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Preface

Service robots are destined to revolutionize both the tertiary sector as well as households, pro-

foundly changing society. Yet necessary autonomous behavior, orchestrating highly diverse

physical interaction with complex environments, is far from being technically solved. True au-

tonomy requires a technical system to be able to continuously select actions from a wide range

of choices in an ever changing world. Such action selection is a decision-making procedure

capable of dealing with incomplete knowledge about its environment as well as potential future

courses of events.

This thesis makes a contribution towards deeper understanding of that challenge by present-

ing a decision making system design approach. The contribution is centered around two aspects.

The first is modeling decision making in the face of incomplete information on top of diverse

basic skills of a service robot. Second, based on such a model, it is investigated extensively,

how to transfer complex decision-making knowledge into the system. Interactive learning, nat-

urally from both demonstrations of human teachers and in interaction with objects, is the cho-

sen paradigm, yielding decision-making models applicable by the robot. Investigated methods

are implemented as actual software and fully integrated, leading to experimental evaluation on

physical service robots.

Hopefully, the insight gathered through this thesis can support further research, one day lead-

ing to intelligent robots with the ability of sophisticated autonomous decision making, learning

naturally like children from human teachers and independent exploration of the environment.

Karlsruhe, Sven R. Schmidt-Rohr

2012 Karlsruhe Institute of Technology





Zusammenfassung

Die vorliegende Arbeit untersucht autonomes Entscheiden durch Serviceroboter mit verschieden-

artigen Fähigkeitsdomänen wie Mobilität, Objektmanipulation und natürlicher Mensch-Roboter

Interaktion. Dabei liegt der Fokus auf dem Zusammenspiel der Fähigkeiten und entsprechend

abwägendem Entscheiden auf strategischer Ebene. Um die in jeder realen Umgebung vorherrsch-

ende Unvollständigkeit von Information zu berücksichtigen, sowohl bezüglich des gegenwär-

tigen Zustands der Umwelt, als auch möglicher zukünftiger Vorgänge, werden probabilistis-

che Entscheidungsverfahren eingesetzt. Diese sind in der Lage die Unsicherheiten explizit zu

repräsentieren und quantitativ abzuwägen.

Die Herausforderung ist, Robotermissionen, welche hochgradig unterschiedliche Fähigkeiten

beinhalten, für solche probabilistischen Entscheidungsverfahren abzubilden. In der vorliegen-

den Arbeit wurde eine entsprechende Entscheidungsarchitektur entwickelt. Darüber hinaus ist

die Akquise des nötigen Entscheidungswissens für beliebige Missionen durch den Roboter eine

noch größere Herausforderung. Daher wird ein Prozess vorgestellt, in welchem dieses Entschei-

dungswissen aus einem Zusammenspiel von Lernen durch menschliche Lehrer, auch Program-

mieren durch Vormachen genannt und weitere Verfeinerungsanalysen erworben wird.

Dieses Vorgehen verspricht den Vorgang des Erwerbs von komplexem Planungswissen durch

den Roboter sowohl praktikabel, also auch flexibel zu gestalten. Das vorgestellte System wurde

komplett als Software auf physischen Servicerobotern realisiert, integriert und in diversen Ex-

perimenten evaluiert.

Im Folgenden werden Einsichten, Details und Beschränkungen des Konzepts diskutiert.
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1. Introduction

Automating manual everyday tasks in human-centered environments is a promising emerg-

ing technology, destined to reshape both professional as well as domestic fields profoundly.

Among devices delivering such automation, service robots take a particularly versatile role.

Service robots are machines that quite closely resemble humans in proportions and basic phys-

ical abilities. These abilities include relocation of their whole physical manifestation, physical

interaction with objects in their vicinity and interaction with humans by natural means. How-

ever, to carry out duties that cannot be automated yet, robots have to gain another human ability:

deciding which action to perform next, based on situations and goals.

Simple robots and life forms choose actions based on hardwired responses to environment

perception. These responses have been created by a designer or the process of evolution. While

this method of decision making may be efficient for simple tasks, it fails when confronted with

more complex situations, action options and causal sequences. In these cases, which include

performance of everyday tasks in human-centered environments, the autonomous robot needs

to carefully consider several aspects. It has to reason about possible effects of its own actions,

predict changes in the environment that are potentially only loosely coupled with its own actions

and finally has to assess the uncertainty of its own knowledge concerning a certain situation.

Eventually, reasoning about causality has to be combined with suitable motivations and goals,

which means to perform its duties efficiently and robustly in the case of the service robot. This

leads to a system for planning and decision making, a process in the information processing

system of the robot with the ability to choose an action at any time during its duties in a way

that optimally serves its owner’s purpose.

A mission is defined as a single, self-contained objective, encompassing all tasks needed to

perform a certain duty. Actions can be executed by the service robot by means of several skill

domains, which are channels used to interact with its environment. The situation, the environ-

ment configuration at a certain point of time, is assessed by prediction as well as observation of

the environment using different sensors which are part of distinct skill domains.

1



1. Introduction

Figure 1.1.: Autonomous mobility, object manipulation and natural HRI service robots Albert (left) and

Adero (right), used as evaluation platforms. - [125]

Typical service robots - as depicted in Figure 1.1 - cover three major skill domains:

• Autonomous mobility: relocating the whole robot within its environment.

• Natural human-robot interaction (HRI): spoken dialog with humans and gestures.

• Autonomous object manipulation: physical interaction with objects using grippers.

Thus, robot decision making has to consider typical dynamics in these quite different domains

in a coherent way, leading to decision making for missions considering multiple skill domains.

Planning and decision-making techniques applied by artificial systems need formal, quanti-

fied representations of relevant aspects of missions. In missions with multiple skill domains,

such a representation has to be homogeneous over all domains.

Discretization and abstraction are a way to handle that challenge. Suitable planning tech-

niques for problems covering multiple domains are based on such representations. These rep-

resentations are planning/systems models - in short planning models - suitable to compute de-

cision making by an artificial agent such as a service robot. Yet, essential problems remain:

• How to design abstraction for decision making covering multiple robot skill domains?

• How can a service robot obtain a mission planning model in a feasible manner?

This thesis deals with these closely coupled questions, the former in Chapter 3, the latter in

Chapter 4.

2



1.1. Approach Motivation

1.1. Approach Motivation

When designing planning model abstraction on a robotic system and devising a method to ob-

tain the model, some further specification of the planning technique is necessary. For abstract,

mission-level planning and decision making, methods with differing capabilities concerning the

characteristics of the environment exist. According to [122], several characteristics can be dis-

tinguished, exhibited by the environment of an autonomous, rational agent: static – dynamic,

episodic – sequential, deterministic – stochastic, discrete – continuous, fully observable – par-

tially observable, single-agent – multi-agent. Hereby, an environment sufficiently modeled by

a property mentioned first can be assumed to be less complex than one described by a prop-

erty named second. Because the property of an environment classified as stochastic concerning

courses of events has a strong impact on the complexity of planning methods, there is a tendency

of choosing the deterministic assumption too aggressively.

Within the scope of this work, three basic arguments support the case that it is insufficient to

assume that a real service-robot environment covering multiple skill domains is deterministic:

1. Considering courses of events as stochastic arises directly from physical properties of

the world: quantum dynamics as well as the relationship between entropy and the arrow

of time. The uncertainty principle in quantum dynamics prevents courses of events in

any real world system to be deterministically predictable [54]. Yet, even when assuming

that this property is attenuated in macroscopic environments like a setting in which a

robot acts, the directed character of time and entropy in a physical system remain. These

basically mean that causality is not symmetric when looking into the past and towards the

future from a given present [84]. The present describes a low-entropy boundary condition

with far fewer potential courses of events leading from some potentially unknown past to

the present than may lead from the present to some potential - and certainly unknown -

future. When modeling exponentially increasing potential courses of events - like future

in contrast to past ones - deterministic models become insufficient. Instead, stochastic

models can group causal dynamics in ways suitable for planning.

2. Experiments covering robot planning applications often show superior results when they

are based on methods accounting directly for stochastic courses of events as discussed in

Section 2.2.6. The more complex the setting, the more profound the stochastic nature of

courses of events. Based on this data and trend, extrapolation leads to the conclusion that

more complex robot missions envisaged in the future are only suitably covered by taking

into account stochastic courses of events.

3



1. Introduction

Figure 1.2.: Simplified schematic of POMDP flow of events – discussed in Section 2.2.3 – (left), sim-

plified model scheme (center) and a decision-making policy visualization (right). - [125],

[105]

3. Psychology research indicates that abstract human decision making is based on proba-

bilistic representations to account for a stochastic world as discussed in Section 2.2.8.

As evolution tends to employ simple methods where sufficient, it is likely that non-

probabilistic planning is insufficient to cover abstract decision making in real-world set-

tings.

Because of these points, little further argument will be made comparing stochastic against de-

terministic modeling alternatives in Chapters 3 and 4. Some experiments discussed in Section 5

include comparisons with deterministic techniques, otherwise the discussion will focus on how

to tackle challenging questions arising from stochastic modeling.

Consequently, as the physical environment of a service robot has to be classified as stochas-

tic and partially observable, methods for planning in deterministic and fully observable set-

tings, discussed in Section 2.1.2, are less suitable. Instead, probabilistic planning and decision-

making methods like Markov decision processes, discussed in Section 2.2 and shown schemat-

ically in Figure 1.2, can reflect real-world dynamics, especially the stochastic nature, in the

planning model and often lead to superior performance under realistic circumstances. Yet, this

capability leads to higher computational complexity of the planning process and a more com-

plex model representation.

Hence, defining and creating a model for a certain mission becomes more intricate. An ap-

proach is necessary that allows for comfortable transfer of all necessary model parameters into

the information processing system of the robot such that the model is then usable for planning.

A promising approach for transfer of skill and task information into the information processing

system of a robot is Programming by Demonstration (PbD), often known as Learning from Ob-

servation or Imitation Learning, discussed more closely in Section 2.4. Under this paradigm,

skills or tasks a robot shall acquire, are demonstrated by a human domain expert, performing

the task naturally by himself. A technical system records demonstrations with sensors, followed

4



1.2. Thesis Statement

Figure 1.3.: General scheme of a typical PbD process. - [125]

by generation of a task description which can in turn be used by the robot to execute the task.

Thus, PbD can be considered as an interactive learning technique, integrating different sorts of

interactions between human and machine.

The strength of PbD is the comfortable, natural, explicit and implicit transfer of domain

knowledge, as shown schematically in Figure 1.3, requiring no expert in robot programming.

These obvious benefits suggest investigation of PbD for the generation of models used in prob-

abilistic planning of service robot missions. However, there are also areas where PbD is lacking

and the model generation process has to be supported by techniques beyond PbD. This provides

all the elements for the investigation to be performed in this thesis:

Interactive learning [programming by demonstration and learning from experience] of prob-
abilistic decision making [models] by service robots considering multiple skill domains
[mobility, human-robot interaction and object manipulation].

1.2. Thesis Statement

Thesis: Generation of probabilistic planning models for service robot missions in human cen-

tered environments is made feasible by analyzing human demonstrations of such missions.

The statement is supported by a presentation of means to model robot service missions as

abstract, probabilistic planning models. Techniques are discussed to generate models from

analysis of recorded natural demonstrations, supported by further refinement. Evaluation covers

exemplary missions, integrating several skills on real service robots.

5



1. Introduction

Figure 1.4.: Execution-time robot autonomy architecture as presented in Chapter 3. - [125]

1.3. Document Outline

The document consists of the following main chapters:

• Chapter 2 contains the discussion of the theoretical background and related work.

• Chapter 3 explains an approach to model service robot missions covering multiple skill

domains suitable for probabilistic planning.

• Chapter 4 presents a concept to generate these planning models by means of PbD.

• Chapter 5 discusses experimental evaluation.

• Chapter 6 gives conclusions.

1.4. Concept Overview

In Chapter 3, the concept of an execution-time information processing system and an ap-

proach to define various aspects of a planning model for certain types of missions are presented.

The system architecture for autonomous decision making by a service robot handles execution-

time application of probabilistic planning models and resulting action policies. Formal, param-

eterized models, describing a mission and generated by the PbD concept, as described in Sec-

tion 4, are utilized by these information processing components of the robot while performing

a mission. In this thesis, a typical three-layer autonomous execution architecture was de-

veloped, as described in Section 3.1. On the lowest layer, algorithmic components processing
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1.4. Concept Overview

sensor measurements into more abstract observations and components generating actuator com-

mands from abstract execution requests, form a collection of skills. An intermediate layer com-

piles abstract observations into a unified belief-state description, required for decision making.

The other part of that intermediate layer generates several component-directed execution re-

quests for each abstract action. On top, probabilistic decision making applies a planning model

and chooses abstract actions to be performed by the robot next, based on delivered belief states.

All together, these three layers form the rational agent cycle of perceive – reason – act [122]

generating active behavior while the robot performs a mission as depicted in Figure 1.4.

Available skill domains are provided by components processing sensor measurements or gen-

erating actuator commands for abstract actions. To consider aspects of the environment to which

these components relate in the planning model, definitions have to be created which map envi-

ronment aspects onto abstract planning model properties. Two fundamental abstract properties

are state and action. A state is defined as a certain configuration of the world in which an agent

is acting. A state encompasses all properties of the world relevant for decision making to dis-

tinguish it from other states. A concept to create quantified state descriptions for arbitrary sets

of diverse skill domains is explained in Section 3.2.

In partially observable environments, a set of measurements does not guarantee to a robot

that the world is in a certain state. Instead, imperfect sensor measurements and occlusions limit

the robot’s knowledge of the current state of the world. Yet, certain observations correlate with

certain states with high probability. Such a correlation can be quantified as a likelihood for a

state leading to a certain measurement. Probabilistic decision making utilizes that likelihood

for both computation of a policy as well as belief state computation, used for policy queries.

A measurement likelihood depends on the observed aspects of the world, sensor properties

and processing algorithm characteristics. In this thesis, approximate modeling of uncertainty
in robot perception for various components was investigated. Additionally, an exemplary

perception component for localization of furniture was devised, which models uncertainty from

raw sensor data to a more abstract measurement result, as explained in Section 3.3.

Decision making as applied in the presented concept selects an abstract action to be per-

formed by the robot next, each time a previous action has finished. However, such an abstract

action usually is a compound of more fine-grained actuator commands. To reason about possi-

ble effects of such an action during planning and also to execute the action, a representation for

the contents of the abstract action is necessary. Thus, a previously developed hierarchical task

representation modeling elementary actions as robot tasks was integrated into the system as

discussed in Section 3.4.

7
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Introduction

Figure 1.5.: Schematic view of the presented approach: modeling, discussed in Chapter 3, at the center, overarched by the PbD process presented in

Chapter 4. - [125]
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1.4. Concept Overview

A mission model represents task knowledge, yet long-term knowledge and information reusable

among several missions needs an extra representation. To account for such knowledge and en-

sure usability in the model generation process, a specialized knowledge base employing De-

scription Logic was developed. An ontology contains core aspects of service robot missions in

a hierarchical manner, relating tangible objects and intangible model aspects. New information

can be added during learning while information can be inferred when generating planning mod-

els. The knowledge base is described in Section 3.7.

In Chapter 4, Programming by Demonstration of probabilistic mission planning models,

a primary contribution of this thesis is discussed in detail. The PbD process, sketched in Fig-

ure 1.5, is complementary to the execution-time perceive – reason – act agent cycle. First, the

robot observes a scene with it sensors. However, in the case of PbD, the setting is special as a

natural human demonstration of a mission takes place. Additionally, the robot does not interfere

actively in the course of events, but instead records the demonstration. After recording several

demonstrations, reasoning takes place which generates an abstract model of the mission. Fi-

nally, that model can be applied during execution-time reasoning when the robot performs the

mission itself. Thus, learning takes place in a phase distinct from execution and thus can be

considered as a type of offline learning. Yet, as the PbD approach involves comments from the

human to the robot and also from the robot to the human, the process is tightly interactive.

Observing and recording human demonstrations is the first step in a PbD process. In the

present work, observation is robot-based, with the robot actively observing the scene including

acting human teachers and objects. One exception is spoken dialog, where headsets are used

to clearly distinguish different speakers. Body motion of at least one human teacher, the Robot

Role Demonstrating Human (RR) is measured by a human skeleton motion tracking system

utilizing a 3D point cloud depth sensor. On top of motion tracking, a freely available system,

developed in the lab, classifies abstract activities of the RR, based on the motion. Additionally,

motion activities of a human teacher representing a human interacting with the robot, a Human

Interaction Role Demonstrating Human (HR), 6D poses of relevant objects in the scene as well

as spoken utterances of both RR and HR can be observed. Data of each type is recorded and can

be used for further processing after demonstrations. Exemplary setups are shown in Figure 1.6,

while details are described in Section 4.1.

Raw data recorded from demonstrations is available in different representations, depending

on the skill domain. Some data – such as human poses – is represented by continuous values

(coordinates) while other – for instance spoken utterances – is available as discrete symbols.

However, recordings have to be segmented and mapped to discrete state – action sequences, the

9



1. Introduction

Figure 1.6.: Observation of a natural human mission demonstration by the robot. - [125]

underlying representation of the planning model. To achieve state mapping, relating contin-

uous values with discrete state symbols, discretization rules have to be defined. For efficient

discretization, optimized for a certain mission and to automate as many aspects of planning

model generation as possible, these rules have to be determined automatically. This aim is

achieved by applying clustering methods to the recorded data, combined with cross-analysis of

values between various skill data as presented in Secion 4.2. As a result, mappings are gener-

ated from world configurations as observed by robot perception to abstract state symbols. These

mappings can be used for both segmentation of demonstration recordings as well as belief-state

computation during mission execution by the robot.

As with state symbols, action symbols have to be mapped to corresponding real-world robot

behavior. Especially concerning the domain of object manipulation, specific motion properties

of individual human manipulation actions may differ from the robot execution skill motion.

Thus, mapping an observed human manipulation activity to a parameterized robot manipula-

tion skill is not trivial. Both a component to classify observed human manipulation activities

symbolically and a component to execute manipulation activities in varying scenes, outlined

in Section 2.7, have been developed in cooperation with the presented mission PbD concept.

For both components, a varying, but finite set of available elementary manipulation activities

can be generated. To be of use in the mission PbD process, a correspondence action mapping
between two such sets has to be generated for each mission. Such a technique, described in

detail in Section 4.3, was investigated: it compares the geometric motion structure between

10



1.4. Concept Overview

classified human activities and executable robot activities. After application to recorded data,

all manipulation action symbols refer to executable robot skills.

Using discretization for skill-domain-specific recorded data, demonstration segmentation
can transfer each recorded demonstration into a state - action sequence as explained in Sec-

tion 4.4. These sequences then represent courses of events on the level of abstraction inherent

in resulting planning models.

While execution-time perception is considered as partially observable, usually the assumption

is made that demonstration-time observation is sufficiently modeled as fully observable. To

deal with demonstration setups where observation results show that this assumption cannot

hold, sequence smoothing of observed, segmented demonstration can deal with some severe

observation errors. Unlikely or causally impossible observed action effects can be smoothed

by modeling observed demonstration sequences as Hidden Markov Models. Dynamics of the

process concerning action effect probabilities and observation likelihoods are determined by

a meta-model for a setting, stored in the background knowledge system. Application of the

technique to exemplary missions is described in Section 4.5.

A set of segmented demonstration sequences describes typical sequences of events in a cer-

tain mission. Relative frequencies of certain states resulting from an action in a specific state –

which is the origin state of the resulting action transition – among the set of sequences are an

indication for transition probabilities concerning mission specific aspects. Similarly, primary

mission goals are indicated by these demonstration sequences. In the analysis process step,

a preliminary (PO)MDP model is generated by analyzing the set of demonstration sequences.

State and action sets, defining the mission as well as mission-specific transition probabilities

and primary goals to be included in the reward model are determined at this point as explained

in Section 4.6. However, the information resulting from model mapping can only be regarded

as a skeleton model because on the one hand, typical sets of demonstrations usually lack infor-

mation about all possible courses of events, while information specific to robot capabilities is

not included at all. Thus, the preliminary model has to be completed by the following steps.

An abstract POMDP model of a mission has to contain all relevant information about prob-

abilistic correlations related to robot actions and observations as well as all costs, goals and

constraints corresponding to the mission. On the other hand, a set of human demonstrations

containing some typical courses of events usually does not cover all courses of events that are

hypothetically possible. While a model derived only from an initial set of demonstrations might

be sufficient to perform a mission, flexibility in courses of events and thus options to perform

the mission can be more limited than necessary. To explore the model space for potential action

11
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results which were not demonstrated, yet could be relevant for decision making considering

alternative, suitable course of events, a model generalization analysis is applied to the pre-

liminary model. Potential transitions are derived from similar observed ones and rated with

confidence values, indicating the likelihood of their occurrence. Details about this process can

be found in Section 4.7.

Generalization of observed action effects can only estimate unobserved effects and thus a

verification mechanism is mandatory. Such verification has to include the human teacher as a

primary source of causal information, yet needs to consider its limited availability. Regarding

these aspects, verifying generalization is achieved by relevance analysis of generalized transi-

tions and compiling highly critical effects into potential demonstration sequences. These se-

quences are then transformed into visual or spoken demonstration requests to human teachers

which may decline demonstrations as invalid or perform them within the scope of the request.

By these means, generalized transition hypotheses can be pruned and the demonstration process

can be steered by the system to cover decision-critical aspects of the model. Request generation

is discussed in Section 4.8. In summary, generalization and verification by means of further

requested demonstrations can together lead to more flexible mission models.

Eventually, a further channel of information can be used to gather knowledge from human

demonstrators. While passive observation of human activities - and also dialog between RR

and HR teachers - delivers mostly implicit human knowledge about the mission and domain,

additional spoken comments by teachers may deliver further, explicit action knowledge. Ex-

planatory comments directed towards the observing robot can deliver further descriptive infor-

mation about states and actions, not easily derived from task observation alone as outlined in

Section 4.9. In the scope of the presented system, explicit spoken comments are especially use-

ful for state and action classification during incremental learning of background knowledge as

described next. Together, request generation by the robot and human comments during demon-

strations can lead to a spoken, bi-directional, interactive PbD process.

Some information about action-effect correlations in a mission cannot be derived from human

demonstrations as capabilities of human teacher and service robot may differ in relation to

action effect prior probabilities. A class of effects that can be summarized as robot action-

execution errors is especially affected. To include information about such effects that do not

occur during human demonstrations, comprehensive, mission independent knowledge as stored

in the background ontology is used. Therefore, a process component analyzes the actions within

the preliminary mission model and infers additional model information from related aspects in

the ontology. As a result, model refinement using description logic adds information such
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as error states, recovery actions, error transitions and action cost penalties to the preliminary

model. It is based on description logic inference techniques, explained in Section 4.10.

Robot-specific knowledge concerning action effect prior probabilities as derived by inference

on background knowledge is not a precise estimate of real-world dynamics. Particularly in the

domains of mobility and manipulation, specific geometric properties and layouts of the scene as

well as path- and motion-planning characteristics define these effect probabilities. To improve

estimates of these effect prior probabilities and thus improve the model quality in relation to the

real world, further analysis of the actions in an observed mission is necessary. In this process

step, the geometric setup of demonstration time scenes is used to apply navigation path planning

and manipulation motion planning within these scenes. Then, execution uncertainty metrics on

the geometric representations can be computed to derive action effect prior probabilities in the

abstract planning model. Finally, model refinement by geometric analysis updates the abstract

planning model with these values as described in Section 4.11.

Further refinement of action effect priors can be achieved by complementing geometric anal-

ysis with execution trials in physical dynamics simulation. This approach has been used for

the domain of object manipulation. Scene setups as observed during demonstrations are repli-

cated with diverse variations in a simulation environment. Subsequently, the robot executes

elementary actions within the simulation, while observation and execution uncertainty is ap-

plied. Finally, the effects of the execution within the dynamics simulation are evaluated and

relative frequencies computed for the action effect model. More precise representation of real-

world dynamics in the mission model is thus achieved. A detailed presentation of the approach

of model refinement by dynamics simulation is given in Section 4.12.

After these final model refinement steps, the preliminary POMDP model has been trans-

formed into the final planning model on which action selection policy computation will be

based. While such a model can never be a perfect representation of real-world dynamics, its

information is suitable for the service robot to assess risk and opportunities within a mission as

shown in the evaluation, Section 5. It can finally be used to compute a policy, utilized during

autonomous robot execution of a mission.

In Chapter 5, a detailed evaluation of individual process stages in simulation or the real world

is presented. Finally, evaluation of selected missions, utilizing the whole PbD process and based

on real observation of physical demonstrations as well as physical world execution on service

robots with multiple skill domains underlines the feasibility and portability of the presented
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Figure 1.7.: Robot executing a mission as described in Section 5.1.2. - [125]

process. It also shows completely implemented integration of all process stages in software.

Exemplary execution is shown in Figure 1.7.

1.5. Thesis Contribution

The contribution of this thesis is to model probabilistic decision making of service robots with

multiple skill domains and, most importantly, the presentation of a comprehensive process to

generate mission-specific models from observation of human demonstrations. Symbol ground-

ing generation, model structuring with interactive exploration and further refinement by back-

ground knowledge as well as geometric analysis work together in a single, coherent process.

The thesis presents insights for systems with multiple skill domains, considerations regarding

necessary process operations in such a PbD system and describes exemplary techniques of var-

ious kinds to perform these operations. It also shows how to bring together paradigms from a

wide range of fields in robotics. The whole process is fully integrated and evaluation is shown

on physical-world service robot systems with a diverse set of skills.

Thesis contribution: This thesis contributes the concept and system of

Probabilistic Mission Planning Model Programming by Demonstration (PMPM-PbD).
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2. Theoretical Background and Related Work

Several different aspects of autonomous robotics play an important role in the concept devel-

oped and presented by this thesis. As indicated by its title, major aspects are interactive learn-

ing, probabilistic decision making and autonomy for service robots.

The goal of autonomy, the ability to act flexibly in complex, dynamic environments as mo-

tivated in Section 1, is fundamental to modern robotics. Thus, there have been a multitude

of research activities in this area, covering basic aspects of the organization of information-

processing systems to enable autonomy, irrespective of specific reasoning techniques. Sec-

tion 2.1 covers these aspects, including alternative reasoning techniques.

Probabilistic decision making, an essential concept utilized in this thesis, has been investi-

gated in a large variety of studies addressing both theoretical foundations as well as applications

in robotics. In PMPM-PbD, the framework of Markov Decision Processes has been applied to

cover probabilistic decision making by an autonomous robot. Relevant literature dealing with

that concept is discussed in Section 2.2.

Moreover, the interactive learning technique Programming by Demonstration has been uti-

lized in the presented concept to comfortably generate models for probabilistic decision making.

Programming by Demonstration and imitation learning have been investigated intensively for

a wide range of aspects in robotics, especially for autonomous manipulation, but also human-

robot interaction. Section 2.4 discusses prominent research and its relation to PMPM-PbD.

Further learning techniques in robotics, related to methods used in the refinement steps of

PMPM-PbD are discussed in Section 2.5 and organization of background knowledge is dis-

cussed in Section 2.6. Finally, novel robot skill components developed in cooperation with and

utilized by PMPM-PbD are presented in detail in Section 2.7.

2.1. Autonomous Behavior by Service Robots

Autonomy of a robot is difficult to quantify, yet has been interpreted in the community as

the ability of a robot to adapt its activities to varying and not precisely defined situations. A

core principle of autonomy is the ability of a robot to shape its actions by reasoning based on

perception of a certain situation and prior knowledge. Depending on the methodology used to

attain autonomy, models of a situation and prior knowledge as well as reasoning techniques may
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Figure 2.1.: Scheme of the rational agent concept, the foundation of autonomy. - [125]

differ significantly. Additionally, autonomous reasoning can be classified as being either rather

"low level" or "high level". The former is usually skill-specific such as navigation path planning

or manipulation motion planning while the latter deals with shaping activities globally, which

may include selection of a skill domain. As the main focus of this thesis is on the latter, it is

discussed in detail in the next sections.

Global control for autonomy can be achieved by following one of several existing paradigms.

Inspired by nature, behavior-based control imitates reasoning as performed by living animals,

coding action as interlinked sets of schemas. It is discussed in Section 2.1.1. Originating

from logic in philosophy and based on predicate logic descriptions of the world, reasoning by

application of discrete planning as discussed in Section 2.1.2 is a paradigm very distinct from

behavior-based control. Reasoning with Markov Decision Processes, discussed in Section 2.2,

relaxes the assumptions about the world made by logic-based planning.

Organizing perception of the surrounding world, skill domains, reasoning and low-level ac-

tuator control in a complex system like an autonomous robot is not straightforward. Thus,

defining the layout of the information processing architecture for an autonomous service robot

has been much investigated in literature. Section 2.1.3 presents some architectures designed for

requirements similar to the system utilized in PMPM-PbD.

A rational agent [122], sketched in Figure 2.1, is an information processing system observing

its environment through sensors. Based on observations, it reasons to perform some actions to

achieve a set of goals while keeping to a set of constraints. These actions can then be executed

by actuators, which modify the environment. Consequently, the agent performs perceive –

reason – act cycles.
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Figure 2.2.: Schematic view of the subsumption architecture (left) and a module (right). - [20]

2.1.1. Behavior-based Control

A distinct paradigm investigated for robot autonomy is behavior-based control. First introduced

in [20], reasoning about robot actions based on perception is distributed among specialized,

loosely coupled controller components on different levels of abstraction. The intention is to

consider multiple goals as well as multiple noisy sensors – and thus perception skill domains –

that cannot be easily achieved by straightforward logic-based planning (see Section 2.1.2). The

subsumption architecture as presented by [20],[21] is a hierarchical reasoning system for an

autonomous mobile robot, providing a flexible number of hierarchy layers, shown in Figure 2.2.

Autonomy to the extent provided by a layer is self-contained in the system up to that layer

level. A layer can subsume – hence the name – a behavior at a level lower into its controller

architecture and replace its input signal or inhibit its output signal. By structuring the system

this way, each layer forms a complete rational agent together with its lower layers, unaware of,

but influenced by the agents on top. Within a layer, behavior design can be quite arbitrary and

complex. Modeling individual components within a behavior controller is not clearly defined.

It is argued in [21] that the incremental nature of constructing the system and thus its reason-

ing capabilities from the ground up, gets rid of the need for a central representation on which

reasoning is based. Instead, intelligent behavior arises from individual, manageable behavior

blocks and their interactions. Finally, the pure form of behavior-based control argues for no ex-

plicit representation, that is a model, of the world that includes actions of the robot. Thus, there

are no symbolic tokens representing any aspects in short-term or long-term memory. Hence,

without explicit memory and representations, explicit reasoning aboukt the past and the present

hardly exists in such a system.

Investigation of details, challenges and practical implications concerning the concept of behavior-

based control has been extensive [95]. A key aspect is the design of individual behaviors, where
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Figure 2.3.: Schematic view of a behavior network. - [3]

preferring behavior interaction with the environment compared to interaction among behaviors,

leveraging the strength of the concept, has given best results. Accordingly, however, coor-

dination of behaviors is difficult to manage with rising complexity and number of behaviors.

Lacking a common framework for formal description of individual behavior dynamics, options

are limited to assess and evaluate behavior interaction analytically. Emergence of new behavior

and reasoning capabilities from interaction with the environment can be achieved by learning.

Because this capability is so important in robotics, supervised learning and reinforcement learn-

ing paradigms have been coupled with behavior-based control. Modifying interaction schemes

between behavior modules is a technique to adapt the reasoning capability of a robot. Yet,

here again complexity of many interacting behaviors is difficult to manage. Applications of

behavior-based control have been manifold. They include biologically inspired navigation for

driving, swimming or flying mobile robots, behavior of robot swarms as well as biologically

inspired imitation learning.

A clear design method guiding the process of determining layers, individual behaviors and

interactions between behaviors is presented for the application domain of an autonomous walk-

ing machine in [3]. Here, emphasis is put on the interaction of behaviors with each other and
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only reactive reflexes, forming the lowest layer, connect directly to the environment via sensors

and actuators. Interaction of high-level, deliberate behaviors with behaviors on lower levels

is grouped in so-called regions of influence. By these means, the network gets some basic

structure and complexity of cross-interactions is somewhat limited as shown in Figure 2.3. As

walking machines are characterized by several similar kinematic structures, the proposed design

method is organized based on kinematic blobs, e.g. legs, in a top-down manner. Therefore, the

design method is viable, but very application specific.

A more implementation specific presentation of behavior-based control of robot teams is

given in [72]. The discussion includes details on how to allocate behaviors in realistic settings

and how coordination within a robot team arises from behaviors of individual robots.

Finally, the domain of robot manipulation, quite distinct from autonomous navigation, has

been investigated in [39]. The idea is to model behaviors as control-loops that are based on

elementary sensor features of the environment, such as contact surfaces of the hand. As with all

behavior-based approaches this stands in contrast to heavily model-based planning approaches.

High-level behaviors correspond to more abstract manipulation tasks like transferring an object

from one hand to the other. These behaviors are composed of an interplay of more basic reflex

behaviors which also lead to more robust handling of exceptional situations.

It can be concluded that the viewpoint of behavior-based control gives some important in-

sights regarding autonomy of robotic systems. Balancing multiple, potentially conflicting, goals

and considering multiple noisy sensors is important and neglected in pure logic-based planning.

Additionally, the introduction of hierarchy and self-sufficient, very fast simple reflexes can in-

crease robustness of autonomous behavior. Yet, some difficulties arise, too. Inhomogeneous

modeling of controllers within a certain behavior lacking formal descriptions of their dynamics

and complexity of many interacting behaviors make autonomy difficult to manage in realistic

settings. Apart from that, there is no explicit knowledge about the world and the robot itself as

a guidance to reason explicitly about its past and future. Pure behavior-based control has thus

been less investigated in recent times given the availability of more powerful robot systems, but

some conceptual elements have remained in modern control architectures.

2.1.2. Logic-Based Planning

In stark contrast to behavior-based control, planning by autonomous robots is heavily based

on explicit models of the world. Planning has the aim of deriving actuator commands from

reasoning about potential courses of events in the world based on the model and a perceived

current or past state as well as aims to be achieved by the robot. Because it has to reason
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explicitly about causality in the world, such a planning model needs to cover two essential

aspects of the world:

1. A state represents a set of similar configurations of relevant properties of the world.

2. An action represents a set of actuator activities by the robot.

By reasoning about how actions transform one state of the world into another, a planning

technique may find a sequence of actions that leads from one state, e.g. one that reflects a current

situation, to a desired state, which represents a goal situation. Thus, for a given model, planning

turns into a search problem. However, the type of search depends on the model representation.

Two main types of world models for planning can be distinguished:

1. Continuous representations of states and actions.

2. Discrete representations of states and actions.

Both types of planning are widely employed in robotics, yet typically in different areas of

application. Continuous planning is very suitable for skill domain specific tasks like deriving

motions for robot navigation or object manipulation. Thereby, physical objects surrounding

the robot and the robot itself are modeled by quite precise approximations of their continu-

ous geometry. Resulting actions are represented by continuous motion trajectories that can be

implemented by motor commands. Although skill domain specific motion planning is not the

main focus of this thesis, more abstract models need to represent the action effects resulting

from motion planning components. Motion planning is outlined in the context of manipulation

strategies in Section 2.7.

When deriving global, strategic action choices, homogeneous continuous modeling of the

world and search within that model quickly becomes infeasible. On the other hand, discrete

representations are a way to simplify the model of the world and only focus on relevant aspects

for action selection. Discretization usually results in a finite set of states and thus a finite state

space. This means, all configurations of the world are represented by a finite set of tokens,

usually along with a discrete, finite set of actions and a discrete representation of time.

Planning in such discrete world models reduces the search problem to finding one or several

potential sequences of actions which may lead from one discrete state of the world to another.

Such a search problem can be pictured as searching within a directed graph, where nodes (ver-

texes) represent states and edges represent actions. Hence, graph-based search techniques like

forward, bi-directional and heuristic search can be applied in such discrete planning problems

with deterministic action effects.
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One way to formulate the semantic connection between such a graph model and the world is

logic. One of the first systems for logic-based planning was STRIPS [45]. The discrete set of

states of the world is represented by logic expressions consisting of instances classifying certain

things in the world and predicates, assigning to the instances a certain configuration or relation.

Actions are represented by a precondition expression that describes certain aspects of a state

that have to hold for applying the action. The postcondition expression describes the aspects of

a state that are changed by the action. Subsequently, search can retrieve a sequence of actions

such that the operations turn a certain start expression into a desired goal expression.

While pure logic-based planning has some severe disadvantages concerning its complexity

and its assumptions about the world (see Section 2.2 for a discussion), it is simple and yet

powerful for reasoning far into the future, incorporating long sequences of actions. Because of

its discrete, symbolic nature it has been investigated for global, strategic planning in robotics.

Challenges in robot application of logic-based planning are manifold. Modeling planning do-

mains and generation of specific models is one area of investigation. The representation of

continuous aspects of the world concerning both states and actions as well as interplay with

reasoning components on lower levels of abstraction, incorporating either continuous motion

planning or behavior-based control reasoning are further areas of interest.

Establishing a suitable model for logic-based planning in a robot setting is challenging. Com-

pact expressions for states have to be determined and action operations have to be defined which

adequately describe world dynamics. A paradigm to acquire such a model is machine learning.

Furthermore, learning can be used to improve the planning process for an existing model. There

are several areas in model generation, incremental model enhancement and planning improve-

ment where some types of machine learning can be applied.

Although not evaluated on a real robotic application domain in [159], PRODIGY gives an

overview on a wide range of learning approaches suitable for improving both the planning

model and planning with the model. Improving the planning efficiency can be accomplished

by explanation-based analysis of planning traces, generation of abstraction hierarchies or by

deriving analogies. Learning the planning model is less specific to the approach of logic-based

planning and encompasses principles also used in PMPM-PbD. Domain knowledge can be ac-

quired by means of Observation, Apprentice or Experiment.

"Observation" analyzes the task execution of an expert agent and records action effects, thus

learning action operators. Although the presented technique is tailored for logic-based plan-

ning, the fundamental principle of Observation in PRODIGY is learning from observation like

performed in PMPM-PbD, discussed in Section 4.6.
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Figure 2.4.: The PRODIGY architecture. - [159]

"Apprentice" in PRODIGY is presented as a graphical interface through which a user can

guide both model acquisition and planning itself. The fundamental principle of explicit user

hints is also applied in PMPM-PbD with spoken action annotation comments during demon-

strations as described in Section 4.9

Finally, "Experiment" in PRODIGY subsumes all types of techniques where the agent eval-

uates behavior of the real world to retrieve knowledge about action effects. That fundamental

principle is also utilized in PMPM-PbD with learning from simulated experience as described

in Section 4.12.

In summary, [159] already presents all important, fundamental approaches for an agent to ac-

quire domain knowledge for planning. Yet in that work, implemented techniques are specific to

logic-based planning and tested on simple AI problems, rather than real robots. Subsequently,

much further robotics-centered research has taken place for learning by observation, apprentice
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and experiment as discussed in Sections 2.4 and 2.5.

While model generation and thus learning is one of the big challenges to leverage symbolic

planning for robotics, another is to adequately handle planning when facing continuous time and

dynamic courses of events as present in real-world environments. In stark contrast to behavior-

based control, pure logic-based planning is quite restricted regarding continuous and dynamic

flow of events. It assumes discrete time steps leading from one distinct state to another by

application of a certain action and plans long sequences of actions by assuming that the causal

effects of these actions will be exactly as planned according to the model. Extra effort has to be

made to tackle such aspects, which are prevalent in real robotic applications.

Both mentioned characteristics of time and causality are explicitly modeled, for instance

using MDPs (see Section 2.2) or extensions to the application of logic-based planning as pre-

sented in [19]. According to the technique and results described, the challenges can be tackled

by several modifications to STRIPS-like logic-based planning. Foremost, the assumption that

an initial planning state has to be completely defined by a boolean expression is relaxed. Instead,

unspecified variables in a state expression are allowed. Furthermore, sensor models explicitly

specify which aspects of a state can be potentially perceived by knowledge-gathering activities.

Subsequently, the planning process can continuously monitor state updates during execution

and consider wether to pursue an existing plan or to start replanning to generate a new one.

While logic-based planning has been investigated intensively in the field of intelligent agents,

application in complex robotics problems has been limited. Recent research applying logic-

based planning for strategic autonomy in robot missions, including autonomous object manip-

ulation has shown reasonable application to be a steep challenge. Representing continuous

planning on lower levels of abstraction in logic-based planning expressions and managing the

interplay between different ways of handling time and space are essential difficulties.

An idea to combine the continuous motion space of a robot manipulator with the abstract,

symbolic domain space suitable for logic-based planning is presented in [27]. Manually de-

signed mapping from logic-based strategic planning to continuous manipulator motion plan-

ning as in most other approaches is replaced by automatic generation of axioms for logic-based

planning. For each object in a certain workspace, motion planning automatically generates ab-

stract action expressions usable by the strategic planner. A limitation of this approach is the

complexity of generating all the action-effect expressions in complex settings.

In an approach presented by [38], the strategic logic-based planner and the motion planner

are also tightly coupled, yet the motion planner is queried by the strategic planner on demand
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Figure 2.5.: Manipulation specific discretization in reasoning using logic-based planning. - [120]

during the planning process. Expressions in the logic-based planner are therefore extended by

so-called semantic attachments, which represent evaluation of symbols by the motion-planning

component. The system is shown to work on simulated, yet complex pick-and-place tasks.

Another system integrating logic-based planning and motion planning is presented in [120].

Both motion and grasp planning are thoroughly investigated for abstraction into symbolic ex-

pressions. To rearrange blocked objects on a table, discretization of both object poses and

possible grasps is utilized as shown in Figure 2.5. Discretization serves as a heuristic to create

the symbolic search space, while real motion planning is used to evaluate the actual feasibility

of operations in a given scene. Monitoring validates the resulting plan during execution.

It can be concluded that logic-based planning is a suitable tool for strategic decision making,

but extensions and interplay with other methods are needed to solve real robotics challenges.

Critical aspects include balancing multiple goals, considering noisy sensor inputs, combining

reactive low-level behavior or low-level motion planning with abstract planning, dealing with

continuous time and acquisition of model knowledge. Thus, much recent research has concen-

trated on related, yet more powerful planning methods (see Section 2.2) and applications to

hybrid, hierarchical architectures as described in Section 2.1.3.
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Figure 2.6.: A layered architecture for office delivery robots. - [139]

2.1.3. Architectures for Autonomous Behavior

As a result of the insight that fast, reactive control, continuous motion planning and symbolic,

strategic planning all have their strengths and weaknesses and are well suited for different as-

pects of robotics, a lot of effort has been spent on investigating how to use all these paradigms

together on a single robot system. To organize component interplay, information flow, knowl-

edge modeling, but also learning and overall system design in a structured manner in such

hybrid systems, a clearly defined architecture is necessary. Most architectures for autonomous

robots are modular and often hierarchically layered. Usually, autonomy is achieved by applica-

tion of distinct paradigms in different sets of modules. Many architectures have been presented

in the past and concepts are still being evaluated and enhanced further.

A simple, yet quite successful concept is three-layer architectures. In this strictly hierarchical

architecture as discussed in [49], a reactive skill or control layer sits at the bottom, a reactive se-

quencing layer resides in the middle and a planning or deliberative layer is at the top. By these

means, the strengths of behavior-based control or related techniques as present in the skill layer

can be brought together with explicit, symbolic planning techniques at the deliberative layer,

while the sequencing layer connects these two and manages multiple skill domains. Basically,
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Figure 2.7.: A typical three layer architecture. - [2]

the execution-time architecture as presented in Section 3.1 is such a three-layer architecture.

The broadest classification of architectures is the distinction of behavior-based, hierarchical

and hybrid as given by [30]. Most currently employed architectures are some type of hybrid,

which is true even for most three-layer architectures. However, actual hybrid architectures may

differ significantly from each other.

A practical example of an architecture providing autonomy for a mobile robot is given

in [139]. It is highly hierarchical and having only one skill domain leads to quite tailored

functional layers, depicted in Figure 2.6. Direct access to the hardware is managed by an

obstacle-avoidance behavior control layer. On top sits a navigation management layer that uses

a POMDP (see Section 2.2.3) for fine-grained decision making about driving motions. Superior

to that layer is a decision-theoretic path-planning layer, while the top-most layer is formed by a

logic-based planning system. In contrast to some other architectures, this one is clearly shaped

by the algorithmic functionalities of its components.

An example of a typical, hierarchical three-layer architecture, scalable to robots with multi-

ple skill domains is described in [2] and shown in Figure 2.7. On the lowest, functional level,

behavior-based control modules directly access the hardware and implement perception pro-

cessing and reflex actions. These modules are managed by an executive control layer, having a

cycle time of approximately 100 ms. On top, a deliberative layer is connected to the executive
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Figure 2.8.: The control architecture of the humanoid robot ARMAR-III. - [6]

layer and consists itself of two parts: a task manager with a cycle time of approximately 1 s and

a logic-based planner with cycle times around 10 seconds.

More recent presentations of architectures for autonomous robots focus less on a general

paradigm, but instead present more details about actual implementation and interplay of various

algorithmic components.

Another architecture, SAPHIRA discussed in [79], is more hybrid in style. Independent

perceptual routines and action behaviors can access a common short-term memory space that

makes the system ideal for robots with multiple skill domains. On a more abstract level, a de-

liberative Procedural Reasoning System (PRS) coordinates specialized planners and behaviors.

When including all the major domains: robot mobility, natural human-robot interaction and

object manipulation on a single, autonomous robotic system, clarity and an unambiguous struc-

ture of the architecture become most important. The architecture for the humanoid robot

ARMAR-III (see Figure 2.8) presents such a typical three-layer architecture in [6]. A skill

layer, a sequencing layer and a deliberative planning layer are hierarchically organized and

connected to explicit, model-based memory.
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Figure 2.9.: STAIR: a behavior-based architecture. - [114]

An interesting architecture based on a collection of rational agent components has been de-

veloped for the ISAC humanoid robot [107]. By having a set of loosely coupled agent mod-

ules that perform independent processing of algorithmic routines, the behavior-based control

paradigm is applied within that architecture. However, these agent modules can also access

several common memory and model structures. With this memory, the robot can map suitable

actuation sequences onto certain situations that are perceived configurations of the world. Thus,

the ISAC architecture gives some insight into integration of a behavior-based control module

approach with an explicit environment model memory.

A system, STAIR, for a fully multimodal robot that is more closely related to the behavior-

based paradigm is presented in [114] and shown in Figure 2.9. Yet, corresponding modules still

have access to explicit model-based memory, and deliberative planning is integrated.

Tailored to perform simple tasks very robustly in long duration missions including autonomous

mobility and human-robot interaction, the RoboX system presented in [70] takes a very differ-

ent approach. Basically a two-layer architecture, the system consists of a supervisory sequencer,

processing a certain mission coded as a finite state machine. Available modalities are encap-

sulated by low-level modules, performing sensor processing and actuator control for certain

aspects of the robot. The results show that such a simple architecture is easy to handle and

robust in clearly defined and not too complex scenarios.

Further elaboration of actual data flow, interfacing and coordination among modules of a

behavior-based control architecture is presented by [16]. It gives a detailed definition of nec-
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essary control modes for behaviors, a network-capable communication layer, an arbitration

module that manages module activity and a resource manager that controls access to actuators.

Although the architectures presented are quite varied, some common characteristics reoccur

most of the time. Modularity and hierarchy are schemes, central to both behavior-based control

as well as hierarchical sequencing and planning architectures. Additionally, hardly any practical

behavior-based architecture is completely without explicit model knowledge about the world.

2.1.4. Considering Autonomy for Robots with Multiple Skill Domains

Analysis of prior research into autonomy can give some insights for designing a system pro-

viding autonomy for a service robot covering multiple skill domains. Behavior-based control

highlights the importance of assessment of multiple goals by the robot, the need to consider

noisy sensors and the benefits of a layered control hierarchy. While those aspects are neglected

by classical logic-based planning, it underlines the strength of symbolic abstraction to manage

complexity. Introducing distinct, discrete symbols helps to manage real-world complexity by

application of explicit simplified models thereof. Based on such a model, directed planning can

consider effects of actions far into a potential future. Actually implemented architectures tend to

combine strengths of both paradigms, often with a behavior-based control approach managing

robot hardware and a planning system on top, coordinating behaviors. These insights have been

taken into account in the design of the execution-time architecture, described in Section 3.1 and

for the choice of the formal decision-making framework (see Section 2.2).

2.2. Markov Decision Processes

Hierarchical control architectures providing autonomy for service robots with multiple skill

domains usually have an abstract decision-making component as discussed in Section 2.1.4.

Such a component provides strategic action choices, selecting tasks or behaviors that cover

only a small temporal subset of behavior within a mission. Usually, such a component derives

the choice by deliberative reasoning about environment models and robot action effects.

Logic-based planning as discussed in Section 2.1.2 provides such capabilities and has been

examined in several exemplary robot-control systems (see Section 2.1.3). However, classical

logic-based planning was originally developed within classical artificial intelligence (AI) re-

search which often makes some fundamental, specific assumptions about the world in which an

intelligent agent is acting. These assumptions usually have serious consequences when applied

in realistic robot activity settings.
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Two crucial assumptions relate to the fundamental type of model of world states and robot

actions as defined in Section 2.1.2. In classical logic-based planning, an abstract action per-

formed in a certain world state always leads to exactly one certain result state. Additionally,

the reasoning robot is assumed to always know which state the world is currently in. These

two assumptions lead to the ability to find a sequence of actions in the model that will certainly

transfer the current state of the world into the desired goal state. For states that are abstract

representations of certain world configurations in a complex robot setting and abstract actions

representing a set of complex actuator behaviors therein, these assumptions usually do not hold.

Consequently, one is led to introduce uncertainty about the true, intrinsic current state of

the world at a certain moment as well as predicting the resulting effect of an action performed

in some specific state. Thus, the robot cannot be sure that a certain sequence of actions will

transform the world into a desired goal configuration. Instead, another reasoning paradigm has

to be introduced which is still able to provide reasoning about potential action effects in the

future, but is able to consider these uncertainties as well as weigh multiple goals.

2.2.1. Bayesian Paradigm

To consider uncertainties when reasoning about world states and robot actions, a formal defi-

nition and quantitative descriptions of those uncertainties are necessary. Probability theory and

probability calculus can provide this in a sound manner and allows to calculate with uncertain-

ties described that way.

However, before exploring ways to calculate with those probabilities, the fundamental ques-

tion how probabilities can represent uncertainties has to be illuminated. Basically, there are two

paradigms defining how probabilities represent real-world events. The Frequentist view defines

a probability as the asymptotic result of a series of trials, tending to infinity, in a stochastic

process. By these means, it is impossible to retrieve values for robotic domains as the exact

conditions of states and actions vary all the time.

Hence, another view is prevalent in robotics: the Bayesian paradigm. Here, a probability is

seen as a measure of information about real-world events. Probabilities as present in models

and resulting from further computations model the expectation or assessment of autonomous

systems in view of real-world events. From a frequentist point of view, actual values can often

be just coarse approximations of the values that a hypothetical asymptotic experiment would

yield. However, the robot is able to perform better when considering and calculating with

Bayesian probabilities than when neglecting uncertainty at all. Bayesian probabilities modeling

stochastic real-world characteristics can be acquired by all kinds of robot learning and analysis

of all kinds, but do not represent the asymptotic result of a precisely controlled experiment.
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Figure 2.10.: MDP model (right) of courses of events (left). - [122]

2.2.2. Fully Observable Markov Decision Processes

Applying the Bayesian concept to robot action courses of events leads to a stochastic action

model with not just one certain outcome s′ of an action a performed in a certain state s. Instead,

several different outcomes can be possible with the stochastic frequency of each possible out-

come modeled as a Bayesian expectation probability. Each result s′ of an action a in world state

s can be considered as a transition t(s, a, s’) of the world state as depicted in Figure 2.10. If the

probability of the transition depends only on the current state s of the world when performing

action a, it can be modeled by a Markov process of the first order [11].

Defining the probabilities of all possible outcomes of each available action in each modeled

state leads to the full transition model T: S×A×S→ p(s′|s,a). Such a transition model super-

sedes a deterministic action operation model as used in classical logic-based planning. Because

action effects are now considered as stochastic, a reasoning agent cannot find a sequence of ac-

tions that will certainly lead from a current state to a specific goal state. The only deterministic

element remaining is the choice of an action to be performed next. But when reasoning about

future events, the robotic agent has to consider multiple possible sequences of events and thus

states and actions.

From considering multiple courses of events arises the need to weigh several courses of events

against each other and thus quantify their utility U for the robot. Along with such a need comes

the opportunity to include and rate secondary goals and constraints. Consequently, the utility

of performing a certain action a in a certain state s can be defined, modeling goals, constraints

and action costs, generally speaking the overall motivation of the autonomous robot. Defining

it for all available pairs of states and actions in the form of positive values (rewards) or negative

values (costs, penalties), leads to a so-called reward model R: S×A→ r(s,a).
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When reasoning about potential future chains of events, the agent is then able to quantify a

course of events as the sum of all individual rewards. By these means, multiple potential chains

of events can be combined by calculating with their quantitative values. Thereby, even with

stochastic action effects, an agent can plan ahead when having a model (S,A,T,R). This leads

to decision making within the framework of a Markov Decision Process (MDP) [59]. Within

such an MDP, a robotic agent can reason about potential future sequences of events and select

actions which maximize the expected sum of future rewards over some period of time. Action

selection during autonomous execution of a robot task is based on a function, called policy P,

which contains the most promising action for each situation in a scenario. A robotic agent se-

lects the action to be executed next based on the policy, then assesses how the state of the world

developed after that action and subsequently selects the best action for this new state. As the

world is not deterministically predictable, reasoning encompasses risk minimization and reward

maximization.

Policy computation can be performed in two distinct manners. One approach does not utilize

an explicitly known transition model T , but calculates an asymptotically optimal policy by

means of reinforcement learning (RL). The agent acts in a simulated or real environment and

gets feedback signals depending on its action choices. Such a signal can, for instance, directly

be derived from an explicit reward model. Based on these signals, computation improves the

policy successively towards the optimal policy. Reinforcement learning can be performed in a

distinct learning phase or for improvement during the main task execution stage. While avoiding

the need for an explicit transition model of the whole domain is a big advantage, the need for a

large number of reinforcement signals to compute a good policy is a huge disadvantage.

On the other hand, the model-based approach takes fully defined transition and reward models

to compute an asymptotically optimal policy by value iteration as described in Section D.1.

Policy computation can be performed offline, before autonomous execution with the policy

serving as a universal plan which is queried by the robot each time a previously chosen action

has terminated. Some techniques for very large numbers of states and actions perform online

computation of the policy in relevant parts of the state and action space. For a discrete state and

action MDP, the policy is a simple lookup table which assigns an optimal action to each state:

a j = π(si). Consequently, value iteration does not need any, potentially extensive, trial stage.

Yet it can be considered as a challenge to create a fully defined transition and reward model for

a specific mission.
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Figure 2.11.: POMDP model of courses of events with aspects hidden to the agent in grey. -[122]

2.2.3. Partially Observable Markov Decision Processes

Policies for fully observable MDPs assign exactly one optimal action to each state. Thus, it is

assumed that a robotic agent knows exactly which state the world is in at any moment. Such

omniscience about world states can only be correctly assumed for some artificial game settings,

but not generally for real-world robot settings. Uncertainties about states can arise from both

sensor measurement noise and limitations as well as more fundamental occlusions, such as not

seeing through a wall. Instead of assuming the world to be fully observable, it has to be assumed

to bepartially observable, thus relaxing the requirements for the robot’s knowledge about world

states.

This leads to a model concept where both effects of actions and perception of states have to

be considered as stochastic. Fully observable MDPs can be extended into a more general frame-

work: the partially observable Markov decision process (POMDP). It introduces a separation

of the true, intrinsic state of the world on the one hand and a subjective belief state b which is

internal to the robotic agent on the other.

True states of the world are still defined as in fully observable MDPs and the domain has to

be modeled such that one distinct states holds at any time. However, the robotic agent has a

belief b which contains a Bayesian probability for each state in the state space, representing the

agents likelihood belief that this is the true state of the world at a moment of time.

During execution of a task or mission, the agent updates its belief by Bayesian filtering, fusing

prediction of action effects based on the known transition model with noisy measurements of
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Figure 2.12.: POMDP value iteration policy visualized in a 2D slice. -[126]

the world. For computation of this fusion, quantitative information about measurement errors

has to exist. Therefore, the MDP model has to be extended by a set of measurements M that the

robot agent can perceive and an observation model O which relates measurements and states.

Within the observation model, entries denote the probability that a certain state si generates

a measurement mk: O(si,mk) = p(mk|si). With this extension of the MDP, a POMDP is

defined as (S,A,M,T,R,O) and the runtime extension b [7], [144]. A POMDP flow of events

is sketched in Figure 2.11.

Having only indirect, imperfect knowledge about the state of the world massively complicates

application and computation of a decision policy. As the belief probability distribution is the

primary knowledge of the robot about the world, decision making has to be based on the belief.

The POMDP policy has thus to be a function based on the belief. For a discrete state space, all

possible belief distributions form a continuous, but bounded domain for the policy. Interpreted

geometrically, with each state forming a vector space dimension, the space of all beliefs forms

a bounded simplex as the sum of all probabilities is always 1.0. Each possible belief is a point

within that simplex. A policy for decision making has thus to assign an action to each belief

point. Consequently, one needs a continuous, gapless definition that assigns parts of the belief

space to certain actions.

Computing POMDP policies is far more complex than computing MDP policies. The rep-

resentation has to stretch over the whole belief space and reasoning has not only to consider

stochastic action outcomes, but also differing information uncertainty the robot may have about

the world state. Because of this increased complexity, reinforcement learning is hardly usable

in this context. Instead, value iteration can combine transition probabilities, reward values and

observation probabilities from the explicit process model in its computation process. In such
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techniques, explicit representation of utility values over the belief space is given by linear func-

tions α , representing the choice of a certain action and expected future utility for some sets of

potential sequences of events as shown schematically in Figure 2.12, 2.13.

The policy is formed by the convex maximum of a set of linear functions representing the

action with the highest expected utility over a part of the belief space [24]. Computing optimal

policies even for limited horizons, that is considering a limited number of potential future ac-

tions, as well as small state and action spaces is highly intractable. The computational complex-

ity for calculating optimal policies is 2-EXPSPACE, which is doubly exponential in memory

space [71]. Therefore, computation of exactly optimal policies is practically infeasible for even

the smallest realistic mission models. Instead, approximate methods have become popular that

compute only approximately optimal policies as discussed in Section 2.2.5.

Another limitation of typical POMDP application is, as with logic-based planning, the need

for discretization and abstraction for both state and action space. As previously discussed, dis-

cretization is a paradigm to simplify and combine real-world aspects under common labels to

cope with its complexity. For some challenges, however, discretization is an insufficient approx-

imation of the state space. To tackle such domains under the framework of POMDP decision

making, investigation into POMDP modeling for continuous domains has been performed.

Monte-Carlo POMDPs [154] sample a set of representative points from a continuous state

space and compute a policy based on these points. By using a finite set of points, the technique

resembles a discrete representation, yet is more flexible. On the other hand, complexity is still

very high and application is only feasible for very specific problem domains.

Another approach presents a more general theoretical framework for computation of approx-

imately optimal policies for continuous POMDPs [111]. Hereby, transition, reward and ob-

servation model are represented as Gaussian mixtures and cover continuous state spaces. The

belief is either defined by representative points or gaussian mixtures defined over a finite subset

of the continuous state space. While the technique is sound, both modeling and computational

expenses are very high and further application to real-world challenges remains limited.

In summary, modeling continuous POMDPs in a way to compute applicable policies in a

reasonable amount of time is not yet sufficiently understood to apply them to practical problem

domains. Most applications thus use discrete state and action POMDP representations as dis-

cussed in Section 2.2.6. Therefore and because of focus on abstract, strategic decision making,

the representation of discrete POMDPs has been chosen for the system presented in this thesis,

presented in Section 3.
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Figure 2.13.: POMDP value iteration policy visualized in a 3D hyperslice. - [126]

2.2.4. Mixed Observability Markov Decision Processes

Combining the strengths of fully observable and partially observable Markov decision processes

within a single representation led to the development of the mixed observability Markov deci-

sion process (MOMDP) [101]. The idea is to benefit from less complexity concerning both

modeling and policy computation for fully observable MDPs with respect to aspects of a prob-

lem domain where the assumption of fully observable state properties is sufficient. Only those

aspects that cannot be sufficiently assumed to be fully observable preserve a POMDP-style

model.

As a result, a MOMDP contains a factored state representation with both a fully observable

part X and a partially observable part Y . There are two transition models, Tx : X×Y×A×Y →
p(x′|x,y,a) and Ty : X ×X ×Y ×A×Y → p(y′|x,y,a,x′) . An observation model O is only

defined for partially observable sub-spaces.

By these means, reasonable approximately optimal policies can be computed for larger state

spaces and more complex transition models than for pure POMDPs. Yet, modeling robotic

problems by these nested transition models is difficult and not always applicable.
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2.2.5. Approximately Optimal Policy Computation for POMDPs

POMDPs make fewer fundamental simplifying assumptions about the problem domain than

logic-based planning or MDPs for modeling abstract decision making of autonomous, intelli-

gent agents. Thus, they are a promising framework for autonomous planning and reasoning in

the real world. The greater scope comes at the price of higher complexity in both modeling and

policy computation. Since computing exactly optimal policies is intractable, a research focus

is on the development of efficient algorithms to compute approximately optimal policies. Only

with such algorithms, application of POMDPs becomes feasible in real-world domains.

Many different approaches to compute approximately optimal policies have been investi-

gated [1]. As with MDP policy computation, the most general distinction can be made between

the class of model-based algorithms and those that do not contain any explicit POMDP model

representation. Among the former type, two groups of techniques can be further distinguished:

those which compute explicit utility values along with a policy and those computing only an

immediate policy, a belief to action-choice mapping without utility values.

One of the simplest approaches among model-based value computation is the most-likely-

state heuristic [1]. An MDP policy is computed based on the model. This policy takes the

state with the highest probability in the belief (the most likely state) as input to retrieve an

action. Differentiation between varying probabilities of less likely states in the belief, which

is usually an important aspect of POMDP reasoning, does not occur, leading to unsatisfactory

performance.

The QMDP heuristic [1] considers a belief only for one step and assumes the state to be fully

observable afterwards. It is a very crude approximation of an optimal policy, which fails in

many situations with uniform beliefs.

Tackling the complexity of belief updates during POMDP value iteration can be achieved by

discretization of the continuous belief space. Only a finite set of representative belief probabil-

ities is chosen for value function updates, as shown in Figure 2.14, significantly reducing the

computational complexity of the update. Yet, the value function is still defined over all of the

belief space. The simplest method to choose those points is to apply a regular grid [1], but with

large state spaces, belief-space dimensionality becomes too high for this technique to cover

belief space sufficiently.

Instead, more sophisticated ways to choose those points have to be applied. Dynamic assign-

ment of belief points to update the value function during lookahead leads to point-based value

iteration techniques. Intelligent ways to determine regions in belief space, reachable within the

model and furthermore likely to be reached, thus relevant for a policy, can significantly improve

policy computation speed and quality. Several approaches exist as discussed further below.
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Figure 2.14.: Grid-based value iteration policy concept visualized in a 2D slice. - [126]

Direct policy learning is a model-based alternative to value iteration techniques while policy

gradient search is model-free [1]. As with MDP reinforcement learning techniques, policy gra-

dient uses experience of the agent to gradually improve the policy. Because a large amount of

experience is necessary, leading to slow convergence towards good policies, such a paradigm is

not practical for abstract control of a service robot covering multiple skill domains.

Continuing progress is made concerning point-based value iteration, the most practical class

of techniques for policy computation of general purpose POMDPs.

Point-based value iteration, introduced by [108], calculates the value function, representing

the expected utility of a future action sequence, only for a representative set of belief points.

For each belief point, exactly one linear function α (described in Section 2.2.3) is computed in

each iteration step for each belief point. By these means, the number of α , thus memory and

computational requirements are significantly reduced compared to exact value iteration. On the

other hand, each α is still defined over all of the belief space, leading to a fully defined value

function as the convex maximum of the set of linear functions α .

Performance of point-based value iteration depends on the selection of belief points. The

better a sampling set is chosen to reflect important areas of a belief space, the better the ap-

proximation of the resulting policy to a hypothetical exactly optimal policy. Important regions

of the belief space are those likely "visited" by the robot agent during execution, called reach-

able belief R(b0). Areas where different optimal action choices occur at very similar belief

distributions are relevant, too.
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Figure 2.15.: PBVI value iteration policy concept visualized in a 2D slice. - [108], [126]

In standard PBVI, belief points are sampled incrementally by simulating execution of the

current policy by the agent based on the POMDP model. Resulting new points are then ranked

for relevance, and those below a pruning parameter are cut off. PBVI guarantees the policy

to converge towards the exactly optimal policy, making it an anytime algorithm. Computation

can be terminated after a given number of iterations or time, leading to an approximate value

function with a guaranteed error ε . A more explorative approach to sampling belief points for

value iteration, PERSEUS, is presented in [145].

An elaborate heuristic to select actions and observations for belief point updates, heuristic

search value iteration (HSVI), is given by [141] and [142]. In this case, both upper and lower

bounds representing the approximation of the exactly optimal value function are updated in each

iteration step. Those bounds help to select belief points for updates in areas of the belief space

where the error is still relatively large and another optimal action choice most likely. HSVI

performs superior to PBVI in most classic benchmark challenges.

The concept of HSVI is further extended by the Successive Approximations of the Reachable

Space under Optimal Policies (SARSOP) algorithm, presented in [80]. In contrast to standard

PBVI, this algorithm strongly distinguishes between general reachable belief R(b0) and opti-

mally reachable belief Rπ∗(b0). Sampling of belief points is concentrated in the parts of the

belief space that are reachable with the currently computed policy. As the computed policy

converges towards the optimal policy, representative belief points concentrate increasingly in

regions relevant for the exactly optimal policy. This algorithm can be considered as mature,

performs superior to HSVI and is used as policy computation algorithm in the system presented

in this thesis.
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Another algorithmic development is region-based value iteration, described in [88]. Instead

of belief points, ellipsoid belief regions serve as support structures for value function updates.

However, the results presented do not show superior performance to HSVI and a comparison

to the even superior SARSOP is not given. Utilizing the topological order of a domain for

policy computation is explored in [34]. Although results are promising, the process of topo-

logical ordering is complex and has been unsuccessfully tried for mission models investigated

in this thesis. Apart from value iteration, policy-gradient search has been further developed

as presented in [1]. Yet, there are no results given that are comparable to the performance of

point-based value iteration algorithms.

In summary, algorithms for computation of approximately optimal policies with guaranteed

error bounds enable the application of POMDP reasoning in realistic robotic domains. The

approximation error given by such algorithms is clearly comprehensible for any model, making

automatic evaluation of the quality of a policy feasible. Thus, it can always be assessed if an

expedient policy can be computed in a given timeframe for a certain robot mission POMDP

model. Remaining approximation errors are usually small enough to be negligible in practice

and are far smaller than modeling errors. As all these well-performing policy computation

algorithms need an explicit POMDP model, acquisition of a model, representing real-world

causality as closely as possible, is very relevant. This task is a focus of the present thesis

and discussed in Section 4. As a drawback, existing algorithms are still limited when coping

with very large numbers of states and actions. Future research has to focus on hierarchical

representations and online methods focussing on policy updates on local belief regions.

2.2.6. Utilization of POMDPs for Autonomous Robots

While POMDPs have been investigated extensively in terms of policy computation and factored

representations, their application in robotic domains has been rather limited so far. On the one

hand, application is made feasible only by recent progress in policy computation algorithms.

On the other hand, modeling state and action spaces for robotic problems in a general manner

seems to be a hard challenge. Furthermore, generating an explicit mission model necessary for

both policy and execution-time belief computation is usually complicated.

Autonomous navigation is the most widespread application domain. Most policy computa-

tion and factored representation techniques discussed in the previous Sections have been evalu-

ated on simulated or real robot navigation problems. The state space is usually formed by grid-

based discretization of a 2D navigation environment and actions encompass different directions

40



2.2. Markov Decision Processes

Figure 2.16.: The architecture for dementia patient handwashing support using POMDPs. - [56]

the robot can drive towards [47]. Action effect uncertainty is modeled by varying driving action

results. Observation uncertainty is modeled by offsets in grid-point localization. Positive re-

wards are given for reaching certain goal points or catching other agents while negative rewards

are given for bumping into walls or traps. Such transition, reward and observation models are

very simple, thus easy to create manually and reuse. Topological navigation investigated in [41]

introduces the use of episodic memory for POMDP decision making.

Natural human-robot interaction and autonomous object manipulation are much more diffi-

cult to model and less investigated. In addition, interdependencies between skill domains can

make a factored representation unsuitable, increasing complexity of transition models as dis-

cussed in Section 3.4.

A full system discussed in [110], [109], integrating the skill domains of autonomous naviga-

tion and natural human-robot interaction, utilizes POMDP decision making for strategic mission

autonomy. Designed for elderly care support, the system is able to cope with indoor navigation

uncertainty and speech recognition errors. It resembles the system presented in Section 3, yet

encompasses fewer skill domains and just a manually created, quite simple mission model.

Not really a robotic application, but nonetheless multimodal human-machine interaction, as-

sisting dementia patients with a POMDP reasoning system is presented in [56]. In this ap-

plication, actions are formed by spoken utterances or calling for human help, while the state

space models situations of a human hand washing process. This approach is interesting as it

models quite abstract states and actions. States are relevant world configurations which can be

distinguished by perception components. Uncertainties arising from sensor signal processing

characteristics are explained in detail and the observation model derived from these character-
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Figure 2.17.: Model of the state space in Grasping POMDPs with the object in black and free space in

white. The view is a schematic vertical cut. - [60]

istics. In this way, this work is related to the approach described in Section 3.3. The processing

architecture is shown in Figure 2.16. The whole transition model is defined manually, however,

limiting flexibility and scalability to new missions.

Another non-robotic human-machine interaction domain with autonomous decision making

in a dialog system using POMDPs is discussed in [162].

Modeling a simple grasping problem with a proprioceptive, elastic gripper is explored in [32].

In this case, states are defined by various contact configurations between a single hand and a

single object. Actions represent different motor command strategies for individual degrees of

freedom. Thus, a very low level robotic manipulation scenario is modeled by this POMDP.

A low-level grasping problem is formulated as a POMDP in [60]. Similar to grid-based

modeling of autonomous navigation, state discretization is based on geometric regions around

an object (see Figure 2.17) which is to be grasped by the robot. These regions are not of

uniform size and contacts are also factored in. Actions comprise distinct, small hand or finger

movements. Such a very specific modeling technique is restricted to grasping objects with a

simple shape.

Scaling POMDP grasping to more complex geometric objects is discussed in [61]. Dis-

cretized object poses in cartesian space define the state space while a set of manipulation mo-

tions acquired by offline motion planning constitute the action set. Observations arise from

touch sensors measuring certain contact configurations between robot gripper and object. Cer-

tain manipulation actions may reduce belief uncertainty more than others, leading to preferred

selection of those actions in more uniform belief states. Thus, information gain is effectively

handled by this problem modeling technique. However, fixed offline computed motions limit

flexibility and lead to a high computational effort for more complex manipulation problems
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in practice. In contrast, more flexible manipulation strategies are used as representations for

elementary manipulation actions in this thesis, as discussed in Section 3.4.

An unconventional approach to model visual information gain tasks by means of hierarchi-

cal POMDPs has been investigated in [146]. Action selection chooses among operators which

trigger certain image processing algorithms to classify and localize different objects on a table

surface. Emphasis is placed on the observation model design, while the transition model is ex-

tremely simple. Therefore, the POMDP design is unusual and also very problem-specific, yet

scales well to larger scenes. This technique is evaluated extensively against continual planning

and shows superior performance. Because of its specificity, especially concerning the transition

model, extending that method to more general service robot missions is not straightforward.

In summary, efforts to model autonomous robotic navigation, human-robot interaction or

object manipulation as POMDPs have led to varying approaches, both low- and high-level.

State- and action-space definitions are sometimes intricate and problem-specific, and model

generation is performed manually. Consequently, more generic approaches to model scenarios

covering multiple skill domains and methods to generate associated models automatically have

to be investigated as discussed in Sections 3 and 4.

2.2.7. (PO)MDP Model Generation

For most generic robotic POMDP application domains using model-based policy computation,

efficient generation of POMDP mission models is the most obvious bottleneck. In most inves-

tigated applications, all model elements (S,A,M,T,R,O) have been defined explicitly by an

expert designer while also having a simple internal structure. Handling generic robot domains,

as is the focus of this thesis, in such a manner is infeasible. Automatic generation of model ele-

ments either has to create some or all model elements from scratch or incrementally improve an

initial model in learning trials or during actual autonomous mission execution. The latter kind

closely resembles reinforcement learning techniques, yet model learning may converge faster

than policy learning.

MEDUSA, discussed in [68], is a framework that improves a given initial POMDP model for

a mobile robot by execution-time learning. The focus is on combining the strength of model-

based policy computation, relieving the need for excessive learning queries as in model-free

reinforcement learning, with the online learning capabilities of the latter. Advantages are both

in improving an initially incompletely known model as well as adapting models in environments

with non-stationary dynamics. Model elements (S,A,M,R) are assumed to be known a-priori,
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which are usually the simpler model elements, but still have to be defined manually for any new

mission. Model elements T and O are continually improved by MEDUSA.

Learning is achieved by incrementally improving a Dirichlet distribution over a set of model

hypotheses. Such a set of models is chosen initially based on prior knowledge about T and O.

Subsequently, a policy is computed for each model. During execution time, a model is sampled

at each time step from the Dirichlet distribution. Based on the policy computed from that

model, an action is selected to be performed next. Model learning is achieved by incrementally

improving the Dirichlet distribution. For this purpose, the robot needs information about the

true state of the world at a given point which is introduced by a so-called "oracle query". In

MEDUSA, it is assumed the robot is able to query a human or high precision sensor system

from time to time as an "oracle" and retrieve the intrinsic state of the world during learning.

While this is a strong assumption, oracle query is not necessary at each time step. However,

empirical results show that a significant number of oracle queries are necessary for a model to

converge to a sufficiently good model.

In summary, MEDUSA presents an interesting concept to tackle the hard challenge to derive

model elements T and O automatically by a robot. Yet, learning is limited by necessary initial

model knowledge, the size of the hypotheses model set and resulting policy computation com-

plexity as well as a significant number of oracle queries.

A similar framework for learning non-stationary models, Bayes-Adaptive POMDPs is pre-

sented in [118]. Yet in contrast to MEDUSA, which is based on selecting from a set of standard

POMDP models and has to query oracles, Bayes-Adaptive POMDPs incorporate learning more

fundamentally into the model structure. Experience vectors θ , representing frequencies of all

transitions encountered so far by the robot and ψ , representing encountered observations, are

fused with the basic state space. This leads to a meta-state space S′ := S× T ×O which is

countably infinite. A policy can be computed for a finite approximation of S′. It is shown how

experience vectors can be obtained and approximately optimal policies can be computed online.

However, computational effort for solving realistic scenarios is immense and the lookahead

planning horizon remains very small even for simple missions. Real, generic robot scenarios

have not been discussed.

Learning transition models for complex, factored fully observable MDPs is discussed in [149].

Conditional probabilities are obtained incrementally by reinforcement learning. Experiments

show the suitability of the approach up to state numbers typical for models of robot missions.
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However, a high number of learning steps is necessary and no robotic application has been

discussed.

In summary, online model learning methods are only sparsely investigated. Some prior model

knowledge, for instance of state and action space as well as definition is usually necessary,

and learning inefficient in realistic problem domains. Some ideas and insights are nonetheless

valuable when considering other types of learning like Programming by Demonstration.

2.2.8. Human Probabilistic Decision Making

When considering autonomous, abstract level decision making for multimodal service robots, a

comparison with human intellectual abilities is inevitable. A long-term goal is to reach human

performance in everyday tasks, yet technical paradigms to reach those abilities may or may

not differ strongly from human intelligence. Therefore, in robotics research some schools of

thought try to imitate reasoning methods in the human brain closely, while others follow a more

formal or engineering-guided paradigm. While POMDP model-based decision making can be

considered to be of the latter type, recent cognitive science studies show compelling evidence

for high-level reasoning in the human brain using similar techniques.

Evidence for use of inference on Bayesian causal models in human reasoning about ac-

tion selection is presented in [51]. Experiments with test subjects support the theory that hu-

man decision making can be described accurately by inference on Bayesian graphical models,

which is closely related to POMDP decision making. Crucial properties include action-effect

probability-model knowledge, reasoning by means of conditional probabilities and assessment

of related rewards. A model of Bayesian learning in human cognition is given by [75]. Ex-

perimental results support the theory that structural domain knowledge of humans is acquired

by Bayesian statistical learning. Such a concept is related to techniques used to learn factored

POMDP representations and model knowledge in general. Further insight into human deci-

sion making in the face of uncertainty can be achieved by studying carefully crafted decision-

making experiments with test subjects as given in [85]. Among different candidates, a gen-

erative Bayesian inference model serves best to explain human choices. Generally, Bayesian

models seem to be well suited for modeling abstract-level human cognition [52] as well as

human sensorimotor control [164].

Consequently, POMDP decision making, which is basically a specific way to handle Bayesian

reasoning on real-world information with uncertainties, is closely related to human abstract-

level decision making according to current cognitive-science research. Such a paradigm thus

seems to be suitable for handling complex behavior up to human-level intelligence.
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2.2.9. Conclusions about (PO)MDPs

POMDPs are a sound, formal framework to model decision making of autonomous, artifi-

cial systems coping with real-world uncertainty in action effects and environment observation.

Experimental evidence supports the theory of humans using similar reasoning techniques for

abstract-level decision making.

In the domain of autonomous robots, approximate mission models and algorithms computing

approximately optimal action selection policies have proven to be of superior performance com-

pared to other paradigms. However, these algorithms need an explicit, prior POMDP model for

policy computation. Manual model generation is infeasible for autonomous systems covering

multiple skill domains while performance of online learning methods has not been convincing.

Subsequently, moving model generation to an interactive, highly specialized learning process

with further refinement steps is preferable. Programming by Demonstration as discussed in

Section 2.4 can serve that purpose.

In general, moving a lot of computational effort into an offline stage to generate powerful

execution-time classifiers like universal decision policies has also proven successful in other

areas of intelligent systems. Such an example is the well-performing human motion tracking

algorithm for the Kinect sensor [138]. Massive offline learning of very complex, but fast clas-

sifiers outperforms any more complicated online-time tracking method with no or little prior

learning.

Specifically, the process described in Sections 3 and 4 is designed based on these insights.

2.3. Modeling States, Actions and Uncertainty in Robotics

Some POMDP specific approaches to model states, actions and uncertainty in robot application

domains are discussed in Section 2.2.6. Beyond POMDP applications, a multitude of paradigms

exist in the literature. Some techniques are applied in the system presented:

• Clustering to generate abstract, discrete state descriptions from samples in continuous

domains.

• Flexible manipulation action representations to model discrete, abstract actions as bundles

of trajectories in continuous domains.

• Observation uncertainty processing for object localization to model partially observable

real settings.
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Figure 2.18.: Comparison of clustering methods, k-means on the left, EM at the center and DBscan on

the right, on the standard data set "mouse". - [147]

2.3.1. Clustering Methods

Clustering methods can be used to group sets of points in continuous space into conceptual

classes as illustrated in Figure 2.18. Application within the scope of PMPM-PbD clusters hu-

man and object pose recording data points into conceptual sets from which discrete states and

corresponding grounding can be derived. There are two ways to use clustering: determining

which points belong to which cluster with a fixed number of clusters k given on the one hand

and automatic identification of both cluster number k as well as point membership on the other.

Clustering methods are discussed further in Section D.2.

2.3.2. Representations for Actions Considering Uncertainty

Object manipulation actions, encompassing bundles of trajectories in cartesian space, config-

uration space or more abstract task spaces can be represented by Gaussian Mixture Models

(GMMs). It is suitable for both modeling information uncertainty concerning a set of trajecto-

ries as in imitation learning discussed in Section 2.4.1 as well as modeling stochastic motion

controller behavior by GMMs. GMM representations of trajectories are further explained in

Section D.3.

2.3.3. Object Localization Uncertainty Representations

Object localization is a vast field of research in machine vision and robotics. For the system

presented in this thesis, localization of objects for manipulation by onboard robot stereo cameras

and depth sensors is most relevant. Furthermore, explicit representations of object localization

uncertainties have to be computed for use by probabilistic decision making. While any real-

world object-localization procedure leads to pose and type detection uncertainties, thorough

treatment of uncertainties is insufficient in many systems.
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However, some techniques exist which detect poses and types of objects robustly in noisy

depth sensor data while computing explicit confidences for pose- and type-classification data

delivered. A thorough probabilistic process chain to detect furniture objects in highly noisy

Swissranger time-of-flight depth sensor data is presented in [156]. An approach to learning

and locating large objects in dense 3D laser data point clouds is presented in [121]. It gives

probabilistic estimates of type and pose. Furniture localization confidence estimation, presented

in Section 3.3.4, is based on these insights.

2.4. Programming by Demonstration

Transferring knowledge concerning tasks into the information processing system of a robot is

challenging for any algorithmic technique providing (semi-)autonomous action selection capa-

bilities. Simple, manual programming methods like direct programming by a domain expert

or textual programming by a robot expert fail for autonomy of service robots in complex do-

mains. Instead, machine learning is the paradigm of choice, constructing model structures or

parameters from algorithmic analysis of environment observations.

Two main paradigms can be distinguished for robot learning: autonomous exploration of the

world with incremental model refinement on the one hand and learning from a human teacher on

the other hand. Some methods like MEDUSA, discussed in Section 2.2.7, can be considered as

hybrid methods. Learning by autonomous exploration does not need human interference, while

learning from a human teacher can be far more efficient. Both paradigms have been explored

thoroughly in many different areas of robotics. In conclusion, the more complex the application

domain, the better learning from human teachers performs in comparison to fully autonomous

exploration. Autonomous manipulation and abstract decision making covering multiple skill

domains are two complex problem domains where autonomous robots have to perform tasks in

typical human centered environments.

Both complexity of tasks and readily available human expertise have lead to a teacher-based

learning paradigm called Programming by Demonstration (PbD) [35]. Its main idea is to ob-

serve natural human demonstrations of tasks with a sensor setup, analyze these observations

and finally derive a task model which can be used by a robot for autonomous execution of

that task as sketched in Figure 2.19. Additionally, a human teacher may give explicit verbal or

motion-based hints simplifying observation analysis. Humans usually have extensive implicit

and explicit task knowledge in domains that are of interest for service robots with multiple skill

domains. However, encoding such knowledge in machine-usable form is extremely difficult
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Figure 2.19.: Schematic view of Programming by Demonstration (PbD). -

even for robot experts. Instead, deriving relevant model properties from algorithmic analysis

of human task execution is feasible. In summary, the intelligent technical system tries to build

its internal representation automatically from a natural expression of human domain knowledge

instead of a human trying to shape internal, sometimes subconscious task knowledge into a

technical representation.

While PbD is just a general paradigm, many different specific techniques have been investi-

gated for various robot application domains. Depending on the problem, sensor setups and thus

observation precision may differ. Accordingly, task representations depend on the application

focus as do analysis methods.

Classification of certain techniques is most distinct concerning level of abstraction as dis-

cussed in Section 2.1 and concerning level of autonomy. Some techniques put a focus on sim-

plicity and precision, adapting less well to new situations, leaving the robot with less flexibility

and autonomy. Others perform more complex analyses to generate task models that provide a

high degree of autonomy. Prominent techniques and their focus are discussed in the following.

2.4.1. Probabilistic and Dynamic Manipulation-Level Imitation Learning

Manipulation-level PbD, in specific instances often called imitation learning, centers on the

acquisition of motion knowledge for robot manipulators from the observation and analysis of

human manipulation demonstrations. Manipulation-level imitation learning has the aim of gen-

erating compact skill representations that can be used to execute desired manipulation skills by

a robot. Thereby, a skill encompasses a set of very similar manipulation motions that have a

certain effect on a set of objects. Such a representation should be able to adapt the execution

of a skill to slightly different execution scenes. However, concerning scalability, many typical

imitation-learning methods are quite limited. Further desirable attributes of imitation learning
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Figure 2.20.: Gaussian mixture model (GMM) and Gaussian mixture regression (GMR) representations

of a manipulation demonstration trajectory bundle. - [23]

methods are the need for only a small number of human skill demonstrations, size of the inter-

nal skill representation, little processing time for execution and a naturalness of the resulting

robot motion. Such a naturalness criterion encompasses trajectories and joint velocities that are

labeled human-like by interacting persons. While that latter quality is hard to define apart from

questionnaire studies, it plays an important role in motion-level imitation learning research.

Most manipulation-level imitation learning research uses high-precision, specialized demon-

stration observation setups. These can be visual, marker-based tracking systems which are able

to record human motions with sub-millimeter precision and at high frequency. Another option

are exoskeleton, play-back type recording systems, where humans actively push around passive

manipulators. Robot-based, marker-less machine vision techniques are currently insufficient

for most motion-level imitation learning domains.

Concerning compact representations of motion skills, two types have been most prominent

in recent investigations: probabilistic imitation learning on the one hand and dynamic imitation
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Figure 2.21.: A setup of learning manipulation skills by Dynamic Bayesian Network (DBN) skill models.

- [43]

learning on the other.

A probabilistic imitation learning approach is introduced by [13]. The aim is to learn a rep-

resentation of trajectories, optimally reflecting a set of demonstrated trajectories when executed

by a kinematic robot system. The imitation learning process has to compute control parameters

that optimally generate execution trajectories. Optimally is defined as minimizing a distance

metric between the set of demonstrated trajectories and trajectories generated by the controller.

Representing such a metric during the learning stage is achieved by a linear combination of

likelihood-weighted constraint cost functions on simple controllers. Such a simple controller

could be minimizing a certain joint constraint, for instance. The likelihood gives the probability

that this specific simple controller takes part in generating the optimal trajectory. Because the

execution strategy is defined by weighted likelihood controllers, it is a probabilistic method.

Accordingly, probabilistic learning methods have been applied to compute likelihoods from

demonstration datasets. In that given work, hidden Markov models (HMMs) were trained to

reflect likelihoods among more abstract controllers.

A more generalized framework of the probabilistic imitation learning approach is presented

by [23]. This framework is focussed on multi-joint robot manipulators, like robot arms. Hereby,

the motion controller likelihood distribution is represented by a Gaussian Mixture Model (GMM)

which is both valid for task-space (e.g. cartesian relation between objects) as well as joint space

(e.g. arm motion trajectory) constraints. Graphically (see Figure 2.20), the Gaussians of the

GMM form a kind of tube that spans demonstrated trajectories. Means of Gaussians reside in

the center of those tubes as do typically generated trajectories. Extensions exist to consider

lokal obstacles with trajectories being sampled from unobstructed parts of the GMM.

Another, similar technique, discussed in [43], also uses values representing constraints both

in cartesian space as well as joint space within the scope of a probabilistic framework. Yet, this
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framework utilizes Dynamic Bayesian Networks (DBNs) for skill representation. Constraint

values are represented as observable variables within the DBN that can generate robot execution

actions. In the given framework, all variables have been assumed to be represented by Gaus-

sians, leading to a similar representation compared to the approach discussed previously. In the

learning stage, mean and variance are computed from analysis of the corresponding constraint

during sets of human skill demonstrations. Larger variances lead to larger allowed variances in

task execution concerning that specific constraint variable. In each time step, joint configura-

tions are computed from the DBN that maximizes the corresponding likelihood. Obstacles not

present during demonstrations can be considered when including additional constraints. How-

ever obstacle configuration covered by this is limited to compared to planning-based techniques.

Figure 2.21 shows a setup used for learning with this approach.

Further insights into probablistic imitation learning are given by [136]. It presents an archi-

tecture for learning probabilistic models in the form of HMMs serving both as an explanatory

model for demonstrations and generative model for skill execution. Likelihoods of certain joint

configurations following certain scene states for successfully executing skills are derived from

analysis of demonstrations. Results were evaluated using simple skills on a small, humanoid

robot.

Another compact representation of qualitatively similar sets of motions that can be used for

learning from demonstrations and then robot-movement generation is called Dynamic Motion

Primitives (DMPs) as introduced in [123]. Like probabilistic controller representations that can

generate motions in joint space, DMPs are compact, mathematical descriptions of joint space

controllers. Individual DMPs can be parameterized and combined to generate any desired robot

movement. Like the GMM representation, it has the advantage of using compact, homogeneous

basic elements for simplicity and combining multiple of elements to achieve descriptions of

arbitrarily complex motions. In contrast to probabilistic approaches, the formulation of DMPs

is based on the description of dynamic systems and thus differential equations. Therefore, a

DMP can easily describe a typical motor control problem.

Imitation learning can be used to learn relevant DMP parameters. As DMPs are especially

suitable for highly dynamic motions, learning such skills as, for instance, hitting a ball with

a tennis racket or bipedal walking has been demonstrated successfully. On the other hand,

sequential object manipulation tasks with complex obstacles are more difficult to solve with

this approach.

Both probabilistic and dynamic imitation learning are PbD paradigms that are centered around

fast, human-like execution of robot manipulation skills. Advantages are compact represen-
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tations, simple learning even from few demonstrations, fast execution planning and resulting

motions that feel familiar to interacting humans.

On the other hand, there are several common disadvantages. First of all, these sub-symbolic

representations are focussed on robot manipulator motions and thus do not include other skill

domains. Considering complex manipulation skills, scalability of learned skills onto scenes

with greatly differing obstacle configurations or objects to be manipulated is usually very dif-

ficult to achieve. Combining several learned aspects to motions with completely new qualities

is also not straight forward. Probabilistic methods usually do not guarantee that motions occur

within certain, hard constraints which lowers robustness within real robotic tasks.

Therefore, the techniques presented are quite unrelated to the objectives presented in this

thesis, yet since they are also PbD techniques, some inspiration can be gained from them.

2.4.2. PbD of Abstract Sequence Descriptions of Tasks

In contrast to sub-symbolic imitation learning techniques, more abstract representations that

can be generated from analysis of observations are heavily based on discrete sets of symbols.

Symbols are used to reference certain world states and robot actions as defined in Sections 2.2

and 2.1.2. It should be noted that other overall PbD classification schemes exist. A classification

into Mapping Function, System model and Plans is given in [5]. The classification as discussed

in this section does not directly map onto that classification which has a different emphasis. The

distinction between system model and plans is especially unclear in that survey for MDP-based

models.

The simplest form of abstract representations are fixed action sequences. More complex

representations include finite state machines (FSM), partial order plans and hierarchical repre-

sentations.

An early system to generate simple sequential, abstract task descriptions by user interactions

is discussed in [36]. In that system, the demonstration method is still limited to user interaction

on a computer, but it shows ways to organize task information into abstract blocks.

Natural human demonstrations of manipulation tasks were used as input for the system de-

scribed in [168]. World-relative movement of both human hands as well as finger angles are

recorded by data-gloves with more than 10 Hz. In irregular intervals, snapshots of object poses

in the scene are made with cameras around the scenes. In contrast to imitation learning ap-

proaches and a technique using exactly the same setup developed later (see Section 2.4.3), this

detailed information is not used to learn trajectory-level representations, but an abstract, hierar-

chical task description.
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Figure 2.22.: Scheme of transforming the intermediate macro operatior (MO) representation into a robot

executable flexible program (FP). - [76]

To achieve this, the learning system IPOR first performs a segmentation process on the data

time series. A characteristic time point (e.g while picking a cup: between the approach motion

of the hand and the grasping motion by the fingers) can be detected by threshold analysis on

different data sources. These data sources are provided by the observation mechanism, for

instance for picking a cup hand velocity and finger joint angle velocities. When the approach

motion ends, the hand velocity drops and subsequently finger joint angle velocities increase

when the grasping motion starts, leading to a segmentation point between approach and grasp

elements. Such segmentation point characteristics can be trained for different situations using

dynamic Bayesian networks (DBNs). Additionally, the segmentation process provides a rough

classification of basic abstract task elements.

After segmentation, a sequence of basic, discrete, abstract blocks reflecting a demonstrated

task is available. These blocks are the most basic elements available and thus called elemen-

tary operators (EOs). Each EO can be characterised further by more detailed classification of

demonstrated motion and relative object configuration in the scene. Furthermore, the sequence

can be organized into a hierarchical representation, composing associated groups of EOs into

so-called macro operators (MOs). These form branches in a tree with a root representing a

demonstrated task.

Such a hierarchical representation permits merging of smaller, learned tasks into larger ones

and also some limited form of branching. Yet, the IPOR-MO does not allow for full scale plan-

ning and does not consider uncertainties in action execution and scene observation. There is also

little trajectory-specific information contained in the EOs. While the first aspect is dealt with in

this thesis, the latter aspect is solved by learning manipulation strategies (see Section 2.4.3).
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An approach to extend the MO paradigm towards partially ordered plan sequences is pre-

sented in [102]. Variances in subtask order can be inferred from multiple demonstrations and

the MO representation is extended accordingly.

Retrieval of executable programs from MOs can be achieved by generating so-called Flexi-

ble Programs (FPs) as shown in [76], sketched in Figure 2.22. These executable programs have

the same hierarchical properties as MOs, yet contain some additional information. Leaves in

an FP tree correspond mostly to EOs, thus skill parameters have to be added in a way that a

leaf can be executed by the robot. Furthermore, MOs usually do not contain information about

active environment observation, e.g. looking for objects. Thus, such information is added by a

rule-based process while generating FPs. As a standalone method, FPs suffer the same limita-

tions as mentioned for MOs, yet are very suitable in a layered system with POMDP strategic

decision making on top and manipulation strategies executed by leaves. Such a layered system

is discussed in Section 3.

Another layered system with basically two PbD layers has been presented in [99]. On the

lower layer, probabilistic imitation learning of elementary skills takes place as discussed in

the previous section. Individual skills are stored in a Movement Primitive Memory and can be

utilized by the higher layer. That layer basically learns abstract sequences of primitives that can

be stored in a procedural memory. During execution such sequences can be replayed.

Apart from natural human demonstrations, GUI-based programming of abstract sequences

is also an option as demonstrated by [40]. Basic, elementary behaviors can be assembled into

larger programs by a user.

In [137], a more general game scenario is discussed. Thereby, PbD is assumed to take place

in a setting where the human teacher takes part in game situations in which an artificial agent is

also actively involved. Therefore, the learning system does not only have a passive observer role

during learning, but execution and learning are more closely coupled. A teacher is described as

an actively involved mentor who is not necessarily helpful. Within this setting, the agent creates

an abstract, probabilistic MDP representation of the game dynamics and aims. The aspect that

relates most to some techniques described in this thesis is the option of the agent asking the

mentor for help. This is related to the assessment of model aspects for relevance and interactive

demonstration requests as discussed in Section 4.8.

Learning some aspects of human demonstrations on the most abstract, strategic level for con-

trol of a service robot covering all relevant skill domains is discussed in [152]. Concerning

the level of abstraction and area of application, it is therefore one of the works most closely

related to the system discussed in this thesis. In that system, KNOWROB, PROLOG is used
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as a representation of knowledge and inference as a way to help planning and decision making.

Examples of such knowledge are regions in which a human stands when grasping certain ob-

jects or elements of the process of laying the table [153]. Geometric information from human

demonstrations is encoded in mappings to certain relations and these in turn can be represented

in PROLOG predicate logic. This aspect is related to the state mapping concept, discussed in

Section 4.2.

As shown, there is a variety of approaches for learning abstract task representations by means

of PbD. Representations that do not allow true planning are, however, limited in their application

flexibility.

2.4.3. Programming by Demonstration of Planning Models

Learning planning models from observation allows even greater execution-time flexibility, as

planning models are superior to most other representations in that respect as discussed in Sec-

tion 2.1.2. It should be noted that the definition here is the one used in the planning literature,

including motion planning, logic-based planning and model-based (PO)MDP planning, in con-

trast to the definition used in the PbD survey [5], which accounts only for logic-based planning.

On the sub-symbolic manipulation level, an approach that creates constraint-based motion

planning representations is described in [67]. As this technique is closely integrated with the

system discussed in this thesis, it is explained in more detail in Section 2.7. In summary, that

technique shows superior ability to generalize over differing scenes and objects compared to

paradigms of imitation learning of motion primitives.

Learning abstract-level plans from human demonstrations for a small humanoid robot is de-

scribed in [158]. Although associated basic skills are very simple, interesting tasks sequences

are learnt. Each demonstration sequence is analyzed for action effects, resulting in logic-based

planning style predicates for each action. Analysis is centered around the state of objects with

which the robot interacts, and the action skill performed for interaction. Therefore, resulting

action predicates also focus on changes of object states. These action descriptions can then be

used during execution time to plan action sequences which have not occurred during demon-

stration. Generating such a plan model therefore allows for more powerful generalization of

observed demonstrations than simpler sequence representations.

In general, learning planning models from demonstrations enables to derive execution-time

behavior that may differ significantly from demonstrated sequences. This flexibility offered by

the planning process makes learning of planning models on both motion and abstract level very

interesting for further investigation.
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2.4.4. Conclusions about Programming by Demonstration

In summary, a multitude of research has shown that PbD is a suitable way of transferring com-

plex task-description knowledge into the information-processing system of a robot. Especially

for task environments where robots perform a wide range of complex activities that are very

natural to the human, such as everyday household tasks, PbD is the only feasible method. Both

motion-level representations as well as abstract, strategic decision-making models have been

investigated.

There is a tendency to explore ever more powerful task representations, both to capture more

aspects of the task from demonstration as well as to enable more flexible application to new

situations during execution. The latter aspect is usually called generalization capability because

it generalizes a task descriptions to new scenes and situations compared to demonstrated ones.

Such features are desired on any level of abstraction. Planning models as defined here – or

under the classification in [5] also system models – are most suitable for achieving those ends.

Furthermore, on the strategic level, integrating all relevant skill domains of anthropomorphic

service robots: autonomous mobility, autonomous object manipulation and natural human robot

interaction in a PbD framework has been little investigated.

The system discussed in this thesis aims to achieve progress in these directions.

2.5. Learning from Robot Trials in Physical Dynamics Simulation

Apart from PbD, learning by experience in autonomous environment exploration is a way in

which a robot may acquire new task knowledge, as mentioned in Section 2.4. Combining both

methods is especially interesting by generating a preliminary task description by PbD and then

improving that description by application and evaluation of the task in new situations.

Performing robot tasks in the real world is both slow, difficult to control in a precise man-

ner and very difficult to evaluate concerning task effects. An alternative is to use dynamics

simulation for both mobility and manipulation tasks. While such a simulation may not pre-

cisely reflect real-world dynamics, setting up situations is fast and simple, all parameters can

be controlled and it is straightforward to assess effects on all objects in the scene. Because of

these advantages, physical dynamics simulation has become popular for robot learning from

experience.

2.5.1. Capabilities and Limitations of Dynamics Simulation for Robots

In contemporary robotics, dynamics simulation usually refers to articulated rigid body dynam-

ics. Such a restriction does not consider flexible body dynamics like compliant soft bodies,
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fluids and fractures. While there is research into simulating compliant soft body dynamics

for robot perception and action-effect prediction, in the following only articulated rigid body

dynamics is considered.

Dynamics simulation takes a scene of objects, each described by a set of parameters:

• Geometric model in the form of a surface mesh.

• Friction model in the form of surface friction coefficients.

• Mass model in the form of a mass distribution.

While executing the dynamics simulation, actuators can be used which exert an immediate

force onto certain objects, for instance a robot arm or finger element. Subsequently, objects

in motion can exert forces and torques onto other objects they are in contact with. Impor-

tant aspects of a dynamics simulation are the properties of Newtonian physics: acceleration,

impulse, contact points (force contacts), friction between objects and momentum, gravity as

well as damping. As with all numerical solutions, dynamics simulation solves computation

of parameters in discrete time steps and with diverse discrete approximations of continuum

physics. Collision point computation and momentum computation typically is performed by

distinct components. The biggest challenge when using existing dynamics simulation solutions

is choosing a suitable trade-off between between computation speed and precision, that is ap-

proximation of real-world behavior. Furthermore correct parameterization is difficult.

Open Dynamics Engine (ODE) [143] is a mature system especially suitable for robot simu-

lation as it has a well-established framework for modeling special-purpose joints as present in

robot actuators. ODE uses a constraint-based framework to compute forces during collision.

Simple scenes with a single robot and several rigid objects can be computed in real-time with

resulting effects resembling real-world properties. However, exact real-world behavior cannot

be replicated that way.

2.5.2. Learning Robot Manipulation Effects

Because dynamics simulation is a rough, but not precise approximation of real-world dynamics,

it is especially suitable for computing probabilities for coarse types of action effects as discussed

in Section 4.12.

A technique to learn transition probabilities for arbitrary object manipulation in a tower-

building robot setting is presented in [82]. An MDP-like representation is generated, which can
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then be used by the robot during execution-time decision making. The coarse-grained nature of

effect categories makes learning from a limited number of trials feasible.

2.6. Description Logic-based Background Knowledge for Service Robots

When working with abstract-level planning models and especially considering the aspect of

learning them, the need for techniques arises which organize knowledge represented in such

plans further. Within planning models, both logic-based and MDP style, information about

states and actions is limited to just the aspects needed for planning. Aspects which become

interesting when incrementally improving models, comparing models or creating new models

from parts of existing ones, may be missing from the planning models themselves. One of the

most important aspects in this context are relationships and similarities between states as well

as actions. Using similarity metrics, additional information can be inferred for novel states and

actions based on information about related, well-known states and actions. This insight leads

to the need for a knowledge base that is able to store and organize information about states and

actions, valid beyond single missions. Such a system has to be able to integrate newly learned

knowledge incrementally, while providing an elaborate interface for information query.

Description Logic (DL) [9] is the most prominent methodology for organizing symbolic, ab-

stract knowledge in a way usable for further reasoning. The framework provides techniques

to model relations, to add new information incrementally and to query the knowledge base by

various means. Basic knowledge hierarchy is formed by an ontology, a hierarchical structure

of concepts, with the most general concept >. These concepts are much more general and

flexible than states and actions in planning models. In fact, states and actions may be concepts

somewhere within a DL ontology. Such a conceptual hierarchy is created by so-called termino-

logical axioms TBox that describe concepts and their roles. Roles can include data properties.

Instances of concepts are described by assertional axioms ABox, including concept affiliation

and data properties. Typically, new ABox data can be added incrementally, but it is also possi-

ble to extend the concept hierarchy by means of the TBox. Knowledge can be extracted using

queries, retrieving instances and data properties by evaluating expressions.

In robotics, a DL system is usually used to retrieve further data potentially associated with an

observed world state. Thus, during execution time, the ontology is queried with some processed,

symbolic items of the current state or action options. The response in turn provides additional

information for selecting a suitable action.

OMRKF, a comprehensive DL architecture for a service robot is explained in [151]. In this

case, the whole architecture for autonomous behavior consists of the reasoning system. The on-
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Figure 2.23.: Scheme of the OMRKF framework. - [151]

tology is divided into four levels of knowledge, called Perception, Model, Context and Activity

as shown in Figure 2.23. Each level in turn is divided into three different layers of abstraction.

For instance, on the lowest layer of Perception, image-processing filters are described as DL

rules, while the highest layer contains color or texture rules. Accordingly, the execution side

Activity level consists of a Service layer, a Task layer and a Behavior layer that consists of very

basic control elements. The Model level contains object and scene description rules and the

Concept level more abstract spatial and temporal relations. During execution time, an abstract

command rule is processed by expanding axioms within the Model and Context levels. These

in turn can expand Perception and Activity axioms. In the end, axiom processing generates if -

then constructs and basic perception data retrieval or hardware control commands which leads

to the robot executing a program. However, flexibility and speed of the concept are not dis-

cussed in detail and these are known problems with online DL processing remain unaddressed.

The KNOWROB system [152] also organizes all kinds of abstract information within an

Encyclopedic knowledge base, depicted in Figure 2.24. Three basic types of knowledge are

distinguished: Action models for reasoning; Instances of Objects, Actions, Events which can be

selected by reasoning; and Computable classes and properties, which are proxies for external

algorithmic skills that can be executed. By this arrangement, the KNOWROB system provides

strategic mission- and task-level autonomy, while skills are provided by specialized algorithms.
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Figure 2.24.: Scheme of KNOWROB. - [152]

Logic axioms representing mission goals can be evaluated until computable elements are gen-

erated, providing perception and execution skills.

A more general framework for reasoning is provided by ORO [86]. It is meant to support,

but not replace, specialized perception, human interaction and planning. Three layers constitute

the ORO architecture: a reasoning Back-end, providing processing of axioms; Modules which

contain basic ontology structures; and a Front-end that provides a practical interface to access

reasoning from a robot autonomy architecture such as planning. While it has been shown how

this architecture can be put to service, its usability depends mostly on well-defined, extensive

Modules, which are still little investigated. A typical use is queries during execution time,

although the concept may also be used for offline learning.

Further investigations of organized background knowledge have taken place in the context of

planning for autonomous underwater vehicles [104], the control of a small humanoid robot [26]

and learning grasp affordances [10]. In [100], it is claimed that the importance of ontologies

will increase with ever more complex robotic systems, skills and missions as it is currently the

most mature paradigm to organize and retrieve such knowledge.

Most systems discussed in this section use an ontology to retrieve information applied to on-

line planning during execution time of a robotic mission. Additionally, most ontologies have

a general-purpose design. However, this leads to the systems being exposed to two main dis-
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Figure 2.25.: Scheme of several body pose features, considered for activity classification. - [89]

advantages of DL and ontologies in general: inference is not very fast and designing a general

purpose ontology including all aspects of a wide range of robot missions does not scale well.

Therefore, the knowledge base of the system discussed in this thesis is used in a different con-

text as shown in Sections 3.7 and 4.10. Accordingly, its main application is highly specialized

offline generation of planning models, using a special-purpose ontology.

2.7. Skill Components for Observation and Execution

The mission-level decision-making system and the corresponding demonstration-observation

process discussed in this thesis utilize various skill components for perception and action exe-

cution. Most skill components employ ordinary, widely available methods and their integration

will only be shortly explained in Section 3. However, two components have been developed

in close cooperation with the system discussed in this thesis, and the component presented in

Section 4.3 was developed to create a connection between these two components, which is nec-

essary for an automated PbD process. Therefore, both methodologies will be explained in more

detail in the following.

2.7.1. Classification of Observed Human Manipulation Activities

The CHARM system provides symbolic classification of whole body motion activities of hu-

mans. Typical activities could be standing, waving or grasping a chair. Classification is based

on real-time coarse-grained marker-less perception and tracking of a human skeleton in dense

depth sensor data with 25 Hz or more. Originally, the tracking system used was VooDoo [78],

processing data from a Swissranger Time-of-Flight sensor [63]. It was later replaced by the

Kinect Sensor and its corresponding tracking system [112]. These sensors are mounted on
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Figure 2.26.: Schematic view of a manipulation strategy graph. - [64]

service robot platforms, thus robot-based observation and classification of human activities is

feasible. Optionally, wireless data gloves can be added for interpretation of hand configurations.

CHARM takes time series of vectors containing poses of all body parts as input. From this

input, a large set of features is computed, composed of absolute and relative joint poses, joint

angles and joint angle velocities, illustrated in Figure 2.25.

Because the total number of features is too high for capable classification methods like Sup-

port Vector Machines (SVMs) or Bayesian Networks BNs, selection of a small subset of only the

most relevant features for a certain activity is the most crucial step of the process [166], [90], [91].

First, in a training stage, a user demonstrates a set of activities. These have to be manually seg-

mented in turn. Subsequently, a statistical analysis determines important features for motions

within a segment with a relevance above a certain, given threshold. Based on these features,

classifier training takes place using manually labeled positive and negative sequences for each

classifier.

Applying a certain set of classifiers on a tracking situation delivers probabilities for each

symbolic label (classifier) at each tracking time step. This information can then be used to

characterize demonstration situations or human-robot interaction with the robot during runtime.

Concerning manipulation activities, classifiers can be trained which represent a single object

manipulation action on the abstract, POMDP mission level.
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Figure 2.27.: Illustration of geometric constraints (right), based on regions relative to objects (left). - [65]

2.7.2. Manipulation Strategies Representing Robotic Skills

During execution time, abstract object manipulation actions have to be controlled by dedicated

skill components. Typical skill control techniques employed for operations like "grasping a

cup", "pouring a bottle" or "unscrewing a lid" are motion planning as mentioned in Section 2.1

and controllers generated by low-level imitation learning as discussed in Section 2.4.1. Both

approaches have advantages as well as severe limitations alone and thus a system was developed

that combines both the advantages of motion planning as well as motion-level PbD [64].

Its central element is a generalized representation, called manipulation strategy (MST), of all

important aspects of an object manipulation in a way that it can be executed using constraint-

based motion planning. This representation consists of a graph formulating a temporal domain

constraint-satisfaction problem (TDCSP) [65]. Geometric (illustrated in Figure 2.27), force and

temporal motion constraints are attached to each node and edge as illustrated in Figure 2.26.

An element of an edge constraint could, for instance, describe that the TCP (hand) of the robot

has to stay within a certain distance interval of an object coordinate frame while the edge is

processed. Motion planning has to find a path which fulfills all constraints of an edge. Nodes

represent momentary constraint sets, which are basically goals of parts of the motion and at the

same time form the start of the next one.

A pouring motion, illustrated in Figure 2.27 can be represented by a starting node, where

the opening of the bottle is within a cylinder above a cup while the axis of the bottle has to be

parallel to the ground. The edge has again the cylindrical constraint, but also the constraint to

keep the angle of the axis above parallel. The end node keeps the cylindrical constraint, while

the axis has to be strongly tilted against the ground with the bottom pointing upwards. The

motion planner then has to find a suitable path in a given object setup.

64



2.7. Skill Components for Observation and Execution

As with a POMDP mission model, a strategy graph for a dexterous object-manipulation ac-

tion can grow very complex. Because it is then infeasible to define it manually, a set of methods

has been devised to generate it by means of PbD. Constraint sets and strategy graphs are gen-

erated from analysis of fine-grained observation of human object manipulation demonstrations.

The constraints are further refined by several learning mechanisms [67].

Overall, the workflow for manipulation strategy PbD is very similar to the workflow of the

system discussed in Section 4. Both perform analysis of demonstrations, generalization and

refinement, and finally generate a planning model. However, the level of abstraction, granu-

larity of observation, skill domains, specific methods of generalization and refinement as well

as the resulting planning models are totally different. Because of this, both systems are fully

complementary and have been integrated, with manipulation strategies providing single, basic

manipulation actions for POMDP decision making. Individual manipulation strategies (skills)

and missions are demonstrated independently and within different setups. A mapping method

discussed in Section 4.3 provides autonomous mapping of human manipulation actions within

mission demonstrations onto known, previously learned manipulation strategies. During exe-

cution time, a selected manipulation strategy is autonomously executed within the scene, per-

forming collision-free motion planning.
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Three main aspects have to be tackled for realizing a decision-making system for autonomous

service robots:

1. Designing an execution-time information processing system providing autonomy

2. Modeling real-world settings with symbols and quantities

3. Developing a model acquisition process for the robotic system

The review in Section 2.1.3 shows that hierarchical three-layer execution architectures are a

capable information processing layout. As argued in Sections 2.1 and 2.2, POMDPs are a pow-

erful fundamental modeling technique for autonomous decision making. Finally, Programming

by Demonstration (PbD) is a superb paradigm for model acquisition, as discussed in Section 2.4.

Thus, missions are modeled as POMDPs that are applied to execution time reasoning in

a three-layer architecture and acquired using PbD. Modeling and execution-time system are

closely coupled, while the PbD process is complementary: in theory, a model could be pro-

grammed manually - although in most cases that might lead to an infeasible amount of effort.

Therefore, a detailed description of modeling and the execution-time system is given in this

Chapter. These insights establish a foundation for the requirements and actual algorithmic

procedures of the PbD process, described in detail in Chapter 4.

First, details of the execution-time information-processing architecture are described and a

concept to integrate POMDP decision making on the most abstract level is outlined in Sec-

tion 3.1. Next, state grounding (Section 3.2), observation uncertainty (Section 3.3) and action

scope (Section 3.4) definitions and realization are presented. Then, systematic design of general

scenarios is discussed in Section 3.5, followed by a functional expression framework for model

compilation in Section 3.6. Finally, a knowledge base overarching multiple mission models is

presented in Section 3.7.
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Figure 3.1.: Contents of the modeling Chapter highlighted in the overall scheme. - [125]

3.1. Autonomous Decision-making System Architecture

In the information processing system, raw sensor data is converted into representations used by

abstract decision-making models. Selected abstract actions in turn are transformed into com-

mands to physical actuators. A big challenge with robots integrating vastly different skill do-

mains such as natural human-robot interaction (HRI) and object manipulation is to encapsulate

sensor measurements in a way that the abstract perception representation in turn is homoge-

neous. The same has to apply to abstract decisions when converted into actuator commands.

On the other hand, information about perception uncertainty has to be preserved to be taken into

account by abstract decision making. Such requirements can be accomplished by a three-layer

architecture with a filtering layer between sensor and abstract level.

3.1.1. Information Processing Architecture

The information processing system of a typical, autonomous service robot is connected to phys-

ical sensors and actuators by electronic and mechatronic components. Normally, a service robot

with multiple skill domains has several personal computer type information processing systems

on board which are connected to those electronic and mechatronic components [18], [103], [6].

In such a setup, sensors and actuators present themselves to the abstract coordination system as

dedicated software components (see Section 2.1.3). Typically, highly specialized algorithms re-

fine observation data and execution control. Coordination and planning thus deals with a highly

refined information interface to the real world. Therefore, a robot - even with all physical com-
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Figure 3.2.: Adero (Advanced DExterous RObot) on the left and Albert on the right with labeled compo-

nents. - [125]

ponents tightly integrated - is only a loose collection of components and capabilities from the

coordination systems point of view.

Albert and Adero, shown in Figure 3.2, are typical anthropomorphic service robots and ex-

amples of this concept. They cover multiple skills domains and were utilized for evaluation of

the system presented in this thesis.

The following sensors are available on these robots as illustrated in Figure 3.2:

3D point-cloud camera; stereo color camera; 2D laser scanner; microphone; force sensors;

odometry.

The following actuators are available on these robots as illustrated in Figure 3.2:

Wheel motors; arm/hand joint motors; camera mount motors – pan-tilt-unit (PTU): neck; speak-

ers; screen.

Several onboard personal computers, connected by an onboard network, can access these

devices [133]. Robot skills for both perception and actuation in certain skill domains is provided

by dedicated, highly specialized algorithmic components which typically access one, or at most

a few of these hardware devices. The following exemplary skill domains and components are

available on Albert and Adero:
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Mobility is provided by self-localization and navigation. Mobility provides perception in the

form of a world relative (x,y,θ) robot pose value and actuation in turn moves the robot to a

pose identified by such a notion:

Skill component Input Algorithm Loop Output Ref

Robot self Laser„ Kalman filter yes World relative

localization odometry, pose (x,y,θ),

map uncertainty

Cov(x,y,θ)

Navigation Target (x,y,θ), Path planning yes Path trajectory Sec. 4.11

map

Motor control Trajectory Control yes Motor current

Object Manipulation is provided by object localization, based on cameras shown in Fig-

ure 3.3 and manipulation motion planning. Object localization provides world-relative pose

information for known object geometries and types. On the other hand, strategy-based motion

planning takes robot and object poses as well as a known manipulation strategy and translates

it into a collision-free manipulator motion:

Skill component Input Algorithm Loop Output Ref

Object 3D point SIFT, no Camera relative IVT [8]

localization cloud camera, Appearance, object Furn [96]

stereo color Shape, poses (x,y,z,r, p,yaw), Sec. 3.3.4

camera RANSAC, etc Cov(x,y,z,r, p,yaw),

confidence p(type)

Manipulation Strategy Constraint RRT, yes Manipulator Sec. 2.7.2

strategy graph, TDCSP, trajectories

motion object poses collision

planning (x,y,z,r, p,yaw) checking

robot pose

(x,y,θ)

Human-Robot Interaction is provided by visual human body activity recognition, ges-

tures, speech recognition and speech synthesis. In the skill domain of HRI, most low-level

perception components provide quite abstract, symbolic output while actuation components re-

quire symbolic input. Thus, abstraction is expressed more strongly here than in the other skill

domains:
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Figure 3.3.: Camera head of Albert with pan-tilt unit (neck), Kinect 3D depth camera and Guppy stereo

color cameras. - [125]

Skill component Input Algorithm Loop Output Ref

Human body 3D point Tracking, no Limb NITE [112]

activity cloud camera SVM classifier poses (x,y,z,r, p,yaw), Sec. 2.7.1

recognition activity p(type)

Gestures Gesture no Manipulator

name trajectory

Human speech Microphone Acoustic models, no Text (string) Sphinx [160]

recognition HMMs

Speech Text (string) no Sound Festival [15]

synthesis

In summary, data delivered by perception components and required by actuation components

is too inhomogeneous and still not abstract enough concerning state space, actions as well as

temporal aspects to be directly usable by POMDP decision making. Thus, an intermediate

layer is necessary between strategic mission level POMDP decision making on the one hand

and respective skill components on the other.

This insight leads to a typical three-layer architecture. Skill components provide an interface

to the physical world. In the middle, a filter system harmonizes observation data into a unified,

abstract situation representation, while selected abstract actions are broken down into actua-

tion component commands. On top, abstract decision making selects abstract actions based on

abstract observations and its mission model. This architecture is sketched in Figure 1.4.

There are different possible approaches to compute an abstract situation representation from

a temporally and representationally inhomogeneous set of observation data. The technique
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Figure 3.4.: Computers on Albert annotated with associated skill components. - [125]

utilized in this architecture is discussed in the next Section. Usage of Flexible Programs de-

composing abstract actions into elementary component commands is described in Section 3.4.

In turn, abstract POMDP decision making is embedded into an abstract, virtual robot agent

provided by perception and actuation interfaces of the middle layer. By these means, decision

making can easily be simulated by providing simplified observations to the abstract agent which

is beneficial for testing and evaluation purposes. In the present system, a decision-making pol-

icy is computed offline from a model learnt by PbD - or manually designed - using the SARSOP

algorithm, presented in Section 2.2.5. That policy is in turn queried to select actions given a

certain belief state during execution-time.

Further properties are relevant from a more practical perspective. Individual skill com-

ponents, the middle layer and the abstract reasoning can communicate with each other in a

network-transparent manner, distributed among several computers as illustrated in Figure 3.4.

This is an important property since typical service robots have multiple onboard computers.

Furthermore, the architecture is designed in a way that new skills can easily be added and the

abstract layer can be ported to other robots with different skill components [133]. Therefore,

extensibility is provided.
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Figure 3.5.: Schematic view of fg(Es)→ si based on robot perception. - [125]

3.2. Definition and Design of State Grounding

When reasoning about the world using abstract decision making, symbolic elements represent-

ing aspects of the world have to be clearly defined and rooted in the world. This is usually

referred to as symbol grounding. Internally, these symbols may have arbitrary denotations, as

long as there is a unique, distinct mapping from an environment aspect to such a symbol.

State grounding is basically a function fg, that maps an arbitrary environment situation Es

to exactly one distinct, symbolic state si ∈ S, si := fg(Es). Typically, aspects of the environ-

ment have to be described by continuous properties, thus fg performs discretization. Different,

similar situations E i
s,E

j
s may map to the same symbolic state: sk = fg(E i

s) = fg(E
j
s ). So,

a mapping fg can be surjective, but not injective. A state therefore forms an abstract class of

situations.

From the point of view of applying this approach to a rational agent in a partially observable

environment, such as a service robot, both Es and si are hidden variables, though. Yet, the robot

is able to get information about Es by measurements M as described in Section 2.2.3. Because

perception frames the reality of the robot by these means, only aspects that can give hints about

Es through M are relevant to be modeled in s. Everything else has to be subsumed without a

descriptive model as Bayesian probabilities in stochastic models T and O. Or in other words:

the robot is agnostic about aspects in Es that do not correlate in any way with any measurement

m ∈M.

Therefore, the mapping si = fg(Es) has to be structured according to perception skills. Those

encompass only relevant aspects of the world with which the robot interacts. For example. the

specific indoor temperature is usually irrelevant and there is also no sensor for it on most robots.

According to this paradigm, perception skill components have a leading role in fg and thus

state grounding. Such a channel, depicted in Figure 3.5 can also be considered as a perception
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Figure 3.6.: Illustrative example: Pose of the chair is mapped to a topological, abstract region c f urni−state
xi

by f f urni−state
g1 (Es), illustrated by a yellow fence. Chairθ is not shown. - [125]

skill domain from the robot’s point of view. These domains form the largest building blocks of

the mapping and can be sub-divided into aspects, features f f eati defined here as:

fg : Es→ f1× . . .× f| f eat| [3.1]

fg(Es) = ( f f eat1(Es), . . . , f f eat| f eat|(Es)) [3.2]

Hence, each feature can be seen as a component of a multidimensional mapping aspect, each of

which may be multidimensional itself and continuous in nature. Two different feature examples

can be human verbal utterances and world poses of furniture objects in the scene.

Finally, as the codomain S of the mapping fg is discrete, individual features have to be

discretized by the mapping. For each feature, a discretization function maps a set of situations

onto one distinct category: ci
j = f f eati(Es). A set of categories defines a feature state space:

Fi := {ci
1, . . . ,c

i
n}. A complete mapping is of surjective design with feature categories cfeat

j
defined in such a way such that a mapping exists to exactly one category from each possible

configuration of Es. In turn, a state is defined as a tuple of categories: si := (c1
x1
, . . . ,c| f eat|

x| f eat|).

Accordingly, the overall mapping fg is surjective with each Es being mapped to exactly one si,

yet different, typically similar Es may be mapped to – and thus subsumed into – one unique si.
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On a more practical level, perception-skill components are often heavily involved in simpli-

fication and discretization of environment property subsets of Es, speech and dialog processing

being a prominent example. Often, those components also account for Es being a hidden vari-

able (see Section 3.2.2 for a discussion of both aspects). Some components perform simplifi-

cation and temporal filtering of the state description, but no discretization. In those cases, an

additional discretization step has to be performed on the skill-component output as illustrated

in Figure 3.6 (see Section 3.2.2 for examples, also discussing the filtering aspect).

In summary, the first step is mapping relevant and measurable aspects of the environment sit-

uation Es onto discrete categories, leading to a feature-discretized state, a vector of categories:

fg1(Es)→ (c1
x1
, . . . ,c| f eat|

x| f eat|). In the second step, a feature-state mapping fg2, (FSMap), as-

signs one unique state to each distinct category vector: fg2(c1
x1
, . . . ,c| f eat|

x| f eat|)→ si.

This notation holds only for the fully observable, non-probabilistic case. To transform this

concept from a fully observable situation Es to a partially observable one, probabilistic Bayesian

filtering has to be included as discussed in the next Section.

3.2.1. Preserving Uncertainty for Multiple Skill Domains: filterPOMDP

As discussed in Section 2.2.3, in partially observable environments the true state of the world

st is a hidden variable. An agent acting within such an environment has to derive a subjective

belief-state probability distribution bt , representing knowledge about the true, hidden state,

by Bayesian filtering. It combines a probability distribution representing imperfect predic-

tion with a probability distribution representing imperfect environment observation. In discrete

POMDPs, both observation and prediction are discrete representations with discrete probabil-

ity distributions representing uncertainty. In contrast, in many robotic skill domains, Bayesian

filtering of continuous variables, such as Kalman filtering or particle filtering is performed uti-

lizing parametric or non-parametric continuous probability distributions to represent measure-

ment, prediction and belief. When working with continuous situation domains and discrete state

spaces, this leads to two possible options:

1. Continuous observation and prediction models, discretizing belief distributions.

2. Discretizing observation distributions and applying discrete prediction models resulting

in discrete belief distributions.

Discrete POMDP applications are typically of the second type, with a static state discretization

mapped onto observation symbols and a static measurement uncertainty probability distribu-

tion p(s|m) as well as transition effect probability distribution p(s′|s,a). This model is used
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both for policy computation as well as execution-time belief updates. As a consequence of its

representation, these discrete distributions are only coarse approximations of real-world dynam-

ics. While any Bayesian probability distributions representing measurement, effect and belief

uncertainties are just approximations, highly specialized continuous distributions and corre-

sponding sophisticated, even non-linear filters are better approximations for most skill domains

as discussed in [155].

Accordingly, to utilize different, more specialized Bayesian filters, online time belief updates

and planning-time belief updates for policy computation are split up in the presented system.

The idea is to use specialized filters for individual features feat as defined previously, with high

spatial and temporal resolution as well as continuous probability representations where appli-

cable for online belief updates. Subsequently, these feature beliefs are discretized and fused

into a single belief distribution. On the other hand, abstract-level POMDP observation and

transition models, used for policy computation, are approximations of feature filter behavior.

Additionally, they introduce cross-feature dependencies into the belief update during fusion of

the single belief. By these means, characteristics arising from the sensor-level and algorithmic

processing peculiarities leading to specific uncertainty properties can be preserved up to the

most abstract belief state. A perception component investigated closely for the transfer of infor-

mation about observation uncertainty from the sensor level up to the abstract level is discussed

in Section 3.3.4. This leads to the definition of filterPOMDP:

A feature belief may be continuous and updates may use linear or non-linear models. In the

following example, x,y,θ are the 2D position and orientation of a mobile robot in a flat indoor

environment and brobot-pose is a continuous belief distribution of such a pose:

bfeat(xt) =
∫

p(xt |at ,xt−1)bfeat(xt−1)dxt−1,x ∈ Es [3.3]

e.g. brobot-pose(xt ,yt ,θt) = (xt ,yt ,θt ,Cov(xt ,yt ,θt)) =

Kalman((xt−1,yt−1,θt−1,Cov(xt−1,yt−1,θt−1)),ut−1) [3.4]

Subsequently, a continuous belief bfeat is discretized by applying a mapping fg1, f eat , leading

to discrete category belief probabilities p(cfeat
j ):

bfeat-state(Es) = fg1, f eat(bfeat(~x)) [3.5]

bfeat-state(Es) = {p(cfeat
1 ), . . . , p(cfeat

|categories|)} [3.6]

∑ p(c f eat−state
i ) = 1 [3.7]

There are several options concerning discretization technique fg1, depending on the complex-

ity of the probability distribution representing bfeat. In case of simple normal distributions,
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discretization can be computed numerically applying a flexible grid as discussed in the next

Section. More complex distributions must be approximated by Gaussian mixtures that are dis-

cretized, or samples must be drawn from the distribution and subsequently summed up. These

more complex options have not been explored in this work.

The feature-state ci' f eati, j→ sk mapping can then be used to compute the state belief:

bfilter(sk) =
| f eat|

∏
i=1

∑
j,ci, j∈sk

p(ci, j) [3.8]

Large scale predictive aspects, which are not considered by low-level filtering, typically arising

from what is defined as primary stochastic effects in Section 3.4.2, can then be added using a

transition model Tprimary by considering the belief b up to this point as an observation distribu-

tion. However, further prediction transition probabilities of an action at have to be conditionally

independent from any predictive element in the low-level filter, otherwise it is included twice,

distorting the result:

bfinal(st) = α bfilter(st)( ∑
st−1

Tprimary(st ,at−1,st−1)b(st−1)) [3.9]

By these means, the simple non-probabilistic feature-discretized model discussed in the previ-

ous Section is extended into a feature filter model, retaining grounding aspects while introducing

preservation of low-level uncertainty information up to the abstract description [128].

Evaluation of the filterPOMDP approach is discussed in Section 5.2. While Bayes filters

are typically fixed for skill components, discretization is highly mission dependent. Hence,

feature state grounding has to be defined specifically for each mission, to minimize the state

space and distinguish abstract states where needed. Feature state grounding is therefore one

of the properties that have to be learned using PbD for each mission, as discussed in detail in

Section 4.2.

Another important aspect ist the temporal connection between low-level bfeat(xt) updates on

the one hand and high-level bpomdp(st) updates on the other. Individual feature belief updates

are highly asynchronous with differing frequencies. An abstract-level belief can be updated

each time when a feature belief is updated. However, a belief is only relevant on the decision-

making level when a previously selected abstract action has terminated.

An abstract level POMDP transition model, including cross-feature effects, thus has to model

overall low-level effects within the time span of such abstract actions. The scope of such an

abstract action is discussed in Section 3.4. Transition models learned by PbD and autonomous

refinement as discussed in Chapter 4 consider this aspect.
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In summary, filters reflect robot skill component domains and capabilities. They connect the

aspects of the world relevant to the robot with abstract symbols, utilized by decision making

while preserving information about uncertainty in regard to these aspects arising from incom-

plete observability. Filters can be re-used for all types of missions, while discretization and

state grounding has to be generated for each mission model and policy. These filters define the

world as the robot experiences it for decision making on an abstract level. However, new filters

and features can be added easily within the scalable architecture.

3.2.2. Design of Filter Models

Design of features and corresponding filter models is driven by available input on the one hand

and required feature state space output on the other. Input choice depends on hardware sensors

and corresponding perception processing skill components on a robot. Output demands depend

on environment aspects with which the robot has to interact with in certain missions. Feature

design means to assess both ends and bring them together in a complete scheme:

1. Input: Perceivable numerical values and/or symbols, optionally with information about

measurement uncertainty attached. Examples:

• Object pose: 6D continuous values (+ variance), symbolic type (+ confidence), ob-

ject geometry (+ uncertainty) - see Section 3.3.4 for an exemple

• TCP force/moments: 6d vector of continuous values (+ variance)

• Human utterance: symbolic text list (+ confidence probabilities)

2. Output: Discrete, small, for a mission-relevant meaningful feature state space.

3. Input combination: Either only one value from one skill, several values from one skill or

several values from several skills.

4. Filter: Either an existing Bayes filter in a skill is sufficient, an extra Bayes filter is needed

or no Bayes filter is used (e.g. predictive element gives no sufficient benefit).

5. Discretization scheme: Discretization either before or after the filter.

6. Actual discretization: Dependent on the aspects important for a mission.

In practice, these steps can be further grouped into three design stages:

1. What?: Determining the input data combination available, facilitating necessary output.
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2. How?: Determining the way to combine input data to be transformed into an output set.

3. How precisely?: Determining the exact set and discretization of feature states.

Design steps what and how are complex, yet rarely performed, as resulting features and

filter models are typically reusable for many different types of missions. A resulting feature

is just an abstract-level perception routine available on the robot. Thus, automation has not

been investigated within the scope of the presented system. On the other hand, deriving precise

discretization boundaries and the exact resulting feature state space is complicated as well as

error prone to be performed manually and is variable for each feature between missions. Thus,

this design stage has to be performed for each mission. Hence, a technique was developed to

learn feature state space discretization using PbD as discussed in Section 4.2.

In the robot decision-making system used for evaluation, features and corresponding filter

models with diverse characteristics are applied. In the following, representative examples show

different degrees of input diversity, filter usage and data conversion. Specific modeling of un-

certainty regarding these features is discussed in Section 3.3.

Spoken dialog fdialog−state is an example of a feature using highly processed abstract

input with attached information about perception uncertainty. Furthermore, application of an

extra Bayes filter is suitable. Resulting feature states represent spoken dialog of a human in-

teracting verbally with the robot in an abstract manner. Input to the filter is a normalized, dis-

crete probability distribution over a set of symbolic human utterances m as delivered by speech

recognition [160]: P(mt). Additionally, the last spoken utterance of the robot u determines the

predictive effect model T (st ,ut−1,st−1). An observation model O(mt ,st) correlates abstract

dialog states s with spoken human utterances m. Processing applies a Bayes filter using these

models and current online uncertainty as delivered by speech recognition:

bdialog(st) = α(∑
mt

P(mt)O(mt ,st))( ∑
st−1

T (st ,ut−1,st−1)bdialog(st−1)) [3.10]

One-way dialog patterns can be modeled by idle utterances midle and uidle [129]. Moreover,

two levels of simplification may be applied: using a direct mapping between utterance and

dialog state mi
t ∼ si

t , the observation model can be discarded. One step further, if the predictive

model is not suitable for improving belief estimation in a setting, it may be discarded and the

Bayes filter dropped altogether:

mi
t ∼ si

t , bdialog(s
i
t) = p(mi

t) [3.11]
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In any case, the output feature state belief has a similar representation as the input: a discrete

probability distribution over a set of symbols. The feature representing types of observed sym-

bolic body activities of interacting humans fhuman−act (discussed in Section 2.7.1) is handled

in the same manner.

Absolute pose of the robot in the world, frobot−pose is a feature linked to robot self-

localization. On the robots presented in Section 3.1.1, a self-localization skill component per-

forms Kalman filtering on the robot pose (x,y,θ), thus delivering a continuous belief (xt , yt ,

θt , Cov(xt , yt , θt )) in high frequency. No further filter is necessary, but discretization has

to be performed. Discretization can be performed with or without orientation θ . In both

cases, normal distributions have to be integrated over continuous regions of space, which is

not possible analytically for multi-dimensional co-variance. An option implemented in the pre-

sented system discards orientation and integrates over small, non-overlapping rectangles over

ri = (x1,y1,x2,y2), using a state-of-the-art numerical solution [50]. Categories of which the

feature state space can be composed c j ∈ Frobot−pose, are formed by several regions:

p(ri) =

xrp2∫
xrp1

yrp2∫
yrp1

N(x,y; ~µpos,Σpos)dxdy [3.12]

p(c j) = ∑
ri∈c j

p(ri) [3.13]

brobot-pose = {p(c1), . . . , p(c|robot−pose|)} [3.14]

The output given is a discrete probability distribution over a set of symbolic locations, repre-

sented by categories c j. Consequently, output describes symbolic topological robot locations,

which is a description distinctively different from the input. Absolute pose of interacting hu-

mans, fhuman−pose is processed in the same manner.

State of furniture objects f f urni−state processes input values from multiple, diverse per-

ception skills, yet in most missions does not perform Bayes filtering because prediction model

complexity makes its inclusion un-worthwhile in the light of powerful perception. Given input

is a 6D pose of a furniture object (x,y,z,r, p,yaw) with uni-dimensional covariance, an object

type confidence p(type) and optionally further object part size values (see Section 3.3.4 for a

detailed description of the localization system). Additionally, hand finger angles and 6D heel

of hand (TCP) forces and moments (x,y,z,r, p,yaw) are received.

The furniture 6D pose is reduced to a (x,y,θ) pose which is processed in the same manner

as in the robot-pose feature. Additionally, hand-finger angles and TCP are processed together
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Figure 3.7.: Illustrative example: features with geometric input domains: frobot−pose in light blue,

fhuman−pose in red, f f urni−state in yellow and fsmall−ob j−state in purple. - [125]

with manipulation action triggers to check for situations during object manipulation, e.g. con-

tact or in-hand. By these means, rough object configurations relevant for manipulation action

(strategy) selection are represented in the feature state space as illustrated in Figure 3.6. Feature

states not related to poses alone are discussed in detail in Section 4.12, together with methods

for deriving predictive models suitable for application in the filter. An exemplary category set

is: poseclass-A, poseclass-B, outside, jammed, not-present. Using another localization method,

small, portable objects are handled in a similar manner by the feature fsmall−ob j−state.

In evaluation settings, the following features have been applied as presented in Section 5.1.2:

1. frobot−pose (x, y indicated light blue in illustrative examples).

2. fhuman−pose (x, y indicated red in illustrative examples).

3. fdialog−state (abstract only).

4. fhuman−act (abstract only).

5. f f urni−state (x, y indicated yellow in illustrative examples).
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6. fsmall−ob j−state (x, y indicated purple in illustrative examples).

Among these, the first relates primarily to mobility, the next three relate to HRI, and the latter

two relate to object manipulation. Geometrical features are illustrated in Figure 3.7

In summary, feature filters perform directed reduction of a situation description while still

preserving low-level measurement uncertainty for high-level probabilistic decision making.

Specific observation uncertainty modeling and corresponding high-level POMDP observation

models with the characteristics of skill component uncertainty are discussed next.

3.3. Discrete State-based Modeling of Observation Uncertainty

Observation uncertainty characteristics in feature-filter models have to be reflected, at least

approximately, in POMDP observation model probabilities incorporated for policy computa-

tion. State-of-the-art POMDP robot applications (see Section 2.2.6) typically contain obser-

vation models that are just rough approximations of real-world correlations. To benefit from

the strengths of abstract planning while utilizing observation models that are quite precise ap-

proximations of real-world dynamics is still mostly an unsolved problem, considering complex

skill domains like natural HRI and autonomous manipulation. Hence, this Section contains a

discussion of how to derive parameters (actual values) for abstract level POMDP observation

model probability distributions from analysis of probabilities delivered by skill components.

First, perception skill components are discussed for which only a rough model of their in-

ternal operations is known. Empirically validating these internally unknown components is

outside the scope of this thesis. However, to overcome this limitation, an exemplary, com-

plex perception skill component was developed specifically for the presented decision-making

system. This skill component models measurement uncertainties thoroughly from sensor data

processing upwards, regarding further uncertainty introduced and altered by processing algo-

rithms as explained in Section 3.3.4.

3.3.1. Observation Model Representing Human Utterance Uncertainty

Speech recognition - and the respective feature fdialog−state discussed in Section 3.2.2 - is

based on a fixed grammar handled by the perception skill component. Consequently, any sound

recorded by the robot is matched to the most similar known human utterance. Even with suit-

able microphones and state-of-the-art speech recognition, distant recognition without use of a

headset is highly error prone. Two types of systematic uncertainty are prevalent:

1. Background noise matched as certain utterances frequently.
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Figure 3.8.: Similar activities "GraspChairBelowFront" and "Grasp"[Small]"Object" are easily distin-

guished because of significant torso-to-floor angle difference (top). Below, "StrongGraspT-

able" and "WeakGraspTable" are more similar. - [125]

2. Utterance confusion: frequent mismatches between similar utterances.

While the first aspect can only be determined empirically which requires discussion beyond

the scope of this thesis, the second can partly be tackled analytically. Confusion of utterances

mhuman−utterance in technical speech recognition systems is subject to the same characteris-

tics as human speech recognition in noisy environments: acoustic similarities, based on syllable

and word sound similarity and overall length similarity define confusion probabilities. Accord-

ingly, an utterance-similarity metric can be created, based on acoustic single-word similarities

as shown in [113]. With such an utterance similarity metric 〈mi,m j〉human−utterance, confu-

sion probabilities in the observation model O can be inferred [130]:

Odialog−state(i, j) =
〈mi,m j〉human−utterance

∑ j〈mi,m j〉human−utterance

By these means, the POMDP observation probability distribution can approximate speech-

recognition feature filter output distributions.
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Figure 3.9.: Object confusion error. Occlusions lead to one object being detected as another (left) with

the observed state (top right) being distinct from the intrinsic one (bottom right). Note: the

red cup is also shown blue in the motion planning visualization. - [125]

3.3.2. Handling Human Body Activity Uncertainty

Recognition of symbolic human body activity types is similar to human speech recognition. A

fixed set of activities can be recognized and probabilities are computed, reflecting likelihoods

of intrinsic activities. However, there is one profound difference concerning the skill compo-

nent discussed in Section 2.7.1: probabilities do not add up to one: instead several activities

may be recognized in parallel. Therefore, background noise (e.g. from arbitrary movements)

is not always matched to activities and probabilities have to be normalized for a feature belief.

Therefore, a dummy idle activity has to be introduced. When normalizing independent activity

probabilities, confusion errors can occur as with speech recognition. Hence, application of a

similarity metric among activities is suitable. In this case, body configuration similarities take

the place of acoustic similarities. The metric is defined over the attribute space of an activ-

ity Att(a), which encompasses limb poses, joint angles and joint angle velocities as shown in

Figure 2.25. Such a metric has to reflect similar motions that are easily confused by activity

recognition [91]. Figure 3.8 illustrates similarity differences on activities ai,a j used in experi-

ments, discussed in Section 5.1.2. Actual values for a metric can be computed when performing

recognition training. During classification training, the set Atta of important attributes of an ac-

tivity and its SVM margin 〈ai,a j〉svm between activity SVM classifications a can be computed.

This leads to an α-scaled metric:

〈mi,m j〉body−activity = |Attai

⋂
Atta j | ∗α〈ai,a j〉svm
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Figure 3.10.: Illustration of furniture localization with left stereo camera view as seen by the robot (left)

and resulting detected object poses visualized in the 3D depth camera point cloud, in this

case a Swissranger-4000 (right). - [97]

This metric can be used to generate observation model probabilities [130].

3.3.3. Small Object Localization Uncertainty

Relevant small object localization [8] uncertainty classes are Existence (false positives and false

negatives) and Object type (confusion). A commonly occurring existence false negative exam-

ple is shown in Figure C.1 while typical object type confusion is illustrated in Figure 3.9. In

contrast to furniture localization, which was a dedicated development to support the presented

system, small-object localization confusion and existence uncertainty was only modeled empir-

ically. Respective observation model entries are consequently introduced into the background

knowledge to be applicable to mission model generation as mentioned in Section 4.10.

3.3.4. Furniture Localization: an Example of Grounded Uncertainty

A complex observation skill, localization of furniture objects with elliptic parts, depicted in

Figure 3.10, was developed as part of the presented system to explore consistent and detailed

transfer of observation uncertainties from sensor to abstract level. As 2D and 3D image process-

ing, heavily used in this skill component, is not in the focus of this thesis, processing elements

will only be shortly referenced in the following with focus on how they are correlated with or

transform uncertainty. Details of the image processing operations are discussed in [98], [97]. In
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the given skill component, furniture localization consists of the following main process steps,

illustrated in Figures 3.11 and 3.12:

1. A scene is captured by the robot head in its direction of view by the 3D point cloud and

one of the 2D color cameras mentioned in Section 3.1.1.

2. After filter-based processing of 2D and 3D disparity images and fusion of both images,

edges which are both depth and intensity edges can be extracted.

3. Based on these edges, a generalized Hough transformation extracts incomplete and im-

perfect 2D ellipses robustly.

4. By projecting ellipses back onto the 3D point cloud, points of interests in the point cloud,

potentially belonging to objects, are selected (stamped out).

5. On a point cloud reduced in this way, planes are computed by the RANSAC algorithm.

6. 2D Ellipses are projected onto these computed planes, leading to 3D ellipses that repre-

sent potential object parts.

7. Known object types like chairs and tables are classified based on parameters of their parts

like poses relative to each other and the world as well as extent of their parts.

8. Output of the skill consists of class (type), pose and extent of each object as well as

confidence values for each of these values.

Uncertainty first arises from physical properties of both sensor types. In the following pro-

cess stages, it is altered and amplified by a wide range of algorithmic operations and assump-

tions. By computing confidence values for certain properties along the way and including it in

the output, the uncertainty can be preserved to be used in the filter system for belief computa-

tion. Furthermore, by empirical evaluation of these uncertainties, prior likelihood observation

models can be composed. On the output level, several different properties contain uncertainty

in the form of confidence probabilities:

1. Existence of an object of any known type in the scene at a certain location

2. Object type among the set of known objects for a given object

3. Pose of a given object

4. Proportions of a given object
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Figure 3.11.: Processing stages in furniture localization. Top from left to right: 1) edges in the intensity

image, 2) edges in the depth image, 3) dilated depth edges, 4) combined (AND) edges.

Bottom: 1) ellipse pixel voting, 2) ellipse (quadrant) confidences. - [97]

Existence describes a binary value with false positives meaning an object was detected based

on algorithmic flaws and scene characteristics where there is no object at all. False negatives

occur when the algorithms are not able to detect a present object of known type. Both error

types are common with object localization.

Confusing the object type means wrong classification of a detected object, occurring most

frequently with objects similar in shape and size.

Deviations between true pose of a given object and the pose delivered by the perception

skill always occur in practice. The amount of deviation depends on sensor and algorithmic

characteristics.

Similarly as for pose, deviations in object proportions occur if the extent of objects is not

given by a fixed and previously known geometric model.

Output confidence values contain error likelihood estimates of these parameters.

Hough ellipse fitting confidence In the first major algorithmic step, generalized Hough

transformation [25] fitting ellipses in fused color and depth edge pixels Pxe f , aspects of all

major object properties are determined. Object existence depends on ellipses being detected at

all. Pose is related to ellipse center points. Proportions depend on the aspect ratio of the ellipse,
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Figure 3.12.: Furniture localization depth point processing stages. Top: 1) raw points, 2) ellipse-

correlating selected 3D points. Bottom: back-projection and fitting after RANSAC on

selected points with camera coordinate system shown. - [97]

and types on all parameters. Therefore, uncertainties arise from deviations of fitted ellipses

from an ideal fit in the image that reflects real object properties best.

A confidence value can be computed both for the overall pose and extent. A 2D ellipse is

described by the following parameters center (ox,oy), major and minor axes α,β and spatial

angle θ . In the general Hough transformation, it is determined how many edge pixels Pxe f cor-

respond with a certain parameter set: H
Pxe f
total (ox,oy,α,β ,θ). This value is normalized by el-

lipse circumference. It is also applied to the four ellipse quadrants H
Pxe f
quadranti

(ox,oy,α,β ,θ).

Such a total confidence reflects that with more pixels voting for a certain parameter set, both

center pose and extent are more likely fitting. To obtain confidences, normalized voting has to

be adjusted to image pixel density by a function

η(H) : pHough(ox,oy,α,β ,θ) = η(H
Pxe f
total (ox,oy,α,β ,θ)). This probability represents an

estimate that the given ellipse parameters correctly match a corresponding real object as illus-

trated in Figure 3.11 at the bottom-right.
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3.3. Discrete State-based Modeling of Observation Uncertainty

Figure 3.13.: qept

loc of the 3D ellipse shown as gray box (right), for the chair seat (left). - [97]

RANSAC plane fitting confidence Plane-fitting variance on regions of interest in the

3D point cloud {pti} depends on the squared average distance of points in the vicinity of a

plane as computed by the RANSAC algorithm [46]. RANSAC computes model poses mk
for a maximum of n plane candidates from a subset of points {ptl} ⊆ {pti} within a certain

maximum distance from the model plane ‖mk− ptl‖ < ε and a minimum number of fitting

points |{ptl}| ≥ cmin: RANSAC({pti},ε,cmin,n)→ {mk}. Plane variance is increased by

outliers which lead to worse fits. Based on parameters ε,cmin which define not considered

outliers, a sample variance qmk of a plane model mk with respect to its defining points {ptl}
can be computed. Based on such variance qmk and empirically determined best and worst

variance thresholds ωb,ωw, a plane confidence value pRansac(mk)→ [0,1] can be defined:

qmk =
1

|{ptl}|−1 ∑
ptl
‖mk− ptl‖2 [3.15]

pRansac(mk) =


1 i f qmk < ωb
qmk−ωb
ωb−ωw

+1 i f ωb ≤ qmk ≤ ωw

0 i f qmk > ωw

[3.16]

RANSAC ε and ωw have to guarantee no points > ωw being in {ptl}. This approach considers

noise and data sparsity, but cannot reflect systematic distortions shown by some depth sensors.

Confidence of ellipse onto plane projection The previous two computed confidence as-

pects are only marginally conditionally dependent, given large ellipses performing preselection

of 3D points into which planes are fitted later on. However, when projecting ellipses onto de-

termined planes, both with their own confidence values, those confidences have to be combined

because there are significant interdependencies. Projecting a 2D ellipse via a non-orthogonal
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angle onto a 3D plane generally does not lead to an ellipse. Therefore, this process projects

sampled points on the 2D ellipse individually onto the 3D plane. It then selects 3D points

{pte
l } belonging to the plane and being closest to projected points. Finally, a 3D ellipse ept is

fitted into {pte
l }, which can be considered derived from (mk),(ox,oy,α,β ,θ).

Hence, the variance of the 3D ellipse ept can be defined in terms of the variance of {pte
l }

relative to ept . To account for variances in ellipse detection and plane fitting, the variance along

the plane normal ept
z is computed from qmk . In contrast, variance within the plane ept

x ,ept
y ,

similar to plane confidence, is a sample variance of {pte
l } relative to ept

x ,ept
y . To compute

sample variance, pairs of sensor 3D points closest to the ellipse pte
l,i and corresponding closest

(not measured, but computed) points pte
ell,i on the ellipse are determined [94]:

pte
ell,i = argmin(‖pte

ell,i− pte
l,i‖), pte

ell,i ∈ ept [3.17]

Applying pairs (pte
l,i, pte

ell,i), sample variance qept
x

and in the same way qept
y

can be computed,

isolated for each dimension. Then, individual dimension variances for a 3D ellipse are com-

posed into qept

loc(e):

qept
x
=

1
|{pte

l }|−1

|{pte
l }|

∑
i=1
‖x(pte

ell,i)− x(pte
l,i)‖

2 ⇒ qept

loc(e) =


qept

x

qept
y

qmk

 [3.18]

Accordingly, qept

loc is a vector of variances - without covariance - in the base of the plane. The

box shown in Figure 3.13 is an example. It can be transformed into the world-relative co-

ordinates by applying a boundary box, which represents a variance upper bound estimator

B(q) : qworld
loc (e) =B(qept

loc(e)). In turn, such a variance qworld
loc can then be used as an estimate

for Σ in a normal distribution, denoting the pose of the ellipse, and µ in the normal distribution

derived as follows: µx = ept
x ,µy = ept

y ,µz = ept
z . Finally, the probability of the object part

pose being inside a certain pixel or voxel, reflecting certain feature states c f urni−state
i can be

computed applying that normal distribution as described in Section 3.2.2.

Type classification confidence In this framework, the type of an object Ob j is described

as being composed of a set of parts {Parti}, each described by a set of parameters w j lying

inside intervals IOb j(w j):

IOb j(w j) :=

1 if wi
min ≤ w j ≤ wi

max

0 else
[3.19]

Parti := {IOb j(w1), . . . , IOb j(wm)} [3.20]
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Figure 3.14.: Illustration of table classification parameters. - [97]

As an example an elliptical table for manipulation can be described by a single part, a 3D plane

area that can be detected as explained above. To be classified by type, some properties w j of a

planar ellipse, as shown in Figure 3.14, have to be inside defined intervals IOb j(w j):

1. Surface area w1.

2. Allowed ranges of ellipse semi-axes extends w2 ∼ α3D, w3 ∼ β3D.

3. Height above ground w4.

4. Angle of the plane normal against the ground normal w5.

Intervals can be learned from examples or defined manually. Variances q of parameters w1
to w4 have been computed during detection, reflecting the probability of the true value p(x j)

of a parameter. Thus, the total probability inside the parameter interval can be computed by

integration:

p(x j)⇒ p(IOb j(x j) = 1) [3.21]
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Furthermore, an existence confidence for ellipses pexists(Parti) = pHough(Parti) has to be

computed. Without considering conditional interdependences, object-type confidence can be

computed from confidences about parts:

pbelongstotype(Ob j,Parti) =
m

∏
j

p(IOb j(x
Parti
j ) = 1) [3.22]

pparttype(Ob j,Parti) = pexists(Parti)∗ pbelongstotype(Ob j,Parti) [3.23]

pisob ject(Ob j) = ∀Parti ∈ Ob j :
∑Parti pparttype(Ob j,Parti)

n
[3.24]

Objects with multiple parts, such as a chair with seat and back, may be sufficiently detected

with only some parts being present. Thus the average probability is a better, because more

aggressive, estimate than the product.

Conclusions While such confidence and variance values are still imperfect and cannot be

interpreted as an optimal approximation of uncertainty in a frequentist sense, such grounded

Bayesian uncertainty likelihoods are a far more precise measure than crude, manually given

approximations as typically applied in the probabilistic decision-making literature. It also shows

that modeling and computing meaningful confidence likelihoods is both non-trivial and can

never be accurate in a frequentist sense for complex real-world robot perception skills. It still

helps a robot to make more robust decisions when facing real-world uncertainty. More details

are discussed in [97] and a thorough evaluation can be found in [98]. In experiments described

in Section 5, extents of furniture objects were discarded and instead certain types mapped onto

fixed, known mesh models for motion planning and visualization. Thus, only the parameters

existence, object type and pose, but not proportions were actually used in the scope of the

presented system.

3.4. Modeling Tasks Reflecting Elementary Actions in Decision Making

Given state and measurement set definitions S,M, the POMDP model domain definition is

completed by the action set A. Similarly as for S, role, scope and grounding of abstract actions

A have to be determined. With diverse skill domains such as mobility, natural HRI and object

manipulation, such grounding is challenging. It can be specified from two main perspectives:

1. Modeling abstract actions as subtasks incorporating several different actuator commands

and control loops: the architectural and abstraction perspective as discussed in Sec-

tion 2.1.3.
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Figure 3.15.: Schematic view of flexible programs (FPs), a HTN type. - [77], [125]

2. Modeling abstract actions as sets of actuation elements, each contributing stochastic effect

correlations: the POMDP transition model perspective as discussed in Section 2.2.6.

3.4.1. Designing Abstract Actions as Complex Subtasks

Abstract action symbols have to be transferred into a compound of, potentially continuous, ac-

tuator commands and control loops. Such a transfer is in fact a subtask decomposition, reflected

by a Hierarchical Task Network (HTN) subtask representation in the presented system.

Actuation control skill component interfaces as described in Section 3.1.1 are addressed in

leaves in this HTN implementation, called Flexible Programs (FPs) [77]. Actuation-skill pa-

rameterization is encapsulated in leaf commands as illustrated in Figure 3.15. Execution of

leaves may take place in parallel. While large FPs can simulate complete missions as complex

finite-state machines by incorporating conditional branching and conditional loops, as used in

evalution discussed in Section 5.2, tasks representing decomposition of POMDP actions are

compact and without loops or branches, except conditional termination. Skills like navigation

commands, robot utterances and complex manipulation strategies are adressed through single

leaves. Subtasks can differ in complexity: for instance, a robot utterance may encompass only

one leaf, grasping a chair may encompass moving the arm into a suitable starting position, nav-

igating a little closer to the chair and then executing a certain grasp strategy. The abstract action

has finished, when the FP subtask finished, regardless of the termination cause.

For navigation and utterance actions, FP templates can provide a generic shell as illustrated

in Figure 3.16. More complex subtasks, like object-manipulation compounds, including corre-
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Figure 3.16.: Screenshots of a visualization of flexible programs (FPs), executed in POMDP elementary

actions in mission CESM-1 (see Section 5.1.2). "GraspChair" at the top includes setting

the neck to look into the direction of the grasp. More examples can be found in Figure C.2.

- [125]

sponding manipulation strategies, can be stored and shared for all missions. Both FPs [76] and

manipulation strategies (see Section 2.7.2) can be acquired through skill- and subtask-level PbD.

This provides comfortable acquisition of skill and subtask representations, especially when also

learning mission models using PbD as discussed in Chapter 4.

3.4.2. Transition Models of Abstract Actions

Taking a different perspective, abstract actions transfer an abstract world state into another. In

POMDPs, with underlying stochastic action effects, an action can transfer a state into several

others with certain probabilities, implied by the transition model T (s′,a,s) := p(s′|s,a). With

an abstract action, many distinct, potentially independent, correlations may contribute to a sin-

gle transition probability. Transition-probability sources can be roughly classified as two types:

1. Actuation-skill effects and interactions with the environment which cannot be modeled

in a deterministic way. Actuation skill effects may arise from each leaf operation in a

subtask in turn.

2. Dynamic events happening in the environment, quite unrelated to the action itself, which

correlate just with the origin state and the temporal duration of the action.

Subtask operations are typically conditionally dependent on operations executed previously or

in parallel. Dynamic events are mostly conditionally independent of subtask operations, as

they are classified this way. Consequently, to model abstract transition probabilities for origin-

state-action pairs (s,a) synthetically from its parts, conditional dependence of all aspects has

to be determined, conditionally dependent probabilities must be inferred and finally merged

with conditionally independent probabilities. This basically leads to each transition model row
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Figure 3.17.: Illustrative example: Primary stochastic action effects at the top: origin state (left), poten-

tial effects (center, right). Here, probabilities may depend on behavior of humans or other

robots. Secondary stochastic action effects at the bottom: origin state (left) and potential

effects at the (center, right). Here, probabilities depend on robot grasping peculiarities.

- [125]

T (s′,ak,si) : (si,ak)→ (p(s′1), . . . , p(s′n)) being the result on an inference in a Bayesian

Network.

Manual, correct modeling of s× a BNs is infeasible. Instead, overall subtask transition

probabilities have to be determined by learning instead for conditionally dependent operations

with only mostly conditionally independent probabilities merged. That approach is taken in

POMDP mission PbD discussed in Chapter 4. Examples are shown in Tables C.9 and C.10.

Furthermore, stochastic transition effects can be distinguished along another characteristic

which becomes obvious with PbD: primary transition effects are agent invariant and define a

mission (such as dynamic events, human behavior or stochastic object properties) while sec-

ondary transition effects are dependent on skills of a specific robot. While the former type can

be learned from human demonstrations, the latter type can only be acquired from explorative

robot learning. An illustration with examples of both effect types is shown in Figure 3.17.

3.5. Robot Mission Modeling

Practical mission models providing service robot decision making in real-world settings have

to contain precisely crafted sets and values as discussed previously. Generating mission models
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thus encompasses determining state S, action A and measurement M sets as well as transition

model T and observation model O probabilities plus reward model values R in a manner leading

to good robot mission performance. Good is specified here as a POMDP model representation

and decision-making system leading to superior performance compared to non-probabilistic

(FSM, logic-based planning) or MDP based action selection as discussed in Section 5.2.

In the literature, typically one very specific mission is handcrafted as discussed in Sec-

tion 2.2.6, which means a human engineer determining at least most, if not all, crucial parts

of the model S,A,M,T,O,R. Such an approach can be interpreted as explicitly programming a

service robot mission model in a POMDP representation. For a generic, abstract level decision-

making system of highly versatile anthropomorphic service robots covering diverse skill do-

mains, potentially performing a wide range of missions, such an approach is cumbersome as

demonstrated next.

3.5.1. Systematic Design of Service Robot Missions

Given clear, written specifications or observations of humans conducting a mission, an engineer

first has to segment a mission conceptually, spatially and temporally.

A) Segmentation determines skill domains involved in various portions of a mission.

1. Skill domains are analyzed for the minimal set of features { f1, . . . , fn} providing suf-

ficient interaction with the world to perform the mission successfully. Mission model

grounding concerning state and observation space is provided by this set of features.

2. For each feature fi, filter discretization fg1:i has to be determined. Basically, major

parts of the resulting state space Sp are designed in this step. Discretization is closely

tied to fine grained temporal and spatial segmentation of typical courses of events in

a mission. In features which do not have a spatial aspect, such as interacting human

intention, relevant distinctions are only conceptual and temporal.

3. Segmentation of contiguous courses of events can be performed considering three aspects:

• Available self-contained subtasks in the action library

• Events which may transfer one discretized feature state cxi into another cx j

• Points of event branching in a mission, controlled by explicit decision making of the

acting agent

Resulting action choices Ap have to be optimized, until a minimum set is found that can

compose all relevant courses of events in the mission.
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4. As a result, the preliminary primary state and action spaces Sp,Ap can be compiled.

5. Finally, as observations are closely tied to states in the presented modeling concept, a

preliminary observation set Mp can be added.

B) Dynamics model portions are highly specific to the POMDP formalism. Determining

appropriate values for T,O,R is even more elusive than S,A,M when modeled manually.

1. Compilation and probabilistic representation of primary stochastic effects has to be per-

formed first. Each state-action pair (si,ak) ∈ (Sp×Ap) is analyzed for relevant effects,

when performed by a generic humanoid agent (human or robot). Relative frequencies of

different stochastic outcomes of a single pair (si,ak)→ (p(s′1|si,ak), . . . , p(s′n|si,ak))

are either derived from explicit mission specifications or human user trials. With |s× s×
a| probabilities in a transition model, manual design would be infeasible even for the most

simple missions if a) in typical missions the vast majority of probabilities would not be 0

and b) items p(s′j|si,ak) could not be grouped into sets of i, j,k. Sparsity arises simply

from the fact that execution of an action ak in a certain state si can and will causally not

lead to most other states s′r := p(s′r|si,ak)> 0: |r|<< n.

Grouping means assigning several transition probabilities while considering a single ef-

fect. Typically, grouping along features, thus subsets of S = Ff eat1 × . . .×Ff eatm , is

possible as most actions are invariant outside their primary feature-state space. For ex-

ample, expressing an utterance will never change the location of the agent himself. A

toolset for grouping along this and other characteristics is discussed in Section 3.6. A

classification scheme for primary stochastic action effects in typical household tasks is

given in [87].

2. Determining secondary stochastic effects requires an extensive model and understand-

ing of robot skill behavior characteristics. These may either be available from in-depth

analytical investigations for simple skillls or be acquired from empirical studies. Sec-

ondary effect probabilities are only valid for a specific type of robot and skill compo-

nent. Those effects may, for instance, arise from imperfect planning, actuation variance,

hardware limitations (such as bad hand compliance or little friction) but also perception

feedback which is directly processed in low-level control such as navigation. Grouping

is also applicable in most cases, here. Examples of such secondary effects are shown

in Figure 3.17. As a result, error states Se have to be introduced (see Section 4.12 for

examples).

97



3. Modeling Probabilistic Decision Making by Service Robots with Multiple Skill Domains

3. Adding error states resulting from secondary effects leads to the state space S := Sp∪SE .

4. Determining additional error-state recovery actions AE and information gain actions AI ,

extends Ap to the full set A := Ap∪AE ∪AI .

5. To finalize the transition model, including SE , AE and AI , transition probabilities have to

be normalized as well as primary and secondary effect probabilities merged. Furthermore,

transition models for AE and AI have to be determined.

6. Next, the observation model can be generated using techniques outlined in Section 3.3.

7. Reward model costs (negative rewards) of each action are added to R, based on duration,

effort and annoyance potential to interacting humans.

8. Finally, reward-model goals (positive rewards) are added to R, reflecting desired interme-

diate and end states of potential courses of events.

To verify a model, policy computation can be followed by policy visualization and analysis

as discussed in the next Section. Furthermore, policy simulation can give additional insight,

leading to model parameter refinement before testing decision making on the real robot. In

summary, the manual process is cumbersome, error-prone, imprecisely specified - and com-

pletely infeasible for more complex missions. Thus, development of an automated process is

mandatory, with stages inspired by the manual process. It can be accomplished by means of

automated learning from recorded human demonstrations as discussed in detail in Chapter 4.

3.5.2. Mission Design Analysis by Policy Visualization

Policy computation from an explicit model by means of approximate value iteration, discussed

in Section 2.2.5, provides a value function Γ, which is a set of linear functions α defined

over the whole belief state space simplex. The linear function αi with the highest expected

future utility value at a given belief (point) b denotes the ideal action choice at that belief:

αmax(b) = argmaxi(αi ∗b).

Visual analysis of a value function can give insight into action selection characteristics as

boundaries in the belief space indicating different optimal actions at two distinct beliefs can

be shown. However, it is difficult to achieve because of high dimensional belief states. Value

functions can be plotted directly over the |S|− 1 dimensional belief simplex with their utility

value utility(b(s1), . . . ,b(s|S|))= valf(b(s1), . . . ,b(s|S|)). Naturally, only |S|= 2 and |S|= 3
can be plotted easily with a straightforward scheme, as shown in Figures 2.12, 2.13, 3.19.
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Figure 3.18.: Adaptations on the PolarEyez concept for StarViz. Plotting points in n-D (top), adaptation

to the shape of the belief simplex (center). Mapping of corners of the belief simplex onto

star rays (bottom left) and domain space lost to simplification (bottom right). - [105]

Colors denote actions represented by each linear function. The color with αmax with the highest

utility at ~bt represents the optimal action choice: ∀α j : αmax ∗~bt ≥ α j ∗~bt .

Such a policy visualisation can be used to determine near which beliefs a change in action se-

lection occurs: |~b1− ~b2|< ε : amax(b1) 6= amax(b2). It also shows which actions are chosen

in the corners of the simplex, representing beliefs with full state confidence, thus basically the

fully observable MDP aspect of the POMDP. Furthermore, it can be noticed if certain actions

are amax only in very small regions of the belief space and thus rarely selected. Such infor-

mation is important when assessing if a mission might be executed roughly as intended. While

such a visualization can also be used for |S| > 3, only |S| = 3 subspaces of the simplex can

be visualized with such an approach, losing all other gradient information in non-visualized di-

mensions. However, with simple beliefs with relevant belief probability values in just 1-3 states,

pb(si) >> 0 : |i| ≤ 3 and relevant α gradients also restricted to these dimensions, subspace

visualization can give critical insight into action selection behavior.

When dealing with more evenly distributed beliefs and more complex α gradients such

straightforward visualization is insufficient and on the contrary may give a false sense of insight.

Therefore, a visualization technique StarViz, able to handle more dimensions by exploiting reg-

ularities of linear functions and its convex maximum was developed [105]. It is based on the
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Figure 3.19.: Illustration of a 3D slice of a POMDP policy with 6 states in the original 3D policy visual-

ization (left) and in StarViz (right). StarViz contains more relevant information. - [105]

PolarEyez concept [69], reducing n-dimensional function plotting into a plane by sampling the

high-dimensional domain from a focal point outwards and reducing these values onto a sector

of a 2D polygon with 2n corners.

As the belief space simplex has a distinct form because of ∑i pb(si) = 1, the PolarEyez

projection scheme has to be altered as shown in Figure 3.18. However, complications arising

from this are balanced by the simplification introduced by all function elements being linear.

Finally, instead of colors representing function values (utility), utility values are plotted on the

z-axis and instead corresponding actions are denoted by color as in the simple schemes as illus-

trated in Figure 3.19. Automated filtering of dimensions with least belief probability reduces

visualization to a given number of dimensions (typically n ≤ 12), and the shown dimensions

are chosen automatically.

A chosen belief point forms the focal point of the diagram and gradients of the belief towards

corners of the simplex for the most relevant dimensions (states) form rays in this star-like dia-

gram. Hence, the most important aspect, changes in action choice around a belief, for instance

becoming more certain about the world being in one or another state, can be seen in this diagram

in a high-dimensional context. Nonetheless, as can be seen in 3.20, policies can be so complex

that they are still difficult to read in this representation even by an expert. Yet, even such visual-

ization is still a simplification of high-dimensional gradients of a large number of value function

components (the set of α). Those typically range in the hundreds or thousands even with highly

pruning approximate value iteration algorithms for realistic missions as discussed in Section 5.
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Figure 3.20.: 6D StarViz visualisation of policies of models with more than 20 states. -

Consequently, fully manual design of models and resulting policies is infeasible - the whole

process has to be automated by a more natural (to the human) way of model and policy acqui-

sition by the artificial system.

3.6. Functional Expressions Assisting Model Compilation

For handling abstract knowledge and learning from demonstrations, an intermediate functional

expression processing system is presented. It mediates model value assignments by exploiting

grouping, mentioned in Section 3.5.1. It reflects the characteristic of individual model aspects

not only concerning a single 3d-tensor (T ) or matrix (O,R) entry, but whole rows, columns,

diagonals or even blocks. State spaces S being composed of feature state spaces Fi pronounces

this tendency. A simple example in Table C.1 illustrates such a characteristic.

Consequently, there is a need for a toolbox of expressions handling such interdependencies,

focussing model compilation on transition, observation and reward characteristics alone [37].

Processing flow in this toolbox is depicted schematically in Figure B.1. Basic expression pro-

cessing is aligned along specific POMDP structure properties introduced by the way state and

observation grounding (discussed in Sections 3.2, 3.3) are handled in the system:

• f eat1, . . . , f eatn, a set of utilized skill domain features.

• Fi := {c1, . . . ,c| f eati|},c j = f f eati(Es), a feature with instantiated discretization and

category set (feature state space).

• FS := F1× . . .×Fn, the set of feature state tuples (cx1 ∈ F1, . . . ,cxn ∈ Fn).
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• S :=Ψ(FS), a surjective mapping FS→ S, with some feature state tuples f sb1, . . . , f sby

combined onto a single state s := {∀ f sbx ∈ FS|ψ( f sbx, f sb1)}⇒ f sbx ∈ s.

• A := a1, . . . ,ak, a set of abstract actions.

• MFi∼Fi, a set of feature state measurements. Measurements are directly related to states

by means of features: feature categories define a state and can be measured.

• FM := (MF1× . . .×MFn), the set of feature state measurement tuples.

• M := Ψ(FM) corresponding to Ψ(FS).

• O := ∀M,∀S : p(m|s), observation-state correlation probabilities are conditionally in-

dependent of actions.

• R := ∀A,∀S : r(a,s), rewards are independent of measurements.

• πFi : FS→ Fi, πFi( f s) := cxi , a feature state selection in a feature state tuple.

• π̃Fi : S→P(Fi), π̃Fi(s) := {πFi( f s)| f s ∈ s}, selection of all feature states within one

feature assigned to a certain state.

• λv( fi), value entry corresponding to feature state fi ∈Fi in the respective sub-model with

fi = cxi .

• Mat is a |row|× |col| matrix, with

– Mat(row,col), as an entry.

– Mat(row) := Mat(Mat(row,col1), . . . ,Mat(row,colm)), a row-vector.

– ‖Mat ‖row, a function to normalize sums of rows in Mat with

‖Mat ‖row (row,col) :=


Mat(row,col)
‖Mat‖1

f or ‖Mat ‖1 6= 0,
1
m else

and ∀row,∀col : Mat(row,col)≥ 0.

As shown in Figure B.1, for each feature, there are |A| different |FS| × |FS| matrices, one

|FM| × |FS| and one |A| × |FS| matrix Mat for internal processing and computation of ex-

pressions. All matrices are initialized with 0 before any expression is processed as described

further below. After expression processing has generated all values in these internal matrices

Mat, final POMDP model components T,O,R are computed in the following manner.
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Transition model T (s,a,s′) is represented by a distinct Mat T a
Fi

for each feature Fi and

each action a ∈ A. Rows represent origin states f s ∈ FS in the set of all feature state tuples

while columns represent effect states of a transition f s′ ∈ FS. Transition probabilities in the re-

sulting POMDP considering the final state space S are computed by multiplying row-normalized

transition frequency value entries in each feature transition model TFi . In the typical case, Ψ is

the identity FS = S, and computing transition probabilities (Formula 3.30) is straightforward:

T a(s,s′) =
n

∏
i=1
‖ T a

Fi
( f s, f s′) ‖row [3.25]

P(s′|s,a) =‖ T a(s,s′) ‖row [3.26]

In contrast, when Ψ is not the identity, |FS| > |S|, computing transition probabilities is more

complicated. The role of Ψ is to combine states, resulting from the product of feature state

spaces F1× . . .×Fn, which do not have to be distinct in a mission.

Reducing the number of effective states leads to faster computation of policies as discussed in

Section 2.2.5 and also faster online belief computation and policy queries. In case of more com-

plex missions, policy computation even with the most efficient algorithms may only be feasible

after reducing the effective state space. While a resulting transition model requires probabilities

defined on the reduced state space S, in the TFi , transition frequencies are defined only on the

full state space FS. with respect to a transition model this means that transition values in rows,

reflecting origin states πFi( f s), f s ∈ s and columns reflecting effect states πFi( f s′)| f s′ ∈ s′

have to be combined. Combining effect states f s′ (in columns) is trivial, as it is well defined:

all resulting transition frequencies (probabilities) can be added up for all f s′ ∈ s′:

P(
⋃

f s′∈s′
f s′| f s) = ∑

f s′∈s′
P( f s′| f s) [3.27]

Combining origin states is not straightforward, as their conditional dependencies P( f s,a) are

not known from the existing model. This implies that their weight ω f s concerning a set of

transition rows is unknown and thus probability distributions reflecting rows cannot be merged

with a clear quantification of the share of each row. A solution is to derive the weight ω f s
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for merging rows from an additional parameter λcom which is assigned to each cx ∈ Fi in the

model. With this additional parameter, a final transition model can be computed:

comFi( f s) =

λcom(πFi( f s)) f or‖π̃Fi(s)‖> 1

1 else
[3.28]

ω f s =
n

∏
i=1

comFi( f s) [3.29]

T a(s,s′) = ∑
f s∈s

ω f s ∑
f s′∈s′

(
n

∏
i=1
‖ T a

Fi
( f s, f s′) ‖row

) [3.30]

P(s′|s,a) =‖ T a(s,s′) ‖row [3.31]

Determining well-defined λcom manually is difficult except for very simple Ψ (e.g. combining

only two f s) as it correlates to implicit model complexity reduction. Therefore, combining

f s is mostly suitable to automated model generation with integrated checks for conditional

dependencies. All mission models discussed in the context of experiments in Section 5 use a Ψ

that is the identity unless explicitly stated otherwise explicitly.

Observation model O(s,m) is represented by a distinct Mat OFi for each feature Fi. Prob-

abilities are computed equivalent to T . With Ψ being the identity final probabilities can be

computed directly:

O(s,m) =
n

∏
i=1
‖ OFi( f s, f m) ‖row [3.32]

P(m|s) =‖ O(s,m) ‖row [3.33]

With non-identity Ψ, weighting factors ω f s also utilized for transitions have to be applied:

T (s,m) = ∑
f s∈s

ω f s ∑
f m′∈m′

(
n

∏
i=1
‖ OFi( f s, f m) ‖row

) [3.34]

Reward model R(s,a) is represented by a distinct |FS|× |A| - Mat RFi for each feature Fi.

The reward model can be computed with an identity Ψ:

R(s,a) =
n

∏
i=1

RFi( f s,a) [3.35]

or with combined states:

R(s,a) =
1
|s| ∑

f s∈s

(
n

∏
i=1

RFi( f s,a)

)
[3.36]
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3.6. Functional Expressions Assisting Model Compilation

Basic expression processing provides a compact input interface to manipulate entries in

the internal model matrices Mat. By these means, grouped characteristics arising from the

feature-derived structure of the state space can be exploited. A rule is defined by an access

mask indicating table group G, feature table Fi, state masks mkFS, mkFS′ , action mask mkA
and observation mask mkM , a mode and an arithmetic expression. The access mask selects

matrices and their matrix elements to which the expression is applied. One or several table

groups G are selected, each of which is composed of a set of tables, one for each feature. Either

a single table or all within a group can be selected. Next, rows and columns in each selected

table are picked by state, action or observation masks. A mask can select all, none or all except

one feature state/measurement rows or columns corresponding to a feature, for example:

mkFS = { f s ∈ FS |πF2( f s) = c4 ∈ F2∧πF4( f s) 6= c2 ∈ F4} [3.37]

This leads to all feature state tuples being selected with:

(c1∨ . . .∨ c|F1| ∈ F1)∧ (c4 ∈ F2)∧ (c1∨ . . .∨ c|F3| ∈ F3)∧ (c1∨ c3∨ . . .∨ c|F4| ∈ F4)

[3.38]

By these means, expressions to manipulate transition effect frequencies can be adressed:

rule(G,Fi,mkFS,mkFS′,mode,exp),G = a (single action) or G = A (all actions) [3.39]

The internal observation and reward model values can be addressed accordingly:

rule(G = O,Fi,mkM,mkFS,mode,exp) [3.40]

rule(G = R,Fi,mkFS,mkA,mode,exp) [3.41]

Convenience operations like clearing all corresponding columns or all corresponding entries in

feature tables MatFi except those currently addressed, can be flagged in the mode. Expressions

that manipulate entries can either be numerical values directly written into entries or different

kinds of arithmetic expressions. The latter include standard arithmetic expressions like addition

and multiplication, but also more complex operations like computing discrete Gaussians over

rows and columns. A detailed list of available expression can be found in [37] and [127].

By means of this expression-processing system, complex mission models can be composed

from a limited set of instructions, which in turn are either hand modeled, generated by inference

on background knowledge as discussed in the next Section or generated in the PbD process dis-

cussed in Section 4. Manual mission modeling for stand-alone evaluation of the execution-time

decision-making architecture as discussed in Section 5.2 is only feasible with such a processing

system. In automated mission model generation, both the analysis of human demonstrations

stages (see Section 4.6) as well as complementary background knowledge inference (see Sec-

tion 4.10) generate these intermediate rules to compile a final POMDP mission model.
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3.7. Description Logic Based Background Knowledge

In contrast to settings with specific, one-time handcrafted missions as discussed in Section 2.2.6,

more generic household settings require large numbers of different missions. Those typically

include overlapping aspects, hence it is necessary to provide a representation and storage con-

cept for characteristics covering several missions and thus multiple mission models.

This Section outlines a system organizing such long-term mission knowledge for service

robots. The system supports model PbD, discussed in Section 4.10.

3.7.1. Scope of Background Knowledge for Mission Model Generation

In contrast to most typical background-knowledge systems, discussed in Section 2.6, incorpo-

rating inferred information during execution time, inference is performed offline during mission

model generation in the presented system. Therefore, environment characteristics invariant be-

tween different missions, as outlined in Section 3.5, are most suitable to be exploited. There are

three basic aspects to consider:

1. POMDP model component S, A, M, T , O or R

2. Environment invariance

3. Agent invariance

Some POMDP model components are more fundamental than others. As outlined in the previ-

ous and this Chapter, states S and actions A are the most basic model properties, grounding the

model in the world. Observations M, transition model T and reward model R are dependent on

states and actions. The observation model O can be interpreted as another layer of dependency.

Accordingly, properties related to S and A alone typically have the highest invariance.

Environment invariance applies to aspects valid in any setting, for example when a robot

manipulates any object together with a human, a situation may result it has never encountered

previously, so in all cases additional stochasticity has to be added. In contrast, for instance, any

local manipulation action will not directly influence a remote object, which reduces possible

target states.

Agent invariance can be considered in two ways: a) characteristics independent of the agent

(human or type of robot) and b) characteristics specific to an agent but valid in many similar

situations (for instance, a service robot with limited perception and non-compliant manipulators

is always at risk to jam itself when manipulating furniture).
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3.7. Description Logic Based Background Knowledge

An exhaustive analysis and derived taxonomy of invariance is beyond the scope of this thesis,

but some specific properties can be determined based on these insights. Those types of mission-

invariant aspects have a relationship to some mission-specific properties. The following list of

aspects is considered in the presented system, with the former properties being mission-specific

and the latter correspondingly derived from background knowledge [124]:

1. Related to A: Action cost negative rewards RC.

2. Related to A: Robot-capability-specific error effect states SE .

3. Related to A,S: Robot-capability-specific error effect probabilities TE .

4. Related to A,S: Generic error recovery actions AE .

5. Related to S,M: Information gain actions AI .

6. Related to A,S: Information-gain action effect probabilities TI .

7. Related to S,M: Skill component perception characteristics O.

All these aspects are specific to an agent but similar across different missions. Furthermore,

most characteristics are environment invariant to a large extent and exploit fundamental model

component dependencies. As discussed in Section 4.10, these robot-specific model properties

cannot be learnt from analysis of human demonstrations, therefore robot scene analysis and trial

learning has to be used to acquire these properties. Subsequently, preliminary models acquired

from analysis of human demonstrations can be completed using that knowledge.

3.7.2. Description Logic Based Knowledge Processing

Background knowledge spanning multiple missions is represented by description logic (DL)

based OWL [4] axioms, horn clauses in the form of SWRL rules [57], [55], [58], and additional

OWL preprocessing rules expressed in OPPL [62]. Knowledge represented by axioms, clauses

and rules can be stored persistently. It is used by inference and rule-processing engines during

learning as well as POMDP model compilation [124].

Given an existing, persistent knowledge base and a preliminary POMDP model as input, DL

inference, SWRL and OPPL rule processing generate properties completing the model. The

persistent knowledge base represents a DL ontology containing abstract concepts of entities in

POMDP model components. Such entities may be states s, actions a, observations m, transitions

t or rewards r. After a preliminary POMDP model is supplied to the inference engine, new

model component entity instances are generated in the ontology.

107



3. Modeling Probabilistic Decision Making by Service Robots with Multiple Skill Domains

Figure 3.21.: Schematic view of the upper hierarchy levels of the ontology. - [125]

When confronted with a new preliminary model, entities s,a,m, t,r representing components

in this model are realized and classified in the persistent ontology. Realization means that each

inserted model entity is matched with a concept entity in the persistent ontology. Matching is

performed by analyzing model entity description tags as described in Section 4.9. Classification

generates new concept entities representing whole model feature state spaces.

Next, OPPL rules are processed to generate additional entities. Hence, after realization, an

ontology is analyzed for entities from which related new entities can be derived. For example,

given a set of action entities A, new error state entities SE can be added.

Subsequently, after adding new entities, the DL reasoner Pellet [140] is able to infer new

related entity properties automatically, for instance by linking existing transition entities t with

new state s and action entities a. In this inference stage, both OWL semantics as well as

SWRL rules are applied by Pellet. Afterwards, new POMDP model knowledge exists in the

extended, non-persistent ontology. All relevant instance entities directly correspond to the by

now enhanced POMDP model. These instances can then be assembled and exported into a final

POMDP model. Next, the knowledge ontology hierarchy is outlined, followed by examples

describing axioms and rules for concepts as well as entities.

108



3.7. Description Logic Based Background Knowledge

Figure 3.22.: Excerpt of persistent TBox knowledge in an OWL ontology editor. - [124]

3.7.3. Service Robot Knowledge Ontology Hierarchy

As always in DL, the root of an ontology – the universal concept – is >. Below the root,

concepts describing the tangible world and concepts describing POMDP model components are

distinguished as sketched in Figure 3.21. Instances and their respective properties are expressed

within that hierarchy as highlighted by the following examples. A red cup instance entity is

described by:

Cupv PortableOb j vMovableOb j v Ob ject v TangibleT hingv> [3.42]

Red vColor v T hingPropertyv TangibleT hingv> [3.43]

Cup(CupRed),Red(CupRed) [3.44]

In this case, Expression 3.42, a DL axiom describes the concept Cup being an Object while

Expression 3.43 describes Red being a Color. Consequently, instance CupRed is both an Object

and a Color as given by Expression 3.44. A goto PullStartPos is an instance described by:

Gotov Actionv POMDPModelComponent v> [3.45]

Gotov (∀destinationRegion.Location) [3.46]

Gotov (∃reward.{−1.0}) [3.47]

Goto(GotoPullStartPos) [3.48]

destinationRegion(GotoPullStartPos,PullStartPos) [3.49]

Goto is an Action as described by the DL axiom given by Expression 3.45. A certain target

Location is linked as given by Expression 3.46. Every Goto has a corresponding reward value

defined by the anonymous concept stated in Expression 3.47. The instance is formed by the DL

fact stated in Expression 3.48 and location instantiated by Expression 3.49.
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Figure 3.23.: Illustrative example: Reward cost rules for actions involving different effort. - [125]

3.7.4. Modeling Service Robot Mission Knowledge

No state or action instance entities exist in persistent knowledge. Instances are realized on

request. Thus, domain characteristics are defined by POMDP Model Component concepts.

Hence, knowledge valid in a skill domain for multiple missions is encoded as DL axioms.

POMDP Model Component Concept Examples show various axiom uses.

An example for a feature state space F concept is Ob jectState∼ Fob ject−state, (Figure 3.22):

Ob jectStatev Statev POMDPModelComponent v> [3.50]

An example for an action type concept A is Grasp:

Graspv Actionv POMDPModelComponent v> [3.51]

Graspv (∃relatedOb ject.MovableOb j) [3.52]

For DL axioms describing transitions concepts T , the DL modeling technqiue Concept Prod-

uct [119] ◦ is necessary as outlined by the following axioms and facts:

RobotPosev (∃inSet.{RobotPoseSet}) [3.53]

cannotModifyAny◦ inSet− v cannotModi f yIn f erred [3.54]

Set(RobotPoseSet) [3.55]

Given these axioms and facts, a transition concept for Grasp can be defined:

Graspv (∃cannotModi f yAny.{RobotPoseSet}) [3.56]
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This axiom expresses that a Grasp action will never change the robot location concerning mo-

bility. Modeling transition probabilities is discussed in Section 4.10.

A reward concept R can be expressed by:

Graspv (((∃relatedOb ject.PortableOb j)u (∃reward.{−1})) [3.57]

t((∃relatedOb ject.¬PortableOb j)u (∃reward.{−2}))) [3.58]

This DL axiom states that costs of grasping non-portable objects are higher than those of grasp-

ing portable objects. Further illustrative examples are depicted in Figure 3.23.

Instance generating OPPL rules are applied after preliminary model input. Table C.2

shows an example of such an OPPL rule.

Knowledge acquisition can be differentiated into three different types:

1. Initial bootstrapping of central concepts in the upper layers of the ontology

2. Learning persistently stored concepts and corresponding parameters incrementally

3. Learning non-persistent knowledge for missions on-the-fly

Because initial bootstrapping has to be performed only once, with a resulting ontology re-

maining a valid skeleton for all missions, design by human experts is feasible. However, auto-

matic completion of axioms based on those created by an expert can be performed by a boot-

strapping process, as discussed in [124]. On the other hand, more specific persistent knowledge

should be added incrementally to such an initial skeleton and based on experience as discussed

in Section 4.10.3. Non-persistent knowledge for specific missions, generated by refinement

stages during the PbD process, is added on the fly. Based on such knowledge, preliminary

POMDP mission models, acquired by PbD can be completed as outlined in Section 4.10.

3.8. Modeling Conclusions and Discussion

This Chapter has presented a concept of how to model abstract level, strategic action selec-

tion on a service robot with multiple, highly diverse skill domains. Main points addressed are

modeling states s representing classes of similar situations Es, deriving observation uncertainty

p(m|s) from perception peculiarities as well as modeling abstract actions a as complex tasks

and determining their effects p(s′|s,a).
Two major challenges remain, however: model complexity and model parameter acquisition.

The issue of model complexity could be solved by increasingly crude approximations of model
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properties in a hierarchical manner. Such an approach could make larger, complex missions

feasible. While such an investigation is beyond the scope of this thesis, current research in the

community is promising for tackling that challenge.

On the other hand, the issue of model parameter acquisition is more immediate even for

simple missions. Comfortably generating a specific set of S,A,M,T,O,R sufficiently reflecting

a certain robot mission, is non-trivial but necessary to enable abstract-level autonomous decision

making in practice. Hence, a PbD solution tackling that challenge is presented in the next

Chapter. In summary, this Chapter is both a presentation of the grounding and the resulting

model output of the PbD process, and a motivation why such a learning process is indispensable.
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4. Programming by Demonstation of Probabilistic Decision
Making

Manually and explicitly programming complex probabilistic decision-making models for ser-

vice robot missions covering multiple skill domains in everyday settings is impractical, as ex-

plained in the previous Chapter. Instead, recording and analysis of natural human demonstra-

tions of these missions can be conducted in order to generate decision-making mission models

automatically.

The aim is to derive a model covering mission characteristics and symbol grounding as in-

troduced previously, which are in turn suitable to be executed by the online decision-making

system. Accordingly, the execution time rational agent cycle perceive – decide – act is comple-

mented by a learning stage process record – process – model.

While real execution-time learning is not considered within the framework of this system,

model refinement by assessment of situations encountered during mission execution could be

included. Thus, the conceptual architecture does not prevent execution-time learning and po-

tential execution-time model updates with online policy recomputation. In the following, the

discussion distinguishes clearly between learning and execution stages, only for matters of fo-

cussed investigation.

Mission model PbD is a multi-stage process incorporating algorithmic procedures that use

conceptual definitions presented in the previous Chapter. Three main groups of stages can be

distinguished:

1. Recording, segmentation and abstraction

2. Model generation and model space exploration

3. Autonomous model refinement

The first portion of the process deals with transforming demonstration data into a representa-

tion compatible with mission model level of abstraction. In the next portion, autonomous model

analysis and a resulting interactive dialog seek to acquire missing information from additional

demonstrations. Finally, autonomous model refinement utilizes highly diverse methods to com-

plement the model with information that is robot-specific and cannot be learnt from human

teachers.

113



4. Programming by Demonstation of Probabilistic Decision Making

4.1. Recording Natural Human Demonstrations of Service Missions

Human demonstrations of service missions in the context of the presented system involve an

indoor scene, a number of manipulatable objects and at least one, at most two humans. One

human teacher takes the intended role of the robot, thus acting as the robot role demonstrating

actor (RR) while a second, optional human can take the role of humans interacting with the

robot in the mission, thus being the human interaction role demonstrating actor (HR).

By observing and recording demonstrations with perception components available during

mission execution, the robot is able to relate to the same aspects of the world while learning

as during execution (outlined in Section 3.2). By these means, state and action grounding is

consistent. Additionally, the setup becomes flexible and natural: a robot observes a demonstra-

tion scene actively, following demonstrating humans with cameras on its neck and potentially

its mobile base. To humans it appears as if a studying, physical human-like agent actively ob-

serves a teacher, thus making it easier to understand on which spatial parts of the demonstration

observation attention is focussed.

Compared to dedicated recording centers and smart rooms, the main disadvantage is a lack

of observation precision. Yet, on the one hand, mission observation is coarse-grained compared

to skill PbD. Hence, there is less need for highly precise measurements. On the other hand,

additional external sensors can be integrated into the presented concept as the robot is modeled

just as a collection of perception skill components. Therefore, integration of further sensors,

like headsets for speech recognition – as used in the presented system – wireless data-gloves

retrieving human finger-joint angles, force sensors and external cameras for object localization

is suitable, leading to a mixed robot and smart room based observation setup.

In the setup utilized in the presented system and shown in Figure 4.1, the following scene

properties are observed with perception-skill components presented in Section 3.1.1:

• RR world-relative spatial pose RR.pose

• RR symbolic body motion activity RR.act

• RR spoken utterance RR.utt

• HR world-relative spatial pose HR.pose

• HR symbolic body motion activity HR.act

• HR spoken utterance HR.utt

• List of world-relative known object poses Ob js.pose
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Figure 4.1.: Demonstration setup with observed scene properties annotated. Gloves are worn in this

demonstration, discussed in Section 5.5, to improve in-hand object localization. - [131]

Hardware-specific setup details (a setup is depicted in Figure 4.1) are discussed in Section 5.1.

To keep important spatial portions of demonstrations in the robots field of view, there are two

mechanisms of attention. Primarily, the robot actively follows the RR with its head, to keep the

RR’s pose in the center of its field of vision. However, when objects or an HR are detected in the

RR’s vicinity, focus is shifted to keep both in the field of view during RR object manipulation

or RR-HR interaction. Furthermore, a mechanism allows the RR to perform pointing gestures

signalling the observing robot to shift its focus of attention as shown in Figure 4.2.

Apart from attention control, there is no actuation performed by the robot during demon-

stration observation. Perception skills continuously record data as described in Section 3.1.1.

Perception skills have different temporal frequencies, and utterance has an event-like tempo-

ral quality. Therefore, each demonstration recording data point obs(t) contains the last valid

information of a perception skill. Frequencies differ significantly with human-pose tracking

reaching 20 Hz, localization of small objects around 3 Hz, and localization of furniture approx-

imately 0.3 Hz. Processing stages discussed in Sections 4.2 and 4.3 consider these differences.

Demonstration observations result in time series of recording data points, a trace, Obs:

Obs := (obs(t1), . . . ,obs(tn)) [4.1]

obs(t) = (RR.pose(t),RR.act(t),RR.utt(t),

HR.pose(t),HR.act(t),HR.utt(t),Ob js.pose(t)) [4.2]
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Figure 4.2.: Illustration of the attention mechanism consisting of two special gestures: first pointing at

the own eyes and then left or right. - [125]

Conceptually, some of the components reflect state aspects in the mission, while others reflect

actions. State aspects of environment situation Es are represented by RR.pose(t), HR.pose(t),
HR.act(t), HR.utt(t), Ob js.pose(t)while actions reflecting agent activity Ga are represented

by RR.act(t), RR.utt(t) and ∆(RR.pose(t)). By these means, both regarding Es and Ga,

skill domains of mobility, natural human-robot interaction and object manipulation are repre-

sented [132]. Consequently, recordings results in a trace representing a mission demonstration:

obs(t) =(Es(t),Ga(t)) =

(RR.pose(t),HR.pose(t),HR.act(t),HR.utt(t),Ob js.pose(t)),

(∆(RR.pose(t)),RR.act(t),RR.utt(t)) [4.3]

While the process stages presented below are mostly generic and typically scale easily to new

scene properties, such as contact forces, not included above, discussion will refer to listed prop-

erties. This is done because those properties already incorporate a wide set of skill domains and

explanation is better suited using tangible properties. Scalability of process stages to new scene

properties is discussed where applicable, otherwise it is either assumed to be trivial or not ap-

plicable, for instance if a single scene property or skill domain is the focus of discussion. In the

following, a set of multiple, independent mission demonstrations Demo := (Obs1, . . . ,Obsp)

is assumed.
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4.2. Generating State Descriptions Based on Demonstrations

While demonstration traces already represent Es and Ga, structured along skill domains, no

explicit state or action set and grounding exists at that point. Hence, as motivated in Sec-

tion 3.2.2, feature state space and corresponding input domain discretization has to be in-

ferred from demonstration data [147]. Determining suitable feature discretization applies to

RR.pose(t), HR.pose(t) and Ob js.pose(t)while considering delta(RR.pose(t)), RR.act(t)
and RR.utt(t) in the presented system. It is achieved by spatially clustering filtered data point

components across multiple input values as discussed below. All illustrative Figures in this

Section show data regarding mission CESM-1, which is discussed in Sections 5.1.2 and 5.3.

Considered resulting features are:

• f f eatpose(RR.pose)→ csel f−pose
x

• f f eathuman(HR.pose)→ chuman−pose
x

• f f eatob js(ob j.poses)→ cob jposes
x here with ob js := f urni− state∨ small−ob j− state

4.2.1. Data Preparation

Raw trace data points contain pose information as a 6D-vector (x,y,z,r, p,θ). Irrelevant di-

mensions can be pruned when values do not change significantly over all traces, such as human

or furniture pose z,r, p in many cases. Yet, a small cup that is mostly manipulated on a table

may fall over, thus having a highly varying z value, which represents a distinct, significant state.

∀valxi ∈ dpose : f f eatpose ←

 /0 ∀obs(t) ∈ Demo : µ− ε < valxi(t)< µ + ε

valxi else
[4.4]

Therefore, small objects and furniture objects are usually represented in two different features:

• fsmall−ob j−state(ob j.poses)→ csmallob jposes
x

• f f urni−state(ob j.poses)→ c f urnposes
x

Data preprocessing can either filter predefined object symbol lists or perform size computations

for correct classification. Next, interpolation of trace data has to filter outliers and smooth tem-

poral as well as spatial gaps in recorded data. Outliers arise from noise of imperfect recordings.

Recorded poses that denote improbably high velocities, spatial leaps, in human and object poses

can be discarded:

∀Obs ∈ Demo, posexi(t) =

 /0 posexi(t)− posexi(t−1)> ∆possible

posexi(t) else
[4.5]
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Figure 4.3.: Raw data of one demonstration (left) and temporal interpolation (right). - [147]

In the system used for evaluation, detecting human pose outliers is easier because of much

higher data-point frequency compared to object localization. For robust clustering as described

in the next Section, irregularly sparse data episodes resulting from recording peculiarities have

to be interpolated. Linear temporal and spatial interpolation increases data point density without

significantly altering recorded information as illustrated in Figure 4.3:

∀Obs ∈ Demo,obs(t)←

posexi(t
′) posexi(t)− posexi(t−1)> ∆min−step

posexi(t
′) time(t)− time(t−1)> timemin−step

[4.6]

posexi(t
′) = posexi(t−1)+

posexi(t)− posexi(t−1)
2

[4.7]

Raw pose information is then augmented by derived attributes for each data point. RR.pose and

HR.pose data is augmented by a motion state (mos) attribute. It is derived by a preliminary

segmentation step based on pose difference, which is necessary to select suitable clustering

methods for different kinds of data points later on. Three types of motion state can be dis-

tinguished: standing, moving and walking. For a segment Tint := {t1, . . . , tn} of data points

obs(ti), t ∈ Tint , the motion state is standing when the maximum pose difference is below a

certain threshold ∆s, walking when above a threshold ∆w and moving when none of the other

two holds:

maxta,tb∈Tint |posexi(ta)− posexi(tb)|< ∆s⇒ mos(Obs(Tint)) = standing [4.8]

maxta,tb∈Tint |posexi(ta)− posexi(tb)|> ∆w⇒ mos(Obs(Tint)) = walking [4.9]

Segmentation starts with a single data point posexi(t) and if the point is classified as standing

or walking increases the window interval Tint until the motion state changes. Maximum inter-

vals with stable motion states are segmented and the rest is tagged as moving. Furthermore,

data points containing a certain human body activity or dialog state can be additionally filtered.

Figure 4.4 shows examples of filtered data.
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Figure 4.4.: Top left: Original data from five demonstrations. Filters clockwise: standing, human activity

"Grasp", walking. - [147]

Ob j.pose data is augmented by an object state attribute, while object motion states are

refined considering perception peculiarities. Object localization can be lagging because of

skill component performance or occlusions during manipulation demonstrations. Object pose

change timing is adjusted by matching RR.act manipulation activities in object vicinity. Ob-

ject pose changes during demonstration usually indicate a transport manipulation activity. If a

related RR.act was detected shortly before object pose changes, this manipulation activity is

assumed to be the trigger. Accordingly, the start of a change in object pose is set to that time

point, which is a form of temporal interpolation and an additional transport object property

added to data points during object pose change.

4.2.2. Recording Data Point Clustering

While clustering can be performed on an arbitrary number of dimensions, practical results are

best when dimensionality is reduced. Therefore, clustering is performed on (x,y), z and θ

independently which is consistent with the way state grounding descriptions are represented in

feature filters and manual category design as outlined in Section 3.2.

First, data point types are distinguished using augmented properties, such as activity filters or

motion state filters. Stationary and non-stationary poses represent distinct aspects in grounding

on the one hand and have different spatial characteristics on the other. In the way abstract mis-

sions are represented, state descriptions primarily arrange around stationary or quasi-stationary
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Figure 4.5.: Illustrative example: Considering several potential action effects a priori (top left). After-

wards: moved only a little bit, leading to a static transition (top right), stopped half way

(bottom left), successful arrival (bottom right). - [125]

environment aspects, while non-stationary aspects typically relate to actions. Yet, each environ-

ment situation has to be represented by a distinct state, even during action execution.

While on the abstract level with a discrete time representation, the state is in a limbo after

starting but not having finished an action, there has to be a distinct state representation after the

action terminates. In practice, for example with a stochastic robot goto action, it is typically

modelled by discrete regions as discussed in Sections 2.2.6, 3.2. Thus, the robot has to be in

a distinct region after the goto action terminated – if it moved only a little bit and got stuck

that may be the region in which it started, as illustrated in Figure 4.5, top right. Thus target

regions must represent states, but furthermore all potential transition areas have to be allocated

to a relevant state, in case an action terminates there as shown in Figure 4.5. The same principle

holds for manipulation and human-robot interaction and is implicitly considered in manual

feature modeling. Automatic feature generation, however, has to consider it using two distinct

steps:

1. Primary clustering on mos(obs(t))= stationary, with stationary∼ standing, non-moving

2. Secondary clustering on mos(obs(t)) = transfer, with transfer∼ walking, transport
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Such clear distinction enables application of different clustering methods that can account

for different spatial characteristics. While interpolation and preprocessing guarantee a certain

minimum density, stationary clusters have a high point density, but transfer clusters do not.

Clustering method choice accounts for these differences (see Section 2.3.1), applying DB-

Scan for dense stationary poses and k-means as well as EM with weighted k-quality measures

DB, SD and XB index, as discussed in Section D.2, for sparse transfer poses. The result is a

number ks of stationary and a number kt of transfer clusters for a set of observation Demo, with

unique data point (pose) assignment for each perception skill input domain.

4.2.3. Category Boundary Computation

While a set of clusters represents a feature state space, including approximate spatial extent

of respective categories (feature states), precise discretization cannot be immediately deduced.

Execution-time feature mapping as defined in Section 3.2 is able to handle discretization de-

scriptions based on multiple rectangle pixels or single rectangles. Therefore, a category bound-

ary delineation has to be computed based on computed clusters. For automatic generation, the

focus was on the single-rectangle representation. These are typically expressive enough, sim-

ple to store and understand, allow fast belief computation and can be used for evaluation of

automatic against manual expert generation.

However, finding a suitable set of non-overlapping, adjoined multi-dimensional rectangles

(boxes) representing clusters – as required by execution-time state computation – is not trivial.

Both stationary and transfer clusters have to be considered and mostly enclosed by the set of

all boxes. The goal is to compute a flexible, grid-like, topological partition of the space. It is

achieved by using k-d-trees, a type of Binary Space Partitioning, to partition spaces hierarchi-

cally. First, clusters have to be represented by a minimal cluster enclosing box (CEB), which

contains (1−ε)∗|X | cluster points. ε was determined empirically to be 0.02. By these means,

extreme outliers can be ignored when computing a CEB. As CEBs are not adjoined, the aim of

boundary computation is to find suitable adjoined category limit boxes ci, one enclosing each

CEB bi.

First, upper and lower CEB neighbors unxk(bi), lnxk(bi) in each dimension xk are computed.

For a given CEB in a dimension xk, the lower boundary of the upper neighbor is closest to, but

not less than the upper boundary of that CEB with the lower neighbor defined accordingly, as

shown in Algorithm 2 in Appendix B.

Starting with one large box enclosing all CEBs, separating planes p are computed recursively,

splitting one limit box l off at each time. At each step, a set of candidate separating planes is

computed between each CEB and its upper neighbor pair incorporating the standard deviation
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Figure 4.6.: From top left to bottom right: standing data for clustering, data clustered with DBscan, k-

means clustered transition regions, regions without transitions, regions including transitions

and final regions. - [147]

of both corresponding clusters . By these means, higher space requirements of spread-out clus-

ters can be accounted for. In case another cluster intersects with the separator candidate, this

separator is dropped . If no valid candidate remains in this recursion step, CEBs have to be

shrunk, enclosing fewer cluster points (1−∆X )∗ |Xcurrent |, until one is found . However, if a

certain εX limit with enclosed points |(1− εX )∗Xcluster| is surpassed, boundary computation

terminates, indicating inappropriate clustering parameterization.

From the remaining set of candidates pxk,i, a best separator is chosen, by application of two

metrics. Weighted direct neighborhood ωh computes all CEB neighbors bh ∈ Bh to a separator

candidate that are not partially occluded by another CEB. Influence of bh on pxk,i is computed

by its average distance. Total direct neighborhood quality is the influence weighted sum of

minimum distances to all bh ∈ Bh . Cluster similarity ωsim measures similarity of clusters on

both sides of a separator, to support separation of dissimilar clusters. Similarity is computed
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Figure 4.7.: From top left to bottom right: orientration data, orientations clustered with DBscan, relative

orientation scheme, relative orientation symbol names. - [147]

from shape and size of clusters enclosed by CEB within groups Bup and Blow, with smaller

values denoting higher similarity. Accordingly, the final quality measure q(pxk,i) combines

large neighborhood distance ωh with large similarity among clusters within a group using a

metric preference parameter α .

After computation of separators and resulting adjoined limit boxes for stationary clusters,

transfer clusters are integrated as shown in Figure 4.6. As discussed above, these regions may

be cut arbitrarily: thus it is not necessary to include them in the elaborate separation process.

Neighbouring limit boxes are extended into free space until all transfer cluster enclosing boxes

are covered. Finally, boundaries towards directions with no neighboring clusters are determined

by computing standard-deviation distances.

4.2.4. Secondary Attributes and Features

Further, secondary attributes are derived from primary spatial computation and either added to

features as additional input domains valds or used in standalone features.
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Relative distances and orientations can be computed between all scene entities with

distinct pose data. In the presented system, role demonstrator poses as well as object poses

are encompassed. For each pose entity ea, mean distance µd(ea,Ci,eb,C j), distance standard

deviation σd(ea,Ci,eb,C j) and mean angle αrel(ea,Ci,eb,C j) are computed for each clus-

ter Ci to each pose cluster C j of every other pose entity eb. All cluster distances dt1,dt2 ∈
DC(ea,eb) for each pose entity pair (ea,eb) are then checked for overlapping distance ranges

rt1 := [µ
t1
d + σ

t1
d ,µ

t1
d − σ

t1
d ],rt2 := [µ

t2
d + σ

t2
d ,µ

t2
d − σ

t2
d ]. In case of overlap, the ranges

are merged rtn+1 = rt1
⋃

rt2 . All distinct ranges that remain after merging all overlapping

ones form the set of relative distance categories. Relative angle categories are processed in the

same manner as shown in Figure 4.7. Both these relative categories can then describe category

boundaries in one dimension of a feature with further input-values or form a feature on its own.

Events and object states such as symbolic human activity or object state attributes as dis-

cussed in Section 4.2, can be used as input value domain for features. For example, a change

from no object state to transport may induce a new feature state separator in a previously ho-

mogeneously spatial cluster and resulting limit box. While computation of these more abstract

"dimensions" is trivial, it is an important feature value domain that makes category (feature

state) distinction more robust and pragmatically grounded. Finally, an additional feature state

cOT HER
i is included which covers all input values, which are not covered by the automatically

generate categories.

4.2.5. Discretization Quality Measure

In general, all methods generating category separation descriptors fg1:i (feature-state ground-

ing), can deliver varying results depending on parameterization and order of secondary attribute

computations. When considering absolute spatial clustering followed by computation of sec-

ondary attributes, slightly superior early separator choices may lead to vastly inferior options

later on.

To balance separation quality at different stages, a technique called feature state description

tree (FSDT) is utilized. An FSDT consists of layers with alternating node types, each layer

representing separators within a certain input value domain. These two node types are

• Separation choice nodes (SCN), choice node

• Feature state separation nodes (SN), separation node

An input domain which is processed before another input domain is defined as the former rank-

ing higher than the latter one. Higher-ranking input domains appear on higher layers in the
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Figure 4.8.: Schematic view of an FSDT with different feature state space choices. - [147]

tree than lower-ranking ones. Each choice node contains a set of separation-node children,

which represent different choices of category (feature-state) separation in lower ranking input

domains. A certain category separation reflects a distinct input domain discretization using

rectangles as described previously. Each separation node contains a set of choice node children,

with each child representing a different set of category separation in the input value domain of

the corresponding layer. On each layer, there can be category leaf nodes (CLN) that terminate

a branch and represent the lowest ranking category separation in a branch. Complete category

(feature-state) descriptions can then be formed by the path of each leaf node to the root of the

tree. Each separation node (SN) adds the grounding description (value intervals) of the cat-

egory in the corresponding input-value domain on that layer. However, paths from different

leaves going through the same choice node (SCN) are mutually exclusive, as they represent

different alternatives of splitting up a certain input-domain value. Therefore, different subtrees

compose different choices for the feature-state space in a feature as shown in Figure 4.8. Those

alternatives encompass both different discretization values as well as varying state-set sizes.
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Figure 4.9.: Automatically generated scheme of a simple FSDT with quality values q given. - [147]

To evaluate category separation choices on all layers equally, not letting high-ranking sepa-

ration choices dominate, path quality from leaf to root in all subtrees has to be evaluated. First,

each separation technique represented by a layer has to assign a quality value q(SNi) := [0,1]
to each separation node. Thus, before evaluating a full path, each choice node has to be rated.

A choice node can be rated based on the quality values of included categories ci ∈Ci ∼ SNi.

Individual category (feature-state) quality depends on the frequency of occurrence of that

category c in demonstrations Obs ∈ Demo, which indicates its relevance for the mission:

Obsc = {o| ∃obs(t) ∈ Obs : obs(t) = c} [4.10]

qdemo(c) =
|Obsc|
|Obs|

[4.11]

The quality also depends on clustering quality criteria as discussed in Section 4.2.2, such as

DB, SD, XB metrics Qmethod
k . The best resulting metric Qopt is set to 1 and inferior results

weighted in relation:

qsep(c) =
Q j

Qopt
[4.12]

These individual category qualities q(c) have then to be weighted to get a separation node

quality value q(SN). Average weighting puts least emphasis on negative outliers:

qavg(SNi) =
1
ni

∑
c∈Ci

qc. [4.13]
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Product weighting puts multiple less optimal categories to a disadvantage:

qprod(SNi) = ∏
c∈Ci

qc. [4.14]

Finally, minimum weighting puts most emphasis on a single negative outlier:

qok(SNi) = min
c∈Ci

qc. [4.15]

These different category quality merging methods can then be empirically weighted.

Given individual layer quality values q(SNi) as shown in Figure 4.9, quality values for sub-

trees can be computed. Most weighting methods would prefer small trees which is not desir-

able. Instead, small and much larger high-quality trees have to be comparable based on category

qualities alone. Therefore, the total sum of separator qualities is suitable:

qT
T = ∑

i∈T
qSNi. [4.16]

It has a preference for larger trees with high-quality separations, yet small category sets with

high quality can dominate larger ones with bad quality. The best complete subtree gives the

final set of category discretization and thus optimal feature state space.

4.2.6. Conclusions and Covered State Concepts

While automatic state grounding generation from demonstration analysis as presented above

can cover a wide range of skill domains, there are some limitations concerning conceptual cov-

erage of dynamic aspects. These limitations, however, arise from the fundamental concept of

Markov processes with discrete time and alternating states and actions. Therefore, clear dis-

tinction of stationary and non-stationary demonstration parts as performed by spatial clustering

is just a consequence of that paradigm. Complex, dynamic behavior is subsumed in actions

(subtasks), yet the given concept is able to deal with actions terminating anywhere (spatially)

and at any time. By covering the input-value domains completely, any possible stochastic action

result is covered by a valid state description, making any transition T (s,a,s′) occurring in prac-

tice well defined. Further details and software implementation specific aspects concerning the

state mapping process stage are presented in [147]. In summary, the process of state grounding

generation from mission demonstration analysis consists of the stages:

1. Data preparation improves recorded real-world demonstration data.

2. Spatial clustering determines data points associated with common abstract situations.
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3. Boundary computation derives a separator representation usable by execution-time filter

models as defined in Section 3.2.2.

4. Quality tree computation assesses alternatives of multiple input value domain separation.

At this stage, demonstration data representation concerning situations can be interpreted to

change from an external view - a student watches a teacher - to an internal view: the student

reasons about the mission as if it had performed the demonstration itself. This is seen as a shift

in perspective and happens in humans learning from observation of other humans by activating

the mirror neuron area in the human cortex [116]. The resulting feature state space set is the

mode the robot uses to reason about the state of the world in task sequences it performs itself.

Next, the same perspective shift is applied to actions.

4.3. Mapping Observed Tasks onto Executable Manipulation Strategies

Mission actions can be inferred from demonstrations in the skill domains of mobility, natural

human-robot interactions and object manipulation: ∆(RR.pose(t)), RR.utt(t) and RR.act(t).
Inferring actions implies finding execution-time actions that correspond to human demonstra-

tion action aspects. In the domains of mobility and natural human-robot interaction, correspon-

dences can be found easily. Utterances can be directly imitated while gestures may utilize a

limited alphabet. Mobility actions encompass goto state actions which can be directly inferred

from ∆(RR.pose(t)). A component computing target poses within an abstract region for mo-

bility actions is discussed in Section 4.11.

However, with object manipulation, the most complex robot skill domain, correspondence

finding is not straight forward. Both symbolic classification of recording-time human manipu-

lation actions discussed in Section 2.7.1 and execution-time manipulation action representation,

discussed in Section 2.7.2, have their own, unconnected sets of reference symbols. Furthermore,

the internal motion representation of both methods is highly distinct. Finally, the human body

activity representation does not consider objects in the vicinity for classification.

Hence, there is need for a process stage that can map human demonstration activity clas-

sifiers in certain demonstrations to applicable manipulation strategies [42]. Because activity

classifiers are coarse-grained and object-independent, one classifier may be mapped to different

strategies in different demonstration situations. Thus, there is no static manipulation skill alpha-

bet mapping, but an analysis specific to each demonstration and set of observations. Based on

the classified human body activity – both its symbol and the actual trajectory as well as object

poses – in a portion of a mission demonstration, a manipulation strategy suitable for execution

by the robot in that situation is matched.
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4.3.1. Manipulation Action Mapping Process

Given inputs are:

1. A single mission demonstration Xm with human hand pose information (contained in

RR.pose(t)), object pose data Ob js.pose(t) as well as symbolic activity labels RR.act(t).

2. A set of manipulation strategies mst j, each with a set of demonstration trajectories X j,i,

with the trajectory describing the TCP pose relative to a reference object.

No human activity training data is necessary. As manipulation strategy trajectories X j,i are

acquired automatically within strategy-PbD, there is no need for an extra demonstration stage.

The available manipulation strategy set with corresponding training trajectories can be stored

and extended in a manner decoupled from the mapping process. Therefore, strategy trajectories

can be considered as the more static element, with those trajectories being reused, while each

mission demonstration sequence Xm is processed only once. First, a given mission sequence

Xm is segmented into symbolic human activity tokens {Xact
m }, by extracting segments with a

common activity label:

Xact
m := xm(ts), . . . ,xm(te) :

{RR.act(t) |∀t : ts ≤ t ≤ te,RR.act(ts) = RR.act(t) = RR.act(te)} [4.17]

Subsequently, for each activity segment Xact
m all available X j,i are normalized relative to Xact

m
in the space of (x,y,z, t) of the human tool center point (TCP), the hand pose relative to the

object closest to the human TCP. Strategy trajectories which are spatially or temporally larger

or smaller than the mission segment trajectory by a factor η : ‖X j,i‖x,y,z ≥ η ‖Xact
m ‖x,y,z or

‖X j,i‖t ≥ η ‖Xact
m ‖t for both 0 < η << 1 or η >> 1 are discarded as there is definitely little

similarity and normalization would distort the trajectory beyond usability for comparision.

After normalization, all TCP trajectories X tcp,act
m , X tcp

j,i are defined within the same cartesian

space, centered on the closest object and have the same number of trajectory data points ∀i, j :
|X tcp,act

m |= |X tcp
j,i |. Therefore, two trajectory datapoints with the same index t are temporally

equivalent. In case there are several close objects, the relevant object being manipulated can be

determined by more elaborate manipulation strategy PbD analysis.

Next, for each manipulation strategy mst j, a GMM model is computed on the set of mst
training trajectories X tcp

j,i using EM as described in Section 2.3.2. Such a GMM is not suitable

for computing similarity to a given X tcp,act
m trajectory, but a GMR can be computed from the

GMM:

Φ j := Φ(mst j) = gmr(gmm(X tcp
j,i )),{X

tcp
j,1 , . . . ,X

tcp
j,n }→ mst j [4.18]
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Figure 4.10.: An example of manipulation action mapping. Top left: strategy demonstration data, center

top: strategy GMR, top right: mission demonstration data; Bottom: Matching of strategy

(red) and mission (yellow) demonstration data. - [125]

Based on the GMR, as shown in Figure 4.10, representation of the manipulation strategy Φ j,

a distance metric between the generalized strategy demonstration trajectories and the mission

demonstration segment trajectory ‖Φ j,X
tcp,act
m ‖act can be computed as discussed next.

Finally, for a set of manipulation strategies mst j ∈MST , the human-activity label in a given

demonstration is mapped to the action symbol corresponding to the strategy act( j) with the

smallest distance and thus highest similarity: actsegment = act(argmin j(‖Φ j,X
tcp,act
m ‖act)).

4.3.2. Manipulation Action Distance Metric

After computation of Φ j, there exists a mean µt and covariance Σt in cartesian (x,y,z) cor-

responding to each normalized data point xt in trajectories X tcp,act
m , X tcp

j,i . The distance of a

point x to a GMR representative (µt ,Σt) can be computed using the Mahalanobis distance [93]:

‖φ j,t ,x‖=
√
(~x− ~µt)T ∗ (Σt)−1 ∗ (~x− ~µt) [4.19]
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Based on that point distance, the weighted sum of distances between corresponding data points

xt ∈ X tcp,act
m and φ j,t ∈Φ j can be computed with a weight ωt assigned to each pair t:

‖Φ j, ~ω,X tcp,act
m ‖act =

∑
n
t=1 ωt

√
(~xm

t −~µ
Φ j
t )T ∗ (ΣΦ j

t )−1 ∗ (~xm
t −~µ

Φ j
t )

∑
n
t ′=1 ωt ′

[4.20]

The resulting distance metric ‖‖act between a mission-demonstration manipulation action tra-

jectory X tcp,act
m and a correspondingly normalized GMM/GMR-generalized manipulation strat-

egy Φ j is defined as the ~ω-weighted sum of distances between corresponding point pairs.

Without a weight vector ~ω or with equal weights ∀i, j : ωi = ω j, all parts of the trajectory

have the same influence on the similarity metric. However, such a measure is insufficient for

capturing peculiarities of object manipulation motions. Manipulation strategy trajectory por-

tions with little covariance, indicated by small determinant det(Σt), reflect highly constraint

motions. Thus, the type of motion in that section is important. Furthermore, trajectory shapes

are more relevant close to the object with small ‖~xm
t −ob j.pose(t)‖. Combining both aspects

by means of preference weights αc and αo gives:

ωt =
αc

det(Σt)
+

αo
‖~xm

t −ob j.pose(t)‖
[4.21]

4.3.3. Conclusions and Covered Action Concepts

Computing a GMR from manipulation strategy demonstration trajectories basically leads to a

probabilistic imitation-learning representation as discussed in Section 2.4.1. Such a representa-

tion is less powerful than a manipulation strategy constraint graph and cannot reflect complex

manipulation motions in scenes with multiple objects within limited space in the same, flexible

manner. However, coarse-grained human activity tracking and classification is even more lim-

ited, thus such a simplified skill representation does not lead to disadvantages when computing

trajectory similarities. Because of the limitations of coarse-grained full body activity classifica-

tion, mission demonstration scenes and manipulation strategy demonstration setups have to be

more similar than demonstration scenes and execution scenes.

Full flexibility of the manipulation strategy representation can then be exploited during action

execution where the constraint graph instead of the GMR is applied. Yet, limitations of coarse-

grained tracking and activity classification prevent differentiation between dexterous manipu-

lation actions which vary only in fine-grained finger movement. While the presented concept

might scale onto distance metrics between all corresponding fingertips instead of just the hand

base (TCP), evaluation as discussed in Section 5.4 has only considered actions distinct in more

coarse-grained motion patterns. Software implementation specific further details of this process

stage are outlined in [42].
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As in state-description generation, perspective shift takes place here, with the robot subse-

quently reasoning about sequences of actions as being performed by itself using its own skill

alphabet, represented by manipulation strategies.

4.4. Generating Abstract Sequences by Segmentation of Demonstrations

When mappings of situations onto feature states and human actions onto executable robot skills

have been computed, individual demonstration traces Obs j ∈Demo can be segmented into dis-

crete, abstract event sequences (. . . ,st ,at ,st+1,at+1, . . .). These sequences make distinctions

between courses of events only where relevant. Slightly differing traces that lead to the same

sequence, with all differences subsumed within the same states and actions, can be considered

equivalent on the abstract level. Perspective shift allows the robot to reason about sequences in

a manner as if it executes them itself. Thus, demonstration or execution-time courses of events

can be handled equally.

Given a single demonstration trace Obs j : obs(t) = (Es(t),Ga(t)), states are segmented

first, based on recorded situations, for instance in the evaluation setup:

Es(t) = (RR.pose(t),HR.pose(t),HR.act(t),HR.utt(t),Ob js.pose(t)) [4.22]

Feature mappings f Demo
f eat j

computed on the whole set of traces are applied to map situations

onto feature states c j
z = f Demo

f eat j
(Es(t)), leading to a feature-discretized model:

fg1(Es(t))→{c1
z1
(t), . . . ,c| f eat|k

zk (t)} [4.23]

as defined in Section 3.2. Based on the feature-discretized model, a feature-state mapping for

any category combination in Demo can be applied:

∀y1, . . . ,∀yk, f Demo
g2 : (cy1 ∈ f eat1, . . . ,cyk ∈ f eatk)→ si [4.24]

Subsequently, a trace with data points t is segmented [132]:

st = φ(obs(t)),φ : f Demo
g2 ( f Demo

g1 (Es) [4.25]

Q′s(t
′) =

 /0, φ(obst−1) = φ(obst)

st ′, φ(obst−1) 6= φ(obst), st ′ = φ(obst)
[4.26]

By discarding /0 in Q′s, for instance Q′s = ( /0, /0,s3, /0,s5, . . .), a discrete, abstract time sequence

of states t′= xi is derived Qs = (sx1, . . . ,sxn) = (s3,s5, . . .). In real demonstration setups with

noisy observation, temporal inertia filtering is necessary to avoid state oscillations at situations
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Es near feature state separators. Therefore, a state st ′ is discarded if the sum of durations of

corresponding trace data points is below a certain temporal threshold εt :

∀t′ {tt ′ ∈ t|st ′ = φ(obs(tt ′))} : Qs←

 /0, ∑tt′
|tt ′|< εt

st ′, else
[4.27]

Typical thresholds are discussed in Section 5.5. In contrast to the recorded trace, such a result-

ing sequence does not contain information about state duration and hence is void of temporal

aspects beyond the sequence.

Abstract actions are determined next, analyzing Ga(t) during state transitions, for example

in the evaluation setup:

Ga(t) = (δ (RR.pose(t)),RR.act(t),RR.utt(t)) [4.28]

Each action aspect that is active during a state st ′ contributes to the transition towards st ′+1.

Abstract actions combining several skill domains in a single subtask can be covered by Flexible

Programs (FPs) as described in Section 3.4. Hence, skill domain specific abstract actions can be

added to a subtask-action symbol asubtask
t ′ , which represents all skill-domain-specific abstract

actions that are executed concurrently by the FP.

The following action skill domains are considered in the evaluation setup: mobility, utter-

ances, gestures and object manipulation. Each transition st ′,st ′+1 is checked accordingly. If

ci ∈ st ′ : self-pose 6= c j ∈ st ′+1 : self-pose a mobility action "Goto c j" is added: asubtask
t ′ ←

agoto−c j . Precise target position and path planning for such an action is performed by the com-

ponent described in Section 4.11. In case an utterance utter j was expressed during st ′ , a robot

speech action is added: asubtask
t ′ ← autter j . Gestures and object manipulation are mutually

exclusive and only one class can be active at a given point RR.act(t). A gesture action is added

if a known gesture skill agesture j is detected in the trace: asubtask
t ′ ← agesture j [131]. In case

a mapped manipulation strategy mst j was performed while st ′ occurred, a manipulation action

asubtask
t ′ ← amst j is added.

Finally, segmentation leads to an abstract sequence of states and actions with discrete time t′:

QObs j = (. . . ,st ′,at ′,st ′+1,at ′+1, . . .) [4.29]

4.5. Smoothing Imperfect Observation Sequences by Means of Causal Models

In many demonstration observation setups, the assumption of fully observable recording is suf-

ficient because of several particular recording setup properties:
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• A scene setup can be tailored to be observation-friendly: for instance, the robot stands

still during observation, which leads to better self-localization and object localization.

• Additional sensors can be used: for instance, headsets for speech recording.

• Pronounced motions can be performed by role demonstrators.

• A fixed set of known objects and obstacles can be guaranteed.

• Inaccurately recorded demonstration traces can be discarded afterwards.

However, in some setups it is not possible to guarantee sufficient observation accuracy. In

such cases, a recorded and segmented sequence has to be assumed to be a sequence of poten-

tially inaccurate observations and not true, intrinsic states. Hidden Markov models (HMMs) [115]

are a technique modeling such dynamics and closely related to POMDPs. A transition model

THMM(s,s′) models the likelihood of a state s′ following s while an observation model

OHMM(m,s) models the likelihood of the true state s generating an observation m.

Ometa(m,s) := OHMM(m,s) is very similar to the execution-time robot POMDP observa-

tion model O as is has to model the same robot perception limitations and error likelihoods.

Therefore, Ometa(m,s) can be generated like O with techniques described in Section 4.10.

On the other hand, within the scope of demonstration recording, the transition model

THMM(s,s′) = Tmeta(s,s′) is composed of likelihoods indicating fundamental causality in the

world: states that are impossible to follow a certain other state directly, states which are unlikely

to do so and states which may likely follow certain other states. Thus, the meta transition model

Tmeta(s,s′) describes fundamentally impossible or unlikely transitions in an environment set-

ting, independent from any actual mission courses of events.

Hence, Tmeta(s,s′) has to be generated by dedicated methods. Yet, a conservative approach

can be taken by initially weighting all transition probabilities equally: p(s′|s) = 1
|s| . Subse-

quently, impossible transitions are set to p(s′|s) = 0 and unlikely transitions get reduced prob-

ability. Finally, the rest of the row is normalized to 1. Such a conservative approach guarantees

that no real demonstrated transition is discarded, thus having a preference for false positives

over false negatives. More precisely, data for Tmeta(s,s′) can be collected from PbD knowl-

edge collected over the course of many mission as discussed in Section 4.10, geometric analysis

discussed in Section 4.11 or learning by trials discussed in Section 4.12. However, there is the

limitation that background knowledge can only be related to state classes and not specific states,

as state grounding is generated for each mission individually. To fully cover these state-to-state

class relationships in the scope of a meta transition model when using automatic state mapping

generation, reasoning over state similarities is needed which is beyond the scope of this thesis.
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Given a fully defined HMM modeling the demonstation observation setting with Tmeta(s,s′),
Ometa(m,s), HMM smoothing can be applied to retrieve the most likely sequences of true, in-

trinsic demonstration states. The inputs are an observed and segmented observation sequence

Qmeasured
Obs j

,Tmeta and Ometa. Actions are ignored at first and the Viterbi Algorithm [48] com-

putes the most likely hidden sequence Qhidden
Obs j

. Finally, actions are tailored to match the new

state sequence. Software implementation specific processing stage details and alternative meth-

ods of meta model knowledge input can be found in [74].

4.6. Analysis of Multiple Sequences to Generate Preliminary POMDP Models

By definition, a mission may encompass multiple courses of events (. . . ,st ′,at ′,st ′+1,at ′+1, . . .)

that represent an agent successfully executing a desired role. Different courses of events ema-

nating from identical initial abstract configurations (start states) require points of event branch-

ing, i.e. alternative potential future courses of events. As addressed in Section 2.2.2, only with

branching of potential courses of events, true decision making is possible.

Within the POMDP framework, two points of branching exist:

1. Different actions a that can be performed in a state s.

2. Different stochastic effects of an action a performed in state s.

Within the scope of PbD, with no additional model knowledge considered, typically only a

single course of events could be learned from a single demonstration sequence. The notable

exception are sequences with loops, where certain states s or even state-action pairs (s,a) are

revisited and followed by differing courses of events:

(. . . ,st1,at1, . . . ,st2,at2, . . .), st1 = st2 ∧at1 6= at2 [4.30]

(. . . ,st1,at1,st2, . . . ,st3,at3,st4, . . .), st1 = st3 ∧at1 = at3 ∧ st2 6= st4 [4.31]

However, even then little branching information in relation to sequence length can be acquired.

Therefore, multiple sequences are considered:

ΞDemo := {QObs1, . . . ,QObsn} [4.32]

Such multiple sequences may be acquired incrementally while creating and executing a com-

plete mission model in between. Thus, incremental life-long mission learning is automatically

covered by the presented concept. In fact, the automatic model space exploration and interactive

request approach discussed in Section 4.7 and 4.8 heavily rely on that characteristic.
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Beyond typical usage, single demonstration one-shot learning may be necessary under some

circumstances and is suitable in combination with autonomous model refinement techniques

described in Section 4.10 , 4.11 and 4.12, which add further branching options to the model.

To generate a preliminary mission model, including all aspects that can be learned from

demonstrations, ΞDemo is analyzed. First, states are accounted for, leading to a preliminary

demonstration state space SD = s|∃Q ∈ ΞDemo : s ∈ Q. A default error state se→ SD is added

to the state space, being a placeholder for a more diverse set of error states later added in model

refinement stages. Next, all actions occurring in the demonstration set compose a preliminary

demonstration action space AD = a|∃Q ∈ ΞDemo : a ∈ Q. Exploiting the Markov property,

state-action pairs (st ,at) and resulting effects are st+1 are analyzed as isolated transitions.

Basically, the robot is then able to rearrange chains of events by planning on atomic transitions

within the POMDP framework. Hence, all unique transitions in the demonstration sequence are

counted, leading to a transition frequency model T FD that is initialized with 0:

∀st ∈ ΞDemo : T F
D (st ,at ,st+1) = T F

D (st ,at ,st+1)+1 [4.33]

Because a single occurrence of a state si leads to its inclusion in the transition model but then

is just defined in one pair (si,ak), all entries in transition frequency rows (si,a 6= ak) are

zero, which can be considered as undefined. This would lead to a uniform action effect prob-

ability distribution in the following normalizing step. That is the worst possible estimate of

unknown action effects. Instead, either the assumption that the result of such an observed pair

(si,ak) is a default error state T F
D (si,a 6= ak,s

′ = se) = 1 or that there is no change at all

T F
D (si,a 6= ak,s

′ = si) = 1 are better initial default estimates for any undefined row. The error

state assumption is safer but the more aggressive static assumption is more versatile in combi-

nation with generalized transitions. If not stated otherwise, static is the default in experiments,

though the system can be configured to take either approach. More realistic estimates than these

defaults for action effect prior probabilities of unobserved pairs (si,ak) are derived by a gener-

alization discussed in Section 4.7 and a subsequent refinement presented in Sections 4.10, 4.11

and 4.12.

These frequencies in mission courses of events reflect primary stochastic effects as defined in

Section 3.5. Consequently, a preliminary demonstration transition model TD can be computed

from T F
D by computing s′-row probabilities from frequencies, which means normalizing over

stochastic outcomes of (s,a) pairs:

∀(s,a,s′) : TD(s,a,s
′) =

T F
D (s,a,s′)

∑s′i
T F

D (s,a,s′i)
[4.34]
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Finally, the preliminary reward model RD has to account for goals. As action costs are known

only from background knowledge and goal values computed from costs of actions leading to

goals, goals can only be flagged at this point. Accordingly, RD is initialized with 0 and for

each final (s,a) pair of a sequence, a goal is flagged: (sr,ak)tn ∈QObs j ;RD(sr,ak) = 1. This

method implies that goal selection can be focussed by demonstration sequence choice.

Such preliminary models generated from abstract demonstration sequences represent an MDP,

since partially observable aspects in O are robot-specific and cannot be learned from a human

demonstration. Furthermore, secondary stochastic effects as defined in Section 3.5 are miss-

ing. Hence this model is considered as preliminary. How to add those aspects is addressed in

Section 4.10. Further details and examples are discussed in [132].

4.7. Confidence-based Generalization of Action Effects

Up to this point, human teachers provide demonstration sequences with courses of events and

relative frequencies thereof chosen freely based on their understanding of the mission. This

leads to a conflict of two principles:

1. Human teachers tend to perform as few demonstrations as possible, and they are, poten-

tially just subconsciously, biased about the structure of a mission.

2. The more valid courses of events are represented in the transition model: the better those

values reflect real-world dynamics, the better the performance of the robot.

To attenuate this conflict, the robot has to extend its role beyond a passively watching student.

Instead, it has to analyze transition models acquired from demonstrations [117], [134] and es-

timate where demonstrations are likely missing in transition model space as described in the

following. Based on these estimates, it can then judge the potential impact of lacking effect

knowledge on its decision-making options and request further demonstrations actively, as dis-

cussed subsequently in Section 4.8.

4.7.1. Transition Generalization

At this stage of the process, all learned transitions are primary action effects as classified in

Section 3.5.1. Two main types of transition entries T (v) := T (si,ak,s
′
j) can be distinguished:

zero T0(v) : p(s′j|si,ak)= 0 and nonzero T∃(v) : p(s′j|si,ak)> 0. Zero transitions T0(v)∈ TD

have never occurred in a demonstration at this stage. It has to be determined if the transition

does not occur in a mission or if it was just never demonstrated. Furthermore, in the latter
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case it has to be determined if the transition may be part of a promising course of events and is

therefore important to be considered by decision making.

Typically, a transition model acquired from demonstrations, before further refinement compu-

tations, is extremely sparse with |T0|>> |T∃| because |T0|= |T |−|T∃| and |T |= |S|×|S|×
|A|, |T∃| < |ΞDemo|, |ΞDemo| << |T |. At most one new T∃ is added for each demonstrated

pair (s,a). The state representation based on feature states si := (cx1 ∈ F1, . . . ,cxn ∈ Fn) ap-

plied without the combine operation as discussed in Section 3.6, leads to potentially many states

snew′ being added to SD and thus TD when a state snew with a feature state ck
xk
∈ snew,ck

xk
∈Fk,

not encountered previously is accounted for in an observation sequence:

ck
xk

/∈ ΞDemo([0 : t−1]),ck
xk
∈ ΞDemo(t)⇒

∀Fi with i 6= k,∀xi ∈ Fi : fg2(c
1
x1
, . . . ,ck

xk
, . . . ,cn

xn) = s~xi
new′→ SD [4.35]

All these additionally added states s~xi
new′ initially result in zero transition rows. Thus T and T0

sizes grow much faster than T∃. Because of this sparsity, selection of a subset of candidates

T candidates
0 ⊂ T0 can be interpreted as an exploration process in transition model space, ema-

nating from T∃. In contrast, in a hypothetical non-sparse model with T0 << T∃, an analysis of

the "last gaps" would not make exploration necessary as they can all be tested.

To enable exploration in transition model space, an expressive norm ‖‖T needs to define a

space on the model. With such a norm, the similarity between two transitions ‖T (v1),T (v2)‖T
can be determined which in turn allows for exploration and assessment. The aim is to determine

which T0(vg)most likely are similar to encountered transitions and thus may have been omitted,

although they are in fact T∃, as illustrated in Figure 4.11:

{T candidate
0 (vg) ∈ T0| ∃T∃(vo) : ‖T∃(vo),T candidate

0 (vg)‖T < ε} [4.36]

Basic dimensions of v are S, A and S′, therefore the similarity norm has to be defined on these

attributes. In turn, S,S′ are based on features with S = F1× . . .×Fn. Distance metrics can be

defined within features ‖cxi,cx j‖F , taking into account the characteristics of a domain, such

as similarities of human utterances or distances between pose regions. Suitable metrics are

described in Section 3.3. Subsequently, state norms can be based on individual feature norms:

‖si,s j‖S :=
√
(‖c1

xi
1
∈ si,c1

x j
1
∈ s j‖F1)

2+ . . .+(‖cn
xi

n
∈ si,cn

x j
n
∈ s j‖Fn)

2 [4.37]

An alternative state norm is the minimum feature state distance:

‖si,s j‖F−min := argmin f (‖c
f
xi

f
∈ si,c

f
x j

f
∈ s j‖Ff ) [4.38]
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4.7. Confidence-based Generalization of Action Effects

Figure 4.11.: Illustrative example: Given two observed transitions v1
o,v

2
o with s′1 = s′2 (left) and another

feature state close by, an unobserved transition vi
g with s′i = s′1 may be valid. - [125]

Action similarities can be defined based on skills. Finally, a set of transitions encountered in

demonstrations {T∃(vo1), . . . ,T∃(von)} can be generalized by finding a set of similar not en-

countered transitions {T candidate
0 (vg1), . . . ,T

candidate
0 (vgm)} for which an initial assumption

is made that they are related to their baseline transitions T∃(vo).

Guided exploration is achieved by search for candidates within S, S′ and A using three com-

plementary approaches:

1. Generalizing transition origin s keeps a,s′ fixed with baseline vox = (six ∈ S,ak,s
′
j) and

candidate vg ∈V candidates = (sgy /∈ {si1, . . . ,sin},ak,s
′
j). This mode of generalization

takes into account that many actions converge to the same effect given a related set of

situations they are executed in, for example, goto actions or question utterances.

2. Generalizing transition effect s′ keeps s,a fixed with baseline vox = (si,ak,s
′
jx ∈ S′) and

candidate vg ∈ V candidates = (si,ak,s
′
gy /∈ {s′j1, . . . ,s

′
jn}). By these means, given a

set of observed stochastic effects resulting from a pair (si,ak), it is assumed that effects

closely related to a set of observed ones are more likely to be omitted in demonstrations.
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3. Generalizing transition action a keeps s,s′ fixed with baseline vox = (si,akx ∈ A,s′j)
and candidate vg ∈ V candidates = (si,agy /∈ {ak1, . . . ,akn},s

′
j). In this mode, action

invariant transitions among sets of similar origins and similar effects are determined,

typically encountered when a dynamic environment effect is not directly related to an

action but occurs conditionally independent to the action in certain related sets of states.

To describe and access candidate sets of transitions vg in a compact way, a transition mask is

defined in the form of a selection filter function κ . It represents sets of related transitions Vmask
with wildcards ∗ denoting a whole subspace of a feature or actions that are selected:

A∗ = A∪{∗},A∗(a∗i ) =

A if a∗i = ∗

ai else
[4.39]

F∗f = Ff ∪{∗},F∗f (c
∗
i ) =

Ff if c∗i = ∗

ci else
[4.40]

S∗ = F∗1 × . . .×F∗n [4.41]

Vmask = κ(s∗,a∗,s′∗) = {s∗ ∈ S∗,a∗ ∈ A∗,s′∗ ∈ S∗} [4.42]

4.7.2. Concept Learning of Generalized Transition Hypotheses

A first stage of rough exploration determines sets of candidate transitions by concept learning.

Hypotheses represented by a mask Vmask are generated by generalization from a set of baseline

transitions Vo. A set of hypotheses Vg = κg, can be acquired utilizing the following elements:

1. A set of input transitions Vo generating the hypothesis.

2. A transition mask κscope(s∗,a∗,s′∗) defining the scope which covers the elements over

which may be generalized.

3. A transition mask κg(s∗,a∗,s′∗) containing the resulting generalized set of transitions.

In generalization modes 1) and 2), a scope mask κscope is generated by analyzing which fea-

tures are affected by actions in the set Vo. Here, actions a are not generalized and can thus be

used to derive κscope. For each transition vo, it is checked which feature states are changed by

the action and wildcards are inserted accordingly:

∀vo = (si,ak,s
′
j),∀Ff ∈ S : κscope(Ff )←

∗ i f cx f ∈ si 6= cy f ∈ s′j
cx f=y f else

[4.43]
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In mode 3), just a wildcard over all actions is applied to generate κscope. In the process, κg is

incrementally generalized to cover all inputs vo ∈Vo: at every step it describes the most specific

mask that covers all inputs in the compact form defined above. This is a form of concept learning

from specific to general: each input transition vo is a positive example of the hypothesis κg. At

each incremental step p, a unique input transition vp
o is added:

κ
p
g =

κ
p−1
g i f vp

o ∈ κ
p−1
g

gen(κ p−1
g ,vp

o ,κscope) else
[4.44]

An operation gen adds wildcards, where the new input vp
o is both not covered by the previous

mask κ
p−1
g and generalization is allowed by mask κscope, for instance for mode 1):

gen(κg,vo = (so,ao,s′o),κscope) :

∀Ff ∈ S : κ
result
g (s∗)←

∗ i f (cx f ∈ so 6⊆ cy f ∈ s∗κg)∧ (cz f ∈ s∗κscope = ∗)

cx f=y f else

with cx f ∈ s⊆ cy f ∈ s∗ := (cx f = cy f )∨ (cy f = ∗) [4.45]

As a result, with p1 < p2, κ
p1
g is always equally or more specific than κ

p2
g .

4.7.3. Generalization Confidence Computation

Following rough exploration based on concept learning, more fine-grained relationship and

relevance confidence computation takes place. A potentially large set of candidates generated

by concept learning is differentiated and reduced. It is achieved by computing a generalization

confidence value gc(vg), reflecting both likelihood that a transition candidate is indeed nonzero

as well as a preliminary relevance. Differentiation incorporates three different aspects:

1. The distance in model space ‖T (vo),T (vg)‖T , as defined in Section 4.7.1, to the closest

baseline transition vo determines basic confidence by similarity sim(vg).

2. A non-observation bias nob(vg) influences confidence.

3. A certainty bias ceb(vg) influences confidence.

All three aspects are defined for vg in relation to observed transitions Vo. For each candidate

vg ∈Vg, the minimal feature norm to the nearest baseline transition vo ∈Vo is determined:

Mode 1): sim′(vg) = argmino(‖svo,svg‖F−min),vo ∈Vo [4.46]

Mode 2): sim′(vg) = argmino(‖s′vo,s
′
vg‖F−min),vo ∈Vo [4.47]

Mode 3): sim′(vg) = argmino(‖avo,avg‖A),vo ∈Vo [4.48]
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From this minimum-distance value, a confidence value is computed using a negation function

with a scale factor αgc, such as Sugeno-Negation:

sim(vg) =
1− sim′(vg)

1+αgc sim′(vg)
,αgc ∈ (−1,∞) [4.49]

The higher the number of observations of the most similar baseline transition, the higher the

likelihood that a generalized transition vg was not omitted accidentally. Hence, a higher base-

line occurrence count baseocc nearby in model space decreases confidence of a non-observed

generalized transition, introducing the non-observation bias, nob with scale factor βgc:

v
mindist,vg
o = mino(‖svo,svg‖F−min),vo ∈Vo [4.50]

baseocc = |vmindist,vg
o |Demo [4.51]

nob(vg) = (1−βgc)
baseocc,βgc ∈ [0,1] [4.52]

While stochastic action effects have to be considered in a model and close approximation of

real-world dynamics is beneficial, action effect probabilities tending towards uniform distribu-

tions are not preferable. Yet, such behavior occurs when for some observed transitions vox =

(si,ak,s
′
j1
),voy = (si,ak,s

′
j2
), a generalized transition hypothesis vg = (si,ak,s

′
j3
),s′j1 6=

s′j2 6= s′j3 is generated. Such a transition hypothesis pushes the effect probabilities of (si,ak)

towards a more uniform distribution and reduces the share of observed transitions. This has

somewhat detrimental effects because:

• Probabilities of observed transition are reduced, yet those are the preferred estimate.

• Real-world effects do not tend towards a uniform distribution - typical models in the

literature for robotic domains as addressed in Section 2.2 are all sparse with

|T∃(si,ak,s
′
x)|<< |T0(si,ak,s

′
y)| in a transition row (si,ak).

• Models tending towards uniform distributions lead to policies with short sequences and

unstable, oscillating courses of events which is not a property of real-world missions.

To allow for the introduction of some new stochastic effects, but also limiting it, a progressively

resisting factor, certainty bias ceb(vg), is introduced. It balances exploration and exploitation

when computing confidences of new transition hypotheses:

Vr = {vr| vr = T (si,ak,s
′
l),s
′
l 6= s′j},vg = T (si,ak,s

′
j) [4.53]

n = ∑
vr

|vr|Demo [4.54]

ceb(vg) =

0 if n = 0

n√γgc else,γgc ∈ [0,1]
[4.55]
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Parameters αgc, βgc and γgc reflect internal weights of different aspects on generalization confi-

dence and have to be determined empirically for each setting. Finally, generalization confidence

can be computed:

gc(vg) = sim(vg)∗nob(vg)∗ ceb(vg), gc(vg) ∈ [0,1] [4.56]

At this point, hypotheses below a certain confidence gc(vg) < εgc can be discarded, reducing

the candidate set.

Based on the confidence value, one approach is to compute a transition probability and add it

to the model directly. Another approach is using it for relevance computation in the verification

process discussed in Section 4.8 and then discarding it, while it is implicitly replaced by values

derived from resulting further demonstrations.

Confidences above a certain threshold ε indicate that for a given transition vg, a nonzero

transition probability is more likely than a zero one. At this point it has to be remembered that

each transition probability is only a Bayesian estimate of real-world stochasticity. Therefore,

an initial zero value, following from no observation of vo, has no absolute authority in the face

of a most likely incomplete demonstration space ΞDemo. A transition model serves to enable

best available prior estimates of potential future events and not as an asymptotically precise

frequentist approximation of a controlled experiment. To compute a new transition probability,

the assumed correlation confidence with a similar, observed baseline transition v
mindist,vg
o is

combined with the frequency of that transition:

pT (vg) = gc(vg)∗ pT (v
mindist,vg
o ) [4.57]

Because gc(vg) ≤ 1⇒ pT (vg) ≤ pT (v
mindist,vg
o ) which basically means that the robot will

regard the estimated effect as less likely as the related, observed one. Accordingly, planning will

only take this less certainly known effect into account when long-term expected utility values

are impacted more by potential courses of events unfolding after that transition. This is in line

with being more conservative about effects for which less information exists.

Normalization of rows T (s,a) has to occur after all generalized transition probabilities have

been computed, to avoid distortions by normalizing multiple times over some values. Default

assumption action effects p(s′|s,a), both static (s′= s) or for the default error state of SD,(s′=
se), are changed considerably by generalized transitions p(s′g 6= s,se|s,a)> 0: the robot may

acquire significant new options regarding courses of events.

There are several strategies to continue from this point:
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1. Aggressive: the model is complemented with all generalized, non-observed transition

probability estimates directly without further verification. The disadvantages of such

lacking verification are discussed in Section 4.8.

2. Conservative: generalization hypotheses are ranked for relevance, relevant transitions

are verified as discussed in Section 4.8 and a new model is generated based on these

demonstrations - no generalized transition probability estimate is directly adopted into the

model used for policy computation. Verifying all candidates – no matter their relevance

– takes a lot of interaction effort for the human teacher.

3. Balanced: transitions scheduled for verification are not adopted into the final model and

several iterations of further requested demonstrations are integrated until a remaining set

of generalized transition estimates below a certain relevance threshold remains which are

added without further verification. The balanced approach combines the advantage of

interactive verification of doubtful, but critical generalization candidates while avoiding

extensive verification of less critical candidates.

If not stated otherwise, the balanced approach is used in experiments of the presented system

discussed in Section 4.8.

4.7.4. Limitations

In practice, the quality of generalization confidences depends on good model space similarity

metrics ‖‖T , but only a limited number of metrics were investigated within the scope of this

work. While the reuse of observation model metrics is efficient, more specific metrics could be

investigated.

There is limited real-world stochasticity: the real world relevant in robot missions on an

abstract level, while not fully deterministic, is not symmetric concerning occurrence of more

deterministic vs. more uniform distributions in transitions. As argued previously, real-world

robot missions have sparse transition models, even when most carefully engineered to reflect

all potential real-world dynamics. While the certainty bias takes that into account, the lack of

symmetry makes aggressive exploration estimates more error-prone. Retrieving a well suited

bias (asymmetry) function for a domain like general service robot missions would require most

extensive experiments, beyond the scope of this thesis. Therefore, a more conservative approach

relying heavily on interactive human verification has been taken as discussed next. It still relies

on the generalization and confidence computation step which therefore is in no way redundant.

Experiments regarding this process stage are discussed in Section 5.6. Further software imple-
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mentation specific details and extensive evaluation of suitable parameter values, applicable for

diverse types of missions are presented in [117].

4.8. Interactive Requests for Human Demonstrations to Verify Generalizations

A problem of products of confidence and baseline probability estimates pT (vg) = gc(vg) ∗
pT (v

mindist,vg
o ), as defined in the previous Section, is that they open up more options regarding

courses of events. This can make a policy unstable in terms of selected actions and ensuing

courses of events. In an environment with symmetric stochasticity bias that is no problem,

because the probability to miss a risk or opportunity with a false zero probability transition

(false negative) and the probability to introduce an invalid option (false positive) balance out.

As stochasticity is not symmetric, a verification mechanism for generalized transition hypothe-

ses is necessary. Because observed transitions and corresponding generalizations at this stage

consider only primary transitions, human demonstrations are a suitable context for verification.

Consequently, verification incorporates the human teacher closely in an interactive process

after generalization relevance analysis and subsequent generation of demonstration requests

to the teacher [81]. By these means, generalization and request generation together enable a

robot to steer the demonstration set towards covering initially missing model aspects in the

form of courses of events omitted, at first. Hence, PbD where the robot is passively watching

demonstrations is enhanced to a mutually interactive learning process with human and robot,

teacher and student working actively together.

4.8.1. Generalized Transition Relevance Analysis

Generalization may generate a large number of new nonzero transition hypotheses T0. However,

the number of requests for new human demonstrations should be minimized. Hence, general-

ized transition hypotheses have to be ranked for impact on decision making. For example, if

the origin state s of a transition hypothesis vg is never reached by demonstrated courses of

events, this generalized transition is not relevant, even if its own probability is high. Similarly,

if demonstrations do not contain courses of events continuing from the effect state, the transition

is not interesting, leading only to a default error state or remaining static.

Such a ranking does not model any real-world dynamics precisely, but instead is a rough

heuristic for the potential impact of a nonzero transition added to an existing model. By further

demonstrations resulting from a selection of the transition hypotheses based on the ranking,

a human teacher will then implicitly evaluate the transition probability. Therefore, the exact

ranking value will not be adopted further into the model. Because of complexity issues dis-
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cussed further below, in the following process transition hypothesis candidates vg are added

to the model, with their relevance computed individually. Consequently, tuples of additional

transitions that have a relevant impact only when added together are not evaluated.

In case an observation model can be added at this point by the component discussed in

Section 4.10, a POMDP policy πPOMDP(b(S)) can be computed: otherwise an MDP pol-

icy πMDP(s) is computed as an approximation, indicating underlying real-world dynamics.

The reward model R has to be completed with costs added for all actions as discussed in Sec-

tion 4.10, but no further states beyond the default error state are added. Then, a number of m
simulated policy π∗MDP executions with n steps are performed with transitions and potentially

observations sampled according to the model. Initial states s1 in simulation runs are sampled

from relative initial state frequencies in demonstration sequences p(s = s1 ∈ ΞDemo). The

result is a set of sequences Ξsim∗MDP. In simulation, the true state of the world is always

known to the simulation system and can thus be recorded for both MDP and POMDP. By these

means, even high probability transitions with a high utility U(s) will never be reached during

execution in case they are never reached from mission-typical initial states s1 ∈ Q as indicated

by demonstrations.

Based on the original model plus one transition hypothesis vg, TD+vg and a corresponding

policy π∗MDP, a set of simulation sequences Ξsim∗MDP can be retrieved. With those properties

and a set of demonstration sequences ΞDemo on which the original model is based, a relevance

measure ρv(vg),vg = (si,ak,s
′
j) can be computed.

State relevance ρs(s)→ [0,1], a measure for states si,s′j is computed first . State relevance

is in turn composed of a set of measures ρs
e(s)→ [0,1].

1. Relative state occurrence frequency in demonstration sequences QObs j ∈ ΞDemo ac-

counts for states si being visited in the baseline model TD:

Ξsi∈Q := {si ∈ QObs j |QObs j ∈ ΞDemo} [4.58]

ρ
s
1(si) = ρ

s
si∈QObs

(si) =
|Ξsi∈Q|
|ΞDemo|

[4.59]

Based on demonstrations alone, it considers relevance of a state si, from the point of view

when the transition vg is not included in a model.
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2. Relative state occurrence frequency in simulation sequences Qsim∗MDPj ∈ Ξsim∗MDP

accounts for states si that are visited in the model TD+vg:

Qsim∗MDPj = (s1 ∼ p(s1 ∈ ΞDemo),a1 = π∗MDP(s1),s2 ∼ pT (s1,a1), . . . ,sn)

[4.60]

Ξsim∗MDP = {Qsim∗MDP1, . . . ,Qsim∗MDPm} [4.61]

Ξsi∈Qsim∗MDP := {Qsim∗MDPj |si ∈ Qsim∗MDPj ,Qsim∗MDPj ∈ Ξsim∗MDP} [4.62]

ρ
s
2(si) = ρ

s
si∈Qsim∗MDP

(si) =
|Ξsi∈Qsim∗MDP|
|Ξsim∗MDP|

[4.63]

This measure considers relevance of a state si in terms of occurrence frequency after

adoption of vg to the model. In contrast to the previous measure, action cost rewards

are also implicitly considered here, leading to potentially stronger differing frequencies

of courses of events compared to demonstrations. Number m and length n of simulation

runs can be derived from demonstrations that indicate typical length and overall number

to reflect of courses of events: m = 2∗ |ΞDemo|, n = 2∗avg|QObs|.

3. Based on TD+vg , the relative number of nonzero transitions, of which the state is an effect

indicates its relevance in varying courses of events:

ρ
s
3(si) = ρ

s
|T∃(∗,∗,si)|(si)

|{(s̄,a,si)|pT (si|s̄,a)> 0, s̄ ∈ S,a ∈ A}|
|S| ∗ |A|

[4.64]

This measure needs neither a simulation, nor computation of a policy.

4. The probability sum of transitions in TD+vg leading to a state si is a crude, local indicator

of its relevance:

ρ
s
4(si) = ρ

s
prelsum

T (si)
(si)

∑s̄∈S,a∈A pT (si|s̄,a)
|S| ∗ |A|

[4.65]

This measure also does not need simulation or computed policy.

5. Relative utility of a state si in a value function Uπ∗MDP indicates that it is on courses of

events leading to goals, bases on high positive rewards propagated backwards by value

iteration:

U(s) =UπMDP(s) or UπPOMDP(b(p(s) = 1.0)) [4.66]

ρ
s
5(si) = ρ

s
Urel

(si) =
U(si)−mins∈S(U(s))

maxs∈S(U(s))−mins∈S(U(s))
[4.67]

To compute this measure, a policy with a value function – either MDP- or POMDP-based

– is necessary, but no simulation runs have to be accumulated.
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Finally, a state relevance can be computed by the ~ωs weighted sum:

ρ
s(si) =

∑
5
e=1 ωs

e ρs
e(si)

∑
5
e=1 ωs

e
[4.68]

Apart from measure 1), the other relevance measures are partly redundant. However, they

vary both in terms of quality and proportional amounts of additional knowledge as well as

computation time required. For measures 2) - 5) the following order holds concerning quality

and effort: 2 >> 5 >> 4 > 3. Given enough simulation samples, simulated courses of events

are the best approximation, since they take into account consideration how often a state will be

visited and therefore its relevance. However, a policy, in turn requiring a fully defined reward

model, is necessary as well as a large number of computationally expensive simulation runs.

While the learning process is not time-critical as it takes place offline, depending on model size

and complexity policy computation or simulation may still be too costly in time, as it has to

be performed for each generalized transition hypothesis. Just computing a value function and

estimating relevance from utility values as done by measure 5) is simpler. Even less demanding

measures 3) and 4) are faster, not requiring a fully defined model and policy computation, but

in turn only very crude estimates of state relevance. As a result, different circumstances require

different weight vector ~ωs configurations in descending order of quality and computational

effort:

1. With fully defined models O and R, POMDP policy computation and initial simulation

beliefs sampled from demonstration sequences, POMDP simulation runs can be per-

formed. This leads to weights: ~ωs = {1,1,0,0,0} and overall computational effort:

• Generating O, generating R

• |vg| POMDP policy computations

• |vg|×m simulation runs, typically m = 2∗ |ΞDemo|

• |vg|×m×n simulation steps, typically n = 2∗avg|QObs|

With POMDP policy computations taking several minutes with the best state-of-the-art

algorithms for models used in experiments and generalization candidates ranging in the

thousands, practical computation time would be around a week for a large model, which

is infeasible. However, for small models with policy computation times of around one

second and only several hundreds of vg, this method is feasible. Simulation runs take less

time than POMDP policy computation in practice.
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2. Without O, but with a reward model R, MDP policy computation and initial simulation

states sampled from demonstration sequences, MDP simulation runs can be performed.

Weights are: ~ωs = {1,1,0,0,0} and the overall computational effort is:

• Generating R

• |vg|MDP policy computations

• |vg|×m simulation runs, typically m = 2∗ |ΞDemo|

• |vg|×m×n simulation steps, typically n = 2∗avg|QObs|

As MDP policy computation is much faster than POMDP policy computation, this method

is also feasible for larger models. Here, simulation runs dominate overall computa-

tion time, for instance |vg|= 1000,m = |100|,n = |20| ⇒ 2000000 simulation steps.

Therefore, it may still take several minutes for larger models as investigated during exper-

iments. In turn, resulting simulation courses of events are more coarse-grained approxi-

mations of realistic frequencies of courses of events than when using POMDP policies.

Unless stated otherwise, this approach was taken in experiments.

3. With the same setup as in the previous point, but without simulation runs, value func-

tion utilities can be used, with a resulting weight vector of ~ωs = {1,0,0,0,1} or ~ωs =

{1,0,0.1,0.1,0.8}. The overall computational effort is composed of:

• Generating R

• |vg|MDP policy computations.

In this case, MDP policy computations dominate the computational effort being faster

than the previous simulation based setup.

4. Finally, without R and any value function, a very crude and very fast heuristic, transi-

tions having a state as effect are taken as the primary criterion for the extended model

with ~ωs = {1,0,0.2,0.8,0} and no further relevant computational effort. Evaluating all

nonzero transitions on a typical sparse model takes negligible computational effort.

Transition relevance ρv(v) → [0,1] is computed for generalized transition hypotheses

vg = (si,ak,s
′
j) and is composed of a set of measures ρv

e (v)→ [0,1].

1. State relevance of the origin state si of vg is considered:

ρ
v
1(vg) = ρ

v
originrelevance = ρ

s(si) [4.69]
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2. State relevance of the resulting state s′j of vg is considered:

ρ
v
2(vg) = ρ

v
e f f ectrelevance = ρ

s(s′j) [4.70]

3. While occurrence of origin and result are covered by state relevance, the transition vg

itself can be accounted for in the same manner, analyzing simulation runs:

Qsim∗MDPj ∈ Ξsim∗MDP

vg ∈ Qsim∗MDPj := (. . . ,si,ak,s j, . . .) ∈ Qsim∗MDPj [4.71]

Ξvg∈Qsim∗MDP := {Qsim∗MDPj |vg ∈ Qsim∗MDPj} [4.72]

ρ
v
3(vg) = ρ

v
vg∈Qsim∗MDP

(vg) =
|Ξvg∈Qsim∗MDP|
|Ξsim∗MDP|

[4.73]

ΞDemo in turn cannot be assessed likewise as no vg appears in demonstrations.

4. A crude heuristic is the relative reward of the pair (si,ak), triggering the transition vg:

ρ
v
4(vg) = ρ

v
relreward =

R(si,ak)−min(R(s̃, ã))
max(R(s̃, ã))−min(R(s̃, ã))

[4.74]

This measure indicates a likelihood that the pair (si,ak) is included in courses of events

and is used only when no simulation runs are performed.

5. Another crude heuristic is the probability of a transition vg:

ρ
v
5(vg) = ρ

v
prob = pT (s

′
j|si,ak) [4.75]

Again, this measure indicates the likelihood that the pair (si,ak) is included in courses

of events: thus, it is redundant when simulation runs, which provide a far better estimate,

are performed.

6. While generalization confidence is implicitly included in most other measures by means

of pT (vg), it can be used separately without baseline transition probability playing a role:

ρ
v
6(vg) = ρ

v
gencon f idence = gc(vg) [4.76]

Finally, the weighted sum forms the overall transition relevance measure:

ρ
v(vg) =

∑
6
e=1 ωv

e ρv
e (vg)

∑
6
e=1 ωv

e
[4.77]
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Different circumstances require different weight vector ~ωv configurations in the same way and

corresponding descending order of quality and computational effort discussed for state rele-

vance. Although generalization confidence dominates all other measures, it is not emphasized

so much in weight vectors as it is already indirectly involved by means of pT (vg) in all other

measures.

1. POMDP policy computation and simulations lead to weights
~ωv = {0.5,0.5,1,0,0,1}.

2. MDP policy computation and simulations lead to weights
~ωv = {0.5,0.5,1,0,0,1}.
This is the default mode in experiments unless stated otherwise.

3. MDP policy computation without simulations leads to weights
~ωv = {0.5,0.5,0,0,0,1}.

4. Without MDP policy computation, a crude and fast heuristic can use
~ωv = {0.5,0.5,0,0.5,0.5,1}.

Finally, all generalized transition hypotheses vg ∈ Vg can be ranked accordingly. Based on

the ranking, relevant hypotheses to be verified can be selected either above a certain ranking

threshold ερv or up to a maximum number Nv (the latter was the method used in experiments

unless stated otherwise):

V veri f y
g = {vg ∈Vg| ρv(vg)> ερv} or [4.78]

V veri f y
g = {vg ∈Vg| |vmorerelevant

g |< Nv,ρ
v(vmorerelevant

g )> ρ
v(vg)} [4.79]

4.8.2. Interactive Request Generation

Relevant transition hypotheses V veri f y
g have to be verified by acquisition of additional demon-

strations ΞMoredemo, indicating nonzero occurrence probability or in case there is zero oc-

currence probability, non-occurrence confirmed by teacher rejection of potential demonstration

courses of events. Such demonstrations, or their rejections, can be acquired by the robot pos-

ing demonstration sequence requests to the human teacher which include transition hypotheses

vg ∈V veri f y
g in the courses of events. By these means, the original intention of transition gen-

eralization, namely relevance estimation and request generation, is achieved: supporting the

human teacher in selection of demonstration sequences such that the number of demonstrations

is kept low, but the number of important potential courses of events omitted is minimized.
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To compose reasonable verification demonstration sequences, relevant transition hypotheses

vg = (si,ak,s
′
j) have to be embedded into larger sequences Qrequest , beginning at typical

starting configurations as present in demonstration sequences SDemo
1 :

SDemo
1 := {si ∈ S1|si = s1 ∈ QObs1 ∨ . . .∨ si = s1 ∈ QObsn} [4.80]

Qrequest = {s1 ∈ SDemo
1 , . . . ,si,ak,s j, . . . ,sn} [4.81]

Such an internal representation of a request is suitable to be composed autonomously, while

request output may be relaxed to allow more demonstration flexibility as described below.

As discussed in Section 4.4, demonstration sequences may vary considerably in length. Short

sequences are suitable to demonstrate effect probabilities of specific transitions while minimiz-

ing redundant demonstration effort. Such shorter sequences may be subsections of longer co-

herent courses of events and the request-generation process tries to generate requests as short -

and thus as efficient - as possible. To generate short sequences containing as many hypotheses

vg as possible and being connected to a demonstrated initial state s1 ∈ S1, path search is per-

formed. A valid path between two states Qpath(sstart ,send) is defined here as a sequence of

consecutive transitions (v1,v2, . . . ,vn) with

Qpath(sstart ,send) :=(v1 = (sstart ,a1,s
′
1),v2 = (s2 = s′1,a2,s

′
2), . . . ,

vn = (sn = s′n−1,an,s′end)), [4.82]

∀1≤ i≤ n : pT (vi)> 0 [4.83]

In this context, finding a valid path can be achieved by searching on a graph represented by the

transition model TD. States s are nodes and nonzero transitions v = (s,a,s′), pT (v) > 0 are

edges in that graph. Yet generally, a transition model TD forms a multigraph, with potentially

multiple actions ak1 6= ak2 containing transitions from one distinct state si to another state s j:

vk1 = (si,ak1,s
′
j),vk2 = (si,ak2,s

′
j), pT (vk1)> 0, pT (vk2)> 0

⇒∃Q1
path(si,s j),Q

2
path(si,s j) : Q1 6= Q2 [4.84]

Because path search in a multigraph is computationally expensive while for the purpose here,

any likely path is sufficient, two restrictions are introduced to turn the multigraph into a graph:

1. For a set of immediate edges between two states {vk1 = Q1, . . . ,vkn = Qn} that are only

distinguished by action ak, only the edge with the highest probability ∀vk : pT (vmax)≥
pT (vk) is chosen. In case of multiple transitions with equal, highest probability, an

arbitrary edge can be selected.
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2. From these transition edges, among all transitions with the same s, a, only that with the

most likely effect is selected: ∀vi,k,1, . . . ,vi,k,n : pT (vi,k,max)≥ pT (vi,k, j).

Based on the resulting graph, a breadth-first search can be performed. It prefers short paths as

desired and is able to discard all paths longer than a certain maximum sequence length.

Generating a request sequence is performed by applying such a path search, starting with the

most relevant hypotheses v1
g = argmaxvg(ρ

v(vg)). First, a path to the closest demonstration

initial state Qmin
path(s1 ∈ S1,s ∈ vg) is searched. If none is found, the hypothesis vg is isolated

from initially demonstrated courses of events and can be discarded. This should not happen if

relevance was computed using simulations, because such an isolated transition then gets little

relevance. If a path could be found, next a path with at most length maxl is searched for from

v1
g to the next closest distinct hypotheses vg 6= v1

g. This is repeated at most maxg times. By

these means, multiple hypotheses can be integrated into one request, saving effort on the one

hand and leading to interesting new courses of events on the other. In case having these multiple

new transitions in a single course of event is not valid within the scope of the mission, partial

sequence rejection by the human teacher as discussed below can divide these longer sequences

again.

The path search process is repeated for each vg which has not yet been inserted into a se-

quence, starting at an initial state s1, until no remaining vg can be connected with an s1 ∈ S1
as shown in Algorithm 1. Because request generation uses the preliminary transition model TD,

generated from demonstrations, selected paths keep close to demonstrated courses of events

which avoids generating sequences unsuitable for demonstrations.

Transition hypotheses vg in a request sequence may actually not occur in a mission. While

nonzero hypotheses can be confirmed in a respective frequency in further demonstrations, zero

probability hypotheses are false hypotheses. Verification of the latter type can only be commu-

nicated to the robot by explicit rejection of corresponding demonstration sequences. However,

in the request sequence composition process presented, several different hypotheses vg may be

included in a single sequence to increase efficiency. Some of those hypotheses may actually

be nonzero while others are not. Furthermore, real transition probabilities may differ signifi-

cantly, thus requiring different demonstration frequencies. To be still able to process multiple

hypotheses in a single request, a binary selection tree mechanism is applied.

In case a request Qrequest containing multiple hypotheses vg is rejected, it is split up into

two parts, each containing a rounded equal number of hypotheses vg: Qrequest = Qrequest
partA +

Qrequest
partB . Each part is recursively further processed, until a part either contains only a sin-

gle hypotheses or is demonstrated. In case a sequence part contains only a single hypotheses
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Figure 4.12.: Scheme of the binary tree request technique to discover which part of a rejected sequence

is invalid. - [125]

vinpart
g ∈ Qrequest

part ⇒ vinpart
g ∈ V inpart

g (part), |V inpart
g (part)| = 1 and is rejected, the hy-

pothesis can be marked as false and is discarded. This is an efficient way of interactive hypoth-

esis rejection as depicted in Figure 4.12.

Comfortable and flexible requests are provided by transforming the internal state-action re-

quest sequence Qrequest representation. Some flexibility is desired as requests should just point

human teachers to interesting areas in model space, but not fully patronize them. Four basic

types of lean request output representations can be used:

• Sequence of actions: just the action sequence in Qrequest is given. While this is a compact

representation, the teacher may miss intended states.

• Sequence of states: just the state sequence in Qrequest is given. During demonstrations,

the human teacher may choose any action to reach desired states. Unintended stochastic

effects may be corrected by further actions, leading back to intended courses of events.

On the other hand, being composed of features, state descriptions may be long.

• Sequence of feature state changes: only feature states in states which should change from

one state to the next in Qrequest are given. This representation is very similar to the state

sequence in functionality but much more compact concerning output.

• A combination of feature state changes and action sequences balances advantages best.

A sequence of feature state changes is given with two special cases: a) in case a transition

has s = s′, only the action is given, b) for vg (but not other vi), the action is stated

explicitly, in addition to the feature state change. This is the default mode.

154



4.8. Interactive Requests for Human Demonstrations to Verify Generalizations

Finally, sequence requests have to be communicated to the human teacher. Three methods

are available in the presented system:

• Written sequences, show sequences of symbol names for states or actions as text. It is the

standard procedure in experiments unless stated otherwise.

• Verbal utterances read written sequences processed by the robots text-to-speech system.

It is the most natural way, leading to a real student-teacher dialog, especially together

with spoken teacher comments as discussed in Section 4.9.

• Visual display of the sequence in terms of an abstract sequence graph together with a

visualization of states and actions. This is the best procedure in case expressive state or

action symbols are not available for state or action space.

4.8.3. Limitations

Several conceptual limitations of the process as presented have to be considered in practical

use as discussed briefly in the following. Most importantly, transition hypotheses are only

generated and ranked for relevance individually, yet associated tuples of transition hypotheses

may only introduce relevant new courses of events together. However, there is the issue that each

potential combination of a set of hypotheses would need to be evaluated for relevance, which

leads to utterly infeasible computational complexity. Investigation of sophisticated heuristics

used for efficient selection and relevance evaluation of promising tuples was beyond the scope

of this thesis. Hence, if tuples are only relevant if added together, this will not be detected

because each alone is not sufficiently relevant. However, requests based on single hypotheses

may still remind the human to include new demonstrations with directly coupled tuples of new

transitions.

Overly precise requests are also a limitation although a human teacher is always free to add

more demonstrations unrelated to, but inspired by requests. Demonstrations following requests

may distort original frequencies of courses of events and thus transition probabilities. Therefore

the teacher has to take care to correct altered probabilities in turn.

With autonomous feature generation, state symbols may not be expressive enough for human

teachers to understand presented state sequences in written or verbal form. To a lesser extent

the same may be true for action sequences. In this case, either a visual display or supportive

visualization of textually addressed states and actions has to be used. Another way to acquire

sufficiently descriptive state symbols is presented in the next Section.

Experiments regarding this process stage are presented in Section 5.6 while further software-

implementation-specific details are outlined in [81].
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4.9. Enriching Action Information with Spoken Human Comments

Interactive request generation enables an active participation of the robot student in the learning

process. On top of this, an interactive two-way dialog supplementing passive learning from

observations can be achieved by introducing spoken teacher comments. First, a clear distinction

has to be made between spoken human utterances that are part of a demonstrated dialog between

RR and HR on the one hand and spoken comments explaining aspects of demonstrations to the

robot on the other. It can easily be achieved by introducing key words: any utterance starting

with "Comment: [...]" is then interpreted as a demonstration comment, while all other utterances

are part of a dialog in the presented system.

While demonstration requests by the robot remind the human teacher of demonstrations

which might have been missed, human teacher comments explain demonstration aspects which

might contain insufficient information when solely observed. Hence, the two-way interactive

dialog helps the robot student to acquire more information than with a non-interactive passive

PbD approach. Comments can be used to explain three types of demonstration properties:

1. Classify actions performed by the robot role demonstrator.

2. Tag states with expressive symbols, understood by teachers in demonstration requests.

3. Introduce additional action costs, for example when an HR is annoyed by certain RR

actions.

When observing new actions during a demonstration, these actions can be autonomously mapped

to executable skills as discussed in Section 4.3. However, it is not known which actions are

closely related and thus suitable to derive action cost penalties, error states and secondary effect

probability estimates as explained in the next Section 4.10. A spoken comment during demon-

stration of such a new action allows the knowledge base to classify the new action in relation to

previously encountered classes of actions. E.g "Comment: this is a chair grasping" can derive a

rough estimate of action cost and error effect likelihoods from a generic chair grasping class in

the knowledge base.

Feature states generated autonomously as discussed in Section 4.2 usually do not have sym-

bolic labels that can be easily interpreted by human teachers. Normally, that is not a problem

as any abstraction during learning and execution is handled internally. However, when using

state sequence spoken output in request generation, the human teacher has to understand state

sequences. In this case, internal symbols representing mental models of courses of events have

to be grounded between human and robot. Both agents need to have the same understanding of

what a certain symbol means. It can be accomplished by commenting all relevant feature states
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Figure 4.13.: Illustrative example: Use of spoken comments leading to symbols understood by humans

e.g. in demonstration requests. - [125]

during demonstrations at least once as depicted in Figure 4.13. Recording points in traces with

comments can be mapped on their respective states and these states labeled accordingly.

Action-cost negative rewards are assigned based on basic action class concepts as discussed in

the next Section. However, certain interaction actions may be especially annoying to interacting

humans. Further negative reward costs can be introduced using comments.

4.10. Inference of Missing Model Properties Using the Knowledge Base

By using inference on background knowledge valid for multiple missions as described in Sec-

tion 3.7, the preliminary POMDP model can be completed. In the PMPM-PbD process, both

exploitation of background knowledge for model generation as well as incremental expansion

of the background knowledge by learned model data is suitable.

4.10.1. Inference of Knowledge to Complete Preliminary Models

As discussed in Section 3.7.1, several different POMDP model components can be partially

inferred from DL background knowledge, given a preliminary model SD,AD,TD,RD. Be-

low, inference and rule processing is described using examples based on persistent background

knowledge DL axioms, facts and OPPL rules as presented in Section 3.7.4.

Based on AD, action cost negative rewards RC can be inferred. For example, the effort of

grasping a chair can be inferred from the following persistent DL axioms:

Chair vMovableOb j v Ob ject v TangibleT hingv> [4.85]

Graspv Actionv POMDPModelComponent v> [4.86]

Graspv (∃relatedOb ject.MovableOb j) [4.87]

Graspv (((∃relatedOb ject.PortableOb j)u (∃reward.{−1}))

t((∃relatedOb ject.¬PortableOb j)u (∃reward.{−2}))) [4.88]
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Given a specific action instance generated from demonstrations observations, Grasp Chair

Front ∈ AD is tagged by the action mapping process stage as a "Grasp", targeting the ob-

ject "WoodenChair" with the manipulation strategy "Front". Hence, the action can be re-

alized as an instance of a Grasp: Grasp(GraspChairFront), with the properties relatedOb-

ject(GraspChairFront, WoodenChair) and manipulationStrategy(GraspChairFront, Front). Sub-

sequently, the Pellet reasoner can infer from the Grasp concept corresponding rewards as stated

in Expression 4.88, the Chair concept and its parent concept MovableObj, which is not a

PortableObj: reward(GraspChairFront) = -2. Such action cost values are then valid for all

origin states as discussed in Section 3.7.

Based on AD, robot capability specific error effect states SE can be derived as shown by the

example in Table C.3.

Based on AD,SE ,SD, robot capability secondary effect probabilities TE can be inferred,

which describe transitions that have never been observed in demonstrations of the current mis-

sion. Failures to grasp a chair, for instance, are modeled as instances by persistent DL axioms

representing an n-ary relation with n = 4, as shown by the example in Table C.4. Additionally,

an SWRL rule is necessary that matches Grasp instance properties relatedObject and manipula-

tionStrategy with transition instances TrGraspChairFrontMissed and TrGraspChairFrontAway

as shown in Table C.5. For an action GraspChairFront, related transitions TrGraspChairFront-

Missed and TrGraspChairFrontAway are acquired, including effect state properties.

An example of a generic manipulation error recovery action AE is shown in Table C.6.

To generate information gain actions AI , one has to introduce a special relation optimizedFor

has to be introduced, pointing at a relatedObject:

optimizedFor ◦ relatedOb ject v relatedOb ject [4.89]

It uses action "target" analysis as discussed in Section 4.11.1. Hence, an axiom and an OPPL

rule can be applied, as shown in Table C.7.

4.10.2. Reducing Demonstration Requests Using Background Knowledge

Beyond completing preliminary models, the knowledge base can also be used to reduce the

number of generalized transitions vg to be verified by demonstration requests. Persistent knowl-

edge about impossible transitions can filter the set of Vg, thus discarding some and reduce the

necessary verification effort. For example, while there is an object inhand, the manipulation
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strategy planner will not consider any command to grasp another object. Such a generally ap-

plicable static transition rule can be modeled as follows:

Graspv (∃cannotModi f yAny.{Ob jectStateInhand})

Ob jectStateInhand v Ob jectState [4.90]

A similar rule is applicable for objects that are not present:

Graspv (∃cannotModi f yAny.{Ob jectStateNotPresent})

Ob jectStateNotPresent v Ob jectState [4.91]

4.10.3. Extending the Knowledge Base Incrementally by Lifelong Learning

Persistent background knowledge that can be learned within the PMPM-PbD process includes

secondary action effect states SE and probabilities TE as computed by geometric analysis and

trials in simulation refinement stages in Sections 4.11 and 4.12.

4.11. Geometric Planning Analysis to Compute Scene-Specific Action Effects

Up to this point in the PbD process, mobility actions goto pose agp are regarded as abstract

symbols, in turn transferring a robot from one class of abstract pose situations crobot−pose
xrobot−pose ∈ s

into another crobot−pose
xrobot−pose ∈ s′. In contrast, robot dialog utterances aut are easily instantiated

and manipulation actions amp are clearly defined by the powerful manipulation strategy concept

as outlined in Section 2.7.2 and mapped in Section 4.3. Symbolically referenced manipulation

strategies are an abstract representation of manipulation motions within a constraint geometric,

temporal and force profile as defined by the strategy graph. Constraint-based motion planning

instantiates actual trajectory motion instances during execution time, anchored geometrically on

objects in the scene. Accordingly, a component is necessary that is able to instantiate abstract

mobility actions agp by geometric path planning.

However, the concept can be extended within the scope of PMPM-PbD: first, by coupling

it closely to manipulation strategy actions amp and hence considering optimal positioning for

manipulation actions as well as estimating transition probabilities for mobility actions agp. To

achieve the former aspect, the given process stage [163] builds on the concepts of Capability

Maps outlined in [167] and Action Related Places presented in [150].

Basically, this PMPM-PbD process stage has two areas of application:

1. Online computation of target poses to execute manipulation strategies with optimal suc-

cess likelihood and path planning from a current pose to the target pose. Furthermore,
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transition probabilities are computed for several classes of effects that are usable by the

belief-filter system and thus online belief estimation.

2. Offline computation in learning-time PMPM-PbD transition model refinement uses Monte-

Carlo simulation to compute abstract positioning and path planning effect prior probabil-

ities from representative robot- and object-pose samples in feature states learned by PbD.

It is based on exactly the same positioning, path and probability computations as the

online, execution-time computation, thus representing it well in the transition model.

In the following discussion, only geometric aspects are considered for path and motion plan-

ning, hence the name of the process stage, but no physical dynamics world behavior which is

addressed in Section 4.12.

4.11.1. Navigation Targets for Optimal Execution of Manipulation Strategies

First, it has to be noted that in a resulting POMDP model, an arbitrary mobility action agp

and an arbitrary manipulation action amp are not directly linked. In decision making, amp

may potentially follow agp, but so may any other available action as there is no fixed action

sequence plan. Consequently, there is no exclusive tie between agp and any amp in a decision

making policy. However, in the given system there is a source of information linking such

two actions: demonstration sequences may show clear links with some manipulation actions

amp most frequently being executed in certain Frobot−pose feature states, which are effects of

certain agp. Such information may be utilized in two ways:

1. Fusing agp and amp into a single subtask action agp+mp as discussed in Section 3.4.1.

2. Specializing agp in a way that it is optimized for execution of a selected amp afterwards.

In the following, only the latter option is discussed, because no true mobile manipulation is con-

sidered with manipulation strategy execution during robot mobility navigation and thus a clear

temporal segmentation exists in any case. Thus, explicit distinct modeling of abstract mobility

and manipulation actions is more flexible and coherent in the face of typical segmentation and

handling of those actions. Nonetheless, instantiation of certain mobility actions agp f ormp is

then specialized to facilitate manipulation actions that are most frequently executed in typical

effect states after an agp f ormp in demonstrations. This leads to the following definition:

A subset of abstract mobility actions Agp f ormp⊆ Agp⊆ AD can be determined in a prelimi-

nary mission model acquired from demonstrations. Actions agp f ormp ∈ Agp f ormp are defined

in the following way:
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1. agp f ormp,i is a mobility action.

2. There exists a manipulation action amp,k that is the action most frequently performed

directly after agp f ormp,i in demonstrations:

∀Obsl,∀obs(t′) ∈ Obsl : (ai = at ′,ak = at ′+1)⇒ Âpairs
i,k ← (ai,ak) [4.92]

ai,max f ollows = a j with j = argmaxk(|Â
pairs
i,k |) [4.93]

ai

∈ Agp f ormp if ai ∈ Agp∧ai,max f ollows ∈ Amp

/∈ Agp f ormp else
[4.94]

3. agp f ormp,i is tagged in the knowledge base to be optimized for ai,max f ollows ∈ Amp

when instantiated.

4. Robot (RR) spoken utterances aut taking place after at ′ are discarded when determining

at ′+1 as they will not alter pose and manipulation strategy origin.

Additional actions in the knowledge base included beyond demonstrations

Agp f ormp+ ⊆ Agp+ ⊆ AE , as outlined in Section 4.10, may be tagged in a similar way.

As objects related to a manipulation strategy action amp are known to the knowledge base

– for instance as shown in Table C.4 – an object related to agp f ormp is also known in turn.

Based on that reasoning, actions agp f ormp can be instantiated in a way that resulting most

likely effect state situations increase desirable effect probabilities of the following amp. In

this context, two specific feature state types concerning manipulation, corresponding to SE as

introduced in Section 4.10.1, have to be defined:

c′mp
E = c′mp

success := f f urni−state(mst :: f inalnode∧ c′ob j−state
(OtherOb j) = cob j−state

(OtherOb j)) [4.95]

c′mp
E = c′mp

static := c [4.96]

In the context of planning a manipulation strategy amst
mp this means:

1. c′mp
success := A trajectory was found in the given scene and is is suitable to be executed

under the constraints of the mst.

2. c′mp
static := No trajectory could be found during planning, thus no strategy can be executed.

Any object-related feature remains the same after executing amst
mp .

Accordingly, these two definitions can model planning failure and in a respective transition

model TGA represent estimated prior planning success probabilities in a given class of scene

configurations cmp
origin. In the following, cmp

x is a short notation regarding a feature state com-

bination of crobot−pose
xi ∧ cob ject−pose

x j .
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Figure 4.14.: Exemplary MST-ORSALM for "grasp chair below front" (left) and "grasp chair right side"

(right) with chair bounding box in green and approximate mst grasp region shown by white

triangles. Points indicate shoulder position of the robot in poses with successful trajectory

planning. - [163]

1. pTGA(c
mp
success |c

mp
origin,a

mst
mp ) = Manipulation strategy planning success probability.

2. pTGA(c
mp
static |c

mp
origin,a

mst
mp ) = Manipulation strategy planning failure probability.

As successful planning is in any case a mandatory necessity for execution - and exactly modeled

that way in software, with no motion being executed if no trajectory is found – any execution-

specific effect probabilities are directly conditionally dependent on the planning success proba-

bility, as described in detail in Section 4.12.1. In this Section, only planning success and failure

probabilities are considered as defined, with real execution effects added in Section 4.12.

With the given ingredients, the main purpose of the process component can be defined:

Computing a robot mobility target pose which keeps to the abstract definition of a given

mobility action agp f ormp,i, trying to reach cmp
origin in a way that planning success probability

pTGA(c
mp
success |c

mp
origin,a

mst
mp ) of the potentially following manipulation action amst

i,max f ollows is

maximized. Furthermore, computing both an online prediction as well as abstract transition-

model estimate of transition probabilities for both agp f ormp,i as well as amst
i,max f ollows.
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This goal is achieved by combining and extending the ideas of Action Related Places and Capa-

bility Maps. First, for a given manipulation strategy on a certain object, a Manipulation Strategy

Object Relative Spacial Applicability Likelihood Map (MST-ORSALM), inspired by Capability

Maps, is computed in an extra offline stage. It is achieved by sampling robot poses relative to

a given object, followed by MST constraint-based motion planning in that pose. Planning fail-

ure or success is recorded for each sample. Sampling has to uniformly cover all pose regions

(x,y,θ) around an object.

An MST-ORSALM has to be computed only once for each combination of object and amst
mp . It

can subsequently be used as fundamental background knowledge. Nonetheless, computational

effort is enormous as every sample test needs a complete motion-planning step. Successful

exemplary samples are shown in Figure 4.14. In the system used for evaluation, this took

between 3 and 12 seconds per sample. Thus, sample numbers have to be kept low. It is achieved

by defining an object-relative 2D+1D-grid voxel g(xi,y j),(θk) and taking the same number of

samples in each grid field. The grid extends around an object as far as the maximum reachability

of the robot for stationary manipulation. Grid resolution and sample density number have to be

chosen in practice so that computational effort remains feasible as shown in the example in

Table C.8.

Basically, MST-ORSALM gives a Monte-Carlo based prior probability estimate of manipula-

tion strategy planning success mst :: plansuccess of robot poses inside a given (x,y,θ)-voxel.

Subsequently, computation uses voxel-based success probability estimates

MST-ORSALMob j
mst := p(mst :: plansuccess | frobot−pose(xi,y j,θk),a

mst
mp ).

Next, a positioning error can be accounted for easily, at least when assuming scene-independent

navigation errors, sufficiently approximated by unidimensional Gaussians with means in x,y and

θ . This is exactly the assumption made in the filter for robot-pose, discussed in Section 3.2.1.

However, furthermore, fixed, average variances have to be assumed here to manage computa-

tional complexity. Using the approach described in Section 3.2.1, the probability to end up in

neighboring voxels when aiming at the center of a voxel (x,y,θ), can be computed. The in-

tention is to rank target poses for positioning more highly, where neighboring poses will more

likely lead to success in subsequent manipulation strategy planning: thus, these poses are more

robust to navigation errors with respect to strategy planning.

4.11.2. Navigation Path Execution Effect Probabilities

Ranking target poses for agp f ormp,i is not sufficient, since the path towards that target pose

also has to be assessed. A pose voxel highly suitable for strategy application may be reachable

only under high navigation risk or not at all.
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Figure 4.15.: Exemplary nbestvoxels target pose candidates for mst "grasp chair below front" with the cho-

sen one in green (left). Robot pose θ is indicated by line height. A path towards the target

pose with bubbles, but without interpolation spline (right). - [163]

Within the scope of the presented system, a specific path-planning component was developed,

as described in detail in [163]. It is based on elastic bands and especially suitable for computing

navigation-error estimates, based on geometry and navigation behavior peculiarities of a certain

robot. Without loss of generality – any suitable path planning technique could be substituted -

the method is able to compute a collision-free path for a non-holonomous base on a given map.

This specific method tries to optimize both staying away from obstacles as much as possible

and reducing path curvatures that lead to increased navigation errors.

If no path is found, nopath holds: pgoto
target,start(nopath) = 1, else pgoto

target,start(nopath) =
0. For a given path, deviations for each path segment g can be computed based on path curvature

and robot mobility behavior, that is deviation angle per segment, in the form of representative

deviation points xd
g . Collision probabilities in each segment are calculated in turn from the

relation between deviation points in collision with obstacles on the map and those without:

psegment
g (success) = 1−

|xd
g(collision)|
|xd

g |
[4.97]

ppath
target,start(success) = ∏

g
psegment

g (success) [4.98]

ppath
target,start(collision) = 1− ppath

target,start(success) if path [4.99]
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Finally, for a number of nbestvoxels best ranked target pose voxels (xi,y j,θk), a path is

computed to the center of the voxel. Three effective action effects of executing the path as

agp f ormp,i are considered for each path computation:

c′gp
E = c′gp

success := frobot−pose(c
′gp
robot−pose ∈ cmp

origin) [4.100]

c′gp
E = c′gp

static := c [4.101]

c′gp
E = c′gp

collision := frobot−pose(c
′gp
robot−pose = ”Collision”) [4.102]

1. c′gp
success ' path(success) reflects successful arrival in the goal region, encompassing

also moderate deviations from the exact target pose.

2. c′gp
static occurs in cases no collision free path could be found – even without considering

deviations. It may happen in case all potential paths to the target pose are blocked by

obstacles.

3. c′gp
collision considers prior collision estimates as predicted by path planning, defined above.

The path planning component tries to maximize overall likelihood for success of amst
mp :

target(i, j,k) =

argmaxi, j,k(p(mst :: plansuccess | frobot−pose = (xi,y j,θk),a
mst
mp )

∗ ppath
(xi,y j,θk),current−pose(success)) [4.103]

ppath
agp f ormp,current−pose(success) := ppath

target(i, j,k),current−pose(success) [4.104]

During execution time, given a mobility action agp f ormp, the path planning component ei-

ther plans and executes a path to a respective target pose or returns when no path could be found.

Additionally, in case a path is taken, a prior collision estimate can be given to the belief filter.

4.11.3. Computing Abstract Mobility Action Probabilities for Mission Models

In the PMPM-PbD process, this processing stage contributes, by computing more realistic tran-

sition model probabilities for actions amst
mp and agp f ormp. Hence, it is a crucial part of the

refinement stages: improving preliminary models generated from demonstrations to better re-

flect real-world dynamics, especially robot-capability-specific stochastic action effects.

Execution-time action effects are governed by peculiarities of path- and manipulation-strategy

planning as outlined above. Therefore, during model generation, this stage replicates settings

as observed during demonstrations. Respective prior action effect probabilities in T are com-

puted by Monte-Carlo sampling of situations in feature states, corresponding to the execution

of Agp f ormp and Amst
mp and evaluating resulting planning effect prior probabilities.
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For nposepairs pairs of robot poses and object poses Ei = EGA
s sampled from a scene layout,

optimal target voxels, the respective manipulation strategy planning success probability, a path

and path effect probabilities are computed. Scene layouts are represented by feature-state de-

scriptions crobot−pose
origina

, cob ject−pose
origina

generated from demonstrations. By using setups learned

from demonstrations, the process can be sufficiently focussed on a few relevant state-action

pairs. Consequently, action effect prior probabilities for Agp f ormp can be computed:

pTGA(c
gp
success |c

gp
origin,agp f ormp) =

∑
nposepairs
i=1 ppath

agp f ormp,Ei
(success)

nposepairs
[4.105]

pTGA(c
gp
collision |c

gp
origin,agp f ormp) =

∑
nposepairs
i=1 ppath

agp f ormp,Ei
(collision)

nposepairs
[4.106]

pTGA(c
gp
static |c

gp
origin,agp f ormp) =

∑
nposepairs
i=1 pgoto

agp f ormp,Ei
(nopath)

nposepairs
[4.107]

For manipulation planning effect prior probabilities only those nmppairs pairs E j = EGA
s , re-

sulting from a valid path target pose at the beginning of actions Amst
mp are considered:

pTGA(c
mp
success |c

mp
origin,a

mst
mp ) =

∑
nmppairs
j=1 pmst

amp,E j
(planning− success)

nmppairs
[4.108]

pTGA(c
mp
static |c

mp
origin,a

mst
mp ) =

∑
nmppairs
j=1 pmst

amp,E j
(planning− f ailure)

nmppairs
[4.109]

Subsequently, the knowledge base has to anchor feature states for conditional dependence

of probabilities in TGA on probabilities in TD. A Bayesian Network is implicitly created, with

conditional dependence links tied to transitions from demonstrations by means of the knowledge

base. This linking is performed in the same manner as outlined in Section 4.12.3. An example

is shown in Table C.9.

4.11.4. Discussion and Limitations

By means of this component, abstract actions are grounded in path and motion planning be-

havior. Furthermore, abstract actions agp f ormp are instantiated. Considering path and motion

planning peculiarities in abstract reasoning can help action selection to make robust decisions.

However, there are many limitations to this specific approach that could potentially be tack-

led in future investigations. Foremost, an MST-ORSALM is only valid for a fixed scene of

objects, such as a chair or a cup on a fixed table, but not for other nearby obstacles, that were

absent from the scene during generation of the MST-ORSALM. Variable sample density of the

166



4.12. Trials in Dynamics Simulation to Refine Manipulation Effect Probabilities

MST-ORSALM could allow faster computation times and a focus on interesting regions in the

workspace relative to objects. True mobile manipulation with navigation during manipulation

motions is not considered here at all, as non-holonomous motions do not coexist well with ma-

nipulator motion planning. Additionally, the instantiation is specialized to directly execute the

manipulation action after a navigation action agp f ormp. While any other action can be chosen

afterwards, path planning does not consider further alternative courses of events. Consequently,

only the most likely subsequent manipulation action is considered. In contrast, a more exten-

sive probabilistic approach could reflect probabilities of all potentially applicable manipulation

strategies and optimize positioning for the overall maximum effect likelihood. Limitations of

various Monte-Carlo methods furthermore limit the ability to approximate real-world dynamics.

These and further limitations non-withstanding, reflecting detailed skill level action effect

peculiarities in abstract level transition models and acquiring numeric values comfortably is a

big challenge in robotics, even far more than reflecting perception peculiarities as discussed in

Section 3.3.4. The challenge is tackled at least to some extent by this crucial component in

the given system. Extensive details regarding the specific elastic-band planning technique and

deviation computations applied as well as software-specific details of this stage can be found

in [163].

4.12. Trials in Dynamics Simulation to Refine Manipulation Effect Probabilities

While logic-based inference and geometric analysis can give crude estimates of robot-specific

transition probabilities pT , learning from experience gives the best approximation for robot

action effect prior probabilities. In combination with PbD this means that a robot executes

observed state-action pairs (s,a) and then is able to gather experience about secondary effect

probabilities as defined in Section 3.4.2. In practice, there are severe limitations to learning

from experience:

1. State-action pairs have to be experienced a number of times to gather frequencies suffi-

ciently approximating pT (s,a,s′1), . . . , pT (s,a,s′n).

2. Situations instantiating abstract states s and actuator commands instantiating abstract ac-

tions a have to be sampled in sufficient variance.

3. Effect states s′i have to be observed with sufficient accuracy for the system to be able to

assume a fully observable setting, which is necessary for learning effect frequencies.

While learning with a real robot in this way may approximate real world dynamics best, it

is far too slow, dangerous to hardware and environment. In addition, it is difficult to control
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situation choice and to record action effects. Consequently, an alternative approximating real

settings is necessary, but without the need for real hardware. Physical-dynamics simulation

is able to compute realistic effects of forces of bodies onto each other. In combination with

artificial deviations reflecting real-world sensor and actuator uncertainty, it enables simulated

learning from experience [12], [135]. In the scope of the presented system, physical-dynamics

simulation is used for learning manipulation action secondary stochastic effect prior probabil-

ities from simulated experience. Manipulation actions are the most complex actuation-domain

with secondary effects prevalent in real missions and these effects cannot be computed to a

sufficient approximation by geometric analysis alone.

4.12.1. Simulated Trial Setup

A simulation trial is defined by the tuple state s, action a, observation deviations {σm
i }, actua-

tion deviations {σa
j } and sample densities and frequencies ρk: Trial :=(s,a,{σm

i },{σ
a
j },ρk).

A state s is an abstract class of situations as defined in Chapter 3. For trials, a state has to be

re-instantiated, typically from its feature definitions fg1 and thus filter models as described be-

low. More specifically, a state smanip in this context is defined as a class of configurations ξ of

a robot and object poses in an environment:

smanip :=CRob,(Env := Ob j1pose, . . . ,Ob jnpose) [4.110]

ξ := cRob ∈CRob,(x
1
ob j,y

1
ob j,z

1
ob j,r

1
ob j, p1

ob j,y
1
ob j) ∈ Ob j1pose, . . . [4.111]

This simulation environment definition assumes rigid objects with known geometric models,

mass distributions and unambiguous poses. A manipulation action in this context is a manipu-

lation strategy amst
mp as defined in Section 2.7.2. Typically, a trajectory is planned by applying

the manipulation strategy in a given scene smanip. However, for simple grasping strategies it

may also be suitable to plan with a simplified representation asgrasp
mp . Such a simplified manip-

ulation action representation is defined by

• Target object Ob jt = Ob ji,

• Approach vector ~p = (xp,yp,zp),

• Approach vector position ~bp = (xbp,ybp,zbz),

• Hand roll θr.

Furthermore, robot-specific intermediate and final configurations resembling strategy nodes

have to be defined, which describe interim targets to be reached by planning:
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• Interim target arm configuration arm approach Wp : (w1, . . . ,warmDOF)

• Interim target hand configuration hand approach Hp : (h1, . . . ,hhandDOF)

Using classic motion planning techniques, based on asgrasp
mp := {Ob jt , ~bp,~p,θr,Wp,Hp}, an

approach trajectory for arm and hand joint angles can be computed.

Observation deviations {σm
i } define object pose measurement probabilities relative to real

objects poses. In simulated trials, the observed object pose is assumed for trajectory planning,

reflecting real-world behavior. A simple example is normal distributions for (xi
ob j,y

i
ob j,z

i
ob j),

with µ i
x = xi

ob j,µ
i
y = yi

ob j,µ
i
z = zi

ob j neglecting orientation and covariance. Observation

deviation distributions can be acquired from observation models as discussed in Section 3.3.

Actuation deviations {σa
j } reflect known low level actuator imprecisions, such as finger

angles in cable driven hands or interpolation errors in trajectory execution. As observation

and motion planning deviations dominate in many settings, actuation deviations can often be

neglected.

Finally, sample densities ρk define how many configurations ξ are sampled for states by

which distributions and if a single or multiple observed configurations ξ obs are considered.

4.12.2. Simulated Trial Execution and Result Evaluation

Learning from trials in dynamics simulation consists of four process stages for each trial run:

1. Setting up intrinsic and observed world configurations.

2. Motion planning based on the observed world configuration.

3. Physical-dynamics motion execution in the intrinsic world configuration.

4. Evaluating the resulting world configuration.

In a single trial run, an intrinsic world configuration ξi is sampled from the state description,

first: ξi ∼ ρreal(s). In case there are multiple objects with potentially overlapping pose regions

in a state s, collision checking has to ensure that a sampled world configuration is valid and

objects do not overlap in simulation. For example, ρreal(s) could reflect Halton sequences in

feature state description boxes of frobot−pose and f f urni−state. Next, multiple observations

ξ obs
j,i can be sampled based on the intrinsic configuration ξ obs

j,i ∼ ρobs(ξi). By these means,

characteristic object localization uncertainties are reflected.

Based on each observed world configuration ξ obs
j,i , motion planning parameterized by amp

generates an actuator trajectory. As observed and intrinsic scene differ, the resulting trajectory
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Figure 4.16.: Illustration of a dynamics simulation trial as visualized in the framework used: execution

of an asgrasp
mp leading to c′mp

success despite some deviations ρobs(ξi). - [125]

may lead to collisions in the intrinsic scene, even when perfectly executed. Such behavior is

typical for motion planning and execution on the real robot with real-world object localization.

Hence, each planned trajectory is executed on the intrinsic scene ξi with further, typically

minor, actuation deviations {σa
j } applied to joint angles. Such an execution takes place in

the simulation environment with a rigid-body physical-dynamics engine active. Consequently,

contact forces between robot and objects as well as between objects lead to realistic effects.

Capacity to closely simulate real-world action effects depends on quality and parameterization

of the dynamics engine used. In experiments, the OpenRAVE environment [33] with physics

engine ODE [143] and some custom extensions [12] was used.

Dynamics simulation is performed until the scene settles down or a termination condition of

amp is reached. Examples of the latter are an end node of a strategy amst
mp , final joint poses of a

simple action asgrasp
mp or stable grasp forces at simple actions asgrasp

mp .

After dynamics simulation has stopped, the resulting configuration ξr can be determined. It

reflects a sample of the effect configurations resulting from the action amp executed in a config-

uration ξi ∈ s as illustrated in Figure 4.16. Therefore, it is an instance of the transition (s,a,s′)
with ξr ∈ s′ and reflecting a single simulation particle. Consequently, the whole dynamics

simulation trial stage to compute effect probabilities is a typical Monte-Carlo method [22].

The resulting configuration ξr is evaluated for robot configuration cRob, object configurations

{Ob jkpose} and forces on the robot. The latter can lead to new special feature-state descriptions
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Figure 4.17.: Illustration of dynamics simulation effect categories. From top left to bottom right: c, c, c′,

c′mp
success, c′mp

gone, c′mp
jammed . - [125]

not reflected by the initial state set SD used to determine origin state s. Configurations repre-

sented by such special feature states cmp
i evaluated in this context are:

c′mp
E = c′mp

success := fob j((mst :: f inalnode∧ c′ob j−state
(OtherOb j) = cob j−state

(OtherOb j)) [4.112]

c′mp
E = c′mp

static := c [4.113]

c′mp
E = c′mp

gone := fob j(c
′ob j−state
(TargetOb j) = ”Other”∧ c′ob j−state

(OtherOb j) = cob j−state
(OtherOb j)) [4.114]

c′mp
E = c′mp

jammed := fob j(∃c
′ob j−state
(Ob j) = ”Jammed”) [4.115]

{c′mp
E }= {c′mp

moved} := fob j(¬mst :: f inalnode

∧ c′ob j−state
(TargetOb j) 6= cob j−state

(TargetOb j)∧ c′ob j−state
(TargetOb j) 6= (”Other”∨ ”Jammed”))

[4.116]

c′mp
E = c′mp

chaos := ¬c′mp
success∧¬c′mp

static∧¬c′mp
gone∧¬c′mp

jammed ∧¬c′mp
moved [4.117]

1. c′mp
success reflects successful execution of amst

mp , reaching the final goal constraint node

while not altering any other object state (Equation 4.112).
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2. c′mp
static occurs after unsuccessful execution of amst

mp , without changing the object layout.

This may result from missing the manipulation goal while not moving any objects around

significantly (Equation 4.113).

3. c′mp
gone represents pushing a target object (and only that) outside any known feature state

(Equation 4.114).

4. c′mp
jammed reflects jammed configurations: an object Ob jl exerts a force onto the robot at

points outside a stable grasp configuration (Equation 4.115).

5. {c′mp
moved} includes all potential obj-states where amst

mp has failed and objects have been

pushed into other feature states, but not outside or into c′mp
jammed (Equation 4.116).

6. {c′mp
chaos} includes all potential obj-states where only some other object in the scene was

pushed around (Equation 4.117).

Further differentiation can be made when applying asgrasp
mp grasps. In this case, resulting

grasp stability can be evaluated by measuring simulated forces of the fingers on the object and

thus a resulting Grasp Wrench Space Wr [17] . Such Wr is a value representing the stability

of the grasp and applied in asgrasp
mp dynamics simulation result evaluation [12]. Consequently,

there is further distinction within c′mp
success:

c′mp
E = c′sgrasp

success := fob j(Wr ≥ ε
wrench
grasp ∧ c′ob j−state

(OtherOb j) = cob j−state
(OtherOb j)) [4.118]

c′mp
E = c′sgrasp

unstable := fob j(Wr < ε
wrench
grasp ∧ c′ob j−state

(OtherOb j) = cob j−state
(OtherOb j)) [4.119]

1. c′sgrasp
success reflects a stable grasp on a target object Ob jk with Grasp Wrench Space Wr

above a threshold εwrench
grasp (Equation 4.118).

2. c′sgrasp
unstable represents a partially successful, unstable grasp on a target object Ob jk with

Grasp Wrench Space Wr below a threshold εwrench
grasp (Equation 4.119).

Subsequently, state membership s′r of ξr is determined and the transition occurrence recorded.

Trials are performed for all sampled observed configurations ξ obs
j,i . This process is repeated for

all sampled intrinsic configurations ξi. In the end, transition frequencies of all occurring trial

effects s′r are counted for a state-action pair (s,a) transition frequency model T F
Sim and nor-

malized to get action effect probabilities pTSim(s
′|s,a) in the same manner as described for

demonstration transition frequencies in Section 4.6.

Just as the robot learns effect probabilities from frequencies of courses of events another

agent has demonstrated, it learns from experiencing frequencies of courses of events itself. The
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Figure 4.18.: Illustration of a dynamics simulation trials based on PbD generated feature states. Obser-

vation deviation ρobs(ξi) is exaggerated, ξi are shown by points. The reference pose of

the chair Ob jchair
pose is located in its backrest. Bright colors of points indicate that a trajec-

tory could be planned and simulated for many corresponding part (robot or object) poses.

- [125]

former is encompassed by PbD, the latter by learning from trials, with the simulation aspect

only introduced to make the method feasible in practice.

4.12.3. Simulating Experience Based on Demonstrated Missions

The biggest challenge for trial learning is to find a suitable focus of configurations to gather

beneficial experience from. As discussed in Section 5.8, exploring a whole transition model

∀s ∈ S,∀a ∈ A : doTrials(s,a) for learning from experience is infeasible because of the com-

putational effort to compute dynamics simulations and the requirement to test multiple config-

urations for good approximations of effect frequencies.

However, when integrated with mission level PbD, a narrow focus can be achieved. Ma-

nipulation actions amp are only considered in states s in which they were performed during

demonstrations. State-actions pairs (s,a), probed in trials are significantly reduced by this

approach which makes learning from experience complementary to learning from demonstra-

tions. Considered features are generated during demonstration analysis stages and sufficiently

focussed to be efficiently applied for configuration ξ sampling.

After effect probabilities TSim for selected pairs (s,a) have been computed as described in

the previous Section, they have to be integrated with effects in TD or TD+GA. When integrating

TSim and TD+GA, two aspects have to be considered:

• TSim may contain new (error) states not yet present in TD+GA, even after including back-

ground knowledge.

• Fusing rows in TSim and TD+GA has to be clearly defined.
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Accordingly, as shown in Section 4.11, the knowledge base is used to determine anchor fea-

ture states for conditional dependence of probabilities in TSim on probabilities in TD+GA. The

Bayesian Network formed by conditional dependences between TD and TGA is extended, link-

ing TSim and TGA. During simulation trials, only the case that the motion planner found a so-

lution and no further external interference, for instance from humans, is considered. Therefore,

all probabilities are relative to that case, which is basically the transition to cmp
success in TGA. As

a result, all effects in TSim are conditionally dependent on TGA : cmp
success with co := cmp

origin:

pTD+GA(c
mp
success |co,amp)⇒ pTSim(c

mp
E |co,amp,TD+GA(c

mp
success)) [4.120]

⇒∀cmp
E ∈ TSim :

pT ′D+GA+Sim
(cmp

E |co,amp) = pTSim(c
mp
E |co,amp)∗ pTD+GA(c

mp
success |co,amp) [4.121]

pT ′D+GA
(cmp

success |co,amp) =

pTD+GA(c
mp
success |co,amp) if cmp

E 6= cmp
success

0 if cmp
E = cmp

success
[4.122]

pTD+GA+Sim(c
mp
E |co,amp) = pT ′D+GA

(cmp
E |co,amp)+ pT ′D+GA+Sim

(cmp
E |co,amp)

[4.123]

It has to be noted, that semantics between cmp
success in TGA and cmp

success in TD+GA+Sim have

changed, with the former just denoting successful motion planning, while the latter is more

strict, representing successful manipulation strategy execution. As execution can take place

only after successful planning, conditional dependence is well defined in this case. An example

is outlined in Table C.10.

By these means, very robot-specific secondary effect probabilities are added to the model

while the trial space is kept small keeping to the demonstration model skeleton.

4.12.4. Discussion and Limitations

Learning from experience in dynamics simulation is the final stage in the presented process,

generating the last values for a final POMDP mission model. Any true online learning from

experience, not considered in the scope of this thesis, would seamlessly fit in after this stage.

With the given approach there are naturally several limitations. Apart from any limitation

introduced by the simulation aspect, there is also the problem that skill domains beyond manip-

ulation are not considered. For example, human interaction behavior is considered conditionally

independent from manipulation action error effects. This may not reflect real-world behavior

properly, but could only be learned from physical learning from experience, including assess-

ment of concurrent human behavior, for instance when a jamming of objects occurs. Feature
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interdependences in transition probabilities are therefore not considered in this stage as they are

impossible to include in the concept of learning from experience in simulation.

Furthermore, an important limitation is the temporal demand of this process stage as it is ex-

tremely computationally expensive. Although it is an offline stage, computational requirements

may be excessive. Priming simulation by feature states, learned from PbD is a major aspect

to tackle this challenge, but some limitations remains. This, and other evaluation aspects are

discussed further in Section 5.8. More software-implementation-specific details concerning this

process stage can be found in [12] and [135].

4.13. Programming by Demonstation Conclusion and Discussion

As presented, the PbD process computes state and action grounding from demonstrations, fol-

lowed by generation of a preliminary model, model space exploration in interaction with a

teacher and finally completing the model by computing robot-specific model aspects from var-

ious sources.

In this process, the robot interacts with both human teachers and simulated objects in the

environment to gather knowledge about the mission. Thus, the interactive learning aspect spans

not only Human-Robot Interaction, but also interactions with all domains of the world.

However, the learning process is strictly distinct from the robot acting during execution time.

In a way, offline PbD with refinement computations is similar to human dreaming, with new

observations being reorganized to generate refined action capabilities by reanalyzing memory

traces [161]. While not investigated within the scope of this thesis, the refinement concept

scales to learning from experience and refining models during execution-time. Furthermore,

the process could easily be extended to models similar but not equivalent to pure (PO)MDP

models if the complexity issues of the latter are shown to be unsurmountable in the future. Any

task model with abstract states, actions and probabilistic Bayesian action effects can benefit

from some of the presented process stages.
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Evaluation of the concepts and algorithms presented in the previous two chapters has to show

the ability of the system to generate models for abstract-level decision making and execute them

autonomously on service robots acting in real-world settings.

Hence, all previously presented information-processing components are realized in software

and integrated in a coherent architecture. This architecture is tightly integrated with physical

robot sensors and actors on real robots as presented in Section 3.1.1. Experiments including au-

tonomous execution-time action selection and recording of human mission demonstrations can

therefore utilize data measured with physical sensors and actions steering physical actuators.

However, when analyzing experiments in this complex evaluation setting, there are different,

conflicting aspects. On the one hand, integration is to be shown with process stages working

together. On the other hand, capabilities and limitations of individual stages have to be analyzed

in more detail. Autonomous execution and learning have to be assessed individually and in

combination, while successful interplay of multiple skill domains must to be demonstrated.

To achieve a focus on both component details and the whole process, it has to be evaluated

from different perspectives. On the on hand, some focussed experiments with individual process

stages have to be performed, highlighting peculiarities of these stages. On the other hand, some

integration experiments with multiple parts involved have to be carried out. Analysis of the

former puts a focus on individual parts and then shows multiple process stages from recording

to autonomous execution participating to enable an experiment mission.

Roughly the following evaluation setup types can be distinguished:

1. Experiments with real robots including only the execution time decision making system

without any learning and thus relying on manually designed models. These can be con-

sidered to be experiments within the scope of Chapter 3 alone.

2. Evaluation of individual PbD process stages with naturally or artificially created data.

3. Recording of real demonstrations and basic model generation with manually designed

state and action mappings and fixed background knowledge, followed by policy execu-

tion.
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4. Naturally or artificially recorded demonstrations processed by multiple PbD process stages,

followed by policy execution.

As hardware platforms, available robots Albert and Adero were used. These capable robots

with a wide range of sensors and actuators are well-suited representatives of typical contempo-

rary full grown autonomous service robots.

5.1. Experiment Setup Overview

In this Section, setup properties valid in multiple experiments as well as a setup classification

notation are presented. Robot setups or simulation environments on the one hand and specific

service missions on the other are reusable settings that can be utilized in various experiments.

5.1.1. Robot and Simulation Setups

For experiments with both the physical robot and in simulation, the general setting of an in-

door cafeteria with the robot having the role of a butler was chosen. Such a setting is versatile

and can easily be replicated in laboratory premises. For each skill domain, a number of as-

pects was chosen, depending on the capabilities of available skill components, as presented in

Section 3.1.1:

1. Mobility: laboratory rooms with a known map, including walls, cupboards and fixed

furniture, sufficient spacing for large robots to navigate in and several fixed tables on

which to manipulate small objects.

2. Spoken human-robot interaction: flexible sets of small, trained grammars usable for

speech recognition.

3. Human-robot interaction by body posture: flexible sets of small, trained human body

activity classifier sets.

4. Object manipulation: a set of rigid objects with a known mesh model and detectable by

object localization mechanisms. This set includes a round table, round chairs, cups of

different colors, a pringles can, plates, a spatula and cereal boxes, some of them shown in

Figure 5.1.

For visualization, path and motion planning, geometric analysis as well execution in dynam-

ics simulation, geometric models of all physical objects in the scene exist. Surface friction

and mass distribution models of manipulable objects are used by dynamics simulation. Several

geometric environments are used to visualize the scene as represented inside the robot:
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Figure 5.1.: Locatable and manipulable objects used in several missions. - [125]

• OViSE [73], based on the open 3D graphics engine OGRE [148] is a high-performance

visualization system developed in close collaboration with development of the presented

system. It is used to visualize the laboratory, robots in their current configuration, rigid

objects in their current configuration, human body configurations and additional infor-

mation like trajectories, feature state regions or pose samples. In combination with a

mediator component, OViSE is able to visualize the scene as observed by the robot in

real time or alternatively can replay scenes and configurations observed by the robot in

the past as shown in Figure 5.2. Most computer-graphics based visualizations of scenes

in this and the previous Chapters depict scenes as visualized in OViSE.

• Visualization of the manipulation strategy motion planner, based on the OpenInventor 3D

graphics engine [29]. It visualizes the current configuration of the robot, target configu-

rations for planning, objects known to motion planning as well as virtual walls artificially

restricting the workspace of the robot.

• Dynamics simulation uses the visualization component of OpenRAVE [33], also based

on OpenInventor, to show robot configuration, the environment, objects and additional

information like observed object poses – in contrast to intrinsic ones. A screen shot is

shown in Figure 4.16.

Perception observations and actuation execution of skills presented in Section 3.1.1 can be sim-

ulated. Both visualization systems and the execution-time decision-making system described in

Chapter 3 are indifferent to real hardware or data simulations driving the skills. Given visualiza-

tion systems, a human experiment supervisor can record robot behavior in the simulated case in

the same way as is done during execution with the real hardware. Consequently, there are sev-
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Figure 5.2.: OViSE visualization of the scene as perceived by the robot Albert by means of self-

localization, furniture and small object localization as mentioned in Section 3.1.1. Objects

other than those shown in Figure 5.1 have a fixed position in the lab. - [125]

eral possible experiment robot setup types between abstract virtual simulation and autonomous

physical robot execution:

1. Isolated simulation. Demonstration recordings are simulated or generated from fully ar-

tificial data input. There is only simulated, partial execution or no execution at all. This

includes purely abstract POMDP simulation, based on states and actions without robot

skills and the belief filter involved.

2. Only autonomous simulated robot execution. A decision making model (POMDP, MDP

or FSM) acquired by any means is executed using a corresponding policy by the execution-

time architecture and corresponding skills on simulated perception and actuation in a vir-

tual scene.

3. Only autonomous physical robot execution. The policy of a model acquired by any means

is executed on the physical robot in a real scene.
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4. Solely physical demonstration recording. Demonstrations of a mission performed by

human teachers are recorded by the physical robot and processed further for specific

process stage analysis. No corresponding policy is tested.

5. Physical demonstration recording and autonomous simulated robot execution. In contrast

to the previous setup, execution of a policy is performed by a robot in a virtual scene.

6. Physical demonstration recording and partly autonomous physical robot, partially sim-

ulated robot execution. In this case, some skills are simulated and some are performed

physically. For example, perception may be simulated and execution performed with

the physical robot. In other cases, for instance, object and human localization may be

performed with real sensors, while self-localization and execution are simulated.

7. Physical demonstration recording and autonomous physical robot execution. This is ba-

sically the complete setup without any skill simulation.

Each setup has different advantages and disadvantages concerning:

• Guarantee to control situations

• Speed of conducting experiments

• Focus on singular aspects, domains, skills or, on the contrary, an interplay of many com-

ponents, including all of their peculiarities

• Precision to measure results of experiment

• Duration of physical robot availability

5.1.2. Service Missions Applied in Several Evaluation Experiments

For some execution-only experiments and several PbD process stages, specific missions were

designed to highlight and analyze properties regarding these system parts alone. These missions

are described in Sections on the respective experiments.

However, some missions were used for both integrated system-evaluation experiments, as

well as detailed process stage analysis. These Comprehensive Evaluation Service Missions

(CESM) are described in the following. For each mission, slightly differing models may be

possible, not only concerning transitions, but also state and action spaces. Precise descriptions

of actual models and their state and actions spaces are given in the respective experiment de-

scriptions. While these missions seem simple from the point of view of scripted execution
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sequences as prevalent in contemporary service robot presentations, (PO)MDP representations

lead to a vastly larger number of action choices and considered transitions as they model the

world in a comprehensive manner. This leads to hundreds of states and thousands of non-zero

transitions. Therefore, the robot is able to consider a vast array of potential events and does not

just follow a simple action sequence execution pattern in a dumb manner.

Actual layouts in the laboratory used for these CESMs were influenced by the spatial ne-

cessity to execute the mission including robot, human and furniture in areas which could be

observed by the robot watching from the sidelines during demonstrations. CESMs contain

proactive robot behavior as well as various primary and secondary action effect uncertainties.

CESM-1 "Serving a chair" has the robot pulling a chair towards a human who might be

interested in sitting down.

There are three distinct entities in this mission: the robot, a chair and a human. In this mission,

human and robot do not interact explicitly. Instead, the robot serves the role of a proactive,

discreet butler and depending on pose of the human in the scene, there are differing likelihoods

of a desire of the human to sit down. Hence, the robot may decide in certain situations to pull

a chair present in the scene towards the human. That chair may stand in different orientations

with the robot choosing in turn varying strategies to pull the chair.

As a result, the following features are involved:

1. Robot pose frobot−pose encompasses some relevant locations.

2. Human pose fhuman−pose reflects relevant locations and orientations.

3. Furniture state f f urni−state contains locations, orientations and inhand of the chair.

In experiments in the laboratory, a roughly triangle-shaped layout was chosen, such that the

corners approximately correspond to the initial waiting region of the robot, initial place of the

chair, and the region where humans enter the scene.

Proactive robot behavior is required because the robot has to decide proactively in which

situations, that is human poses, it dares to try and pull a chair. Primary stochastic action ef-

fects occur in human behavior and chair poses. Secondary stochastic action effects occur in

navigation and chair manipulation actions.

CESM-2 "Serving cups" is a mission where the robot serves cups to a human on demand

with a preferred cup potentially blocked by a chair.
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Figure 5.3.: Illustration of CESM-2 during transport of the cup after pulling the chair out of the way.

Shown clockwise: execution, visualization of feature states and demonstration. - [125]

Five distinct entities are considered in this mission: the robot, a chair, two cups and a poten-

tially interacting human. In contrast to CESM-1 and CESM-3, there is explicit interaction as

the human commands the robot to bring tea which is in the red cup. In response the robot has to

check if there is a red cup available and if potentially the red cup is blocked by the chair. There

are several decision options the robot can take in case the red cup is blocked by the chair and

another blue cup is available:

1. Pull the chair away and then fetch the red cup.

2. Ask the human if the blue cup (tea) is also sufficient. Depending on that answer it can

fetch the blue cup, fetch the red cup after pulling the chair away or fetch no tea at all.

3. Fetch the blue cup without further reassurance.

4. Fetch nothing at all and decline.

The precise choice depends on action costs and specific action effect probabilities in respective

mission models. A typical setup is shown in Figure 5.3. The mission contains the following

features:

1. Robot pose frobot−pose encompasses some relevant locations.
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2. Dialog state fdialog−state reflects relevant dialog interaction states.

3. Furniture state f f urni−state contains locations, orientations and inhand of the chair.

4. Small object state fsmall−ob j−state reflects relevant locations and inhand of the cups.

In the laboratory, a drawn-out area layout was chosen with the human sitting at a table on the one

end and cups standing on another representing a bar, with the chair potentially located in front.

Proactive robot behavior is required when choosing the way a non straightforward object layout

is solved after a request. Careful consideration of a variety of options is necessary. Primary

stochastic action effects arise from human behavior and initial object poses, while secondary

effects occur in the various navigation and manipulation actions.

CESM-3 "Helping to pull a table" is a mission in which the robot assists a human in pulling

the table depending on detected activity.

Three distinct entities are relevant this mission: the robot, a table and a human. In contrast

to CESM-1 with no real human-robot interaction and CESM-2 with explicit interaction, there

is some implicit interaction in this mission. A human trying to pull a table is observed by the

robot discreetly from nearby. Depending on the human body activity, the robot assesses if the

human may succeed alone or may potentially need help. It can the approach the table and pull

it together with the human. The following features compose the mission:

1. Robot pose frobot−pose encompasses some relevant locations.

2. Human body activity fhuman−act reflects relevant human pull-effort motions.

3. Furniture state f f urni−state contains locations, orientations and inhand of the table.

A compact layout centered around the table was chosen in the laboratory experiments. Proactive

behavior by the robot has to occur when deciding if active help is necessary or not. Primary ac-

tion effect probabilities arise from human behavior, secondary effects during table manipulation

actions. A typical setup is shown in Figures 1.6, 1.7.

CESM-4 "Swapping the toast" is a mission without any direct human-robot interaction in

which the robots swaps a toast from one plate to another, using a spatula, as shown in Figure 5.4.

To accomplish the mission aim, the robot may fetch the target plate from another table or

cupboard, in case it is not present on the main manipulation table. Furthermore, it may push the

target plate as well as the spatula towards poses more suitable for grasping. Finally, the robot
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Figure 5.4.: Illustration of CESM-4 during execution by Adero. - [125]

may trigger further observation actions or call human help for rearranging the objects more

favourably.

The following features compose the mission:

1. Robot pose frobot−pose encompasses some relevant locations.

2. Spatula state fspatula−state contains locations, orientations and inhand of the spatula.

3. Deep plate state fdeep−plate−state contains locations, orientations and inhand of the

deep plate.

Proactive behavior by the robot has to occur when deciding where to look for objects, if an

when to push objects, look around or call for help. Primary action effect probabilities arise from

initial object placement as well as placements after human intervention while secondary effects

arise from navigation and manipulation action precision noise.

5.1.3. Setup Classification

In the following, experiments are classified by an experiment setup classification scheme, com-

posed of: ExperimentType(Evaluation setup type, Robot setup type, Mission ID). For example,

learning a model of mission "serving cups" as defined above with manually defined state (fea-

ture) and action mappings from real demonstrations and in turn executed by the real robot is
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classified as: ExperimentType(3, 7, CESM-2). In turn, various properties can be measured and

evaluated in each experiment setup type.

5.2. Evaluation of the Decision-Making Architecture

Within the scope of Chapter 3, the suitability of the execution-time decision-making architecture

and filterPOMDP concept had to be evaluated as it is a foundation of the PMPM-PbD process.

In that evaluation [128], a comparison of different decision-making methods on top of exactly

the same skills in exactly the same setup was performed. Behaviors resulting from four different

decision-making methods: finite state machine (FSM), MDP, classic POMDP and filterPOMDP

were measured and compared. In this evaluation, a dedicated, manually modeled Decision

Architecture Evaluation Service Mission (DAESM) was used.

DAESM-1 "Bringing cups" is a mission in which the robot serves a cup when requested by

the human.

There is a location where the robot may wait for a human to enter the scene. The latter may

utter a spoken request to the robot to bring tea. When the robot has taken a cup, a combination

of gesture and utterance indicate where to bring the tea. In this mission, object manipulation is

not modeled explicitly in the (PO)MDP but subsumed in navigation actions. In the end, the cup

can be brought to one of two specified locations and the robot may return to its waiting position.

This mission has the following features:

1. Robot pose frobot−pose encompasses some relevant locations.

2. Human body activity fhuman−act reflects the human pointing to different locations.

3. Dialog state fdialog−state reflects relevant dialog interaction states.

Manual modeling, with heavy use of combine states S :=Ψ(FS), as described in Section 3.6,

reduces the state space to 28 states. The mission contains 11 actions, including the idle action.

POMDP and MDP policies were generated from this model while a distinct FSM using fixed

perception probability thresholds was manually designed by an expert to reflect the mission.

Primary stochastic action effects result solely from human behavior.

5.2.1. Conducted Experiment

With fully autonomous, physical robot execution, but no PbD, ExperimentType(1, 3, DAESM-

1) applies. Because DAESM-1 is open-ended, time is a relevant measure concerning the sum
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Figure 5.5.: Annotated still capture of a video of described DAESM-1 experiments with an interacting

HR. Decision making runs completely autonomously on Albert, belief state and policy slice

are pushed live and unidirectionally over WLAN for visualization. At this time, Albert had

a Swissranger-3000 enabling full body tracking. - [128]

of total rewards. For instance, when a lot of reassuring, information gain actions are performed

to determine a human intention, a cup will be brought less often, leading to a lower reward

sum within a certain time span. To account for this, experiments with all four decision-making

methods were given the same duration of exactly 30 minutes and the same initial situation.

Furthermore, the behavior of the interacting human reflected on average the probabilities in

the transition model. Finally, true requests and actual robot behavior, thus ground truth, was

recorded by a human supervisor distinct from the interacting human. A picture of the setting is

shown in Figure 5.5.

5.2.2. Results

Tables 5.1 show correlations between human request (Req.) and actually performed behavior

(Perf.) for important parts of the mission. Desired behavior is indicated by incidence frequen-
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cies on the main diagonal, while information gain action choices are shown in the reassurance

column. The rest of the entries can be considered undesirable robot behavior.

Re- Fetch Put Put
HHH

HHH
HH

Req.

Perf.

assure cup to A to B

Other 0 1 0 1

Fetch cup 3 4 0 0

Put to A 5 0 2 0

Put to B 7 0 0 2

(a) FSM

Re- Fetch Put Put
HHH

HHH
HH

Req.

Perf.

assure cup to A to B

Other 0 0 0 3

Fetch cup 0 8 0 0

Put to A 5 0 2 1

Put to B 2 0 0 2

(b) MDP

Re- Fetch Put Put
HHH

HHHHH
Req.

Perf.

assure cup to A to B

Other 0 4 0 1

Fetch cup 1 5 0 0

Put to A 6 0 4 1

Put to B 3 0 0 3

(c) POMDP

Re- Fetch Put Put
HHH

HHHHH
Req.

Perf.

assure cup to A to B

Other 0 0 0 1

Fetch cup 1 9 0 0

Put to A 3 0 5 1

Put to B 1 0 0 2

(d) filterPOMDP

Table 5.1.: Results - DAESM mission behavior applying different decision-making methods.

Lacking aggressive risk and opportunity assessment as in POMDPs, the FSM is conservative

and annoys the human with many reassurance questions. Thus, it is not able to perform many

deliveries in the given time, but does not make many big mistakes either.

The MDP is not able to handle contradicting point and say indicators well. As soon as one

of the two indicators is measured - even if it is only slightly ahead of the other - the MDP will

decide for the wrong location. In contrast, a POMDP still performs information gain actions in

such a case. As a result, some fetch and bring runs are made when none was requested.

Using a classical POMDP, information gain actions are selected until the robot is quite sure

that both indicators (say and point) refer to the same location, resulting in a better performance

than the MDP. However, there is a tendency to bring the cup even when not requested, because

of the reliance on a uniform distribution concerning prediction of human intention and the static

observation model when computing the belief.

The filterPOMDP shows to match the strengths of both MDP and classical POMDP. When

requested to fetch the cup, action selection is based on the current speech recognition proba-

bility. In the stage of delivering the cup, the robot sometimes chooses information gain, but
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not as often as the classical POMDP, as the filterPOMDP relies on probabilities given by skill

components.

PPPPPPPPPPBehavior

Method
FSM MDP POMDP fPOMDP

Correct fetch/put 8 12 12 16

Incorrect fetch/put 2 4 6 2

Reassurance 15 7 10 5

Table 5.2.: Results - DAESM mission behavior comparing execution by different decision-making meth-

ods. In these experiments, filterPOMDP performed best.

Results shown in Table 5.2 indicate that exploiting available information about specific uncer-

tainty of current perception measurements as performed by filterPOMDP can improve service

robot decision making. Static, classical POMDP observation models contain just information

about average, expected probabilities. Using available dedicated methods computing measure-

ment uncertainty estimates is suitable for service robots with complex perception skills like

speech recognition or human activity recognition. However, the POMDP model is still a valid

approximation for policy computation, reflecting expected observation and transition probabil-

ities.

Furthermore, these results indicate that the POMDP framework is suitable for decision mak-

ing in service missions of limited size at least. Therefore, POMDP models are a suitable rep-

resentation, expressive and versatile – far more so than, for instance, an FSM – to be used as a

target model type for PbD of mission-level decision making.
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5.3. Evaluation of Feature-State Generation Based on Demonstrations

Feature mapping generation, described in detail in Section 4.2, was evaluated in experiments,

based on real, physical demonstrations. Evaluation was focussed on stage-specific aspects

within the scope of CESMs [147], which is therefore of type: ExperimentType(2, 4, CESM).

Automatically generated feature mapping of continuous environment properties onto sym-

bolic, abstract states was to be compared against mapping functions previously hand-modeled

by an expert. A set of multiple demonstrations FD of each CESM-1 and CESM-2 was used,

with some artificial subsets SD1-SD2 for CESM-1 and SD1-SD3 for CESM-2. In the following

only frobot−pose is discussed. Three basic stage aspects were to be evaluated:

1. Clustering performance for a given cluster number k.

2. Stability and relevance of generated regions.

3. Determining cluster number k and therefore feature state space size, autonomously.

Results in Table 5.3 show that unsupervised clustering of pose information, in the shown

case robot role pose, delivers results corresponding well with manual expert partitioning. Typ-

ical potential errors are shown in Figure 5.7, but their occurrence frequencies are low in the

experiments, as indicated by the results in Table 5.4. Results of EM tail significantly behind

k-means and DBscan for fixed k. Automatically determining k for k-means and DBscan is

discussed below. Automatically generated regions representing discretization functions fg1 au-

tonomously generated from demonstrations were evaluated using common covered area metrics

as illustrated in Figure 5.6. High area similarity for regions generated from different demon-

stration data sets indicate stability and therefore high-quality of abstract spatial feature states as

shown in Table 5.5.

U(rEi,ri) =
A(rEi∩ ri)

A(rEi∪ ri)
[5.1]

Ui(rEi,ri) =
A(rEi∩ ri)

A(rEi)
[5.2]

D(rEi,ri) = A(rEi)−A(ri) [5.3]

DE(rEi,ri) =
A(rEi)−A(ri)

f (rEi)
[5.4]

Figure 5.6.: Illustration of region similarity measures used to compare automatically generated regions.

- [147]
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Figure 5.7.: Illustration of some typical errors occurring when clustering CESM-2 demonstrations.

Clockwise from top left: expert labels, k-means, DBscan, EM. - [147]

PPPPPPPPPPCluster

Measure
|Points| |Correct| |Wrong| Rel. Correct

Cluster 1 299 299 0 1.00

Cluster 2 374 374 0 1.00

Cluster 3 1751 1745 6 0.99

Cluster 4 321 321 0 1.00

Cluster 5 2099 1877 222 0.89

Sum 4844 4616 228 0.95

Table 5.3.: Results - Detailed error percentages when clustering mission CESM-2 with motion filtering

and k-means for frobot−pose with k = 5 on the full data set FD.
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k Data Method Min. Max. Avg.

3 FD k-Means 0.99 0.99 0.99

EM 0.99 0.99 0.99

DBScan 0.99 0.99 0.99

SD1 k-Means 0.96 1.00 0.99

EM 0.97 1.00 0.99

DBScan 0.97 1.00 0.99

SD2 k-Means 0.99 1.00 1.00

EM 0.00 1.00 0.58

DBScan 0.99 1.00 1.00

(a) CESM-1

k Data Method Min. Max. Avg.

5 FD k-Means 0.89 1.00 0.95

EM 0.00 1.00 0.79

DBScan 0.89 1.00 0.95

SD1 k-Means 0.92 1.00 0.96

EM 0.00 1.00 0.64

DBScan 0.92 1.00 0.96

SD2 k-Means 0.87 1.00 0.95

EM 0.00 1.00 0.86

DBScan 0.87 1.00 0.95

SD3 k-Means 0.73 1.00 0.84

EM 0.00 1.00 0.67

DBScan - - -

(b) CESM-2

Table 5.4.: Results - Relative matching of all clustering tests on each data set for frobot−pose, relative to

expert ground truth.
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Figure 5.8.: Illustration of generated regions frobot−pose for data sets of CESM-2. Clockwise from top

left: human expert, FD with transition regions & raw points, SD1, SD2. - [147]

@
@
@
@

i

j
FD SD1 SD2

FD 1.00 0.68 0.64

SD1 0.68 1.00 0.63

SD2 0.64 0.63 1.00

(a) U(Ri,R j) CESM-1

@
@

@
@

i

j
FD SD1 SD2

FD 1.00 0.70 0.75

SD1 0.96 1.00 0.88

SD2 0.80 0.68 1.00

(b) U j(Ri,R j) CESM-1

@
@
@
@

i

j
FD SD1 SD2

FD 1.00 0.76 0.84

SD1 0.76 1.00 0.69

SD2 0.84 0.69 1.00

(c) U(Ri,R j) CESM-2

@
@

@
@

i

j
FD SD1 SD2

FD 1.00 0.81 0.87

SD1 0.92 1.00 0.83

SD2 0.96 0.81 1.00

(d) U j(Ri,R j) CESM-2

Table 5.5.: Results - Shared region area metrics U(Ri,R j) and U j(Ri,R j) for regions generated from

different datasets for frobot−pose, indicating stability of automatically generated fg1.
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Finally, evaluation had to determine if unsupervised identification of cluster number k, and

therefore feature state (category) number led to results representing the mission correctly. It

is the most critical stage in the process. Results in Table 5.6 and Table 5.7 show that this is

the case in these experiments for both k-means and DBscan for all but one data set. Ground

truth - as modeled by an expert and without considering the catch-all feature state "Outer" is as

follows: CESM-1 contains 3 regions and CESM-2 contains 5 regions.

HHH
HHH

HH
Measure

k
2 3 4 5 6 7 8

V-sv 5 7 3 1 2 4 6

SD 6 5 2 1 3 4 7

XB 5 7 1 2 3 4 6

DB 2 7 3 1 4 5 6

Vote 3 7 2 1 4 5 6

qa 0.52 0.19 0.53 0.55 0.46 - -

qT 0.42 0.41 0.58 0.72 0.69 - -

q∗T 0.83 0.81 1.16 2.17 2.08 - -

Table 5.6.: Results - Quality measures used to infer cluster k automatically, resulting from k-means clus-

tering based on FD of CESM-2. Cluster number 5 is best, which is the ground truth.
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Mission
HHH

HHH
HH

Data

k
1 2 3 4 5 6 7 8

CESM-1 FD - 2.00 3.00 - - - - -

SD1 - 2.00 3.00 2.50 - - - -

SD2 - - 2.94 - - - - -

CESM-2 FD - - - - 2.17 2.08 - -

SD1 - - - - 2.50 - - -

SD2 - - - - 2.01 1.91 - -

SD3 - - - 1.39 - - - -

Table 5.7.: Results - Quality measure q∗T used to infer cluster k automatically, resulting from DBscan.

Only for CESM-2:SD3, resulting k does not match ground truth.

This means that the system is able to create a state space and corresponding environment per-

ception mapping functions from demonstrations usable for abstract mission-level planning, in

an unsupervised manner. The combination performing best for this purpose is a motion based

filtering in combination with DBScan and multiple cluster number k-means clustering. The

optimal cluster number k selected in turn by clustering quality metrics. EM-clustering shows

inferior results. The output is a set of functions tailored for a specific mission mapping contin-

uous pose spaces of robot, humans and objects onto a discrete POMDP state space. Distinct

poses corresponding to the same abstract situation are clustered in a single state. More data and

further discussion regarding these state-mapping experiments can be found in [147].
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5.4. Evaluation of Manipulation Action Mapping

Action mapping, as discussed in Section 4.3 was evaluated on manipulation actions amp as

occurring in CESMs. Real, physical mission demonstrations were the input on the one hand

and real, physical manipulation strategy demonstrations on the other. Similarity measures and

correct mapping was the focus of evaluation [42]. Therefore, these experiments are of type:

ExperimentType(2, 4, CESM). Both CESM-1 and CESM-2 contain three different manipulation

activities. In the correspondence similarity metric, lower values indicate greater similarity. In

tables below, both activities and strategies are labeled with symbols referencing the intended

strategy. It should be noted, however, that in practice symbols are arbitrary and the system

has to find the correspondence in an unsupervised manner. Tables 5.8 and 5.9 show distance-

and covariance-weighted similarity measures, which are the lower the more similar they are.

Strategy data of CESM-1 is shown in Figure 4.10.

graspChair graspChair graspChair
PPPPPPPPPPP

Activity

Strategy

BelowFront BelowSide BackSide

graspChair BelowFont 0.16 0.84 1.48

graspChair BelowSide 1.17 0.19 1.04

graspChair BackSide 1.27 0.91 0.13

Table 5.8.: Results - Manipulation action mapping similarity measures for CESM-1. The lower the more

similar.
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graspChair graspCup graspCup
PPPPPPPPPPP

Activity

Strategy

BelowFront Upper Side

graspChair BelowFont 0.14 7.51 6.94

graspCup Upper 6.78 0.16 0.30

graspCup Side 5.77 0.27 0.18

Table 5.9.: Results - Manipulation action mapping similarity measures for CESM-2. The lower the more

similar.

In these experiments, similarity was always greatest on the diagonal, indicating each activity

mapped to the best fitting strategy. It can be seen that similarities are less between more similar

motions while difference is pronounced when manipulating differing objects. It can be con-

cluded that with these quite similar manipulation actions, differences between the correct and

the second similar action are pronounced enough to guarantee robust mapping.

5.5. Evaluation of Segmentation and Preliminary Model Generation

The focussed evaluation of segmentation, presented in Section 4.4, and preliminary model gen-

eration, as discussed in Section 4.6, was performed as part of experiments conducted with

some dedicated Segmentation and Preliminary model generation Evaluation Service Missions

(SPESM).
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SPESM-1 "Bringing snacks" is a mission where the robot brings either a pringles can or a

cup of tea from a bar table to a table and a seated interacting human as shown in Figure 5.10.

The human interacts with the robot by means of spoken dialog, while the robot may commute

between that table and another bar table. At different positions on the bar table, a cup or can of

pringles may be located. Using spoken dialog, "tea" or "an appetizer" may be requested by the

human. In turn, the robot fetches the object implicitly related to the request.

This mission has the following features:

1. Robot pose frobot−pose encompasses some relevant locations.

2. Dialog state fdialog−state reflects relevant dialog interaction states.

3. Small object state fsmall−ob j−state contains relevant locations and inhand of the cup

and pringles can.

SPESM-2 "Putting away garbage" is a mission in which the robot throws a cup or pringles

can, directly handed over, into the trash. An interacting human can approach the robot in open

space and present an object to it. In turn, the robot takes the object and throws it into the trash.

This mission has the following features:

1. Robot pose frobot−pose encompasses some relevant locations.

2. Human body activity fhuman−act reflects wether the human reaches out or not.

3. Small object state fsmall−ob j−state contains relevant locations and inhand of the cup

and pringles can.

SPESM-3 "Handing over snacks" is a mission in which the robot fetches a cup or pringles

can from a bar table and directly hands it over to a human, as shown in Figure 5.11. Similar

to SPESM-1, an interacting human may request "tea" or "an appetizer" by means of spoken

dialog. In turn, the robot fetches an implicitly associated object and returns to the human. Next,

object transfer between robot and human is managed by the robot by both spoken dialog and

monitoring of human body activity.

This mission has the following features:

1. Robot pose frobot−pose encompasses some relevant locations.

2. Human body activity fhuman−act reflects the human reaching out or not.

3. Dialog state fdialog−state reflects relevant dialog interaction states.
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Figure 5.9.: Annotated still capture of a video of described experiments with RR and HR. It shows a

demonstration recording of SPESM-1 by Albert, following RR actively with its cameras. At

the time of this experiment, Kinect was not released yet and Albert used a Swissranger-3000

together with the VooDoo body tracking system. Headsets used for dialog recording can be

seen, and gloves were worn to improve small red object in-hand localization. - [132]

4. Small object state fsmall−ob j−state contains relevant locations and inhand of the cup

and pringles can.

In SPESM-1, SPESM-2 and SPESM-3, primary stochastic action effects result from human

behavior and initial object placing.

5.5.1. Experiments Focussed on Preliminary Model Generation

A set of experiments involving physical demonstrations and physical execution, focussed on

preliminary model mapping [132]. State and action grounding was determined manually, no

generalization or sophisticated refinement was performed and essential robot specific error

states and transitions as well as action costs were added from fixed background knowledge.

Consequently, these experiments can be classified as ExperimentType(3, 7, SPESM-1), Exper-

imentType(3, 7, SPESM-2), ExperimentType(3, 7, SPESM-3).

Ten physical demonstrations, as depicted in Figure 5.9, were performed for each mission with

varying courses of events. The inertial temporal segmentation filter time utilized was set to the
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default of 1 second. Primary action effect frequencies were recorded by a human supervisor to

be reproduced during the robot mission-execution experiment stage.

Model components S, A, M, T , R, O were automatically generated for each mission from

recorded traces, resulting in:
PPPPPPPPPPPP
Mission

Elements
|F1| |F2| |F3| |F4| |S| |A| |M|

SPESM-1 5 5 20 - 500 12 18

SPESM-2 5 2 5 - 50 6 12

SPESM-3 5 2 7 5 350 14 19

Because of interdependencies of feature state spaces in the transition model, a fully factored

representation is not possible, leading to relatively large state spaces considering the limited

scope of given missions. Some states could be combined, but combining states is not defined

in a sound way, as discussed in Section 3.6, requiring further background knowledge, that does

not exist in the given setup. Value function and policy Γ computation based on the largest

model generated for SPESM-1 took 2 minutes to reach at least 99% optimal utility approxi-

mation: U∗ = U policy(Γ)+ ε,ε < 0.01 with SARSOP on an Intel Q9550 CPU with 4 GB

RAM. Therefore, policy computation effort was negligible compared to demonstration time in

the PbD process chain.

During the execution stage of the experiment, POMDP models and policies acquired by sim-

ple PbD were evaluated against manually designed FSMs in a manner similar to the experiment

described in Section 5.2. For each of the SPESM missions, an FSM was designed by an expert

applying manual probability thresholds for skill measurement probabilities and basic actua-

tion skills. Exactly the same set of basic actions was available to be selected by POMDP and

FSM. Interacting humans had to behave according to primary action-effect probabilities de-

fined during demonstrations, in fact synchronizing HR behavior frequencies between human

demonstrations and robot execution.

A difference from the experiment described in Section 5.2 was that each mission had not been

performed in an open-ended way. Instead, mission runs were terminated after major goals had

been reached or they had failed beyond recovery, and the duration was recorded for each run.

The reason was to avoid having to restart a whole 30-minute experiment after some fundamental

robot-motor hardware failures, which were not relevant for evaluation but occasionally occur.

Execution runs with such failures were discarded for evaluation.

For each method and mission, 10 runs were performed successively with a still shot of a run

shown in Figure 5.10. The following table shows minimum, average, and maximum execution
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Figure 5.10.: Annotated still capture of a video of described experiments with an interacting HR. It

shows an execution of SPESM-1. All planning and decision-making components ran au-

tonomously on board of Albert and visualization of autonomous components, shown on the

panel in the background is pushed unidirectionally from Albert by WLAN. - [132]

durations for both generated POMDP (P) and hand-built FSM (F) in minutes, as well as the

number of major mission failures.

In these experiments, action selection based on a POMDP acquired by PbD was superior

to handcrafted FSM in more complex missions 1 and 3, including spoken dialog as shown

in Tables 5.10 and 5.11. Spoken dialog with a distance microphone on board of the robot

was especially subject to noise and imprecise measurement in the given setting. In SPESM-2

without spoken dialog, the POMDP had at least no major disadvantage compared to the FSM.

Concerning total execution durations it should be noted that the arm was driven at most at

30% of its maximum speed, while the mobile platform was not driven faster than 20% of its

maximum speed for safety reasons. Therefore, human demonstrations took far less time than

robot execution. A further major difference was the time taken to manually build the FSMs on

the one hand and naturally learn the POMDP models from demonstrations on the other. As this

aspect was thought not to be measurable easily in a sound way, only a rough estimate can be

given here: an FSM building expert took more than twenty times longer to build the FSMs than

was required for recording demonstrations.
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Min. Min. Avg. Avg. Max. Max.
XXXXXXXXXXXXXXX

Mission

Metric, Method

P. F. P. F. P. F.

SPESM-1 4:25 4:40 4:50 5:10 5:50 5:35

SPESM-2 4:05 4:10 4:25 4:35 5:00 4:50

SPESM-3 5:35 5:50 6:00 6:20 7:25 7:00

Table 5.10.: Results - SPESM mission duration metrics comparing execution by POMDPs generated

using simple PbD against expert-devised FSMs. The POMDP was better on average, yet

had some stronger outliers.

It should be noted that apart from the obvious setting variations between differing demon-

strations of a specific mission, the transition probabilities implicitly encode information about

the locations where objects can generally be encountered, that they can move with the robot

when picked, where they can be placed and also how a dialog can develop. The reward model

encodes, for instance that the object Cup should be placed at a certain place, when bring me tea

was requested during the dialog. This information is exclusively learnt by the presented process

- there is no connection between the locatable object Cup and the utterance bring me tea in the

background knowledge, as well as no information about where it can be found and where it

should be brought.
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Fail. Fail.
XXXXXXXXXXXXXXX

Mission

Metric, Method

P. F.

SPESM-1 1/10 2/10

SPESM-2 1/10 0/10

SPESM-3 2/10 3/10

Table 5.11.: Results - SPESM mission failures comparing execution by POMDPs generated using simple

PbD against expert-devised FSMs.

Figure 5.11.: Still capture of a video of experiments regarding SPESM-3 with demonstration on the left

and execution on the right. - [131]

5.6. Evaluation of Generating and Verifying Transition Hypotheses

As part of interactive transition model space exploration, which consists of both generalization,

introduced in Section 4.7 and verification, presented in Section 4.8, experiments in both physical

settings and extensive analysis of tailored, more artificial models have been performed.

5.6.1. Demonstration, Generation, Request and Execution Experiments

The experiment shown in Figure 5.12, including physical demonstrations and physical execu-

tion of CESM-1, was performed with the robot Albert: ExperimentType(4, 7, CESM-1) [134].

Two different instances of the mission were investigated:

1. The first mission instance was to focus on generalizing transitions, originating in the exact

human pose, location and orientation, reflecting human intention to sit down on the chair.

Generalization therefore had to take place in fhuman−pose.
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2. In the second mission instance, generalization in f f urni−state had to account for two

options (two different amst
mp ) to grasp the chair, depending on different positions and ori-

entations.

In all cases, feature and action mappings were designed manually; chair location and orien-

tation was split into two different features F3.loc and F3.or. Experiment design was as follows:

first, for each instance, a certain set of "real" mission dynamics concerning primary stochastic

action effects was devised. Then, as in the experiment discussed in Section 5.5, twenty demon-

stration sequences were performed for each instance, however omitting some courses of events

devised for the "real" mission dynamics. Generalization then had to find candidates covering

these courses of events and generate respective demonstration requests. Further demonstra-

tions keeping tightly to these requests could then enhance the model. Finally, a policy was

computed from the resulting model and executed by the robot. Primary "real" dynamics of the

mission were applied during execution. Again, hand-modeled FSMs containing handling of all

"real" dynamics performing different mission instances were applied for comparison. Evalua-

tion should show how well generalization and requests were able to enhance the model from

incomplete demonstrations to cover aspects well enough to compete with the FSM, which had

the advantage of manual tailoring.

PPPPPPPPPPMission

Elements
|F1| |F2| |F3.loc| |F3.or | |S| |A|

CESM-1/1 4 9 4 3 432 8

CESM-1/2 4 5 5 5 400 8

A total of 1157 generalizations of non-observed effects (vg) were made, with 18 consid-

ered crucial by a human-expert analysis to scale to non-demonstrated aspects of the mission.

Most non-crucial vg affected the idle action. A total of twenty vg were rated above the general

threshold of which seven had to be rejected as invalid. The rest could be confirmed with demon-

strations, again a different number of times to correct the estimated frequencies to the desired

mission values.

A total of 1273 generalizations of non-observed effects (vg) were made, with 14 being con-

sidered crucial by a human expert analysis. Most of the other vg affected the idle action. A total

of 22 vg were rated above the general threshold and could be confirmed. These examples show

the necessity of relevance estimation, and the first one also highlights the need for the binary

tree request generation to reject false hypotheses.

Execution time (average duration of one main task performance within the mission) and

failure frequency can be considered the primary performance criteria of the decision-making
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Figure 5.12.: Still capture of a video of experiments regarding CESM-1 with demonstration on the left

and execution on the right. - [134]

system. Both missions were executed by the robot (and interacting human) and measured by a

supervisor ten times for each controller. It included courses of events which were not present in

the initial demonstrations, but only after generalization and request generation.

For each method and mission, ten runs were performed successively. The following table

shows average execution duration for both generated POMDP (P) and hand-built FSM (F) in

minutes as well as number of major mission failures.

Avg. Avg.
PPPPPPPPPPPP
Mission

Metric, Method

POMDP FSM

CESM-1/1 4:30 min 4:50 min

CESM-1/2 4:35 min 4:45 min

Table 5.12.: Results - CESM-1 mission durations comparing execution by POMDPs generated using PbD

against expert-devised FSMs.

Failures included pulling the chair when the human had no interest and failing to pull the

chair. Delays occurred when taking some time to interpret the human pose correctly, looking

again for the chair or trying again to pull the chair.

205



5. Evaluation

Fail. Fail.
PPPPPPPPPPPP
Mission

Metric, Method

POMDP FSM

CESM-1/1 2/10 3/10

CESM-1/2 3/10 4/10

Table 5.13.: Results - CESM-1 mission failures comparing execution by POMDPs generated using PbD

against expert-devised FSMs.

The results show that the learned POMDP was able to match and even slightly surpass the

performance of the hand-tailored FSM. The learned POMDP can achieve good performance

from a limited number of natural demonstrations of non-technical experts.

5.6.2. Focussed Generalization Evaluation

Focussed evaluation of transition generalization was performed with simulated demonstration

observations [117] and is of type ExperimentType(2, 1+2, FGESM). These simulated demon-

stration sequences had exactly the same structure as real demonstrations after segmentation.

Simulation was chosen, as there is no fundamental difference between taking real demonstra-

tions and simulated ones in exactly the same representation for focussed evaluation on the ab-

stract level. Focussed evaluation had to assess if transition generalization can indeed improve

policy performance by estimating omitted demonstration aspects.

To achieve this, two sets of demonstrations were taken: a "perfect" reference set representing

ground truth transitions and an imperfect set, with some demonstrations omitted. First, a model

and policy was computed from the set of reference demonstrations, resulting in a reference

policy. Then, a model and policy was computed from the imperfect set without any general-

ization. Next, models were generated from the imperfect set with subsequent generalization

using different parameters. For all policies, multiple simulated executions were performed and

accumulated rewards assessed. Detailed results are discussed below. A special mission closely

related to missions used in real experiments was used for this purpose.
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FGESM-1 "Bringing tea" is a mission where the robot can bring a red cup of tea, but not

a green one, after being requested by dialog. It is very similar to SPESM-1, having the same

features. There are three frobot−pose regions where the robot may encounter a cup of tea. It

can fetch a red cup, but not a green cup. An interacting human can request the red cup.

This mission has the following features:

1. Robot pose frobot−pose contains some relevant locations.

2. Dialog state fdialog−state contains dialog interaction states.

3. Small object state fsmall−ob j−state contains relevant locations and inhand of the cups.

In the given evaluation, all demonstrations led to the following set:

PPPPPPPPPPMission

Elements
|F1| |F2| |F3| |S| |A|

FGESM-1 5 3 4 60 7

Given different parameters for generalization, Table 5.14 shows performance of the reference

policy, the original policy with omitted demonstrations and policies resulting from generalized

models using different parameter sets. The following different parameter sets are shown:

1. "Ref.": a policy generated from the reference demonstrations and respective model.

2. "No vg": a policy generated from demonstration sets with omitted demonstrations and

resulting model. All following models are based on this demonstration set.

3. "s∗": generalization mask κscope as described in Section 4.7.2 is defined over all of S
with origin s = ∗.

4. "Auto ∗": generalization mask κscope is determined by "by analyzing onto which features

actions have an effect" as explained in Section 4.7.2. All following models use this mask.

5. "Fixed ‖‖": not encountered feature transitions are assigned a fixed likelihood "Trans.

conf.", no relationship metric is computed for these.

6. "Sugeno": a confidence based on transition relationships using a scale factor αgc as dis-

cussed in Section 4.7.3, is used.

7. "ceb > 0: the same as before, except certainty bias is considered with scale factor γgc, as

explained in Section 4.7.3.
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κ Trans. αgc γgc |vg| Avg. Min Max. Avg. Min. Max.@
@
@
@

Type

Value

∗ conf. |Q| |Q| |Q| ∑R ∑R ∑R

Ref. Reference model - 8.53 7 12 -20.13 -34 -14

No vg No generalization - ∞ 8 ∞ -∞ -∞ -18

s∗ s - - - 59 12.27 8 30 -35.07 -106 -18

Auto ∗ s,s’ - - - 137 10 8 20 -26 -66 -18

Fixed ‖‖ s,s’ 0.02 - - 137 8.8 7 14 -21.33 -42 -14

Sugeno s,s’ - -0.95 - 137 9.2 8 14 -22.8 -42 -18

ceb > 0 s,s’ - -0.95 0.5 137 8.53 7 13 -20.13 -38 -14

Table 5.14.: Results - FGESM-1 simulated sequences and corresponding accumulated rewards for differ-

ent generalized models.

It can be seen that generalization is effective in generating robust policies by estimating omit-

ted transitions even without verification by further demonstrated requests. Policies resulting

from generalized models accumulate reward more closely approximating the policy resulting

from the reference model. Nonetheless, using requests is safer and the preferred approach. Fur-

ther data concerning actual transition probabilities generated for the mission discussed, more

tested parameter combinations and evaluation concerning further simulated missions can be

found in [117].
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5.7. Evaluation of Model Refinement by Geometric Analysis

Geometric analysis for refinement of transition models as presented in Section 4.11 was evalu-

ated using setups CESM-1 and CESM-2. In-depth analysis of single path probabilities can be

found in [163]. To compute estimates of mobility transitions, 100 point pairs of a chair and

robot pose were sampled from fg1, derived from demonstrations and subsequent state mapping

as shown in Figure 5.13. The path segment deviation parameter ε was set to 1 cm, empiri-

cally derived from tests with the real robot. Multiple target-pose candidates were evaluated for

each sampled pairs and path computed and probabilities computed for each pair as described in

Section 4.11 using the "grasp Chair Below Front" mst. Different target areas were considered:

1. Target voxel (1): Certainly reaching the chosen target voxel, without colliding, modeling

minimal deviations.

2. Neighbors (4+1) : Reaching the target or directly adjoint x-y neighbouring voxels, with-

out colliding, modeling medium target deviations.

3. Box (8+1): Reaching the target or all adjoint x-y neighboring voxels, including diagonally

adjoint, without colliding, modeling higher target deviations.

Additional obstacles were introduced into CESM-1 and CESM-2 settings, with the CESM-1

setting having a higher difficulty level (constraint space) and CESM-2 having a lower difficulty

level, as illustrated in Figure 5.13. Results are shown in Table 5.15 (CESM-1) and Table 5.16

(CESM-2). It has to be noted that computational effort was highly non-optimized in these tests,

with a path roadmap regenerated for each test and being a major factor. Thus, optimized effort

could be reduced by at least an order of a magnitude. Results show probabilities intuitively

expected for the given settings. Evaluation, including (near) collisions with the real robot was

not performed, however, for safety reasons.
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5. Evaluation

Figure 5.13.: Points indicate pose of robot (red) and chair (green) sampled for path analysis used for PbD

model refinement. Additional obstacles are shown graphically. An analysis for CESM-1 is

shown on the left with chair orientation towards the right and one for CESM-2 on the right

with chair orientation towards the bottom (towards the white table). - [163]

pTGA pTGA pTGA Tested Duration
PPPPPPPPPPPP
Target area

pTGA ,Effort

cgp
static cgp

success cgp
collision poses sec.

Box (8+1) 0.24 0.24 0.52 1288 4601

Neighbours (4+1) 0.2 0.38 0.42 1105 3607

Target voxel (1) 0.1 0.57 0.33 1144 4324

Table 5.15.: Results - CESM-1 model refinement for goto chair and "grasp Chair Below Front".
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pTGA pTGA pTGA Tested Duration
PPPPPPPPPPPP
Target area

pTGA ,Effort

cgp
static cgp

success cgp
collision poses sec.

Box (8+1) 0 0.80 0.20 3055 3459

Neighbours (4+1) 0 0.94 0.06 2940 3757

Target voxel (1) 0 0.93 0.07 2211 3055

Table 5.16.: Results - CESM-2 model refinement for goto chair and "grasp Chair Below Front".

5.8. Evaluation of Learning from Experience in Dynamics Simulation

Suitability of learning transition model probabilities from experience gathered in execution tri-

als in physical dynamics simulation was to be evaluated in several experiments. The goal was to

investigate if the approach, described in Section 4.12, is able to improve action selection, choos-

ing more robust actions in the face of uncertainty, while keeping computational time required to

run dynamics simulations reasonable. Although computation in this process stage takes place

offline, temporal requirements may dominate the duration of the whole PMPM-PbD process as

discussed in Section 5.9. Physical dynamics simulation trials cannot be executed much faster

than realtime and a large number of samples is required. Experiments have to investigate wether

priming the simulation setup by feature states, learned from demonstrations, is sufficient to re-

duce effort to a reasonable amount. First, however, the suitability of the approach in the context

of generating POMDP models is evaluated, as discussed next.
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5. Evaluation

Figure 5.14.: Potential origin states in DSET-1 from sor
1 upper left to lower right sor

9 . - [12]

5.8.1. Focussed Evaluation of Learning in Simulation Without PbD

In a first experiment set, action selection policies resulting from POMDP transition models,

generated by means of learning from experience in simulated trials were to be evaluated against

MDP policies and simple heuristics [12]. This was done to assess if the chosen approach is

viable in principle. Two aspects were specific to this non-PbD experiment stage:

• Temporal and complexity aspects were less relevant as state space composition was un-

focussed in contrast to focussed feature state-action pairs tested in PbD refinement.

• A distinct feature state layout was chosen.

Based on a scene with three objects on a table: the cup, the pringles can, and the bowl, men-

tioned in Section 5.1, a simple manipulation task was to be performed. Those objects were

closely arranged on a table with slightly differing layouts as shown in Figure 5.14. In one ex-

periment dynamics simulation evaluation task (DSET-1), the pringles can was to be grasped

by three different manipulation action options, in the other experiment (DSET-2), the cup was

to be grasped. The other two objects served as obstacles that were arranged in certain relative

sectors at a certain distance. Feature states are defined by certain sectors and the combination

of layout options creates the potential origin state space Soras shown in Figure 5.14. Based on

small-object localization uncertainty, ρobs(ξi) could be defined, from which the observation

model resulted for the potential origin state space in DSET-1:
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0.8140 0.1260 0 0.0580 0.0020 0 0 0 0

0.0640 0.8200 0.0900 0.0020 0.0240 0 0 0 0

0 0.0940 0.8640 0 0.0040 0.0380 0 0 0

0.0320 0.0080 0 0.8040 0.0900 0 0.0580 0.0080 0

0.0060 0.0400 0.0020 0.0760 0.7460 0.0780 0.0020 0.0400 0.0100

0 0.0040 0.0580 0 0.0620 0.8180 0 0 0.0580

0 0 0 0.0420 0.0080 0 0.8640 0.0860 0

0 0 0 0.0100 0.0500 0.0040 0.0780 0.7760 0.0820

0 0 0 0 0.0100 0.0380 0 0.0700 0.8820

As can be seen, there is relevant but not excessive uncertainty. The total state space is much

larger, being composed of several more potential resulting feature states. A feature Fi is defined

for each object:

1. Fmanipob j := standing, fallen over, on floor, stable grasp, unstable grasp

2. Fobstacle1 := sectorA1, sectorA2, sectorA3, outside, fallen over, on floor

3. Fobstacle2 := sectorB1, sectorB2, sectorB3, outside, fallen over, on floor

This leads to a total of 180 states S := Fmanipob j×Fobstacle1×Fobstacle2 and

Sor := Fobstacle1[1,3]×Fobstacle2[1,3]. A reward of +5 was given to the state of

stable grasp ∧c′obstacle1 = cobstacle1∧c′obstacle2 = cobstacle2. In turn, the transition model

was computed by taking 10 samples ξi from each origin state with 10 observations ξ obs
i per

intrinsic configuration sample ξ , repeated for each of the 3 actions, resulting in a total of 10∗
10∗9∗3 = 2700 trials for both DSET. Based on the resulting transition model, policies were

computed by SARSOP [80]. In turn, the resulting policy was tested in simulation against an

MDP based on the same transition model and a manually defined expert heuristic assigning a

most robust action to each state. The same ρobs as during model generation was applied in each

case.

Task DSET-1 Pringles Three different action options asgrasp
mp , representing different power

grasps on the pringles can, shown in Figure 5.15, were available in DSET-1. First, the policy

was tested for average reward, taking 10 samples ξ per origin state sor, followed by belief

computation, action selection and execution in dynamics simulation. It resulted in the following

average rewards:
PPPPPPPPPPMeasure

State sor
1 sor

2 sor
3 sor

4 sor
5 sor

6 sor
7 sor

8 sor
9

Avg. reward 4.5 4.3 4.4 3.0 3.1 3.0 5.0 4.0 4.5

213



5. Evaluation

Figure 5.15.: Illustration of actions in DSET-1: asgrasp
1 (left), asgrasp

2 (center), asgrasp
3 (right). - [12]

Subsequently, for each origin state sor, intrinsic configuration and observation pairs (ξi,ξ
obs
i )

were sampled at most 500 times or until 25 different action choices between both active action

selection methods had been made. Different action methods were instantiated into trajectories

by motion planning on the given ξ obs
i ) executed in dynamics simulation given ξi. The results,

shown in Table 5.17 were obtained in a comparison of POMDP and MDP. It can be noted that

with states where obstacles are close to the object to be manipulated, the POMDP is superior,

because it is more risk averse, considering its own perception uncertainty. Action choices are

nearly the same in cases of more distant obstacles. Subsequently, results were obtained for a

comparison of POMDP and manual heuristic, shown in Table 5.18. In this case, the difference

is more pronounced.
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PPPPPPPPPPMeasure

State sor
1 sor

2 sor
3 sor

4 sor
5 sor

6 sor
7 sor

8 sor
9

% a(POMDP) 6= a(MDP) 14.4 88 12.3 0.4 2.6 1.2 0 0 0

Avg. reward POMDP 3.46 4.53 4.26 5.00 4.46 5.00 - - -

Avg. reward MDP 2.40 3.80 5.00 5.00 5.00 5.00 - - -

Table 5.17.: Results - Comparison of POMDP vs MDP in simulated execution of DSET-1.

PPPPPPPPPPMeasure

State sor
1 sor

2 sor
3 sor

4 sor
5 sor

6 sor
7 sor

8 sor
9

% a(POMDP) 6= a(heuristic) 100 100 100 88 100 94 5.3 6.09 4.76

POMDP 5.00 4.86 4.60 3.40 4.13 4.53 5.00 4.20 4.33

Heuristic 4.06 3.26 3.80 5.00 2.20 3.53 3.20 2.80 2.33

Table 5.18.: Results - Comparison of POMDP vs heuristic in simulated execution of DSET-1.
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Figure 5.16.: Illustration of actions in DSET-2: asgrasp
1 (left), asgrasp

2 (center), asgrasp
3 (right). - [12]

Task DSET-2 Cup Again, three different action options asgrasp
mp , representing different

approach options to grasp the cup, shown in Figure 5.16, were available for selection in DSET-

2. Initial average reward estimation simulations show that this task is much more error prone

than the previous one.
PPPPPPPPPPMeasure

State sor
1 sor

2 sor
3 sor

4 sor
5 sor

6 sor
7 sor

8 sor
9

Avg. reward 0.3 0.4 0.6 0.6 2.1 1.4 2.3 2.2 3.2

This is easy to explain when comparing Figures 5.15 and 5.16: The pringles can is much more

of an obstacle when grasping the cup than the other way around. In this more complex set-

ting, POMDP performance superiority gets more distinct as shown in Tables 5.19 and 5.20. In

general it can be noted that the POMDP performs worse in intrinsic sor
5 which results from

problems with one action and resulting errors, shown in Figure 5.17.

Figure 5.17.: Occurrence of collisions in DSET-2 with pringles can (left) and bowl (right). - [12]
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PPPPPPPPPPMeasure

State sor
1 sor

2 sor
3 sor

4 sor
5 sor

6 sor
7 sor

8 sor
9

% a(POMDP) 6= a(MDP) 17 12 23 13 18 19 29 14 6

Avg. reward POMDP 0.20 0.95 1.40 0.30 1.15 2.60 1.20 3.50 4.60

Avg. reward MDP 0.31 0.10 0.35 -0.20 1.85 1.80 0.60 2.70 4.20

Table 5.19.: Results - Comparison of POMDP vs MDP in simulated execution of DSET-2.

PPPPPPPPPPMeasure

State sor
1 sor

2 sor
3 sor

4 sor
5 sor

6 sor
7 sor

8 sor
9

% a(POMDP) 6= a(heuristic) 100 13 26 100 84 100 12 0 0

Avg. reward POMDP 1.23 0.64 0.91 0.44 1.34 2.12 2.50 - -

Avg. reward heuristic 0.12 0.00 1.13 0.21 1.45 1.10 1.33 - -

Table 5.20.: Results - Comparison of POMDP vs heuristic in simulated execution of DSET-2.
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Figure 5.18.: Exemplary view of PbD based simulation trial 1 (left) and trial 2 (right). - [135]

Discussion and limitations This evaluation shows that generating POMDP models based

on trials in simulation for some manipulation actions, including qualitatively different manipu-

lation strategies focused on certain target objects, can lead to robust decision-making models.

However, without the integration into PbD, severe limitations remain: the state space is overly

specific and very large even for simple settings. It is utterly impossible to compute models for

any potential setting, to be encountered in any mission. Especially determining which model to

apply in a certain mission is not straightforward when assuming partially observable environ-

ments.

Yet, these problems can be overcome when only learning from experience in situations, ob-

served during demonstrations and thus relevant for a mission.

5.8.2. Evaluation of Trials in Simulation Based on PbD

To evaluate effect probabilities generated by trials in simulation based on feature categories

cmp
origin and manipulation actions asgrasp

mp , as discussed in Section 4.12.3, state-action pairs gen-

erated by PbD in evaluation missions were assessed [135]. Of several state-action pairs occur-

ring in demonstrations, some state-action pairs were manually selected for further evaluation.

In each trial, 144 intrinsic configurations ξi were sampled from feature category regions, gen-

erated from PbD recordings. Observation deviations were sampled from normal distributions

in dimensions x, y and orientation θ independently. The mean was always assumed to be the

true pose value, while standard deviations were 10mm for x and y and 1 degree for θ . For

each sampled intrinsic pose, a single observed pose ξ obs
i was sampled and used for planning.

Only configurations ξ ex
i within the overall reachability of the robot were used for planning and

simulation. Selected state-actions pairs were the following:

1. Grasping the chair from the front in CESM-1, as shown in Figure 5.18.
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PPPPPPPPPPTrial

Result |ξi| |ξ ex
i | cmp

success cmp
static cmp

gone cmp
moved cmp

chaos

1 (CESM-1) 144 32 0.81 0 0.19 0 0

2 (CESM-1) 144 23 0.7 0.04 0.17 0 0.09

3 (CESM-3) 144 29 0.59 0.07 0.34 0 0

Table 5.21.: Results - Transition probabilities for selected state-action pairs in CESM missions, based on

simulated trials.

2. The same state and action as in the previous trial, but another table as obstacle nearby was

introduced, as shown in Figure 5.18.

3. Grasping the table in CESM-3.

The number of actually tested configurations ξ ex
i as well as effect probabilities resulting

from each trial are shown in Table 5.21. Because the effect c′mp
jammed was not evaluated it is

not reflected in the table. The execution time for the dynamics simulation (without motion

planning) took around 2400 seconds for each trial. Between trials 1 and 2, it can be clearly

seen that the additional obstacle reduces the success probability as expected. However, the high

probability of c′mp
gone in each trial, resulting from the chair or table having fallen over, does not

reflect real world behavior. In real experiments, c′mp
static or, rarely, c′mp

moved would result in those

situations where the action fails and an unintended momentum is given to the furniture object.

It can be concluded that better physical dynamics simulation is necessary to generate realistic

distinctions between different failure categories.

219



5. Evaluation

5.9. Evaluation of Process Stage Lead Times

To assess bottlenecks concerning computational complexity in the process chain, actual pro-

cessing lead times were measured for different sets of demonstrations of CESM-2 and CESM-4.

The following process stages were assessed, based on shared sets of demonstrations:

1. Recording of demonstrations (RC)

2. Generation of feature mappings (FM)

3. Generation of action mappings (AM)

4. Segmentation of recordings (SG)

5. Preliminary model functional expression generation (MG)

6. Generalization of transitions (TG)

7. Adding information to the knowledge base: DL "tell" (KT)

8. Inferring information from the knowledge base for model completion: DL "ask" (KA)

9. Model refinement based on geometric analysis (GA)

10. Model refinement based on trials in dynamics simulation (ST)

11. POMDP model generation from rules, using function expressions (RP)

12. Policy computation based on the POMDP model (PC)

For each mission, different sets of physical demonstrations, ranging from three to ten demon-

strations were evaluated. Refinement steps GA and ST were only evaluated on selected state-

action pairs individually and total times are just an extrapolation as if computing refinement

for all relevant pairs in one single run. Lead time measurements were performed on personal

computers with similar speed, mostly on a Intel Core i5 CPU with 4 GB RAM and some fur-

ther assessments on a Core 2 Duo CPU. All process stages only utilized a single CPU for their

primary computation. As lead times can vary considerably between different sets of demon-

strations and vary by many orders of magnitudes between different process stages, only rough

lower and upper bounds of taken measurements are shown in Table 5.22.

As can be seen, demonstration times dominate the pure PbD stages, thus those are unprob-

lematic. However, both geometric and physical dynamics simulation refinement stages need

excessive computation time in their current realization. Therefore, further optimisations are
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HH
HHHH

HH
Mission

Stage
RC FM AM SG MG TG KT KA GA ST RP PC

C-2 low 360 25 5 5 9 28 7 19 10000 6000 1 2

C-2 high 2400 30 6 10 10 31 28 23 16000 12000 4 10

C-4 low 280 12 35 4 1 - 3 1 - - 1 1

C-4 high 3200 25 40 12 2 - 23 2 - - 1 10000

Table 5.22.: Results - Exemplary process stage lead times for CESM-2 (C-2) and CESM-4 (C-4).

necessary there of at least one order of magnitude to allow practical application. Yet, all pro-

cess stages except policy computation show highly linear effort and can thus be handled in a

predictable manner. However, policy computation effort scales in a highly non-linear fashion,

as shown in the last column in Table 5.22. Policies were computed for CESM-4 with differ-

ing transition and observation models – but exactly the same state and action set – leading to

differences of five orders of magnitude in computation time.

This leads to the conclusion that controlling the complexity of transition and observation

models, represented by the number of non-zero probability entries, is the main hurdle for prac-

tical application of the presented concept in missions of intermediate size.
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5.10. Evaluation Conclusions and Limitations

In the given experiments, process stages were evaluated individually and in combination, in

simulation and on real hardware based on several different missions. The technical system has

shown its applicability to real-world problems.

More extensive naive-user studies or long-term experiments would be desirable but were

beyond the scope of this thesis. It shall be noted explicitly at this point that extensive, truly con-

trolled mission experiments with fully autonomous physical service robots, integrating all three

major skill domains and with the focus to collect expressive data beyond "show-off demonstra-

tions" is extremely hard given the current state of the art in service robotics. In this chapter,

experiments resulting in the smallest result tables were by far the most challenging and labori-

ous to set up and perform in a controlled manner.

In the literature, such experiments are rare. This Chapter aims to reduce that gap to some

extent.
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Autonomous decision making in complex domestic environments requires a robot with an elab-

orate model of potential situations and action effects. Models that incorporate quantification of

uncertainties in both perception and courses of events while covering diverse skills domains are

complex. Such complexity leads to two major challenges:

1. Organizing models in a comprehensive and yet efficient manner.

2. Acquisition of models.

6.1. Contribution Summary

As presented in the previous Chapters, this thesis outlines a concept for both modeling as well as

model acquisition on complex domestic service robots. The well founded concept of POMDPs

was chosen to handle autonomous decision making as it is able to consider uncertainties in both

environment observation as well as action effect prediction.

To manage diverse sets of skill domains, different aspects of the world, observable by the

robot, are organized in features, which ground abstract POMDP state representations of diverse

types of situations. Abstract decisions are represented by actions, which are realized by com-

pound subtasks, triggering elementary robot skill execution. Strategies to derive actual model

probabilities for both observation uncertainties considering varying robot perception skills as

well as action prediction are outlined. A functional expression system is presented, enabling ef-

ficient POMDP model generation for diverse missions, generating a full model from a compact

rule-based description. Furthermore, a background knowledge representation system based on

description logic reuses information about the world and the robot for multiple mission models.

Such model organization allows to represent versatile service robot missions in the information

processing system of the robot. The representation is in turn used for autonomous decision

making during execution.

Acquisition of those models, thus generation of a model to be used in the information pro-

cessing system of the robot during execution, is realized by interactive learning. Three main

challenges were tackled to achieve full model generation from observation of human demon-

strations and autonomous refinement:
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• The chosen model organization needs knowledge about the grounding of abstract states

and action in real-world situations. The presented approach to this challenge autonomously

generates state and action grounding based on human demonstrations, using spacial clus-

tering and discretization, as well as trajectory-oriented action mapping.

• An abstract POMDP model has to be generated while there is potentially lacking model

knowledge after initial demonstrations. This challenge is tackled by generating state and

action sets based on demonstrations and using previously generated state grounding. Sub-

sequently, the preliminary abstract model is explored for potentially lacking action effect

knowledge, with model portions rated for relevance and in turn verified by posting inter-

active request to human mission teachers.

• There is a need for information about robot-specific action effect probabilities, which

cannot be inferred from human demonstrations. To derive this information, geometric

analysis and robot learning from trials in dynamics simulation is performed, directed by

information about the scene and mission as gathered from observation. That information

refines the preliminary POMDP model into a final model.

Concept and process stages for both learning and execution have been completely imple-

mented and integrated on two physical service robots with multiple skills domains. Experi-

mental evaluation was conducted, both focussed on performance and peculiarities of individual

process stages as well as overall process suitability. As a result of being realized as a complete

system, the comprehensive concept has proven its suitability to tackle abstract-level autonomy

of service robots with multiple skill domains.

6.2. Discussion and Limitations

On analyzing the approach taken and potential future extensions, several insights stand out:

• There is no way around symbols on an abstract, coordinating layer. Symbols do not

necessarily have to be meaningful for humans outside communication with the robot as

long as there is sufficient grounding inside the information processing system of the robot.

In fact, symbols are just a way to organize information, reduce complexity and focus on

relevant aspects alone. Symbols are compact references to concepts, clusters and data

structures. These references both reduce information complexity and bring information

of highly diverse resources into coherent forms where algorithms have to consider them

equally. Yet, a reasoning and planning system using symbols is only as powerful as the

methods that map situations and processes onto symbols as well as further information –
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like probabilities – attached to the symbols. In the given system, especially state mappings

are still limited as the focus was on learning those from observations. More sophisticated

methods could be considered as discussed in the next Section.

• Any autonomous reasoning and planning system has to make a trade-off between the

model expressiveness and the complexity implied by the model. Expressiveness describes

the scope of information that can be contained in a model and then used by planning al-

gorithms. Furthermore it may also describe how much information is acquired when

creating such a model and how well it approximates real-world behavior. However, with

growing expressiveness complexity challenges arise quickly, for instance, in the given

system POMDPs have the ability to model uncertainty in both perception and potential

courses of events. The system as presented still uses non-hierarchical POMDPs, which

limits mission size, and the learning process does not exploit life-long learning exten-

sively. Different levels of model expressiveness - for example for short-term and long

-erm planning in a mission or the learning process - could improve the balance between

expressiveness and complexity.

• Probably the most important contribution is the insight how extensively a tight combina-

tion of highly diverse paradigms can enable abstract learning in ways impossible other-

wise. The proposed system shows in depth how greatly different techniques like PbD,

POMDPs, description logic, motion planning and physical simulation can work together

in model acquisition. Most of these paradigms applied alone for model acquisition would

be just infeasible, as shown in learning from simulated trials alone without a preliminary

model skeleton acquired by PbD. It should be clearly expressed that it came as a surprise

how well some problems can be overcome by combining highly differing paradigms in

the right way during development of the presented system. Exploiting these opportunities

has to go beyond just collecting groups of individually strong methods or sets of skills –

though these are also exploited in the system which is based on such sets of skills – but

directed, complementary use of paradigms as shown in the model acquisition process.

• A key to future more capable systems will be huge amounts of knowledge. Examples

discussed in this thesis are state and action mappings, state sets, primary action effects,

secondary action effects and observation uncertainty. Various different representations for

these knowledge aspects could be utilized. Persistently storing such knowledge, adding

new knowledge, reprocessing existing information when introducing new data as well as

efficient search and retrieval are non-trivial on large amounts of data. In this thesis, large
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6. Summary and Conclusions

amounts of data were not investigated, but the topic will be crucial when tackling more

complex missions.

• There is no online planning and reasoning applied in the given system. All model aspects

are compiled offline and finalized by policy computation. This design choice was made to

focus exclusively on modeling and model acquisition – complex challenges on their own.

However, there is no fundamental limit to online model improvement and policy compu-

tation as discussed in the next Section. It is reasonable to assume that model acquisition

process stages are compatible with online planning and reasoning techniques.

6.3. Outlook

Many of the current limitations in the system may be overcome by including new methods

currently being investigated in research. Crucial limitations include model and planning com-

plexity, online-time planning, reasoning and learning as well as large amounts of knowledge.

• Relational stochastic models [83] are a promising decision-making model representation,

similar to MDPs and able to consider uncertainties. However, states can be expressed in

manners more suitable for service robot settings, reducing model and planning complex-

ity.

• Future approaches in hierarchical representations may be able to tackle the complexity

problem by making more compromises between precision and model scope.

• Flexible state spaces for online planning may be another way to tackle the problem of

complexity. States and action can be added to the model during execution time with

computation of new policies . Some process stages of the presented system are highly

suitable to such an approach, adding states, actions, transitions and rewards on the fly.

• POMDPs are special forms of DBNs and as such the given model acquisition process

could be extended to generating DBNs. Inference techniques on such DBNs may then be

suitable for solving decision-making problems.

• For practical purposes, state mapping currently uses quite crude representations. While

sufficient in abstract missions investigated, more complex missions might require more

sophisticated state mappings. A contender for such a mapping is GMMs, which are well

suited to be probabilistic representatives of situation clusters defined on any continuous

domain and in turn applied for probabilistic belief computation. Learning such GMMs

226



6.4. Conclusions

from observations could directly use the existing clustering process and sampling from

such GMMs in refinement stages ist straightforward. However, such a GMM mapping

is less easy to understand for human engineers who debug learned missions and thus

requires an otherwise mature system.

• In combination with online model compilation and policy computation, further online

DL inference reasoning or action-effect likelihood estimation could be performed. Yet,

temporal constraints that are currently not important, would then be crucial, leading to

new challenges.

• Interactive learning could be integrated into mission execution. With the robot being able

to improve action-effect and situation knowledge from encountered courses of events,

learning from experience could be enhanced. Process stages and knowledge represen-

tations, suitable for learning from experience exist and therefore introduction of online

learning should be straightforward.

• In general, more extensive lifelong learning and accumulation of massive amounts of

data is necessary for a robot to be able to execute large numbers of complex missions.

It is clear that including such capabilities in the presented system would require massive

further research and extensions and is not trivial.

6.4. Conclusions

In general, moving towards truly autonomous domestic robot servants will require broad progress

on the following fronts:

1. Improved robust sensors, especially fast 3D point cloud vision and compliant actuators.

2. Improved perception and motion planning skill algorithms, considering real-world uncer-

tainty and utilizing such hardware.

3. Highly integrated situation assessment, reasoning, planning and learning compounds,

considering real-world uncertainty, on top of the perception and actuation skills.

The present thesis makes a contribution to the latter point, giving insight into highly inte-

grated processes, that can lead towards working systems. Actually implemented as a prototype

for experiments and analysis it also gives further insight into practical software and handling

challenges of such systems.
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6. Summary and Conclusions

However, architects and engineers always need to be conscious about the fact that real-

world complexity will always require tradeoffs between model expressiveness and computa-

tional complexity. Also, there is no way to prove model correctness in the face of a real-world

setting.

Humans can only overcome the curse of complexity because they conceptualize, focus, utilize

heuristics and apply learned, static patterns. Consequently, there are always limits to reasoning

and decision making, leading to errors and suboptimal action choices. Perfection is impossible

in real-world settings, thus not only is it true that "to err is human", but more generally "auton-

omy means to err". When that fact is accepted, robot servants may at some point become great

tools for civilization.
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A. Glossary and Notation

Term Description Reference

Access mask Identifier to select multiple entries in a matrix

POMDP functional Identifier to modify multiple entries in Sec. 3.6

expression access mask POMDP model components at once

Generalization mask Identifier to select multiple transitions Sec. 4.7.1

Action a A symbolic representation of a self-contained Sec. 2.1.2

robot task, executable in one chunk.

Action space A Set of all actions in a model Sec. 2.2.2

Agent activity Ga Recording components corresponding to Sec. 4.1

human actions

Autonomy Flexible agent behavior in complex Sec. 2.1

environments

Background knowledge Persistent information valid for multiple Sec. 3.7

missions

Bayesian probability Information based value estimate Sec. 2.2.1

Bayesian network (BN) Graph of probabilistic conditional dependence [122]

Dynamic Bayesian [122]

network (DBN)

Belief (state) b Subjective Bayesian estimate of a world state Sec. 2.2.3

by an agent

Reachable belief Belief states which may occur Sec. 2.2.5

in a certain POMDP model

Binary space partitioning Sec. 4.2.3

Category ci
xi (= feature state), state element in a feature Sec. 3.2

Clustering Grouping data point into a common class Sec. D.2

k-means clustering Clustering method Sec. D.2

EM clustering Clustering method Sec. D.2

DBScan clustering Clustering method Sec. D.2

DB index Optimal cluster number measure Sec. D.2

SD index Optimal cluster number measure Sec. D.2

XD index Optimal cluster number measure Sec. D.2
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Term Description Reference

Cluster enclosing box (CEB) Rectangle fully enclosing a point cluster Sec. 4.2.3

Concept, DL Description logic class described by axioms Sec. 3.7.4

Description logic (DL) Sec. 2.6

DL axiom TBox, class information, stored peristently Sec. 3.7

DL fact ABox, instance information, generated on the fly Sec. 3.7

Discretization Mapping a continuous domain onto a finite set Sec. 3.2

Dynamic motion Skill representation for manipulation imitation Sec. 2.4.1

primitive (DMP) learning

Elementary operator Atomic skill operation in a task scheme Sec. 2.4.2

Execution(-time) Robot performs a role autonomously Sec. 3.1

Feature fi Model aspect representing perceivable Sec. 3.2

environment properties of a certain kind

Feature mapping fi Function, mapping perception skill Sec. 3.2

domains onto discrete category symbols

Feature state ci
xi (= category) a concept, representing a class of Sec. 3.2

similar environment situations in a domain

Feature state Set of all feature states in a certain model Sec. 3.2

space Fi

Feature-discretized Function mapping input values onto Sec. 3.2

mapping fg1 categories

Feature-state Function mapping feature states onto Sec. 3.2

mapping fg2 (PO)MDP states

Feature state description Quality assessment tree for alternative Sec. 4.2.5

tree (FSDT) discretization assessment in PbD state mapping

Separation choice Node in an FSDT, representing alternatives Sec. 4.2.5

node (SCN)

Feature state separation Node in an FSDT, representing a split Sec. 4.2.5

node (FSSN) into further multiple categories

Gaussian mixture Probabilistic representation of data membership Sec. D.3

model (GMM)

Gaussian mixture Representation, computed from GMMs, better Sec. D.3

regression (GMR) suited for distance computations
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Term Description Reference

Generalization of Estimating new, non-zero transitions from Sec. 4.7.1

transitions existing non-zero ones

Generalization Basic estimate confidence for Sec. 4.7.3

confidence (gc) a generalized transition

Non-observation Factor, taking likelihood for demonstrations Sec. 4.7.3

bias (nob) being omitted, based on frequencies, into account

Certainty bias (ceb) Factor, limiting increased stochasticity Sec. 4.7.3

Grasp Wrench Space Metric for stability of a grasp using forces Sec. 4.12.2

Hidden Markov Model for observing hidden state Sec. 4.5

model (HMM) sequences

Human interaction Human interaction role demonstrating Sec. 4.1

role (HR) human teacher

Human-Robot Interaction between humans and robots by means Sec. 1

interaction (HRI) of natural speech, gestures and touch

Human fully body Temporal segment of human body configuration Sec. 2.7.1

motion activity movement, classified by a symbolic label

Hough ellipse detection Computer vision technique to detect Sec. 3.3.4

ellipses in pixel images

Imitation learning Usually a notion for skill-level manipulation PbD Sec. 2.4.1

Interactive learning Robot learning from humans or active Sec. 1.1

environment exploration

Invariance

Agent invariance Mission properties, valid when performed Sec. 3.7.1

by different physical agents

Environment Mission properties valid in varying settings Sec. 3.7.1

invariance

Learning by exploration Learning from executing focussed actions and Sec. 2.5

evaluating results to refine action knowledge

Macro operator Abstract task reference in sequence PbD Sec. 2.4.2

Manipulation strategy Powerful constraint-based motion planning Sec. 2.7.2

(mst) manipulation skill and task representation
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Term Description Reference

Markov Decision Decision making framework based on the Markov Sec. 2.2.2

Process (MDP) property and considering stochastic action effects

Partially Observable MDP considering imperfect state knowledge Sec. 2.2.3

MDP (POMDP)

Mixed Observability Mixed fully observable MDP Sec. 2.2.4

MDP (MOMDP) and POMDP representation

Measurement m Abstract observation, received by an agent Sec. 2.2.3

Mission Global, self contained objective of an autonomous Sec. 1

robot

Mobility Self-localization and navigation skill domain Sec. 1

Monte-Carlo method Deriving process parameters by sampled simulations [122]

Motion state Data point type attribute in PbD state mapping Sec. 4.2.1

Object manipulation Interaction with the physical world using grippers Sec. 1

Observation 1) Execution-time: abstract world state perception Sec. 2.2.3

2) Recording of human demonstrations

ODE Open Dynamics Engine physics simulation Sec. 2.5

OpenRAVE Robot simulation framework Sec. 4.12.1

OPPL Rule language to work on DL expressions Sec. 3.7.2

OWL Ontology language, implementing DL subsets Sec. 3.7.2

Partially Observable Intrinsic state of the world being uncertain Sec. 2.2.3

(hidden) to an agent

Physical dynamics Computationally simulating Newton body Sec. 2.5

simulation dynamics

Planning Reasoning of an agent to find suitable action choices Sec. 2.1.2

Motion planning Search for arm/hand motion trajectories Sec. 2.7.2

Logic-based Search for abstract action sequences Sec. 2.1.2

planning

Probabilistic Search for robust action choices under Sec. 2.2

planning assumptions of stochastic courses of events

PMPM-PbD PbD framework presented in this thesis Sec. 1.4

Policy Action choice function for decision making Sec. 2.2.5

Programming by Teaching robot skill/task/mission knowledge Sec. 2.4

demonstration (PbD) by natural demonstrations of human domain experts
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Term Description Reference

RANSAC plane Algorithm for optimally fitting planes into point Sec. 3.3.4

fitting clouds

Rational agent Autonomously reasoning entity, embedded into Sec. 2.1

a world

Refinement of Adapting mission model parameters to better Sec. 1.4

a model reflect real world properties

Reward r Positive signal to an agent, feeding motivation Sec. 2.2.2

Reward model Model of all reward signal values in relation Sec. 2.2.2

R to states and actions

Robot role (RR) Robot role demonstrating human teacher Sec. 4.1

Segmentation Generation of an abstract state-action sequence Sec. 4.4

(of a demonstration) from continuous demonstration recordings

Similarity metric Measure of similarity between two potential Sec. 3.3

abstract measurements

Utterance Similarity between speech sentences Sec. 3.3.1

similarity

Human body Similarity between classified human body Sec. 3.3.2

activity similarity configurations

Situation Es A unique configuration of the world in its entirety Sec. 3.2

Skill Control-level capability of a robot

Skill domain Major ability aspect of a robot Sec. 3.1.1

Perception skill Skill primarily delivering information about Sec. 3.1.1

(component) environment aspects for the abstract level

Actuation skill Skill primarily controlling actuators Sec. 3.1.1

(component)

State s Abstract class of similar situations Sec. 2.1.2

State space S Set of all states in a model Sec. 2.2.2

Stochastic courses Courses of events with action effects not Sec. 2.2.2

of events deterministically predictable

Primary stochastic Effects mostly independent from specific Sec. 3.4.2

action effect robot skill characteristics

Secondary stochastic Effects mostly defined by robot Sec. 3.4.2

action effect skill characteristics

SWRL Rule language to work on DL expressions Sec. 3.7.2
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Term Description Reference

Task Compound of actions (skill execution), yet not Sec. 3.4

self-contained autonomy as a mission

Tool center point (TCP) End-effector spot definition of a robot arm Sec. 2.7.2

Transition v Transfer of a specific state into another Sec. 2.2.2

by a certain action

Transition model T Probabilities of all transitions in a model Sec. 2.2.2

Meta transition Causally supported transition model for Sec. 4.5

model excluding impossible transitions

Transition frequency Unnormalized model of transition counts Sec. 4.6

model T F

Transition Unobserved transitions, estimated based on Sec. 4.7.1

hypotheses vg observed ones

Transition mask κ Identifier to select groups of transitions Sec. 4.7.1

Trial An execution trial, potentially in simulation Sec. 4.12.1

to learn experience from

Utility U Projected accumulated rewards Sec. 2.2.2

Value function Γ Utility for any possible (belief) state Sec. 2.2.3

Value function Element of value functions, resulting from Sec. 2.2.3

plane α value iteration algorithms
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Symbol Description

S State space

s State

Sp Primary effects state space

SD Demonstration state space

SE Secondary effects state space

A Action set

a Action

Ap Primary effects action set

AD Demonstration action set

AE Secondary effects recovery action set

AI Information gain action set

M Measurement set

m Measurement

T Transition Model

TD Demonstration transitions

TGA Transitions derived from geometric analysis (GA)

TD+GA Transitions derived from demonstrations and GA

TSim Transitions derived from trials in dynamics simulation

TD+GA+Sim Merged transition model

TE Unspecific secondary transition probabilities

T FD Demonstration transition frequency model

O Observation model

R Reward model

b Belief (state)

R(b0) Reachable belief

Γ Value Function

α Value function plane

D (Skill) Domain
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Symbol Description

Es Environment situation

Ga Agent activity, distinguished from situation in PbD

fg(Es) Overall, general feature mapping

fg1 Feature discretization: situation to feature state mapping

fg2 Feature state tuple to state mapping

f f eati(Es) Specific feature mapping

Fi Feature state space

ci
xi Category = feature state in feature i

FS Feature state tuple space

FM Feature measurement tuple set

Ψ(FS) Feature state tuple space to state space mapping

ω f s Weights for merging transition probabilities in combine states

〈mi,m j〉 Utterance similarity metric

〈ai,a j〉 Human body activity similarity metric

mst Manipulation strategy [graph]

k Cluster number

~ω GMM weights

pHough(ox,oy,α,β ,θ) Hough ellipse correctness confidence

> DL ontology root: thing

Obs A single demonstration observation trace

obs(t) Single demonstration recording data point

ΞDemo Set of multiple abstract demonstration sequences Obs

CEB Cluster enclosing box

ωsim CEB similary measure

q(SNi) FSSN quality

X tcp,act
m Human body activity classified hand trajectory segment

X tcp
j,i Manipulation strategy j, training data trajectory i

Φ(mst) GMR of mst training trajectories

ωt Trajectory data point weights

Qs Abstract state-action sequence of a course of events

εt Temporal demonstration segmentation threshold
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Symbol Description

v : T (v) := T (si,ak,s
′
j) Transition model entry - a single transition

vg Generalized transition hypotheses

κ(s∗,a∗,s′∗) Transition mask

Vmask Set of transitions defined by a mask κ

gc(vg) Generalization confidence of a generalized transition

αgc Generalization confidence similarity weight

βgc Generalization confidence non-observation bias weight

γgc Generalization confidence certainty bias weight

ρs(s) State relevance measure for vg ranking
~ωs State relevance component weights

ρv(v) Transition relevance measure

{σm
i } Simulation trial virtual observation deviations

{σa
j } Simulation trial virtual actuation deviations

ρk Simulation trial situation and observation sample densities

ξ Simulation trial situation (world configuration)

Wr Grasp Wrench Space

εwrench
grasp Grasp wrench space threshold to be considered a stable grasp
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B. Processing Schemes and Algorithms

In the following, algorithms, developed in the scope of the presented system, are depicted

schematically or in pseudocode.

Algorithm 1 Generate request sequences

Input: TD, V veri f y
g sorted by ρv(vg), S1, maxl , maxg

Output: Ξrequests

V request
g = /0

V discarded
g = /0

while vg ∈ V veri f y
g ∧ vg /∈ V request

g ∧V discarded
g 6= V veri f y

g −V request
g do {Check hy-

potheses for paths}

if Qmin
path(s1 ∈ S1,s ∈ vg) 6= /0 then {Compose a request sequence}

5: Qrequest
path = Qmin

path(s1 ∈ S1,s ∈ vg)+ vg

appg = maxg

V requests
g ← vg

while ∃vminpath
g ∈ V veri f y

g ,vminpath
g /∈ V request

g , |Qmin
path(s

′ ∈ vg,s ∈ vminpath
g )| <

maxl ∧appg 6= 0 do
Qrequest

path = Qrequest
path +Qmin

path(s
′ ∈ vg,s ∈ vminpath

g )+ vminpath
g

10: appg = appg−1
V request

g ← vminpath
g

if vminpath
g ∈V discarded

g then

remove vminpath
g from V discarded

g
end if

15: end while
Ξrequests← Qrequest

path
else

V discarded
g ← vg

end if
20: end while
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Figure B.1.: Schematic view of processing in the functional expression toolbox, presented in Section 3.6, showing exemplary features "Node", "Interaction"

and "Activity". - [37]
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Algorithm 2 Compute Separators for Feature State Regions
Input: Limit box l j, Bl := {b1, . . . ,bl} inside l j

for all bi do {Neighbor computation}

{bgt [xk] ∈ Bgti| bgt [xk]> bi[xk]} : unxk(bi)← min(bgt [xk] ∈ Bgti)

{blt [xk] ∈ Blti| blt [xk]< bi[xk]} : lnxk(bi)← max(blt [xk] ∈ Blti)

end for
5: for all bi do {Computing separator candidates pxk,i with upper neighbors}

for all xk do {σcluster is defined on cluster i∼ bi, ccluster is the center of a cluster i}
pxk,i =

σi
(σi+σunxk (i)

)
∗ (cunxk(i)

− ci)

Pcand ← pxk,i

end for
10: end for

for all pxk,i ∈ Pcand do {Checking candidate intersection with any other CEB}

for all bi do
if pxk,i

⋂
bi then

remove pxk,i

15: end if
end for

end for
if Pcand = /0 then {Checking empty candidate set}

shrink all bi by ∆X

20: Compute Separators(l j)

end if
for all pxk,i ∈ Pcand do {Computing separator candidate qualities}

ωh =

sim(i,g) = ∑k
‖σxk,i−σxk,g‖

max(σxk,g,σxk,g)
+‖shape(i)− shape(g)‖

25: Sim(Bg) =
1
|Bg|2 ∑i∈Bg ∑g∈Bg,g>i sim(i,g)

ωsim = min(Sim(Bup),Sim(Blow))

q(pxk,i) = ωh+
α

ωsim
end for
popt

xk,i
= maxpxk,i∈Pcand (q(pxk,i))

30: [continued]
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[continued]

for all bi do {Compute next tree children for recursion}

if bi[xk]< popt
xk,i

then
llower← bi

5: else
lupper← bi

end if
end for
Compute Separators(llower)

10: Compute Separators(lupper)
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C. Examples

Examples, illustrating techniques, discussed in Chapters 3 and 4 are given in the following.

Figure C.1.: False negative among true positives during localization of various objects as discussed in

Section 3.3.3. Note: the red cup is also shown blue in the motion planning visualization.

- [125]
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Figure C.2.: Further visualizations of FPs, executed in POMDP elementary actions in mission CESM-1

(see Section 5.1.2). "Goto" at thetop includes setting neck, hand and arm into a safe position

for driving. "Ungrasp" at the bottom right includes moving into a safe position afterwards.

- [125]
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Table C.1.: Example: Simple single feature dependent transition.

F1:robot−pose = {c1
1 =WaitArea,c1

2 = AtTable},
F2:small−ob j−state = {c2

1 = Noob ject,c2
2 =CupOnTable},

S = {s1 : c1
1∧ c2

1,s2 : c1
1∧ c2

2,s3 : c1
2∧ c2

1,s4 : c1
2∧ c2

2}
a1 = gotoTable, pT (c′11 |c

1
1,a1) = 0.1, pT (c′12 |c

1
1,a1) = 0.9

⇒ T (s1,a1) = (0.1,0.0,0.9,0), T (s2,a1) = (0.0,0.1,0.0,0.9)
Explanation: The object state is conditionally independent from the mobility action.

However, a transition has to be defined for origin states with both object states s1, s2.

Therefore, for each mobility feature action effect probability, two flat transition model

entries have to be assigned. With feature state spaces and feature sets much larger than

in this example, such characteristics become more pronounced.

Table C.2.: Example: OPPL rule generating the catch-all feature state "OTHER" in frobot−pose.

?act:INDIVIDUAL, ?s0:INDIVIDUAL, ?reg:INDIVIDUAL,

?trans:INDIVIDUAL, ?mod:CLASS,

?l:CONSTANT=MATCH("(.*?)(\\̂.̂*)?"),

?other:INDIVIDUAL=create(?l.GROUPS(1)+"OTHER")

SELECT ?act instanceOf Goto, ASSERTED ?act destRegion ?reg,

ASSERTED ?trans instanceOf GAGotoOther,

?trans instanceOf state0 some ?mod, ?trans destRegion ?reg,

ASSERTED ?mod subClassOf MdlState, ?mod subClassOf (RobLoc or RobOrient),

ASSERTED ?mod.IRI label ?l

BEGIN ADD ?other instanceOf ?mod, ADD ?other instanceOf StateOther,

ADD ?other.IRI label "OTHER" END;
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Table C.3.: Example: OPPL rule generating the generic error feature state "ERROR" in frobot−pose.

?act:INDIVIDUAL, ?reg:INDIVIDUAL, ?trans:INDIVIDUAL, ?mod:CLASS,

?l:CONSTANT=MATCH("(.*?)(\\̂.̂*)?"),

?other:INDIVIDUAL=create(?l.GROUPS(1)+"ERROR")

SELECT ?act instanceOf Goto, ASSERTED ?act destRegion ?reg,

ASSERTED ?trans instanceOf GAGotoCollision,

?trans instanceOf state0 some ?mod, ?trans destRegion ?reg,

ASSERTED ?mod subClassOf MdlState, ?mod subClassOf (RobLoc or RobOrient),

ASSERTED ?mod.IRI label ?l

BEGIN ADD ?other instanceOf ?mod, ADD ?other instanceOf StateError,

ADD ?other.IRI label "ERROR" END

Table C.4.: Example: DL axioms, representing manipulation action effect probabilities.

Transition(TrGraspChairFrontMissed)

Transition(TrGraspChairFrontAway)

manipulationStrategy(TrGraspChairFrontMissed, Front)

manipulationStrategy(TrGraspChairFrontAway, Front)

relatedObject(TrGraspChairFrontMissed, WoodenChair)

relatedObject(TrGraspChairFrontAway, WoodenChair)

effectStateSet(TrGraspChairFrontMissed, ObjStatePresentSet)

effectStateSet(TrGraspChairFrontAway, ObjStateInaccessibleSet)

Set(ObjStatePresentSet)

Set(ObjStateInaccessibleSet)

probability(TrGraspChairFrontMissed, 0.15)

probability(TrGraspChairFrontAway, 0.05)
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Table C.5.: Example: SWRL rule for matching transitions onto new instances.

Grasp(?x0) ∧ Transition(?x1)

∧ relatedObject(?x0, ?x2) ∧ relatedObject(?x1, ?x2)

∧ manipulationStrategy(?x0, ?x3) ∧ manipulationStrategy(?x1, ?x3)

→ hasTransition(?x0, ?x1)

Table C.6.: Example: OPPL rule generating a manipulation generic error recovery action AE .

?act:INDIVIDUAL, ?obj:INDIVIDUAL, ?trans:INDIVIDUAL, ?mod:CLASS,

?retract:INDIVIDUAL=create("SaveArmRetract")

SELECT ?act instanceOf Grasp, ?act relatedObject ?obj,

?trans instanceOf GraspTransDS, ?trans instanceOf (not DSManipJammed

and not DSManipSuccess), ASSERTED ?mod subClassOf MdlState,

?trans instanceOf state0 some ?mod, ?trans relatedObject ?obj,

?mod subClassOf (ObjLoc or ObjOrient)

BEGIN ADD ?retract instanceOf Release, ADD ?retract strategy SaveRetract END;

Table C.7.: Example: OPPL rule generating an information gain action AI .

?goto:INDIVIDUAL, ?obj:INDIVIDUAL, ?manip:INDIVIDUAL,

?l:CONSTANT=MATCH("(.*?)(\\̂.̂*)?"),

?obs:INDIVIDUAL=create("ObserveNear"+?l.GROUPS(1))

SELECT ASSERTED ?goto instanceOf Goto, ASSERTED ?obj.IRI label ?l,

ASSERTED ?goto optimizedFor ?manip, ?goto relatedObject ?obj

BEGIN ADD ?obs instanceOf Observe, ADD ?obs relatedObject ?obj,

ADD ?obs optimizedFor ?manip END;

247



Table C.8.: Example: Sample number for grasping a chair from the front [163].

Gridsize for x, y = 10cm, θ in 30◦ steps.

|xi| = 15, |yi| = 21, |θk| = 12, samples per x-y fields: 41, Theta per x-y sample: 1:

(x,y,θ)-Voxel number: 15 * 21 * 12 = 3780

Samples: 15 * 21 * 12 * 41 = 154980

With an average of 5 seconds on a single CPU, this accounts to∼9d.

By parallelization on two Quad-Core computers,

the MST-ORSALM can be computed over the course of two nights.

Higher densities of such uniform sampling are, however infeasible.
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Table C.9.: Example: Merging primary and secondary action effect probabilities gathered by demonstra-

tion analysis (PbD) and geometric analysis (GA) process stages.

1) The robot can be near a RegionA where there is potentially a chair. In this case, there are

potentially two interacting humans: human1, human2. The robot has the ability to grasp the chair:

a = GraspChairFront
F1:robot−pose = {c1

1 = AtRegionA,c1
2 = Other}

F2: f urni−state = {c2
1 =C(Chair) ∈ RegionA,c2

2 =C(Chair) /∈ RegionA,

c2
3 = Grasped,c2

4 = Jammed}
F3:human1−pose = {c3

1 = NearRegionA,c3
2 = NotNearRegionA}

F4:human2−pose = {c4
1 = Present,c4

2 = NotPresent}
S = F1×F2×F3×F4
Below, only states with the chair in RegionA and robot in AtRegionA are considered:

sAtCw2Hums := crobot−pose
AtRegionA ∧ c f urni−state

C(Chair)∈RegionA∧ chuman1−pose
NearRegionA ∧ chuman2−pose

Present

sAtCwHum1 := crobot−pose
AtRegionA ∧ c f urni−state

C(Chair)∈RegionA∧ chuman1−pose
NearRegionA ∧ chuman2−pose

NotPresent

sAtCwHum2 := crobot−pose
AtRegionA ∧ c f urni−state

C(Chair)∈RegionA∧ chuman1−pose
NotNearRegionA∧ chuman2−pose

Present

sAtCAlone := crobot−pose
AtRegionA ∧ c f urni−state

C(Chair)∈RegionA∧ chuman1−pose
NotNearRegionA∧ chuman2−pose

NotPresent

κ(shumsDontMatter) = sAtCw2Hums or sAtCwHum1 or sAtCwHum2 or sAtCAlone
κ(shum2DoesntMatter) = sAtCw2Hums or sAtCwHum1
2) During demonstrations, two primary aspects are taught:

a) The presence of human2 is independent of anything else and has probability p = 0.6:

pTD(c
human2−pose
Present |κ(shumsDontMatter),a) = 0.6

pTD(c
human2−pose
NotPresent |κ(shumsDontMatter),a) = 0.4

b) If human1 is near the chair it may steal the chair while the robot tries to grasp it:

pTD(c
f urni−state
Grasped |κ(shum2DoesntMatter),a) = 0.7

pTD(c
f urni−state
C(Chair) /∈RegionA |κ(shum2DoesntMatter),a) = 0.3

This leads to the following primary action effect joint probabilities:

pTD(c
human2−pose
Present ∧ c f urni−state

Grasped |κ(shum2DoesntMatter),a) = 0.6∗0.7

pTD(c
human2−pose
Present ∧ c f urni−state

C(Chair) /∈RegionA |κ(shum2DoesntMatter),a) = 0.6∗0.3

pTD(c
human2−pose
NotPresent ∧ c f urni−state

Grasped |κ(shum2DoesntMatter),a) = 0.4∗0.7

pTD(c
human2−pose
NotPresent ∧ c f urni−state

C(Chair) /∈RegionA |κ(shum2DoesntMatter),a) = 0.4∗0.3

(Continued)
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(Continued)

3) Subsequently, during refinement, geometric analysis (GA) determines, motion planning

will fail with p = 0.2, leading to the following secondary action effect probabilities:

pTGA(c
f urni−state
Grasped |κ(shumsDontMatter),a) = 0.8

pTGA(c
f urni−state
C(Chair)∈RegionA |κ(shumsDontMatter),a) = 0.2

TGA is anchored on c f urni−state
Grasped in TD, thus resulting in the following joint probabilities:

pTD+GA(c
human2−pose
Present ∧ c f urni−state

Grasped |κ(shum2DoesntMatter),a) = 0.6∗0.7∗0.8

pTD+GA(c
human2−pose
Present ∧ c f urni−state

C(Chair)∈RegionA |κ(shum2DoesntMatter),a) = 0.6∗0.7∗0.2

pTD+GA(c
human2−pose
Present ∧ c f urni−state

C(Chair) /∈RegionA |κ(shum2DoesntMatter),a) = 0.6∗0.3

pTD+GA(c
human2−pose
NotPresent ∧ c f urni−state

Grasped |κ(shum2DoesntMatter),a) = 0.4∗0.7∗0.8

pTD+GA(c
human2−pose
NotPresent ∧ c f urni−state

C(Chair)∈RegionA |κ(shum2DoesntMatter),a) = 0.4∗0.7∗0.2

pTD+GA(c
human2−pose
NotPresent ∧ c f urni−state

C(Chair) /∈RegionA |κ(shum2DoesntMatter),a) = 0.4∗0.3
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Table C.10.: Example: Merging action effect probabilities gathered by demonstration analysis (PbD) and

geometric analysis (GA) process stages with those computed by analysis of simulated trials

(Sim).

Based on probabilities, computed by PbD and GA shown in Table C.9,

in the second refinement stage, dynamic simulation (Sim) determines

the following effect probabilities after successful motion planning:

pTSim(c
f urni−state
Grasped |κ(shumsDontMatter),a) = 0.5 (Success)

pTSim(c
f urni−state
C(Chair)∈RegionA |κ(shumsDontMatter),a) = 0.25 (Missed)

pTSim(c
f urni−state
C(Chair) /∈RegionA |κ(shumsDontMatter),a) = 0.15 (Pushed away)

pTSim(c
f urni−state
Jammed |κ(shumsDontMatter),a) = 0.1 (Unexpected forces)

TSim is anchored on c f urni−state
Grasped in TD+GA, leading

to the following joint probabilities:

pTD+GA+Sim(c
human2−pose
Present ∧ c f urni−state

Grasped |κ(shum2DoesntMatter),a)

= 0.6∗0.7∗0.8∗0.5

pTD+GA+Sim(c
human2−pose
Present ∧ c f urni−state

C(Chair)∈RegionA |κ(shum2DoesntMatter),a)

= 0.6∗0.7∗0.2+0.6∗0.7∗0.8∗0.25

pTD+GA+Sim(c
human2−pose
Present ∧ c f urni−state

C(Chair) /∈RegionA |κ(shum2DoesntMatter),a)

= 0.6∗0.3+0.6∗0.7∗0.8∗0.15

pTD+GA+Sim(c
human2−pose
Present ∧ c f urni−state

Jammed |κ(shum2DoesntMatter),a)
= 0.6∗0.7∗0.8∗0.1

pTD+GA+Sim(c
human2−pose
NotPresent ∧ c f urni−state

Grasped |κ(shum2DoesntMatter),a)

= 0.4∗0.7∗0.8∗0.5

pTD+GA+Sim(c
human2−pose
NotPresent ∧ c f urni−state

C(Chair)∈RegionA |κ(shum2DoesntMatter),a)

= 0.4∗0.7∗0.2+0.4∗0.7∗0.8∗0.25

pTD+GA+Sim(c
human2−pose
NotPresent ∧ c f urni−state

C(Chair) /∈RegionA |κ(shum2DoesntMatter),a)

= 0.4∗0.3+0.4∗0.7∗0.8∗0.15

pTD+GA+Sim(c
human2−pose
NotPresent ∧ c f urni−state

Jammed |κ(shum2DoesntMatter),a)
= 0.4∗0.7∗0.8∗0.1

It can be noticed, e.g. c f urni−state
C(Chair) /∈RegionA resulting from two different causes:

some probability accounts from human1 stealing the chair, some probability accounts

from the robot accidentally pushing the chair away during failed grasp efforts.
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D. Fundamentals

In the following, some fundamental computer science methods, discussed in Chapter 2 and

utilized in Chapters 3 and 4 are explained more closely.

D.1. MDP Value Iteration

Basically, the MDP value iteration calculates the expected probability of a sequence of events

times its sum of rewards. Combining the values of all possible sequences following a certain

action being performed in a certain state, a utility U for that action can be computed. Because

the agent will always choose the action with the highest utility in a certain state, that utility

max(U(si,A)) can be assigned directly to the state si. That utility thus represents the sum of

rewards the agent expects to collect when acting optimally after being in state si.

Yet, this approach leads to an interlocked problem: the utility of a state U(s) can only be

computed when the optimal policy to choose actions in a state is known while U(s) is needed

to compute the optimal policy. Interlocked problems can be tackled by iterative computation

techniques and for MDP policy computation two techniques exist: policy iteration and value

iteration.

Value iteration starts with an arbitrary policy and utility assignment U(S). Then, relations

between neighbouring states in the transition model are calculated which represent sequences

of events which lead from one state to the other. The probability of the transition is multiplied

with its immediate reward and the utility of the resulting state [11]:

U(s) = γ maxu

(
R(s,u)+∑

s′
T (s′,u,s)U(s′)

)
[D.1]

By these means, with each iteration, longer potential sequences of subsequent events are

incorporated in the utility value of each state. Accordingly, the choice of the the best action

to be performed in that state iteratively considers ever longer series of time steps. To be able

to consider potentially infinite series of actions, a discount factor γ < 1.0 is introduced. For

each further time step, each utility is multiplied with γ and thus discounted. This leads to

events further in the future to be of lesser importance to U(s) - and therefore the action choice
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- than more immediate potential events. It also allows the utility computation to converge

asymptotically as is forms a geometric series.

D.2. Clustering Methods

There are two ways using clustering: determining which points belong to which cluster with

a fixed number of clusters k given on the one hand and automatic identification of both clus-

ter number k as well as point membership on the other. The latter can be achieved either by

computing clustering for relevant ranges of k, followed by computation of quality metrics for

each k or by methods calculating both aspects concurrently. Both approaches are sketched in

the following and applied in PMPM-PbD as discussed in Section 4.2.2.

k-means is an iterative technique for k clusters Li with center ci and points x, minimizing

euclidean distance d(x,ci) [92]:

E =
k

∑
i=1

∑
x∈Li

d(x,ci) [D.2]

Weaknesses are point initialization dependence, fixed k, spherical clusters because of eu-

clidean distance and strong impact of outliers as indicated in Figure 2.18.

Expectation Maximization (EM) estimates data points by a mixture of k Gaussians. EM

shares most disadvantages with k-means but using Gaussians has advantages compared to an

unweighted euclidean distance as can be seen in Figure 2.18.

Fixed k quality measures compute a clustering quality value for a cluster number k on

a given set of data points. Two properties of clustering are regarded when computing such

measures: separability between and compactness within clusters.

Davies Bouldin Index (DB index) computes a cluster similarity measure Mi j, based on

compactness pi and separability di j [31]:
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di j = d(ci,c j), pi =
1
‖ Li ‖ ∑

x∈Li

d(x,ci) [D.3]

Ri j =
pi+ p j

di j
[D.4]

Ri = max
j=1...k,i 6= j

(Ri j), i = 1 . . .k [D.5]

DB =
1
k

k

∑
i=1

Ri [D.6]

The smaller the DB index, the better, with the cluster number k having the smallest value

indicating the optimal number of clusters.

SD-Index computes a relationship between total data variance σ(X) and cluster variance

σ(Li [53]:

Scat(k) =
1
k

k

∑
i=1

‖ σ(Li) ‖
‖ σ(X) ‖

[D.7]

Dis(k) =
maxi, j=1...k d(ci,c j)

mini, j=1...k d(ci,c j)

k

∑
i=1

(
k

∑
j=1,i6= j

d(ci,c j))
−1 [D.8]

SD = α ∗Scat +Dis [D.9]

The cluster number k with the smallest SD value represents optimal clustering.

Xie-Beni index (XB index) weighs cluster variance σ as compactness measure with separa-

bility dmin and fuzzy factor u [165]:

σ =
k

∑
i=1

N

∑
j=1

u2
i jd(x j,ci)

2 [D.10]

dmin = min
i, j=1...,k,i6= j

d(ci,c j)
2 [D.11]

XB(k) =
σ

k ∗dmin
[D.12]
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Figure D.1.: EM iteration after 0, 1, 5 and 20 steps. - [14]

Again, the smallest XB value denotes the optimal k.

DBScan is a density based clustering method with a continuous quality measure, no fixed

k and able to find clusters of arbitrary size [44]. However, a parameter has to be found for a

data set: ce := min |xcentral|, defining the minimum number of points around a cluster center

within a ε-distance.

The optimal cluster number k can be found as a result of the largest ε-distance range resulting

in the same k. Typical results are depicted in Figure 2.18.

D.3. Gaussian Mixture Models

A GMM is defined on a D-dimensional manipulation space, approximating a set of sample

points representing trajectories by K normal distributions with weights ωk:

pmixture =
K

∑
k=1

ωk N(x|µk,Σ
2
k) [D.13]

As in EM-clustering, iterative expectation maximization [14] is used to compute each mean

µ and co-variance Σ as well as the weight vector ~ω optimally approximating the data set. Being

an iterative technique, parameters µk,Σk,ωk are either assigned randomly or using an initial

heuristic, e.g. k-means clustering. Subsequently, parameters are computed iteratively based on

data point samples X := x1, . . . ,xn taken from a set of input trajectories in a D-dimensional

manipulation space. An iteration step consist of an estimation stage and a maximization stage.

In the estimation step, the likelihood γn,k of xn being covered by gaussian k is computed. Based

on γn,k, new parameters µk,Σk,ωk are computed in the maximization stage. A schematic view

can be seen in Figure D.1.

By these means, the log-likelihood lnp(X) of the GMM on the set of data points is increased

in each step:
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Figure D.2.: GMR tube around a trajectory boundle represented by a GMM. - [42]

ln p(X) =
N

∑
n=1

ln

(
K

∑
k=1

ωk Nk(xn)

)
[D.14]

Iteration terminates when change in log-likelihood of current parameters µk,Σk,ωk falls un-

der an externally defined threshold ε > 0.

Based on a GMM representation, a Gaussian Mixture Regression (GMR) can be performed

which provides an easily accessible interface for getting mean µ and co-variance Σ correspond-

ing to a trajectory data point [28]. Consequently, a GMR forms a probabilistic, unbounded tube

around a trajectory bundle it represents as depicted in Figure D.2.
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E. Research Collaboration and Prior Publications

Most concepts of parts of Chapters 3, 4 and 5 have been published previously – as cited in the re-

spective Sections and Figures – as conference papers or students’ theses. Those publications are

the result of collaborative research and discussion that crucially included the author of this the-

sis. The following, exhaustive list of publications and student theses includes all these essential

prior publications. In those publications, the author of this thesis was either the corresponding

author, a co-author, or the main thesis-advising researcher, crucially steering the project as well

as participating in the formulation of problems and solutions, in discussions, visualization and

experiments. This thesis is novel above and beyond those publications in presenting the whole

concept and process in a coherent, refined manner.

• The execution-time architecture for autonomy and filterPOMDP system, outlined in Sec-

tions 3.1 and 5.2, was developed and evaluated with support of Steffen Knoop, Martin

Lösch, and Zhixing Xue [128], [133].

• Modeling human-robot interaction in POMDP mission models, discussed in Section 3.3,

was developed with assistance of Martin Lösch and Steffen Knoop [129], [130].

• Modeling uncertainty in furniture localization, outlined in Section 3.3.4, was developed

with Pascal Meissner in the scope of his furniture localization system [97], [98].

• Modeling tasks as elementary abstract actions as well as general mission modeling, see

Sections 3.4 and 3.5, builds on some initial joint analysis with Manuel Leuschner [87].

• The value iteration policy visualization concept StarViz, described in Secion 3.5.2, was

jointly devised with Johannes Pelzer [105].

• The functional expression toolbox, enabling focussed generation of complex POMDP

models, presented in Section 3.6, was conceived with Gerhard Dirschl and

Rainer Jäkel [127], [37].

• The description logic based background knowledge inference approach, presented in Sec-

tions 3.7 and 4.10, was devised jointly with Gerhard Dirschl [124].
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• Development of PbD state mapping, see Section 4.2, was a collaboration with Jonas

Stahl [147].

• PbD action mapping, outlined in Section 4.3, was developed jointly with Thorsten Engel-

hardt [42].

• PbD segmentation and mapping, mentioned in Sections 4.4, 4.6 and 5.5, were supported

in different development stages by Tobias Utz, Fabian Romahn, Martin Lösch and

Rainer Jäkel [157], [132], [131], [117].

• Smoothing of demonstration sequences, discussed in Section 4.5, was implemented by

Jessica Kaufmann [74].

• A joint collaboration with Fabian Romahn and Gerhard Kurz led to generalization and

request generation, discussed in detail in Sections 4.7, 4.8 and 5.6,[134], [117], [81].

• Model refinement by means of geometric analysis, described in Section 4.11, was de-

veloped with Christian Wischnewski in the scope of his path-planning framework and

supported by Rainer Jäkel regarding MST-ORSALM [163].

• Dynamics simulation based model refinement, discussed in Sections 4.12 and 5.8, was a

joint effort with Laurenz Berger and Martin Seidel, using OpenRAVE und ODE exten-

sions developed by Laurenz Berger [12], [135].

• The utilized OViSE visualization, mentioned in Section 5.1, was a development by Alexan-

der Kasper, Thorsten Mai and an initial effort by Johannes Pelzer [106], [73].

• CESM mission design, comprehensive service experiments and visualization thereof, out-

lined in Section 5.1, was an extensive joint effort with Gerhard Dirschl, Fabian Rom-

ahn, Thorsten Mai, Laurenz Berger, Tim Friedrich, Christian Wischnewski, Martin Sei-

del, Jonas Stahl, supported by Rainer Jäkel, Pascal Meissner, Alexander Kasper, Martin

Lösch, Steffen Rühl, and Andreas Hermann [125].

• Infrastructure regarding the robot Albert and corresponding software management was

crucially supported by Gerhard Dirschl.

It has to be noted that software implementation of jointly developed formalisms, models,

and algorithms was sometimes, but not always, a joint effort. Further publications and theses

with a less essential share in crucial aspects of the presented concept, as well as publications

regarding human full body activity classification and manipulation strategy Programming by
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Demonstration, that arose in collaboration with the author of this thesis, were cited in Chapter 2,

when applicable.

• The author of this thesis supported development of small-object tracking developed by

Pascal Meissner [96].

• Development of human full body activity classification, mentioned in Section 2.7.1, was

supported [90], [91].

• Manipulation strategy development was initiated by supervising a thesis of Rainer Jäkel

and supported subsequently [66], [65], [64], [67].
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