Workshop on Rich
Representations for
Reinforcement Learning

Kurt Driessens
Alan Fern
Martijn van Otterlo

Held in conjunction with the 22"¢ International Conference on
Machine Learning, August 7, 2005, Bonn, Germany

Overview

Reinforcement learning (RL) has developed into a primary approach to learning control strate-
gies for autonomous agents. The majority of RL work has focused on propositional or attribute-
value representations of states and actions, simple temporal models of action, and memoryless
policy representations. Many problem domains, however, are not easily represented under these
assumptions.

This has led to work that studies the use of richer representations in RL to overcome some
of these traditional limitations. This includes for example: relational reinforcement learning,
where states, actions, value functions, and policies have relational representations; richer rep-
resentations of action and policies that incorporate internal state, such as options and MAXQ
hierarchies; and the recently introduced predictive state representations where the state of a
system is represented in terms of predictive statements about future observations.

The aim of this workshop is to bring together researchers working on various representational
aspects of RL to explore their approaches, the relationships among them, their benefits (or
drawbacks) for reinforcement learning, and the key representational challenges that remain.
Some of the issues/questions we hope to explore in this forum include:

e New algorithms for exploiting rich representations to the fullest. When is it possible to
design algorithms for rich representations by reduction to traditional techniques?

e When and how does reinforcement learning benefit from rich representations? Specific
real-world successes and failures are of particular interest.

e What is the influence of rich representations on the (re-)usability of reinforcement learning
results, or transfer learning (for example through goal parameterization)?

e Should the introduction of rich representations in reinforcement learning be accompanied
by different learning goals to keep the learning problems feasible?

e How should we evaluate new algorithms for rich representations? Specific benchmarks that
exhibit the weaknesses and benefits of various representational features are of particular
interest.

e How can RL benefit from/contribute to existing models and techniques used for (decision-
theoretic) planning and agents that already use richer representations, but lack learning?

e Can the interaction between rich representations and the (known and validated) frame-
work of (PO)Markov Decision Processes be characterized in a theoretically rigorous way?

Workshop Summary

The workshop includes twelve submissions from researchers in a variety of representational
areas. As such, to promote interaction the workshop will include three invited talks by leading
researchers in different representational aspects of RL, each giving a tutorial-style overview and
discussion of future research directions. Rich Sutton will cover predictive state representations,
which have receive much recent interest. Roni Khardon will cover relational RL (RRL), another
recent area with a growing body of work. Ron Parr will cover hierarchical RL (HRL) which is
perhaps the most well developed, but still growing, area of the three.

In the area of RRL, Scott Sanner describes an interesting approach based on using relational
naive Bayesian networks, showing promising results in the domain of Backgammon. Jan Ramon
describes his work on analyzing the convergence of RL based on relational decision trees, which
served as one of the first representations used in RRL. In addition, the contribution by Terran
Lane and Bill Smart describes a type of relational representation specialized for exploiting
spatial structure in RL domains.

In the area of HRL, Victoria Manfredi and Sridhar Mahadevan present an approach that
first uses supervised EM learning to acquire a graphical model representation of hierarchical
structure, and then uses this structure as a seed for more traditional HRL. Neville Mehta
and Prasad Tadepalli introduce a new multi-agent extension to MAXQ, based on sharing sub-
task value functions across agents. Mehran Asadi and Manfred Huber present an approach
to HRL based on discovering subgoals that can then be transferred to related tasks, speeding
up learning. Omer Ziv and Nahum Shimkin present a substantially different type of approach
for expoiting hierarchical structure—giving a numerical techniques for speeding up value iter-
ation in the presence of a state abstraction hierarchy. Finally, Michael Littman, Carlos Diuk,
and Alexander Strehl present a new algorithm MaxQ-Rmax that synergistically combines fac-
tored representations, model-based learning, and hierarchies. Interestingly MaxQ-Rmax can be
shown to produce near-optimal policies (within the hierarchy) in polynomial time.

Given the widespread use of kernel representations throughout other areas of machine learn-
ing, it is somewhat surprising that they have recieved relatively little attention in RL. Yaakov
Engel, Shie Mannor, and Ron Meir address this issue and will present their work on the use of
Gaussian processes in RL, which facilitates the exploitation of kernels and thus any represen-
tation on which a kernel can be defined.

Three contributions explore representational issues that do not fall into the above categories.
Ronen Brafman, Guy Shani and Solomon Shimony present an approach to dealing with partial
observability based on using U-Tree representations of POMDPs. Kary Framling presents a
new bi-memory model that is able to utilize teacher provided heuristic rules in order to more
effectively guide exploration. Finally, Seung-Joon Yi and Byoung-Tak present an interest-
ing proposal for merging complex network (”small world” network) theory with reinforcement
learning to improve learning rates for large, continuous state space problems.

Table of Contents

10

11

12

Mehran Asadi and Manfred Huber: “Accelerating Action Dependent Hierarchical
Reinforcement Learning Through Autonomous Subgoal Discovery”
Ronen Brafman, Guy Shani and Solomon Shimony: “Partial Observability Under
Noisy Sensors - From Model-Free to Model-Based”
Yaakov Engel, Shie Mannor and Ron Meir: “Reinforcement Learning with Ker-
nels and Gaussian Processes”o
Kary Framling: “Bi-Memory Model for Guiding Exploration by Pre-existing
Knowledge”
Terran Lane and Bill Smart: “Why (PO)MDPs Lose for Spatial Tasks and What
to Do About It” e
Michael Littman, Carlos Diuk and Alexander Strehl: “A Hierarchical Approach
to Efficient Reinforcement Learning”
Victoria Manfredi and Sridhar Mahadevan: “Hierarchical Reinforcement Learn-
ing Using Graphical Models”
Neville Mehta and Prasad Tadepalli: “Multi-Agent Shared Hierarchy Reinforce-
ment Learning” o e e e e e e
Jan Ramon: “Convergence of Reinforcement Learning Using a Decision Tree
Learner” e
Scott Sanner: “Simultaneous Learning of Structure and Value in Relational Re-
inforcement Learning” e e e e e
Seung-Joon Yi and Byoung-Tak: “Small World Network Based World Represen-
tation for Scalable Reinforcement Learning”
Omer Ziv and Nahum Shimkin: “Multigrid Algorithms for Temporal Difference
Reinforcement Learning”

Accelerating Action Dependent Hierarchical Reinforcement
Learning Through Autonomous Subgoal Discovery

Mehran Asadi
Manfred Huber

ASADIQCSE.UTA.EDU
HUBERQCSE.UTA.EDU

Department of Computer Science and Engineering, University of Texas at Arlington, Arlington, TX 76019 USA

Abstract

This paper presents a new method for the
autonomous construction of hierarchical ac-
tion and state representations in reinforce-
ment learning, aimed at accelerating learn-
ing and extending the scope of such systems.
In this approach, the agent uses information
acquired while learning one task to discover
subgoals for similar tasks by analyzing the
learned policy using Monte Carlo sampling.
The agent is able to transfer this knowledge
to subsequent tasks and to accelerate learn-
ing by creating corresponding subtask poli-
cies as abstract actions (options). At the
same time, the subgoal actions are used to
construct a more abstract state representa-
tion using action-dependent state space par-
titioning, adding a new level to the state
space hierarchy. This level serves as the ini-
tial representation for new learning tasks. In
order to ensure that tasks are learnable, value
functions are built simultaneously at differ-
ent levels of hierarchy and inconsistencies are
used to identify actions to be used to refine
relevant portions of the abstract state space.

1. Introduction

Autonomous systems are often difficult to program.
Reinforcement learning (RL) is an attractive alterna-
tive, as it allows the agent to learn behavior on the
basis of sparse, delayed reward signals provided only
when the agent reaches desired goals. However, stan-
dard reinforcement learning methods do not scale well
to larger, more complex tasks. One promising ap-
proach to scaling is hierarchical reinforcement learning

Appearing in Proceedings of the ICML’05 Workshop on
Rich Representations for Reinforcement Learning, Bonn,
Germany, 2005. Copyright 2005 by the author(s)/owner(s).

(HRL) (Sutton et al., 1999; Kim & Dean, 2003; Diet-
terich, 2000; Parr, 1998; Asadi & Huber, 2004).

One of the fundamental steps toward HRL is to au-
tomatically establish subgoals. Methods for automat-
ically introducing subgoals have been studied in the
context of adaptive production systems, where sub-
goals are created based on examinations of problem-
solving protocols. For RL systems, several researchers
have proposed methods by which policies learned for a
set of related tasks are examined for commonalities
or are probabilistically combined to form new poli-
cies. Subgoal discovery has been addressed by several
researchers (McGovern & Barto, 2001; Digney, 1996;
Drummond, 1997). The most closely related research
is that of Digney (Digney, 1996) where states that are
visited frequently or states where the reward gradient
is high are chosen as subgoals.

The presented work introduces a new method for the
autonomous construction of hierarchical actions and
state representations in reinforcement learning. In
this approach, the agent uses information acquired
while learning one task to discover subgoals for simi-
lar tasks by analyzing the learned policy using Monte
Carlo sampling. The agent is able to transfer knowl-
edge and to accelerate learning of subsequent tasks
by creating new subgoals and by off-line learning cor-
responding subtask policies as abstract actions (op-
tions). At the same time, the subgoal actions are used
to construct a more abstract state representation using
action-dependent state space partitioning. This repre-
sentation forms a new level in the state space hierarchy
and serves as the initial representation for new learn-
ing tasks. To ensure that tasks are learnable, value
functions are built at different levels of hierarchy and
inconsistencies are used to identify actions to be used
to refine relevant portions of the abstract state space.

2. Reinforcement Learning

In the RL framework, a learning agent interacts
with an environment over a series of time steps t =

0,1,2,3,.... At each time t, the agent observes the
state, s; , and chooses an action, a; , which causes
a transition to state s;y+; and a reward, r.y1. In a
Markovian system, the likelihood of the next state and
of the reward depend only on the preceding state and
the action taken. The objective of the agent is to learn
a (possibly probabilistic) mapping from states to ac-
tions which maximizes the expected discounted reward
received over time. A common RL approach is to ap-
proximate the optimal state/action value function, or
Q-function, which maps state/action pairs to the max-
imum expected return starting from the given state
and action and thereafter following the best policy.
To permit the construction of a hierarchical learning
system, we model our learning problem as a Semi-
Markov Decision Problem (SMDP) and use the option
framework (Sutton et al., 1999). An option is a tem-
porally extended action which, when selected by the
agent, executes until a termination condition is satis-
fied. While an option is executing, actions are chosen
according to the option’s own policy. More specifi-
cally, an option is a triple o; = (I;,m;, 3;), where I
is the set of states in which the option can be initi-
ated; m; is the option’s policy defined over all states
in which the option can execute; and 3; is the termi-
nation condition defining the probability with which
the option terminates in a given state, s. Each option
used in this paper bases its policy on its own internal
value function. The value of a state s under an SMDP
policy 7° is defined as (Boutilier et al., 1999; Sutton
et al., 1999):

V™ (s) = E[R(s, 0;) + Z F(s'|s,0)V™ (s)]

S

where

F(s'|s,00) =Y P(spyr = 8'|sy = s,0)7% (1)
k=1

and
R(s',0i) = Elrip1 e+ rigs+. . e(mi, s,t)] (2)

where r; denotes the reward at time ¢ and €(m;, s, t)
denotes the event of an action under policy 7; being
initiated at time ¢t and in state s (Sutton et al., 1999).

3. Autonomous Subgoal Discovery

An example that shows the importance of a subgoal
is a room to room navigation task where the agent
should discover the utility of doorways. If the agent
discovers that a doorway is a subgoal it can learn an
option to reach the doorway which, in turn, can ac-
celerate learning of new navigation tasks. The idea of

using subgoals is not, however, limited to grid worlds.
For example, for a robot arm to pick up an object, an
important subtask is the recognition of the object and
thus being aware of its presence would be a subgoal.
The main goal of automatic subgoal discovery is to find
useful subgoals in the agent’s state space. Once they
are found, options to those subgoals can be learned
and added to the behavioral repertoire of the agent.
In the approach presented here, subgoals are identi-
fied as states with particular structural properties in
the context of a given policy. In particular, we define
subgoals as states that, under a given policy, lie on
a substantially larger number of paths than would be
expected by looking at its successor states. In other
words, we are looking for states that form a “funnel”
for state space trajectories under the learned policy.
Definition 1 A state s’ is a direct predecessor of state
s, if under a learned policy the action in state s’ can
lead to s i.e., P(s|s’,a) > 0.

Definition 2 The count metric for state s under a
learned policy, w, is the sum over all possible state
space trajectories weighed by their accumulated like-
lihood to pass through state s.

Let C*(s) be the count for state s, then:

Ca(s) = Y Plsls',m(s") 3)

s'#s

and
Cl(s) =" P(s|s',m(s))CL(s') (4)

s'#s
C29)= YL)

where n is such that C?(s) = C2T!(s) or n = |S|. The
condition s’ # s prevents the counting of self loops and
P(s|s’,m(s")) is the probability of reaching state s from
state s’ by executing action 7(s’). The slope of C(s;)
along a path, p, under policy = is:

Ar(si) = Cr(st) = Cr(se-1) (6)

where s; is the t'" state along the path. In
order to identify subgoals, the gradient ratio
Ar(s:)/ max(1, Az (st+1)) is computed for states
where A;(s;) > 0. A state s; is considered a poten-
tial subgoal candidate if the gradient ratio is greater
than a specified threshold p > 1. Appropriate values
for this user-defined threshold depend largely on the
characteristics of the state space and result in a num-
ber of subgoal candidates that is inversely related to
the value of . This approach is an extension of the cri-
terion in (Goel & Huber, 2003) with max(1, Az (s¢41))
addressing the effects of potentially obtaining negative
gradients due to nondeterministic transitions.

In order to reduce the computational complexity of the
above method in large state spaces, the gradient ratio
is here computed using Monte Carlo sampling.
Definition 3 Let H = {h1,...,hx} be N sample tra-
jectories induced by policy w, then the sampled count
metric, Cy;(s), for each state s that is on the path of at
least one path h; can be calculated as the average of the
accumulated likelihoods of each path, h;, 1 < i < N,
rescaled by the total number of possible paths in the
environment.
We can show that for trajectories h; and sample size
N such that

N > maxe Cy(se)

2(1 l e —
=z 6?\7 (+€N)Og(17p

) (D)
the following statement is true with probability p:
|Ch(s¢) = Cr(se)] < en

Theorem 1 Let H = {hy,...,hn} be N sample trajec-
tories induced by policy ™ with N selected according to

. Ap(st) 2en (p41)
Equation 7. If cm ity > H WM’
then A

m > with probab@lzty > p-
Theorem 1 implies that for a sufficiently large sample
size the exhaustive and the sampling method predict

the same subgoals with high probability.

3.1. Example

Figure 1(a) shows a two-room example environment
on a 10 x 6 grid. For this experiment, the goal state is
placed in the upper right hand portion (gray cell) and
each trial is started from the same state in the lower
left corner. The action space consists of eight prim-
itive actions (North, East, South, West, Northwest,
Northeast, Southwest and Southeast). The world is
deterministic and each action succeeds in moving the
agent in the chosen direction. With every action the

[l

S [

(a) (b)

Figure 1. (a) A two room environment with a connecting
doorway. The goal is illustrated in gray and the line shows
a sample trajectory. (b) Cells are shaded according to the
gradient ratio over 10 trajectories with higher ratios indi-
cated by lighter shading.

agent receives a negative reward of —1 for a straight
action and —1.2 for a diagonal action. In addition,

the agent receives a reward of +10 when it reaches
the goal state. Policy 7 is learned using Q-learning
and the count metric for every state is computed. The
agent then evaluates the gradient ratio along the count
curve by choosing 10 random trajectories according to
7, and picks the states in which the ratio is higher
than the specified threshold as subgoal states. Fig-
ure 1(b) shows the values of the gradient ratio for each
state. In this example, the gradient ratio is less than
4 in all states except the doorway where it is 5.232.
The mean of the distribution of gradient ratios over
the state space is 3.265 and the standard deviation is
0.208. The threshold is here chosen to be 4 resulting
in one subgoal in the location of the doorway. This
subgoal could now be used to learn similar tasks in
this environment.

4. Action Dependent Partitions

Once potential subgoals are discovered, options that
terminate in the subgoal states can be learned and
added as abstract actions to the action hierarchy avail-
able to the agent. In addition, these options can be
used to build a more compact representation of the
state space. Abstraction is achieved here by partition-
ing the state space of the original MDP into blocks of
states that have similar properties (i.e transition prob-
abilities and reward values).

e-reductions were introduced by Dean et al. (Dean
et al., 1997) as a mechanism to derive state space par-
titions of a MDP that ensure approximately optimal
policies to be learned. These partitions depend on the
action space and the particular reward function of the
task. Kim and Dean, (Kim & Dean, 2003) introduced
an algorithm to derive a set of such partitions and used
it to learn a policy for the task indicated by the reward
function. The resulting policy is ensured to be within
an e-dependent quality bound.

Two shortcomings of this algorithm are that it does
not address temporally abstract actions and that it
requires a complete re-computation of the partitions
when a new action is introduced. In addition it re-
quires knowledge of the reward function prior to parti-
tioning, and thus no part of the partitioning transfers
across tasks. To address these issues, the algorithm
introduced in this section derives partitions with the
same approximate optimality properties for the SMDP
framework in two phases, the first of which is reward-
independent and thus transfers across tasks. This
method first constructs the options o; = (I;, 7, 5;)
according to the discovered subgoals. The transition
probability function F(s|s’,0;) and the reward func-
tion R(s,0;) can be computed using equations 1 and 2.
The transition function can here be completely pre-

computed at the time when the policy itself is learned
and as a result, only the discounted reward estimate
has to be re-computed for each new learning task.

In the two phase partitioning approach presented here
we construct the initial blocks of the partition by dis-
tinguishing terminal states (subgoals) for available op-
tion from non-terminal states and then refine these
blocks based on the transition probability function.
Let {s1,...,8,} be n discovered subgoals and
{01,...,0n} be the corresponding options. We con-
struct a partition P = {Bj,...,B,} of state space S
such that each set B; contains all states s € I; such
that F(si]s,0;) >0, B(s;) =1and U} |B; = S.
Definition 4 A partition P = {Bi,...,Bn} of the
state space of an MDP has approximate stochas-
tic bisimulation homogeneity if and only if for each
B;,Bj € P and for each s,s' € B;:

S F(s|s,0i(s) = S F(s"ls'0i(s'))| <6 (8)

s" € B, s" € B,

where 0 < § < 1.
We say that a block B; is §-stable with respect to block
B; if and only if Equation 8 holds. B; is J-stable if B;
is d-stable with respect to all blocks of P.
To form partitions, each block is checked for §-stability
and unstable blocks are split until no unstable blocks
remain. When a block Bj is found to be unstable
with respect to block Bj, we replace By by a set of
sub-blocks By, , ..., B, such that By, is maximal sub-
block of By that is d-stable with respect to B;. To fa-
cilitate modifications in the action space, this process
is first performed for each option individually. The
blocks of the final partition are then formed by inter-
secting all blocks for each o; that are used followed
by a refining stage that achieves §-stability for the in-
tersections (Asadi & Huber, 2004). This reduces the
overhead required when the action set changes to the
intersection and the final refinement step.
If the reward structure becomes available, the second
phase of the partitioning technique further refines the
partition with the following reward criterion:

|R(s,0;) — R(s',0;)| <€ (9)
Given a particular subset of options, an appropriate
abstract state space representation for the learning
task can thus be derived which is stable according to
criteria in Equations 8 and 9. Furthermore, represen-
tation changes due to changes in the action set can be
performed efficiently and a simple mechanism can be
provided to use the previously learned value function
as a starting point when such representation changes
occur. This is particularly important if actions are

added over time to permit refinement of the initially
learned policy by permitting finer-grained decisions.

5. Learning Method

Let P = {Bjy,..., By} be a partition for state space S
derived by the action-dependent partitioning method,
using subgoals {s1,...,sr} and options to these sub-
goals {o01,...,0r}. If the goal state G belongs to the
set of subgoals {s1,...,s;}, then G is achievable by
options {o01,...,0r} and the task is learnable accord-
ing to Theorem 3. However, if G ¢ {s1,...,sx} then
the task may not be solvable using only the options
that terminate at subgoals. The proposed approach
solves this problem by maintaining a separate value
function for the original state space while learning a
new task on the partition space derived from only the
subgoal options. During learning, the agent has ac-
cess to the original actions as well as all options, but
makes decisions only based on the abstract partition
space information.

While the agent tries to solve the task on the abstract

Figure 2. An abstract state space with 3 blocks
(B1,B2,B3). Options are shown using dotted curves
and original action are illustrated with solid lines. The
black cell in block Bs is the goal state. Since the Q-value
in block Bs is significantly smaller than the one of the
underlying goal state this block is refined using the options
and the primitive actions.

partition space, it computes the difference in Q-values
between the best actions in the current state in the
abstract state space and in the original state space. If
the difference is larger than a constant value (given by
Theorem 2), then there is a significant difference be-
tween different states underlying the particular block
that was not captured by the subgoal options. The-
orem 2 (Kim & Dean, 2003) shows that if blocks are
stable with respect to all actions the difference between
the Q-values in the partition space and in the original
state space is bounded by a constant value.

Theorem 2 Given an MDP M = (S, A,T,R) and a
partition P of the state space Mp , the optimal value

function of M given as V* and the optimal value func-
tion of Mp given as V5 satisfy the bound on the dis-

tance
v €
11— P

where €, = miny, || V* = V3 | and

v -V ||oog2<1+

LV (s) = max[R(s, a) + > P(s']s,a)V(s)]

s'eS

When the difference between the Q-values for states in

block B; are greater than 2(1+ ﬁep), then the prim-
itive action that achieves the highest Q-value on the
original state in the MDP will be added to the action
space of those states that are in block B; and block
B; is refined until it is stable for the new action set.
Once no such significant difference exists, the goal will
be achievable in the resulting state space according to
Theorem 3. This procedure is illustrated in Figure 2.
Theorem 3 For any policy ™ for which the goal G can
be represented as a conjunction of terminal sets (sub-
goals) of the available actions in the original MDP M,
there is a policy wp in the reduced MDP, Mp , that
achieves G as long as for each state sy in M for which
there exists a path to G , there exists a path such that
F(G|st,mp(st)) > 0.

6. Experimental Results

The main goal of this experiment is to demonstrate
the potential of the proposed approach to hierarchi-
cal learning in accelerating learning in a stochastic
environment. The task of the agent is to find an
object in a randomly chosen cell, to pick it up and
drop it in another randomly chosen location. Fig-
ure 3 illustrates the environment for this experiment.
The state space consists of three grid worlds that
are connected through stair ways (arrows). The dark
cells represent obstacles and the actions are GoNorth,
GoEast, GoSouth, GoWest, GoUp, GoDown, Open-
Arm, CloseArm, Pickup and Drop. Actions for stair-
ways are defined as sequences of length 10 of GoUp or
GoDown. The cost for each single step action is —1
and each action for navigation succeeds with proba-
bility 0.5 while leading to either side with probability
0.25. Actions OpenArm, CloseArm, Pickup and Drop
always succeed. The reward in the goal state is 100.

To demonstrate the power of hierarchical learning, the
agent is first given the task of learning a policy to
move from a fixed starting location to a particular goal
point. It then uses this policy to extract subgoals by
generating random samples according to the learned
policy. The samples are paths of length 40 and the
subgoals are discovered as described in Section 3. Fig-
ure 4(b) illustrates the number of subgoals that are

;
"

e
|-

|

Figure 3. A three room environment connected by stair-
ways (arrows). Black cells indicate obstacles. The task for
the agent is to navigate this environment, find an object,
pick it up, move it to another locations, and drop it.

discovered by Monte Carlo sampling. As illustrated
in Figure 4(b), the total number of samples needed to
learn almost all of the subgoals is approximately 127.
Figure 4(a) shows that the total time for subgoal using
127 samples is less that 30 seconds, which is 5 times
faster than using the entire state space. The extracted
subgoals in this experiment consist of a set of door-
ways, entry points of stairways and states where the
agent acquired the object.

Once subgoals are extracted, options for these subgoals
are derived and the agent is given the final learning
task described in the beginning of the section. Figure 5
shows the learning speed and quality of the learned
policies with and without refinement of abstract states
based on Q-value inconsistencies. This experiment
shows that while the goal state is here not reachable
using only the subgoal actions, almost equal perfor-
mance to the original MDP is achieved with refine-
ment based on primitive actions. Furthermore, learn-
ing on the partition space with on-line refinement of
partitions according to Q-value differences in the ab-
stract and original state representations significantly
outperforms both learning on an a priori refined rep-
resentation and on the original state space.

7. Conclusion

This paper presents an efficient method for au-
tonomously constructing a hierarchical state and ac-
tion space for SMDPs. To do this, it first discovers
subgoals by analyzing previously learned policies for
states with particular structural properties. Once sub-
goals are derived, it learns options to achieve these sub-
goals off-line and includes these into the action hierar-
chy available to the agent. Using the subgoal options,
it then uses action-dependent state space partitioning

Time (Sec)

&~ Monte Carlo
++_All Possible Paths

0 50 100 150 200
Number of Samples

(a)

Ey =
---------------------- -é}‘i-}@;;-?é@-65@94
4ot § ! $ 1
B a5
g
: b
B 301
b
g
525*
5
g
; :
z } = All Possible Paths
151
10 &%
5 % 1 1
o 50 100 150 200 250 300
Number of Samples

Figure 4. (a) Comparison between the run times for sub-
goal discovery using the entire state space and Monte Carlo
sampling. (b) Number of samples that are needed to dis-
cover all useful subgoals.

to derive an abstract state space. Learning of subse-
quent tasks is addressed on the abstract state space.
To ensure that the new task is learnable, the system
maintains a separate value function for the original
state space and refines the representation when signif-
icant inconsistencies between this value function and
the one derived on the abstract partition space are de-
tected. Experiments using this approach show that
this approach significantly accelerates learning of even
complex task strategies while maintaining the quality
of the found solution within predetermined bounds.

References

Asadi, M., & Huber, M. (2004). State Space Reduc-
tion For Hierarchical Reinforcement Learning. Proc.
FLAIRS (pp. 509-514).

Boutilier, C., Dean, T., & Hanks, S. (1999). Decision-
Theoretic Planning: Structural Assumptions and
Computational Leverage. AI Research, 11, 1-94.

Dean, T., Givan, R., & Leach, S. (1997). Model Re-

e

Q-Value

; , K

:
¢

+
= e
5r = # &| + Original Actions
] % 4l -+ Options + Original Actions for each state
“ 41 ® | = = Options + Original Actions for block contanining goal state
o~ -8 Options

500 600

i
100 200 300
Number of Trials

Figure 5. Comparison of policies derived on the partition
and the original state space. The policies using the options
to subgoals on the partition space with primitive action
refinement converge significantly faster than the optimal
policy in the original state space.

duction Techniques for Computing Approximately
Optimal Solutions for Markov Decision Processes.
Proc. UAT (pp. 124-131).

Dietterich, T. G. (2000). An Overview of MAXQ Hier-
archical Reinforcement Learning. Lecture Notes in
Computer Science, 1864, 26-44.

Digney, B. (1996). Emergent hierarchical control struc-
tures: Learning reactive / hierarchical relationships
in reinforcement environments. Proc. Conf. Simula-
tion of Adaptive Behavior (pp. 363-372).

Drummond, C. (1997). Using a Case Base of Sur-
faces to Speed-Up Reinforcement Learning. Proc.
Int. Conf. Case-Based Reasoning (pp. 435-444).

Goel, S., & Huber, M. (2003). Subgoal Discovery for
Hierarchical Reinforcement Learning Using Learned
Policies. Proc. FLAIRS (pp. 346-350).

Kim, K., & Dean, T. (2003). Solving Factored MDPs
using Non-Homogeneous Partitions. Artificial Intel-
ligence, 147, 225-251.

McGovern, A., & Barto, A. (2001). Automatic Dis-
covery of Subgoals in Reinforcement Learning using
Diverse Density. Proc. ICML (pp. 361-368).

Parr, R. (1998). Hierarchical Control and Learning for
Markov Decision Processes. Doctoral dissertation,
University of California, Berkeley, CA.

Sutton, R., Precup, D., & Singh, S. (1999). Be-
tween MDPs and Semi-MDPs: Learning, Planning,
and Representing Knowledge at Multiple Temporal
Scales. Artificial Intelligence, 112, 181-211.

Partial Observability Under Noisy Sensors — From Model-Free to
Model-Based

Ronen I. Brafman
Guy Shani
Solomon E. Shimony

Department of Computer Science, Ben-Gurion University, Beer-Sheva 84105, Israel

Abstract

Agents learning to act in a partially observable
domain may need to overcome the problem of
noisy output from the agent’s sensors. Research
in the area has focused on model-free methods
— methods that learn a policy without learn-
ing a model of the world. When the agent’s
sensors provide deterministic output, model-free
methods produce close to optimal results. How-
ever, when the noise in the sensors increases,
these methods provide less accurate policies. An-
other, less explored, option is the model-based
approach — learning a POMDP model of the
world, and obtaining an optimal policy from the
learned model. In this paper we show the su-
periority of model-based techniques over model-
free methods in the presence noisy sensors. We
demonstrate how two important model-free algo-
rithms: internal memory, and Utile Suffix Mem-
ory, can be used to learn a POMDP model of the
environment.

BRAFMAN @CS.BGU.AC.IL
SHANIGU@CS.BGU.AC.IL
SHIMONY @CS.BGU.AC.IL

mate (Poupart & Boutilier, 2004; Spaan & Vlassis, 2004)
solutions for POMDP models has been made. In view of
these advances, we reconsider the model-based methods,
focusing on their ability to handle sensor noise.

Identifying the “real”, hidden, states of the world using
noisy sensors is a difficult task. Even when the agent's
sensors provide it with deterministic output, the agent may
still suffer from the problem operceptual aliasindChris-
man, 1992), when different actions should be executed in
two states where sensors provide the same output. For ex-
ample, in Figure 1(a) the left and right corridors are per-
ceptually aliased if sensors can only sense adjacent walls.
While disambiguating the state space may require the agent
to remember events that happen arbitrarily far in the past,
we focus our attention on the class of problems that can
be solved looking back a finite number of steps. Model-
free? methods - such as augmenting the observations with
internal memory (Peshkin et al., 1999), or using variant-
length finite history windows (McCallum, 1996) - can be
used to disambiguate the perceptually aliased states for
such problems. When the agent’s sensors provide deter-
ministic output, learning to properly identify the underly-
ing world states reduces the problem to a fully observable

1. Introduction MDP, making it possible for methods such@dearning to

. . . . 0 t optimal policy.
Reinforcement learning (RL) in partially observable do—C Mpute an optimal poticy.

mains (Cassandra et al., 1994) can take one of two formd/Vhen sensors provide slightly noisy output, model-free

the agent can learn a policy directly, or it can learn a modemethods still produce close to optimal results, but as noise
of the environment, usually represented as a Partially Obin the sensors increases, their performance rapidly de-
servable Markov Decision Process (POMDPR)and solve creases (Shani & Brafman, 2004). This is because disam-
it (Chrisman, 1992; Nikovski, 2002). This approach hasbiguating the perceptually aliased states under noisy sen-
not been favored by researchers, as learning a model apors does not result in an MDP, but rather in a POMDP.

pears to be a difficult task, and computing an optimal soluPOMDP models are harder to solve, but their solution han-
tion may prove impractical for large models. However, in dles noisy observations optimally.

the past few years, much progress in the area of aloloroszing model-free methods to create a POMDP has been

1See Section 2.1 for an overview of MDPs and POMDPs ~ previously suggested by Nikovski (Nikovski, 2002) in his

- 5 , .
Appearing inProceedings of the22°* International Conference As the discussed problems are properly defined as a POMDP,

on Machine LearningBonn, Germany, 2005. Copyright 2005 by We call methods that do not learn all the POMDP parameters
the author(s)/owner(s). “model-free”, though they may learn state representations.

10

@ (b) (© (d

Figure 1.Four maze domains. The agent receives a rewagdupon reaching the goal state (marked with 'G’). Immediately afterwards
(in the same transition) the agent is transferred to one of the "X’ states. Arrival at a 'P’ state results in a penalty (negative réward) of

PhD dissertation. Nikovski compared his method, base@. Background
on McCallum'’s earlier NSM algorithm to other state merg-
ing techniques and to classical POMDP learning methodg'l' MDPs and POMDPs

based on the Baum-Welch algorithm, demonstrating hOV\A Markov Decision Process (MDP) (Howard, 1960) is a
classical approaches fail to converge on even small domodel for sequential stochastic decision problems. An
mains. Nikovski did not show his models to be superiorpmpp is a four-tuplex(S, A, R, tr), whereS is the set of the

to any model-free techniques and did not experiment withstates of the world is a set of actions an agent can uBe,
Sensor noise. is a reward function, ant is the stochastic state-transition

In this paper, we show how both McCallum’s Utile Suf- function. A solution to a MDP is a policy : S — A that
fix Memory (USM) algorithm, that learns a variant-length defines which action should be executed in each state.

finite history window, and the internal memory approachvarious exact and approximate algorithms exist for com-
suggested by Peshkiet al. can be used to initialize a puting an optimal policy, and the best known are policy-
POMDP model of the world. We continue to solve the re-jteration (Howard, 1960) and value-iteration (Bellman,
sulting models and compare the average reward collecteigg2). Solving MDPs is known to be a polynomial prob-

by model-free and model-based approaches. We then showm in the number of states, and therefore exponential in
that the resulting models provide superior results to the polthe number of state variables.

icy learned by the model-free methods. This indicates that

the use of an explicit model is advantageous for diversé* Well known extension to the MDP model is the Par-
methods of initializing the model. tially Observable Markov Decision Process (POMDP)

model (Cassandra et al., 1994). A POMDP is a six-tuple
We note that using an explicit model of the environment(s A R, ¢r,Q, O), whereS, A, R, tr define an MDP{2 is
can have many other advantages such as taking the “valugset of possible observations afit, s, o) is the probabil-
of information” into consideration, and helping to find the jty of executing action:, reaching state and observing.
areas of the world that require learning, and may hold poin a POMDP the agent is unable to identify the current state
tential rewards, but we leave those topics to future researclynd is therefore forced to estimate the current state given

The main contribution of this paper is in showing that a so-tN€ Set of current observations (e.g. output of the robot sen-
lution for a POMDP learned from a model-free method pro-SOrS)- In most applications a POMDP is more natural and
vides improved performance over the original method. An-cOmplete formalization than an MDP, but using POMDPs
other contribution is the development of the specific tech/ncrease the difficulty of computing an optimal solution.
niques that apply this idea to the memory bits and the USMsolving a POMDP is an extremely difficult computational
schemes. Empirical results for the above memory schemgsroblem, and various attempts have been made to compute
show the advantages using the derived POMDP in thesgpproximate solution problems that work reasonably well
cases. in practice, such as randomized point based value itera-

This paper is structured as follows: we begin (Section 2)ion (Spaan & Vlassis, 2004).
with an overview over MDPs, POMDPs, the memory bitsThe idea of learning a POMDP model of the environ-
and USM schemes. We then explain how the learned policynent was examined by early researchers (Chrisman, 1992)
of model-free methods can be used to construct a POMDRho used a variant of the Baum-Welch algorithm for
in Section 3. We provide an experimental evaluation oflearning hidden Markov models, refining the state space
our work in Section 4, followed by a short discussion inwhen it was observed to be inadequate. These methods
Section 5 and conclude in Section 6. were slow to converge and could not outperform the rapid
convergence and reasonable results generated by model-

11

free methods. Nikovski (Nikovski, 2002) used McCal- o;. At the next level, instances are split based on the last ac-
lum’s earlier model-free method, Nearest Sequence Mention of the instance;. Then, we split again based on (the
ory (NSM), to identify the states of the world and learn the next to last) observation;_;, etc. All nodes act as buck-
transition, reward, and observation functions. He showeekts, grouping together instances that have matching history
that the learned models produced superior results to thsuffixes of a certain length. Leaves take the role of states,
models obtained by using the Baum-Welch algorithm. Hisholding Q-values and updating them. The deeper a leaf is
models, however, were tested on domains with little noisein the tree, the more history the instances in this leaf share.
and are much less adequate when sensors are noisy. Thiﬁ_i

: : gaves should be splitif their descendants show a statistical
to be expected, as NSM handles noisy observations poorly,. . ; .
X . - tifference in expected future discounted reward associated
while USM can still produce reasonable results, though in

no way optimal with the same action. We spli_t a node if knowing where the
' agent came from helps predict future discounted rewards.

Nikovski also did not attempt to use any modern techniqueThus, the tree must keep what McCallum calls fringes, i.e.,

for solving his models and obtaining a policy. Instead, hesubtrees below the “official” leaves.

experimented with approximate methods based on the s

lution to the underlying MDP model such 65, pp. We define the expected discounted reward of instdihce

Q(T:) = ri + YU (L(Ti41)) 1)

Early research in model-free techniques has shown th%?;re_%ﬁi |(3Qt?8e ;()a)a i associated with instangg and

MDP based techniques such @slearning, SARSA and
eligibility traces (Sutton & Barto, 1998) fail to converge in After inserting new instances into the tree, we update

2.2. Memory bits

the presence of perceptual aliasing. values in the leaves using:

Peshkinet al. has suggested to augment the agent state S e ey T

space with bits of internal memory (though he referred to R(s,a) = ﬁ 2)
it as external), and actions that change the value of a sin- 5@ .

gle memory bit. The agent can therefore choose to either Pr(s')s,a) = Vi € T(s,0), L(Tit1) = 5| ©)
execute an action that influences the environment, or flip IT(s,a)l

one of it; interna}l memory bitg) va_Iues are learned for all Q(s,a) = R(s,a) + szr(sl‘& OU(s') (4)
such actions using any RL technique, such as SARFA(o

— SARSA with eligibility traces. Agents with internal '
memory can learn to remember events that happened arbiVe uses ands’ to denote the leaves of the tree, as in an op-
trarily far in the past in order to disambiguate the perceptuatimal tree configuration for a problem the leaves of the tree

aliasing. define the sates of the underlying MDP. The above equa-
tions therefore correspond to a single step of the value iter-
2.3. Utile Suffix Memory ation algorithm used in MDPs.

Instance-based state identification (McCallum, 1996) reNOW that the Q-values have been updated, the agent

solves perceptual aliasing with variable length short tern£100Ses the next action to perform based onQhealues
memory. An instance is a tuplE = (T)_1, a;_1,0¢,7) in the leaf corresponding to the current instaffige

— the individual observed raw experience. Algorithms of

this family keep all the observed raw data (sequences of
instances), and use it to identify matching subsequences.
The algorithm assumes that if the suffix of two sequences idcCallum uses the fringes of the tree for a smart explo-

similar both were likely generated in the same world state ration strategy. In our implementation we use a simple

. . greedy technique for exploration.
Utile Suffix Memory creates a tree structure, based on the

well known suffix trees for string operations. This tree .

maintains the raw experiences and identifies matching suf3- Constructing Models from Model-Free

fixes. The root of the tree is an unlabeled node, holding all Methods

available instances. Each immediate child of the root is la- . . s

beled with one of the observations encountered during th@ny _mod_el-free tt_echmque designed to _Iearr_1 deterministic
licies in a partially observable domain with perceptual

test. Nodes at the second level are labeled by actions, arPcf.’ . .
so forth. aliasing, must employ some type of internal memory. The

structure of the internal memory can be used to initialize
Inserted instances are split based on their latest observati@iPOMDP model. The method for converting the internal

ary1 = argmaz,Q(L(T}), a) (5)

12

memory into depends on the way the model-free methodtatess =< o,m >, s’ =< o,m’ >, such thain # m’ and
constructs its memory state and transitions. max,Q(s,a) # max,Q(s',a), and none of these actions
ic? an action that flips a memory bit. In other words, state are

Model-free methods have been extensively studied, an Frceptually aliased if the agent learned that it needs to act

th_ere_ are many other approaches to_ resolving perc_eptuglfferently observing the same sensor output, but different
aliasing we have not reviewed, including the use of fm'te'internal memory states

state automata (FSA) (Meuleau et al., 1999), which can be '
viewed as a special case of the memory-bits approach, bWe can now merge evegy=< o, m > ands’ =< o,m’ >

can learn faster and more accurately and the use of nethat are not perceptually aliased. Using the observed in-
ral networks for internal memory (Lin & Mitchell, 1992; stances, the transitiam(s, a, s’) and rewardR(s, a) func-
Hochreiter & Schmidhuber, 1997). It is likely that those tions can be computed, much the same way as we did for
approaches can also be used to initialize a POMDP modethe USM based model. Again, we assume that the observa-
similarly to USM and memory bits. We note that most re- tion function is pre-defined.

searchers test their algorithms on environments with very

little noise, and do not analyze the effect of noisy Sensors.4. Experimental Results

3.1. Creating a POMDP from Utile Suffix Memory In our experiments we ran the USM-based POMDP on
the toy mazes in Figure 1. While these environments

) are uncomplicated compared to real world problems, they
one can use this tree structure to create a POMDP. The st monstrate important problem features such as multiple

space is defined as the set of leaves computed by USM. We, o0 o401 aliasing (Figure 1(b)) and the need for an infor-

note that_this stz_;\te reprgsentatiorj is not necessarily COMAation gain action (Figure 1(c)). While USM is limited in

' -world problems, its successor, U-Tree,
It Mayhandles larger domains, and we note that all our methods
can be implemented on U-Tree much the same way as for

Obtaining the POMDP parameters from the USM treeUSM.

s_tructure is straightforward. The gction&)(arjd observa- \we ran both USM and SARSA[with one additional
tions () are known to the agent prior to learning the model.mernory bit on the mazes in Figure 1. Once the average re-
As stated above, the leaves of the tree (after convergence gfyq collected by the algorithms passed a certain threshold,
the USM algorithm) are used as the states.oThe transi- air cyrrent state (USM's tree structure, and SARSAS

tion functlon.(:r(s,a, s")is deflneq by Equation 3 and the table) was kept, exploration was stopped (as the POMDP
reward function (s, a)) by Equation 2. policy does not explore). In all tests, the convergence of
We derive the observation function for the POMDP from aUSM was much faster (about four times faster) than the
sensor model. In many domains, it is natural to have somé&orresponding memory-bits method. Then, the runs were
idea about how observations relate to features of the redlontinued for5000 iterations to calculate the average re-
world. For example, in robotics, we usually have a reasonward gained by the converged algorithm. The agent cur-
able idea of what is the probability that an object exists infent state was then used to learn a POMDP model as ex-
front of us if a sonar or a laser distance sensor indicateplained above. The model was solved by the Perseus al-
this. Thus, in our work we assume the existence of such gorithm (Spaan & Vlassis, 2004), and the resulting model
model. We note that we can learn an observation functionvas executed for anoth&600 iterations. This process was

of the formpr(o|ay, s;_1), Where actioru, is executed in repeated 0 times for each point in our graphs, and the pre-
states; ;. This is useful when we have pure sensing ac-Sented results are an average of these executions. To show

tions. Currently, we are not able to learn a sensor model ofhe optimal possible policy, we manually defined a POMDP
the formpr(olay, s;), wheres, is the state resulting from model for each of the mazes above, solved it using Perseus

After the USM algorithm has generated a tree structure

have two different leaves that represent it.

the execution of action,. and ran the resulting policy fd¥000 iterations. This was
done only once, as there is no learning process involved.
3.2. Creating a POMDP from Memory Bits The agent in our experiments has four sensors allowing it

Once the memory bits algorithm has run for a while, oneto sense an adjacent walls. Sensors have a boolean output

can use the learne@-table and the observed instances toWith probability a of being accurate. The probability of all
initialize the POMDP state space. Let us define (o, m) sensors providing the correct output is therefate Upon

the agent state composed of the sensor observatird receiving a reward or punishment, the agent is transformed
the agent internal memory state An observatiom origi- to any of the states marked by X. If the agent bumps into a

nates in a perceptually aliased state if there exists two ageM@!l it pays a cost (a negative reward)boffor every move

13

13 145 22 12
......... 12 t Ly L14
r1a L 18 r

L 1 £ 1.05 Log

H16
F09 085 k08

08 [14 Loz
fo7 085 12 L6

— 06 — 045 — 1 — 05
1 0% 0% 0% 082 09 1088 0% 0% 0% 09 1 098 0% 0% 082 09 1 08 0% 0% 092 09

(a) Results for Figure 1(a) (b) Results for Figure 1(b) (c) Results for Figure 1(c) (d) Results for Figure 1(d)

—4— SLMB1 Models —- SLMB1 —&— USM Models ——USM —#— Optimal Model

(e) Legend for the above graphs

Figure 2.Results for the mazes in Figure 1. In all the above graphs, the X axis contains the diminishing sensor accuracy, and the Y axis
marks average reward per agent action. The above results are averageéd diferent executions for each observation accuracy and
method. All variances were belov015 and in most cases belav005.

22 2 18 16

2 i ——— 18

L — 16 l\l\‘,“‘
L 18 \-\‘\11'6 xﬂ\‘ 1': b 12
. 1.
L16 F1
\ 1

14 08 Y08
L 12 12 05 Los

T 1 T 1 T 04 T 04
1 0.95 0.9 1 0.95 0.9 1 0.95 0.9 1 0.95 0.9

(a) Deterministic actions (b) 0.1 action noise (c) 0.2 action noise (d) 0.3 action noise

|+USM ——LISh Models —e—Optimal Model |

(e) Legend for the above graphs

Figure 3.Results for the maze in Figure 1(c) using various levels of action noise (i.e., (1 — action-success-probability)). In all the above
graphs, the X axis is the diminishing sensor accuracy, and the Y axis is the average reward per agent action. The above results are
averaged ovet0 different executions for each observation accuracy and method. All variances weretb@léwand in most cases
below0.005.

the agent pays a cost 0fl. increases. The memory bits based model does not perform
as well as the USM based model, probably due to the inac-
curate model parameters that were learned because of the
inability to explore all states and actions. The USM model
in our experiments is also suboptimal, mainly because sev-
eral leaves correspond to the same world state.

Figure 4 shows the average collected reward for eac
method whenx (the sensor accuracy) varies frant) (de-
terministic sensor output) 0.9 (probability 0.65 for de-
tecting all features correctly). SLMB1 stands for adding
a single memory bit to the Sarsa(algorithm. SLMB1
Model and USM Model are the output of executing the In most cases actions in MDPs and POMDPs do not have
memory bits and the USM algorithms, respectively, cre-deterministic effects. It is quite possible that an action at-
ating a POMDP from the algorithm output, solving it and tempted by an agent can fail (in our experiments, a failed
executing the resulting policy. Optimal Model is the man- action leaves the agent in the same state). Figure 4 shows
ually defined POMDP model. In the two latter mazes, thethe results of decreasing action success probability. While
memory bits algorithm needed two memory bits and failedthe model computed from the USM tree becomes farther
to converge as sensor noise increased. We report resulisom the optimal model, it still outperforms USM by ap-
only for USM and the manually defined POMDP on theseproximately the same amount. The USM based models per-
domains. formance degrades partially due to the increased number of

As seen from the results, the model-based methods great|ea“/e.S (and h‘?T‘CG' states) in the presence of noisy actions,
; o ; s failed transitions cannot be expressed in a single leaf and
improve the original model-based techniques and the ad-

. L instead deeper branches are created for such histories.
vantage becomes more important as noise in the sensors

14

The memory bits model in our tests produced smaller statavill enable a POMDP learning mechanism that can scale

spaces then USM. This is because the memory bits alga4p to full sized applications.

rithm defines a constant upper bound on the number of

states defined by all the possible combinations of the i”AcknowIedgments

ternal memory states and the observations.
Partially supported by the Paul Ivanier Center for Robotics

5. Discussion and Production Management.

As we have seen above, the performgncg of model—freﬁgeferenc&S

techniques degrades when sensor noise increases. This

is due to the application of methods designed for learnBellman, R. E. (1962) Dynamic programming Princeton Uni-
ing in a fully observable MDP on a POMDP. These meth- versity Press.

ods assume that the agent knows at each point in time itSassandra, A. R., Kaelbling, L. P., & Littman, M. L. (1994).
exact location. When the agent sensors are accurate, re-Acting optimally in partially observable stochastic domains.
solving the perceptual aliasing indeed results in an MDP AAAI'94(pp. 1023-1028).

and the model-free methods produce reasonable resultgprisman, L. (1992). Reinforcement learning with perceptual
In the presence of low sensor noise, the model-free algo- aliasing: The perceptual distinctions approadAI'02 (pp.
rithms still produce reasonable approximations, but as sen- 183-188).

S.or nOiS.e increases the agent_ Oft?n does not propgrly ef—l'ochreiter, S., & Schmidhuber, J. (1997). Long short-term mem-
timates its current state resulting in both the execution o

. : : > ory. Neural Computation9, 1735-1780.
wrong actions, and with an unreliable value function.
)) Howard, R. A. (1960).Dynamic programming and markov pro-
POMDPs can be accurately solved using the belief state cessesMIT Press.
MDP, but the current model-free methods have no concepIEin L.-3., & Mitchell, T. M. (1992).Memory approaches to rein
ofa ,be“E,’f state or th,e b?“_ef state M,DP' Defmm,g aPOMDP, f’orc.er.ﬁent Iearnin'g in rion-markovian domaiffechnical Re-
solving it, and maintaining a belief state will therefore ot cMU-CS-92-138).

show superior results to using any model-free method.
n) i] McCallum, A. K. (1996). Reinforcement learning with selective
Splitting the learning process into model learning and after- perception and hidden stat@®octoral dissertation, University

wards policy computation is undesirable. It would be best of Rochester.

to co_mbme thesc_e steps together, and to create an Onl"}\ﬁeuleau, N., Peshkin, L., Kim, K., & Kaelbling, L. P. (1999).
learning application that computes a POMDP model to- | earing finite-state controllers for partially observable envi-
gether with a policy. We explore this approach and demon- ronments.UAI'99 (pp. 427—-436).

strate that the policy learned by the online learning algo-

. . . - Nikovski, D. (2002). State-aggregation algorithms for learning
rithm improves the original USM performance (Shanietal., probabilistic models for robot control Doctoral dissertation,

2005). Carnegie Mellon University.

. Peshkin, L., Meuleau, N., & Kaelbling, L. P. (1999). Learning
6. Conclusions and Future Work policies with external memoryCML’99 (pp. 307-314).

In this paper we explored the advantages of model-baseBoupart, P., & Boutilier, C. (2004). VDCBPI: an approximate
methods over model-free methods for acting in partially ~scalable algorithm for large POMDPHNIPS 17 MIT Press.
observgble_ (_jomalns with noisy sensors. As learning th%hani, G., & Brafman, R. I. (2004). Resolving perceptual aliasing
model is difficult, we have shown how an agent can exe- in the presence of noisy sensoMiPS'17
cute a model-free method until it converges and then use)
the learned data to initialize a POMDP model that outper-Shani, G., Brafman, R. |., & Shimony, S. E. (2005). Model-based
forms the original model-free method. online learning of POMDPSBISFAI'0S

paan, M. T. J., & Vlassis, N. (2004)Perseus: Randomized
e eseach o o o e aartages of odel ok ased Ve trsion for POMDcmcl Repr

) - -04-02). University of Amsterdam.

“value of information”. The current USM algorithm we _ _
rely upon creates sub-optimal state spaces, as it may creag¥tton, R. S., & Barto, A. G. (1998Reinforcement learning: An
many different states that correspond to different paths for introduction MIT Press.
arriving at the same “real” state. In the future we intend to
look for ways to improve USM to create less leaves, such
as modifying the current tree structure into a DAG. This

15

Reinforcement learning with kernels and Gaussian processes

Yaakov Engel

YAKIQCS.UALBERTA.CA

Dept. of Computing Science, University of Alberta, Edmonton, Canada

Shie Mannor

SHIEQECE.MCGILL.CA

Dept. of Electrical and Computer Engineering, McGill University, Montreal, Canada

Ron Meir

RMEIRQEE.TECHNION.AC.IL

Dept. of Electrical Engineering, Technion Institute of Technology, Haifa 32000, Israel

Abstract

Kernel methods have become popular in
many sub-fields of machine learning, with the
exception of reinforcement learning; they fa-
cilitate rich representations, and enable ma-
chine learning techniques to work in diverse
input spaces. We describe a principled ap-
proach to the policy evaluation problem of re-
inforcement learning. We present a temporal
difference (TD) learning algorithm using ker-
nel functions. Our approach allows the TD
algorithm to work in arbitrary spaces as long
as a kernel function is defined in this space.
This kernel function is used to measure sim-
ilarity between states. The value function is
described as a Gaussian process and we ob-
tain a Bayesian solution by solving a genera-
tive model. A SARSA based extension of the
kernel-based TD algorithm is also mentioned.

1. Introduction

In Engel et al. (2003) the use of Gaussian Processes
(GPs) for solving the Reinforcement Learning (RL)
problem of value estimation was introduced. Since
GPs belong to the family of kernel machines, they
bring into RL the high, and quickly growing represen-
tational flexibility of kernel based representations, al-
lowing them to deal with almost any conceivable object
of interest, from text documents and DNA sequence
data to probability distributions, trees and graphs, to
mention just a few (see Shawe-Taylor & Cristianini,
2004, and references therein). Moreover, the use of

Appearing in Proceedings of the ICML’05 Workshop on
Rich Representations for Reinforcement Learning, Bonn,
Germany, 2005. Copyright 2005 by the author(s)/owner(s).

Bayesian reasoning with GPs allows one to obtain not
only value estimates, but also estimates of the uncer-
tainty in the value, and this in large and even infinite
MDPs.

In this extended abstract we present our approach con-
cerning learning with Gaussian processes and kernel
methods. We show how to use GPs and kernels to
perform TD algorithms on any input space where a
kernel function can be defined. The results reported
here are based on Engel et al. (2003); Engel et al.
(2005); Engel and Mannor (2005) as well as on some
ongoing work.

We start by providing a model to the value function
based on the discounted return in Section 2. We then
describe an online implementation in Section 3. A
SARSA based algorithm is briefly mentioned in Sec-
tion 4. A short summary follows in Section 5.

2. Modeling the Value Via the
Discounted Return

A fundamental entity that is of interest in RL is the
discounted return. Much of the RL literature is con-
cerned with the expected value of this random process,
known as the wvalue function. This is mainly due to
the simplicity of the Bellman equations which govern
the behavior of the value function, and because of two
provably convergent algorithms (of which many varia-
tions exist) that arise from Bellman’s equations — value
iteration and policy iteration. However, some valuable
insights may be gained by considering the discounted
return directly and its relation with the value.

A Markov Decision Process (MDP) is a tuple
(X,U, R,p) where X and U are the state and action
spaces, respectively; R : X — R is the immediate
reward, which may be random, in which case ¢(-|x)

16

denotes the distribution of rewards at the state x;
and p : X xU x X — [0,1] is the transition distri-
bution, which we assume is stationary. Note that we
do not assume that X is Euclidean, or that it is even
a vector space. Instead, we will assume that a ker-
nel function, k, is defined on X. A stationary policy
w: X xU — [0,1] is a mapping from states to ac-
tion selection probabilities. Given a fixed policy pu, the
transition probabilities of the MDP are given by the
policy-dependent state transition probability distribu-
tion p*(x'|x) = [, dup(x’|u, x)pu(ulx). The discounted
return D(x) for a state x is a random process defined
by

D(x) = Z’yiR(xiﬂxo = x, with x;11 ~ p*(:|x;).
i=0

(2.1)
Here, v € (0, 1) is a discount factor that determines the
exponential devaluation rate of delayed rewards. Note
that the randomness in D(xq) for any given state xg is
due both to the stochasticity of the sequence of states
that follow xg, and to the randomness in the rewards
R(x¢), R(x1), R(x2) We refer to this as the intrin-
sic randomness of the MDP. Using the stationarity of
the MDP we may write
D(x) = R(x) + yD(x'), with x" ~ p*(-|x). (2.2)
The equality here marks an equality in the distribu-
tions of the two sides of the equation. Let us define
the expectation operator E,, as the expectation over all
possible trajectories and all possible rewards collected
in them. This allows us to define the value function
V(x) as the result of applying this expectation opera-
tor to the discounted return D(x). Let Ey/xV (x') =
Sy dx'p" (X' |x)V(x'), and 7(x) = [, drq(r|x)r be the
expected reward at state x. The value function satis-
fies the fixed-policy version of the Bellman Equation:

V(x) =7(x) + 7ExxV(x) VxeX. (2.3)

2.1. The Value Model

The recursive definition of the discounted return (2.2)
is the basis for our statistical generative model con-
necting values and rewards. Let us decompose the
discounted return D into its mean V' and a random,
zero-mean residual AV,

D(x) =V(x) + AV (x), (2.4)
where V(x) = E,D(x). In the classic frequentist ap-
proach V(+) is no longer random, since it is the true
value function induced by the policy . Adopting the
Bayesian methodology, we may still view the value

V(-) as a random entity by assigning it additional ran-
domness that is due to our subjective uncertainty re-
garding the MDP’s model (p, ¢). We do not know what
the true functions p and ¢ are, which means that we
are also uncertain about the true value function. We
choose to model this additional eztrinsic uncertainty
by defining V(x) as a random process indexed by the
state variable x. This decomposition is useful, since
it separates the two sources of uncertainty inherent in
the discounted return process D: For a known MDP
model, V becomes deterministic and the randomness
in D is fully attributed to the intrinsic randomness in
the state-reward trajectory, modelled by AV. On the
other hand, in a MDP in which both transitions and
rewards are deterministic but otherwise unknown, AV
becomes deterministic (i.e., identically zero), and the
randomness in D is due solely to the extrinsic uncer-
tainty, modelled by V. For a more thorough discus-
sion of intrinsic and extrinsic uncertainties see Mannor
et al. (2004).

Substituting Eq. (2.4) into Eq. (2.2) and rearranging
we get

R(x) = V(x) =7V (x)+ N(x,x), x" ~ p/'(-x), (2.5)

where N(x,x') & AV(x) — yAV(x). Suppose we
are provided with a trajectory xg,Xi,...,X:, sam-
pled from the MDP under a policy pu, i.e., from
po(x0)IIE_; p#(xi|x;—1), where pg is an arbitrary prob-
ability distribution for the first state. Let us write our
model (2.5) with respect to these samples:
R(Xz) = V(Xi)—’}/V(Xi+1)+N(Xi7 Xi+1)7 1 =0,...,t—1.
(2.6)
Defining the finite-dimensional processes R, Vi, N
and the ¢t x (¢t + 1) matrix H;

R, = (R(x¢), ..., R(x;)) ",
Vi = (V(xo),....V(xs)) ",
Nt:(N(X07X1)7"'7N(Xt—laxt)))
1 —y 0 0
0 1 — ... 0
H,=| .) , (2.7)
o o0 ... 1 —v

we may write the equation set (2.6) more concisely as

Rtfl = Ht‘/t + Nt. (28)

2.2. The prior

In order to specify a complete probabilistic genera-
tive model connecting values and rewards, we need

17

to define a prior distribution for the value process V
and the distribution of the “noise” process N. We
impose a Gaussian prior over value functions, i.e.,
V ~ N(0,k(-,-)), meaning that V is a Gaussian Pro-
cess (GP) for which, a priori, E(V(x)) = 0 and
E(V(x)V(x') = k(x,x) for all x,x' € X, where
k is a positive-definite kernel function. Therefore,
Vi ~ N(0,K;), where 0 is a vector of zeros and
[K:]i,j = k(x;,%;). Our choice of kernel function k
should reflect our prior beliefs concerning the corre-
lations between the values of states in the domain at
hand.

2.3. The posterior

In order to maintain the analytical tractability of the
posterior value distribution, we model the residuals
AV, = (AV(xq),...,AV(x)) as a Gaussian pro-
cess. This means that the distribution of the vector
AV, is completely specified by its mean and covari-
ance. Another assumption we make is that each of the
residuals AV (x;) is generated independently of all the
others. This means that, for any ¢ # j, the random
variables AV (x;) and AV (x;) correspond to two dis-
tinct experiments, in which two random trajectories
starting from the states x; and x;, respectively, are
generated independently of each other. We are now
ready to proceed with the derivation of the distribu-
tion of the noise process V;.

By definition (Eq. 2.4), E,[AV(x)] = 0 for all x,
so we have E, [N(x;,%x;+1)] = 0. Turning to the
covariance, we have E, [N(x;,Xi+1)N(x;,%X;41)] =
E, [(AV(xi) = yAV(xi11))(AV (x;) = 7AV (x;11))].

According to our assumption regarding the
independence of the residuals, for i # 3,
E, [AV(x;) AV (x;)] = 0 In contrast,

E,[AV(x;)?] = Var,[D(x;)] is generally larger
than zero, unless both transitions and rewards
are deterministic. ~ Denoting ¢ = Var|[D(x;)],
these observations may be summarized into the
distribution of AVy: AV, ~ N(0,diag(o;)) where
o;=[02,02,...,02]T, and diag(-) denotes a diagonal
matrix whose diagonal entries are the components
of the argument vector. In order to simplify the
subsequent analysis let us assume that, for all
i € {1,...,t}, o; = o, and therefore diag(a,;) = oL
Since N; = H; AV, we have N; ~ N(0,X;) with,

3, = o?H,H/
1+ — 0 ... 0
, | 14++92 —y ... 0
=0 . . .
0 0 —y 1442

Since both the value prior and the noise are Gaussian,
by the Gauss-Markov theorem (Scharf, 1991), so is the
posterior distribution of the value conditioned on an
observed sequence of rewards ry_y = (rg,...,7¢_1) .
The posterior mean and variance of the value at some
point x are given, respectively, by

Op(x) = kt(x)Tat,

pe(x) = k(x,x) — kt(x)TCtkt(x), (2.9)
where oy = H] (H,KH] +3,) ' 1y,
C,=H/ (H,KH +%) H, (210

and k;(x) is a vector of size ¢ whose elements are
k(x;,x).

3. An On-Line Algorithm

Computing the parameters a; and C; of the poste-
rior moments (2.10) is computationally expensive for
large samples, due to the need to store and invert a
matrix of size ¢t X t. Even when this has been per-
formed, computing the posterior moments for every
new query point requires that we multiply two ¢ x 1
vectors for the mean, and compute a t x t quadratic
form for the variance. These computational require-
ments are prohibitive if we are to compute value esti-
mates on-line, as is usually required of RL algorithms.
Engel et al. (2003) used an on-line kernel sparsifica-
tion algorithm that is based on a view of the kernel
as an inner-product in some high dimensional feature
space to which raw state vectors are mapped. This
sparsification method incrementally constructs a dic-
tionary D = {X1,...,Xp|} of representative states.
Upon observing x;, the distance between the feature-
space image of x; and the span of the images of current
dictionary members is computed. If the squared dis-
tance exceeds some positive threshold v, x; is added
to the dictionary, otherwise, it is left out. Determin-
ing this squared distance, d;, involves solving a simple
least-squares problem, whose solution is a |D| x 1 vec-
tor a; of optimal approximation coefficients, satisfying

a; = R;_lllzt_l(xt), 5t = ktt - atTf(t_l(xt), (311)

where k;(x) = (k(ihx),...,k(im”,x))—r is a |Dy| x
1 vector, and K, = {f{t(il), e ,l;t(imt‘)} a square
|D;| x |D¢|, symmetric, positive-definite matrix.

By construction, the dictionary has the property that
the feature-space images of all states encountered dur-
ing learning may be approximated to within a squared

error v by the images of the dictionary members. The
threshold v may tuned to control the sparsity of the

18

solution. Sparsification allows kernel expansions, such
as those appearing in Eq. 2.10, to be approximated by
kernel expansions involving only dictionary members,
by using

kt(X) ~ AtEt(X), Kt =~ AthA;r (312)
The t x |D;| matrix A; contains in its rows the approx-
imation coefficients computed b}F the sparsification al-
gorithm, i.e., Ay = [ay,...,a;] , with padding zeros
placed where necessary, see Engel et al. (2003).

The end result of the sparsification procedure is that
the posterior value mean v; and variance p; may
be compactly approximated as follows (compare to
Eq. 2.9, 2.10)

pe(x) = k(x,x) — ki (x) T Crky (x), (3.13)
~ ~ ~ —1
where oy = H: (thHt + Zt) ry 1
G, =—H/ (~ K] + zt)_ H, (3.14)

and ﬁt = HtAt.

The parameters that the algorithm is required to store
and update in order to evaluate the posterior mean
and variance are now &; and ét, whose dimensions
are |D¢| x 1 and |D;| x |Dyl, respectively. In many
cases this results in significant computational savings,
both in terms of memory and time, when compared
with the exact non-sparse solution.

We omit the lengthy technical derivation of the algo-
rithm as it appears in (Engel, 2005). The main idea is
that if the matrix 3; is of a favorable shape, an effi-
cient algorithm for recursive computation of the pos-
terior can be derived. We note that the algorithm is
expressed only in terms of kernel function evaluations,
thus the input space X may be completely arbitrary.

4. Policy Improvement with GPSARSA

SARSA is a fairly straightforward extension of the
TD algorithm (Sutton & Barto, 1998), in which state-
action values are estimated, thus allowing policy im-
provement steps to be performed without requiring
any additional knowledge on the MDP model. The
idea is to use the stationary policy u being followed
in order to define a new, augmented process, the state
space of which is X' = X x U, (i.e., the original state
space augmented by the action space), maintaining the
same reward model. This augmented process is Marko-
vian with transition probabilities p'(x’,u’|x,u) =
pH(x'|x)p(u’|x"). SARSA is simply the TD algorithm

applied to this new process. The same reasoning may
be applied to derive a SARSA algorithm from the GP
based TD algorithm. All we need is to define a co-
variance kernel function over state-action pairs, i.e.,
E: (X xU) x (X xU) — R. Since states and ac-
tions are different entities it makes sense to decom-
pose k into a state-kernel k, and an action-kernel k,:
k(x,u,x',u') = ky(x,x")ky(u,). If both k, and k,
are kernels we know that k is also a legitimate ker-
nel (Scholkopf & Smola, 2002), and just as the state-
kernel codes our prior beliefs concerning correlations
between the values of different states, so should the
action-kernel code our prior beliefs on value correla-
tions between different actions.

All that remains now is to run the GP-based TD
learning algorithm on the augmented state-reward
sequence, using the new state-action kernel func-
tion. Action selection may be performed by e-greedily
choosing the highest ranking action, and slowly de-
creasing € toward zero. However, we may run into diffi-
culties trying to find the highest ranking action from a
large or even infinite number of possible actions. This
may be solved by fast iterative maximization method,
such as the quasi-Newton method or conjugate gra-
dients. Ideally, we should design the action kernel in
such a way as to provide a closed-form expression for
the greedy action (as in Engel et al., 2005).

5. Discussion

The nonparametric (kernel-based) Gaussian Process
approach facilitates rich representations. Instead of
focusing on Euclidean spaces, one can consider em-
ploying RL in essentially any space on which a kernel
can be defined. Formally, the kernel is used to define a
prior over the space of value functions. Intuitively, the
kernel represents how “close” two states (or actions in
the SARSA case) are which allows incorporating do-
main knowledge into the construction of the algorithm.

Finding “good” kernels is a challenge in kernel meth-
ods in general. However, there is no need for the ker-
nel to be “optimal” for the algorithm to work well. All
that is needed is for the kernel to be reasonable. In the
kernel-methods community there is a significant body
of work on how to create kernels for different kinds
of objects. These include Fisher Kernels (Jaakkola &
Haussler, 1998) for probabilistic models (the space X
itself may be a space of probabilistic models), kernels
for handwritten digits (DeCoste & Scholkopf, 2002),
strings (Watkins, 1999), text documents (Joachims,
1998), genetic microarray data (Brown et al., 2000),
sets of vectors (Kondor & Jebara, 2003) and trees
(Collins & Duffy, 2001), to mention a few (see Shawe-

19

Taylor & Cristianini, 2004 for more extensive cover-
age).

The GP-based temporal difference approach itself has
several distinct advantages. For example, it provides
confidence bounds on the value function uncertainty.
This can be potentially used for balancing exploration
and exploitation. In Engel and Mannor (2005) we
took advantage of the fact that the output parame-
ters of GPTD algorithms are sufficient statistics for
the posterior value process, summarizing the informa-
tion contained in the observed trajectory, to extend the
GP-based approach to a setup where multiple agents
interact with the same environment. We finally men-
tion that the policy improvement mechanism described
above is SARSA based. It would be useful to devise
a Q-Learning type algorithm for off-policy learning of
the optimal policy; this is left for future research.

References

Brown, M., Grundy, W., Lin, D., Cristianini, N., Sug-
net, C., Furey, T., Ares, M., & Haussler, D. (2000).
Knowledge-based analysis of microarray gene expression
data by using suport vector machines. Proceedings of the
National Academy of Sciences (pp. 262-267).

Collins, M., & Duffy, N. (2001). Convolution kernels for
natural language. Advances in Neural Information Pro-
cessing Systems 14 (pp. 625-632).

DeCoste, D., & Scholkopf, B. (2002). Training invariant
support vector machines. Machine Learning, 46, 161—
190.

Engel, Y. (2005). Algorithms and Representations for Rein-
forcement Learning. Doctoral dissertation, The Hebrew
University of Jerusalem. www.cs.ualberta.ca/~yaki.

Engel, Y., & Mannor, S. (2005). Collaborative temporal
difference learning with Gaussian processes. Preprint.

Engel, Y., Mannor, S., & Meir, R. (2003). Bayes meets
Bellman: The Gaussian process approach to temporal
difference learning. Proc. of the 20th International Con-
ference on Machine Learning.

Engel, Y., Mannor, S., & Meir, R. (2005). Reinforcement
learning with Gaussian processes. Proc. of the 22nd In-
ternational Conference on Machine Learning.

Jaakkola, T., & Haussler, D. (1998). Exploiting generative
models in discriminative classifiers. Advances in Neural
Information Processing Systems 11 (pp. 512-519).

Joachims, T. (1998). Text categorization with support
vector machines: Learning with many relevant features.
Proceedings of the Tenth FEuropean Conference on Ma-
chine Learning (pp. 137-142).

Kondor, R. I., & Jebara, T. (2003). A kernel between
sets of vectors. Machine Learning, Proceedings of the
Twentieth International Conference (pp. 361-368).

Mannor, S., Simester, D., Sun, P., & Tsitsiklis, J. (2004).
Bias and variance in value function estimation. Proc. of
the 21st International Conference on Machine Learning.

Scharf, L. (1991). Statistical signal processing. Addison-
Wesley.

Scholkopf, B., & Smola, A. (2002). Learning with Kernels.
Cambridge, MA: MIT Press.

Shawe-Taylor, J., & Cristianini, N. (2004). Kernel methods
for pattern analysis. Cambridge, England: Cambridge
University Press.

Sutton, R., & Barto, A. G. (1998). Reinforcement Learn-
ing: An Introduction. MIT Press.

Watkins, C. (1999). Dynamic alignment kernels (Technical
Report CSD-TR-98-11). UL Royal Holloway.

20

Bi-Memory Model for Guiding Exploration by Pre-existing Knowledge

Kary Frimling

KARY.FRAMLING@HUT.FI

Helsinki University of Technology, P.O. Box 5500, FI-02015 TKK, Finland.

Abstract

Reinforcement learning agents explore their
environment in order to collect reward that
allows them to learn what actions are good or
bad in what situations. The exploration is
performed using a policy that has to keep a
balance between getting more information about
the environment and exploiting what is already
known about it. This paper presents a method for
guiding exploration by pre-existing knowledge
expressed by e.g. heuristic rules. A dual memory
model is used where the value function is stored
in long-term memory while the heuristic rules
for guiding exploration act on the weights in a
short-term memory. Experimental results from
two “toy domains” illustrate that exploration is
significantly improved when guidance can be
provided by pre-existing knowledge.

1. Introduction

In supervised learning a ‘“teacher” provides a set of
training samples that have usually been pre-processed in a
way that simplifies learning. Reinforcement learning (RL)
differs from supervised learning mainly because the RL
agent has to explore its environment by itself and collect
training samples. The agent takes actions following a
policy and observes received reward that it attempts to
maximize. Except for simple tasks, this exploration can be
long or even infeasible without any guidance. Different
ways of providing such guidance has been studied by
several researchers, e.g. Schaal (1997), Millan et al.
(2002) and Driessens & DzZeroski (2004).

This paper presents a method for exploring the
environment using pre-existing knowledge expressed e.g.
by heuristic rules. It uses a dual memory model where a
so-called long-term memory is used for action-value
learning and a so-called short-term memory is used for
guiding action selection by heuristic rules. Experimental
results with simple heuristic rules illustrate that it is
possible to converge to a good policy with less

Appearing in Proceedings of the ICML'05 Workshop on Rich

Representations for Reinforcement Learning, Bonn, Germany, 2005.
Copyright 2005 by the author(s)/owner(s).

exploration than with some well-known methods. This
paper concentrates on episodic tasks, i.e. tasks with a pre-
defined terminal state, even though the methods are not
limited to such tasks.

After this introduction, the most relevant RL methods to
the scope of this paper are described in Section 2. Section
3 presents methods to shorten initial exploration and how
to combine them with methods presented in Section 2.
Section 4 shows comparative results for three different
tasks, followed by conclusions.

2. Reinforcement learning principles

Most existing RL methods try to learn a value function
that allows them to predict the sum of future reward from
any state s when following a given action selection policy
7. Value functions are either state-values (value of a state)
or action-values (value of an action in a given state).
Action-values are denoted Q(s,a), where a is an action.
The currently most popular RL methods are so-called
temporal difference (TD) methods (Sutton, 1988). Q-
learning (Watkins, 1989) is a TD control algorithm that
updates action-values according to

AQ(S,,a,) = ﬂ|:rt+l + 7m§1XQ(st+1’a) - Q(St’at):|€t+1(s’a)

ey

where Q(s,a;) is the value of action a in state s at time z, §
is a learning rate, r,; is the immediate reward and yis a
discount factor. The max-operator signifies the greatest
action-value in state s.;. e,1(s,@) is an eligibility trace that
allows rewards to be propagated back to preceding states
and actions. A replacing eligibility trace (Singh & Sutton,
1996) is calculated according to

e):{Wz(s) ifs # s,

1 ifs =5,

2

where A is a trace decay parameter that together with the
y determines how quickly rewards are propagated
backwards. Another common method for action-value
learning is SARSA (Rummery & Niranjan, 1994):

AQ(st’at): ﬁ[rt+l + 10(81415014) — Q(Sr’ar)] en(s,a) (3)

The most complete overviews available on methods for
state-space exploration are (Thrun, 1992; Wiering, 1999).

21

Commonly used undirected exploration methods that do
not use any task-specific information are &greedy
exploration and Boltzmann action selection. &greedy
exploration selects the greedy action with probability
(1-&) and an arbitrary action with probability &€ using a
uniform probability distribution. Directed exploration
methods use task-specific knowledge for guiding
exploration in such a way that the state space would be
explored more efficiently. The action to be taken is
selected by maximizing an evaluation function that
combines action-values with exploration bonuses 0,
weighted by factors K, to K; (Ratitch & Precup, 2003):

N(s,a) = K,Q(s,a)+ K,0,(s,a) +...+ K, 0, (s,a) (4)

Counter-based methods use an exploration bonus that
directs exploration to less frequently visited states.
Recency-based exploration prefers least recently visited
states. Other directed exploration methods exist that use
statistics on value function variance or other indicators.
The same effect of preferring unexplored actions (and
states) mainly in the beginning of exploration can be
achieved by a technique called optimistic initial values
that uses initial value function estimates that are bigger
than the expected ones. A common implementation of
this technique is to initialize action values to zero and
give negative reward at every step (Thrun, 1992, p. 8).
This means that unused actions have greater value
estimates than used ones, so unused actions have a greater
probability to be selected in the beginning of exploration.

3. SLAP reinforcement and the BIMM network

This section describes the use of a long-term memory
(LTM) and short-term memory (STM)" model for
combining action-value learning with heuristic rules that
guide exploration (Frdmling, 2003). LTM is used for
action-value learning while STM learning is used for
guiding state-space exploration by the SLAP (Set Lower
Action Priority) principle, described in sub-section 3.2. In
sub-section 3.3 we study the effect of different learning
parameters on the trade-off between rapid exploration and
converging towards a “good” policy.

3.1 Bi-Memory Model (BIMM)

The bi-memory model uses a short-term memory for
controlling exploration and a long-term memory for
learning the value function. Both memories are here
implemented as linear function approximators or Adalines
(Widrow & Hoff, 1960), but any function approximator
may be used for both STM and LTM. A linear function

! “Short-term memory” has been used in different contexts, e.g. for
storing the eligibility trace; for memorizing parts of the state history in
order to improve identification of “hidden states” (McCallum, 1995);
and for storing contextual clues to be used in near-future states (Bakker
2002). These differ from the STM used here.

approximator calculates action values as the weighted
sum of action neuron input values

N
aj(s)zzsiwi,j)
i=1

where s, is the value of state variable i, w;; is the weight of
action neuron j for input i, a; is the output value of action
neuron j and N is the number of state variables. Weights
are typically stored in a two-dimensional matrix of size
MxN, where M is the number of actions. This
representation is identical to the lookup-table
representation usually used in discrete RL tasks but gives
the advantage of being able to handle continuous-valued
state variables directly. Adalines can be trained using the
Widrow-Hoff training rule

wit = w, +ala;'-a;)s; (6)
where ¢;’ is the “target” value used in supervised learning.
ais alearning rate parameter that determines the step size
of weight modifications. Widrow-Hoff learning is a
gradient descent method that minimizes the root mean
square error (RMSE) between a;” and a; samples. When

using BIMM, Adaline outputs are calculated according to

N

N
a;(s)= KOZthi’jsi + KIZstwi’jsi @)

i=1 i=1

where K, and K; are positive constants that control the
balance between exploration and exploitation. STM is
actually an exploration bonus whose influence on action
selection is determined by the value of K; as in equation
(4). ltw;; is the LTM weight and stw;; is the STM weight
for action neuron j and input i. ags) is the estimated
action-value N(s,a) in equation (4). Both Q-learning and
SARSA can be used to update LTM weights by replacing
Q with [tw in equations (1) and (3).

3.2 Guiding exploration

Exploration bonuses affect action selection by increasing
or decreasing the probability of an action being selected
in a given state. If an action does not seem to be useful for
exploration in some state according to some pre-existing
knowledge, then make it less likely for that action to be
used in that state. Similarly, if an action seems to be good
in some state according to current rules, then make it
more likely to be used in that state. In the tests performed
in this paper only the first case is used, i.e. action
probabilities are only decreased by the set lower action
priority (SLAP) principle, where STM weights are
updated using the Widrow-Hoff update rule with the
target value

a;’(5)= Qpin(s) — margin (8)

where a,,;,(s) is the smallest a;s) value in state s. The
margin should have a “small” value (0.1 has been used in

22

all tests reported in this paper), which ensures that an
action that is repeatedly SLAPed will eventually have the
lowest action value. Only STM weights are modified by
the Widrow-Hoff rule, which becomes

new

stwi; = stw; ; +ala;'-a;)s; 9)

The new activation value is then

N N
ai™(s)= KOthwl-,jsi + KIZstwi'ffwsi =
i=1 i=1

N N
KOthwi,jsi + KIZsi (stww + (Z(aj '—aj)si)z

i=1 i=1

N N N

' 2

KOthwi,jsi + KIZstwl-’jsi +ala;'-a;)KIZSI- =

i=1 i=1 i=1

N
' 2

a;+ofa; —aj)KIZS,-

i=1

(10)

where we can see that setting & to 1/(K12si2) guarantees
that ;""" will become ¢;” in state s after SLAPing action j.
Replacing o with /(K Zs?) in equation (9) gives a
generalization for BIMM of the well-known Normalized
Least Mean Squares (NLMS) method

N

stwi’fjw =stw; ; +ola;'~a;)sl-/KIZsi2

i=1

(In

that reduces the error (a;” — a;) exactly by the ratio given
by @, which makes it easier to select a good value for o
For instance, if &= 1 in equation (11) the SLAPed action
will directly have the lowest ays) value for state s so it
will not be used again until all other possible actions have
been tested in the same state. This is especially useful in
deterministic tasks. In stochastic tasks « should be
inferior to one because even the optimal action may not
always be successful, so immediately making its action-
value the lowest would not be a good idea. As long as the
value of a,,,(s) doesn’t change, the value a;’(s) remains
the same for all j. This is true until ¢;""(s) becomes lower
than the current a,,,(s) for some j. Therefore, action
values slowly go towards minus infinity when using
SLAP an infinite number of times”.

A general algorithm for using SLAP in a learning task is
given in Figure 1. Especially when using SARSA or other
on-policy methods for action-value updates, STM weights
should be updated before updating the action-values,
otherwise the changes in STM weights might modify the
action selection for the next state. It is also worth pointing
out that the SLAP update rules do not include a time
variable ¢ as for Q-learning and SARSA, so SLAP can be

% Setting a;’(s)=anas) + margin would increase weights in the same
way that SLAP decreases them but this has not been useful for the
experimental tasks in this paper.

used asynchronously with action-value updates. In fact,
SLAP can be used for any state-action pair at any time
independently of the current state and the current action
selected.

Initialize parameters
REPEAT (for each episode)
s ¢ initial state of episode
REPEAT (for each step in episode)
a < action given by & for s
Take action a, observe next state s’
SLAP “undesired” actions
Update action-value function in LTM
s & s’

Figure 1. General algorithm for using SLAP in typical RL task.

3.3 Increasing exploration

As shown by the experimental tasks in section 4, it can be
easy to identify heuristic rules that make exploration
faster. However, if these rules do not also give sufficient
exploration of the state space, then it has to be provided
by other means. STM weights are reinitialized before
starting a new episode and can have a great impact on the
way in which the state space is explored. Initializing STM
weights to random values and using a “high” value for K;
is one way of increasing exploration. In all tests reported
here, STM weights have been initialized to random values
in the interval [0,1) while LTM weights are initialized to
zero. Therefore actions will initially be selected in a
random order independently of the value of K; in equation
(7) as long as LTM weights remain zero. When LTM
values become non-zero due to action-value learning, the
amount of randomness in action selection depends both
on STM and LTM weights.

Undirected exploration methods (e.g. &greedy,
Boltzmann) can also be used to increase exploration.
Driessens and DzZeroski (2004) alternated guided and
unguided episodes for the same purpose, where hand-
coded rules, human operators or other pre-existing
knowledge provided guidance.

4. Experimental results

This section compares methods presented in the previous
sections on two different tasks: 1) semi-MDP maze world
and 2) mountain-car. Exploration methods compared are:
1) O/SARSA: egreedy exploration; 2) CTRB: counter-
based exploration 3) OI'V: optimistic initial values and 4)
BIMM. Q/SARSA, CTRB and BIMM use zero initial Q-
values, r = 1 at terminal state and r = O for all other states.
OIV used zero initial Q-values, r = 0 at goal and r = -1 for
all other state transitions. Constant learning parameters
are used in order to simplify the choice of parameter
values and for reasons of comparability.

23

4.1 Maze with transition delays

Semi-Markov Decision Processes (SMDP) may include
continuous time (Bradtke and Duff, 1995). This signifies
that the transition time from one state to another depends
on a probability distribution F\,. Here we introduce state
transition time by the notion of “corridors” in a maze, i.e.
states with only two actions that represent opposite
directions. When in a corridor, the agent continues
forward until it reaches a non-corridor state. The maze
world is of size 20x20 (Figure 2), where 10 doors have
been opened in addition to the initial unique solution.
Both deterministic and stochastic state transitions are
used. The stochastic state transition rates used are 0.2 and
0.5, which indicate the probability of another direction
being taken than the intended one.

[E

Figure 2. Maze with 10 supplementary “doors” opened in the
walls in addition to the initial unique route. Agent in start
position, goal position in lower left corner.

Q-learning without eligibility trace is used for action-

value learning. Learning parameters are indicated in Table

1. The counter-based exploration bonus in equation (4) is

implemented as

- cnt(s,a)—cnt(s) in if ent(s)
cnt(S) max — Ct(S) min

0 if cnt(s)

S\ (s,a) = max — CE(S) pin >0 (12)

max Cnt(s)min =0

where cnt(s,a) is the counter for action a in state s and
cnt(8)in and cnt(s),,., are the smallest and greatest counter
values for actions in state s. Counter values are reset after
every episode. For BIMM agents, SLAP was used

according to the following rules when entering a new
state and before performing the next action: 1) SLAP the
“inverse” action and 2) if the new state is already visited
during the episode, SLAP action with the biggest value
ai(s) in equation (7) for the new state. The rules are
applied in the order indicated, so with =1 the action
taken at the previous visit becomes the last one in the
action ranking given by equation (7).

All agents performed 250 episodes. Actions were selected
greedily after 200 episodes in order to compare how well
the value function was learned by all methods on an equal
basis. This signifies that &€ was set to zero for all agents as
well as K; for BIMM and CTRB. Figure 3 shows that
BIMM converges towards a good policy after much less
exploration than Q- and CTRB-agents. The BIMM graph
is close to the graph of the OIV agent but OIV converges
very slowly. The greater the stochastic state transition
rate, the slower the OIV agent converges. This is probably
due to the cycles that occur with stochastic state
transitions, which cause negative reward to be given even
to the optimal action.

Table 1. Parameter values used in grid world tests. For BIMM
K, =0.1 in deterministic task and K, = 10 in stochastic tasks.
y=0.95 for all except OIV. Not indicated parameters are zero.

Agent CTRB o1V BIMM
Grid world Bl e | S| K Bl vl al p
Deterministic | 1 [0.1 | 1 0.1 1 1 1 1
Stoch. 0.2 0.10.1 05| 001 |05][095]02]0.5
Stoch. 0.5 0.1 0.1 [0.5] 0.001 | 0.5]0.95]0.1]0.5

Table 2 gives numeric comparisons for the performance
of the four methods. BIMM agents achieve a better stable
policy than the others in all tests as indicated by the third
column. The total number of steps is also clearly lower
than for the other agents. Since the training parameters
often represent a compromise between how good the
converged policy is and how much exploration is needed,
the fact that BIMM has the best performance in both
indicate its superiority in this task. Also, even though the
advantage of BIMM in the beginning of exploration
decreases with an increasing stochastic state transition
rate (second column of Table 2), this is compensated by
an improved “converged” policy compared with the other
agents.

Table 2. Results for 20x20 maze with ten extra doors in the order Q/CTRB/OIV/BIMM. The third column indicates the average
number of steps for the “stable” policy as average value of episodes 241-250.

Stoch. trans. rate | Steps on first episode

Steps with converged policy

Total number of steps

Deterministic 7450/4650/1760/502 49.0/48.0/48.0/48.0 134000/62800/27800/21400
0.2 7300/6200/2100/1420 64.4/69.1/69.2/60.3 145000/96000/57400/41600
0.5 9980/7840/3900/4170 116/196/132/102 152000/168000/105000/103000

24

Deterministic maze with 10 extra doors, #agent runs: 50

Stochastic (0.2) maze with 10 extra doors, #agent runs: 50

Stochastic (0.5) maze with 10 extra doors, #agent runs: 50
10000 - T T

8000 8000

7000 7000

6000 6000

5000 5000

4000 4000

#steps
#steps

3000 3000

2000 2000

1000 1000

9000 CTRB

8000
L

7000} |

6000

#steps

5000

4000

3000 1[
2000 WA, VA

)
1000 ‘Wf“\:'\l\.

R Ty

SRR o

0 = —_—
0 20 40 60 80 100 0 20
episode number

episode number

— — 0
60 80 100 0 20 80 100

40 0
episode number

Figure 3. Maze results as average number of steps per episode. Grid size, stochastic transition rate and the number of agent runs used
for calculating the average number of steps is indicated at the top of each graph.

4.2 Mountain-Car

The description of this task is similar to that in (Singh &
Sutton, 1996) and (Randlgv, 2000). The mountain-car
task has two continuous state variables: the position x, and
the velocity v,. At the beginning of each trial these are
initialized randomly, wuniformly from the range
x € [-1.2,0.5] and v € [-0.07,0.07]. The altitude is sin(3x).
The agent chooses from actions ae€ {+1,0,-1} that
correspond to forward thrust, no thrust and reverse. The
physics of the task are:

Vi = bound(vt +0.001a, + g cos(3x,))
and
X, = max{x, +v,,;,~1.2}

where g = 0.0025 is the force of gravity and the bound
operation places the variable within its allowed range. If
X;41 18 clipped by the max-operator, then v, is reset to 0.
The terminal state is any position with x,,; > 0.5. The
continuous state space is discretized by 8 non-overlapping
intervals for each variable, which gives a total of 64
states. Episodes were limited to 1 000 000 steps.

As in most previous work on this task, the SARSA(A)
learning algorithm with replacing eligibility traces was
used for action-value learning. Parameter values are:
SARSA: learning rate B=0.1, discount rate y=0.9,
A=0.95, £=0.1; OIV: learning rate = 0.1, discount rate
y=1.0, A=09; and BIMM: learning rate S=0.1,
discount rate y=0.9, 4=0095, K;=0.1, ¢=1.0. The
counter-based method was not used in this task. With the
continuous-valued state-variables it often takes several
steps before changing state in the discretized state space,
so an ordinary counter-based exploration changes the
used action too rapidly to allow the agent to explore
efficiently. This is also true for the heuristic rules used by
BIMM in the maze task. It turns out that it is difficult to
find good heuristics for the mountain-car task, as noticed
by Randlgv (2000) who tried to find a good reward
shaping function.

The heuristic rules for using SLAP are 1) SLAP if sign of
velocity is different from the sign of the action’s thrust

and 2) SLAP if velocity is positive and action is zero
thrust. The second rule makes exploration slightly faster,
but is not of much practical significance. These rules
actually implement a controller that is at least nearly
optimal for the task at hand, so one could ask what is the
point of using a learning controller if we already have a
good one? First of all, the initial controller is a static
closed-loop controller while learning will give an
adaptive open-loop controller that may be able to
compensate for errors or calibration drift in real-world
applications (see e.g. Framling (2004), for such an
adaptive controller and Millan et al. (2002), where rules
are used together with a learning controller). The initial
controller may also be sub-optimal and incomplete, i.e.
not cover the whole state space. Finally, the goal of this
paper is to show that the BIMM and SLAP can be used
for guiding exploration rather than evaluate the goodness
of the heuristic rules.

5 Mountain Car, #agent runs: 50
10 T T T
—— SARSA
ovV
—— BIMM
4
10
& 3
210
#
‘AM
B VAUAN
2
w0k NG

ANSIRY: ,MMW“'WA.M-'
FAMIW AN A b WA A vt

50 100 150 200
episode number

Figure 4. Average number of steps as a function of episode from
50 runs. The peaks are due to infinite episodes, limited to
1 000 000 steps. Note the logarithmical scale on the y-axis.

The results in Figure 4 are consistent with those in (Singh
& Sutton, 1996) and (Randlgv, 2000). SARSA uses an
average of 38000 steps for the first episode, OIV uses
1700 steps and BIMM uses 73 steps. The simulations
were run for 10000 episodes with greedy exploration from
9000 episodes onwards. The average numbers of steps for

25

the last 100 episodes (9901-10000) were 81.2 for SARSA,
78.6 for OIV and 55.6 for BIMM. The total numbers of
steps for episodes 1 - 10000 are 1 140 000 for SARSA,
830 000 for OIV and 554 000 for BIMM so the BIMM
agent clearly learned the action-value function better and
with less exploration.

5. Conclusions

The results show that applying pre-existing knowledge
through heuristic rules and the SLAP and BIMM
mechanisms can make exploration more efficient both in
deterministic and stochastic tasks, as well as in tasks
involving continuous-valued state variables. For the
heuristic rules used here, it is also apparent that benefits
in exploration do not reduce the probability of learning a
good value function. One big difference between BIMM
and existing methods for improving exploration is that
BIMM agents only use their own internal information
about the task at hand. This makes them interesting
compared with methods like reward shaping, which
usually require some a priori knowledge about the
environment, such as where the goal is located, the
stochastic level of the environment or the number of sub-
goals to reach.

Even though only “toy tasks” are used in this paper, it
should be possible to generalize the results to many other
RL tasks. This should be the case especially for tasks
where state generalization is necessary due the number of
states. Since SLAP and BIMM use standard ANN
structures and learning rules, they are also applicable to
tasks involving continuous-valued state variables and
state classifiers. Such tasks are a subject of current and
future research, where explosion of the state-space size
due to state variable discretization is a problem.

References

Bakker, B. (2002). Reinforcement Learning with Long
Short-Term Memory. In T. G. Dietterich, S. Becker, and
Z. Ghahramani (eds.), Advances in Neural Information
Processing Systems 14, MIT Press, Cambridge, MA.
1475-1482.

Bradtke, S.J., Duff, M.O. (1995). Reinforcement Learning
Methods for Continuous-Time Markov Decision
Problems. In G. Tesauro, D. Touretzky, T. Leen, (eds.),
Advances in Neural Information Processing Systems 7,
Morgan-Kaufmann. 393-400.

Driessens, K., DZeroski, S. (2004). Integrating Guidance
into Relational Reinforcement Learning. Machine
Learning, Vol. 57. 271-304.

Framling, K. (2003). Guiding Initial State-space
Exploration by Action Ranking and Episodic Memory.
Laboratory of Information Processing Science Series B,
TKO-B 152/03, Helsinki University of Technology.
http://www.cs.hut.fi/Publications/Reports/B152.pdf.

Friamling, K. (2004). Scaled gradient descent learning rate
- Reinforcement learning with light-seeking robot.
Proceedings of ICINCO'2004 conference, 25-28 August
2004, Setubal, Spain. 3-11.

McCallum, A. R. (1995). Instance-Based State
Identification for Reinforcement Learning. In G.
Tesauro, D. Touretzky, T. Leen (eds.) Advances in

Neural Information Processing Systems 7, MIT Press,
1995. 377-384.

Millan, J.R., Posenato, D., Dedieu, E. (2002).
Continuous-Action Q-Learning. Machine Learning,
Vol. 49. 247-265.

Randlgv, J. (2000). Shaping in Reinforcement Learning
by Changing the Physics of the Problem. In Proc. of
ICML-2000 conference. 167-774.

Ratitch, B., Precup, D. (2003). Using MDP
Characteristics to Guide Exploration in Reinforcement
Learning. In: Lecture Notes in Computer Science, Vol.
2837 (Proceedings of ECML-2003 Conference),
Springer-Verlag, Heidelberg. 313-324.

Rummery, G. A., Niranjan, M. (1994). On-Line Q-
Learning Using Connectionist Systems. Tech. Rep.
CUED/F-INFENG/TR 166, Cambridge Univ.
Engineering Department. 20 p.

Schaal, S. (1997). Learning from demonstration. In M.
Mozer, M. Jordan, T. Petsche (eds), Advances in Neural
Information Processing Systems 9, MIT Press. 1040-
1046.

Singh, S.P., Sutton, R.S. (1996). Reinforcement learning
with replacing eligibility traces. Machine Learning, Vol.
22.123-158.

Sutton, R.S. (1988). Learning to predict by the method of
temporal differences. Machine Learning, Vol. 3. 9-44.

Thrun, S.B. (1992). The role of exploration in learning
control. In DA White & DA Sofge, (eds.), Handbook of
Intelligent Control: Neural, Fuzzy and Adaptive
Approaches. Van Nostrand Reinhold, New York.

Watkins, C. J. C. H. (1989). Learning from Delayed
Rewards. Ph.D. thesis, Cambridge University.

Widrow, B., Hoff, M.E. (1960). Adaptive switching
circuits. 1960 WESCON Convention record Part 1V,
Institute of Radio Engineers, New York. 96-104.

Wiering, M. (1999). Explorations in Efficient
Reinforcement Learning. Ph.D. thesis, University of
Amsterdam. 218 p.

26

Why (PO)MDPs Lose for Spatial Tasks and What to Do About It

Terran Lane

TERRANQCS.UNM.EDU

Department of Computer Science, University of New Mexico, Albuquerque, NM 87131 USA

William D. Smart

WDSQCSE.WUSTL.EDU

Department of Computer Science and Engineering, Washington University in St. Louis, St. Louis, MO 63130

USA
Abstract

In this deliberately inflammatory paper, we
claim that everything you believe about
(PO)MDPs is wrong. More specifically, we
claim that (PO)MDPs are so general as to
be nearly useless in many cases of practical
interest and that we should specialize rather
than generalize. We are mostly concerned
with problems involving real, physical sys-
tems operating in a real, physical world (the
same real, physical world that we live in). In
particular, we are interested in spatial navi-
gation, but we believe that this claim holds
for a number of other key problem areas as
well. Our abstraction efforts to date have fo-
cused on extending the reach of (PO)MDP
models while maintaining their basic world-
view. We claim that a profitable approach
for the future is to cleave RL into a number
of sub-disciplines, each studying important
“special cases”. By doing so, we will be able
to take advantage of the properties of these
cases in ways that our current (PO)MDP
frameworks are unable to.

1. Provocative Claim

The (PO)MDP frameworks are fundamentally broken,
not because they are insufficiently powerful represen-
tations, but because they are too powerful. We submit
that, rather than generalizing these models, we should
be specializing them if we want to make progress on
solving real problems in the real world.

Preliminary work. Under review by the International Con-
ference on Machine Learning (ICML). Do not distribute.

2. Why (PO)MDPs are Broken

Reinforcement learning has lost track of its roots in
the engineering of autonomous agents, and especially
mobile robots. Ultimately, the family tree of our dis-
cipline roots back in the mathematicization of physics
in the fifteenth and sixteenth centuries. For most of
its history, this branch of science/engineering has been
very closely coupled to the physical world. As a result,
practitioners and theoreticians have almost universally
depended on and exploited the properties of this envi-
ronment. Often, that exploitation has been implicit,
but the history of modern mathematics has, in some
sense, been a quest to make explicit and formal the
significant characteristics of these environments. As
a result, those fields have developed extremely power-
ful and versatile abstractions of spatial environments.
Ideas such as metrics, continuity, locality, topology, in-
variance, scale, etc. form core parts of disciplines from
mathematics through physics and into a myriad of en-
gineerings. But these ideas are precisely the ones that
are missing from our formalisms in RL. We assert that
the lack of these properties is actually a substantial
barrier to achieving our goals.

In our efforts to formalize the notion of “learning con-
trol”, we have striven to construct ever more general
and, putatively, powerful models. By the mid-1990s
we had (with a little bit of blatant “borrowing” from
the Operations Research community) arrived at the
(PO)MDP formalism (Puterman, 1994) and grounded
our RL methods in it (Sutton & Barto, 1998; Kaelbling
et al., 1996; Kaelbling et al., 1998). These models are
mathematically elegant, have enabled precise descrip-
tions and analysis of a wide array of RL algorithms,
and are incredibly general. We argue, however, that
their very generality is a hindrance in many practical
cases. In their generality, these models have discarded
the very qualities — metric, topology, scale, etc. —
that have proven to be so valuable for many, many
science and engineering disciplines. While we are just
beginning to re-develop some of these concepts, situ-

27

ated within the (PO)MDP formalism, we are discov-
ering that the (PO)MDP world-view actually inhibits
our efforts to do so.

Consider the simple example of driving a car across
a city. This is a task that is easy for humans!, and
for which our knowledge generalizes substantially. The
knowledge you acquired when you first learned to drive
(dynamics of the car in different conditions, written
and unwritten traffic rules, navigational skills, etc.) is
easily applied to a wide variety of driving tasks, includ-
ing driving in situations that you have never previously
encountered. The properties of this problem that you
exploit to achieve this impressive performance are not
well supported in the (PO)MDP framework. Specifi-
cally:

1. (PO)MDPs have no natural way to describe or
represent the metric of an environment. Often, a
global or local metric is simple to specify and rules
out many possibilities (such as arbitrary telepor-
tation to any state at any time point) that could
be allowed under some legal (PO)MDP.

A driver has a strong sense of both the “natural”
metric (Euclidean or “as the crow flies” distance)
and the “induced” metric (the graph of roads)
that shape the driving environment. Thus, the
driver can easily reason about locations that are
near or far, discounting or neglecting the effects
of things that are far away.

2. (PO)MDPs do not (natively) recognize the key
differences between different scales. Physics has
taught us that the world behaves very differ-
ently at subatomic, microscopic, macroscopic, and
cosmological scales. Different abstractions, dif-
ferent mathematics, different models, and dif-
ferent predictions are necessary and appropriate
for each. (PO)MDPs have no built-in notion of
scale, and the rich literature on spatial and tem-
poral abstraction (options (Sutton et al., 1999;
Precup, 2000), HAMs (Parr & Russell, 1998),
MAXQ (Dietterich, 2000), hierarchical POMDPs
(Theocharous, 2002), etc.) have only offered par-
tial solutions to date. These approaches all main-
tain the fundamental (PO)MDP worldview and,
as a consequence, translate large, ugly, intractable
(PO)MDPs into. .. Smaller, marginally less ugly,
but still largely intractable (PO)MDPs. What is
needed is a recognition of phase transitions be-
tween different scales.

In the driving task, the world is stochastic at a lo-
cal scale and the control dynamics of the vehicle

'Except in Boston.

28

dominate. At a routing scale, however, the world
is essentially deterministic — drivers do route plan-
ning with static maps and completely neglect low-
level effects like friction and vagaries of traffic pat-
terns.

. (PO)MDPs conflate properties of the environment

with properties of the agent. Often, the environ-
ment itself has very well-defined properties that
are not present in its (PO)MDP representation
because of the stochasticity of agent dynamics.
For example, spatial environments are metric, but
the MDP representation can be non-metric. The
agent’s stochasticity, coupled with the need to av-
erage over all trajectories, can yield asymmetric
“distances” — it is easily possible for the expected
transition time from z to y to be different from
the expectation of the reverse transition. By rep-
resenting both agent and environment in a single
framework, we have lost track of a very powerful
property.

Drivers draw a clear separation between proper-
ties of the environment — distances and the road
graph, traffic rules and conditions, etc. — and
properties of the agent — their own reaction time,
dynamics of the vehicle, etc. This allows them to
generalize large chunks of environment-dependent
knowledge across different vehicles or chunks of
control/dynamics knowledge across different en-
vironments (cities).

. The (PO)MDP framework is tied to an absolute

coordinate frame. Every atomic state has its own,
potentially unique, transition and reward func-
tions that must be learned, even though there may
be many similar regions in the problem. For ex-
ample, in the classic gridworld domain, there is
one state per grid cell. However, many cells in the
middle of the domain are “similar” in the sense
that they have the same optimal local policy, in
a relative coordinate frame. If we can recognize
and exploit this similarity, we can make learning
much more efficient and effective.

In the physical world, one chunk of pave-
ment is essentially indistinguishable from another
chunk. All straight, two-lane roads are essen-
tially the same, regardless of whether they oc-
cur in Chicago, St. Louis, or the middle of the
Saskatchewan countryside. Traffic lights behave
the same all over North America, as do yield
signs. Humans exploit these regularities to trans-
late policies among different driving experiences
in different locations, but (PO)MDPs have no way
to capture such generalizations.

5. The (PO)MDP framework is strongly inclined to-
ward discrete state spaces, where each state is
only related to other states by its transition prob-
abilities. Many problems have a natural order-
ing of states, but this is ignored by the gen-
eral model. Recognition of this ordering means
that we can effectively generalize from known
to unknown states, and dramatically reduce the
amount of experience we need to learn a good so-
lution. Most commonly, we discretize a continu-
ous state space or employ a function approximator
(such as a neural network). In doing so, however,
we often discard or neglect the metric properties
of the world. Some techniques have embraced and
exploited these properties (Perkins & Barto, 2001;
Perkins & Barto, 2002), but we do not yet have a
general approach to using the properties of con-
tinuous state spaces to improve our RL.

Driving, is of course, a continuous problem and
humans rely on that continuity to adapt control
policies to situations that are “close” to what we
have previously experienced. In most cases, it
doesn’t matter whether the vehicle is precisely
centered within its lane or if it is a few centimeters
left or right. The control policies are essentially
the same in all of these cases. Further, while the
general driving task is a highly nonlinear control
problem, in sufficiently small regions, it is effec-
tively linear and can be locally controlled with
well-understood control theory.

We are hardly the first to have recognized many of
these shortcomings. The rich body of work in different
forms of RL abstraction is a sign of general recogni-
tion by the community of many of these flaws. Our
contribution is the meta-claim: we should stop focus-
ing on the completely general case and, instead, spend
effort identifying key properties of important special
cases and focus on building RL algorithms well-suited
to those cases. In spatial navigation, for example,
metric, scale, topology, etc., are natural properties to
study and leverage. Other domains likely possess simi-
lar important domain constraints. In game playing, for
example, the very basic principles of turn-taking and
moving one piece per turn both dramatically constrain
possible transition functions. In both cases, employ-
ing a highly general representation, like the (PO)MDP
framework, forces our learning agent to spend immense
amounts of valuable experience to learn properties
that we already know a priori. The agent must prune
out a large space of impossible models before it can fo-
cus on what we care about — optimizing performance
within the space of relevant models.

We are not trying to suggest that the (PO)MDP
framework is without merit or that there are no prac-
tical uses for it. Clearly, there are a number of very
important practical successes of this approach. Many
of our key insights about the theory of RL were also en-
abled by this view. And there certainly are, and will
continue to be, systems that can only be effectively
modeled via (PO)MDPs. But what we are suggesting
is that the (PO)MDP framework is fundamentally the
wrong level of abstraction for many tasks. In some
sense, RL with (PO)MDPs is a bit like programming
in assembly language — you can implement anything
eventually, but it’s excruciating and you would really
rather program in Python.?

3. Current Results

We have begun some preliminary work to back up our
inflammatory rhetoric. In this section, we give some
rough sketches of this work, and then go on to outline
a future research agenda.

3.1. Metric Environments and Envelopes

We have examined the properties of MDPs embedded
in environments with metrics. Most “gridworld”-style
domains that we have seen are (perhaps loosely) based
on such environments, as are a number of more “real-
istic” tasks such as mountain car and tractor backup.
We are interested in exploiting this metric to our ad-
vantage.

The basic intuition is that the metric of a space im-
poses a “speed limit” on the agent — the agent can-
not transition to arbitrary points in the environment
in a single step. Every step can reach, at most, some
set of states “local” (with respect to the metric) to
its current location. Thus, the transition function is
quite sparse — most potential transitions have zero
probability. This general observation has been made
previously, but we have shown that this property can
be used to derive a strong “envelope” bound (Dean
et al., 1995). Specifically, we have shown that, when
doing point-to-point navigation, an agent’s trajectory
remains within an elliptical envelope with high proba-
bility (Lane & Wilson, 2005). If the probability param-
eters are chosen correctly, the part of the state space
beyond the envelope can be neglected for the purposes
of planning because its impact on the agent’s regret is
insignificant. An example of such an envelope bound
is shown in Figure 1 for an “open space” topology.
The result can, however, be extended to more general

2Insert your own religiously held One True Program-
ming Language here.

29

Figure 1. Illustration of the metric envelope bound for
point-to-point navigation in an open-space gridworld en-
vironment. The outer, lighter gray region is the elliptical
(with respect to Manhattan metric) envelope that contains
90% of the trajectory probability mass. The inner, darker
region is the set of states occupied by an agent in a total
of 10,000 steps of experience (319 trajectories from bottom
to top). Note that the envelope bound is a bit loose, but
succeeds in containing the agent’s trajectories.

topologies. Interestingly, in a general metric topology,
the bound remains an ellipse, but now with respect
to that topology. E.g., the ellipse “wraps around the
corner” to connect states separated by a wall segment.

The significance of this result is twofold. Most
straightforwardly, an agent can neglect large parts of
the state space when planning. More importantly,
however, this result implies that control experience
can be generalized across regions of the state space.
If the agent learns a good policy for one bounded
region of the state space, and it can find a second
bounded region that is homeomorphic to the first (in
the sense given by Ravindran and Barto (2002; 2003;
2004)), then the previously learned policy applies to
the new region as well. When the environment is rea-
sonably “regular” (having a large degree of repeated
local structure), policy reuse could speed learning dra-
matically.

3.2. Learning and Planning with Manifold
Representations

Our previous work has shown that a manifold-based
value-function representation is effective for RL prob-
lems with continuous state spaces (Glaubius & Smart,
2004; Smart, 2004). Informally, a manifold represen-
tation models the domain of the value function using
a set of overlapping local regions, called charts. Each
chart has a local coordinate frame, is a (topological)

Figure 2. A simple navigation domain, covered with charts.

disk, and has a (local) Euclidean distance metric. The
collection of charts and their overlap regions is called a
manifold.?> We can embed partial value functions (and
other models) on these charts, and combine them, us-
ing the theory of manifolds, to provide a global value
function (or model). If we allocate these charts cor-
rectly, then they will model the topology of the prob-
lem domain. As an example, consider the simple nav-
igation domain shown in Figure 2. Although the do-
main has a Euclidean coordinate frame, it is topologi-
cally cylindrical, because of the impassable area in the
middle. The manifold formed by these charts is also
topologically cylindrical.

Notice that the charts fall into thirteen equivalence
classes (shown in Figure 3): those with nothing
in them, those with an “inside” corner in them (4
classes), those with an “outside” corner (4 classes),
and those with a straight wall.* This means that,
with some suitable translations, we can learn models in
these thirteen classes, and apply them to each instance
of an actual chart. This can dramatically reduce the
amount of experience that we need for learning. If
we are willing to do some more work, we can reduce
this to four equivalence classes (empty, “inside” cor-
ner, “outside” corner, and wall). However, this a more
complex mapping between the world and the equiva-
lence class, and might also necessitate transformations
between actions.

We can also view this manifold as a graph, where the

charts correspond to nodes, and the overlaps corre-

3This is not quite the whole story, but it’s close enough.
See our papers (Glaubius & Smart, 2004; Smart, 2004), or
a general topology text (for example, Lefschetz (1949)) for
the full details.

“We ignore areas outside of the world, so there are no
walls with two sides.

30

empty

A

"inside" corner

B

"outside" corner

| 1

wall

i n

Figure 3. Thirteen chart equivalence classes. Taking ad-
vantage of rotational invariances as well could reduce this
set to four.

spond to edges. This, combined with the local coordi-
nate frames of the charts, allows us to define relative
relationships between the charts. The graph represen-
tation also allows us to apply graph algorithms, allow-
ing us to operate at the level of charts, which gives us
a measure of abstraction.

On each of the charts, we can still operate at the level
of raw (PO)MDPS, and rely on the manifold structure
to blend the results between overlapping charts. We
can treat the graph of charts as another (PO)MDP,
where the actions correspond to local controllers in
each of the charts. Once we have a chart-to-chart
path, we can learn local controllers in each of the
charts. Since each chart is locally Euclidean, we (claim
that we) can use value-function approximation tech-
niques and dense reward functions to accelerate learn-
ing within the chart. This will result in a set of partial
controllers that will get us to the goal state. As we
move towards the goal, we can also learn the transi-
tion function, T', for each chart. Once we reach the
goal, we can calculate the actual (global) value func-
tion backwards through the charts, using our experi-
ences, the “real” value function, and our learned tran-
sition model.

4. Research Agenda

The observations and (somewhat tongue in cheek)
polemic of this paper lead us to the following research
agenda: we intend to employ the tools of metric topol-
ogy to develop efficient and powerful RL systems spe-
cialized for spatial navigation problems. Specifically,
we are interested in the environments/tasks with the
following properties:

metric For all z and y in the space, d(x,y) is well
defined. d need not be globally uniform — it can
differ from region-to-region — but it must be pos-
sible to compare any pair of points.

topology Every point x in the space has a “local re-
gion” — a set of points within some d-ball around
2. (This emerges as a consequence of the metric
(Munkres, 1975), but is worth stating explicitly
because it carries certain useful properties on its
own.) The charts in Section 3.2 are examples of
such regions.

regularity The environment has significant repeated
substructure. E.g., there are many homeomorphic
local regions (in the topological sense). Regularity
improves experience reuse.

In addition, for many environments, it is useful to add:

locally linear Every topological region (e.g., chart)
of the space is homeomorphic to a Euclidean disk.
This allows a local coordinate frame for each re-
gion/chart and also supports function approxima-
tion via mapping to/from Euclidean space.

properties Every point is a member of one or more
equivalence classes, denoted properties. Equiva-
lence classes are defined in terms of the agent’s
dynamics at that point — all points for which the
agent’s transition function is homeomorphic are
considered equivalent and assigned a property la-
bel. Properties can be common-sense quantities
such as mud or open-space, or can be purely for-
mal expressions of regularity in the environment.
Properties allow us to easily capture and describe
relevant facts about the agent’s local dynamics
and to generalize experience over the world.

These settings may be too restrictive/general, so part
of our investigation will be analyzing the really useful
set of criteria.

Given such environments, our first steps will be to
combine the metric-based envelope bounds work (Sec-
tion 3.1) with the chart/manifolds work (Section 3.2).
The high-level idea is to first detect the presence of
properties/equivalence classes in the environment by
clustering transition experience. Then the environ-
ment can be segmented into charts at the equivalence
class boundaries. The charts will be stitched together
into a global manifold through a connectivity graph.
RL will be used to develop short-range “local con-
trollers” that can move from one chart to another.
Then higher-level learning and planning can be done

31

on the manifold (graph) representation. The metric of
the space, plus the envelope bounds, assure us that at
least path planning can be done on this representation.
Policy generalization at the manifold level will come
from detecting repeated local structure (isomorphic
subgraphs), where locality is again defined in terms
of metric-based envelopes.

Ultimately (and ambitiously), we think that it will be
possible to learn and plan at multiple levels of ab-
straction simultaneously. E.g., at the lowest, “atomic”
level, we can learn about agent dynamics within indi-
vidual charts. At the next level up we can learn the
partition of the environment into charts and the rela-
tions among charts. Above that, we must recognize
and generalize over collections of charts or subgraphs
of the manifold. This problem is essentially a rela-
tional learning problem and is known to be quite chal-
lenging, but techniques for this are becoming avail-
able. At the very highest levels, it may be possible to
work with fully deterministic models (such as graph
planners, as proposed by Lane and Kaelbling (2002))
because the low-level uncertainty of the world will be
abstracted away through long-run temporal averages.

References

Dean, T., Kaelbling, L. P., Kirman, J., & Nicholson, A.
(1995). Planning under time constraints in stochastic
domains. Artificial Intelligence, 76.

Dietterich, T. G. (2000). An overview of MAXQ hi-
erarchical reinforcement learning. In B. Y. Choueiry
and T. Walsh (Eds.), Proceedings of the symposium
on abstraction, reformulation and approximation (sara
2000), Lecture Notes in Artificial Intelligence. New York:
Springer Verlag.

Glaubius, R., & Smart, W. D. (2004). Manifold represen-
tations for value function approximation. Proceedings of
the the AAAI-04 Workshop on Learning and Planning
in Markov Processes (AAAI Technical Report WS-04-
08) (pp. 13-18).

Kaelbling, L. P.; Littman, M. L., & Cassandra, A. R.
(1998). Planning and acting in partially observable
stochastic domains. Artificial Intelligence, 101.

Kaelbling, L. P., Littman, M. L., & Moore, A. W. (1996).
Reinforcement learning: A survey. Journal of Artificial
Intelligence Research, 4, 237-277.

Lane, T., & Kaelbling, L. P. (2002). Nearly deterministic
abstractions of Markov decision processes. Proceedings
of the Fighteenth National Conference on Artificial Intel-
ligence (AAAI-02) (pp. 260-266). Edmonton, Canada:
AAAI Press.

Lane, T., & Wilson, A. (2005). Toward a topological
theory of relational reinforcement learning for naviga-
tion tasks. Proceedings of the Eighteenth International
Florida Artificial Intelligence Research Society Confer-
ence (FLAIRS-2005). Clearwater Beach, FL: AAAI
Press. to appear.

Lefschetz, S. (1949). Introduction to topology. Princeton
University Press.

Munkres, J. R. (1975). Topology: A first course. Prentice
Hall.

Parr, R., & Russell, S. (1998). Reinforcement learning with
hierarchies of machines. Advances in Neural Information
Processing Systems. The MIT Press.

Perkins, T. J., & Barto, A. G. (2001). Lyapunov-
constrained action sets for reinforcement learning. Pro-
ceedings of the FEighteenth International Conference
on Machine Learning (ICML-2001) (pp. 409-416).
Williams College, MA: Morgan Kaufmann.

Perkins, T. J., & Barto, A. G. (2002). Lyapunov design for
safe reinforcement learning. Journal of Machine Learn-
ing Research, 3, 803-832.

Precup, D. (2000). Temporal abstraction in reinforcement
learning. Doctoral dissertation, Department of Com-
puter Science, University of Massachusetts, Amherst,
MA.

Puterman, M. L. (1994). Markov decision processes: Dis-
crete stochastic dynamic programming. New York: John
Wiley & Sons.

Ravindran, B. (2004). An algebraic approach to abstraction
in reinforcement learning. Doctoral dissertation, Depart-
ment of Computer Science, University of Massachusetts,
Ambherst, MA.

Ravindran, B., & Barto, A. G. (2002). Model minimization
in hierarchical reinforcement learning. Proceedings of
the 2002 Symposium on Abstraction, Reformulation, and
Approzimation (SARA-2002).

Ravindran, B., & Barto, A. G. (2003). Relativized op-
tions: Choosing the right transformation. Proceedings
of the Twentieth International Conference on Machine
Learning (pp. 608-615). Washington, DC: AAAI Press.

Smart, W. D. (2004). Explicit manifold representations for
value-functions in reinforcement learning. Proceedings of
the Eighth International Symposium on Artificial Intel-
ligence and Mathematics. Paper number AI&M 25-2004.

Sutton, R. S., & Barto, A. G. (1998). Reinforcement learn-
ing: An introduction. Cambridge, MA: MIT Press.

Sutton, R. S., Precup, D., & Singh, S. (1999). Between
MDPs and semi-MDPs: A framework for temporal ab-
straction in reinforcement learning. Artificial Intelli-
gence, 112, 181-211.

Theocharous, G. (2002). Hierarchical learning and plan-
ning in partially observable markov decision processes.
Doctoral dissertation, Michigan State University, East
Lansing, MI.

32

A Hierarchical Approach to Efficient Reinforcement Learning

Michael L. Littman
Carlos Diuk
Alexander L. Strehl

MLITTMAN@QCS.RUTGERS.EDU
CDIUK@QCS.RUTGERS.EDU
STREHL@QCS.RUTGERS.EDU

Department of Computer Science, Rutgers University, Piscataway, NJ 08854-8019 USA

Abstract

Factored representations, model-based learn-
ing, and hierarchies are well-studied tech-
niques for improving the learning efficiency
of reinforcement-learning algorithms in large-
scale state spaces. We bring these three ideas
together in a new algorithm we call MaxQ-
Rmax. Our algorithm solves two open prob-
lems from the reinforcement-learning litera-
ture. First, it shows how models can im-
prove learning speed in the hierarchy-based
MaxQ framework without disrupting oppor-
tunities for state abstraction. We illustrate
the resulting performance gains in a set of
example domains. Second, we show how hi-
erarchies can augment existing factored ex-
ploration algorithms to achieve not only low
sample complexity for learning, but prov-
ably efficient planning as well. We prove
polynomial bounds on the computational ef-
fort needed by MaxQ-Rmax to attain near-
optimal performance within the hierarchy
with high probability.

1. Introduction

In the Markov decision process (MDP) formalization
of the reinforcement-learning (RL) problem (Sutton
and Barto 1998), a decision maker interacts with an
MDP environment consisting of a finite state space S
and action space A. Transitions are controlled by a
Markov function where P(s,a,s’) = Pr(s'|s,a) is the
probability of reaching state s’ € S after action a € A
in state s € S. The decision maker receives reward
value R(s,a) for action a in state s and attempts to
maximize the expected cumulative reward.

Appearing in Proceedings of the ICML’05 Workshop on
Rich Representations for Reinforcement Learning, Bonn,
Germany, 2005. Copyright 2005 by the author(s)/owner(s).

In the current paper, we assume all MDPs consist of
only negative rewards (R(s,a) < 0) except for a set of
final states F' C S that end the process when reached.
We further assume that there are short solutions—
policies that achieve e-optimal return with probability
1 — ¢ within T steps for some relatively small T'. This
property holds for all discounted models, but also for
more general models. It also implies that the optimal
value function is unique.

A number of reinforcement-learning algorithms have
been studied (Sutton and Barto 1998), some of which
have been shown to find optimal policies under well-
understood conditions. In analyzing algorithms, there
are two principle sources of complexity to be con-
sidered. The first, sample complezity, defines the
amount of real-world experience needed by an al-
gorithm to achieve near optimal results. The sec-
ond, computational complexity, specifies the amount
of computational work required per experience. We
seek algorithms with low sample and computational
complexity—both bounded by polynomials in critical
parameters of the environment.

DYNA (Sutton 1990) and prioritized sweeping (Moore
and Atkeson 1993) showed how learning transition
models can empirically decrease sample complex-
ity at increased computational complexity. Recent
work (Kearns and Singh 2002; Brafman and Tennen-
holtz 2002) has shown how model-based methods can
provide formal polynomial-time bounds on both sam-
ple and computational complexity in MDPs.

Structure has long been recognized as important
in computationally efficient sequential decision mak-
ing (Boutilier et al. 1999). Dynamic Bayes Nets
(DBNs) have emerged as a popular formalism
for succinctly representing and solving large-scale
MDPs (Koller and Parr 2000) and we adopt this
factored-state framework in this paper.

In addition to structure in the state space, many re-
searchers have studied algorithms that exploit hierar-

33

chical structure in the policy space (Kaelbling 1993;
Hengst 2002). These methods have empirically pro-
vided relatively modest improvements in sample com-
plexity over baseline RL approaches.

Kearns and Koller (1999) showed how model-based
learning can be combined with factored states to pro-
vide polynomial sample-complexity bounds. An open
problem from this work is achieving a polynomial
computational-complexity bound. Dietterich (2000c)
showed how factored states and hierarchy could be
combined effectively, empirically improving sample
complexity and reducing the number of parameters
to be learned. Dietterich (2000b) also recognized the
importance of combining models, factored states, and
hierarchy, but found that the resulting learned hier-
archical models no longer benefited from the factored
representation.

The contribution of the current work is the combina-
tion of factored states, hierarchy and models, resulting
in solutions to two important open problems. First,
it shows how models can be combined with hierar-
chy without disrupting the benefits of factored states.
The resulting algorithm exhibits greatly reduced sam-
ple complexity compared to model-free learning. Sec-
ond, our combination of methods retains the polyno-
mial sample complexity of existing combinations of
models with factored states, with the hierarchy pro-
viding an approach to efficient planning in the learned
models. Thus, we present the first factored-state
reinforcement-learning algorithm with both polyno-
mial sample and computational complexity. Section 4
illustrates our algorithm on a class of MDPs.

2. Factored-State MDPs

A factored-state MDP is one in which the state vari-
ables are factored into independently specified compo-
nents. Let X be the set of state factors and, for all
x € X, D(z) is the domain of values that factor x can
take on. We write v = ®,(s) as the value of factor =
in state s.

For a factored representation to provide a representa-
tional advantage over the standard tabular MDP rep-
resentation, it is important that the transition proba-
bilities and rewards support a structured representa-
tion. The assumption we adopt here, which generalizes
the standard DBN representation, is that the probabil-
ity that a factor x takes on a particular value v after a
state transition in action a is a function of the cluster ¢
of the state s.! We write K (s, a) as the cluster for state

In DBNs, the cluster is determined by by the joint
assignment of the parents of X.

s under action a and P*(c, a, v) as the probability that
a state from cluster ¢ will transition to one that has
factor x equal to v. Using this notation, for each action
a € A and factor x € X, transition probabilities are
represented as Pr(s’|s,a) = [[,cx Pr(®.(s")[s,a) =
[Licx Pr(®.(s")|K(s,a),a) = [[,cx P*(c,a,v) where
v=>®,(s") and c = K(s,a).

Similarly, we assume that reward functions are speci-
fied using the state clusters: R(s,a) = R(c,a) where
c=K(s,a).

2.1. Factored Rmax

Rmax is a reinforcement-learning algorithm intro-
duced by Brafman and Tennenholtz (2002) and shown
to have PAC sample complexity by Kakade (2003)
(Brafman and Tennenholtz (2002) showed it was PAC
in a slightly different setting). Factored Rmax is the
direct generalization to factored MDPs (Guestrin et
al. 2002). Factored Rmax is model based in that it
maintains a model M’ of the underlying factored MDP
and, at each step, acts according to some optimal pol-
icy of its model. In this section, we’ll describe the
model used by Factored Rmax.

To motivate the model used by Factored Rmax, we’ll
describe at a high level the main intuition of the algo-
rithm. Consider a fixed state factor z, action a, and
cluster ¢ (¢ = K(s,a) for some state s). There ex-
ists an associated distribution P*(c,a,-) and reward
R(c,a). The agent doesn’t have access to these values,
however, and they must be learned. The trick behind
Factored Rmax is to use the agent’s experience only
when there is enough of it to ensure decent accuracy,

with high probability.

Let x be some user-defined constant that is given
to Rmax as input at the beginning of a run. For
each distribution P?(c,a,-), Rmax maintains a count
Ka(,v,¢) of the number of times it has taken action a
from a state s for which K (s,a) = cand v = ®,(s). As
long as k.(z, v, c) < k, Rmax assumes that any transi-
tion from s under a causes state value x to become e,
an additional value added to each domain D(x). Once
a state value becomes e, a transition under any action
cannot change it from being equal to e. Addition-
ally, the reward for any state that has a state variable
with value e is equal to Rpyax, the maximum possi-
ble reward (zero in our case). On the first timestep
such that k.(z,v,¢) = k, Rmax updates its model to
use the empirical distribution as an approximation of
P*(c,a,-), and the empirical reward for R(c,a).

The crux of the argument proving that Factored Rmax
has a polynomial sample complexity relies on the fol-

34

lowing techincal lemma, whose proof we omit here.

Lemma 1 (Simulation Lemma) Let M be a factored
MDP over n state variables and let M be an a-
approximation of M, meaning that it is also a fac-
tored MDP with the same set of states, actions, DBNs,
and reward function as M, and satisfies the condition
that | P*(c,a,-) — P*(c,a,-)| < a, for all actions a and
clusters ¢, where pz(c,a, \) is the empirical distribu-

tion. There exists a constant k such that if o = k(5),

then the value of the optimal policy ™ ofM in the MDP
M is e-optimal.

3. The Max(Q Value-Function
Decomposition

One model of a task hierarchy in an MDP is to de-
compose the main task of maximizing reward en route
to a terminal state into subtasks, each with its own
terminal states and perhaps subtasks of its own.

Each task 1 <4 < I in the hierarchy can be viewed as
a self-contained MDP with final states F; and action
set A;. Actions j € A; can be either the primitive
actions of the MDP or subtasks j > i. The root task
i =1 uses F; = F the final states of the actual MDP.
For simplicity, each primitive action a is a task ¢ with
A; = {a} and F; = S (they terminate immediately
after executing).

A hierarchical policy m = (m1,...,7nr) is a policy for
each task i, m; : S — A;. Policy m; is considered locally
optimal if it achieves maximum expected reward given
subtask policies m; for 7 > 4. Similarly, we define a
locally e-optimal policy m; as one that achieves within
€ of the maximum expected reward given the fixed
policies of its subtasks. If local optimality holds for all
tasks, the corresponding hierarchical policy is called
recursively optimal. We introduce the term recursively
e-optimal to mean that local e-optimality holds at all
levels of the hierarchy. Our Maxg-Rmax algorithm
finds a recursively e-optimal policy with polynomial
sample and computational complexity.

3.1. Recursive Solution

The state (V) and state-action (Q) forms of the
Bellman equations are well known (Sutton and
Barto 1998). Dietterich (2000a) implicitly proposes
an alternative—the completion-function form:

C(s,a) = Z P(s,a,s") n}z:a/ux(R(s’, a)+C(s'a")).

Given a representation for the reward function, the
completion function can be used to recover Q(s,a) =

R(s,a) + C(s,a), V(s) = max, Q(s,a), and 7(s) =
argmax, Q(s,a).

Given e-approximate transition and reward functions
P and R and the task hierarchy, we can compute a hi-
erarchically e-optimal policy by deifning a hierarchical
completion function as follows. We consider the set of
tasks 4 in reverse order from i = I to i = 1. For each,
we determine a completion function C?. If i is the task
for primitive action a, we define C?(s,a) = 0.

For higher-level tasks i, we solve the MDP with actions
A;, states S, and final states F;, where the transition
function for action j € A; is P(s,s’) and its reward
function is R7(s). In other words, each subtask j is
treated like an action that has a reward and a prob-
abilistic transition to some state s’ € F;. The MDP
solution produces C?. Specifically, for s € F; we define
C'(s,j) := 0. Otherwise, we define the task comple-
tion function as follows:

Ci(s,9) = D_ PI(s,5') max (R (s)) + C'(5', 7))

s'€F;

Computing R’(s) and P7(s,s’) can be achieved by
solving systems of linear equations: if s € Fj,
Pi(s,s') =1 and RI(s) = 0; otherwise,

Z P*(s,51)P7(s1,5') and

S1

R*(s) + C9(s, k) (1)

Pi(s,s") =

Ri(s) =
where k = 77 (s).

In this construction, each task adopts an optimal pol-
icy given the subtasks, so m = (m1,... ,7r) is a recur-
sively optimal policy for the MDP specified by P and
R.

It is well known that if a learning agent solves a model
that is a close approximation to the true MDP, the
agent can compute a near optimal policy from its
model (Kearns and Singh 2002). This implies that
a recursively optimal policy for an MDP with P and
R close to P and R yields a recursively e-optimal pol-
icy. To see this fact, note that at each step of the
algorithm, the fixed policies of the descendents j > i
of the current task ¢ imply an MDP for the current
task. Consider any policy 7 for i given fixed policies
for tasks 57 > i. This policy implies a Markov chain on
the MDP M (where the states of M may be augmented
with task information to achieve action restriction).
Every transition in the Markov chain corresponds to
a transition in M involving a primitive action. Thus,
the result mentioned above applies to this setting, and
a e-optimal policy is found given the fixed policies of
the current nodes descendant.

35

3.2. Abstraction

Dietterich (2000c) described how to combine state ab-
straction with a hierarchical task decomposition. For
each task i, define Z; C S to be the set of abstract-
state representatives, and define an abstraction func-
tion ¢; : S — Z; mapping states to their abstract rep-
resentatives. We assume that abstract states are their
own representatives: for all z € Z;, ¢;(2) = z. An
abstract policy and an abstract completion function
differ only for states with different representatives.

Similar to Dietterich (2000c), we say an abstraction is
valid if the abstract completion function does not incur
any approximation under any abstract policy. Define
the abstract transition function P} : S x Z; — R as
Pl(s,z') = DosES st bi(s)=z! Pi(s,s'). We adopt the
following concrete assumptions, which imply a valid
abstraction:

1. Forall s € S, 2/ € Z; and j € A;, Pg(s,z’) =
P!(¢i(s),2’). That is, the total probability of
a transition to states in an abstract class is de-
pendent only on the abstract class of the current
state.

2. For all 5,5’ € S, j,k € A, if P/(s,s') > 0, then
RF(s") = R¥(¢i(s")). That is, for any reachable
next state, the reward function depends only on
the abstract class.

These assumptions imply a valid abstraction because
the unique solution to the abstract completion func-
tion, defined by

Ci(z.4) = Y Pl(z.#) max(R*(2') + C'(<', k) (2)

2'€Z; ‘

matches the completion function for all states z € Z;.
This result follows from the uniqueness of the value
function and algebraic substition using the assump-
tions above.

The abstract completion function can be used to com-
pute task rewards and policies as follows. First,
we extend the abstract completion function to all
states in the obvious way: Ci(s,j) = C¥(¢;(s),7).
Next, we can define the reward function recursively
by Ri(s) = R(s,a) if i is subtask for primitive action
a, R'(s) = maxjea, (R?(s) + C(s,)) otherwise. Fi-
nally, these quantities can be used to define a policy
via m;(s) = argmax;c 4, (R’(s) + C'(s, j)). Note that
these computations can be performed in polynomial
time in the size of the task hierarchy as long as results
are cached (each task should only compute its reward
function once for a state).

3.3. An Example Domain

The main MDP environment we used for testing is
called bitflip. This domain has several qualities that
make it suitable for our tests, including an exponen-
tial and scalable state space, an exponential set of Q
values, linear set of completion values, and abstrac-
tions that can potentially reduce the size by an expo-
nential factor. For the domain bitflip(n), meaning an
instance of bitflip with n bits, the states are all binary
n-bit numbers. There are n actions, with action flip(¢)
corresponding to “flip the ith bit”. The actions don’t
always succeed. In particular, if action flip(¢) is exe-
cuted, the behavior depends on the bits to the left of
i (7 such that j > 7). If any of these bits are set to 1,
the action fails and all bits j > i are set to 1. Other-
wise, the ith bit is flipped with probably 0.75. With
probability 0.25, nothing happens. The reward func-
tion is deterministic; whenever action ¢ is executed,
a reward of —2° is received. There is one final state,
the state where all bits are equal to zero. Note that
V(s) = —4/3 s where s is the state interpreted as an
integer in binary. Thus, there are 2™ distinct V and @
values.

We now describe the hierarchy for bitflip. For each
i there is a subtask, clear(i), which terminates when
the leftmost ¢ bits are all zero. The subtasks available
to clear(i) are flip(i) and clear(i — 1). The subtask
clear(n) is the root task. The abstraction function
for flip() maps all states to four representative states.
They correspond to the combinations of bit ¢ being 0
or 1, and all bits to the left of i being 0 or at least
having a 1. This abstraction is valid and results in
an abstract completion function with fewer than 8n
distinct values.

3.4. A Sampling-Based Hierarchical Planner

Section 3.1 describes how to find a recursively optimal
policy given an MDP model and a task hierarchy. Via
the completion function, it finds an optimal policy for
each task by constructing a model of the lower-level
tasks and treating them as primitive actions.

Equation 2 provides an alternative formulation of the
completion function based on abstraction that can re-
sult in a considerably smaller representation at each
task. Solving for the abstract completion function C
requires knowledge of the abstract transition function
P and the reward function R for each of the abstract
state representatives. Unfortunately, the analog of
Equation 1, which defines MDP models of subtasks,
can no longer be formulated in the abstract setting
since each task may have its own abstract state space.

36

Instead, we propose the following sampling-based
scheme for estimating P and R sufficiently accurately
to produce an e-optimal policy for each task.

Once again, the algorithm proceeds by developing poli-
cies for each task ¢ from ¢ = I down to i = 1. To
compute the abstract completion function for task i,
the algorithm estimates the abstract transitions and
reward functions. For each subtask j € A; and each
abstract state representative z € Z;, the algorithm
executes the policy 7;, recursively if necessary, from
state z for up to T steps, recording the total reward r
and final state s’ reached. If no final state is reached
in T steps, r is set to zero. This process is repeated
m times, for a value of m to be specified below. After
the sampling process is complete (at most mT steps),
the algorithm computes I@’z (z,2') as the fraction of the
m runs in which a final state s’ was reached such that
¢i(s') = /. Similarly, R7(z) is the average of the r
values over the m runs.

Using these estimates for P and R, Equation 2 can
be used to compute the abstract completion function,
thus concluding the policy determination for task i.

There are several key insights used to prove the effi-
ciency of the algorithm described above. We provide
only a sketch of the argument needed. We make the
simplifying assumption that rewards are determinis-
tic (relaxing this assumption is possible) and bounded
above —1. First, note that if the agent has a model
that is an (¢/7T)-approximation of the true MDP, then
an optimal policy based of its model will be e-optimal
(Kakade 2003) in the true MDP. Second, we note that
an individual sample trajectory of the type above can
be viewed as a random draw from some distribution
(over next representative states). Thus, an application
of any bound on the L distance between the empirical
and true distribution can be applied to choose a valid
m. For example, Kakade (2003) used one to prove that
Rmax has polynomial sample complexity.

4. Preliminary Empirical Results

We tested MaxQ and Factored Rmax in the bitflip
domain. We’ve also implemented MaxQ-Rmax, but
the results are too preliminary to report at this time.
The results show that, as expected, Rmax has poor
computational complexity and Max(Q has poor sam-
ple complexity. We hope to report positive empirical
results for MaxQ-Rmax by the workshop.

Our testing methodology was to evaluate the agent’s
learned policy after each episode on a number of exam-
ple states of the environment. The evaluation states
were picked to follow a standard structure based on

Number of Timesteps
Until Optimal Behavior

Domain Size (Bits)

Figure 1. Number of steps per problem size until algorithm
reaches optimal policy for the given start states.

Avg Time

4500

6 4000

B

'E] 3000

(=]

§E =0

é.ﬁ 2000
£0

Sz 1500
<

> 1000

500

4 5 6 7 8 9 10
Domain Size (Bits)

Figure 2. Average running time per step in Factored-
Rmax.

the number of bits n: all 1s (11..11), single 1 in the
center (0..010..0), first half 1s (1..10..0), second half 1s
(0..01..1), by quarters (1.10.01.10.0) and alternating
1s (101010...). Once an optimal policy is found, the
trial stops and we record the length (number of action
choices) and computer time for the trial. Each exper-
iment is repeated for twenty trials and all the results
are averaged. We tested each algorithm on bitflip(n),
where we allowed n to increase until one of two ter-
mination conditions were satisfied: when a value of n
is reached for which the algorithm took longer than
thirty minutes on a single trial, or when the number
of action choices reached thirty thousand.

Each algorithm has a number of parameters. For Fac-
tored Rmax, the main parameter is the Rmax constant
C. For MaxQ, one must specify the value of € for ex-
ploration and its decay rate. We did a broad search of
these parameters for each domain and chose the set-
ting that gave the best performance for each algorithm
and problem size.

As we can see from the Figure 1, the sample complex-
ity of Factored Rmax grows linearly in the number
of factors of the domain, yet the computational cost
grows exponentially (Figure 2). As expected, the in-
verse holds for MaxQ (Figures 1 and 3).

37

Ayg Time

Computation Time
Until Optimal Behavior

4 5 6 7 8 9 10 1 12
Domain Size (Bits)

Figure 3. Average running time per step in MaxQ.

5. Conclusion

We have designed a novel algorithm that combines fac-
tored representations, model-based learning, and hier-
archies to provide a formal guarantee on learning time
in many large reinforcement-learning domains. Em-
pirical results indicate that, for a simple extensible
class of MDPs, existing algorithm fail to provide either
efficient sample complexity or efficient computational
complexity. Ongoing empirical work will demonstrate
how the theoretical assurances of our hybrid algorithm
translate to practical advantages.

References

[Boutilier et al., 1999] Craig Boutilier, Thomas Dean,
and Steve Hanks. Decision-theoretic planning:
Structural assumptions and computational leverage.
Journal of Artificial Intelligence Research, 11:1-94,
1999.

[Brafman and Tennenholtz, 2002] Ronen I. Brafman
and Moshe Tennenholtz. R-MAX—a general poly-
nomial time algorithm for near-optimal reinforce-
ment learning. Journal of Machine Learning Re-
search, 3:213-231, 2002.

[Dietterich, 2000a] Thomas G. Dietterich. Hierarchi-
cal reinforcement learning with the MAXQ value
function decomposition. Journal of Artificial Intel-
ligence Research, 13:227-303, 2000.

[Dietterich, 2000b] Thomas G. Dietterich. An
overview of MAXQ hierarchical reinforcement learn-
ing. In Proceedings of the Symposium on Ab-
straction, Reformulation and Approximation SARA
2000, pages 26—-44, 2000.

[Dietterich, 2000c] Thomas G. Dietterich. State
abstraction in MAXQ hierarchical reinforcement
learning. In Advances in Neural Information Pro-
cessing Systems 12, pages 994-1000, 2000.

[Guestrin et al., 2002] Carlos Guestrin, Relu Pa-
trascu, and Dale Schuurmans. Algorithm-directed

exploration for model-based reinforcement learning
in factored MDPs. In Proceedings of the Interna-
tional Conference on Machine Learning, pages 235—
242, 2002.

[Hengst, 2002] B. Hengst. Discovering hierarchy in
reinforcement learning with HEXQ. In Maching
Learning: Proceedings of the Nineteenth Interna-
tional Conference on Machine Learning, pages 243—
250. Morgan Kaufmann, 2002.

[Kaelbling, 1993] Leslie Pack Kaelbling. Hierarchical
learning in stochastic domains: Preliminary results.
In Proceedings of the Tenth International Confer-
ence on Machine Learning, Amherst, MA, 1993.
Morgan Kaufmann.

[Kakade, 2003] Sham M. Kakade. On the Sample
Complezity of Reinforcement Learning. PhD thesis,
Gatsby Computational Neuroscience Unit, Univer-
sity College London, 2003.

[Kearns and Koller, 1999] Michael J. Kearns and
Daphne Koller. Efficient reinforcement learning in
factored MDPs. In Proceedings of the 16th Inter-

national Joint Conference on Artificial Intelligence
(IJCAI), pages 740-747, 1999.

[Kearns and Singh, 2002] Michael J. Kearns and
Satinder P. Singh. Near-optimal reinforcement
learning in polynomial time. Machine Learning,
49(2-3):209-232, 2002.

[Koller and Parr, 2000] Daphne Koller and Ronald
Parr. Policy iteration for factored MDPs. In Uncer-
tainty in Artificial Intelligence, Proceedings of the
Sizteenth Conference (UAI 2000), pages 326-334,
2000.

[Moore and Atkeson, 1993] Andrew W. Moore and
Christopher G. Atkeson. Prioritized sweeping: Re-
inforcement learning with less data and less real
time. Machine Learning, 13:103-130, 1993.

[Sutton and Barto, 1998] Richard S. Sutton and An-
drew G. Barto. Reinforcement Learning: An Intro-
duction. The MIT Press, 1998.

[Sutton, 1990] Richard S. Sutton. Integrated architec-
tures for learning, planning, and reacting based on
approximating dynamic programming. In Proceed-
ings of the Seventh International Conference on Ma-
chine Learning, pages 216-224, Austin, TX, 1990.
Morgan Kaufmann.

38

Hierarchical Reinforcement Learning Using Graphical Models

Victoria Manfredi
Sridhar Mahadevan

VMANFREDQCS.UMASS.EDU
MAHADEVAQCS.UMASS.EDU

Computer Science Dept, 140 Governor’s Drive, University of Massachusetts, Amherst, MA 01003-9264 USA

Abstract

The graphical models paradigm provides a
general framework for automatically learn-
ing hierarchical models using Expectation-
Maximization, enabling both abstract states
and abstract policies to be learned. In this
paper we describe a two-phased method for
incorporating policies learned with a graphi-
cal model to bias the behaviour of an SMDP
Q-learning agent. In the first reward-free
phase, a graphical model is trained from sam-
ple trajectories; in the second phase, policies
are extracted from the graphical model and
improved by incorporating reward informa-
tion. We present results from a simulated
grid world Taxi task showing that the SMDP
Q-learning agent using the learned policies
quickly does as well as an SMDP Q-learning
agent using hand-coded policies.

1. Introduction

Abstraction is essential to scaling reinforcement learn-
ing (RL) (Barto & Mahadevan, 2003; Dietterich, 2000;
Parr & Russell, 1998; Sutton et al., 1999). Temporal
abstraction permits structured initial exploration by
RL agents, allowing reuse of learned activities, and
simplifying human interpretation of the learned pol-
icy. Spatial abstraction decreases the number of states
that need to be experienced, reducing the amount of
memory needed, and capturing regularities in the pol-
icy structure. Given predefined state and policy ab-
stractions, for instance a task hierarchy, existing meth-
ods (Dietterich, 2000; Parr & Russell, 1998; Sutton
et al., 1999) can be used to learn the corresponding
hierarchical policy. One of the most difficult problems
in hierarchical reinforcement learning, however, is how
to automatically learn the abstractions. For instance,

Appearing in Proceedings of the ICML’05 Workshop on
Rich Representations for Reinforcement Learning, Bonn,
Germany, 2005. Copyright 2005 by the author(s)/owner(s).

suppose a MAXQ hierarchy is desired: What should
the tasks be? How should the termination conditions
be defined?

The graphical models framework provides a power-
ful approach to automatically learning abstractions
for hierarchical RL. For example, the abstract hid-
den Markov model (AHMM) proposed by Bui et al.
(2002) is a hierarchical graphical model that encodes
abstract policies; these policies are derived from the
options framework (Sutton et al., 1999) and have asso-
ciated initiation and termination states. Alternatively,
the hierarchical hidden Markov model (HHMM) (Fine
et al., 1998) encodes abstract states.

In this work, we describe the use of graphical models to
automate hierarchical reinforcement learning using im-
itation. The method we propose takes advantage of a
mentor who provides examples of optimal behaviour in
the form of state transitions and primitive actions. We
believe humans exploit similar guidance when learning
complex skills, such as driving.

Previous approaches to automatic abstraction in RL
can be divided into two groups: methods that iden-
tify subgoals, i.e., states or clusters of states, and then
learn policies to those subgoals (McGovern & Barto,
2001; Simsek & Barto, 2004; Mannor et al., 2004)
and methods that explicitly build a policy hierarchy
(Hengst, 2002). Key differences between our method
and previous work are that first, by modifying the
structure of the graphical model, different abstractions
can be learned; second, we learn sub-goals (termina-
tions) and policies simultaneously, rather than sepa-
rately; finally, our method provides a mechanism for
coping with partially observable state through the use
of hidden variables.

Previous work on imitation in the context of RL has
focused on learning a flat policy model. In Price and
Boutilier (2003) a mentor’s state transitions are used
to help the learner converge more quickly to a good
policy. In Abbeel and Ng (2004), the observer’s re-
ward function is unknown; instead, a mentor’s state

39

transitions and feature expectations are used to iden-
tify a policy with similar feature expectations, where
features are a mapping over states and feature expec-
tations partially encode the value of the policy. In
comparison, graphical models provide a mechanism for
learning by imitation where the mentor learns not to
just imitate the teacher but learns the task structure
implicit in the higher level subgoals in the mentor’s
policy. This inference involves computing a distribu-
tion over the mentor’s higher-level policies from its
state transitions and actions with higher level policy
variables treated as hidden variables. While not stud-
ied here, rewards could additionally be incorporated
into the graphical model, as in (Samejima et al., 2004).

In the rest of this paper, we define the graphical model
that we use and investigate its effectiveness in au-
tomating hierarchical RL.

2. Dynamic Abstraction Networks

Previous work in graphical models has largely focused
on studying temporal abstraction or state abstraction
in isolation. Intuitively, abstract policies are intri-
cately tied to abstract states. For instance, New York
City is both a temporal and a spatial abstraction: its
geographical location permits you to both execute such
abstract policies as visit the Metropolitan Museum of
Art or attend a Broadway play, and to define such spa-
tial abstractions as the five boroughs of New York City
or the state of New York.

In other work (Manfredi & Mahadevan, 2005) we have
proposed a new type of hierarchical graphical model,
dynamic abstraction networks (DANs), that combines
state and temporal abstraction. Jointly encoding state
and temporal abstraction permits abstract states and
policies to be learned simultaneously, unlike in the
AHMM or HHMM alone. We showed in (Manfredi
& Mahadevan, 2005) that empirically DANs seem to
learn better policy abstractions than do AHMMs.

Figure 1 shows the dynamic Bayesian network (DBN)
representation of a 2-level DAN. Informally, we can
think of DANSs as a merging of a state hierarchy, rep-
resented by the HHMM, and a policy hierarchy rep-
resented by a modified version of the AHMM which
we refer to as an mAHMM. Technically we use the dy-
namic Bayesian network representations of the HHMM
and AHMM defined in (Murphy & Paskin, 2001)
and (Bui et al., 2002) respectively. We merge the
mAHMM and HHMM by adding edges from state
nodes at time ¢ on level i to policy and policy termina-
tion nodes at time ¢ on level i and from policy nodes
at time ¢t on level ¢ to state nodes at time ¢ + 1 on

2-Level AHMM

Action Level

2-Level HHMM

1-Level HHMM

HMM

=1 t=2

Figure 1. DBN representation of a dynamic abstraction
network. We emphasize that this is just one realization of
a dynamic abstraction network, and other configurations
are possible.

level i. One of the key ideas for developing this model
is that abstract states are useful for learning abstract
policies. Consequently, abstract states are fed into all
policy levels including the actions. We formally define
a K-level DAN as comprised of an intertwined state
hierarchy and policy hierarchy defined as follows.

Policy Hierarchy. A policy hierarchy H, with
K levels is given by the ordered tuple H, =
(04,1, Iy, ..., k).

e O, is the set of action observations. O4 is only
necessary if actions are continuous or partially ob-
servable.

e Il is the set of primitive (one-step) actions.
e II; is the set of abstract policies at level 1 < i < K,

defined in more detail below.

State Hierarchy. A state hierarchy H, with
K levels is given by the ordered tuple Hy =
(Os, S0, 51, --,5K).

e (g is the set of state observations.

e S; is the set of abstract states at levels 0 < j < K,
defined in more detail below.

40

Abstract Policies. At level i,
policy m; € 1II; is given by the tuple m;
Sﬂ'i7B7Ti7ﬁ7l'i7U7Ti >

each abstract
=<

o Selection set. Sy, C S; is the set of states in which
m; can be executed.

o Termination probability. Br, C S; is the set of
states in which m; can terminate. [, : Bn, —
(0,1] is the probability that policy m; terminates
in state B,,. Note that for all termination states
that are not also selection states, policy 7; termi-
nates with probability one.

o Selection probability. o, : I;11.x X Sz, — [0,1]
is the probability with which a policy =, € II;
can be initiated when executing abstract policies
Tit1 € liyq,...,mx € Il in state s, € Sr,.

Abstract States. At level j, each abstract state s; €
Sj is given by the tuple s; =< II;;, as;,0s, >. Note
that an abstract state may be part of more than one
higher level state; for instance, states at level j may
be letters while states at level j + 1 are words.

o Entry set. 1l;, C 1I; is the set of policies which
enter state s;.

o Exit probability. s, : S; — (0,1] is the proba-
bility that the agent exits state s; € S; when in
states s;41 € Sj41,...,5x € Sk.

e Transition probability. o, : Sji1.x x II; x S5 —

[0, 1] is the probability that the agent transitions
to state 55-“ € S; from state s§. € S; when in
parent states sb,; € Sjy1,...,8% € Sk and exe-
cuting policy 7§ € II;.

For the policy hierarchy, IT nodes encode the selec-
tion sets S, and the selection probabilities o, while 0
nodes encode the termination probabilities 3. For the
state hierarchy, S nodes encode the entry sets I, and
the transition probabilities o4, while a nodes encode
the exit probabilities as. At level i, choosing policy
m; € II; depends in part on state s; € S; but executing
m; € II;, by choosing policy m;_1 € II;_1, depends in
part on state s;_1 € S;_1. That is, choosing a policy
at level ¢ depends on the state at level i, but executing
a policy at level i depends on the state at level ¢ — 1.

3. Hierarchical Reinforcement Learning

In this section, we show how DANs can be applied to
the problem of automating hiearchical RL.

3.1. Approach

There are two phases to our approach. In the first
phase, the DAN is constructed and trained. Like
MAXQ (Dietterich, 2000), our approach requires that
the number of levels and the number of policies and
states at each level be specified. However, unlike
MAXQ), the dependencies between policies and states
at different levels are unknown. Instead, all poli-
cies (states) at one level are connected to all policies
(states) in the adjacent levels to permit any possible
set of dependencies to be learned. Sequences of state-
action pairs obtained from a mentor are then used
to train the model with Expectation-Maximization
(EM) (Dempster et al., 1977). Unlike other approaches
for learning hierarchies, by reducing the problem to pa-
rameter estimation, all levels of the state and policy
hierarchies are learned simultaneously through joint
inference on the model. Learning in the first phase is
on-policy; consequently, the quality of the sample tra-
jectories used to train the model will affect the quality
of the policies learned.

In the second phase, the learned policies are obtained
from the DAN and improved using RL. Once the DAN
has been trained, the policy hierarchy is extracted.
The options framework (Sutton et al., 1999) fits most
naturally with the DAN policy hierarchy. Changing
the policy hierarchy would permit other types of pol-
icy hierarchies, such as HAMs (Parr & Russell, 1998)
or MAXQ task graphs (Dietterich, 2000), to be used.
An option consists of (1) a set of states in which it can
be initiated, (2) a set of states in which it terminates,
(3) a probability distribution over termination states
for each option, and (4) a probability distribution over
actions (or lower-level options) for each state. Define
a 1-level option to be a policy over options. Then an i-
level option is encoded within an DAN: IT nodes encode
(1), (2), and (4), while 8 nodes encode (3). Various
methods could be used, but we use reward to improve
the extracted policies by using semi-Markov decision
process (SMDP) Q-learning (Sutton et al., 1999) to
estimate the value function. We discuss this further in
the Experiments section.

We note that like DANs, MAXQ similarly encodes
state abstractions with associated policy abstractions
(task decompositions). However, unlike DANs, these
abstractions are hand-specified rather than learned.

3.2. Experiments

The Tazi domain (Dietterich, 2000) is used to illus-
trate the proposed approach. The Tazi domain (Di-
etterich, 2000) consists of a five-by-five grid with four
taxi terminals, R, G, Y, and B, see Figure 2. The goal

41

R G

1] 2 3] 4|75

6| 71 8] o 10

11| 12) 13| 14| 15

16§ 17| 18§ 19| 20

Y I B
21) 22| 23] 24| 25

Figure 2. Taxi grid.

of the agent is to pick up a passenger from one termi-
nal, and deliver her to another one (possibly the same
one). There are six actions: north (N), south (S), east
(E), west (W), pick up passenger (PU), and put down
passenger (PD). 80% of the time N, S, E, and W work
correctly; for 10% of the time the agent goes right and
10% of the time the agent goes left. The agent’s state
consists of the taxi location (TL), the passenger loca-
tion (PL), and the passenger destination (PD). Note
that PL = 1 when the passenger has been picked up
and PD =1 when the passenger has been delivered.

We generated 1000 training sequences from an hier-
archical RL mentor trained in the Tazi domain using
SMDP Q-learning over hand-coded policies. Each se-
quence is the trajectory of states visited and actions
taken in one episode as the RL mentor uses its learned
policy to reach the goal. Examples were of variable
lengths. A learning rate of & = 0.1, an exploration
rate of € = 0.01, and a discount rate of v = 0.9 were
used. Bayes Net Toolbox (Murphy, 2001) was used to
implement and train the mAHMM and DAN models
in Figure 3 using Expectation-Maximization (Demp-
ster et al., 1977). All distributions were multinomials
and except for the G, ag, a1, II1, Sy, and S distribu-
tions, were initialized randomly. For the Taxi data we
set |S1| =5, |So| = 25, [TL| = 25, |PL| =5, |PD| = 5,
|H1| = 6, |HO| = 6, |OZ()| = 2, |O(1| = 2, and |ﬂ1| =2

For all experiments, higher level states and policies
were biased to change more slowly than lower level
states and policies; e.g., the floor you are on should
not change more frequently than the room you are in.
This was done by initializing the £, ag, a1, 111, So,
and S; distributions as follows, where ¢ = 0,1 and
OL ={TL! PL!, PD'}.

0.95 if B¢ = continue
P(B; | T, Iy, S1) = { 0.05 otgérwise
0.95 if a = continue
P(aé | Sé,Ofg) - { 0.05 othgrwise
1 if ot = af = continue
t ot ot oty _ 0.5 if of = continue and
P(Oé1 | 060750751) = af) — end
0 otherwise

1-Level AHMM

Action Level

t=1 t=2 t=1 t=2

(b) DAN

Figure 3. (a) 1-Level mAHMM and (b) 1-Level DAN for
Taxi domain; shaded nodes are observed. Note that Il
represents actions.

Pyt | 108, ST, 81)

1
:{ L/ |
0

t+1 t t t+1 t t
P(So |H0750751 70607041)

if 8% = continue and H’i"'l =10
if 3% = end
otherwise

1 if af = continue and Sé"'l =S¢
=< 1/|S| if af =end
0 otherwise

P(S{T | TOE, St o)

1
—{ 1/151]
0

Given the trained mAHMM, policies were extracted
and improved using SMDP Q-learning as follows.
Once an option (policy) was chosen using an e-greedy
exploration strategy, the learned probability distribu-
tion P(IIy|lly,TL, PL,PD) from the mAHMM was
used to probabilistically select an action, mg. Given
the trained DAN, policies were again extracted and
improved using SMDP Q-learning. However, in order
to use the learned probability distributions, we must
first compute the most likely abstract state, sg, with,

P(So|TL, PL, PD) =

. . 1

if o} = continue and Si* = S}
if o} =end

otherwise

> s, P(TL|S0) P(PL|So)P(PD|So) P(51)P(S0]S1)
>0, P(TL|S0) P(PL|So) P(PDISo) P(S1) P(S0[51)

Then given the abstract policy 7 that was selected
using the e-greedy strategy, we can select an action 7o
directly from the conditional probability distribution,

42

1-Level EM Results Averaged Over 10 RL Runs

400 . ‘ ‘

A - AHMM -
350 B-FlaQL -]
| C- SMDP .

Number of Time Steps to Goal

1-Level EM Results Averaged Over 10 RL Runs

400 T T
A -DAN E—
350 B-FlaQL - 1
C-SMDP .

Number of Time Steps to Goal

Figure 4. (a) 1-Level mAHMM results. (b) 1-Level DAN
results.

P(IIy|IT; = 71, S0 = sp). Other approaches could be
used as well: for instance the full machinery of infer-
ence could be used to ascertain how the selected ac-
tion will affect the predicted distributions over future
states. We note that for both the mAHMM and DAN,
we permitted options (policies) to be interrupted dur-
ing SMDP Q-learning. This prevented looping be-
haviour due to bad policies.

3.3. Results

Figure 4 compares how well the learned mAHMM and
DAN policies do against the hand-coded policies and
a flat Q-learning agent. What Figure 4 shows is that
within about the first fifty timesteps, the SMDP Q-
learning agent using the learned policies does as well
or better than the SMDP Q-learning agent using the
hand-coded policies. We note that the performance of
the agent is slightly noisier when it uses the mAHMM
rather than the DAN policies.

—o— Policy 1]
— 4 — Policy 2|
1Fl % Policy 3|

—o— Policy 4|
—o— Policy 5|
— & — Policy 6|

mAHMM

ook kR bk ko kK

Probability of each Level 1 policy

10 > 14 16 18 20
2016 116 1112138 3 3 4 5
111111111111
G GGGGGGGG GGG G
NNESETENNEEE PD

—&— Policy 1
~ <~ Policy 2
1] % Policy 3| DAN
—o- Policy 4| Pid
—o— Policy 5 Dby b o
L| - & - Policy 6 b
08 y

Probability of each Level 1 policy

TL 18 13 12 11 16 16 16 21 21 16 11
PLY Y Y Y Y Y Y Y 1

PDG G G G G G G G G G
A N WWS S S S PUN N
s11 12 2 2 2 2 2 2 2

NmE R W
NmE W

—e— Policy 1|
— < - Policy 2|
1F| % Policy 3
—o~ Policy 4|
—&o— Policy 5
|| = & — Policy 6

mAHMM

0.4

Probability of each Level 1 policy

N 51
. g ¥
o 2 4 6 8 0
TL 21 16 11 6 1 1 6 11 12 13 14 19 24
LR R R R R 1 1 1 1 1 1 1 1
PD B B B B B B B B B B B B B
AN N N N PUS S E E E S S PD
—e— Policy 1

2 — 4 — Policy 2|

o L

£ | * o Poley3y DAN

= -0~ Policy 4

o —&— Policy 5

S 08l L= >~ policys

>

i

-

=

S o6t

©

@

-

S oaf

2

=

© - g

2 02F Tt -4

S \ oo B B0l

[o wEo-m - -8 ~o

— T < - - -

0 ef—(fﬁ_—g—'g\k bl S S Ry
o 2 4 6 H 10 12
TLo20 16 W o6 1 1 6 11 12 13 14 19 24
LR R R R R 1 1 1 1 1 1 1 1
PD B B B B B B B B B B B B B
A N N N N PU S S E E E S S PD
st 1 1 1 1 2 2 2 2 2 2 2 2 2

Figure 5. Level 1 policies and states for two sample se-
quences from the Tazi data. The T'L, PL, and PD state
values and Ilp actions are shown for both models; the Sy
abstract states are shown for the DAN.

43

Figure 5 shows the probability of each level 1 pol-
icy and state for two sample Taxi sequences for the
mAHMM and DAN. What we see from Figure 5 is
that the mAHMM has difficulty identifying a single
most likely policy with high probability, while the
DAN model is able to identify a unique most likely
policy with high probability. As shown in Figure 5,
the mAHMM performs particularly poorly on the sec-
ond sequence, never identifying a single policy as most
likely for more than a couple of timesteps. Note that
while the mAHMM has difficulty identifying a single
policy as most likely, this is not a consequence of the
policies themselves being poorly learned. Rather, be-
cause the mAHMM has learned every policy over the
entire state space (due to the structure of the model),
all policies are equally good, so any can be used. In
essence only a single global policy has been learned.
The problem with this is that it cannot be reused, un-
like the more local policies learned by the DAN. In
particular we see from the DAN graphs in Figure 5
that Policy 1 is used for part or all of both sequences.

4. Conclusions

We have presented a general method for automating
hierarchical reinforcement learning. The first phase
of our method trains a hierarchical graphical model;
the second phase uses the learned policies in an hier-
archical reinforcement learning agent. Assuming the
graphical model in the first phase encodes the appro-
priate policy structure, other hierarchical reinforce-
ment learning methods besides SMDP Q-learning can
be used for the second phase. In future work we would
like to incorporate both phases into an actor-critic ar-
chitecture. The main disadvantages to our approach
are the cost of Expectation-Maximization and having
to specify the number of levels and the number of pa-
rameters within each level. In future work we plan to
explore methods for approximate inference and model
selection as applied to dynamic abstraction networks.

Acknowledgments

This work was supported in part by the National
Science Foundation under grant ECS-0218125. Any
opinons, findings, and conclusions or recommendations
expressed in this material are those of the author(s)
and do not necessarily reflect the views of the National
Science Foundation. Victoria Manfredi was supported
by a National Science Foundation graduate research
fellowship.

References

Abbeel, P., & Ng, A. (2004). Apprenticeship learning via
inverse reinforcement learning. ICML’04 (pp. 506-513).

Barto, A., & Mahadevan, S. (2003). Recent advances in
hierarchical reinforcement learning. Special Issue on Re-
inforcement Learning, Discrete Event Systems Journal,
18, 41-77.

Bui, H., Venkatesh, S., & West, G. (2002). Policy recog-
nition in the abstract hidden Markov model. Journal of
Artificial Intelligence Research, 17, 451-499.

Simsek, O., & Barto, A. G. (2004). Using relative novelty
to identify useful temporal abstractions in reinforcement
learning. ICML’04 (pp. 751-758).

Dempster, A., Laird, N., & Rubin, D. (1977). Maximum
likelihood from incomplete data via the EM algorithm.
Journal of the Royal Statistical Society B, 39, 1-38.

Dietterich, T. G. (2000). Hierarchical reinforcment learning
with the MAXQ value function decomposition. Journal
of Artificial Intelligence Research, 13, 227-303.

Fine, S., Singer, Y., & Tishby, N. (1998). The hierarchical
hidden Markov model: Analysis and applications. Ma-
chine Learning, 32, 41-62.

Hengst, B. (2002). Discovering hierarchy in reinforcement
learning with HEXQ. ICML’02 (pp. 243-250).

Manfredi, V., & Mahadevan, S. (2005). Dynamic abstrac-
tion networks. Technical Report 05-33. Dept of Com-
puter Science, U of Massachusetts Amherst.

Mannor, S., Menache, I., Hoze, A., & Klein, U. (2004).
Dynamic abstraction in reinforcement learning via clus-
tering. ICML’04 (pp. 751-758).

McGovern, A., & Barto, A. (2001). Automatic discovery of
subgoals in reinforcement learning using diverse density.
ICML’01 (pp. 361-368).

Murphy, K. (2001). The Bayes net toolbox for Matlab.
Computing Science and Statistics, 33.

Murphy, K., & Paskin, M. (2001). Linear time inference in
hierarchical hmms. NIPS’01.

Parr, R., & Russell, S. (1998). Reinforcement learning with
hierarchies of machines. NIPS’98.

Precup, D. (2000). Temporal abstraction in reinforce-
ment learning. Doctoral dissertation, University of Mas-
sachusetts, Amherst, Department of Computer Science.

Price, B., & Boutilier, C. (2003). Accelerating reinforce-
ment learning through implicit imitation. Journal of
Artificial Intelligence Research, 19, 569-629.

Samejima, K., Doya, K., Ueda, Y., & Kumura, M. (2004).
Estimating internal variables and parameters of a learn-
ing agent by a particle filter. NIPS’04.

Sutton, R., Precup, D., & Singh, S. (1999). Between MDPs
and semi-MDPs: A framework for temporal abstraction
in reinforcement learning. Artificial Intelligence, 112,
181-211.

44

Multi-Agent Shared Hierarchy Reinforcement L earning

Neville Mehta
Prasad Tadepalli

MEHTANE@EECS.OREGONSTATE.EDU
TADEPALL @EECS.OREGONSTATE.EDU

School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR 97331, USA.

Abstract

Hierarchical reinforcement learning facilitates
faster learning by structuring the policy space,
encouraging reuse of subtasks in different con-
texts, and enabling more effective state abstrac-
tion. In this paper, we explore another source of
power of hierarchies, namely facilitating sharing
of subtask value functions across multiple agents.
We show that, when combined with suitable co-
ordination information, this approach can signif-
icantly speed up learning and make it more scal-
able with the number of agents. We introduce
the multi-agent shared hierarchy (MASH) frame-
work, which generalizes the MAXQ framework
and allows selectively sharing subtask value
functions across agents. We develop a model-
based average-reward reinforcement learning al-
gorithm for the MASH framework and show its
effectiveness with empirical results in a multi-
agent taxi domain.

1. Introduction

Reinforcement Learning (RL) is a general learning
paradigm in which an agent learns a behavioral policy
through interaction with an unknown, stochastic environ-
ment (Sutton & Barto, 1998). The agent is capable of tak-
ing certain primitive (atomic) actions, and sensing the state
of the environment. Recently, there has been a lot of work
on hierarchical reinforcement learning (HRL) where the
state space is hierarchically structured, and composite ac-
tions, also known as macros or subtasks, are made available
to the agent (Barto & Mahadevan, 2003). One of the frame-
works for HRL is based on options, which are mini-policies
that operate over multiple steps. Options reduce the num-
ber of decision points needed to reach the goal since the
decisions within the option are fixed a priori (Sutton et al.,
1999). Hierarchies of Abstract Machines (HAMSs) also

Appearing in Proceedings of the ICML’ 05 Workshop on Rich Rep-
resentations for Reinforcement Learning, Bonn, Germany, 2005.
Copyright 2005 by the author(s)/owner(s).

reduce the number of decisions by representing the pol-
icy in the form of a finite state machine with a few non-
deterministic choice points (Parr & Russell, 1998); ALisp
generalizes this idea to arbitrary Lisp programs with choice
points (Andre & Russell, 2002). In the MAXQ framework,
the tasks are organized hierarchically where the only deci-
sions involved are calls to its subtasks (Dietterich, 2000).
HRL methods facilitate faster learning by constraining and
structuring the space of policies, encouraging the reuse
of subtasks in different tasks, and enabling effective task-
specific state abstraction.

In this paper, we explore yet another source of power
of hierarchies, which is unutilized so far, namely facili-
tating the sharing of subtask value functions across mul-
tiple agents. In previous work, sharing value functions
across multiple agents was found to be effective in a non-
hierarchical setting when the agents were homogeneous
(Tan, 1993). However, a monolithic value function is not
necessarily sharable across non-homogeneous agents, since
each agent may have its own reward functions. Hierar-
chies divide the task into smaller subtasks, which makes
them more amenable for sharing, since the rewards within
a subtask are more likely to be the same across different
agents. Thus, if a robot has learned some useful navi-
gational knowledge, e.g., a map for a region, it is much
cheaper to communicate it to other robots, rather than hav-
ing all robots learn this independently. Hierarchies make
it possible to share the maps across different robots with-
out also sharing the lower level controls or higher level task
knowledge such as delivering mail. The packaging of sci-
entific knowledge in short modular research papers has a
similar underlying reason, namely high reusability of such
knowledge and the low cost of its communication com-
pared to its discovery.

The rest of the paper is organized as follows: Section 2
explains the theoretical underpinnings of HRL using an ex-
ample domain. Section 3 generalizes the single-agent HRL
framework and the corresponding learning algorithm to the
MASH framework. Section 4 evaluates the MASH algo-
rithm in multiple domains, and Section 5 concludes with a
discussion of future work.

45

2. Hierarchical Reinforcement Learning

Research in HRL is based on the formalism of Semi-
Markov Decision Processes (SMDPs), which is an exten-
sion of the Markov Decision Process (MDP) formalism.
SMDPs allow for temporally extended actions, i.e. ac-
tions that can take variable amounts of time as opposed
to a fixed interval. Action selections are made at dis-
tinct epochs in time, and the state of the system may con-
tinue changing during the action. An SMDP is defined
as a quintuple M = (S, A,P,R,T), where S is a finite
set of states (the state space), A is a finite set of actions
(the action space), P is the transition probability function
P:SxAxS xN — [0,1], R is the reward function
R:Sx AxS — R,and 7 is the transition time function
T:8x AxS — N. The transition probability function
P(s', N|s, a) is the probability of transitioning to state s’ in
N time steps, given that action « is taken in state s. The re-
ward function R(s'|s, a) is the real-valued reward for tak-
ing action a in state s and reaching state s’. The transition
time function 7 (s'|s, a) is the completion time for taking
action a in state s and reaching state s’. A policy 7 is a
function 7 : § — A, defining what action the agent takes
in any given state.

2.1. Average Reward Learning

If the agent starts in state s and follows policy 7, then the
average reward or gain p™ of 7 with respect to s is defined
as the ratio of the expected total reward in N steps to the
expected total time for IV steps as NV tends to infinity.

Given an SMDP and a policy 7 with a gain p™, the average-
adjusted reward of taking an action a in state s is defined
asr(s,a) — p™t(s,a), where r(s,a) and t(s, a) are the ex-
pected reward and execution time respectively for taking
action a in state s. This represents the expected excess re-
ward over what is expected in the duration of the action
based on the current average reward. The limit of the total
expected average-adjusted reward starting from state s and
following policy = is called its bias and denoted by h™ (s).
Under some reasonable conditions on the SMDP structure,
there exist a scalar p and a real-valued function h = h™
that satisfy the following Bellman equation:

h(s) = Jnax {r(s, a) —pt(s,a)—i—ép(s’p, a).h(s/)}
)

The policy 7* that selects actions to maximize the right-
hand side of Equation 1 attains the optimal gain p™ > p™
over all policies .

2.2. Multi-Agent Taxi Domain

We introduce a multi-agent taxi domain here to help il-
lustrate the concepts presented in this paper. This is a

grid world, shown in Figure 1, where the agents are taxis
(the squares located on the grid cells) that shuttle passen-
gers (solid circles) from one of four marked cells (labeled
1, 2, 3, and 4) to their intended destinations (again, one
of the four marked cells). At any time, there can be at
most one passenger waiting at each of these special sites.
The generation of passengers can be controlled in differ-
ent ways, including those based on an arrival probabil-
ity. The passengers may also depart stochastically from
the sites without being transported at all. A full state de-

Figure 1. Multi-agent taxi domain. The square boxes represent
taxis, and 1, 2, 3, 4 are passenger pickup/drop-off sites. The dots
represent passengers.

scription of this domain for n agents has 25™ values to in-
dicate the taxi locations, 5™ values indicating the statuses
of all the taxis (empty or an onboard passenger for a par-
ticular destination), and similarly 5% values indicating the
statuses of the special sites. Hence, the size of the state
space |S| = 25" x 5" x 5% = 5374 The primitive ac-
tions available to each agent are moving one cell to the
north, sout h, east, and west , pi ckup a passenger,
dr opof f the passenger, and wai t (no-op). The wai t
action allows the agent to idle when there are no passen-
gers currently waiting to be transported. Every action has
a 95% probability of success, otherwise it has no effect.
There is a default reward of —0.1 for every action, and a
reward of 4100 for a successful drop-off.

2.3. HARL Framework

In this section, we describe the Hierarchical Average-
reward Reinforcement Learning (HARL) framework,
which is an extension of the MAXQ framework (Seri &
Tadepalli, 2002; Dietterich, 2000).

In the HARL framework, the original MDP M is split into
sub-SMDPs { My, My, ..., M, }, where each sub-SMDP
represents a subtask (composite or primitive). Solving the
root task M, solves the entire MDP M. The composite
subtasks are primarily designed around subgoals, that is
states or regions of the state space, such that reaching those
states or regions facilitates achieving the principal goals of
the original MDP. The task hierarchy is representable as a

46

directed acyclic graph known as the task graph that repre-
sents the task-subtask relationships (e.g., see Figure 2).

For the taxi domain, we create 4 composite subtasks: Root
represents the overall task; Get (1) represents the subtask
of going to a waiting passenger’s location / and picking him
up; Put represents the subtask of dropping off an onboard
passenger at his intended destination; Got o(1) represents
the subtask of going to one of the 4 special locations from
anywhere in the grid.

~

/

Got o(k)

[north| [south| [east] [west |

Figure 2. Task graph for the multi-agent taxi domain. Each task
calls one of its subtasks based on the current state.

Each subtask M is defined by the tuple (B;, A;, G;):

e State Abstraction B;: A function that selects a sub-
set of the original state variables to comprise an ab-
stracted state space sufficient for M;’s value function
to represent the local policy. For example, Got o([) ’s
abstracted state space is composed only of the agent’s
location variable.

e Actions A;: The set of subtasks that can be called
by M;. For example, Root can call either Get (1),
Put,orwait.

e Termination predicate G;: The predicate that parti-
tions the subtask’s abstracted state space into active
and terminated states. When M, is terminated, con-
trol returns back to the calling subtask. The probabil-
ity of the eventual termination of a subtask (other than
the root task) is 1. For example, Put is terminated if
there is no onboard passenger.

A subtask is applicable iff it is not terminated. All prim-
itive actions of the original MDP are represented as prim-
itive subtasks (leaf nodes) in the task hierarchy. Primitive
subtasks have no explicit termination condition (they are
always applicable), and control returns to the parent task
immediately after their execution. A local policy =; for the
subtask M is a mapping from the states abstracted by B;
to the child tasks of M;. A hierarchical policy = for the
overall task is an assignment of a local policy 7; to each
sub-MDP M.

To maximize the modularity and reuse of local policies,
they have to be recursively gain-optimal. A policy r is re-
cursively gain-optimal if the policy ; at each subtask M
maximizes its total expected average-adjusted reward with
respect to the gain of the overall hierarchical policy, given
the fixed policies of ;s descendants.

The value function decomposition for a recursively gain-
optimal policy satisfies the following set of Bellman equa-
tions:

hi(s) =r(s) —p-t(s), ifiisa primitive subtask
=0, if sisaterminal/goal state for i; otherwise

— max {ha(Ba(s>>+ > P<5"'°”“)'h"(s/)}

acA;(s) s

The terms h;(s) and h,(s) represent the expected average-
adjusted rewards of state s during subtasks i and a respec-
tively. If the state abstractions are sound, h,(B.(s)) =
ha(s). The third case of the above equation is derived
from Equation 1 by substituting h,,(s) for 7(s, a) —pt(s, a),
which is justified by the definition of h,(s).

3. MASH Learning

Multi-agent RL is more challenging than single-agent RL
because of two complementary reasons. Treating the mul-
tiple agents as a single agent increases the state and action
spaces exponentially. On the other hand, treating the other
agents as part of the environment makes the environment
non-stationary and non-Markovian (Mataric, 1997). In this
section, we introduce our MASH learning framework in
three stages.

3.1. Multi-Agent HH

The most immediate extension of the HARL framework to
the multi-agent case is to design a task hierarchy H for a
single agent and then replicate H for each agent (replacing
all agent-related variables appropriately). Some variables
that are global to all agents, e.g., the statuses of taxi stands,
but some variables are local to each agent, e.g., its own lo-
cation. Each agent operates alone (selfishly) in this scheme,
has a separate task stack, and learns its own value functions
and average rewards. Although, there is no explicit coordi-
nation, weaker implicit coordination emerges because the
learned models within each agent’s hierarchy reflect the ef-
fects of the other agents on the global state variables. For
instance, keeping track of the probabilities of passengers
disappearing from the taxi stands allows an agent to detect
the effects of the other agents.

47

3.2. Multi-Agent HH-Coord

A more sophisticated extension to the method described
above, pursued by Makar et al. (2001), is to include some
kind of explicit coordination. The first stab at including
coordination is to have the complete joint state space at
all the root tasks, i.e., including all the agent-based and
agent-independent state variables in the state abstraction
of the root tasks. However, we could approximate the state
variables of the other agents by using synthesized variables
based on the agents’ task stacks. Makar et al. (2001)
selected the level one up from the bottom of the task stack
as a good high-level approximation to the exact state of
an agent. To design a task hierarchy with coordination for
an agent z, we add the synthetic coordination variables ¢
that correspond to features of all agents other than « into
the root task’s state abstraction, and we have the following
Bellman backup at the root task:

h(s,c) < mazxg { ha(s) + Z P(s',c|s,c,a) - h(s',c)

However, with this state description, the root task is not
strictly an SMDP because the ¢ variables of the modified
state space are influenced by the policies of the agents,
making it non-Markovian and non-stationary. We all this
framework HH-Coord.

If we have n agents and the root task has m subtasks, then
the root task’s state space grows by a factor of (m + 1)"~!
because every other agent could either be executing one of
the root task’s children (m values) or not (1 value). Not-
ing that the identities of the other agents are irrelevant,

the root task’s state space increases only by a factor of
((n—1)+(m+1)—1)_

n—1

3.3. MASH Framework

We now describe the MASH framework, which allows us
to selectively share subtasks between agents®. The com-
pelling justification for this is that all agents are interacting
with the same environment and every agent sees an isomor-
phic view of the world involving its own state variables, the
agent-independent variables, and the coordination informa-
tion from the other agents. This allows for an emphasis on
subtask sharing across agents. MASH extends HH-Coord
by recombining the separate agent hierarchies and value
functions back down into one.

Although the task hierarchy is shared, every agent has its
own independent task stack, and keeps track of its own
global average reward within the system. This allows for

1Although the MASH framework can allow selective sharing
of tasks across agents, this paper only considers the case where
all tasks are shared.

asynchronous decision-making by the agents. The agents
pool their experiences together to more efficiently learn
the value function of every subtask. For instance, for the
Cot o() task, the more agents we have moving around,
the quicker this subtask is learned.

Sharing the task hierarchy prevents the emergence of im-
plicit coordination (as in multi-agent HH) because each
agent uses exactly the same value function. For example,
all taxis would rush to pick up the same passenger if they
are at the same location. Hence, the MASH framework
needs the explicit coordination scheme of HH-Coord. Our
framework allows the specification of this coordination in-
formation in terms of synthetic features that refer to stack
variables of other agents.

Parameterization is a powerful mechanism for incorporat-
ing prior information into the task hierarchy, and it mani-
fests itself in different ways. First, it can help dynamically
adjust the admissibility of subtasks. For instance, Put has
only one Got o subtask that is admissible based on the pas-
senger’s destination. Without parameterization, the Put
subtask would have to learn which ground instance of the
Cot o subtask to select for the passenger. Second, state ab-
straction and termination conditions are parameterized by
the agent’s identity and the subtask parameters. For exam-
ple, Get(l) subtask’s abstraction involves only looking at
the site; variable and the agent’s location.

3.4. MASH Algorithm

Algorithm 1 specifies the pseudo-code for the MASH
learning algorithm. The code is presented from an agent’s
standpoint. Every agent in the domain executes this code
concurrently and asynchronously. The actual execution is
a little more complicated than the standard stack-based re-
cursive execution shown here. The algorithm always scans
the entire stack for terminated subtasks, starting at the root
level. When the first terminated subtask is found, it is
popped off along with all of its descendants.

State s is the world state, and every subtask maps s to its
abstracted state § using the abstraction function B. For a
coordinating subtask, B also encodes the coordination vari-
ables (lines 2-3). Unlike the HH algorithm, in MASH, the
child task is not restricted to only further abstract from the
parent task’s abstracted state space. Lines 8-13 are the up-
dates performed at the primitive subtasks, including learn-
ing of the reward and time models. For updating the A
value, we use p which is the mean of the agents’ separate p
values. The exploration strategy used is e-greedy, that is an
exploratory action is chosen with a fixed probability (8%
in all our experiments), otherwise the greedy action is cho-
sen (lines 16-17). The algorithm is called recursively on
the selected subtask a, and the resulting state s’ (when the
control returns to the calling task) is observed and appro-

48

Algorithm 1 Multi-Agent Shared Hierarchy Learning Al-
gorithm.

MASH (agent x, task 4, state s)

if (Coordinating-task(z))
¢ «— encoded coordination information
5 — Bi(z,s,¢)
ese
5 — Bi(z,s)
end
if (¢ isprimitive)
Execute i; observe reward r, elapsed time ¢, next state s’
Ni(3) — N;(3) + 1

OO~NOOTAWN P

10 Ri(8) —Ri(§)+(r—R (§))/N () !/ Reward model
11 Ti(8) « Ti(8) + (t — T4(8))/N4(5) [/ Time model
12 e mean {py}

13 Hi(8) «— Ri(8) —p-Ti(8) [/l PrimitiveH value

14 dse

15 while(not (Terminated(s, 3)))
16 Choose a, an exploratory subtask or greedily as:

(z,5)) + > Pi(ul3,a)H)}

17 a <+ argmax{H
ueS;

a€A;(3)

18 s’ « MASH(z,a, s)
19 if (Coordinating-task(z))

20 § < Bi(z,s’,c’) Il ¢ « current coordination
21 ese

22 § «— Bi(z,s")

23 end

/I Update Transition probability model
24 N;(5,a) — N;(5,a) + 1
25 Ni(§,a,§') — Ni(g, a, 5’) +1
26 Pi(5'|3,a) — Nyi(3,a,5)/Ni(3, a)

27 if (i # Root task)

/I Update Time model
28 g — argmaX{Hb(Bb(ﬂv s) +Z i(ul8,b) Hi(u)}
bEA;(5) ueS;
29 Ti(5) — To(By(w,5)) + > Pi(uls, g) - Ti(w)
uES
30 elseif (a was greedily selected)
/I Rho update
31 avg-reward, & H (Ba(z, s))
+pz - Ta(Ba(z, 5)) + Hi(5") — Hi(3)
32 avg-tine, < T,(B.(z,s))
33 aw — o/ (@ +1)
34 pz <— avg-reward,/avg-time,
35 end
36 Hi(3) — X {Ha(Ba(xv 5))

L

ueS;

(ul3, a))}

/I Transition to the next state
§— 3§

37 s« s8';

38 end

39 H;(5) — 0 //H vauefor all terminal states=0
40 end

41 return s’

priately abstracted (lines 18-23). The composite subtask
then updates its transition probability model (lines 24-26).

Lines 27-35 are responsible for the updating the average
reward p, for agent x. In the previously published HH al-
gorithm, this was done at the primitive task level only when
all the ancestor tasks were selected greedily. However, this
resulted in the A values of the root task growing linearly
with time. The source of this problem was that the HH al-
gorithm did not take into account the effect of exploratory
actions on the p update. We modified the current algorithm
to update p at the root level (whenever it selects a greedy
action) using the H learning update rule, which does take
exploration into account (lines 31-34). In line 31, since
Ha(s) = R(s,a) — pTa(s), the expected reward of execut-
ing the root’s child task a is R(s, a) = H,(s) + pT.(s); the
expression H;(s") — H;(s) nullifies the effects of the ex-
ploratory actions. In line 32, the right-hand side is the time
taken to optimally execute subtask a in state s. Finally,
in line 34, p,. is evaluated by dividing avg- r ewar d,. by
avg-ti me,. With this new p update, p converges to the
correct optimal value (confirmed analytically), and the i
values at the root task do not diverge as before. However,
this fix entails keeping track of the optimal execution times
for all the subtasks (except the root task, which is never-
ending). Lines 28-29 learn such a time model for the com-
posite subtasks. Line 36 updates the % value of the com-
posite task; the h value of all terminal states equals zero
(line 39).

4. Experimental Results

In this section, we describe the results on a modified ver-
sion of the taxi domain.

Random passenger generation does not require a lot of co-
ordination between agents because even when two agents
try to pick up a passenger from one site, the unsuccessful
agent just has to wait a few time steps till the next passen-
ger is generated. To necessitate coordination, the passenger
generation is as follows: a destination site is picked and
passengers are generated for that destination at all but the
destination site. No new passengers are generated until all
passengers have been dropped off, after which a new des-
tination site is selected, and so on. All results shown here
are for this setting of the taxi domain, averaged over 30
runs. Figure 3 shows the performances of the algorithms
in the 5 x 5 3-agent taxi domain. The MASH algorithm
learns the fastest, and converges to the optimal policy. The
MASH algorithm without coordination converges to a sub-
optimal policy. The HH-Coord algorithm, slowed down by
the sheer volume of values it must learn, improves very
gradually. Figure 4 shows the performances of the algo-
rithms in the 10 x 10 version of the 3-agent taxi domain,
demonstrating that the MASH framework scales well with

49

18 T T T T

16 e e o HH (3.agents)

14 H i ' C 4
'MASH w/o coordinati i
NN T

12 S
{ HH-Coord (3 agents)
10 i R

Average Reward

0 L L L L
Oe+0 le+6 2e+6 3e+6 4e+6 5e+6
Time Step

Figure 3. Resultsinthe 5 x 5 3-agent taxi domain.

T
MASH (3 agents)

MASH w/o coordination (3 agents) |

o o HH (3 agents)

Average Reward
~

HH (1 agent)

0 L L L L
Oe+0 le+6 2e+6 3e+6 4e+6 5e+6
Time Step

Figure 4. Resultsin the 10 x 10 3-agent taxi domain.

the size of the domain. The HH-Coord algorithm could not
be run here because of its exorbitant demand for memory.

5. Conclusion and Future Work

We have presented a multi-agent HRL framework called
the MASH framework, and its corresponding average-
reward learning algorithm. This framework allows agents
coordinating in a domain to share their hierarchical value
functions to be able to learn more effectively. We have
shown that, with suitable coordination information, this
framework can greatly boost learning in multi-agent do-
mains. Our framework is extensible to using various kinds
of synthesized coordination variables, and to sharing only
portions of the task hierarchy (certain subtasks) across mul-
tiple agents. Results in the multi-agent taxi domain justify
our claims.

Combining the MASH framework with factored action
models is an avenue that we are currently researching. Be-

ing able to automatically learn the task hierarchy for a given
domain is a fundamental issue for future research. This
would involve learning the state abstractions, termination
conditions, and task-subtask relationships instead of these
being provided as prior knowledge to the agents. Moreover,
opportunities for sharing these subtasks within the MASH
framework would need to be detected automatically.

Acknowledgments

We appreciate the support of NSF under grants ISI-
0098050 and 1S1-0329278. We would also like to thank
all the anonymous reviewers for their valuable comments.

References

Andre, D., & Russell, S. (2002). State Abstraction for Pro-
grammable Reinforcement Learning. Proceedings of the
18th AAAL.

Barto, A., & Mahadevan, S. (2003). Recent Advances in
Hierarchical Reinforcement Learning. Discrete Event
Systems.

Dietterich, T. (2000). Hierarchical Reinforcement Learning
with the MAXQ Value Function Decomposition. Jour-
nal of Artificial Intelligence Research, 9, 227-303.

Makar, R., Mahadevan, S., & Ghavamzadeh, M. (2001).
Hierarchical Multi-Agent Reinforcement Learning. Pro-
ceedings of the 5th International Conference on Au-
tonomous Agents.

Mataric, M. (1997). Reinforcement Learning in the Multi-
Robot domain. Autonomous Robots, 4(1), 73-83.

Parr, R., & Russell, S. (1998). Reinforcement Learning
with Hierarchies of Machines. Advances in Neural Infor-
mation Processing Systems (pp. 1043-1049). MIT Press.

Seri, S., & Tadepalli, P. (2002). Model-based Hierarchical
Average Reward Reinforcement Learning. Proceedings
of the 19th International Conference on Machine Learn-
ing (pp. 562-569).

Sutton, R., & Barto, A. (1998). Reinforcement Learning.
MIT Press.

Sutton, R., Precup, D., & Singh, S. (1999). Between MDPs
and Semi-MDPs: A Framework for Temporal Abstrac-
tion in Reinforcement Learning. Artificial Intelligence,
112(1-2), 181-211.

Tan, M. (1993). Multi-agent Reinforcement Learning:
Independent vs. Cooperative Agents. Proceedings of
the 10th International Conference on Machine Learning
(pp. 330-337).

50

Convergence of reinforcement learning using a decision tree learner

Jan Ramon

JAN.RAMONQCS.KULEUVEN.AC.BE

Department of Computer Science, Katholic University of Leuven, Celestijnenlaan 200A, 3001 Heverlee, Belgium

Abstract

In this paper, we propose conditions under
which @ iteration using decision trees for
function approximation is guaranteed to con-
verge to the optimal policy in the limit, using
only a storage space linear in the size of the
decision tree. We analyze different factors
that influence the efficiency of the proposed
algorithm, and in particular study the effi-
ciency of different concept languages. We il-
lustrate the approach with some preliminary
experiments.

1. Introduction

A large number of reinforcement learning algorithms
such as policy iteration, value iteration and Q-learning
require a table with one or more entries for each state
in the state space. Unfortunately, this becomes infeas-
ible when dealing with large state spaces. A common
approach is to use function approximation. However,
while the convergence of the table-based algorithms is
well studied (Singh et al., 2000), there are only few
results on the convergence of approaches using func-
tion approximation. State aggregation, which can be
seen as a function approximation approach using func-
tions constant over the aggregated states, is known to
converge, but there is no guarantee that there will be
convergence to the optimal policy.

In this paper we propose a method learning the Q-
function that adapts state aggregation in such a way
that convergence to the optimal policy in the limit
is guaranteed. While we do not prove that the res-
ulting state aggregation is optimal (according to the
number of states or some other optimality criterion),
in many cases the algorithm will require much less
memory than the existing algorithms having conver-
gence guarantees.

Appearing in Proceedings of the ICML’05 Workshop on
Rich Representations for Reinforcement Learning, Bonn,
Germany, 2005. Copyright 2005 by the author(s)/owner(s).

51

The main idea is that we refine a state aggregation
iteratively by splitting abstract states into smaller ab-
stract states, until an optimal (or sufficiently good)
policy is obtained. Essentially, we are using an (online)
decision tree learning approach (Chapman & Kael-
bling, 1991; Driessens et al., 2001). The crucial point
is to show that if a further split is needed to find an
optimal policy, then a test will be found that improves
the current approximation. Omnce this has been es-
tablished, it is straightforward to show convergence to
the optimal policy. The contributions of this work can
be separated into two parts. In a first part, we will
propose a sufficient condition for convergence to the
optimal policy. In a second part, we will not only fo-
cus on conditions that guarantee convergence, but also
on convergence speed and memory usage.

A number of recent research interests provide an ad-
ditional motivation for this work. In particular, there
has been a growing interest in relational reinforcement
learning (Tadepalli et al., 2004), where relational lan-
guages are used to represent abstractions of states.
After an earlier period when several algorithms have
been proposed and validated empirically, there is a
growing interest in a theoretical base for relational re-
inforcement learning. This work contributes first by
providing an extension to (Kersting & De Raedt, 2004)
in that it allows for abstractions being refined over
time. Second, it contributes a first step towards a
more systematic study of the properties of languages
which can be used to describe abstractions, in partic-
ular properties needed to be able to converge to the
optimal policy. A third motivation comes from the ex-
perience of several researchers in the field of Inductive
Logic Programming (see e.g. (Sebag, 1997; Srinivasan,
2000)) that a practical solution to keep the huge hypo-
thesis spaces generated by these rich languages tract-
able, may be found in stochastically sampling from
these languages. In fact, while conventional reinforce-
ment learners only explore the state space, this work
also explores the concept space.

The proofs of our results and a more elaborate discus-
sion can be found in (Ramon, 2005).

2. Preliminaries

We assume that the agent is operating in a MDP
and adopt common notational conventions. A ground
state-action pair or briefly (ground) SA-pair is an ele-
ment of S x A. We will denote ground SA-pairs with
lowercase letters. A SA-aggregation D is a set of
disjoint SA-abstractions D = {SA;,...,SAy} where
each SA-abstraction SA; is a set of state-action pairs
(ie. SA; € S x A), such that UY ;SA4; = S x A SA-
abstractions are denoted with capital letters.

If D is a SA-aggregation and sa is a SA-pair, then we
will denote with D(sa) the SA-abstraction SA € D
such that sa € SA. As we assume the state space to be
very large, storing knowledge on the basis of individual
states is infeasible. Therefore, descriptive languages
have been introduced (Kaelbling et al., 2001; Kersting
& De Raedt, 2004) that allow to implicitly describe
states and actions. In the paper we will represent an
SA-aggregation with a (logical) decision tree, such that
the SA-abstractions are the leaves of the tree and the
ground SA-pairs can be sorted down the tree to de-
termine to which abstraction they belong. This en-
sures that SA-abstractions do not overlap, which will
simplify the proofs of our results.

A concept over a space U is a subset of U. A concept
language (denoted with £) over a space U is a set of
concepts over U. A concept ¢ € L covers an element
u € U iff u € ¢. The concept language £ will be a
parameter to the learning algorithm. For simplicity of
explanation, we will assume concept languages (and
state-action spaces) to be finite. Nevertheless, when
dealing with a particular SA-abstraction SA, we will
only consider a sublanguage L£(SA) C L of concepts
relevant for SA. This means we remove all concepts
¢ which are trivial on SA (either cNSA = SA or
cNSA =), and we only keep one concept for each
equivalence class of concepts ¢ for which the sets cNSA
are identical.

3. Algorithm

A high level version of our algorithm is shown in
Algorithm 1. Our algorithm keeps a current SA-
abstraction D at all times, together with a current
Q-function @ : S x A — R. Essentially, it can be seen
as a decision tree algorithm as it iteratively tries to
split nodes (SA-abstractions) into smaller ones, creat-
ing a tree-structured hierarchy of SA-abstractions.

After choosing candidate splits in step 4, the agent
explores the world until sufficient (see later) statistics
are collected. Different strategies for exploration can
be applied.

52

Algorithm 1 High level algorithm
1: D—{SxA}

2: repeat
3: for all SA; € D
4: Choose randomly k concepts ¢, ; € L(SA;)

(j =1...k) as candidate split.

5: Explore_and_collect _statistics(D U {SA4; N ¢; ;,
SAi\ ¢ijtsaeni<i<k)

6: for all SA; € D

7 for j=1...k

8: Check whether the states in SA; N¢;
and SA; \ ¢;; behave different. If so, the
candidate is valid.

9: if at least one candidate split is valid

10: choose the best split c}.
11: D —DuU{SA;Nncf,SA; \ e\ {SA;}
12: update @ using the collected statistics.

13: until all states e-uniform

Next, the algorithm tries to determine from the collec-
ted statistics whether the SA-abstractions SA; should
be refined (split into smaller SA-abstractions) in order
to improve the Q-function. If at least one useful split
is found among the k trials, the SA-abstraction is split
into two. A test is useful if it splits the SA-abstraction
into two subsets for which the average Q-value (at this
point in the iteration) is sufficiently different. If several
candidate splits are acceptable, the SA-abstraction is
split according to some heuristic, as usual in decision
tree learners.

After splitting SA-abstractions, the algorithm updates
its @) functions using the statistics collected during ex-
ploration (step 12).

Algorithm 2 shows step 5 of Algorithm 1 in more
detail. Algorithm 2 has as parameter a set of con-
cepts C, including the SA-abstractions resulting from
the generated candidate splits. The algorithm ex-
plores the state-action space for a sufficiently long
time. For the discussion of this algorithm, we will
denote the visited states with s;, the actions taken
with a;, the rewards received with R;. Furthermore,
q¢i = R; + ymaxgea Q(D(8i41,a)). The algorithm
counts for every concept ¢ € C how many steps
started in a SA-pair belonging to that concept, and
makes sums t(c) = > .{q¢}|(si;a;) € c} and counts
n(c) = #{i|(s;,a;) € c}. Step 12 of Algorithm 1 can
then be performed by setting Q(SA) «— t(SA)/n(SA),
for all SA € D.

Notation 1 When considering the statistics collec-
ted during exploration, we will use for any SA-pair
sa € S8 x A, the notation §(sa) = > {qllsi = s A

Algorithm 2 Explore and collect statistics

Require: C': aset of concepts from concept language
L

1: for all ce C

2: n(c) <0

3: t(c) <0

4: s1 «+ initial_state

5: fori =1... NbSteps

6: Choose action a;

7 Perform action a;, receiving reward R; and

next state s;41

8: ¢; = R + ymaxeea Q(D(si41,a))
9: for allc e C
10: if ¢(s;.a;)
11: n(c) —n(c) +1
12: t(c) « t(c) + 4}

a = a;}/#{ils; = s ANa = a;} for the estimated Q-
value of this state-action pair. Note that we do not
keep all these numbers in memory, but will use them
only for our reasoning. Also, we will use G(SA) =

S Adil(sivai) € SAY/#{il(si,ai) € SA} = 1573 for

the estimated average Q-value in the SA-abstraction
SA.

4. Finding tests until convergence

In this section, we will analyze our algorithm in more
detail and formulate some general conditions for con-
vergence.

Definition 1 (uniform abstractions) Let SA C
S x A be a SA-abstraction and let f : S x A — R
be a real-valued function on S x A. Then we say that
SA is e-uniform w.r.t. f iff for all say,say € SA,

|f(sa1) — f(saz)| < e.

Essentially, the algorithm iterates over replacing its
current approximation of the Q-function with an ap-
proximation of the improvement ' where

QI(S’ a) = Z p(S, a, S/) (T(SI) + maxa’EAQ(S/’ a/))'

s'eS

(1)
Both the old and the new approximations are represen-
ted by decision trees. Every internal node that occurs
in the old approximation also occurs in the new one.
The only difference is that for the new approximation
a leaf may be replaced by a leaf with a different pre-
diction, or a leaf may be replaced by a new internal
node with two new leaves. In fact, given some current
estimate @, the algorithm splits the state-action space
into parts with a more uniform value for Equation (1).
If we can guarantee that abstractions will be split as

53

long as they are not uniform with respect to Q’, it is
not difficult to see that from a certain point no splits
will be necessary any more and an iterative applica-
tion of the @ update will converge to the optimal @
function.

So our algorithm generates a new estimate @’ from a
previous estimate . In our analysis we will employ
three different kinds of quantities. First, there is the
quantity @Q'(s,a) which is the update we would ideally
want to obtain. Second, there is the estimate G(sa) of
@' that is measured in the exploration performed by
the algorithm. §(sa) and Q’(sa) may be different as
the environment may be non-deterministic and we do
not explore for an infinite time. Third, there is the ¢(c)
with ¢ € § x A, which is an average of the function
q over an abstraction c¢. In our algorithm, only the
third kind of value is stored in memory in the form of
the statistics collected by Algorithm 2. Our task will
be to derive from the latter values suitable bounds for
the G(sa) and later for Q’(sa). We will first introduce
some more notations.

Notation 2 (indicator function) Let L be a
concept language over U and let w € U and ¢ € L.
Then we denote with 1. the indicator function of c,
defined by 1.(r) =1 iff r €c, else 1.(r) =0. IfC C L
1s a set of concepts, we will denote with 1¢ the set of
indicator functions {1.|c € C'}.

Notation 3 (boldface) If U {u1,ug,...,un}
is a set and f is a function, then we will use
the boldface mnotation f[U] for a column wvector
(f(u1) f(uz) ... flun))T. For simplicity of notation,
vectors and matrices will be indered with argument
names (concepts, SA-pairs, ...) instead of natural
numbers, e.g. £[U], = f(u;). E.g. 1[U] is a vec-
tor of #U ones. If F = {f1,fa,..., [N} is a set
of functions, we will denote with F [U] the matriz

[f1 [U] f2[U] ... £ [U]].

Soif C ={ec1,...,cn} is aset of concepts for which we
collected statistics in Algorithm 2, then we denote with
q [C] the column vector [G(c1),. .., d(en)]T, compactly
representing the measured averages of ¢ on the part
covered by the ¢; of the state action space. On the
other hand, q[SA] is the column vector with q[SA],,
the average observed @) value at sa. While we do not
know the values of the latter vector, there is a linear
relation between both:

q[C] = K(C,54).q[54] (2)

where K(C,SA) is a #C x #SA matrix. K(C,SA)
can be decomposed into a product of three matrices:

K(C,SA) = N.(1¢ [SA]) T A. (3)

Here, 1¢ [SA] is a #S5A x #C matrix expressing which
concept covers which SA-pairs. A € RS4%S4 and
A € RE*C are diagonal matrices taking care of the
correct weighting of the SA-pairs in the statistics of
the concepts. In particular, Agsq sq #{i|(s;,a;) =
sa}/NbSteps is the fraction of the time we were in
SA-pair sa and A, = 1/ . A(sa). We can also
write Equation (2) as

(@—asa) [C] = K(C,54).(@G—asa) [SA] (4

where the constant gga = §(SA) is the average ¢ value
measured in SA, i.e. (@—q)[SA] is a column vector
of deviations of the measured @) values at individual
SA-pairs from the average over the abstraction SA.

Definition 2 Let £ be a concept language over a
space U, Let C = (c1,...,cn) € LN be a vector of
N concepts in L. Let U be a set. Then, we say that
C' is scattering-generating for U or scat-gens(C,U) iff
the rank of 1¢ [U] is #U.

The VC dimension of a concept class is the size of the
largest set the concept class shatters, i.e. the largest
set U such that for every subset X € U, there is a
concept ¢ such that U Ne¢ = X. In (Ramon, 2005)
we prove that RZ (the set of linear combinations of
concepts of L) is scatters every set U C U of size n if
an only if £ is scattering generating for every subset
U C U of size n.

It is clear that if scat-gens(L,S x .A) does not hold,
there may be a non-uniformity w.r.t. the @ function
that we can not detect. Indeed, rank(1z[S x A]) <
#S x A would imply that there is a non-zero vec-
tor Qo (indexed by SA pairs from S x A) such that
1.[S x Al.Qp = 0, and if that would be the Q-
function (i.e. Q [SA] = Qo), there would be no concept
that would allow us to detect that some abstractions
are non-uniform.

We will now present some relations concerning the er-
ror we make by exploring for only a finite time and by
using statistics instead of a full table of Q-values. The
proof of these results can be found in (Ramon, 2005).

Let 0% be the maximal variance on R(s) for a partic-
ular state s (due to the non-determinacy of the envir-
onment) and let g = og/(1 — 7). Assume we visit
every SA-pair of a particular SA-abstraction SA at
least M times. One can prove the following bound on
the sampling error, which is used in the proofs of the
following theorems:

P(HQ’ [SAl-a[sAll|_ > ng/\/M) < #SAN2 722

()

Theorem 1 Assume Algorithm 2 has collected stat-
istics for a set of N concepts C = {c1,ca,...,cn} of
an SA abstraction SA with #SA = n. Let € > 0.
Assume furthermore that

1@ —asa) [Clllec = 2e. (6)

9,
0

Then with probability at least 1
is not e-uniform w.r.t. Q', where

(ﬁan/ﬁem) exp(—€*M/203))

The next theorem shows how to ensure that an ab-
straction for which we do not detect non-uniformity is
indeed uniform.

Theorem 2 Let L be a concept language over S x A
with a probability distribution on it. Let SAC S x A
(with #SA = n) is not e-uniform. Let Algorithm 2 col-
lect statistics for a set of N randomly drawn concepts
C and visit every SA-pair at least M times. Assume
that with probability at least 1 — o it holds that

B <4HK(C, S (7)
for some B > 0. Then, with probability 1 — §; — do, the
following holds:

1(@—asa) [O)]llc = 2¢8 (8)
where §; = 23/2x= 12032 M1/ 21 exp(—€e*M/8nog)

In Equation (7), we are actually relating § to the
condition number | K (C, SA)| .|| K (C, SA)T| » of the
matrix K(C,SA) (the proof of Theorem 1 shows that
|K(C,SA)|lcc =1). The condition number is a com-
monly used measure in matrix algebra.

Theorem 1 states conditions under which we can be ar-
bitrarily sure that an abstraction is not e-uniform and
we have found a split. On the other hand, Theorem
2 states conditions such that if an abstraction is not
e-uniform, we will with high probability get into a situ-
ation where the conditions of Theorem 1 are satisfied
(notice that Equations 6 and 8 differ only in the con-
stant (). Therefore, these theorems together provide
conditions under which we are guaranteed to detect
every non-e-uniformity. Conversely, if an abstraction
is fe-uniform, we are guaranteed to not find a split
(because that would imply that the abstraction is not
e-uniform). So if we want to build a decision tree with
accuracy €, the splitting is guaranteed to continue as
long as the nodes are not e-uniform, and may continue
a few levels too far in worst case, but will then stop.
In (Ramon, 2005), we use this argument iteratively to

2
eXplg)r_o%/e/ Zlat the learning algorithm will converge to a)

54

function with error at most ¢ from the optimal one,

using only storage space linear in the size of the de-
cision tree. In (Ramon, 2005) we prove that Theorems
1 and 2 together ensure that the algorithm converges
to a @ function which approximates the optimal one
with error bounded by an arbitrary € and that memory
linear in the size of the decision tree is needed.

5. Influence of the concept language

So first we will study the influence of the choice of
concept language. As argued in section 4, besides suffi-
cient sampling a second requirement for success is that
the matrix (1¢ [SA])T (with C the concepts) is suffi-
ciently well conditioned. In other words, the concept
language should be sufficiently rich and provide a
range of tests as diverse as possible.

We first list the languages we are considering: Ls =
{{sa}|sa € S x A} is the language of all concepts
covering exactly one SA-pair. We consider L5 >
{{z|x > a}|a € S x A}, where for elements z,a €
S x Awith x = (1,...,2m) and a = (a1,...,am)
we define x > a < x1 > a1 Axa > as A ... ATy >
Q. Another factored language is L qpr = {{x\a <
z < btla,b € S x A}. This is the language of all
axes-parallel rectangles. If the state-action space is a
vector space, one can also use Ly cire = {{x|d(x, a) <
dmastla € 8 X AN dimaz € R} where d(z,a) is the
Euclidean distance between x and a. Hence, concepts
from Ly cir. are spheres. We also consider Ly s =
{{z|z.a > b}la € S x ANb € R}, the language of all
half-spaces and Ly,jc, = {{z|z = a}|a € S x A} (with
> the lexicographic order on tuples).

In (Ramon, 2005) we provide a closed form for (3 for
a.0. Lsand Lf,>. One of these languages is of
theoretical interest but can not be used in practice:
L; is optimally conditioned (8 = 1) but since in each
node, only one example is split off, the system will
revert to a table-based approach. It is in general good
to use a concept language where each concept covers
a significant fraction of the state-action space.

Consider a 2D state space of dimension 10 x 10 with 4
actions in each state. The reward and transition func-
tions are choosen completely randomly (there is no
relation between the dynamics and the 2D structure
of the world). We computed a suitable value for § for
each of the languages Ly a>, L ez, Lfcires Lfhs and
Ly apr by computing condition numbers of 1¢ [S x A]
for samples of concepts C' (we assume equal Agq 5o for
all sa). The results are shown in Table 1. Next, we ran
the decision tree learner on this world using the differ-
ent languages. In this experiment, we only split nodes
if the means of the candidate subnodes is more than

55

some constant d. We recorded the size of the learned
trees. One can see from Table 1 that languages with
a smaller 4 find more splits with a given difference.

Lang ﬁf,/\z ﬁf,lez Ef,ci'rc £f,hs ﬁf,apr E(S
3 121 71 45 36 5 1
Treesize 121 148 156 161 164 n.a.

Table 1. Languages, sampled order of magnitudes for (3,
and size of the learned tree

6. Influence of learning parameters

Next, we present preliminary experiments illustrating
the behavior of our implementation in practice. Our
goals are the following. We want to show how the
learning results improves as the approximation of)
gets better, and what is the needed storage space.
Next, we want to know what is the influence of the
number k (see Algorithm 2) of candidate splits that is
tried in each exploration phase.

600

100

500

400

300 10

treesize
time to goal

200

100

0.1 0.01

epsilon

50

0.001 0.01

epsilon

tree size
time to goal

0
1000 10000 1 10 100
k k

10 100 1000 10000

Figure 1. Top: Tree size (left) and time to goal (right) as
function of e. Bottom: Tree size (left) and time to goal
(right) as function of k.

We consider a simple 2D maze world where the agent
can move one step in one the the eight directions (ho-
rizontal, vertical, diagonal), at each time point. The
world has 10 x 10 states and there is one goal at (5, 6).
There are walls, blocking the way between states (i.e.
moving against a wall does not change the position of
the agent). The initial state is choosen randomly. An
episode ends either after the agent reached the goal or
after 1000 steps. The fact that this world is determ-
inistic allows for several optimizations and simplifica-
tions. We use concept language L A>.

We report the average time it takes the agent to reach
his goal, rather than reporting the reward which is al-
ways 1 after a successful episode. The top of Figure

1 plots tree size and average time to reward against
€, where ¢ is the required accuracy. All data points
are obtained from an average of 100 tests. After this
accuracy is reached for some abstraction, the tree does
not refine it any more. One can see that already for a
relatively large values €, a rather good performance is
reached, while smaller values for € produce much larger
trees without improving the performance much more.
The bottom of Figure 1 plots the tree size and the aver-
age time to goal against the parameter k of Algorithm
2. These values are measured after 100 episodes. The
size of the trees produced up to that point do not differ
significantly in size. On the other hand, it is interest-
ing to see that there is some optimal value for k. One
explanation is that large values for k, meaning many
candidate splits, give a stronger incentive to overfit-
ting. On the other hand, smaller values for k let the
algorithm take just the first acceptable test, without
giving it much chance to compare it to others.

We get similar results in the blocks world (Driessens
et al., 2001), but omit them due to space limits.

7. Discussion

We presented an algorithm for approximating Q-
functions with decision trees that uses only memory
linear in the size of the decision tree. This paper has
two main contributions. First, we proved that this
method can approximate the optimal Q-function with
error smaller than a choosen ¢, and hence that the al-
gorithm converges in the limit to an optimal policy.
Second, we discussed the influence of the concept lan-
guage used and proposed measures for the power of
the concept language and the probability distribution
on it. We illustrated this with experiments.

Our bounds do not make assumptions on the shape of
the @Q-function. If this function satisfies certain con-
ditions, one can probably show much better results.
Also, depending on the application, it is easier to rep-
resent either the @ function or the policy compactly.
We therefore expect that applying our approach to
policy iteration (instead of Q-iteration) would extend
the range of applications where trees can be used.

In practice, convergence may happen faster than our
theoretical results guarantee. This depends mainly on
the application at hand. While in theory it can take
a long time before stochastically choosing candidate
concepts guarantees that at least one useful concept
will be found, other authors have argued before that
stochastically trying concepts is valuable (Sebag, 1997;
Srinivasan, 2000). The results in this paper could offer
inspriation on what distributions are useful for ran-

56

domly generating concepts.

An interesting open question is whether similar bounds
can be proved for supervised decision tree learning. Up
to now, research on the concept languages used for su-
pervised decision tree learning has been limited, and
the results from this paper are not applicable directly
as we adopt the usual reinforcement learning assump-
tion that we can visit all states. Nevertheless, we an-
ticipate that in some cases, one can prove bounds on
the time needed to learn in a more general setting.

Acknowledgements

Jan Ramon is a post-doctoral fellow of the Fund for
Scientific Research (FWO) of Flanders.

References

Chapman, D., & Kaelbling, L. P. (1991). Input gener-
alization in delayed reinforcement learning: An al-
gorithm and performance comparisions. Proc. of 1.J-
CAI’91 (pp. 726-731).

Driessens, K., Ramon, J., & Blockeel, H. (2001).
Speeding up relational reinforcement learning
through the use of an incremental first order de-
cision tree learner. Procj of ECML’01 (pp. 97-108).

Kaelbling, L. P., Oates, T., Gardiol, N. H., & Finney,
S. (2001). Learning in worlds with objects. AAAT
Stanford Spring Symposium on Learning Grounded
Representations.

Kersting, K., & De Raedt, L. (2004). Logical markov
decision programs and the convergence of logical
td(A). Proc. of ILP’04.

Ramon, J. (2005). On the convergence of relational
reinforcement learning using decision trees for func-
tion approximation (Technical Report 2005). 7
http://www.cs.kuleuven.ac.be/ janr/tgconv/.

Sebag, M. (1997). Distance induction in first order
logic. Proc. of ILP’97 (pp. 264-272).

Singh, S., Jaakkola, T., M.L., L., & Szpesvari, C.
(2000). Convergence results for single step on-policy
reinforcement-learning algorithms. Machine Learn-
ing, 38, 287-308.

Srinivasan, A. (2000). A study of two probabilistic
methods for searching large spaces with ILP (Tech-
nical Report PRG-TR-16-00). Oxford University
Computing Laboratory.

Tadepalli, P., Givan, R., & Driessens, K. (2004). Rela-
tional reinfocement learning: An overview. ICML-
04 Workshop on Relational Reinfocement Learning.

Simultaneous Learning of Structure and Value
in Relational Reinforcement Learning

Scott Sanner

SSANNER@CS.TORONTO.EDU

Department of Computer Science, University of Toronto, Toronto, ON M5S 3H5, CANADA

Abstract

We introduce an approach to model-free
relational reinforcement learning in finite-
horizon, undiscounted domains with a sin-
gle terminal reward of success or failure. We
represent the value function as a relational
naive Bayes network and show that both the
value (parameters) and structure of this net-
work can be learned efficiently under a min-
imum description length (MDL) framework.
We describe the SVRRL and FAA-SVRRL
algorithms for efficiently performing simulta-
neous structure and value learning and apply
FAA-SVRRL to the domain of Backgammon.
FAA-SVRRL produces a high-performance
agent in very few training games and with
little computational effort, thus demonstrat-
ing the efficacy of the SVRRL approach for
large relational domains.

1. Introduction

The field of relational reinforcement learning (RRL)
has emerged in recent years as a major area of focus
in the reinforcement learning community (Tadepalli
et al., 2004; van Otterlo & Kersting, 2004). While
RRL is an attractive approach for learning from de-
layed reward in a relational state representation, its
generality does not come without severe representa-
tional and computational drawbacks:

e As the number of ground domain objects and the
arity of the relations increase, there is a combina-
torial explosion in the number of ground relations
that describe a state. This results in an extremely
large state space that can quickly become unman-
ageable, even if there are only a few relations in
the problem specification.

Appearing in Proceedings of the ICML’05 Workshop on
Rich Representations for Reinforcement Learning, Bonn,
Germany, 2005. Copyright 2005 by the author(s)/owner(s).

e One must carefully decide on the hypothesis space
from which a value function or policy may be se-
lected. If too simple of a space is used, the learner
may not be able to obtain a good representation
of the value function. And if too complex of a
space is used, the learner may never be able to
find a good representation or obtain enough data
to achieve a low-variance estimate of the value
function.

e Finding a relational structure for a value func-
tion or policy that is optimal for all domain in-
stantiations is extremely computationally diffi-
cult. Although a few approaches have provided
algorithms for exact representations of relational
value functions (Boutilier et al., 2001; Holldobler
& Skvortsova, 2004; Kersting et al., 2004), these
techniques have only been applied successfully to
relatively simple problem descriptions. In prac-
tice, exact value function representations are dif-
ficult to obtain and the driving research question
is how to efficiently find good approximations of
a value function (or policy).

In this paper we attempt to address the above issues by
introducing an approach to model-free relational rein-
forcement learning that induces structure as it learns.
This approach has the advantage of allowing a learner
to start with a simple relational representation and
augment it as needed to learn structure that is useful
for predicting the value function. We apply this learn-
ing technique to Backgammon and demonstrate that it
can produce a high-performance agent with very little
computational effort and in very few training games
in comparison to other state-of-the-art Backgammon
learning algorithms.

2. Background and Related Work

2.1. Relational Reinforcement Learning

There are two major approaches to RRL: model-based
and model-free. In model-based RRL, one usually as-

57

sumes the problem is modelled explicitly as a Markov
decision process (MDP) (Puterman, 1994) with rela-
tional state space structure (RMDP). Then it is possi-
ble to use a relational generalization of an MDP solu-
tion algorithm to solve for the value function or policy
of the RMDP. In contrast, model-free RRL usually
assumes an implicit underlying RMDP and attempts
to learn the parameters (and possibly structure) of a
value function via direct experience without access to
the underlying model. Since we focus on model-free
approaches in this work, we refer the reader to recent
work this area (Sanner & Boutilier, 2005) that includes
a discussion of related work.

While all of the model-free RRL approaches are too
numerous to mention, many algorithms are variants of
an approach that approximates the value or Q-function
with logical regression trees (Dzeroski et al., 1998).
While this learning approach is top-down in that it
recursively partitions the state space into finer value
distinctions, more recent work (Walker et al., 2004;
Croonenborghs et al., 2004) has taken a bottom-up
approach to finding useful features for predicting value
and combining them to make a predictive estimation
of state value. While our SVRRL algorithm takes this
latter approach, it focuses specifically on a relational
naive Bayes net representation of the value function
and presents efficient techniques for learning both the
value (parameters) and structure of this network under
a minimum description length (MDL) framework.

2.2. Bayes Net Structure Learning

Since our goal is to learn relational naive Bayes net
structure, the most relevant work along these lines is
in the field of Bayes net structure learning. Friedman
and Goldschmidt (1996) evaluate the tree-augmented
naive Bayes (TAN) network structure for learning clas-
sifiers in propositional domains. While we opt for a
naive relational Bayes network rather than a propo-
sitional TAN network, we do leverage a similar the-
oretical framework in our approach. In the area of
learning structure in relational Bayes nets, Friedman
et al (1999) propose techniques for learning a general
class of probabilistic relational models (PRMs) from
a fixed dataset. While this explicit search-based ap-
proach seems too computationally expensive to per-
form on-line in an RRL agent, future extensions of
SVRRL could incorporate some of these ideas.

3. Relational Reinforcement Learning
Framework

In this paper, we restrict ourselves to undiscounted,
finite-horizon domains with a single terminal reward

Trial 1 Trial m

State 1
State 2

Attack(1), Expose(3,5)
Block(2,7), Expose(9,10)

Block(2,3), Block(7,9)
Block(3,4), Attack(11,5)

State n—-1 Block(19,1), Expose(9,1) Block(23,1)
State n Expose(24,1) Expose(8,1), Expose(9,1)
oweome [Fal) -

Figure 1. A diagram depicting training of the RRL agent
in the domain of Backgammon (see Figure 2 for a de-
tailed explanation of the relations). During each trial, the
agent keeps track of all positive (i.e. true) ground atoms
of these templates at every intermediate state (we’ve re-
duced the arity of the relations for readability). Once a
terminal win or loss has been reached, the prior P(W) and
the conditional probability tables for the relational features
P(F;|W) appearing during the trial are updated. This pro-
gresses for m trials.

of success or failure. Additionally, we assume that
the state is described using a fixed set of relations
R ={Ry,...,R;}, each having some finite arity. Each
relation argument is assigned an attribute type from
aset A= {A4,...,A;} where each attribute is itself
a set of legal values the attribute can take. We re-
fer to a relation and the attribute specification for its
arguments as a relation template.

To make this more concrete, we provide a simple exam-
ple domain with a single relation template Ri(A;, As)
where A; = {a,b} and Ay = {1,2} so that there are
four possible ground instantiations of this template:
R(a,1), R(a,2), R(b,1), and R(b,2). Treating each
ground atom as a binary proposition, the state is given
by the full truth assignment (i.e. true or false) to each
of the four propositions. Thus, in this simple relational
domain, there are 2% or 16 possible states.

In the following discussion, we use binary proposi-
tions F; to denote generic ground atoms (a.k.a. fea-
tures) which can take on the value true denoted by
fi and the value false denoted by f;. For represen-
tational efficiency, we assume the state is represented
by only the positive (true) atoms, which we arbitrar-
ily label {f1,..., fp}. Then, given that that there are
a total of n ground atoms in a problem domain, we
use absence-as-negation to infer that the remaining
atoms {fp41,..., fn} are false. Welet F' = {F; ... F,}
(all ground atoms) and represent a state instantiation

fe€Fasf={fi, .., fofot1s---,fu} (atruth assign-
ment to all ground atoms). The omission of negative

58

Relational Bayes Net Before Join on Expose | nstances

@ Expose (2,0)
Attack (24,15,1,15)
Block (1,0,0,0,1) Expose (1,15)

Block (24,15,1,15,7)

Figure 2. The relational naive Bayes net representation of the value function in Backgammon. In this domain, there are
24 points on a Backgammon board where a player’s pieces can be placed (each player is assigned 15 pieces in the beginning
and this number decreases as they manage to successfully bear each piece off the board). There is also a bar position
where pieces can be placed when they have been blotted (i.e. attacked by the opponent because they were exposed by
themselves on a point) and must wait to reenter the board. We use five attribute types, PT = {1,...,24} for point
locations, OP = {1,...,15} for a count of opponents ahead of a point, ON = {1,...,15} for a count of opponents within
7 points, OB = {1,...,15} for a count of opponents on the bar, and SZ = {1,...,15} as the number of consecutive
points with at least two of a player’s pieces (a block in Backgammon). From this, we define three relation templates
Attack(PT,OP,OB,0ON), Expose(PT,OP,OB,0ON), and Block(PT,OP,OB,ON,SZ). Here we have a child node for
each ground atom derived from these templates. As SVRRL progresses, the system keeps track of the prior over winning
P(W) and the conditional probability tables P(F;|W) for each ground child node. As the system learns, it may decide

Relational Bayes Net After Join on Expose | nstances

Expose(1,0) Expose(2,0)

Block (24,15,1,15,7)

Attack (1,0,0,0)

Attack (24,15,1,15)

Block (1,0,0,0,1)

to join two ground features as is done above for two ground atoms of the Expose relation.

atoms from the state is efficient since we expect the
number of positive atoms to be small (and easily iden-
tifiable) in comparison to the total number of atoms
(p < n). And as we will show, it is also computation-
ally efficient for comparison of state values.

Figure 1 shows the learning task. Given a number of
trials, each involving some finite number of time steps,
the learner is presented with a relational specification
of the positive state features {f1,..., fp} and chooses
an action according to a fixed policy. This is repeated
in each trial until the terminal state is reached and the
terminal reward is received. If we model the underly-
ing process as a finite-horizon MDP with a terminal
reward of 1 for success/win and 0 for failure/loss, and
a discount factor v = 1 (i.e. no discount), then it is
straightforward to show that the value function w.r.t.
a fixed policy is simply the conditional probability of
success/winning given the state, P(w|f).

Now, the question we must answer is how to estimate
P(w|f). Even very small RRL domains can have hun-
dreds of ground atoms and it would be impossible to
represent the exact distribution, which in its fully enu-
merated form would require roughly one probability
entry for every distinct truth assignment to ground
atoms. For 100 ground atoms, this would require ap-
proximately 2'%° distinct probability entries, which is
clearly intractable. Thus, we need to focus on a com-
pact, factored representation of P(w|f) and one com-

mon way to do this is by using a Bayes net. In our
case, we specifically choose to use the naive Bayes net
representation given in Figure 2 since we need only
record 2 probability entries P(f;|w) and P(f;|w) for
each ground atom and 1 entry P(w) for the prior over
winning. For our previous example of a relational do-
main with 100 ground atoms, we need only record 201
probability entries to approximate the value of P(w|f).
While this is only an approximation, we show that
we can “patch up” this simple representation through
structure learning. But, first we focus on how to learn
the value (parameters) of this network.

Now that we can compactly represent the value func-
tion as a Bayes net, we need to efficiently learn it from
data. Since it is well-known that the max-likelihood
parameters of Bayes net are simply the observed fre-
quencies for each conditional probability table (CPT),
we can efficiently approximate the value function by
keeping track of the observed frequencies (denoted by
P) for each CPT. This allows us to compute the max-
likelihood value for P(w|f):

Plulf) = ‘fl;‘&f (w) 1)
 P)T, P(fil) T,y P(filw)
EoE{w,iJ} p 0) f:l p(f1|0) ;L:p+1 P(ﬁ‘o)

As noted previously, the number of ground atoms (and
therefore children in the naive Bayes network) is very

59

large. Yet even in the presence of an infinite number
of negative features, we can still efficiently determine
the best next state or after-state! given a finite set
of the positive features for each state. Based on the
fact that the state f which maximizes P(w]|f) will also
maximize the log winning odds log(qu”w”ﬁ)) we obtain
the following representation of the log winning odds of
a state:

P(wlf) . P(w)
SPwlf) ~ B Pw)

. P(filw) | N~ P(filw)

;bg P(fi|w +i:zp;1log P(f|w) (2)

Now, if we let C' = log & Pl)Jrzl 1 log le%lg;’ then we
can express the log winning odds of a state described

by only the set of active feature instances:

w|f P(fi|w) P(fiw)

C+Z (1 AT R P<f¢|w>) ©
Since C' is a constant common to all states, we can
ignore it during comparisons of log winning odds of
states. Thus, even in a relational naive Bayes net with
a large number of negative features, it is still possible
to efficiently determine the highest-valued state.

As one final practical consideration, we typically
use smoothing and non-parametric techniques (e.g.
nearest-neighbor, etc...) as in Sanner et al (2000) to
efficiently store and estimate the CPTs for all ground
atoms of a relation template. This allows us to lever-
age natural similarity measures between attribute val-
ues to obtain more robust estimates of the CPTs.

4. Structure Learning

Given the previous framework for learning the parame-
ters of a fixed relational naive Bayes net value function
in relational reinforcement learning, we now proceed
to determine how to learn structure in this value func-
tion. We restrict our attention to two types of joint
feature learning which we outline next. In the follow-
ing examples, note that we are looking for two ground
atoms Fy, and Fj that we may want to join:

Feature Attribute Augmentation (FAA) When we
first initialize our relational naive Bayes net for a
problem domain, we obtain a child node for ev-
ery ground feature, e.g. one child node may be
Expose(5,3,0,2). Consequently, we must use the ob-
served frequency counts to estimate the probabilities
for this child node’s CPT, i.e. P(Expose(5,3,0,2)w)

!An after-state (Sutton & Barto, 1998) is simply the
state resulting from an agent’s action before any other
agent, if present, has chosen its respective action.

and P(Expose(5,3,0,2)|w). If the relation arity is
high and the number of attribute choices is large, we
can expect to obtain very little data for each poten-
tial ground atom of a relation template. Aside from
non-parametric learning techniques for mitigating the
effects of sparse data, we choose to initially approxi-
mate the above probabilities by assuming that all re-
lation attributes are independent. For example, we es-
timate P(FE(5,3,0,2)|w) (abbreviating Expose as 'E’),
by P(E(5,-,-,-), E(-,3,-,-),E(-,-,0,-), E(:,-,-,2)|w) where
- in an attribute slot indicates a don’t care. This
may give us a more accurate low-variance estimate
in the presence of sparse data, but as we gain more
experience (i.e. data) over time, we may want to
relax this approximation. For example, we can let
F,=E®5,), F, = E(-,3,-,-), and attempt to de-
termine if the join F,; = E(5,3,,-) is more informa-
tive than the independent features.?

Feature Conjunction (FC) In contrast to feature at-
tribute augmentation, where in some sense we are sim-
ply dealing with approximations of probabilities within
the CPTs corresponding to each Bayes net child node,
we may also want to ask whether there is any ad-
ditional information gained by joining the CPTs for
two arbitrary child nodes. For example, we could let
F, = Expose(5,3,0,2) and F, = Attack(10,3,0,1)
and ask whether the joint probability of the conjunc-
tion of both atoms, P(F,, Fy|W), is more informative
than the product of the probabilities given by the naive
Bayes assumption, P(F,|W) - P(E,|W).3

In general, a learner can use both FAA and FC struc-
ture learning techniques which we denote generically
as the SVRRL algorithm, or just FAA structure learn-

2For FAA-learning we are only looking at joining the
attribute probability estimates in one ground atom, but it
is easy to look at joining the attribute probabilities of each
ground atom of a relation template. This latter learning
approach is more relational in nature and is what we refer
to by FAA-learning.

3For FC-learning, we are simply looking at joining two
ground atoms so it would be misleading to think of this as
relational learning. However, learning arbitrary conjunc-
tions of relations for Bayes nets proves problemantic since
there is no direct correspondence between a relational join
and a manipulation of the underlying ground Bayes net.
While relational learning of this sort has been done for
Markov random fields (MRFs), we note that learning the
optimal parameters for MRFs has no closed-form solution
and must be done iteratively. So, for now, full FC rela-
tional learning in the naive Bayes net framework is the
subject of future research. We note that full FC relational
learning would also enable the use of variable unification
and quantification in relational joins to reduce the number
of ground atoms. Providing the RRL agent with such an
expressive relational-learning space is one of our ultimate
research goals.

60

ing which we denote as FAA-SVRRL. For whatever al-
gorithm is chosen, the learner must maintain distribu-
tions for each individual feature P(F;|W) and poten-
tial FAA and FC joint feature instances P(F,, Fp|W).
This requires a quadratic amount of work in the num-
ber of active features during max-likelihood parameter
updating of the relational naive Bayes network. If this

proves to be too computationally intensive for generic
SVRRL, then FAA-SVRRL should be used.

Given the probabilities for our joint feature estimates,
our goal is to add relational structure to the net-
work so that it mazimizes the log-likelihood of the
joint probability of the Bayes met. Thus, given the
current network structure, our goal is to ask which
two feature atoms F,, and F} to greedily combine via
the FAA or FC methods of structure learning. We
let V; denote the set of all Bayes net binary vari-
ables {W, F1, ..., Fy, Fpi1,...,F,} and let T € Vg be
shorthand for the set of instances & € {W x Fy x - -+ X
Fp, X Fppq1 x --- x F,}. Let N(Z) be the number of
times that state instantiation & has occurred in the
data. We express the log-likelihood of the naive Bayes
net with parameters 6 and M data samples D as the
following:

10|D) = Z

ZeVan

N(&) <log P(W) +

log P(Fa, Fo[W) + >
i=1,i¢{a,b}
Now, given that we know the maximum likelihood pa-
rameters for this fixed naive Bayes network structure
are simply the observed probabilities, and adding and
subtracting the same log(P(F,|W)P(Fy|W)) term, we
can express the maximum likelihood as the following:

My P

ZeVan

P(Fa,Fb|W) - -
B PEIT +;10gP<Fl|W>>

—MZP
vy Y

c=1 F.,W

log P(FiIW)>

I"(0|D) = <logP(W) +

Ylog P(W) +

(F.,W)log P(F.[W) +

P(F,, Fb\W)
P(Fa|W)P(F,|W)

Z P(F,,F,,W)log —
Fo ,Fy, W

W)+ H(E|W) + I(Fa, Fy|W))

i=1

= M(H(

Finally, we let C = M(H(W) + Y H(F;|W)) (M
times the entropy of W plus the sum of the conditional
entropy of every feature F; in the network, which we
note is constant no matter what features F, and Fy
are chosen). Thus, we arrive at the following pleas-
ing result expressing the maximum log-likelihood of
a relational naive Bayes network under a single fea-
ture join as a constant plus the the conditional mu-
tual information values of those joined feature nodes,

I*(0|D) = C+ M - I(F,, Fy|W)). If, as for FAA-
learning, we want to look at the effects of joining mul-
tiple pairs of features, it is obvious that we need only
sum the mutual information values of each pair be-
ing joined. Thus, FAA and FC-learning require local
evaluations only, thereby leading to a highly efficient
structure learning framework.

Since random noise almost always guarantees non-zero
mutual information, we need a principled way to con-
trol the amount of structure learned. For this purpose,
we choose the minimum description length principle
(MDL) commonly used in Bayes net learning (Lam
& Bacchus, 1994) to allow the SVRRL algorithm to
balance the amount of training experience with the
complexity of the network structure. At each update,
we check whether to add a feature by determining if
it minimizes the following MDL score where |B] is the
number of parameters in the naive relational Bayes
network B:

MDL(BID) = Slog(M|B)) ~"(6D) (4)

Since this computation involves only a negation and
constant addition to the log-likelihood, the update
check to determine whether a joint feature should be
added can be computed quite efficiently.

Finally, we can briefly summmarize the full SVRRL
algorithm: 1) Initialize the naive Bayes network for a
domain with a child for each ground atom, begin by
estimating the probability for each child CPT by treat-
ing the individual relational attributes independently
within each node (see FAA-learning); 2) For the cur-
rent trial, execute the policy* to obtain data and keep
track of all individual and joint feature occurrences; 3)
When the MDL principle permits, augment the child
CPTs (FAA) or child nodes (FC) with the feature joins
which maximize the MDL score; 4) When a terminal
state is reached, update all probability estimates (in-
dividual and joint) for features encountered during the
trial, and goto step 2 to begin the next trial.

4The policy can be determined on-line as the best state
w.r.t. the current value function. Although convergence is
not guaranteed for such a non-stationary policy, this ap-
proach often works well in practice.

61

PLAYER WINNING PCT # TRAINING GAMES

TD-GAMMON 66.0 % &+ 777 1,500,000
1-PLy (EST)

FAA-SVRRL 58.6 % £ 0.02 5,000

PUBEVAL 50.0 % =+ 0.00 UNKNOWN

HC-GAMMON 40.0 % + 3.46 100,000

Table 1. Asymptotic winning percentage of various

Backgammon programs vs. Pubeval.

5. Empirical Evaluation

Since the SVRRL algorithm is intended to handle do-
mains with only terminal rewards of success or failure,
such an approach is appropriate for learning in goal-
oriented tasks such as games where the outcome is
simply a win or a loss. We choose Backgammon as a
testbed for empirical evaluation since it has a rich re-
lational feature space, a high branching factor, and is
heavily stochastic. This makes it an extremely difficult
game to solve via model-based techniques, making it
a good candidate domain for putting SVRRL to the
test.5

We used FAA-SVRRL as our initial implementation of
a Backgammon learning agent. While we lack space
to show the graphs, we note that FAA-SVRRL learns
more quickly and asymptotically outperforms an algo-
rithm using random structure learning in place of the
greedy-optimal structure learning outlined previously.
Table 1 gives the asymptotic performance and num-
ber of training games of the converged FAA-SVRRL
learning algorithm vs. PubEval (trained linear neural
net) in comparison to results obtained for an estimate
of TD-Gammon 2.1 with 1-ply search (Tesauro, 1992)
(expert level)®, PubEval, and HC-Gammon (Pollack
et al., 1996), a neural net learned via genetic coevolu-
tion. We note that SVRRL not only converges in the
least number of training games, but achieves a com-
mendable level of performance, coming in second only
to expert-level TD-Gammon.

In support of our efficiency claims, we note that our
FAA-SVRRL learning algorithm completed 5000 training
games in under 10 minutes of computation time on a 1
GHz Pentium IIT with 128 Mb of RAM. The best con-
verged learner required only 240 features (or less than 10
Kb of RAM) to store the full non-parametric representa-
tion of the conditional probability tables. This is a reason-
ably compact representation of a value function for a game
estimated to have over 10'® distinct states.

5The TD-Gammon 1-Ply value is estimated
from (Galperin & Viola, 1998) assuming that the Lin-3
opponent referenced in this paper performs comparably to
Pubeval. This seems to be a reasonable assumption since
both are reasonably strong players based on a single-layer
linear neural net evaluator.

6. Concluding Remarks

In this paper, we have motivated and examined the
problem of learning both structure and value in a re-
lational reinforcement learning framework. This algo-
rithm is not only extremely efficient, involving simple
updates and no search, but by learning only the struc-
ture that maximizes the log likelihood of the relational
naive Bayes net under a minimum description length
framework, the computational burden on the learning
agent is minimized. We have applied our FAA-SVRRL
agent to the domain of Backgammon and have shown
that it learns useful structure in an extremely efficient
manner while achieving a commendable asymptotic
performance level.

Acknowledgments

The author would like to thank Martijn van Otterlo
and the anonymous reviewers for their comments and
suggestions regarding earlier versions of this paper.

References

Boutilier, C., Reiter, R., & Price, B. (2001). Symbolic dynamic program-
ming for first-order MDPs. IJCAI-2001.

Croonenborghs, T., Ramon, J., & Bruynooghe, M. (2004). Towards in-
formed reinforcement learning. ICML-2004 Workshop on Relational Re-
inforcement Learning.

Dzeroski, S., de Raedt, L., , & Blockeel, H. (1998). Relational reinforce-
ment learning. ICML-1998.

Friedman, N., Getoor, L., Koller, D., & Pfeffer, A. (1999).
probabilistic relational models. IJCAI-1999.

Friedman, N., & Goldszmidt, M. (1996).
bayesian networks. AAAI-1996.

Galperin, G., & Viola, P. (1998).
control (Technical Report). MIT.

Holldobler, S., & Skvortsova, O. (2004). A logic-based approach to dy-
namic programming. AAAI-2004 Workshop on Learning and Planning
in Markov Processes.

Kersting, K., van Otterlo, M., & de Raedt, L. (2004).
relational. ICML -2004.

Lam, W., & Bacchus, F. (1994). Learning bayesian belief networks: An
approach based on the mdl principle. Computational Intelligence, 10,
269-294.

Pollack, J., Blair, A., & Land, M. (1996). Coevolution of a backgammon
player. Fifth Artificial Life Conference. Nara, Japan.

Learning
Building classifiers using

Machine learning for prediction and

Bellman goes

Puterman, M. (1994). Markov Decision Processes-Discrete Stochastic Dy-
namic Programming. New York, NY: John Wiley and Sons, Inc.
Sanner, S., Anderson, J. R., Lebiere, C., & Lovett, M. (2000). Achieving

efficient and cognitively plausible learning in backgammon. ICML-
2000.

Sanner, S., & Boutilier, C. (2005). Approximate linear programming for
first-order mdps. UAI-2005.

Sutton, R. S., & Barto, A. (1998). Reinforcement learning: An introduction.
MIT Press.

Tadepalli, P., Givan, R., & Driessens, K. (2004). Relational reinforcement
learning: An overview. ICML-2004 Workshop on Relational Reinforce-
ment Learning.

Tesauro, G. (1992). Practical issues in temporal difference learning. NIPS-
92.

van Otterlo, M., & Kersting, K. (2004). Challenges for relational rein-
forcement learning. ICML-04 Workshop on Relational Reinforcement
Learning.

Walker, T., Shavlik, J., & Maclin, R. (2004). Relational reinforcement

learning via sampling the space of first-order conjunctive features.
ICML-04 Workshop on Relational Reinforcement Learning.

62

Small World Network Based World Representation
for Scalable Reinforcement Learning

Seung-Joon Yi
Byoung-Tak Zhang

SJLEEQ@BI.SNU.AC.KR
BTZHANG@BI.SNU.AC.KR

School of Computer Science and Engineering, Seoul National University, Seoul 151-742, South Korea

Abstract

The curse of dimensionality plagues practical
uses of reinforcement learning. Temporal ab-
straction approaches have been proposed to
overcome this problem, but typically they re-
quire a priori design of the hierarchy and lack
the compact representation needed for large
sized problems, so their practical uses are
still limited. Inspired by recent research in
complex networks, we present a compact self-
organizing, growing network for world repre-
sentation to scale up reinforcement learning.
Continuous state space is represented with
a compact self-organizing network, and the
network is augmented to have small world
property without a priori knowledge. Ex-
perimental results with various problem sizes
show that the average path length between
nodes of this network scales subpolynomially
with the size of the network, and the conver-
gence of reinforcement learning is accelerated
significantly.

1. Introduction

In the framework of Reinforcement Learning (RL), an
agent attempts to learn a policy, i.e. a mapping from
state to action, that maximizes some time aggregate
of rewards. In the traditional RL framework, the envi-
ronment is defined as a discrete-time, discrete-state
Markov decision process (MDP). Popular RL algo-
rithms such as Q-Learning assume tabular represen-
tation of both the state and the action space, and es-
timates the values of all the state-action pairs to find
the optimal policy (Watkins & Dayan, 1992). How-
ever, in most real world problems with continuous or

Appearing in Proceedings of the ICML’05 Workshop on
Rich Representations for Reinforcement Learning, Bonn,
Germany, 2005. Copyright 2005 by the author(s)/owner(s).

63

high-dimensional state spaces, it is impossible to enu-
merate all of the state-action pairs. Even with the
problems of discrete state space, it is impractical to
estimate the value function for all the states when the
problem size is large. So it is necessary to use some
kind of compact world representation schemes.

A common solution to large or continuous state spaces
is using a function approximator such as neural net-
works (Boyan & Moore, 1995). Using a function ap-
proximator with RL has shown good results in some
situations. However, it is also known that the num-
ber of parameters to be estimated grows exponentially
with the size of any compact encoding of a state (Barto
& Mahadevan, 2003). Attempts to combat this curse
of dimensionality lead to temporal abstraction where
decisions are not required to perform every single ac-
tion. This naturally leads to hierarchical control archi-
tectures and thus the associated learning algorithms
are called hierarchical reinforcement learning (HRL)
algorithms. However it is still hard to use these ap-
proaches directly to real world tasks. The first prob-
lem is that the structure of hierarchy, subgoals, sub
MDPs and subtasks should be decided in advance.
The user should ‘program’ with the problem specific
knowledge. Another problem is that these hierarchical
RL approaches still assume a tabular representation of
states and actions which makes it difficult to apply the
HRL algorithms directly to large sized problems that
really need them.

Meanwhile, recent studies of complex networks show
that many real-world networks, such as web graphs
and social networks, show the small world property
where most pairs of nodes are linked by short chains
of nodes (Watts & Strogatz, 1998). Based on this fact,
we propose a new approach of building temporal ab-
straction using the small world network models. The
MDP is augmented with subtasks whose structure is
determined by the corresponding small world network
models, where two states in the augmented MDP need
small number of decision steps between them.

And for the practical application to the continuous
state real world problems, we also utilize an incremen-
tal network that adaptively maps sensory input to ac-
tions. By augmenting the network to have the small
world property and using appropriate navigation algo-
rithms to select actions, we can build a scalable RL
algorithm with compact representation without prob-
lem specific knowledge.

This paper is organized as follows. In Section 2, we
briefly review the RL framework and the properties of
complex networks. In Section 3, we present a practi-
cal reinforcement learning algorithm with small world
network representation of the environment. In Section
4, we describe the experimental setup and the results.
Finally, in Section 5, we conclude with a few future
directions.

2. Related Works

2.1. Reinforcement Learning and Information
Propagation on Networks

Here we briefly review the standard reinforcement
framework of discrete time, finite MDPs. In this
framework, a learning agent interacts with an envi-
ronment at discrete time scale. On each time t, the
agent chooses an action a; € A using its policy based
on the state s; € S it perceives. Then the environ-
ment gives the agent a numerical reward .41 € R and
moves to the next state s;11. The objective of the
agent is to learn a policy, mapping from states to ac-
tions, that maximizes the expected discounted future
reward defined as

oo
Ry=rip1+rsa+- =Y e (1)
k=0

To learn the optimal policy, we can get the optimal
action value function Q*(s,a) using the following Q-
learning method (Watkins & Dayan, 1992)

viewed as the propagation of information from state
s to its successor state s’. When the agent receives
positive reward in a certain state, the information of
that reward is propagated to adjacent states, in the
form of action value function. When each state collects
enough amount of information, their action value func-
tion converges and the RL problem is solved. By mak-
ing the propagation of information faster by adopting
temporal abstraction, we can expect better efficiency
in solving RL problem.

2.2. Complex Networks

Recent researches on complex networks have showed
that most of the real world networks share the follow-
ing three features. (a) Small world property. There
exists a short path between any two nodes, compared
to their size (Watts & Strogatz, 1998). (b) High clus-
tering coefficient. Two nodes with a common neighbor
has much more likely to be connected than two nodes
without one. (c) Scale free degree distribution. The
distribution of the degree decays as a power law, which
is invariant to scaling. This property is often related
to the hierarchical organization of the network.

Various network models with these properties are sug-
gested. Here we present two small network models we
will use for our task. First model is the Kleinberg’s
model (Kleinberg, 2001). In this model, we start with
a regular lattice network and random long links (u, w)
are added to current network with probability propor-
tional to d~* where d is the lattice distance from u
to w. It is known that if we set the value of «a to
the dimension of underlying lattice, a decentralized
greedy algorithm can achieve polylogarthmic search
time. Second model is the scale free growing network
model (Barabdsi & Albert, 1999). In this model, when
a new node v is added to current network random long
links (u, w) are added with probability proportional to
degree of w, which is called the linear preferential at-
tachment. This model also shows the scale free degree
distribution.

Q(st,at) — Q(s¢, ae)+afrip1+y max Q(st41,a)—Q(5¢, at)).

(2)
We can generalize the MDP framework to Semi-MDP
framework where each action a can take variable
amounts of time k(s,a) (Sutton et al., 1999). A
slightly different update rule can be used such as

Q(s,0) — Q(s,a)+alr+7"" max Q(s', a')~Q(s, a)].
(3)

In the update rules (2), (3), action value functions of
a state s, Q(s,a) are updated using the value func-
tions of its successor state s, Q(s’,a’). This can be

64

3. Building a Small World Network for
World Representation

Temporal abstraction approaches reduce the number
of decision steps between states by augmenting the
MDP with subtasks. But they require a priori knowl-
edge of the problem in most cases. Instead of using
the problem specific knowledge, we propose to use the
network model with small world property to determine
the structure of hierarchy. By the small world prop-
erty, the augmented MDP will have small number of
decision steps between states, which will help solving

RL problem efficiently.

3.1. The Small World Network-Based World
Representation

To apply RL for continuous problem, we have to ap-
proximate the state space by discretization or using
function approximators such as neural networks. To
adopt two small world networks we mentioned above,
we need an incremental network model with a regu-
lar lattice structure. An example of such a model is
the growing neural gas network (Fritzke, 1995). Similar
approaches were used in(Gross et al., 1998; Toussaint,
2003) for world representation. Its online extension is
the incremental topology preserving map(Millan et al.,
2002) which we will use as the base of our algorithm.

Our algorithm is summarized in figure 1. It incremen-
tally adds nodes to the unexplored regions of state
space, and uses self-organization rule to modify the
connectivities and positions of nodes. Links between
edges are modified so that each node is only connected
to its neighbors, and the position of nearest node and
the positions of all its neighboring nodes are moved
closer to the input position. Furthermore, long range
edges are added to make the network have the small
world property. If we assume that all the state transi-
tions are local, we can use this network model as the
discrete MDP which approximates the original prob-
lem. Each node represents a corresponding region of
state space, and each edge correspond to a subtask of
moving to a specific state in original problem. This ap-
proach has much in common with topological mapping
approaches in robotics (Thrun, 1998) and node graph
approaches used in many 3D games (Rabin, 2002).

Our approach has two major differences from other
network based approaches. The first difference is the
existence of long links. When a new node is added, a
long link denoting the corresponding subtask is added
with the probability given by a small world network
model. This procedure makes the resulting network to
have the small-world property. The second difference
is the constraint of visibility, which requires that there
should be a straight, non-blocked path between two
linked nodes in state space. If this requirement is met,
the optimal subpolicy for a subtask is trivially given
as moving straightly to its subgoal.

3.2. Reinforcement Learning in a Small World
Network

Now we need an appropriate RL algorithm for the
small world network based world model. To select
actions, the easiest way is using conventional action
selection methods such as e-greedy method. Although

65

. Perceive the current position z.
. Find the nearest node b visible from x
and second nearest node b’ visible from z.
3. If the distance between x and b exceeds the unit
radius r, then
(A) Add a node u at z.
(B) Create edges from u to b and ',
(€)
(D)

[N

Remove any edge between b and ¥/,
Select nodes v visible from z according to
probability proportional to:
(MODEL 1) dist(u,v)” %, where dist(u,v) is
the euclidian distance between u and wv.
(MODEL 2) d(v), the number of long range edges
starting from wv.
(E) Create long range edges from u to v with the
probability p;.
Else
(F) Create an edge between b and b’
if b is visible from the position of b'.
4. Move wy, the position of b, and w,, the positions
of all its neighboring nodes r, toward z if possible:
wp «— wp + d(z — wsp)
Wy — wy + 6 (2 — w,)

Figure 1. An algorithm to build a small world network
based world model.

this method ignores the network structure, augment-
ing MDPs with temporal abstraction alone can help
reinforcement learning process (Sutton et al., 1999).
And it is also known that random walking in a scale
free network gravitate towards the high degree nodes,
making the search more efficient (Adamic et al., 2001).
So for the simplicity, we use a simple e-greedy action
selection rule in this work. To update the value func-
tions, we can directly use Semi-MDP value update rule
(3) for both of the models we described above. Finally,
we need to get a subpolicy for each subtask. For the
navigation task we are interested in, finding subpoli-
cies can be trivial. However, for a general RL task,
we have to use a local policy learning algorithm such
as the Experience Replay procedure(Lin, 1992). We
leave this as a future work.

4. Experimental Results

In this section we describe two experiments. For both
experiments, we first let the agent explore the state
space and use our algorithm to generate Semi-MDP
network. And we run standard Q-learning algorithm
on the network. Two versions of proposed algorithm,
each using model 1 and model 2 we discussed above,
are tested against standard ITPM algorithm. Com-
mon parameter values we use are as follows: move-
ment parameter §=0.0002, §,,=0.00002, long link ratio

2 os

(a) ITPM only (b) ITPM only

(d) Model 1

(f) Model 2
Figure 2. Example of networks generated using each algo-
rithms and their degree distributions. Networks are gen-
erated with r=0.02 and degree distributions are measured

with r=0.00625. Only long links are shown for Models 1
and 2.

p;=0.1. The lattice dimension p is empirically deter-
mined from the average degree of the baseline network.
Various values for unit radius r are used to examine
the scaling behaviors of each algorithms.

Our experiment is greatly simplified by the visibility
constraint, by which the optimal subpolicy for a sub-
task is trivially given as going straight to their sub-
goal position. Although this approach is not suitable
for general RL tasks where visibility constraint is not
applicable, it suits well for navigation task we are in-
terested in. For reinforcement learning part, we use
simple epsilon-greedy action selection rule with e=0.1,
a=0.5, yv=0.9. we used the Semi-MDP update rule
(3), using the length of edges normalized by the unit
radius r as the execution time k(s,a). We will discuss
each experiments further in following subsections.

4.1. 2D Puddleworld

The first experiment uses a [0,1) by [0,1) continuous
state space with a T-shaped obstacle in it. At each

66

average shortest path length

Figure 3. The scaling behaxidipg; of the averaged shortest
path length. In contrast to baseline ITPM which shows a
polynomial growth of shortest length, model 1 and model
2 show a polylogarithimic growth of shortest path length

which is shown as the straight line on semi-log plot.

time step the agent can move to any direction, with
step size r/10. We let the agent do random walk
and generate networks for each models using unit ra-
dius r=0.2,0.1,0.05,0.025,0.02,0.0125,0.01 and 0.00625.
Generated networks from each models and their degree
distributions are shown in figure 2. Figure 2a shows
the baseline network ITPM generates where each node
is connected to only its neighbors. From figure 2b,
we can see the degree distribution of the network is
peaked at 5, and the lattice dimension is determined
as p=logs5=2.322. Figure 2b and 2c show the addi-
tional long links model 1 and 2 add to the baseline
network. From figure 2f, we can see the emergence of
hub structures and the characteristic power law curve
of degree distribution in model 2. The average shortest
path length of each network is shown in figure 3. We
can see that in contrast to the baseline network where
the average shortest path length grows linearly with
problem size, the average shortest path length grows
polylogarithmically in model 1 and model 2.

Finally we run a Q-learning algorithm on generated
networks. At each episode, the agent starts at a ran-
dom start point and move up to 100 steps. In an ab-
sorbing goal area positioned upper right corner of the
state space, a reward of 100 is given. The number
of episodes in a run is empirically determined to fully
cover its convergence phase. The total distance from
start point to goal is measured at each episode. To
penalize the episodes that fail to reach the goal within
100 unit distance, we assign 1000 unit distance as the
penalized distance to the goal of that episode. We run
a number of runs and average the penalized distances
to goal. Figure 4 shows the convergence of penalized
distance to goal for various network sizes. We can see
that using model 1 and 2 improves the convergence
speed of RL, and this effect is more apparent in bigger
problem. To see the scaling behavior of RL perfor-
mance over problem size, we measure the number of
episodes needed to reach 50% convergence from each

1000 1500 o 1000 2000 3000 4000
Epsades Episotes

(b) 7=0.025, 795 nodes

o 500 5000 6000

(a) r=0.05, 200 nodes

2 0
Epsodes Episodes

(c) r=0.0125, 3157 nodes (d) r=0.00625,
nodes

12501

Figure 4. The penalized distances to the goal at each
episode, averaged after 100 runs. 1000 unit distance is used
to penalize the failed episodes. Each graph is normalized
to fit in the range of 0 to 1.

learning curves. To reduce the effect of variance,
we apply a smoothing filter which averages outcomes
within a given window size. Figure 5 shows the scaling
behaviors of RL using each models. Though they do
not scale polylogarithmically like shortest path length,
we can accelerate the convergence of reinforcement
learning algorithm significantly.

4.2. 3D Gameworld

To show that our algorithm can handle a complex
problem with a continuous state space, we now con-
sider a 3D gameworld task. For our experiment plat-
form, we use a popular 3D game Half-Life 2 (Hodgson,
2004) which enables the real-time simulation of con-
tinuous 3D world. We use a map named dm_lockdown
whose size is approximately 50*150*10 m. Learning
agent has size 1*1*1 m and has maximum movement
speed of 7 m/s (27k mph). The position of agent is
checked every 1/20 second to update the network and
get a new action. To explore the state space efficiently,
we use a RL based multi agent exploration algorithm,
which we do not cover in this paper.

We generated three networks using unit radius
r=0.5,0.75,1.0 m. Generated networks consist of 4594,
6403, 13252 nodes and 6933, 11447, 13866, 23341 links,
respectively. Long links generated by model 1 and 2
account for about 5% of total links. Generated net-
work using r=0.75 meter is shown in Figure 6. With
the same setting we use for the first experiment, we run
Q-learning on each networks. A reward of 100 is given
at the single goal located in one of the rooms. Figure 7

67

9
8 ITPM only]
— — — Model 1
o — -~ Model 2]
g 6f 1
o
o
2
g5 1
5
5 af 1
Qo
£
=]
z 3+ 4
P
2F - i
P
1 - i
=== g - T T

10
Graph size

Figure 5. The scaling behavior of the number of episodes
to reach 50% converge-ice.

Figure 6. The 3D view of generated baseline network using
r=0.75 m. Total number of nodes is 6403.

shows the convergence properties of penalized length
to goal for each models. In contrast to the baseline
ITPM algorithm which shows very slow convergence
speed, our algorithm quickly start to converge.

5. Conclusion and Future Work

We propose a novel network based world representa-
tion to cope with the curse of dimensionality in rein-
forcement learning. By augmenting the network with a
small number of additional links based on small world
network models, we demonstrate that we can keep the
growth of the number of decision steps polylogarith-
mically, which can accelerate the convergence of RL
as the problem size grows bigger. Experimental result
with 3D game environment shows that our algorithm
can learn usable policy in reasonably short time, even
with a huge problem with state size exceeding 10,000.
Although still preliminary, our approach is promising

Epsades Episotes

x10* x10°

(a) r=1, 4594 nodes (b) 7=0.75, 6403 nodes

ssssssss

(c) r=0.5, 13252 nodes

Figure 7. The penalized distances to goal at each episode
for a 3D gameworld task, averaged after 10 runs. The 1000
unit distance is used as the penalized distance for failed
episodes.

in several aspects: it is scalable, takes continuous state
and action space, has a compact representation and
does not need problem specific knowledge.

There are many interesting directions for future work.
The most interesting one is extending our approach to
general continuous state space RL problems by adopt-
ing a subpolicy learning algorithm. Using larger sub-
tasks can help reducing the number of decision steps
between states, but it may add overhead of learning
subpolicies for larger subspaces. Finding the right
tradeoff between these two will be a challenging prob-
lem.

References

Adamic, L. A., Lukose, R. M., Puniyani, A. R., &
Huberman, B. A. (2001). Search in power-law net-
works. Phys. Rev. E, 64, 46135—-46143.

Barabési, A.-L., & Albert, R. (1999). Emergence of
scaling in random networks. Science, 286, 509-512.

Barto, A. G., & Mahadevan, S. (2003). Recent ad-
vances in hierarchical reinforcement learning. Dis-
crete Event Systems journal, 13, 41-77.

Boyan, J. A., & Moore, A. W. (1995). Generaliza-
tion in reinforcement learning: Safely approximat-
ing the value function. Advances in Neural Infor-
mation Processing Systems 7 (pp. 369-376). Cam-
bridge, MA: The MIT Press.

Fritzke, B. (1995). A growing neural gas network
learns topologies. In G. Tesauro, D. S. Touretzky

68

and T. K. Leen (Eds.), Advances in neural infor-
mation processing systems 7. Cambridge MA: MIT
Press.

Gross, H., Stephan, V., & Krabbes, M. (1998). A
neural field approach to topological reinforcement
learning in continuous action spaces. IEEE World
Congress on Computational Intelligence, WCCI’98
and International Joint Conference on Neural Net-
works, IJCNN’98.

Hodgson, D. (2004). Half-life 2:raising the bar. Prima
Games.

Kleinberg, J. (2001). Small-world phenomena and the
dynamics of information. Advances in Neural Infor-
mation Processing Systems 14. Cambridge MA: The
MIT Press.

Lin, L. G. (1992). Self-improving reactive agents based
on reinforcement learning, planning and teaching.
Machine Learning, 8, 293-321.

Millan, J. D. R., Posenato, D., & Dedieu, E. (2002).
Continuous-action g-learning. Machine Learning,
49, 241-265.

Rabin, S. (2002). Ai game programming wisdom.
Charles River Media, Inc.

Sutton, R. S., Precup, D., & Singh, S. P. (1999). Be-
tween MDPs and semi-MDPs: A framework for tem-
poral abstraction in reinforcement learning. Artifi-
cial Intelligence, 112, 181-211.

Thrun, S. (1998). Learning metric-topological maps
for indoor mobile robot navigation. Artificial intel-
ligence, 99(1), 21-71.

Toussaint, M. (2003). Learning a world model and
planning with a self-organizing, dynamic neural sys-
tem. Advances in Neural Information Processing
Systems 16. Cambridge, MA: The MIT Press.

Watkins, C. J. C. H., & Dayan, P. (1992). Q-learning.
Machine Learning, 8, 279-292.

Watts, D. J., & Strogatz, S. H. (1998). Collective
dynamics of 'small-world’ networks. Nature, 393,
404-407.

Multigrid Algorithms for
Temporal Difference Reinforcement Learning

Omer Ziv

Department of Electrical Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel

Nahum Shimkin

SHIMKIN@QEE.TECHNION.AC.IL

Department of Electrical Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel

Abstract

We introduce a class of Multigrid based tem-
poral difference algorithms for reinforcement
learning with linear function approximation.
The proposed Multigrid-enhanced TD()) al-
gorithms allows to accelerate the convergence
of the basic TD(\) algorithm while keep-
ing essentially the same per-sample compu-
tational cost. The convergence properties of
the algorithm are discussed along with an il-
lustrative simulation example.

1. Introduction

Temporal difference algorithms for evaluating the
value function of a given policy are a central compo-
nent in many Reinforcement Learning (RL) schemes.
The basic TD(A) algorithm was introduced in Sutton
(1988). In this paper we propose a Multigrid-based
enhancement of the TD(\) algorithm, which aims to
improve the convergence rate while retaining the same
O(K) complexity per iteration, where K is the number
of parameters to be learned.

Multigrid (Briggs, 2000; Trottenberg, 2001) is a well-
established approach to accelerate iterative solutions
of large sets of linear equations, such as those arising
in the numerical solution of partial differential equa-
tions. Essentially, an iterative relaxation scheme at
a fine resolution level is augmented by a coarse-grid
correction which reduces the so-called “smooth” er-
ror components, which are otherwise slow to converge.
Applying this correction recursively over several reso-
lution levels leads to a Multigrid scheme. When ap-
plied to value iteration or TD(\) with linear function

Appearing in Proceedings of the ICML’05 Workshop on
Rich Representations for Reinforcement Learning, Bonn,
Germany, 2005. Copyright 2005 by the author(s)/owner(s).

69

approximation, this approach leads to algorithms that
operate with different sets of basis functions, each in-
tended to capture a different resolution level of the
problem. We shall focus in particular on the Algebraic
Multigrid (AMG) variant of Multigrid, which allows
the automatic construction of the coarse grid hierar-
chies based on the system matrices. This opens up
interesting possibilities for the automatic construction
of basis function hierarchies.

The proposed Multigrid schemes are closely related to
other multi-scale methods of Dynamic Programming
and to hierarchical approaches to learning; pointers to
this literature may be found in (Boutillier, Dean, &
Hanks, 1999; Barto & Mahadevan, 2003).

The paper is structured as follows. Sections 2 and 3
provide the necessary background on Multigrid and
TD(A), respectively. Section 4 outlines the (straight-
forward) application of Multigrid to value iteration for
policy evaluation in a non-learning scenario. Section 5
presents the Multigrid learning algorithms are their
analysis, while Section 6 presents an illustrative sim-
ulation experiment. We note that many details have
been omitted in the present version of the paper due
to space limitations. Full details may be found in (Ziv,
2004).

2. Multigrid Basics

We consider the efficient solution of the system of lin-
ear equations Ax = b, where A is a square matrix
and typically sparse. Standard iterative methods are
of the form x := z + Q71(b — Ax), where Q stands
for a scaled identity matrix (Richardson iteration),
the diagonal of A (Jacoby relaxation), or its lower-
triangular part (Gauss-Seidel). When the smoothing
matriz (1 — Q71 A) has eigenvalues close to the unit
circle, the corresponding error components are slow
to converge. Such error components are referred to

as “smooth”, and typically correspond to “low fre-
quency” components in a geometric context. Multigrid
uses coarse-level corrections to reduce these smooth er-
ror components.

A multigrid structure comprises of: (a) A sequence
of subsequent resolution levels indexed by ¢ €
{0,1,...,lmax} , with £ = 0 the finest; (b) A corre-
sponding set of equations Ayxy = by of dimension ny,
where Ag, by are the primary (fine-resolution) system
matrices, Ay, by represent the system equations at res-
olution level ¢ , and ng41 is several times smaller than
ng (a factor of 4 is common for 2D problems); (¢) Re-
strictor operators Ig“ which turn a solution z, into
an approximate solution x,41 = I;'H:cg of the next-
coarser level; and (d) Interpolators If, | (ne X ngi1
matrices), which do the opposite.

A basic two-level coarse grid correction at level ¢ <
lmax proceeds as follows. Starting with an initial can-
didate x,, an approximate solution to the equation
Apxzy = ry (with rp to be defined shortly) is obtained
as follows:

1. Presmoothing: Apply a (small) number of itera-
tive relaxations xy := xp + Q[l(w — Agxy)

2. Compute the residual res; = r, — Apxy, and re-
strict to the next level: royq = I} 'res,

3. Approximately solve Apy1xp41 = o411
4. Apply correction: zp := xp + If_ngH

5. Postsmoothing: Similar to presmoothing.

By recursively applying this procedure at step 3 we ob-
tain a multi-grid scheme. A standard V-cycle starts
at level 0 with ry = by and proceeds all the way down
to level 4.« and back up. Note that the system vec-
tors by (for £ > 1) do not play any role here as they are
replaced by the interpolated residuals ry. At the coars-
est level ¢ = .« the dimension is typically chosen to
be sufficiently small so that the equation Ayx, = ry
may be solved exactly. The whole scheme is usually
initialized with some “coarse to fine” procedure which
does utilize the system vectors (by).

In classical (geometric) Multigrid, the system equa-
tions at the different levels are typically obtained by
discretizing the original (continuous) problem over a
regular grid at different resolutions. The inter-level
(restriction and interpolation) operators are then con-
structed.

2.1. Algebraic Multigrid (AMG)

AMG (Brandt, McCormick & Ruge, 1984; Stiiben,
2001) takes a different approach. Here the multigrid

70

structure is constructed automatically in a setup phase
from the initial system matrices A, by, based only on
the algebraic structure of Ay, and without any “higher
level” information on the problem. This makes AMG
attractive as a “black box” solver for sparse linear
equations, whether of geometric origin or not.

The AMG setup phase proceeds recursively, starting at
¢ = 0. First the inter-level operators 154—1 and If“ are
constructed based on Ay. The system matrices for the
next level are then defined, typically via the Galerkin
operator Apiq IfHAZIfH (and bpy; = If“bg if
required). This proceeds until the dimension of A, is
sufficiently small for a direct solution.

Several procedures exist for setting up the inter-level
operators. The guiding principle is to allow any alge-
braically smooth error vector to be well approximated
over the next level, namely by some interpolated vector
of that level. The scheme used in our simulations is
the Ruge-Stiiben algorithm with direct interpolation
(Stiiben, 2001; section A.7). We have also used for
comparison a related state aggregation scheme, where
each fine-level variable s interpolated from a single
coarse-level variable. For details see (Ziv, 2004).

Multigrid theory aims to establish convergence of the
iterative algorithm and, more importantly, to provide
bounds on the convergence rate and guidelines for al-
gorithm improvement. A well developed theory cur-
rently exists mainly for problems in which the system
matrix A is symmetric and positive-definite (s.p.d.),
and, in particular, when A is also an M-matrix (namely
s.p.d. with negative off-diagonal elements) and diag-
onally dominant. In practice, properly planned algo-
rithms (and AMG in particular) are robust with re-
spect to violation of these assumptions.

3. MDPs and the TD(A) Algorithm

Consider a Markov Decision Process (MDP) with state
S and action space A. We assume here a finite state
space (but note that the proposed learning algorithms
are applicable to more general state spaces due to the
use of basis functions). Given the state s; and ac-
tion a; at time ¢, a reward g; = g(s¢,a;) is obtained,
and the next state s;y1 is determined according to
the stationary transition probability p(s;t1|se,at). A
stationary policy m is a mapping 7 : S x A — [0,1],
where m(s,a) is the probability of taking action a at
state s. Fixing the policy m, the state process be-
comes a Markov chain with transition probabilities
p(s'|s) = >, m(s,a)p(s’|s,a), and expected rewards
g(s) =3, 7m(s,a)g(s,a). We shall assume that the in-
duced Markov chain is irreducible, a-periodic, with a

unique stationary distribution ¢(s). For future refer-
ence we denote by P the transition matrix with P, v =
p(s’|s), the reward vector g with elements g, = g(s),
and the diagonal matrix D with D5 = ¢(s). We con-
sider the discounted cost functional with a discount
factor v € (0,1), namely v(s) = E(}>.,;20 v g9ls0 = s).
The function v(s) of the stationary policy = is well
known to be the unique solution of the Bellman equa-

tion
(I-7")w=yg (1)

where I denotes the identity matrix and v is a vector
of state values, i.e. vs = v(s). The value function
is approximated as a linear combination of K basis
functions ¢ : S — M,k =1,..., K, namely

v(s) ~
k=

=

where ¢ = (¢,...,¢%), and § € ®RX is the parameter
vector to be tuned. The TD(A) algorithm iteratively
applies the following update rule

Or =01 + o2 (9t —(o(s1) — 7¢(St+1))T9t—1);
2z = Ayze—1 + o(st)

where z; = (2:(s),s € S) is the eligibility trace vec-
tor, initialized by zp = 0. A € [0,1] is the algorithm
parameter, and o is a positive gain sequence.

Theorem 1 (Tsitsiklis & Van Roy, 1997)
Assume that: (i) Y;opar = 00, Y eoqi < 0.
(i) The basis functions are linearly independent.
Then TD(M\) converges (w. p. 1) to the wunique
solution 6* of

AT =b (2)

where
A=3T(I -y\P)"'D(I —yP)®

3
b=3TD(I —~y\P) g)
and ® is the N x K matriz with basis functions as its
columns, namely P, = dr(s).

4. AMG for Value Iteration

In this section we briefly consider value iteration for
the known model case. Here the application of AMG
as a “black box” solver to (1) is straightforward, by
defining A = I —yP and b = g. Observe that standard
value iteration, namely v := vPv + g, is equivalent
to a Richardson relaxation of the corresponding linear
system. It is well known that standard value iteration
is slow to converge when yP has an eigenvalue close

71

to the unit disk, namely v is close to 1, and this is
exactly when that we expect AMG (and Multigrid in
general) to provide a significant improvement.

Similarly, we can apply AMG to solve (2), with A and
b as defined in (3). This is the starting point for the
multigrid learning algorithms of the next section.

In the special case when the transition probability ma-
trix P is symmetric, the matrix A = I — P turns out
to be an M-matrix with strictly dominant diagonal, a
case to which AMG theory nicely applies. Note also
that P is typically sparse in practical problems, hence
so is A, a property which is important for Multigrid
efficiency. However, since P is hardly ever symmetric,
theoretical performance bounds are not readily avail-
able. Nonetheless, standard AMG algorithms can be
applied to the non-symmetric case without modifica-
tion, and practical experience shows that they perform
well even when symmetry is violated (e.g., Stiiben,
2001, p. 518). It should also be noted that conver-
gence to the exact solution can always be enforced,
simply by “turning off” the coarse grid corrections at
some point, or by monitoring the error reduction as
done in other hierarchical schemes (Schweitzer et al.,
1985; Bertsekas & Castanon, 1989). For the problems
we tested, unforced convergence was always obtained.

5. Multigrid Temporal Difference
Learning

To motivate the proposed Multigrid enhancement to
TD(A), we briefly consider the convergence of the
mean of the parameter vector E{6;}, denoted 6;. The
stochastic dynamics of the TD(X) algorithm, as de-
rived in (Tsitsiklis & Van Roy, 1997), may be asymp-
totically approximated by 641 = 0; + ay(b — Af;),
where A and b are defined in (3). The error €
6* — 0, relative to the fixed point #* = A~'b satisfies
ery1 = (I — azA)e;. TD(A) may thus be interpreted
as a stochastic smoother of the error. Multigrid is
therefore a natural candidate for speeding up its con-
vergence.

5.1. The SeqMGTD()\) Algorithm

Our first algorithm mimics the V-cycle of the Multigrid
algorithm as described in Section 2. We assume that
we are given an initial (fine-level) set of K basis func-
tions, with corresponding feature vectors ¢o(s) = ¢(s),
as well as a set of interpolators I} 1 and restrictors
If“. We then recursively define feature vectors for all
levels by

bor1(s)" = el .

(4)

The algorithm is started by the function call 6y :
seqMGTD (6, ¢ = 0), where 6 is an initial guess.

The algorithm requires some switching criterion for
the pre- and post-iterates. In the reported experi-
ments we used the simplest rule of switching after a
fixed number of iterations. Another reasonable option
would be to increase the iteration count per level as the
gain parameter decreases. The algorithm is started
by the function call 6 seqMGTD(6p,¢ = 0),
where 6y is an initial guess. The estimated value
function at the end of a complete cycle is given
by v(s) = ¢o(s)T0y. The value function for in-
termediate times while level ¢ is completed is
given more accurately by wv(s) Zﬁq:o Gm(8) 00

SeqMGTD(G?,E, (90, 91, ey (gg_l)
1. Initialize level correction: 6, := 69,z :=0
2. Pre-iterate at level ¢/ with residual
rewards:
2.1 Observe the transition s; — s;y1 and the
reward ¢, at time ¢.
Update the eligibility traces
2p = Nyze + de(s¢)

Sample the residual
-1

T
re=gr— (¢m(5t) - V¢m(5t+1)> Om
m=0
Calculate the temporal difference

T
de = 1o — (9u(s1) = yu(si + 1)) 6
Update 0; := 0, + ag+2edg
If the switching criterion is met then con-
tinue, otherwise repeat from 2.1.

2.2

2.3

2.4

2.5
2.6

3. Apply coarse grid correction: If ¢ # /.y,

3.1 Recursive call
94+1 =
MGTD(@ngl =0,0+1,600,01,...,0)
3.2 Correction using the interpolated error
0p =0, + If+195+1
4. Post-iterate: repeat step 2 until meeting the
switching criterion.
5. Return 6;.

Table 1: Sequential Multigrid TD()) at level ¢

To understand this algorithm, note that the Multigrid
algorithm (as presented in Section 2) at level £ is aimed
at the solution of the equation A,z = 7y, where r; is
defined recursively via rp = I} | (ro—1 — Ag—12¢-1). In
the RL context, this equation cannot be represented
explicitly since the matrices Ay and r; are unavail-
able. We resolve this problem by using an appropri-
ate TD()) type iteration that serves as the iterative
smoother for that level. First, the interpolated resid-
ual r; is sampled as step 2.3, and serves as the driving

72

reward signal for that stage. The TD(\) algorithm
then proceeds with the level-¢ basis functions. A tran-
sition to level ¢ + 1 then takes place for the purpose
of coarse grid correction, intended to accelerate the
convergence of the smoothed error at level £.

At the coarsest level (¢ = £ax) step 3 and 4 should
be skipped. Alternatively, the TD()) iteration at that
stage may be replaced by another learning algorithm
such as LSTD()) ((Boyan, 2002) or A-LSPE (Nedié¢ &
Bertsekas, 2003).

The algorithm is sequential in nature, as the different
levels operate on non-overlapping time intervals. This
implies, in particular, that to make full use of data
points at each level requires data reuse, or experience
replay. Resetting of the eligibility traces at the begin-
ning of each stage is not necessary if temporal conti-
nuity of the data samples is maintained in subsequent
activations of the same level.

It may be verified (Ziv, 2004) that each level in iso-
lation approaches the solution of the desired equa-
tion at that level. Convergence of the overall algo-
rithm cannot be established in general, as even the
basic AMG algorithm is not guaranteed to converge
without further restrictions on the system matrices or
inter-level operators. However, with a bounded num-
ber of smoothing iterates per level and diminishing
gain, more complete results may be obtained. This is
shown for the following variant of the algorithm.

5.2. The SimMGTD(A) Algorithm

We consider a variant of the last algorithm which pro-
ceeds simultaneously at all levels, thereby eliminat-
ing the requirement for data reuse. Moreover, for this
variant a convergence analysis of overall algorithm is
provided. The algorithm is shown in the next table.

The SinMGTD(A) algorithm has the following distinc-
tive features: (1) All parameters except 0y are reset to
0 before each TD()) iteration. (2) The same tem-
poral difference signal dy is used at all levels. Thus,
the temporal difference updates at all levels are car-
ried out simultaneously and instantaneously, and no
coarse-level parameters need to be retained for the
next iteration. As before, the value function estimate
is v(s) = ¢o(5)T0y. The convergence properties of this
algorithm are summarized as follows (Ziv, 2004).

Theorem 2 Assume that the SimMGTD(\) algo-
rithm is implemented with proportional gains, namely
apr = Proy for some non-negative constant 3y, with
Bo > 0. Assume further that the conditions of Theo-
rem 1 hold with respect to the level-0 basis functions
d(s) = ¢o(s) and the above gain factors ay. Then 0,

converges (w.p. 1) to the same limit point as the stan-
dard TD(X) algorithm at the finest level, namely to the
solution of equation (3).

A. Basic loop:
1. Initialize: Choose initial 6y, set z; := 0 for
all £
2. Observe the transition s; — s;41 and the
reward g; at time ¢.
3. Calculate the fine-level temporal difference:

T

do := g — (¢o(5t) - ’7¢0(Sf+1)) bo
4. Update 90 90 = MGTD(907 L= 0)
5. t:=t+1; goto A.2.

B. MGTD(#,,¢) (recursive function)

1. Update eligibility trace: zp := Ayzy + de(st)
2. TD(\) iteration: 6, := 0y + oy 2zedp
3. Coarse grid correction:

3.1 Recursive call:

0pr1 := MGTD(0p41 = 0,0+ 1)

3.2 Correction: 0, := 6, + If+19z+1

4. Return 6,.

Table 2: Simultaneous Multigrid TD())

6. Simulation

We next present a simulation experiment, which is
meant to illustrate in an idealized problem setting the
potential benefits of the proposed algorithms. The
test-bed problem we consider is a 1-D random walk de-
scribed in Figure 1. This Markov chain has N states,
ordered on a 1-D line. Transition probabilities and re-
wards from inner states and edge states are defined in
the figure, and a discount factor of v = ~ /0.5 is cho-
sen, so that the effective discount factor for a complete
sweep of the state is space 0.5. This problem is simi-
lar to the hop-world problem in Xu et al. (2002), and
should provide favorable conditions for performance
improvement by multigrid methods, due to the local
nature of the transition structure.

In the setup phase of AMG we used two interpolation
methods, as discusses in Section 2: the Ruge-Stiiben
method and state aggregation. In Figure 2 we show
results for the (non-learning) value iteration scheme of

p=05g=-1 p=lg=+10

QRO

p=lg=+10 p=05g=-1

Figure 1. The 1-D random walk problem.

73

= Value iteration

==+ (Gauss-Seidel

== AMGaggregation
AMGRuge-Stuben |

I

I

I

|

r

I

|

I

B H |

107 - N Fooo

LT Lo PSSR S TPETET LIl

1

I

l

3
computational units

Figure 2. Convergence curves for the 1-D random walk
problem with 1000 states. The AMG methods use 6 grid
levels, with one pre- and post-smoothing iteration for se-
qMGTD.

Section 4. One computational unit equals the number
of mathematical operations required for a single sweep
of standard value iteration. The computational effort
required to reach a residual error norm of 10710 was
38203 for standard value iteration, 19103 for the Gauss
Seidel variant, 1174 for AMG with state aggregation,
and 23 for AMG with Ruge-Stiiben interpolation.

We next consider the Multigrid learning algorithms for
the same problem, this time with 256 states. The triv-
ial basis functions were used in the first level (namely
®y = 1). For the purpose of the setup phase the full
model was made available, Ruge-Stiiben interpolation
was employed. We used TD(0) at all levels (includ-
ing the coarsest one) and a constant gain of o = 0.1
throughout. In SeqMGTD, we switched levels every
5000 samples (which accounts for the periodic ripple
of the corresponding graph). The norm of the error

16"
: ~_:_‘*‘=“‘.
..Q?;.’thl
_:i N 6’ ..6
g .3 g,
£ 10")
=
—TD
e SQQMGTD Yoy
{2 e SIMMGTD
0 to2 S
iterations % 10°

Figure 3. Learning curves for the random walk problem
with 256 states. AMG methods use 6 grid levels. Each
curve is an average of 5 Monte-Carlo runs.

in the parameter vector (relative to its target value)
is plotted in Figure 3 as a function of the number of
iterations. The number of iterations (in thousands)
required for reducing the error norm by half is 654 for
standard TD, 76 for SeqMGTD, and 62 for simMGTD.

In both cases, AMG shows at least order of magnitude
improvement relative to standard iteration methods.

7. Concluding Remarks

Multigrid methods are a major tool in computational
mathematics for speeding up the convergence of iter-
ative methods. As such, its interaction with dynamic
programming, and with RL in particular, seems natu-
ral. In this paper we have outlined some specific ways
in which Multigrid might be combined with temporal
difference learning, in order to speed up its conver-
gence.

Several issues remain concerning the possible appli-
cation of the proposed algorithms. A central ques-
tion is how to set up an effective multigrid hierarchy,
namely the coarse level equations and inter-level oper-
ators. In many cases the (geometric) structure of the
state space directly suggests a reasonable selection of
state aggregates. When this is not the case, AMG sug-
gests effective methods for the automatic creation of
the multigrid hierarchy at the setup phase; however,
the extension of these methods to the learning scenario
is yet to be explored. Other issues relate to optimiza-
tion of various parts of the iterative algorithms, such
as the choice of the relative gains at the different levels
and the switching rules between levels. Additional ex-
perimental work is obviously required to evaluate the
overall efficacy of these algorithms, along with further
theoretical results.

From another viewpoint, we observe that AMG is a
bottom up approach which builds coarse bases from
finer ones. Applying this process to the full state
space, for example, may lead to a scheme for construct-
ing effective basis functions, based on the considerable
theoretical and practical insight of AMG research.

Acknowledgments

We would like to thank Irad Yavne for his invaluable
guidance and advice on Multigrid methods.

References

Barto, A. G., & Mahadevan, S. (2003). Recent ad-
vances in hierarchical reinforcement learning. Dis-
crete Event Dynamic Systems: Theory and Applica-

74

tions, 13, 41-77.

Bertsekas, D. P., & Castanon, D. (1989). Adaptive
aggregation methods for infinite horizon dynamic
programming. [EFEE Trans. Automat. Contr., 34,
589-598.

Boutillier, C., Dean, T., & Hanks, S. (1999). Decision-
theoretic planning: structural assumptions and
computational leverage. Journal of Intelligence Re-
search, 11, 1-94.

Boyan, J. A. (2002). Technical update: least squares
temporal difference learning. Machine Learning, 49,
233-246.

Brandt, A., McCormick, S. F., & Ruge, J. (1984). Al-
gebraic multigrid (AMG) for sparse matrix equa-
tions. In D. J. Evans (Ed.), Sparsity and it applica-
tions, 257-284. Cambridge University Press.

Briggs, W. L., Henson, V. E.; & McCormick, S. F.
(2000). A multigrid tutorial. Philadelphia, MA:
Siam. 2 edition.

Nedié¢, A., & Bertsekas, D. P. (2003). Least squares
policy evaluation algorithms with linear function
approximation. Discrete Event Dynamic Systems:
Theory and Applications, 13, 79-110.

Schweitzer, P. J., Puterman, M. L., & Kindle, K. W.
(1985). Iterative aggregation-disaggregation proce-
dures for discounted semi-Markov reward processes.
Operations Research, 33, 589—605.

Stiiben, K. (2001). An introduction to algebraic multi-
grid. Appendix A in Trottenberg et al.

Sutton, R. S. (1988). Learning to predict by the meth-
ods of temporal differences. Machine Learning, 3,
9-44.

Trottenberg, U., Oosterlee, C., & Schiiller, A. (2001).
Multigrid. San Diego: Academic Press.

Tsitsiklis, J. N.,; & Van Roy, B. (1997). An analysis of
temporal-difference learning with function approxi-
mation. IEEE Transactions on Automatic Control,
42, 674-690.

Xu, X., He, H., & Hu, D. (2002). Efficient reinforce-
ment learning using recursive least-squares methods.
Journal of Artificial Intelligence Research, 16, 259—
292.

0.

Ziv, (2004). Algebraic multigrid for re-
inforcement learning. Tecnical report
(thesis draft), August 2004, available at

http://www.ee.technion.ac.il/shimkin /preprints.htm.

