891 research outputs found

    Artificial intelligence in the cyber domain: Offense and defense

    Get PDF
    Artificial intelligence techniques have grown rapidly in recent years, and their applications in practice can be seen in many fields, ranging from facial recognition to image analysis. In the cybersecurity domain, AI-based techniques can provide better cyber defense tools and help adversaries improve methods of attack. However, malicious actors are aware of the new prospects too and will probably attempt to use them for nefarious purposes. This survey paper aims at providing an overview of how artificial intelligence can be used in the context of cybersecurity in both offense and defense.Web of Science123art. no. 41

    Self-Organizing Traffic Flow Prediction with an Optimized Deep Belief Network for Internet of Vehicles

    Get PDF
    To assist in the broadcasting of time-critical traffic information in an Internet of Vehicles (IoV) and vehicular sensor networks (VSN), fast network connectivity is needed. Accurate traffic information prediction can improve traffic congestion and operation efficiency, which helps to reduce commute times, noise and carbon emissions. In this study, we present a novel approach for predicting the traffic flow volume by using traffic data in self-organizing vehicular networks. The proposed method is based on using a probabilistic generative neural network techniques called deep belief network (DBN) that includes multiple layers of restricted Boltzmann machine (RBM) auto-encoders. Time series data generated from the roadside units (RSUs) for five highway links are used by a three layer DBN to extract and learn key input features for constructing a model to predict traffic flow. Back-propagation is utilized as a general learning algorithm for fine-tuning the weight parameters among the visible and hidden layers of RBMs. During the training process the firefly algorithm (FFA) is applied for optimizing the DBN topology and learning rate parameter. Monte Carlo simulations are used to assess the accuracy of the prediction model. The results show that the proposed model achieves superior performance accuracy for predicting traffic flow in comparison with other approaches applied in the literature. The proposed approach can help to solve the problem of traffic congestion, and provide guidance and advice for road users and traffic regulators

    Handling dropout probability estimation in convolution neural networks using meta-heuristics

    Get PDF
    Deep learning-based approaches have been paramount in recent years, mainly due to their outstanding results in several application domains, ranging from face and object recognition to handwritten digit identification. Convolutional Neural Networks (CNN) have attracted a considerable attention since they model the intrinsic and complex brain working mechanisms. However, one main shortcoming of such models concerns their overfitting problem, which prevents the network from predicting unseen data effectively. In this paper, we address this problem by means of properly selecting a regularization parameter known as Dropout in the context of CNNs using meta-heuristic-driven techniques. As far as we know, this is the first attempt to tackle this issue using this methodology. Additionally, we also take into account a default dropout parameter and a dropout-less CNN for comparison purposes. The results revealed that optimizing Dropout-based CNNs is worthwhile, mainly due to the easiness in finding suitable dropout probability values, without needing to set new parameters empirically

    Handling dropout probability estimation in convolution neural networks using meta-heuristics

    Get PDF
    Deep learning-based approaches have been paramount in recent years, mainly due to their outstanding results in several application domains, ranging from face and object recognition to handwritten digit identification. Convolutional Neural Networks (CNN) have attracted a considerable attention since they model the intrinsic and complex brain working mechanisms. However, one main shortcoming of such models concerns their overfitting problem, which prevents the network from predicting unseen data effectively. In this paper, we address this problem by means of properly selecting a regularization parameter known as Dropout in the context of CNNs using meta-heuristic-driven techniques. As far as we know, this is the first attempt to tackle this issue using this methodology. Additionally, we also take into account a default dropout parameter and a dropout-less CNN for comparison purposes. The results revealed that optimizing Dropout-based CNNs is worthwhile, mainly due to the easiness in finding suitable dropout probability values, without needing to set new parameters empirically
    corecore