69 research outputs found

    Managing extreme cryptocurrency volatility in algorithmic trading: EGARCH via genetic algorithms and neural networks.

    Get PDF
    Política de acceso abierto tomada de: https://www.aimspress.com/index/news/solo-detail/openaccesspolicyThe blockchain ecosystem has seen a huge growth since 2009, with the introduction of Bitcoin, driven by conceptual and algorithmic innovations, along with the emergence of numerous new cryptocurrencies. While significant attention has been devoted to established cryptocurrencies like Bitcoin and Ethereum, the continuous introduction of new tokens requires a nuanced examination. In this article, we contribute a comparative analysis encompassing deep learning and quantum methods within neural networks and genetic algorithms, incorporating the innovative integration of EGARCH (Exponential Generalized Autoregressive Conditional Heteroscedasticity) into these methodologies. In this study, we evaluated how well Neural Networks and Genetic Algorithms predict “buy” or “sell” decisions for different cryptocurrencies, using F1 score, Precision, and Recall as key metrics. Our findings underscored the Adaptive Genetic Algorithm with Fuzzy Logic as the most accurate and precise within genetic algorithms. Furthermore, neural network methods, particularly the Quantum Neural Network, demonstrated noteworthy accuracy. Importantly, the X2Y2 cryptocurrency consistently attained the highest accuracy levels in both methodologies, emphasizing its predictive strength. Beyond aiding in the selection of optimal trading methodologies, we introduced the potential of EGARCH integration to enhance predictive capabilities, offering valuable insights for reducing risks associated with investing in nascent cryptocurrencies amidst limited historical market data. This research provides insights for investors, regulators, and developers in the cryptocurrency market. Investors can utilize accurate predictions to optimize investment decisions, regulators may consider implementing guidelines to ensure fairness, and developers play a pivotal role in refining neural network models for enhanced analysis.This research was funded by the Universitat de Barcelona, under the grant UB-AE-AS017634

    Data science in economics: Comprehensive review of advanced machine learning and deep learning methods

    Full text link
    © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This paper provides a comprehensive state-of-the-art investigation of the recent advances in data science in emerging economic applications. The analysis is performed on the novel data science methods in four individual classes of deep learning models, hybrid deep learning models, hybrid machine learning, and ensemble models. Application domains include a broad and diverse range of economics research from the stock market, marketing, and e-commerce to corporate banking and cryptocurrency. Prisma method, a systematic literature review methodology, is used to ensure the quality of the survey. The findings reveal that the trends follow the advancement of hybrid models, which outperform other learning algorithms. It is further expected that the trends will converge toward the evolution of sophisticated hybrid deep learning models

    Reinforcement Learning Applied to Trading Systems: A Survey

    Full text link
    Financial domain tasks, such as trading in market exchanges, are challenging and have long attracted researchers. The recent achievements and the consequent notoriety of Reinforcement Learning (RL) have also increased its adoption in trading tasks. RL uses a framework with well-established formal concepts, which raises its attractiveness in learning profitable trading strategies. However, RL use without due attention in the financial area can prevent new researchers from following standards or failing to adopt relevant conceptual guidelines. In this work, we embrace the seminal RL technical fundamentals, concepts, and recommendations to perform a unified, theoretically-grounded examination and comparison of previous research that could serve as a structuring guide for the field of study. A selection of twenty-nine articles was reviewed under our classification that considers RL's most common formulations and design patterns from a large volume of available studies. This classification allowed for precise inspection of the most relevant aspects regarding data input, preprocessing, state and action composition, adopted RL techniques, evaluation setups, and overall results. Our analysis approach organized around fundamental RL concepts allowed for a clear identification of current system design best practices, gaps that require further investigation, and promising research opportunities. Finally, this review attempts to promote the development of this field of study by facilitating researchers' commitment to standards adherence and helping them to avoid straying away from the RL constructs' firm ground.Comment: 38 page

    A State-of-the-Art Review of Time Series Forecasting Using Deep Learning Approaches

    Get PDF
    Time series forecasting has recently emerged as a crucial study area with a wide spectrum of real-world applications. The complexity of data processing originates from the amount of data processed in the digital world. Despite a long history of successful time-series research using classic statistical methodologies, there are some limits in dealing with an enormous amount of data and non-linearity. Deep learning techniques effectually handle the complicated nature of time series data. The effective analysis of deep learning approaches like Artificial Neural Networks (ANN), Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN), Long short-term memory (LSTM), Gated Recurrent Unit (GRU), Autoencoders, and other techniques like attention mechanism, transfer learning, and dimensionality reduction are discussed with their merits and limitations. The performance evaluation metrics used to validate the model's accuracy are discussed. This paper reviews various time series applications using deep learning approaches with their benefits, challenges, and opportunities

    Three Risky Decades: A Time for Econophysics?

    Get PDF
    Our Special Issue we publish at a turning point, which we have not dealt with since World War II. The interconnected long-term global shocks such as the coronavirus pandemic, the war in Ukraine, and catastrophic climate change have imposed significant humanitary, socio-economic, political, and environmental restrictions on the globalization process and all aspects of economic and social life including the existence of individual people. The planet is trapped—the current situation seems to be the prelude to an apocalypse whose long-term effects we will have for decades. Therefore, it urgently requires a concept of the planet's survival to be built—only on this basis can the conditions for its development be created. The Special Issue gives evidence of the state of econophysics before the current situation. Therefore, it can provide excellent econophysics or an inter-and cross-disciplinary starting point of a rational approach to a new era
    • 

    corecore