vectors that can lead to over-fitting. However, it is a general thought

that requires further exploration. In our experiments, no additional parameters or conditions are

introduced to choose the final model. We simply choose the best model among those generated at

different levels.

2.4 Computational Results

We compare our algorithms in terms of classification quality and computational performance

to the state-of-the-art sequential SVM algorithms LibSVM, DC-SVM, and fast Ensemble SVM. The

DC-SVM is a most recent, fast, hierarchical approach that outperforms other hierarchical methods
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which was the reason to choose it for comparison. The classification quality is evaluated using the

following performance measures: sensitivity (SN), specificity (SP), geometric mean (G-mean), and

accuracy (ACC), Precision (PPV), and F1, namely,

SN =
TP

TP + FN
, SP =

TN

TN + FP
, G-mean =

√
SP · SN,

ACC =
TP + TN

FP + TN + TP + FN
, Precision (PPV) =

TP

TP + FP
,

where TN , TP , FP , and FN correspond to the numbers of true negative, true positive, false

positive, and false negative points. Our main metric for comparison is G-mean which measures

the balance between classification quality on both the majority and minority classes. This metric is

illuminating for imbalanced classification as a low G-mean is an indication of low-quality classification

of the positive data points even if the negative points classification is of high quality. This measure

indicates over-fitting of the negative class and under-fitting of the positive class, a critical problem

in imbalanced datasets.

In all experiments the data is normalized using z-score. Each experimental result in the

following tables represents an average over 100 executions of the same type with different random

seeds. The computational time reported in all experiments contains generating the k-NN graph.

The computational time is reported in seconds unless it is explicitly mentioned otherwise.

In each class, a part of the data is assigned to be the test data using k-fold cross validation.

We experimented with k=5 and 10 (no significant difference was observed). The experiments are

repeated k times to cover all the data as test data. The data randomly shuffled for each k-fold

cross validation.The presented results are the averages of performance measures for all k folds. Data

points which are not in the test data are used as the training data in J +(−). The test data is never

used for any training or validation purposes. The Metis library [50] is used for graph partitioning

during the refinement phase. We present the details about data sets in Table 2.1. The imbalance of

datasets is denoted by ε.

The Forest data set [32] has 7 classes and different classes are reported in the literature

(typically, not the difficult ones). Class 5 is used in our experiments as the most difficult and highly

imbalanced. We report our results on other classes which are listed in Table 2.2 for convenient

comparison with other methods.

29



Table 2.1: Benchmark data sets.
Dataset ε nf |J | |C+| |C−|
Advertisement 0.86 1558 3279 459 2820
Buzz 0.80 77 140707 27775 112932
Clean (Musk) 0.85 166 6598 1017 5581
Cod-rna 0.67 8 59535 19845 39690
EEG Eye State 0.55 14 14980 6723 8257
Forest (Class 5) 0.98 54 581012 9493 571519
Hypothyroid 0.94 21 3919 240 3679
ISOLET 0.96 617 6238 240 5998
Letter 0.96 16 20000 734 19266
Nursery 0.67 8 12960 4320 8640
Protein homology 0.99 74 145751 1296 144455
Ringnorm 0.50 20 7400 3664 3736
Twonorm 0.50 20 7400 3703 3697

Table 2.2: The Forest data set classes with nf = 54 and |J | = 581012

Class No ε |C+| |C−|
Class 1 0.64 211840 369172
Class 2 0.51 283301 297711
Class 3 0.94 35754 545258
Class 4 1.00 2747 578265
Class 5 0.98 9493 571519
Class 6 0.97 17367 563645
Class 7 0.96 20510 560502

2.4.1 mlsvm-IIS results

The performance measures of single- (LibSVM) and multi-level (W)SVMs are computed and

compared in Table 2.3. In our earlier work [80], it has been shown in that the multilevel (W)SVM

produces similar results compared to the single-level (W)SVM, but it is much faster (see Table

2.4). All experiments on all data sets have been executed on a single machine Intel Core i7-4790,

3.60GHz, and 16 GB RAM. The framework ran in sequential mode with no parallelization using

Ubuntu 14.04.5 LTS, Matlab 2012a, Metis 5.0.2, and FLANN 1.8.4.

2.4.2 mlsvm-AMG sparsity preserving coarsening

We have experimented with the light version of mlsvm-AMG in which instead of computing

a linear combination of f -level points to get c-level points (see Eq. 2.7), we prolongate the seed to be

a corresponding coarse point in attempt to preserve the sparsity of data points. In terms of quality

of classifiers, the performance measures of this method are similar to that of mlsvm-IIS and in most
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Table 2.3: Quality comparison using performance measures for multi- and single-level of (W)SVM.
Each cell contains an average over 100 executions including model selection for each of them. Column
“Depth” shows the number of levels. The best results are highlighted in bold font.

Multilevel Single-level
Dataset ACC SN SP G-mean Depth ACC SN SP G-mean

S
V

M

Advertisement 0.94 0.97 0.79 0.87 7 0.92 0.99 0.45 0.67
Buzz 0.94 0.96 0.85 0.90 14 0.97 0.99 0.81 0.89
Clean (Musk) 1.00 1.00 0.99 0.99 5 1.00 1.00 0.98 0.99
Cod-rna 0.95 0.93 0.97 0.95 9 0.96 0.96 0.95 0.96
EEG Eye State 0.83 0.82 0.88 0.85 6 0.88 0.90 0.86 0.88
Forest (Class 5) 0.93 0.93 0.90 0.91 33 1.00 1.00 0.86 0.92
Hypothyroid 0.98 0.98 0.74 0.85 4 0.99 1.00 0.71 0.83
ISOLET 0.99 1.00 0.83 0.92 11 0.99 1.00 0.85 0.92
Letter 0.98 0.99 0.95 0.97 8 1.00 1.00 0.97 0.98
Nursery 1.00 0.99 0.98 0.99 10 1.00 1.00 1.00 1.00
Protein homology 1.00 1.00 0.72 0.85 18 1.00 1.00 0.80 0.89
Ringnorm 0.98 0.98 0.99 0.98 6 0.98 0.99 0.98 0.98
Twonorm 0.97 0.98 0.97 0.97 6 0.98 0.98 0.99 0.98

W
S

V
M

Advertisement 0.94 0.96 0.80 0.88 7 0.92 0.99 0.45 0.67
Buzz 0.94 0.96 0.87 0.91 14 0.96 0.99 0.81 0.89
Clean (Musk) 1.00 1.00 0.99 0.99 5 1.00 1.00 0.98 0.99
Cod-rna 0.94 0.97 0.95 0.96 9 0.96 0.96 0.96 0.96
EEG Eye State 0.87 0.89 0.86 0.88 6 0.88 0.90 0.86 0.88
Forest (Class 5) 0.92 0.92 0.90 0.91 33 1.00 1.00 0.86 0.93
Hypothyroid 0.98 0.98 0.75 0.86 4 0.99 1.00 0.75 0.86
ISOLET 0.99 1.00 0.85 0.92 11 0.99 1.00 0.85 0.92
Letter 0.99 0.99 0.96 0.99 8 1.00 1.00 0.97 0.99
Nursery 1.00 0.99 0.98 0.99 10 1.00 1.00 1.00 1.00
Protein homology 1.00 1.00 0.87 0.92 18 1.00 1.00 0.80 0.89
Ringnorm 0.98 0.97 0.99 0.98 6 0.98 0.99 0.98 0.98
Twonorm 0.97 0.98 0.97 0.97 6 0.98 0.98 0.99 0.98

cases (see Tables 2.4-2.5) are faster. However, for Buzz and Cod-rna datasets, although mlsvm-AMG

performs faster, it results in a lower sensitivity and specificity (see Table 2.5) for SVM, and higher

sensitivity and specificity for WSVM (see Table 2.5) compared to mlsvm-IIS. For Protein dataset,

the sensitivity and specificity are improved compared to mlsvm-IIS (see Table 2.5).

We perform the sensitivity analysis of the order of interpolation denoted by r (see Eq. 2.4),

the maximum number of fractions a point in F can be divided into, and compare the performance

measures and computational time in Table 2.6. As r increases, the performance measures such as G-

mean are improving until they do not stop changing for larger r. For example, for Buzz dataset, the

G-mean is not changing for larger r = 6. The presented results are computed without advancements

FF and FS (see Section 3.3). Using these techniques, we obtain G-mean 0.95 with r = 1 for Buzz

data set. Higher interpolation orders increase the time but produce the same quality on that data
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Table 2.4: Comparison of computational time for single- (LibSVM) and multilevel (mlsvm-IIS and
sparse mlsvm-AMG) solvers in seconds. Presented values include running time in seconds for both
WSVM and SVM with model selection.

Dataset mlsvm-IIS Sparse mlsvm-AMG Single-level
Advertisement 196 91 412
Buzz 2329 957 70452
Clean (Musk) 30 6 167
Cod-rna 172 92 1611
EEG Eye State 51 45 447
Forest (Class 5) 13785 13328 352500
Hypothyroid 3 3 5
ISOLET 69 64 1367
Letter 45 18 333
Nursery 63 33 519
Protein homology 1564 1597 73311
Ringnorm 4 5 42
Twonorm 4 4 45

set.

2.4.3 Full mlsvm-AMG coarsening

The best version of full mlsvm-AMG coarsening whose results are reported, chooses the best

model from different scales (see Sec. 2.3.4.8). For this type of mlsvm-AMG, all experiments on all

data sets have been executed on a single machine with CPU Intel Xeon E5-2665 2.4 GHz and 64

GB RAM. The framework runs in sequential mode. The FLANN library is used to generate the

approximated k-NN graph for k = 10. Once it is generated for the whole data set, its result is saved

and reused. In all experiments all data points are randomly reordered as well as for each k-fold,

the indices from the original test data are removed and reordered, so no order in which points are

entered into QP solver affects the solution. Each experiment includes a full k-fold cross validation.

The average performance measures over 5 experiments each of which includes 10-fold cross validation

are demonstrated in Tables 2.8 and 2.9. The best model among all the levels for each fold of cross

validation is selected using validation data (see Sec. 2.3.4.7). Using the best model, the performance

measures over the test data are calculated and reported as the final performance for this specific

fold of cross validation.

For the purpose of comparison, the results of previous work using validation techniques CS,

CCkF without partitioning the training data during the refinement [85] are presented in Table 2.7.

The results using validation techniques FF, FS with partitioning the training data during
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Table 2.5: Performance measures of regular and weighted mlsvm-AMG. Column ’Depth’ shows the
number of levels in the multilevel hierarchy which is independent of SVM type.

regular mlsvm-AMG weighted mlsvm-AMG Depth
Dataset ACC SN SP G-mean ACC SN SP G-mean
Advertisement 0.95 0.99 0.64 0.86 0.95 0.99 0.64 0.86 2
Buzz 0.87 0.89 0.79 0.83 0.93 0.95 0.85 0.90 8
Clean 0.99 1.00 0.98 0.99 0.99 1.00 0.98 0.99 4
Cod-rna 0.86 0.85 0.88 0.87 0.89 0.89 0.90 0.90 6
EEG Eye State 0.87 0.88 0.85 0.86 0.87 0.88 0.85 0.86 4
Forest (Class 5) 0.97 0.98 0.79 0.88 0.96 0.97 0.82 0.89 9
ISOLET 0.99 1.00 0.83 0.91 0.99 1.00 0.83 0.91 3
Letter 0.99 0.99 0.95 0.97 0.99 0.99 0.93 0.96 5
Nursery 0.99 0.99 1.00 0.99 1.00 1.00 1.00 1.00 4
Protein homology 0.97 0.97 0.86 0.91 0.97 0.97 0.85 0.91 5
Ringnorm 0.98 0.98 0.98 0.98 0.98 0.99 0.98 0.98 3
Twonorm 0.98 0.97 0.98 0.98 0.98 0.97 0.98 0.98 3

Table 2.6: Sensitivity analysis of interpolation order r in mlsvm-AMG for Buzz data set.
Metric r = 1 r = 2 r = 3 r = 4 r = 5 r = 6 r = 10

mlsvm-AMG SVM

G-mean 0.26 0.33 0.56 0.83 0.90 0.91 0.89
SN 0.14 0.33 0.68 0.89 0.98 0.97 0.95
SP 0.47 0.34 0.47 0.79 0.82 0.86 0.82

ACC 0.21 0.33 0.64 0.87 0.95 0.95 0.94

mlsvm-AMG WSVM

G-mean 0.26 0.40 0.60 0.90 0.93 0.93 0.94
SN 0.14 0.32 0.74 0.95 0.98 0.98 0.98
SP 0.47 0.5 0.48 0.85 0.88 0.89 0.89

ACC 0.21 0.35 0.69 0.93 0.96 0.97 0.97
time(sec.) 389 541 659 957 1047 1116 1375

the refinement phase are presented in Tables 2.8, 2.9. We compare our performance and quality

with those obtained by LibSVM, DC-SVM, and Ensemble SVM. All results are related to WSVM.

The “Single level WSVM” column in Table 2.8 represents the weighted SVM results produced by

LibSVM. The LibSVM solver is slow but it produces almost the best G-mean results over our

experimental datasets except Advertisement, Buzz, and Forest. The DC-SVM [42] produces better

G-mean on 4 datasets compare to LibSVM (see Table 2.8) but has lower G-mean on 4 other datasets.

We choose DC-SVM not only because it has a hierarchical framework (with different principles of

(un)coarsening) but also because it significantly outperforms other hierarchical techniques which are

typically fast but not of high quality.

The mlsvm-AMG demonstrates significantly better computation time than DC-SVM on

almost all datasets (see Table 2.8). Furthermore, mlsvm-AMG classification quality is significantly

better on both Advertisement and Buzz datasets compared to LibSVM. In addition, the comparison
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Table 2.7: Performance measures and running time (in seconds) for weighted single level SVM
(LibSVM), and weighted mlsvm-AMG on benchmark data sets in [61] without partitioning.

Single level WSVM mlsvm-AMG
Dataset ACC SN SP G-mean Time ACC SN SP G-mean Time
Advertisement 0.92 0.99 0.45 0.67 231 0.83 0.92 0.81 0.86 213
Buzz 0.96 0.99 0.81 0.89 26026 0.88 0.97 0.86 0.91 233
Clean (Musk) 1.00 1.00 0.98 0.99 82 0.97 0.97 0.97 0.97 7
Cod-RNA 0.96 0.96 0.96 0.96 1857 0.94 0.97 0.92 0.95 102
Forest 1.00 1.00 0.86 0.92 353210 0.88 0.92 0.88 0.90 479
Hypothyroid 0.99 1.00 0.75 0.86 3 0.98 0.83 0.99 0.91 3
ISOLET 0.99 1.00 0.85 0.92 1367 0.99 0.89 1.00 0.94 66
Letter 1.00 1.00 0.97 0.99 139 0.98 1.00 0.97 0.99 12
Nursery 1.00 1.00 1.00 1.00 192 1.00 1.00 1.00 1.00 2
Ringnorm 0.98 0.99 0.98 0.98 26 0.98 0.98 0.98 0.98 2
Twonorm 0.98 0.98 0.99 0.98 28 0.98 0.98 0.97 0.98 1

between DC-SVM and mlsvm-AMG shows that the latter has higher G-mean for Advertisement,

Buzz, Clean, Cod, Ringnorm, and Twonorm datasets. A better performance of DC-SVM is observed

on Forest dataset if mlsvm-AMG is applying partitioning, i.e., when the number of support vectors

is big. However, in another version of multilevel framework with validation techniques CS, CCkF

without partitioning the training data during the refinement, the G-mean raises to 0.90 (see Table

2.7). It is interesting to note that the dimensionality of Advertisement dataset is the main source

of complexity for the parameter fitting in both LibSVM and mlsvm-AMG. All versions of multilevel

SVMs produce G-mean 0.90 for this dataset which is significantly higher than that of LibSVM which

is 0.67. The results for this dataset are not significantly different for DC-SVM which is, however, 3

times slower than full mlsvm-AMG and 6 times slower than sparse mlsvm-AMG.

The computational time in seconds is demonstrated in Table 2.9. Our experiments exhibit

significant performance improvement.

2.4.3.1 Large datasets

Large datasets SUSY and Higgs are available at UCI repository [61]. The MNIST8M was

downloaded from LibSVM data repository. Half of each class was randomly sampled to make

classification more difficult. All the methods (our and competitors’) are benchmarked using Intel

Xeon (E5-2680v3) with 128Gb memory.

The experiments with DC-SVM have not been finished after 3 full days of running and its
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Table 2.8: Performance measures for single level WSVM (LibSVM), DC-SVM and mlsvm-AMG on
benchmark data sets using partitioning and FF, FS validation techniques.

Single level WSVM DC-SVM mlsvm-AMG
Datasets ACC SN SP G-mean ACC SN SP G-mean ACC SN SP G-mean
Advertisement 0.92 0.99 0.45 0.67 0.95 0.83 0.97 0.90 0.95 0.85 0.96 0.91
Buzz 0.96 0.99 0.81 0.89 0.96 0.88 0.97 0.92 0.94 0.95 0.94 0.95
Clean (Musk) 1.00 1.00 0.98 0.99 0.96 0.91 0.97 0.94 0.99 0.99 0.99 0.99
Cod-RNA 0.96 0.96 0.96 0.96 0.93 0.93 0.94 0.93 0.93 0.97 0.91 0.94
Forest 1.00 1.00 0.86 0.92 1.00 0.88 1.00 0.94 0.77 0.96 0.80 0.88
Letter 1.00 1.00 0.97 0.99 1.00 1.00 1.00 1.00 0.98 0.99 0.98 0.99
Nursery 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Ringnorm 0.98 0.99 0.98 0.98 0.95 0.92 0.98 0.95 0.98 0.98 0.98 0.98
Twonorm 0.98 0.98 0.99 0.98 0.97 0.98 0.96 0.97 0.98 0.98 0.97 0.98

Table 2.9: Computational time in seconds for single level WSVM (LibSVM), DC-SVM and mlsvm-
AMG.

Dataset Single level WSVM DC-SVM mlsvm-AMG
Advertisement 231 610 213
Buzz 26026 2524 31
Clean (Musk) 82 95 94
Cod-RNA 1857 420 13
Forest 353210 19970 948
Letter 139 38 30
Nursery 192 49 2
Ringnorm 26 38 2
Twonorm 28 30 1

performance is not presented because of unrealistic slowness of the method. Therefore, it is not

comparable with mlsvm-AMG on large datasets. The LibSVM performs slower than DC-SVM on

these datasets and is also not presented. Although, fast linear SVM solvers are beyond the scope

of this work, we compare the mlsvm-AMG with the LibLinear [29] that is significantly faster than

both DC-SVM and LibSVM. We note that linear SVM solvers can also be used as the refinement

in multilevel frameworks. However, in practice, we do not observe a need for this because nonlinear

SVM refinement is already fast enough in our multilevel framework.

The results for performance measures and computational time are presented in Tables 2.11,

and 2.12. The mlsvm-AMG produces higher G-means on SUSY, HIGGS, and 8 (out of 10) of classes

in the MINST8M datasets. On classes 8, 5, and 9 of MNIST8M we have an improvement of 24%,

6% and 5%, respectively. On the average, the G-mean for all larger datasets are 5% higher for
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Figure 2.3: Each boxplot (horizontal axis) shows variability of the G-mean (vertical axis). A small
standard deviation is observed in all cases.

mlsvm-AMG in comparison to LibLinear. The mlsvm-AMG is faster than LibLinear on SUSY and

HIGGS datasets and slower on MNIST8M dataset. However, this slowness is eliminated if linear

SVM solver is used in the refinement. The results for seven classes of Forest dataset are presented

in Table 2.13. The statistics of G-mean variability is presented in Figure 2.3 which confirms the

robustness of the proposed method.

In many cases, we observe a faster than linear behavior of our framework. An example is

shown in Figure 2.4. When we use only a part of the dataset SUSY for training the model (horizontal

axis), the computational time (vertical axis) is increasing slower than linearly. Such behavior can be

observed when the number of support vectors is relatively small which is one of the main assumptions

of this method. Another example with a larger number of features for MNIST8M is presented in

Figure 2.5.
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Figure 2.4: Scalability of mlsvm-AMG on growing training set of SUSY dataset. Each point repre-
sents the training time (vertical axis) when a certain part of the full training set (horizontal axis)
is used. The numbers above points represent the G-mean performance measure. For example, if
we use 60% of the training set to train the model, the running time is about 400 seconds, and the
G-mean is 0.72.

Figure 2.5: Scalability of mlsvm-AMG on growing training set of MNIST8M dataset using class 1.
The 5M data points from the MNIST8M dataset are sampled to create a similar size comparison
with SUSY dataset for a larger number of features.
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Figure 2.6: The mlsvm-AMG using parameter Q ∈ [0.35, ..., 0.7] generates the best results on the
benchmark data sets.

The robustness of parameter Q (see Alg. 4, line 8), which determines the size of the coarse

level is also an important question. In AMG and AMG-inspired algorithms, a typical setting is

to make Q ∈ [0.4, . . . , 0.6] unless a special reason for a faster aggregation allows more aggressive

compression of the problem without significant loss in the solution quality. Here we observe that

a similar range for Q is generally robust (see Fig. 2.6). In general, in multilevel learning, over-

compression with too small Q is not recommended unless we know that a data is easily separable

(or well clustered).

Finally, we present the computational time in terms of the amount of work per unit for

all datasets in Table 2.14. In “ µs
point” and “ µs

value” columns, we present the computational time in
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microseconds per data point and one feature value in data point, respectively.

Table 2.10: Larger benchmark data sets.
Dataset ε nf |J | |C+| |C−|
SUSY 0.54 18 5000000 2287827 2712173
MNIST8M (Class 0) 0.90 784 4050003 399803 3650200
MNIST8M (Class 1) 0.89 784 4050003 455085 3594918
MNIST8M (Class 2) 0.90 784 4050003 402165 3647838
MNIST8M (Class 3) 0.90 784 4050003 413843 3636160
MNIST8M (Class 4) 0.90 784 4050003 394335 3655668
MNIST8M (Class 5) 0.91 784 4050003 365918 3684085
MNIST8M (Class 7) 0.90 784 4050003 399465 3650538
MNIST8M (Class 6) 0.90 784 4050003 422888 3627115
MNIST8M (Class 8) 0.90 784 4050003 394943 3655060
MNIST8M (Class 9) 0.90 784 4050003 401558 3648445
HIGGS 0.53 28 11000000 5170877 5829123

Table 2.11: Performance measures for single level WSVM (LibLinear), DC-SVM/LibSVM and
mlsvm-AMG on larger benchmark data sets using partitioning and FF, FS validation techniques.

LibLinear DC-SVM and LibSVM mlsvm-AMG
Dataset ACC SN SP G-mean ACC SN SP G-mean
SUSY 0.69 0.61 0.76 0.68 0.75 0.71 0.78 0.74
MNIST8M (Class 0) 0.98 0.90 0.99 0.95 0.94 0.93 0.94 0.95
MNIST8M (Class 1) 0.98 0.93 0.99 0.96 0.94 0.95 0.94 0.95
MNIST8M (Class 2) 0.97 0.77 0.99 0.87 0.91 0.87 0.91 0.89
MNIST8M (Class 3) 0.96 0.70 0.98 0.83 0.88 0.86 0.89 0.88
MNIST8M (Class 4) 0.97 0.81 0.99 0.90 Stopped or failed after 3 days 0.91 0.92 0.91 0.91
MNIST8M (Class 5) 0.96 0.64 0.99 0.80 without any result 0.84 0.91 0.83 0.86
MNIST8M (Class 6) 0.98 0.86 0.99 0.92 0.94 0.90 0.94 0.93
MNIST8M (Class 7) 0.98 0.85 0.99 0.91 0.93 0.90 0.93 0.92
MNIST8M (Class 8) 0.92 0.36 0.98 0.60 0.82 0.87 0.81 0.84
MNIST8M (Class 9) 0.94 0.64 0.97 0.80 0.81 0.91 0.79 0.85
HIGGS 0.54 0.55 0.54 0.54 0.62 0.61 0.63 0.62

2.4.3.2 Disaggregation with neighbors

When the computational resources allow and the k-NN graph is not extremely dense, one

may add neighboring nodes to the corresponding disaggregated support vector nodes. While this

adds flexibility to train the models (with more added data points), in most cases, it is an unnecessary

step that increases the running time. The Forest, Clean, and Letter are the three data sets which

demonstrate an improvement on classification quality by adding the distance-1 neighbors. The

results for including the distant neighbors for the Letter data set experimenting with multiple coarse
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Table 2.12: Computational time in seconds for single level WSVM (LibLinear), DC-SVM/LibSVM
and mlsvm-AMG on larger benchmark data sets

Dataset LibLinear DC-SVM and LibSVM mlsvm-AMG
SUSY 1300 1116
MNIST8M (Class 0) 1876 11411
MNIST8M (Class 1) 859 15441
MNIST8M (Class 2) 1840 17398
MNIST8M (Class 3) 2362 10547
MNIST8M (Class 4) 1448 Stopped or failed after 3 days 13014
MNIST8M (Class 5) 2360 without any result 13353
MNIST8M (Class 6) 1628 10092
MNIST8M (Class 7) 1747 16789
MNIST8M (Class 8) 2626 17581
MNIST8M (Class 9) 1650 21611
HIGGS 4406 3283

Table 2.13: Performance measures and running time (in seconds) for all classes of Forest dataset
using full mlsvm-AMG.

Dataset ACC SN SP G-mean PPV Time
Class 1 0.73 0.79 0.69 0.74 0.60 926
Class 2 0.70 0.78 0.62 0.70 0.67 215
Class 3 0.90 0.99 0.90 0.94 0.39 1496
Class 4 0.92 1.00 0.92 0.96 0.99 3231
Class 5 0.80 0.96 0.80 0.88 0.07 948
Class 6 0.86 0.95 0.95 0.90 0.17 2972
Class 7 0.91 0.87 0.91 0.89 0.28 2269

neighbor size reveal the largest improvement for r = 1 (see Figure 2.7).

2.4.3.3 Using partitioning in the refinement

When the training set becomes too big during the refinement (at any level), a partitioning is

used to accelerate the performance. In Table 2.15, we compare the classification quality (G-mean),

the size of training data, and the computational time. In columns “Partitioned” (“Full”), we show

these three factors when (no) partitioning is applied. When no partitioning is used, we train the

model with the whole training data at each level. The partitioning starts when the size of training

data is 5000 points. Typically, at the very coarse levels the size of training data is small, so in the

experiment demonstrated in Table 2.15, we show the numbers beginning level 5, the last level at

which the partitioning was not applied. The results in this and many other similar experiments

show significant improvement in computational time when the training data is partitioned with very
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Table 2.14: Complexity Analysis

Dataset |J | nf |J | · nf
µs
point

µs
value

Nursery 13K 19 246.2K 232 12
Twonorm 7.4K 20 148K 405 20
Ringnorm 7.4K 20 148K 541 27
Letter 20K 16 320K 100 6
Cod-rna 59.5K 8 476.3K 100 13
Clean (Musk) 6.6K 166 1.1M 909 6
Advertisement 3.3K 1558 5.1M 31107 20
Buzz 140.7K 77 10.8M 1628 21
Forest 581K 54 31.4M 207 4
Susy 5M 18 90M 223 12
Higgs 11M 28 308M 298 11
mnist 4M 4.1M 784 3.2G 6673 9

minor loss in G-mean. The best level in the hierarchy is considered as the final level which is selected

based on G-mean. Therefore, with no partitioning we obtain G-mean 0.79 and with partitioning it

is 0.77 which are not significantly different results.

Table 2.15: The G-mean, training set size, and computational time are reported for levels 1-5 of

Forest data set for Class 5. The partitioning is started with 5000 points.

G-mean Size of training set Computational time

Level Full Partitioned Full Partitioned Full Partitioned

5 0.69 0.69 4387 4387 373 373

4 0.68 0.72 18307 18673 1624 1262

3 0.79 0.77 47588 43977 6607 1528

2 0.79 0.72 95511 33763 17609 917

1 0.72 0.74 138018 24782 27033 576

2.4.3.4 Comparison with fast Ensemble SVM

A typical way to estimate the correctness of a multilevel solver is to compare its perfor-

mance to those that use the local refinement techniques only. The EnsembleSVM [23] is a free

software package containing efficient routines to perform ensemble learning with SVM models. The

implementation exhibits very fast performance avoiding duplicate storage and evaluation of support

vectors which are shared between constituent models. In fact, it is similar to our refinement and

can potentially replace it in the multilevel framework. The comparison of our method with Ensem-
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Figure 2.7: Effect of considering distance-1 disaggregation during the refinement phase on the G-
mean for the Letter data set
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bleSVM is presented in Table 2.16. While the running time is incomparable because of the obvious

reasons (the complexity of EnsembleSVM is comparable to that of our last refinement only), the

quality of our solver is significantly higher.

Table 2.16: Ensemble SVM on benchmark data sets
Ensemble SVM mlsvm-AMG

Dataset ACC SN SP G-mean ACC SN SP G-mean
Advertisement 0.52 0.41 0.95 0.57 0.95 0.85 0.96 0.91
Buzz 0.65 0.36 0.99 0.59 0.94 0.95 0.94 0.95
Clean (Musk) 0.85 0.00 0.85 0.00 0.99 0.99 0.99 0.99
Cod-RNA 0.90 0.82 0.94 0.88 0.93 0.97 0.91 0.94
Forest 0.98 0.32 0.99 0.57 0.77 0.96 0.80 0.88
Letter 0.97 0.75 0.98 0.86 0.98 0.99 0.98 0.99
Nursery 0.68 1.00 0.68 0.82 1.00 1.00 1.00 1.00
Ringnorm 0.68 0.61 1.00 0.78 0.98 0.98 0.98 0.98
Twonorm 0.75 0.89 0.76 0.81 0.98 0.98 0.97 0.98
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2.5 Conclusions

In this chapter we introduced novel multilevel frameworks for nonlinear support vector

machines. and discussed the details of several techniques for engineering multilevel frameworks that

lead to a good trade-off between quality and running time. We ran a variety of experiments to

compare several state-of-the-art SVM libraries and our frameworks on the classification quality and

computation performance.

The computation time of the proposed multilevel frameworks exhibits a significant improve-

ment compared to the state-of-the-art SVM libraries with comparable or improved classification

quality. For large data sets with more than 100,000 and up to millions of data points, we observed

an improvement of computational time within an order of magnitude in comparison to DC-SVM

and more two orders of magnitude in comparison to LibSVM. The improvement for larger datasets

is even more significant. The code for mlsvm-AMG is available at https://github.com/esadr/mlsvm.

There exist several attractive directions for the future research. One of them is to study

in-depth why generating models at the coarse scales eliminates the effects of over- and under-fitting,

a phenomena that we observed in many data sets. Another research avenue is to develop an uncoars-

ening scheme which chooses an appropriate kernel type at the coarse levels (where the training set

size is relatively small) and continues with the best choice to fine levels. Indeed, if we successfully

fit the parameters of kernel at the coarse levels, why not to try to choose the kernel type as well?

Another direction could be separating constraints from the objective and solving them in a combined

multigrid framework similar to [82].
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Appendix A: Summary of parameters

In Table 2.17, we mention recommended ranges of parameters for multilevel (W)SVM frame-

works that we tested in our experiments.

Parameter Reference Description
r Sec. 2.3.2 Recommended range [1, .., 4]. Almost all re-

sults were produced with r = 1 except Cod-
RNA (r = 2) and SUSY (r = 4).

θ Sec. 2.3.4.2 Recommended range [0.001, .., 0.05]. Almost
all results were produced with θ = 0.05 ex-
cept Letter (θ = 0.005) and Musk (θ = 0.001)
that produced slightly better results with less
aggressive filtering.

d Eq. (2.15) Euclidean distance was used in all experi-
ments.

Qt Alg. 3 Our simple single processor hardware allowed
to start partitioning at 5000 data points.
However, Qt in a range [3000, .., 5000] pro-
duced similar results.

η Alg. 4 In all experiments η = 2.
K Alg. 3 To preserve fast partitioning and training by

parts, we used K = b|J(i)|/1000e for all levels
i. No difference when changing this value was
observed.

M+ and M− Alg. 1 In all experiments M+ = M− = 300.
|J(ρ)| Alg. 1 The size of the coarsest level was always |J(ρ)|

= 500 to maintain fast performance of model
selection at the coarsest level.

Q coarsen-IIS
and coarsen-
AMG (Alg.
4)

In all experiments Q = 0.5. No significant
difference was observed for Q ∈ [0.4, ..., 0.6],
see Fig. 2.6.

C and γ NUD in Alg.
3

The NUD model selection algorithm starts pa-
rameter search in range of 2−10 < C < 210 and
2−10 < γ < 210 for the RBF kernel using the
standard 9-13 scheme described in [44].

Table 2.17: Recommended parameter values.
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Appendix B: Standard deviation for mlsvm-AMG

Table 2.18: Standard deviations of the performance measures for mlsvm-AMG
Dataset ACC SN SP G-mean
Advertisement 0.01 0.04 0.01 0.02
Buzz 0.00 0.01 0.01 0.00
Clean (Musk) 0.00 0.00 0.00 0.00
Cod-RNA 0.00 0.00 0.00 0.00
Forest 0.01 0.01 0.01 0.00
Letter 0.00 0.01 0.00 0.00
Nursery 0.00 0.00 0.00 0.00
Ringnorm 0.00 0.00 0.00 0.00
Twonorm 0.00 0.00 0.01 0.00
SUSY 0.01 0.04 0.04 0.01
MNIST8M (Class 0) 0.01 0.00 0.01 0.01
MNIST8M (Class 1) 0.00 0.00 0.00 0.00
MNIST8M (Class 2) 0.02 0.02 0.02 0.02
MNIST8M (Class 3) 0.02 0.02 0.02 0.00
MNIST8M (Class 4) 0.02 0.01 0.02 0.01
MNIST8M (Class 5) 0.03 0.03 0.03 0.02
MNIST8M (Class 7) 0.02 0.02 0.02 0.02
MNIST8M (Class 6) 0.02 0.02 0.02 0.02
MNIST8M (Class 8) 0.03 0.03 0.04 0.01
MNIST8M (Class 9) 0.01 0.02 0.02 0.00
HIGGS 0.00 0.02 0.02 0.00
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Chapter 3

AML-SVM: Adaptive Multilevel

Learning with Support Vector

Machines

3.1 Introduction

Support vector machine (SVM) is a widely used family of classification methods that leverage 

the principle of separating hyperplane. Technically, this is achieved by solving underlying regularized 

optimization model adjusting which can provide highly accurate and interpretable classification. 

Training linear SVM is very fast and can scale to millions of data points and features without 

using significant high-performance computing (HPC) resources. For problems that are not linearly 

separable, the nonlinear SVM uses the kernel trick by implicitly projecting the data into the higher-

dimensional space to separate it by a hyperplane. Nonlinear SVM usually reaches higher prediction 

quality on complex datasets. However, it comes with a price tag of being not scalable in comparison 

to its linear version.

Solving the Lagrangian dual problem is typically the way to cope with regularized nonlinear 

SVM models with the underlying convex quadratic programming (QP) problem. In a number of 

libraries (such as LibSVM [17]) multiple methods have been implemented for solving both primal 

and dual problems. The complexity of the convex QP solvers for nonlinear SVM often scales between
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O(n2f) to O(n3f) [36] , where n is the number of data points, and f is the number of features.

Therefore, as n increases, the running time of the solver also increases, which hinders the usage of

the nonlinear SVM for massive data sets.

For nonlinear SVM, optimal parameters (for kernel and regularization) are often required

to achieve a more accurate decision boundary (hyperplane) for complex data sets. The parameter

fitting (also known as model selection) often follows iterative schemes that (such as [123]) to train a

better model. Parameter fitting is one of the most important factors that contributes to the slowness

of nonlinear SVM training [104].

As the size of many datasets continues to grow due to the advancements in technologies

such as high-throughput sequencing and the Internet of Things (IoT) [46], more scalable machine

learning algorithms are required. Therefore, while a nonlinear SVM is fast on small datasets and

can provide highly accurate prediction, more research is required to develop scalable nonlinear SVM

solvers for massive datasets.

Our previous framework, Multilevel SVM (MLSVM), is a library that scales to millions of

data points and exhibits up to two orders of magnitude faster running time compared to LIBSVM

on reported benchmark datasets [86]. The MLSVM leverages multilevel algorithms that are inspired

by the algebraic multigrid and some of its restricted versions [11]. These algorithms are known to

be successful in accelerating computational optimization tasks without any loss in the optimization

quality. Examples include hypergraph partitioning [99], image segmentation [98], and clustering [26].

Such multilevel methods have two essential phases, namely, coarsening and uncoarsening [11]. The

coarsening phase gradually reduces the original problem size and generates a chain of smaller prob-

lems that approximate the original one. This is done by constructing a (possibly fuzzy) hierarchy of

aggregated data points. The uncoarsening phase starts from the the smallest generated problem and

gradually uses generated approximations to refine the solution of the original problem. During the

uncoarsening phase, a refinement leverages a solution inherited from the previous coarser problem

and is performed using a local processing solver to avoid any heavy computation.

3.1.1 Multilevel SVM

The multilevel SVM [87, 80, 86] is an approach to accelerate traditional SVM model solvers

which also often improves the model quality as it exploits the geometry of data before starting the

training. The key principles of multilevel SVM are summarized as follows.
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1) Learning the separating hyperplane occurs within a small proximity to support

vectors. The number of support vectors is typically much smaller than the original data size.

Thus, after gradually aggregating the data points and training the coarsest SVM model, the data

points that participate in the training at the next finer levels (i.e., during the uncoarsening) are only

those that have been found within a limited distance neighborhoods of the aggregate centers. In

other words, the multilevel SVM does not use the data points that are too far from the hyperplane

in the training. The key idea here is to a) inherit the support vectors from the coarse level solution,

b) disaggregate them into finer data points, and c) filter out some of them if their number is too big

for the available computational resources.

2) Perform computationally expensive parts of the training only at the coarse levels.

This is a principle of all multilevel algorithms and multiscale optimization strategies. The coarse

levels that contain much smaller amount of data can be solved with computationally more expensive

but higher quality algorithms. One of the major problems in nonlinear SVM training is the model

selection which in most cases is essentially a process of (smart) try-and-train strategy with different

sets of hyperparameters. In multilevel SVM, the model selection is applied only at the coarse levels.

3) The best final model is not necessarily the finest one. The multilevel SVM produces

models at all levels of coarseness. Similar to many other methods the finest model can potentially

suffer from overfitting and the coarsest one (the most aggregated) from underfitting. Multiple

models of different coarseness provide with an opportunity to make a choice to avoid these two

major problems and choose a model in between finest and coarsest levels.

We discuss several other principles in [86]. Among them is the one that discusses the way

multilevel SVM copes with imbalanced data. While the MLSVM library [86] provided fast runtime

and highly accurate predictions on massive datasets, we observed several unexpected results on

benchmark datasets that motivated us to extend that work and introduce the Adaptive MLSVM in

this chapter .

In multilevel algorithms [83, 11], it is expected to observe that the quality of optimized

objective is improved at each next finer level during the uncoarsening. As such, we expected to

see a non-decreasing quality improvement across the uncoarsening. However, on some most difficult

benchmarks, we observed that while the trained coarse models have exhibited reasonable to optimal

prediction quality, some of the middle levels experienced a significant drop in the quality. In some

cases, these middle level drops were continuing to the fine levels and in some were gradually improved
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back to the high quality results. Although the observed quality drops were rare, they often led to

accumulating and increasing problems during the uncoarsening. Indeed, low quality support vectors

may potentially be disaggregated into the data points that are even more distant to the optimal

hyperplane which gives too much freedom to the optimizer. Other stages in the MLSVM pipeline

such as the filtering of data points after too aggressive disaggregation were also affected.

Our Contribution In this chapter , we propose the Adaptive Multilevel SVM, a successful approach

to detect the problem of inconsistent learning quality during the uncoarsening and efficiently mitigate

it. At each level of the multilevel hierarchy, we detect the problem of quality decrease by validating

the model using the finest level data. In the adaptive multilevel SVM learning framework, we adjust

the training data by filling the training data gap with the misclassified validation data points,

retraining the model and improving the quality with a new set of support vectors.

Our exhaustive experimental results on the benchmark datasets demonstrate the proposed

method recovers the multilevel framework from such quality drops and achieves higher quality in

comparison to the non-adaptive multilevel SVM as well as other state of the art solvers. In addition,

we speed up even more the runtime compared to non-adaptive multilevel SVM and reduce the

prediction quality variance. Moreover, in the new version of the MLSVM library we implement

the multi-thread support for parameter fitting to speed up the model training at each level. Our

implementation is open-source and available at http://github.com/esadr/amlsvm.
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3.2 Related Works

Improving the performance of SVM has been widely studied with a common goal of improv-

ing the training time without a significant decrease in prediction accuracy such as recent researches

[94, 96, 121]. The complexity of nonlinear SVM on massive datasets is a potential target to develop

scalable SVMs.

A challenge with solving the quadratic programming problem for the kernel SVM is the

kernel matrix of size n2, where n is the number of training data points. The matrix requires large

memory, which is not feasible for massive datasets. The main categories of accelerated solvers

follow one of the following approaches: a) target the solver performance directly, b) partition the

original data, or c) considering alternative representation for the training data (including multilevel

approach), and their combinations. Some of the improvements also rely on the advancement of

software infrastructure, hardware, and distributed frameworks.

Solver performance: A Sequential Minimal Optimization (SMO)[75, 15] has been used

to solve the underlying quadratic programming problem. SMO decomposes the restricted quadratic

problem into a series of smallest possible subproblems and solved them analytically. A fast GPU

implementation based on matrix matrix multiplication instead of matrix vector multiplication has

been developed in [116]. The ThunderSVM [121] directly works on improving the performance of

the solver using multiple cores and GPUs.

Partition original training data: Instead of solving the QP with a large number of

data points, a set of smaller problems can be generated and solved independently. This reduces the

running time of training and memory utilization required to store the kernel matrix. A drawback

to this approach is the quality of partitioning the original data and the quality of the approach to

combine all the trained models to drive a final model. Cascade SVM[36] partitions the training data

evenly and trains a SVM model for each of partition. It only support linear SVM. An intrusion

detection system is developed based on exploiting hierarchical clustering for reducing the number

of training data points before training a SVM model [41] on millions of points. Ensemble SVM [23]

samples the data and uses an ensemble of models for the final prediction. DC-SVM[42] used adaptive

clustering for dividing the training data and relied on coordinate descent method to converge to a

solution from multiple models. The latter models supports nonlinear SVM. A disadvantage for these

approaches is relying on the partitioning or clustering that is sensitive to the order of the training
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data, number of clusters. Assignment of a point to a partition or cluster is strict, which limits the

points to move between clusters or participate in multiple clusters.

Graph representation of training data: There are two schemas for partitioning the

data. The earlier approaches rely on the original data in the feature space, while newer approaches

such as[80, 86, 94] rely on a graph representation of data. The graph representation of the training

data is constructed as a preprocessing step for partitioning which is explained in detail in sec-

tion 3.3.2. The graph representation provides the opportunity to leverage the multilevel paradigm

that has been used successfully in a wide range of problems. We briefly mention some of the mul-

tilevel research related to graphs such as graph partitioning [93], graph clustering [27], and image

segmentation [35]. The advantage of using a graph and multilevel paradigm such as Algebraic

Multigrid (AMG) is to exploit more relaxed and less strict assignments of the data points to smaller

aggregates compare to clustering, which has strict assignments and larger cluster sizes.

The position of AML-SVM: Our proposed framework (AML-SVM) has a robust coars-

ening, which allows partial participation of points in multiple aggregates through gradual assignment

and relaxation steps. Our results demonstrate that a small training data at the coarsest level can

be used to train a model with high accuracy. AML-SVM can directly leverage the performance im-

provements introduced by advanced solvers with multi-core or GPU support to achieve even faster

runtime without any change in the coarsening or refinement process. The uncoarsening (refinement)

phase as a general step in multilevel methods has the potential for improvement of initial solutions

and carrying essential information such as support vectors, and parameters to other levels. The

improvements proposed in this chapter reduce the variance between the quality of models at var-

ious levels and reduce the sensitivity of the framework to configuration parameters. Furthermore,

these improvements, along with multiple core support for faster parameter fitting, can be used for

ensemble models that we have not explored.
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3.3 Preliminaries

Consider a set J of input samples that contains n data points denoted by xi, where xi ∈ Rd,

1 ≤ i ≤ n. Each data point xi has a corresponding label yi ∈ {−1, 1}. The SVM as a binary

classification finds the largest margin hyperplane that separates the two classes of labeled data. The

solution to the following optimization problem produces the largest margin hyperplane, which is

defined by w, and b.

minimize
1

2
‖w‖2 + C

n∑
i=1

ξi (3.1)

subject to yi(w
Tφ(xi) + b) ≥ 1− ξi, i = 1, . . . , n

ξi ≥ 0, i = 1, . . . , n.

The misclassification is penalized using slack variables {ξi}ni=1. The parameter C > 0 controls the

magnitude of penalty for miscalssified data points. The primal formulation in (3.1) is known as the

soft margin SVM [122].

The SVM takes advantage of kernel φ : Rd → Rp (d ≤ p) to map data points to higher-

dimensional space. The kernel measures the similarity for pairs of points xi and xj . The Gaussian

kernel (RBF), exp(−γ||xi−xj ||2), which is known to be generally reliable [113], is the default kernel

in this chapter .

For imbalanced datasets, different weights can be assigned to classes using the weighted

SVM (WSVM) to controllably penalize points in the minority class C+ (e.g., rare events). The set

of slack variables is split into two disjoint sets {ξ+
i }n

+

i=1, and {ξ−i }n
−

i=1, respectively.

In WSVM, the objective of (3.1) is changed into

minimize
1

2
‖w‖2 + C

(
W+

n+∑
i=1

ξ+
i +W−

n−∑
j=1

ξ−j
)
. (3.2)

The imbalanced data sets contain significanlty fewer positively labeled data points. Hence,

the data points in the minority class is denoted by J +, where size of minority class is n+ = |J +|.

The rest of the points belongs to the majority class which is denoted by J−, where n− = |J−|, and

J = J + ∪J−. We assign the class weight as the inverse of the total number of points in that class.

For instance, the weight for minority class is W+ = 1
n+
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In the our multilevel framework, one of the basic steps is aggregating data points. The

aggregation can be performed either on full points or their fractions (i.e., a data point can be split

into fractions, and different fractions can contribute themselves to different aggregates). Therefore,

a coarse level data point normally contains several finer points or their fractions. Because of this,

a data point can be more or less representative in comparison to other data points. We define and

use the volume property for each point and calculate it as number of partial or fully participated

original points in that aggregate.

We denote vi as volume for point xi which represent the internal importance of point i

among points in the same class. Moreover, we consider the class importance for the final weight of

each data point. The calculation for both classes are the same, hence, we only present the positive

class. We calculate the class weights based on sum of the volumes in the class, i.e.,

W+ =
1∑

i∈J+

vi
. (3.3)

We calculate the final weight for each point as product of its volume weight times class weight

∀i ∈ J +(−) Wi = W+(−) vi∑
j∈J+(−)

vj
. (3.4)

The instance weight based on volume and class, helps to improve prediction quality for the smaller

class.

Solving the Lagrangian dual problem using kernel functions k(xi,xj) = φ(xi)
T
φ(xj) pro-

duces a reliable convergence which is faster than methods for primal formulations (3.1) and (3.2).

Therefore, we use the sequential minimal optimization solver implemented in LIBSVM library [17]

and RBF kernel.

The parameter fitting is an iterative method to find the optimal parameters for a data

set. For each dataset optimal misclassification penalty C, and kernel parameter (γ) are required.

We use the adapted nested uniform design (NUD) model selection [44] as parameter fitting in the

proposed framework. It finds the close-to-optimal parameter set in an iterative nested manner. The

optimal solution is calculated in terms of maximizing the required performance measure (such as

accuracy and G-mean). Although we study binary classification problems, it can easily be extended
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to the multi-class classification. For example, the multi-class problem can be converted into multiple

independent binary classification that can be processed independently in parallel.

3.3.1 Two-level problem

To describe the coarsening, uncoarsening and refinement algorithms, we introduce the two-

level problem notation that can be extended into a full multilevel hierarchy (see Figure 3.1). In

Algorithm 7, we will use subscript (·)f and (·)c to represent fine and coarse variables, respectively.

For example, the data points of two consecutive levels, namely, fine and coarse, will be denoted by

Jf , and Jc, respectively. The sets of fine and coarse support vectors are denoted by svf , and svc,

respectively. We will also use a subscript in the parentheses to indicate the level number in the

hierarchy where appropriate. For example, J(i) will denote the set of data points at level i.

3.3.2 Proximity graphs

The original MLSVM framework [86] is based on the algebraic multigrid coarsening scheme

for graphs (see coarsening in [90]) that creates a hierarchy of data proximity graphs. Initially,

at the finest level, J is represented as two approximate k-nearest neighbor (kNN) graphs G+
(0) =

(V+, E+), and G−(0) = (V−, E−) for minority and majority classes, respectively, where each xi ∈

V+(−) corresponds to a node in G
+(−)
(0) .

A pair of nodes in G
+(−)
(0) is connected with an edge that belongs to E+(−) if one of these

nodes belongs to a set of k-nearest neighbors of another. Throughout the multilevel hierarchies, in

two-level representation, the fine and coarse level graphs will be denoted by G
+(−)
f = (V

+(−)
f , E

+(−)
f ),

and G
+(−)
c = (V+(−)

c , E
+(−)
c ), respectively. For kNN, our experiments show k = 10, for all tested

datasets, provides a good trade-off between computational cost of calculating kNN and average node

degree for G+(−).
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3.4 Adaptive Multilevel SVM

The multilevel support vector machine (MLSVM) [86] includes three main phases (see

Figure 3.1), namely, (1) coarsening: gradual approximation of training set, (2) coarsest level solution:

initial SVM training, and (3) uncoarsening: gradual support vector refinement at all levels. The

coarsening phase creates a hierarchy of coarse training data J(i), where i is the level number where

i = 1 for the finest level and increases by one at each level of coarsening. The number of data

points is decreasing at each level of coarsening, i.e., |J(i+1)| < |J(i)|. The coarsening continues until

the aggregated training data reaches a certain threshold. The threshold depends on the available

computational resources, which are capable of training a high-quality algorithm in a reasonable

time. The threshold for the size of each class of data is denoted by M . At the coarsest level k, the

runtime to train a SVM model on a small training set is fast since training size is limited to less

than a threshold for each class. (J(k) < 2 ×M). The output of trained SVM with the parameter

fitting includes sv(k) and the optimal parameters C(k), γ(k). This output is inherited by the next

finer level of the uncoarsening phase. At level l of the uncoarsening, we select the next action among

the three choices based on J(l) and Q(l), which are the size of training data and the quality of model

on validation data at level l, respectively:

• Normal Refinement: The refinement continues by training new SVM model over training data

based on decision boundary neighborhood at a coarser level.

• Early Stopping: We stop the refinement(uncoarsening) if the size of training data (both classes)

is larger than threshold θ (line 7 in Algorithm 7).

• Detect and Recovery: If we detect a quality drop, we call the recovery algorithm described in

Algorithm 8

The main parts of the framework are explained in Algorithms 5,6 and 7.

The algebraic multigrid (AMG) SVM multilevel framework is inspired by the AMG aggre-

gation solvers for computational optimization problems such as [91, 59, 92]. More information is

covered in [86, 85]. The AMG coarsening provides high quality coarsening. It aggregates both fine

points and fractions of points, which is more flexible than strict (or matching based) coarsening

techniques. The fine level solution is identified using the interpolation operator on the coarse ag-

gregates which are the main part of the coarsening phase in the AMG [114]. The solution obtained
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Figure 3.1: Adaptive multilevel learning framework scheme.

from the coarsest level is gradually projected back to the finer levels using the interpolation and

refined locally.

3.4.1 Framework initialization

The AMG framework is initialized with G
+(−)
0 with the edge weights that represent the

strength of connectivity between nodes to “simulate” the following interpolation scheme applied at

the uncoarsening, in which strongly coupled nodes can interpolate solution to each other. In the

classifier learning problems, this is expressed as a similarity measure between points. We define

a distance function between nodes (or corresponding data points) as the inverse of the Euclidean

distance in the feature space. For the completeness of this chapter we need to repeat the coarsening

phase we defined in [86].
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3.4.2 Coarsening Phase

In Algorithm 5, we demonstrate the process of obtaining the training set (aggregated points)

for the next coarser level. The process for both class are the same, hence, only minority class is

explained. The input to the coarsening algorithm includes the fine level graph G+
f , and data points

(training set) J +
f , for the minority class. The output includes the graph G+

c and data J +
c at the

coarser level for minority class. The same process applies to the majority class.

The process at level f starts with selecting seeds. Seeds are nodes that serve as centers of

aggregates at level c. We introduce the notion of volume vi ∈ R+ for all i ∈ G+
f that reflects the

importance of each point during the coarsening phase. The volume is initialized to one for each

node at the finest level. It increases during the coarsening with respect to the weighted sum of the

volume of nodes that are aggregated together. (In some applications, so called anchor points can

be used which can be reflected in the initial volumes.) After the coarse graph is constructed, the

aggregated data points are calculated based on interpolation matrix P .

Seed selection starts with the future-volume ϑi computation which is a measure of how

much an aggregate seeded by a node i may potentially grow at the next level c, and it is computed

in linear time:

ϑi = vi +
∑

j∈Γi∩V+
f

vj ·
wji∑

k∈Γj∩V+
f

wjk
, (3.5)

where Γi is the neighborhood of node i in G+
f . We start with selecting a dominating set of seed

nodes S ⊂ V+
f to initialize aggregates. Nodes that are not selected to S remain in F such that

V+
f = F ∪ S. Initially, the set F is set to be V+

f , and S = ∅ since no seeds have been selected.

After that, points with ϑi > η · ϑ, i.e., those that are exceptionally larger than the average future

volume are transferred to S as the most “representative” points (line 3). Then, all points in F are

accessed in the decreasing order of ϑi updating S iteratively (lines 6-11), namely, if with the current

S, and F , for point i ∈ F ,
∑
j∈S wij/

∑
j∈V+

f
wij is less than or equal to some threshold Q. The

AMG interpolation matrix P ∈ R|G
+
f |×|S| is defined as

Pij =


wij/

∑
k∈Γi

wik if i ∈ F , j ∈ Γi

1 if i ∈ S, j = I(i)

0 otherwise


, (3.6)
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where Γi = {j ∈ S | ij ∈ E+
f } is the set of ith seed neighbors, and I(i) denotes the index of a coarse

point at level c that corresponds to the fine level aggregate seeded by i ∈ S.

The aggregated points and volumes at a coarser level are calculated using the matrix P .

The edge between points p = I(i) and q = I(j) is assigned with weight

wpq =
∑

k 6=l
Pki · wkl · Plj . (3.7)

The volume for the aggregate I(i) in the coarse graph is computed by
∑
j vjPji. i.e., the total

volume of all points is preserved at all levels during the coarsening. The coarse point q ∈ V+
c seeded

by i = I−1(q) ∈ V+
f is represented by ∑

j∈Ai

Pj,q · j, (3.8)

where Ai is a set of fine points in aggregate i. This set is extracted from the column of P that

corresponds to aggregate i by considering rows j with non-zero values.

Algorithm 5 AMG coarsening for one class

1: S ← ∅, D+
f , F ← V+

f

2: Calculate using Eq. (3.5) ∀i ∈ F ϑi, and the average ϑ̄

3: S ← nodes with ϑi > η · ϑ

4: F ← V+
f \ S

5: Recompute ϑi ∀i ∈ F

6: Sort F in descending order of ϑ

7: for i ∈ F

8: if (
∑
j∈S

wij/
∑

j∈J+
f

wij) ≤ Q

9: move i from F to S

10: end

11: end

12: Build interpolation matrix P according to Eq. (3.6)

13: Build coarse graph G+
c with edge weights using Eq. (3.7)

14: Define volumes of coarse data points

15: Compute coarse data points D+
c

16: return (D+
c , G

+
c )
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The complete coarsening phase for both classes are demonstrated in Algorithm 6. The

parameter M controls the size of each class at the coarsest level. In our experiments, the M is set

to 300 which ensures training a SVM model using LIBSVM is fast.

Algorithm 6 Coarsening phase for both classes

1: if |V+
f | ≤M & |V−

f | ≤M then . Solve exact problem

2: (svf , C
+, C−, γ)← Train SVM model on Jf (+NUD)

3: else . Start or continue to coarsen the problem

4: if |V+
f | ≤M then

5: D+
c ← D+

f ; G+
c ← G+

f

6: else

7: (D+
c , G

+
c )← coarse (D+

f , G
+
f )

8: if |V−
f | ≤M then

9: D−
c ← D−

f ; G−
c ← G−

f

10: else

11: (D−
c , G

−
c )← coarse (D−

f , G
−
f )

3.4.3 Uncoarsening

The primary goal of uncoarsening is to interpolate and refine the solution of coarse level c

for the current fine level f . One of the advantages of multilevel framework is limiting the size of

the projected information. We only inherit the optimal parameters C, γ and svc. The corresponding

aggregates to svc are added to Jf , namely, The training data at the finer level (Jf ) starts as an

empty set, then for any aggregate p (Ap) which is part of support vectors at the coarser level (svc),

all points j in aggregates are added to the training data.

Jf ← ∅; ∀p ∈ svc ∀j ∈ Ap Jf ← Jf ∪ j. (3.9)

Algorithm 7 demonstrate the overall process for the refinement process. The C̃+, C̃−, γ̃ are the

input parameters along with support vectors at coarser level svc. First, the training set is processed

based on equation (3.9).
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Algorithm 7 Uncoarsening (refinement) phase

1: Input: (svc, C̃
+, C̃−, γ̃) . Solution from a coarser level

2: Create training set by Eq. (3.9)
3: While (|D+|+ |D−|) < θ then
4: Train SVM Models
5: Evaluate performance qualities
6: Call detect and recovery Algorithm
7: Select best model based on G-mean, SN, and nSV

. Refine the solution
8: {(svf , C

+, C−, γ)i}ki=1 ← refine(svf , C̃
+, C̃−, γ̃)

9: return best model from k levels {(svf , C
+, C−, γ)i}ki=1

3.5 Learning Approach

3.5.1 Imbalanced classification

In addition to the cost-sensitive and weighted models solved in the refinement, the multilevel

learning framework can cope with the imbalanced data and mitigates its negative effect on the

classification quality for the minority class. We make a balanced training set at the coarsest level

by performing the coarsening for each class independently until the number of data points is smaller

than M . While the minority class with a small number of points reaches this threshold in a few

levels of coarsening, the majority class may take many more steps. The data for the minority class

is preserved and transferred entirely to the coarser level. Therefore, at the coarsest level, the size

of both classes are balanced. The importance of points and imbalanced size is enforced through the

volume for each data point.

3.5.2 Parameter Fitting

We use the Nested Uniform Design (NUD) [44] in our computational experiments for pa-

rameter fitting. The framework is flexible to use various types of parameter fitting such as grid

search [18]. In NUD, at first stage, multiple points are selected in the search space and models

trained based on the parameters representing each of those point. In the following stages, the best

point based on highest classification quality is selected as the center for the search. Multiple points

around this are evaluated and the best results from all stages is the optimal parameters. In a similar

approach, we pass the best parameters from a coarser level as the center for the first stage of NUD.

Therefore, the inherited parameters from a coarser level stage is evaluated on the finer data.
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3.5.3 Models at multiple scales

The obtained hierarchy normally includes multiple levels. At each level i, we train one or

more models on Ji because in the case of training a model with parameter fitting, there are multiple

models generated at one level. Each model is trained on a different set of parameters. As such

we need to select the best model within each level and across various levels. Based on our focus

on highly imbalanced data sets, we developed a 3-level hierarchical ranking method for selecting

the optimal model. The performance measures are well-known metrics to evaluate the quality of

classifiers. The geometric mean (G-mean) of the Recall and Specificity is a popular metric for the

imbalanced data. The details on the metrics are explained in Section 3.6.1. The way we select the

best model at each level is based on: (a) a model with the highest G-mean with significantly higher

G-mean than rest of model, and (b) in case of a group of models with similar G-means, a model with

the best sensitivity is selected, (c) if there is a tie between multiple models with similar G-mean

and sensitivity, we select a model with the least number of support vectors for both classes among

the previous group of models. When there is a tie, this ranking is useful. For instance, if there are

multiple high-quality models, the one with a smaller number of support vectors has less burden in

the uncoarsening. The lower number of aggregates leads to smaller training size at the finer level and

higher computational performance of the SVM solver. In general, multilevel learning successfully

mitigates the over- and underfitting problems through the hierarchy of models at various levels of

coarseness. The overfitting potentially can happen at the finest level, and underfitting may occur at

the coarsest level. The levels in the middle has a good trade-off between the bias and variance. We

use the 3-level search based on validation set on multiple models that each of them was the best at

their corresponding level. We report the final performance quality based on predictions on the test

data.
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3.5.4 Learning Challenge

In the hierarchical framework, it is expected that the first solution is only a reasonable (but

not necessarily the best) approximation of the optimal solution. Therefore, extra steps are required

to improve coarse solutions gradually. In the context of the classification task, the initial solution

should provide a reasonable decision boundary. We can measure the quality of the initial solution

with performance measures on validation data, which we cover in section 3.6.1. We can express it

more accurately by

Q(1) ≤ Q(2)... ≤ Q(k),

when Q(i) is the classification quality at level i. We denote this expected trend with a continuous

increase in quality as the natural trend and Figure 3.2 demonstrates it for the Ringnorm data set.

However, this is not what we observed over exhaustive experiments with various data sets.

In our experimental results, there were some cases in which the classification quality was dropped

significantly during the refinement. The consequences of unexpected phenomena are as follows.

The training process for the models at the following levels of refinement will be based on

sub-optimal training data. As explained earlier, the training data at each level of refinement is

filtered to contain only the neighbor points of SVs of a model at the coarser level. When the SVs

are sub-optimal, the filtering adds the points which are not representative of the data for the SVM

to learn an optimal decision boundary. Moreover, the number of SVs may increase dramatically

without significant improvement in the classification quality. The increase in the number of SVs

drastically increases the number of SV’s neighbors, which forms a larger training data at the next

level. Therefore, it reduces the performance of the rest of levels in the refinement.

We recognized a pattern that the quality improves during refinement but at some levels,

declines significantly. We denote it as unnatural trend and Figure 3.3 demonstrates an example

of the unnatural trend for the Cod-RNA dataset. Benefits of detecting and addressing the decrease

in quality during the refinement are:

• Improving the classification quality of the finer levels and in general

• Improving the computational performance of the refinement process by improving the quality

of training data set for the finer levels.
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• Reducing the computational cost of refinement through the Early Stopping process when there

is not a significant improvement in quality by training larger models

• Reducing the variance for the classification quality across levels

• Preserve smaller training set during the refinement

Intuitively, the coarsening procedure gradually creates approximated (or summarized) repre-

sentations of the finest level (original) data. An initial model we train at the coarsest level, provides

a large margin hyperplane which can be used as the final solution. On the one hand, at the finest

level, rich data can easily lead to over-fitted models, a phenomenon frequently observed in practice

[28]. On the other hand, over-compressed data representation may lead to an under-fitted model

due to lack of detail information. Our experiments confirm that more than half of the best models

are obtained from the coarse (but not coarsest) and middle levels which typically prevents over-

and under-fitting. In general, if the best models were produced by the finest and middle levels,

we recommend to use the model obtained at the middle levels to avoid potential over-fitting. This

recommendation is based on the observation that same quality models can be generated by different

hyperplanes but finest models may contain a large number of support vectors that can lead to over-

fitting and slower prediction. However, this is a hypothesis that requires further exploration. In our

experiments, no additional parameters or conditions are introduced to choose the final model. We

simply choose the best model among those generated at different levels.

Furthermore, in a multilevel framework, one can use many models across levels that are

trained on diverse resolutions of the same data. A good representative validation set is essential for

fair evaluation across models and MLSVM [86] has designed and experimented four methods for it.

In this work, we used the FF method that provides similar quality as test data and requires low

computational resources.
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Figure 3.2: Natural trend, increasing classification quality (G-mean) during the refinement.

Figure 3.3: Unnatural trend, decreasing classification quality (G-mean) during the refinement.
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3.5.5 Proposed Adaptive Method

The notation used in Algorithm 8 is explained in Table 3.1.

Notation Description

k Coarsest level identifier
c Current level identifier
Q Predictive Quality metric
δ Parameter: Significant quality threshold
J Only neighbors of sv in the training set
Jall Complete training set at current level
J a Augmented J (neighbors of sv)
Ai Augmented point which is a NN of misclassified

point i in J
V Validation set
Fp Set of False Positive predictions in validation set
Fn Set of False Negative predictions in validation set

NN
+(−)
i Nearest Neighbors in J+(−)

all for data point i

Table 3.1: Notations in Algorithm 8

Algorithm 8 Detection and recovery of quality drop.
1: Q(max) = max Q(i)

2: where i ∈ {k, k − 1, k − 2, ..., c− 1}

3: Evaluate performance qualities for all models (NUD)

4: Q(c) ← G-mean for the best model at current level

5: if Q(c) > Q(max); then

6: Q(max) = Q(c)

7: else

8: if Q(max) −Q(c) > δ; then

9: Fp ← find false positive points in the validation set

10: Fn ← find false negative points in the validation set

11: for i ∈ {Fp ∪ Fn}; then

12: Ai ← NN+
i ∪NN

−
i . new points with respect to i

13: J a ← J ∪A

14: Train new SVM models on J a (NUD)

15: Evaluate performance qualities for all new models

16: Qa
(c) ← G-mean for the best of new models

17: if Qa
(c) > Q(c); then

18: Return{svac , Ca, γa} . Improved the quality

19: Return{svc, C, γ} . No improvement
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How to recover the quality drop? The drop in classification quality is equivalent to

an increase in the number of points that are misclassified. Therefore, a classifier quality can be

improved by training on more similar data to misclassified data points. The training data at each

level is a sub-sample of data around the decision boundary (hyperplane) at the coarser level. The

data is sampled from the neighborhood of SVs from the trained model at the coarser level. The

points which are misclassified in the training data are not crucial for improvement since the SVM

did not find a better solution for the decision boundary. However, the validation data points which

are misclassified are the crucial points that need to be classified correctly in this step. It is worth to

notice, this step does not rely on any information from the test data and only rely on the validation

and training data. Increasing the number of data points usually help the classifier to learn a better

decision boundary. A p,n number of neighbors of misclassified validation data points are found in the

data from positive and negative class, respectively. The neighbor points are added to the training

data, and the model is retrained. The p, n can start from 1 and increase to larger values. However,

as these parameters increase, the number of data points that are added to training data increase

with respect to the validation data set size and affect the computational performance in the current

level and overall framework. We mention important considerations of earlier work in the MLSVM

framework.

It is essential to mention that the validation data which is produced in the MLSVM is based

on the sampling of the original training data at the finest level. Therefore, the size of the validation

data set for large data sets is significantly larger than the training data at the coarser levels. For

instance, a data set with 5M data points such as SUSY with k-fold cross-validation using k = 5 has

4M training data at the finest level. Using the validation sample rate of 10%, the validation size at all

levels has 400k data points. At the coarsest level, the training size is less than 2×M (600 samples

with default M = 300) , and it continues to grow slowly over the next few levels of refinement.

Suppose the accuracy is 80% at a level. The maximum number of points that can be added to

training data would be 400k ∗ 20% ∗ (p+ n) or 80k ∗ (p+ n). This would be an impractical training

size. Therefore, we limit the number of p and n to one. In our experiments, many miclassified points

have common neighbors which were not in the training. We only add distinct points into training

set, hence, the increase is training size is much smaller.

The focus of MLSVM is on extremely imbalanced data sets. The majority of data points

belong to the larger class in highly imbalanced data sets. Therefore, a more restrict sampling ratio
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helps to reduce the number of data points from the majority or larger class in the validation data.

However, the minority or smaller class typically has ten times fewer data points, and its size would

not cause performance problems. Therefore, a more significant sample rate, such as 50% or more for

minority class compares to 10% or less for majority class, both reduce the number of points in the

validation data and make the validation data better representative sample to evaluate the quality

of the classifier. A validation set is significant for the framework, which allows us to find the best

model from many models at various levels. If the validation data is not representative, the quality

of the model will severely affect the test data, which is the ultimate goal of training a classifier.

The validation data size for a large data set with a sample ratio of 10% is still huge. Using smaller

values such as 2%, the validation data was not representative of test data anymore in the past. With

proposed new unbalanced sampling ratios for validation, the 2% validation sample ratio of majority

class, and 50% sample ratio of the minority class, reduce the computational challenge.
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3.6 Experimental Results

First, we report the comparison between the ML-SVM algorithm and the state-of-the-art

SVM algorithms such as LIBSVM and DC-SVM in terms of classification quality and computational

performance. Then, we compare the proposed AML-SVM method and ML-SVM method using new

set of experiments with more details.

3.6.1 Performance measures

Performance measures are metrics which are used to evaluate the classification quality of

the model. We report the accuracy (ACC), recall or sensitivity (SN), specificity (SP), and geometric

mean (G-mean). They defined as

ACC =
TP + TN

FP + TN + TP + FN
, SN =

TP

TP + FN
,

SP =
TN

TN + FP
, G-mean =

√
SP · SN

Where TN , TP , FP , and FN correspond to the numbers of real negative, true positive, false

positive, and false negative points. Our primary metric for comparison is G-mean, which measures

the balance between classification quality on both the majority and minority classes. This metric is

illuminating for imbalanced classification as a low G-mean is an indication of low-quality classification

of the positive data points even if the negative points classification is of high quality. This measure

indicates the over-fitting of the negative class and under-fitting of the positive class, a critical problem

in imbalanced data sets. In both ML and AML -SVM frameworks, many models are trained. We

need to provide one value for prediction as to the final model performance measure. Therefore, we

evaluate all the models using the validation set and select the best model and report the performance

measures of the selected model over the test (hold-out) set in the results. The detail of imbalanced

data sets used in our experiment is presented in Table 3.2. The imbalance ratio of data sets is

denoted by ε.

3.6.2 LIBSVM, DC-SVM, ML-SVM and AML-SVM Comparison

For self completeness of this chapter and convenience of the readers, we present all the

relevant results from the ML-SVM chapter . The following results provides the clear comparison
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Dataset ε nf |J | |C+| |C−|
Advertisement 0.86 1558 3279 459 2820
Buzz 0.80 77 140707 27775 112932
Clean (Musk) 0.85 166 6598 1017 5581
Cod-rna 0.67 8 59535 19845 39690
Forest (Class 5) 0.98 54 581012 9493 571519
Letter 0.96 16 20000 734 19266
Nursery 0.67 8 12960 4320 8640
Ringnorm 0.50 20 7400 3664 3736
Twonorm 0.50 20 7400 3703 3697
HIGGS 0.53 28 11000000 5170877 5829123
SUSY 0.54 18 5000000 2287827 2712173

Table 3.2: Benchmark data sets.

between the state-of-the-art methods which set the base for next section which we provide more

detailed results for comparing the ML-SVM and AML-SVM methods.

LIBSVM DC-SVM ML-SVM AML-SVM
Datasets G-mean Time G-mean Time G-mean Time G-mean Time
Advertisement 0.67 231 0.90 610 0.91 213 0.90 126
Buzz 0.89 26026 0.92 2524 0.95 31 0.95 269
Clean (Musk) 0.99 82 0.94 95 0.99 94 0.93 21
Cod-RNA 0.96 1857 0.93 420 0.94 13 0.95 75
Forest 0.92 353210 0.94 19970 0.88 948 0.88 2149
Letter 0.99 139 1.00 38 0.99 30 0.98 14
Ringnorm 0.98 26 0.95 38 0.98 2 0.97 3
Twonorm 0.98 28 0.97 30 0.98 1 0.97 1

Table 3.3: Performance measures and time for LIBSVM, DC-SVM, ML-SVM and AML-SVM on
medium size benchmark data sets.

LIBSVM DC-SVM ML-SVM AML-SVM
Datasets ACC SN SP ACC SN SP ACC SN SP ACC SN SP
Advertisement 0.92 0.99 0.45 0.95 0.83 0.97 0.95 0.85 0.96 0.93 0.86 0.94
Buzz 0.96 0.99 0.81 0.96 0.88 0.97 0.94 0.95 0.94 0.94 0.97 0.93
Clean (Musk) 1.00 1.00 0.98 0.96 0.91 0.97 0.99 0.99 0.99 0.95 0.91 0.96
Cod-RNA 0.96 0.96 0.96 0.93 0.93 0.94 0.93 0.97 0.91 0.94 0.97 0.93
Forest 1.00 1.00 0.86 1.00 0.88 1.00 0.77 0.96 0.80 0.84 0.93 0.84
Letter 1.00 1.00 0.97 1.00 1.00 1.00 0.98 0.99 0.98 0.99 0.96 0.99
Ringnorm 0.98 0.99 0.98 0.95 0.92 0.98 0.98 0.98 0.98 0.97 0.98 0.96
Twonorm 0.98 0.98 0.99 0.97 0.98 0.96 0.98 0.98 0.97 0.97 0.98 0.96

Table 3.4: Rest of performance measures for LIBSVM, DC-SVM, ML-SVM and AML-SVM on
medium size benchmark data sets.

3.6.3 Implementation

The ML-SVM was developed using C++ and PETSc library [4]. The following libraries

are used for various parts of the framework. The FLANN [70] for finding approximate k-nearest
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LIBLINEAR DC-SVM and LIBSVM ML-SVM AML-SVM
Dataset ACC SN SP G-mean ACC SN SP G-mean ACC SN SP G-mean
HIGGS 0.54 0.55 0.54 0.54 Stopped or failed after 3 days 0.62 0.61 0.63 0.62 0.61 0.64 0.58 0.61
SUSY 0.69 0.61 0.76 0.68 Stopped or failed after 3 days 0.75 0.71 0.78 0.74 0.77 0.69 0.84 0.76

Table 3.5: Performance measures for LIBLINEAR), DC-SVM/LIBSVM, ML-SVM and AML-SVM
on larger benchmark data sets.

Dataset LIBLINEAR DC-SVM and LIBSVM ML-SVM AML-SVM
HIGGS 4406 without any result 3283 1488
SUSY 1300 Stopped or failed after 3 days 1116 881

Table 3.6: Computational time in seconds for LIBLINEAR), DC-SVM/LIBSVM, ML-SVM and
AML-SVM on larger benchmark data sets

neighbors before coarsening, and METIS [50] for graph partitioning during the refinement. The

LIBSVM [17] as the underlying solver for SVM. The implementation is based on a single CPU core,

and all the speedups are through algorithmic improvement without leveraging parallel processing.

The proposed framework is developed based on the ML-SVM library. Moreover the OpenMP library,

which has been used in other application to improve the performance [1], is used to speed up the

parameter fitting at each level using multi-threading. Since the number of parameter fitting used

for experiments is 9 in the first stage and 4 in the second stage of nested uniform design, we do

not evaluate the speedups by increasing the number of threads. The coarsening implementation is

sequential and based on a single CPU core. All experiments for data sets with less than 1M data

points have executed on a single machine with CPU Intel Xeon E5-2665 2.4 GHz and 64 GB RAM.

For larger data sets, we used one single machine with CPU Intel Xeon E5-2680v3 2.5 GHz and 128

GB RAM.

3.6.4 ML-SVM and AML-SVM Comparison

The same experiment setup and hardware configuration is used for the results in this section

and next section. However, the purpose of experiments and the version of ML-SVM are different. The

experiments are designed to have a better understanding of the multilevel framework and refinement

process on each level of the hierarchical framework, while the earlier experiments are designed to

compare the overall frameworks regardless of internal details.

In all experiments the data is normalized using z-score. The computational time reported in

all experiments contains generating the k-NN graph. The computational time is reported in seconds
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unless it is explicitly mentioned otherwise.

In each class, a part of the data is assigned to be the test data using k-fold cross validation.

We experimented with k = 5 and 10 (no significant difference was observed). The experiments are

repeated k times to cover all the data as test data. The data randomly shuffled for each k-fold

cross validation.The presented results are the averages of performance measures for all k folds. Data

points which are not in the test data are used as the training data in J +(−). The test data is never

used for any training or validation purposes.

We run 18 experiments per dataset using nested cross-validation with k-fold where k ∈

{5, 10}. with various configurations to evaluate the performance of the proposed method (AML). For

each data set, we evaluated the combination of important parameters such as interpolation order (r),

validation sample ratio (v), and where we stop to partition the data in ML method, which we define

as stopping criteria for the AML method. We controlled all the other variables only to consider the

effect of new method for an exactly similar configuration. Each combination of configuration provide

slightly different results per dataset, and therefore, we evaluate 18 combinations of parameters and

present the statistical information per dataset. The goal of the experiment is to have a well-designed

experiment for comparing the current and new methods. We provide the related results from the

MLSVM paper for convenient comparison of AML method with other states of the arts SVM solvers

such as LIBSVM and DC-SVM. It is worth to mention, the results for comparing the ML and AML-

SVM are based on a different set of new experiments on the newer version of the library, which has

improved since the publication of the MLSVM paper. The current version of ML-SVM is v1.1.3,

and the current version for AML-SVM is v1.2.2.

For each configuration, we present three sets of results over k-fold cross-validation.

• Classification quality: we plot the statistics of G-mean at each level of uncoarsening in Ta-

ble 3.9, 3.10.

• Computational Performance: the average running time for both coarsening and uncoarsening

framework is reported.

• An overall comparison only for the final results of the whole framework without details for

levels are provided in Tables 3.3 to 3.7

Based on our observation for high quality model at earlier stages of the refinement, we

evaluate the early stopping (termination) of the refinement if there exist a model that satisfies the
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Dataset ML AML
Advertisement 67.6 126.0

Buzz 44.6 269.2
Clean 6.0 20.6

Cod-RNA 7.0 75.2
Forest 4993.3 2148.7
Letter 8.2 13.9

Ringnorm 3.1 3.1
Twonorm 0.8 1.4
HIGGS 6064.3 2134.4
SUSY 664.3 881.2

Table 3.7: Performance Time (seconds)

threshold quality. The results in the Table 3.8 demonstrates the predefined threshold, performance

time for each method to reach an optimal solution, and the average number of levels for the refine-

ment. The Time and Refinements are average across various configuration that results to fractions

for number of refinement levels. The comparison between the time of the methods in Tables 3.8, 3.7

shows significant speed up for all data sets. There is an order of magnitude speed ups for Forest,

SUSY, and Buzz datasets. The threshold which is set as expected results is in the range of 0.01 to

0.06 G-mean compared to best results in Tables 3.3, 3.5

Threshold Time Refinements
Dataset G-mean ML-SVM AML-SVM ML-SVM AML-SVM

Advertisement 0.85 10.4 15.0 1.1 1.1
Buzz 0.90 21.6 22.2 1.0 1.0

Clean (Musk) 0.90 2.8 3.5 2.0 1.9
Cod-RNA 0.90 2.6 2.7 1.0 1.0

Forest 0.85 318.2 253.2 2.5 2.0
Letter 0.95 1.6 1.6 1.0 1.0

Ringnorm 0.95 2.7 2.5 3.0 3.0
Twonorm 0.95 0.6 0.6 1.0 1.0
HIGGS 0.60 408.2 457.5 1.0 1.0
SUSY 0.70 223.9 228.7 1.7 1.7

Table 3.8: Average time (seconds) and number of refinement levels for the early termination.

The left column in Table 3.9 shows the average results over 18 experiments, and the right

column shows a selected sample (with k results) from those experiments. The number of levels

in coarsening and uncoarsening is the same, and we use them interchangeably for the rest of this

section. The Advertisement dataset has 3,279 data points and 1,558 features. It has a large number

of features and a small number of data points. The number of levels in the coarsening phase, only

depends on the number of data points. Therefore, there are only 3 levels in (un)coarsening phase
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for the Advertisement dataset. Both ML-SVM and AML-SVM frameworks have identical results for

the first and second levels. However, the AML-SVM achieved higher quality on the final level. All

the qualities are reported based on G-mean performance measures.

The Buzz dataset has 140,707 data points, 77 features, and 7 levels of coarsening. The

quality of both methods is comparable except for a significant drop on the 2nd level for the ML-

SVM quality. The Clean dataset has 6,598 data points, 166 features, and 5 levels of coarsening. The

ML-SVM’s quality is descending from the 3rd level to the 5th level. However, while the AML-SVM

has not decreased, in the 4th and 5th levels, it achieves the highest quality across all the levels. The

Cod-RNA dataset is related to Breast Cancer. It has 59,535 data points and 8 features. It has a

similar decreasing trend as the Clean dataset.

The Forest (Cover Type) dataset is one of the larger data sets with 581,012 data points

and 54 features. Contrary to the earlier data sets, the quality (G-mean) at the first (coarsest) level

is lower than most of the levels. The ML-SVM quality is increased in the 2nd level but continues

to descend til level six. The quality at 7th level is increased with a slight decrease in the following

levels. The AML-SVM recovers the descend at the third level and achieves the highest G-mean in

third and fourth levels.

We designed early stopping for the AML-SVM to reduce the computational complexity.

Therefore, as the size of training data reaches a threshold θ in Algorithm 7, the refinement process

stops. The threshold is an optional input parameter for the framework. For these experiments, the

θ is set to 5,000, therefore, the refinement stopped when the number of data points in the training

data is reached to 5,000.

The Letter dataset includes 20,000 samples and 16 features of the 26 English letters. The

ML-SVM has a descending trend for quality on the Letter data set similar to Clean and Cod-RNA

data sets. However, AML-SVM has no decrease in quality. The Ringnorm dataset has 7,400 data

points and 20 features. The ascending quality is observed for both methods without any drop in

qualities. The Twonorm dataset has the same size and number of features as the Ringnorm [13].

The ML-SVM quality drops in the 3rd and 4th levels. The adaptive methods achieve high-quality

results on all levels.

The HIGGS dataset has 11,000,000 data points and 28 features. The SUSY dataset has

5,000,000 data points and 18 features. The quality of ML-SVM for both HIGGS and SUSY data set

has a similar trend of high quality at the coarsest levels following with lower quality in the middle
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levels. At the finer levels, there is a slight improvement, but the variance of qualities is larger than

the coarser levels. The adaptive method for the SUSY dataset achieves high quality up to level 6.

In levels 7 and 8 the quality of adaptive method drops as well, and at level 8, the adaptive method

stops. For the HIGGS dataset, the adaptive method has better quality compared to the normal

method. At level 9, the adaptive method stops to reduce the computational complexity.
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Table 3.9: Comparing the prediction quality across levels, part 1
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Table 3.10: Comparing the prediction quality across levels, part 2
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3.7 Conclusion

In this chapter , we introduced a novel adaptive recovery technique for under/over-fitting

challenges in hierarchical frameworks which performs well on nonlinear support vector machine.

Our results based on 18 distinct configurations of essential parameters for both coarsening and

uncoarsening phases show that the adaptive approach is less sensitive to changes in configurations.

One advantage is more convenience to train a high-quality classifier for researchers as they explore

fewer configurations for their custom data sets. Another advantage is less computational cost and

time for evaluating multiple configurations. The adaptive method has reduced the prediction quality

variance across various levels in the multilevel framework, which provides a more robust solution.

While we did not explore ensemble approaches over many models, we train many models at each

level (parameter fitting) and across levels. Therefore, the lower variance between these models would

be helpful for future work as well.

On massive data sets, the training size may increase significantly on the finer levels that dra-

matically affect the computational performance. Our results with earlier versions show that quality

achievement is not significant in many cases. Therefore, our proposed early stopping functionality

improves computational performance as it prevents computationally expensive training at the finer

levels. We developed multi-threading support for parameter fitting, which utilizes more processing

power on single computing node and increases the overall performance.

The proposed approach can be extended to a hierarchical learning framework with a clear

objective for quality. Our exhaustive results demonstrate the ability of classifiers to learn a high-

quality model at the coarsest level. It emphasizes that the small aggregated training data at the

coarse levels of the framework is a good representative of the whole dataset. For large-scale problems,

sampling is a good approach to reduce the computational cost for intermediate tasks such as feature

selection or dimensionality reduction. The proposed framework is a useful alternative for simple

sampling of data.

77



Chapter 4

Leading Medical Research using

Knowledge Network Analysis

4.1 Introduction

One of the challenges with large heterogeneous datasets is an issue of extracting effective 

features for the data analysis tasks. In particular, this problem is becoming extremely sensitive with 

the constantly growing size of data fused using various sources of information such as those that 

are typical in social networks and biomedical domain. In this chapter, we propose a probabilistic 

feature extraction method that provides a low-dimensional representation of data with minimal 

computational cost. We demonstrate the applicability of the proposed methods in the literature-

based biomedical discovery domain [103] in which properly designed expert systems play a crucial 

role to accelerate scientific discovery.

Biomedical science is one of the information most reachest domains in which information is 

generated by such sources as scientists, automated experiments, personal and lab devices, clinical 

trials, and healthcare providers. A significant part of this information is summarized and published 

in biomedical journals and conferences which, in turn, helps other researchers to further generate 

new knowledge that will be published in the literature and other related datasets. Therefore, the 

size of many datasets in the biomedical domain persistently grows to an overwhelming scale [51], and 

the scientific literature is one of them. Typically, the analysis of scientific literature is tightly related
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to high-dimensional space of heterogeneous features that can include words, n-grams, predicates,

categories, authors, type of organizations, ontology and other meta or real information. Such feature

spaces cause numerous problems with numerical instability, modeling, and computational challenges

for the downstream machine learning methods in expert systems.

4.1.1 Information Retrieval and Literature Based Discovery Systems

The classical Information Retrieval (IR) techniques work well to respond to a search query

and finding related explicit connections in articles. Furthermore, some IR techniques can find limited

implicit connections among documents such as Latent Dirichlet Allocation (LDA) [120], which can

model and extract topics from a large set of documents. However, the IR methods are insufficient

to fully extract and predict the implicit relations between concepts and keywords in a massive set

of documents. Interpretable methods are required to explain the implicit connections. There is

a growing interest in research for methods to utilize the vast corpus of biomedical literature to

generate new knowledge. The existing Literature Based Discovery (LBD) [103, 34, 40] approaches

leverage this information to find implicit relationships. The LitLinker [76] express it as “tools to

help researchers capture new knowledge that bridges gaps across distinct sections of the literature.”

The LDB systems have shown to be useful in many domains such as drug target discovery, cancer,

gene and disease connections [33].

One of the first LBD approaches was proposed by Swanson [106, 107]. A triplet base

structure was intriduced to build a Knowledge Graph (KG) for LBD. Entities and their connections

are encoded into a KG, which can be used for IR or Knowledge Discovery Swanson proposed the

ABC paradigm to find relations between concepts or entities which are not mentioned together in

literature. In other words, given A, B, and C are biomedical concepts, the (A − C) connection

(expressed in co-occurrence in the same literature) has not been mentioned, while both (A − B),

and (B −C) have been. The triplet base structure, A−B −C, is widely used to model and further

expand the Swanson’s ABC paradigm.

The MOLIERE system [110] (and its recent next generation system AGATHA [111]) is an

example of LDB that processes multiple sources of information and generates a hypothesis about

the relation between two disconnected entities in the knowledge graph with high accuracy. However,

one critical problem of MOLIERE and other similar LBD systems is lack of accompanying methods

to predict the type of relations of new hypotheses. Various relationship types link the internal
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entities of the knowledge graph to each other and then used to analyze biologically meaningful

pathways. Our contribution is developing an efficient low-dimensional feature extraction method

that significantly improves the machine learning pipeline’s performance for predicting the relation

type of new hypothetical links in knowledge graphs.

4.1.2 Big Data Challenges

There are multiple challenges in predicting the right relation between two concepts such as

vast volume of literature, variety of types and relationships especially if full texts are analyzed [109]

using computationally heavy tasks [37]. We mention some of the datasets here but more details are

provided in Section 4.2.1. MEDLINE is the most popular source of data for literature collection

in biomedical domain. It has more than 28 million papers. The Unified Medical Language System

(UMLS) has a Semantic network which has 54 relationships and 15 semantic groups. The Semantic

MEDLINE Database (SemMedDB), contains more than 96 million predications extracted from arti-

cles in MEDLINE with relationship types or (predicate) between UMLS concepts. Moreover, many

other data sets exist, which can be linked to some of the publications to enrich knowledge. There

have been researchers and commercial products to link a variety of datasets [117].
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4.2 Background

First, the necessary terms or concepts are explained and then the datasets which are popular

in biomedical domain are introduced.

• Concept is a term or phrase which refers to a biomedical entity. Some data sources have a

limited set of concepts, and some use well-known concepts from other datasets.

• Semantic Predicate is a triple of subject-relation-object extracted from biomedical texts.

For instance, Infection-CAUSES-Guillain-Barre syndrome is a predicate where the Infection

is the subject, CAUSES is the relation and Guillain-Barre syndrome is the object.

• Knowledge Graph (KG) is an integration of multiple resources to form a better understand-

ing of the relation between concepts or entities in various resources. We use the Knowledge

network and knowledge graph terms interchangeably in this manuscript.

4.2.1 Datasets

A variety of datasets provide the required information for an HG system. We explain the

related essential datasets in the following sections.

4.2.1.1 Unified Medical Language System

Unified Medical Language System (UMLS) is a biomedical knowledge-base as a set of files

and softwares which connect manifold of biomedical vocabularies and standards. Therefore, it is a

core part for many KD or HG systems [9]. There are three knowledge sources for UMLS:

• Metathesaurus is the most significant component in UMLS which includes sizable biomedical

thesaurus organized by concept and meaning. It links alternative names and views of the same

concept from nearly 200 various vocabularies. Moreover, it provides hierarchies, definitions,

and other attributes.

• Semantic Network consists of two parts:

1. Nodes or Vertices: All concepts in the UMLS Metathesaurus are categorized consistently

by subject categories or semantic types. Semantic types are nodes in the semantic net-
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work, like semantic types related to Fish oil [“biologically active substance,” “lipid,”

“pharmacologic substance”].

2. Edges or Relations: The links between semantic types are the edges in semantic network

which are called Semantic Relations. At present, there are 54 semantic relations such as

“isa”, “surrounds”, “prevents”, and “treats”.

Furthermore, the Semantic Network includes semantic groups that is a set of grouping con-

cepts according to their semantics types. There are 15 semantic groups such as Chemicals and

Drugs which includes semantic types [“Amino Acid, Peptide, or Protein”, “Antibiotic”, “Bio-

logically Active Substance”, “Biomedical or Dental Material”, “Chemical”, “Chemical Viewed

Functionally” and many other semantic types]. The full list of semantic groups are available

at NLM website.

• SPECIALIST Lexicon and Lexical Tools provides a manifold of tools which are helpful

for a Natural Language Processing (NLP) specialist. Some of the tools are spell checkers, a

dataset of n-grams, prefix and sub-term finder, and Part of Speech (POS) tagger.

4.2.1.2 MEDLINE

MEDLINE is one of the most popular sources of data in the biomedical domain, with more

than 28 million citations. An article or paper in MEDLINE has a title, abstract and indexing

terms based on MeSH terms. There are a limited number of full-text articles indexed in MEDLINE

accessible through PubMed Central (PMC). Today, the PMC has more than 5.5 million full-text

records of biomedical and life science research from late 1700s to present. There are more than 7

thousands journals which provide content to PMC.

4.2.1.3 MOLIERE

The MOLIERE is a hypothesis generation system which uses the closed discovery model

to generate new knowledge discovery. The MOLIERE has an aggregate multi-layered knowledge

network from multiple sources, which consists of papers, terms, phrases, and various types of links

between them. As a closed discovery model, MOLIERE queries two UMLS concepts in its KG based

on the source and target concepts and returns a related set of nodes, which is equivalent to a cloud

or path over entities that connect source and target. The cloud includes papers, related abstracts,
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and titles as intermediate data as one of the data sources in this chapter. MOLIERE ranks and

validates the hypothesis on a massive scale with high confidence using different similarity metrics

in embedding space, on graph structures and topic modeling correlations [110, 108]. Besides the

intermediate clouds for each query, the information provided by MOLIERE systems such as topics

and validation information is not used in our analysis. So, it makes PLBD generalizable to any other

HG system, providing a set of entities that relate the two concepts.

4.2.1.4 Semantic MEDLINE database

Semantic MEDLINE database (SemMedDB) is a repository of all semantic predications ex-

tracted from the MEDLINE articles using SemRep [81]. The subject and object in a triples refer

to the UMLS Metathesaurus concepts and the predicate refers to the UMLS semantic relations.

The list of all predicates are listed in [54]. There are 54 semantic relation types in SemMedDB

and UMLS’s Semantic network. The main categories of relation types are clinical medicine (e.g.

TREATS, DIAGNOSES), substance interactions (e.g. INTERACTS WITH, INHIBITS, STIMU-

LATES), genetic etiology of disease (e.g. ASSOCIATED WITH, CAUSES), and pharmacogenomics

(AFFECTS, DISRUPUTS). The SemMedDB and SemRep are both supported by National Library

of Medicine. The SemMedDB has two releases per year and has been used as a knowledge resource

in hypothesis generation and literature based discovery and clinical decision-making support systems

[55]. The lastest release of SemMedDB is semmedVER31 R (Processed up to June 30 2018), which

has 96,363,098 predicates extracted from 28,429,379 citation in the MEDLINE using semrep version

1.7.
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4.3 Related Work

Over the last two decades, many HG systems have been developed with common goals,

such as finding an implicit relationship between concepts. Their design and functionality depend on

their specific goals, the volume of information, diversity of data sources, and analysis algorithms.

We categorize the systems into two groups based on the volume of information they process and

explore. Some systems consider a specific domain, for instance, particular diseases or genes, while

others are not limited to a fixed set of concepts.

4.3.1 Limited Domain or Volume

We define the category for systems that either focus on a specific domain or use a very

limited volume of information. The first subgroup of this category focuses on a narrow fields, such

as drug-diseases or gene-drug indirect relations. The second group is not limited to one domain but

focuses on a small volume of data or highly restricted validation set. A typical validation approach

for such systems is to replicate Swanson’s experiments. For instance, a specialized HG in drug

and disease relations at the protein level is developed by [117]. They used a commercial knowledge

graph platform with 176 knowledge sources for drug efficacy screening and leveraged the predicates

to improve their results. Their analysis considers three relationship scenarios; self relation, direct

relation, and indirect relations. The indirect relation with an intermediate node is limited only to

one node in the middle. They extract 1.58 million triples for the Euretos knowledge platform. Using

binary features for these three relation scenarios and random forest as a classifier, they achieved an

area under the ROC curve 78.1% for a limited set of drugs and diseases.

4.3.2 General Domain

The limited domain or volume approach is known for finding and replicating the Swanson’s

original experiment. However, they are not directly generalizable to other domains due to the

heterogeneous nature of other datasets required to form a coherent KG. Furthermore, as some of

these systems only limit the search to a narrow set of concepts, fields, and semantics, they may not

find potentially related concepts that are not added to their KG or search scope. An essential HG’s

goal is to help researchers explore implicit connections from other parts of the literature to their

work, which is hard to expose otherwise. However, the limited domain HGs typically do not analyze
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the massive volume of data from multiple sources. For instance, [76] developed LitLinker, a system

that incorporates knowledge-based methodologies, text mining, and data mining approaches to find

new, potential causal links between biomedical terms. They identify correlations between concepts

using data mining techniques. Also, they used these correlations for open discovery and provided

ranking for the related terms.

Earlier, we mentioned closed discovery as one type of knowledge discovery that uses two

concepts a and c as an input. Open discovery is another type of knowledge discovery that relies only

on one concept instead of two; given an a, the system finds all potential c. Therefore, the system

searches and finds all related concepts C ∈ {c1, c2, ..., cn}. Each query may have a various number

of related concepts in C. Some systems provide a rank for items in C. Most of the closed discovery

HG systems can be modified to perform an open discovery [34].

LitLinker uses associations rule mining to find new related concepts in C. It starts with

concept a and uses association rule to find many related concepts b where (a → b). Then for each

concept b, the related concept c given (b→ c) are found. It forms a large number of indirect relations

from a → c. The manual step to finding optimal support and confidence threshold parameters for

pruning is challenging.
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4.4 Problem Definition

There are many works on link prediction in biomedical domain knowledge graphs, but pre-

dicting the relationship type results requires more effort. The challenges to classify the relationship

type accurately include but not limited to: (a) heterogeneity of edge or relation in knowledge graphs;

(b) sparse and high dimensional representation; (c) multiple types of links between two entities in

the graph; and (d) existance of extremely rare types of relations, i.e., imbalanced classes. This work

focuses on developing a feature extraction method that performs well on relationship type prediction.

The vast number of unique entities, along with various relationship types, explode the

total number of combinations. The memory of typical computer systems is less than hundreds of

gigabytes, and the GPU memory is much smaller. For massive problem, either the analysis of a task

is infeasible, or a large cluster of powerful computers is required. For the latter, each specific task

requires an efficient distributed version of its algorithm as well.

The quality of the training data is an essential parameter for the quality and performance of

Machine learning algorithms. While the training data is not always structured, the representation

of the data is a crucial part of all the following tasks, such as visualization, pattern recognition,

and finally, interpretation of the models or outcomes. Considering all the possible combinations

of relationships between entities introduces multiple adverse effects with storage, high dimensional

data, and lack of interpretability of the final machine learning models.

In the following section, we explain some of the approaches we explored and the insight we

learned during this process. We hope this information saves time and effort for researchers who are

working on similar problems. Many of the existing implementations on graph analytic do not scale

to large weighted networks, especially with heterogeneous nodes or edge types. Therefore, there

are potential research opportunities for developing well-known algorithms for graph analytic using

distributed frameworks such as Hadoop, Dask, and Spark.
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4.5 Methods

We started by extracting all the triplets and the year they mentioned for the first time in

the SemMedDB database. There are 54 predicates (relation types) in SemMedDB, where only some

of them have enough samples. Hence, we keep the 12 predicates which have more than 1% sample

ratio in the data. The list of predicate are available in Table 4.1. The related queries between year

2013 to 2017 are processed using MOLIERE system. We used a set of PubMed identifier (PMID)

from the output of query over MOLIERE system. Next, we map the PMID in the set to triplets

from the SemMedDB. Five fields for each triplet are extracted which are {Subject Semantic Type,

Subject CUI, predicate, Object Semantic Type, Object CUI}

4.5.1 Feature Extraction

• Semantic Types Only (STO)

We consider a unique {subject semantic type, predicate, object semantic type} from the SemMedDB

to be one feature. We calculate the Term Frequency Inverse Document Frequency (TF-IDF)

for each feature in all queries for the training data. The total number of features considering

the semantics types are 26k.

• CUI-Predicate-CUI (CPC)

SemMedDB has information for the unique subject and unique object CUI in a predicate that

is not part of STO. We expand the features to consider all the five values as a feature; {subject

semantic type, subject CUI, predicate, object semantic type, object CUI}. We calculated the

TF-IDF value similarly, and the number of features is 4,838,789.

• Second-Order Markov Chain over whole SemMedDB (SOMCS)

All the unique triplets of {subject semantic type, predicate, object semantic type} are extracted

from the SemMedDB [55]. There are 26k unique combinations for the selected 12 predicates.

The probability for each predicate considering a specific semantic type for a subject and an

object are processed using second-order Markov chain [97, 78]. There are 133 semantics types,

denoted by N . Functions f(s), g(s, o), h(s, o, r) are defined as

f(s) =

 1 if s = SSTi

0 else
(4.1)
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g(s, o) =

 P (SSTi) if s = SSTi and o = OSTj

0 else
(4.2)

h(s, o, r) =

 P (SSTi, OSTj) if s = SSTi and o = OSTj and r = Rk

0 else
(4.3)

The following equations explain the processing of the probabilities for a predict at three steps.

P (SSTi) =

∑N
i=1 f(s)

N
(4.4)

P (SSTi, OSTj) =

∑N
i=1

∑N
j=1 g(s, o)∑N

i=1 f(s)
(4.5)

P (SSTi, OSTj , Rk) =

∑N
i=1

∑N
j=1

∑12
k=1 h(s, o, k)∑N

i=1

∑N
j=1 g(s, o)

(4.6)

, where SSTi denotes ith Subject Semantic Type, OSTj denotes jth Object Semantic Type, and

Rk denotes kth relationship type. The 12 probability values for the list of selected predicates

for each pair of (SSTs, OSTt) form a vector. We create a matrix of all probabilities considering

only the two query concepts (entities) from the year 2013 to 2018 by processing all the clouds.

The matrix (training data), is used as the input for machine learning models.

• Second-Order Markov Chain over MOLIERE clouds (SOMCM)

A set of PMID, Sp, is one of the outputs MOLIERE generates for a query. We matched the

corresponding set of predicates from SemMedDB, Ss, to set of PMID Sp. Next, we calculate

the probability of a relation type over set Ss. SOMCM has extra information related to the

abstracts compared to SOMCS. Using equations 4.1 to 4.6, we calculate the probability of each

predicate.

4.5.2 Preprocessing Data

We normalized the STO and CPC data using max value to preserve the sparsity of the

matrix data. The elements in the “Second-Order Markov Chain” data are probabilities in the range

(0, 1); hence, no normalization is required.

88



4.5.3 Dimensionality Reduction

We used Fast Randomized SVD library [115] to reduce the high dimensional data (4,838,789

features) constructed by triplets of “SubjectCUI, Predicate, ObjectCUI”, to l number of dimensions.

We experimented variety of lower dimension where l ∈ {250, 500, 2000, 5000}.

4.5.4 Random Forest

The Random Forest (RF) is a well-known classification technique that is fast and embar-

rassingly parallel. The RF over the “Second-Order Markov Chain” data results in high accuracy.

We used the Scikit-learn library [74] for RF method.

4.5.5 Support Vector Machines

We evaluated the performance of predictive models using the Support Vector Machines

(SVM) for the STO and CPC data. The LIBLINEAR [29], LIBSVM [17], and MLSVM [86, 87]

libraries are tested for training predictive models. The LIBLINEAR and MLSVM are fast and

scalable to large datasets while LIBSVM is extremely slow on large dataset which is not practical

for the full size of training data.

So, we sampled 10% of the training data and applied the SVM. However, we report the

results over the complete validation set. For test data, we randomly queried 1500 pairs of UMLS

concepts per class. We continue the experiments with the same 10% since other classifiers such as

random forest and deep learning, achieved high-quality classification using this, but their classifica-

tion quality was not significantly improved by using the whole training data. The results section

covers various sample sizes and the quality of the models. The SVM was initially designed as a binary

classification algorithm, and later multi-class support was introduced in various research [43, 102, 63].

4.5.6 Deep Learning

We developed various models to make a comprehensive comparison of algorithms due to the

popularity of deep learning (DL) models. One of the useful advantages of Deep Learning libraries

such as Keras is the functional API, which allows the extension of the model by merging multiple

models without training from scratch. The embedding or lower dimensionality representation of the

data can is helpful for data with a large number of features or sparse features. The code for the
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various models which was designed and developed using Keras and Tensorflow will be accessible in

the GitHub repository. For running the experiments, we used a machine with Intel(R) Xeon(R)

Gold 6148 CPU @2.40GHz CPU, with two GPUs: Tesla V100 and 376 GB of memory.
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4.6 Results

4.6.1 Data

The distribution of data across more than 50 classes are highly skewed and there are many

classes with few samples. Therefore, we selected 12 classes with the most number of predicate

(samples). We have assigned an Id to each class and the description on Table 4.1 demonstrate the

predicate’s description.

Class Description Number of Records
0 LOCATION OF 2,357,400
1 AFFECTS 1,529,440
2 TREATS 1,376,228
3 COEXISTS WITH 1,424,424
4 INTERACTS WITH 1,234,449
5 PROCESS OF 906,981
6 CAUSES 798,913
7 PART OF 1,379,950
8 USES 1,355,271
9 ASSOCIATED WITH 647,512
10 AUGMENTS 559,060
11 DISRUPTS 414,266

Table 4.1: List of predicate and corresponding class identifier.

The best results are achieved based on fusing three the STO, SOMCS and SOMCM feature

sets. Figure 4.1 depicts the Receiver Operating Characteristic (ROC) curve results for all 12 classes.

The average Area Under the ROC curve (AUC) is 0.97 which provide strong prediction

power to the model. More detail on classification per class is provided as a confusion matrix in the

Appendix 4.9
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Figure 4.1: ROC curve for 12 classes
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4.7 Discussion

While it seems there are a large corpus of information in MEDLINE, it is not close to all

the published literature in the medical world internationaly. There are many journals which are not

indexed in MEDLINE now [45]. There are many other datasets which can be aggregate to knowledge

network such as PubChem [119], Gene-Disease Association [101]. While it is important to consider

more data to increase the probability of finding more information and emerging patterns, as the

number of heterogeniouse sources of data fuse together, larger volume and complexity emerged on

the knowledge graph. Therefore, fast and scalable approaches are required to process the massive

volume of heterogenous data in a reasonable time and computational cost. The proposed approach

leverage probabilist approach to tackle the problem and prone highly unlikely outcomes to facilitate

less computation on machine learning approach and improvement on the final quality. The proposed

approach relies on smart and innovative reduction of the original problem that results the following

invaluable outcomes.

• The prediction quality improved significantly compared to tackling the original problem.

• The computation is significantly low and embarrassingly paralle without GPU requirements.

• The framework is clear, understandable, interparatble and eacy to build and utilize for similar

problems.

• This approach highlights the importance of human (researcher) collaboration with AI to

achieve simpler and more efficient algorithms for hard problems which are not well-known

or studied heavyly.
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4.8 Appendix: Datasets

The list of 12 selected predicates are as follow.

LOCATION OF, AFFECTS, TREATS, COEXISTS WITH, INTERACTS WITH, PRO-

CESS OF, CAUSES, PART OF, USES, ASSOCIATED WITH, AUGMENTS, DISRUPTS.

4.9 Appendix: Results

Figure 4.2 demonstrate the normalized confusion matrix for the test data.

The X-axis is the predicted labels based on the outcome of the model, and Y-axis is the

ground truth (True) label based on domain expert labels.

The diagonal of the matrix shows the correct classification result for each class. The off-

diagonal values represent the misclassified labels.
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Figure 4.2: Normalized confusion matrix
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