129 research outputs found

    Robot introspection through learned hidden Markov models

    Get PDF
    In this paper we describe a machine learning approach for acquiring a model of a robot behaviour from raw sensor data. We are interested in automating the acquisition of behavioural models to provide a robot with an introspective capability. We assume that the behaviour of a robot in achieving a task can be modelled as a finite stochastic state transition system. Beginning with data recorded by a robot in the execution of a task, we use unsupervised learning techniques to estimate a hidden Markov model (HMM) that can be used both for predicting and explaining the behaviour of the robot in subsequent executions of the task. We demonstrate that it is feasible to automate the entire process of learning a high quality HMM from the data recorded by the robot during execution of its task.The learned HMM can be used both for monitoring and controlling the behaviour of the robot. The ultimate purpose of our work is to learn models for the full set of tasks associated with a given problem domain, and to integrate these models with a generative task planner. We want to show that these models can be used successfully in controlling the execution of a plan. However, this paper does not develop the planning and control aspects of our work, focussing instead on the learning methodology and the evaluation of a learned model. The essential property of the models we seek to construct is that the most probable trajectory through a model, given the observations made by the robot, accurately diagnoses, or explains, the behaviour that the robot actually performed when making these observations. In the work reported here we consider a navigation task. We explain the learning process, the experimental setup and the structure of the resulting learned behavioural models. We then evaluate the extent to which explanations proposed by the learned models accord with a human observer's interpretation of the behaviour exhibited by the robot in its execution of the task

    Fast exploration and learning of latent graphs with aliased observations

    Full text link
    We consider the problem of recovering a latent graph where the observations at each node are \emph{aliased}, and transitions are stochastic. Observations are gathered by an agent traversing the graph. Aliasing means that multiple nodes emit the same observation, so the agent can not know in which node it is located. The agent needs to uncover the hidden topology as accurately as possible and in as few steps as possible. This is equivalent to efficient recovery of the transition probabilities of a partially observable Markov decision process (POMDP) in which the observation probabilities are known. An algorithm for efficiently exploring (and ultimately recovering) the latent graph is provided. Our approach is exponentially faster than naive exploration in a variety of challenging topologies with aliased observations while remaining competitive with existing baselines in the unaliased regime

    Probabilistic Guarantees for Safe Deep Reinforcement Learning

    Full text link
    Deep reinforcement learning has been successfully applied to many control tasks, but the application of such agents in safety-critical scenarios has been limited due to safety concerns. Rigorous testing of these controllers is challenging, particularly when they operate in probabilistic environments due to, for example, hardware faults or noisy sensors. We propose MOSAIC, an algorithm for measuring the safety of deep reinforcement learning agents in stochastic settings. Our approach is based on the iterative construction of a formal abstraction of a controller's execution in an environment, and leverages probabilistic model checking of Markov decision processes to produce probabilistic guarantees on safe behaviour over a finite time horizon. It produces bounds on the probability of safe operation of the controller for different initial configurations and identifies regions where correct behaviour can be guaranteed. We implement and evaluate our approach on agents trained for several benchmark control problems

    Finding Approximate POMDP solutions Through Belief Compression

    Full text link
    Standard value function approaches to finding policies for Partially Observable Markov Decision Processes (POMDPs) are generally considered to be intractable for large models. The intractability of these algorithms is to a large extent a consequence of computing an exact, optimal policy over the entire belief space. However, in real-world POMDP problems, computing the optimal policy for the full belief space is often unnecessary for good control even for problems with complicated policy classes. The beliefs experienced by the controller often lie near a structured, low-dimensional subspace embedded in the high-dimensional belief space. Finding a good approximation to the optimal value function for only this subspace can be much easier than computing the full value function. We introduce a new method for solving large-scale POMDPs by reducing the dimensionality of the belief space. We use Exponential family Principal Components Analysis (Collins, Dasgupta and Schapire, 2002) to represent sparse, high-dimensional belief spaces using small sets of learned features of the belief state. We then plan only in terms of the low-dimensional belief features. By planning in this low-dimensional space, we can find policies for POMDP models that are orders of magnitude larger than models that can be handled by conventional techniques. We demonstrate the use of this algorithm on a synthetic problem and on mobile robot navigation tasks

    Policy-Based Planning for Robust Robot Navigation

    Full text link
    This thesis proposes techniques for constructing and implementing an extensible navigation framework suitable for operating alongside or in place of traditional navigation systems. Robot navigation is only possible when many subsystems work in tandem such as localization and mapping, motion planning, control, and object tracking. Errors in any one of these subsystems can result in the robot failing to accomplish its task, oftentimes requiring human interventions that diminish the benefits theoretically provided by autonomous robotic systems. Our first contribution is Direction Approximation through Random Trials (DART), a method for generating human-followable navigation instructions optimized for followability instead of traditional metrics such as path length. We show how this strategy can be extended to robot navigation planning, allowing the robot to compute the sequence of control policies and switching conditions maximizing the likelihood with which the robot will reach its goal. This technique allows robots to select plans based on reliability in addition to efficiency, avoiding error-prone actions or areas of the environment. We also show how DART can be used to build compact, topological maps of its environments, offering opportunities to scale to larger environments. DART depends on the existence of a set of behaviors and switching conditions describing ways the robot can move through an environment. In the remainder of this thesis, we present methods for learning these behaviors and conditions in indoor environments. To support landmark-based navigation, we show how to train a Convolutional Neural Network (CNN) to distinguish between semantically labeled 2D occupancy grids generated from LIDAR data. By providing the robot the ability to recognize specific classes of places based on human labels, not only do we support transitioning between control laws, but also provide hooks for human-aided instruction and direction. Additionally, we suggest a subset of behaviors that provide DART with a sufficient set of actions to navigate in most indoor environments and introduce a method to learn these behaviors from teleloperated demonstrations. Our method learns a cost function suitable for integration into gradient-based control schemes. This enables the robot to execute behaviors in the absence of global knowledge. We present results demonstrating these behaviors working in several environments with varied structure, indicating that they generalize well to new environments. This work was motivated by the weaknesses and brittleness of many state-of-the-art navigation systems. Reliable navigation is the foundation of any mobile robotic system. It provides access to larger work spaces and enables a wide variety of tasks. Even though navigation systems have continued to improve, catastrophic failures can still occur (e.g. due to an incorrect loop closure) that limit their reliability. Furthermore, as work areas approach the scale of kilometers, constructing and operating on precise localization maps becomes expensive. These limitations prevent large scale deployments of robots outside of controlled settings and laboratory environments. The work presented in this thesis is intended to augment or replace traditional navigation systems to mitigate concerns about scalability and reliability by considering the effects of navigation failures for particular actions. By considering these effects when evaluating the actions to take, our framework can adapt navigation strategies to best take advantage of the capabilities of the robot in a given environment. A natural output of our framework is a topological network of actions and switching conditions, providing compact representations of work areas suitable for fast, scalable planning.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/144073/1/rgoeddel_1.pd

    Spatial and Temporal Hierarchy for Autonomous Navigation using Active Inference in Minigrid Environment

    Full text link
    Robust evidence suggests that humans explore their environment using a combination of topological landmarks and coarse-grained path integration. This approach relies on identifiable environmental features (topological landmarks) in tandem with estimations of distance and direction (coarse-grained path integration) to construct cognitive maps of the surroundings. This cognitive map is believed to exhibit a hierarchical structure, allowing efficient planning when solving complex navigation tasks. Inspired by human behaviour, this paper presents a scalable hierarchical active inference model for autonomous navigation, exploration, and goal-oriented behaviour. The model uses visual observation and motion perception to combine curiosity-driven exploration with goal-oriented behaviour. Motion is planned using different levels of reasoning, i.e., from context to place to motion. This allows for efficient navigation in new spaces and rapid progress toward a target. By incorporating these human navigational strategies and their hierarchical representation of the environment, this model proposes a new solution for autonomous navigation and exploration. The approach is validated through simulations in a mini-grid environment.Comment: arXiv admin note: text overlap with arXiv:2309.0986

    Bayesian learning for multi-agent coordination

    No full text
    Multi-agent systems draw together a number of significant trends in modern technology: ubiquity, decentralisation, openness, dynamism and uncertainty. As work in these fields develops, such systems face increasing challenges. Two particular challenges are decision making in uncertain and partially-observable environments, and coordination with other agents in such environments. Although uncertainty and coordination have been tackled as separate problems, formal models for an integrated approach are typically restricted to simple classes of problem and are not scalable to problems with tens of agents and millions of states.We improve on these approaches by extending a principled Bayesian model into more challenging domains, using Bayesian networks to visualise specific cases of the model and thus as an aid in deriving the update equations for the system. One approach which has been shown to scale well for networked offline problems uses finite state machines to model other agents. We used this insight to develop an approximate scalable algorithm applicable to our general model, in combination with adapting a number of existing approximation techniques, including state clustering.We examine the performance of this approximate algorithm on several cases of an urban rescue problem with respect to differing problem parameters. Specifically, we consider first scenarios where agents are aware of the complete situation, but are not certain about the behaviour of others; that is, our model with all elements but the actions observable. Secondly, we examine the more complex case where agents can see the actions of others, but cannot see the full state and thus are not sure about the beliefs of others. Finally, we look at the performance of the partially observable state model when the system is dynamic or open. We find that our best response algorithm consistently outperforms a handwritten strategy for the problem, more noticeably as the number of agents and the number of states involved in the problem increase

    Interactive Learning of Probabilistic Decision Making by Service Robots with Multiple Skill Domains

    Get PDF
    This thesis makes a contribution to autonomous service robots, centered around two aspects. The first is modeling decision making in the face of incomplete information on top of diverse basic skills of a service robot. Second, based on such a model, it is investigated, how to transfer complex decision-making knowledge into the system. Interactive learning, naturally from both demonstrations of human teachers and in interaction with objects, yields decision-making models applicable by the robot
    • ā€¦
    corecore