
KERNEL ADAPTIVE FILTERING

APPROACHES FOR FINANCIAL

TIME-SERIES PREDICTION

A thesis submitted to The University of Manchester

for the degree of Doctor of Philosophy

in the Faculty of Science and Engineering

2021

Sergio Garcia Vega

Department of Computer Science

Contents

Abbreviations 11

Nomenclature 14

Notations 15

Abstract 16

Declaration 18

Copyright 19

Journal Publications 20

Paper Under Review 21

Acknowledgements 22

1 Introduction 23

1.1 Context and Motivation . 23

1.2 Research Aim and Objectives . 29

1.3 Thesis Contributions . 30

1.4 Thesis Structure . 32

2 Background and Related Work 33

2.1 Financial Applications . 33

2.1.1 Algorithmic Trading . 34

2.1.2 Risk Assessment . 35

2.1.3 Fraud Detection . 37

2.1.4 Portfolio Management . 38

2

2.1.5 Asset Pricing and Derivatives Market 39

2.1.6 Cryptocurrency and Blockchain Studies 40

2.1.7 Financial Sentiment Analysis 41

2.1.8 Other Financial Applications 42

2.2 Financial Data Analysis Approaches 43

2.2.1 Statistical Techniques . 43

2.2.2 Pattern Recognition . 44

2.2.3 Machine Learning . 45

2.2.4 Hybrid Analysis . 50

2.3 Research Gaps and Challenges . 53

3 A Kernel-based Sequence Prediction Approach 57

3.1 An Approach for Sequence Prediction 58

3.1.1 Multiple Kernel-Sizes in Online Sequential Learning 58

3.1.2 An Online Technique to Optimize Step-Size 64

3.2 Experimental Design . 67

3.2.1 Data Sets . 67

3.2.2 Comparative Methods . 67

3.2.3 Parameter Settings . 68

3.3 Simulation Results and Analysis 72

3.4 Chapter Summary . 75

4 An Entropy-based Cost Function for Sequence Prediction 76

4.1 An Entropy-based Prediction approach 77

4.1.1 Adaptation Criterion based on Entropy 77

4.1.2 Entropy-based Bandwidth for Density Estimation 79

4.1.3 Neural Network Architecture using Kernel Machines 80

4.2 Experimental Design . 81

4.2.1 Data Sets . 82

4.2.2 Comparative Methods . 82

4.2.3 Parameter Settings . 83

4.3 Simulation Results and Analysis 84

4.4 Chapter Summary . 87

5 A Kernel-based Stock Market Interdependence Approach 88

5.1 Sequential and Interdependent Nature of Financial Time-Series . . 89

3

5.1.1 Sequential Learning based on Adaptive Filtering 89

5.1.2 A Stock Market Interdependence Approach 93

5.2 Experimental Design . 95

5.2.1 Data Sets . 96

5.2.2 Comparative Methods . 97

5.2.3 Parameter Settings . 97

5.3 Simulation Results and Analysis 98

5.4 Chapter Summary . 107

6 Conclusions and Future Work 108

6.1 Conclusions . 108

6.2 Future Work . 110

6.2.1 Predicting Several Steps Ahead 110

6.2.2 Automated Machine Learning 111

6.2.3 Transfer Learning . 112

A Financial Data 113

A.1 Financial Time-Series . 113

A.2 Financial Assets and Markets . 114

A.3 Returns on Assets . 115

A.4 Stock Prices . 116

B Machine Learning Models 118

B.1 Neural Networks . 118

B.1.1 Multilayer Feed-forward Neural Networks 121

B.1.2 Convolutional Neural Networks 122

B.1.3 Recurrent Neural Networks 123

B.2 Linear Adaptive Filters . 124

B.2.1 Least Mean Square Algorithm 124

B.2.2 Recursive Least Squares Algorithm 125

B.2.3 Affine Projection Algorithm 126

B.3 Kernel Adaptive Filtering . 127

B.3.1 Reproducing Kernel Hilbert Spaces 128

B.3.2 Kernel Least Mean Square Algorithm 129

B.3.3 Kernel Recursive Least Squares Algorithm 130

B.3.4 Kernel Affine Projection Algorithm 131

4

C Information Theory 133

C.1 Entropy . 134

C.2 Mutual Information . 134

C.3 Divergence and Mutual Information 135

D Information-Theoretic Learning 137

D.1 Renyi Entropy . 137

D.2 Quadratic Renyi Entropy . 138

D.3 Renyi Divergence and Mutual Information 139

Word Count: 30278

5

List of Tables

2.1 Summary of literature on algorithmic trading approaches. 35

2.2 Summary of literature on risk assessment approaches. 37

2.3 Summary of literature on fraud detection approaches. 38

2.4 Summary of literature on portfolio management approaches. . . . 39

2.5 Summary of literature on asset pricing approaches. 40

2.6 Summary of literature on cryptocurrencies and block chain studies. 41

2.7 Summary of literature on financial sentiment analysis approaches. 42

2.8 Summary of literature on financial application approaches. 43

3.1 Testing MSE for proposal in considered data sets using different

values of initial kernel-sizes σ1. FX -foreign exchange; TSLA-Tesla

stock price. 69

3.2 Parameter setting of proposed approach in considered data sets.

FX -foreign exchange; TSLA-Tesla stock price; M -input vector

size; η1-initial step size; σ1-initial kernel size; ρ-kernel size adapta-

tion; β-step size adaptation; δ-centroid threshold. 69

3.3 Parameter setting of comparative methods in considered data sets.

FX -foreign exchange. TSLA-Tesla stock price. M -input vector

size, η-step size, η1-initial step size, σ-kernel size, λ-centroid dis-

tance, L-layers, N -neurons per layer, E-epochs. 70

3.4 Testing MSE for KAF methods in considered data sets using dif-

ferent kernel-sizes σ. FX -foreign exchange. TSLA-Tesla stock price. 71

3.5 Testing MSE for NN methods in considered data sets using dif-

ferent epochs E . FX -foreign exchange prices. TSLA-Tesla stock

price. N -neurons. 71

6

3.6 Testing MSE in considered data sets. MSE -mean squared error.

Samples-average number of samples used to predict test set. FX -

foreign exchange prices. TSLA-Tesla stock price. For every com-

pared method we conducted a paired t-test against our proposal.

Highlighted values indicate statistical significance at 5%. 72

4.1 Stocks in the experimental design. 82

4.2 Parameter setting of compared methods. m-input vector size, L-

error samples length, η-step size, η̂-step size density, σ-kernel para-

meter, σ̂1-initial bandwidth density, L-layers, N -neurons per layer,

A-number of lagged differences in the model, I-cointegration rank. 83

4.3 Testing MSE using different values of step-size for density estimation. 84

4.4 Testing MSE at final iteration on stock returns prediction. SD–

Standard Deviation. For every compared method we conducted

a paired t-test against our proposal. Highlighted values indicate

statistical significance at 5%. 85

4.5 Testing MAE at final iteration in stock returns prediction. SD–

Standard Deviation. For every compared method we conducted

a paired t-test against our proposal. Highlighted values indicate

statistical significance at 5%. 85

5.1 Stocks in the experimental design. 96

5.2 Parameter setting of compared methods. M -input vector size, η-

step size, σ-bandwidth, λ-quantization value, β-centroid distance,

δ-threshold, ε-quantization value, L-layers, N -neurons per layer,

G-maximum number of lags, A-number of lagged differences in the

model, I-cointegration rank. 98

5.3 Testing MAE at final iteration in stock returns prediction. SD–

Standard Deviation. For every compared method we conducted

a paired t-test against our proposal. Highlighted values indicate

statistical significance at 5%. 99

5.4 Testing MSE at final iteration in stock returns prediction. SD–

Standard Deviation. For every compared method we conducted

a paired t-test against our proposal. Highlighted values indicate

statistical significance at 5%. 100

7

5.5 Testing SR at final iteration in stock returns prediction. SD–

Standard Deviation. For every compared method we conducted

a paired t-test against our proposal. Highlighted values indicate

statistical significance at 5%. 101

8

List of Figures

1.1 Summary of contributions. 31

2.1 Financial data analysis approaches and their financial applications. 53

3.1 Proposed approach for sequence prediction at iteration t. 63

3.2 Multiple kernel-sizes in online sequential learning. 64

3.3 Performed predictions in Tesla stock prices. 74

3.4 Performed predictions in foreign exchange rates. 74

4.1 Proposed neural network architecture using kernel machines. . . . 80

4.2 Stock returns prediction in the test set of HEI. 86

4.3 Stock returns prediction in the test set of CCL. 86

5.1 Three representative samples of the training set T when M = 3.

The blue line represents stock returns of a given stock from which

the training samples are selected. The upper, middle and lower

graphs show the first, second, and last training samples, respectively. 89

5.2 Sequential learning within a stock market interdependence approach. 94

5.3 Models used by the proposed approach to predict the 24 stocks. . 103

5.4 Stock return predictions in the test sets of Allianz SE. 104

5.5 Stock return predictions in the test sets of Ashtead Group PLC. . 105

5.6 Stock return predictions in the test sets of Alphabet In-CL A. . . 106

B.1 Neural Network diagram with two layers. 119

B.2 Multilayer Feed-forward Neural Network architecture. 122

B.3 Convolutional Neural Network architecture. 123

B.4 Recurrent Neural Network architecture. 123

B.5 Linear adaptive filter structure. 124

B.6 Non-linear adaptive filter structure. 127

9

B.7 Non-linear mapping from the input space to the feature space. . . 127

C.1 Relationships between entropy and mutual information. 135

10

Abbreviations

AE Auto Encoder
AMEX American Stock Exchange
APA Affine Projection Algorithm
ARIMA Auto Regressive Integrated Moving Average
AUROC Area Under the Receiver Operating Characteristics
BA Balanced Accuracy
BPNN Back-propagation Neural Network
BRT Boosted Regression Trees
BSE Bombay Stock Exchange
CDS Credit Default Swaps
CNN Convolutional Neural Network
CP Chart Patterns
DBN Deep Belief Network
DJIA Dow Jones Industrial Average
DL Deep Learning
DNN Deep Neural Network
DQL Deep Q-Learning
DRL Deep Reinforcement Learning
DRSE Deep Random Subspace Ensembles
DTW Dynamic Time Warping
ELM Extreme Learning Machine
FN False Negative
FNN Feed-forward Network
FP False Positive
FTSE Financial Times Stock Exchange
FX Foreign Exchange
GA Genetic Algorithm
GARCH Generalized Autoregressive Conditional Heteroskedasticity

11

GP Genetic Programming
HMM Hidden Markov Model
HHMM Hierarchical Hidden Markov Model
ITL Information-Theoretic Learning
KAF Kernel Adaptive Filtering
KAPA Kernel Affine Projection
KL Kullback–Leibler Divergence
KLMS Kernel Least Mean Square
KRLS Kernel Recursive Least Squares
LE Laplacian Eigen-Maps
LDA Latent Dirichlet Allocation
LMS Least Mean Square
LR Likelihood Ratio
LSE London Stock Exchange
LSTM Long Short Term Memory
MACD Moving Average Convergence and Divergence
MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error
MDA Multilinear Discriminant Analysis
MLP Multilayer Perceptron
MSE Mean Squared Error
NALL Negative Average Log Likelihood
NASDAQ National Association of Securities Dealers Automated Quotations
NICE Nearest Instance Centroid Estimation
NLICA Non-linear Independent Component Analysis
NN Neural Network
NSE National Stock Exchange of India
NYSE New York Stock Exchange

12

PCA Principal Component Analysis
PDF Probability Density Function
PMF Probability Mass Function
RBFN Radial Basis Function Network
RBM Restricted Boltzmann Machine
RF Random Forest
RKHS Reproducing Kernel Hilbert Space
RL Reinforcement Learning
RLS Recursive Least Squares
RMSE Root Mean Square Error
RNN Recurrent Neural Network
RSI Relative Strength Index
SAE Stacked Auto-Encoder
SR Sharpe Ratio
STE Stock Exchange of Thailand
SVM Support Vector Machines
SZSE Shenzhen Stock Exchange
TAIEX Taiwan Capitalization Weighted Stock Index
TM Topic Models
TN True Negative
TP True Positive
TSE Tokyo Stock Exchange
TSLA Tesla
VSS Variable Step Size
WBA Weighted Balanced Accuracy
WMTR Weighted Multichannel Time Series Regression
WT Wavelet Transform

13

Nomenclature

f(·) continuous input-output mapping
U input domain
R the set of real numbers
T training data
u filter input vector
y desired output
N number of samples
L most recent errors
e output estimation error
η step-size parameter
κσ(·, ·) Mercer kernel
σ kernel-size parameter
‖·‖ Euclidean norm
L number of layers
N neurons per layer
E number of epochs
h(·) non-linear activation function
ς logistic sigmoid function
l(·) activation function
E {·} expected value of a random variable
p(·) probability density (or mass) function
H(·) Shannon entropy
H(·, ·) Shannon joint entropy
H(·|·) Shannon conditional entropy
I(·) Shannon information
I(·, ·) Shannon mutual information
D(·||·) Kullback–Leibler divergence

Ĥα(·) Renyi entropy

Îα(·) Renyi mutual information

D̂(·||·) Renyi divergence
ln(·) natural logarithm

14

Notations

Notation Description Examples

Scalars Small italic letters y, p, q

Vectors Small italic bold letters w, u

Matrices Capital ITALIC BOLD letters U , V

Time or iteration Subscript indices yt, ut

Scalar constants Capital ITALIC letters N , M

15

Abstract

Kernel Adaptive Filtering Approaches For Financial
Time-Series Prediction

Sergio Garcia Vega
A thesis submitted to The University of Manchester

for the degree of Doctor of Philosophy, 2021

Financial time-series are continuously generated by multiple sources, such as
banks and corporations. These time-series are ordered sequences of data records
that become available over time, imposing an order that must be considered when
training models and making predictions. In addition, financial data represent, and
are part of, highly complex systems that depend on and are generated by various
factors such as financial policies and national economic growths. Thus, unlike
traditional regression, predicting financial time-series requires consideration of
both their sequential and interdependent nature. This thesis aims to address three
related weaknesses of data-centralized and off-line machine learning methods:

1. Sequence Learning. Traditional approaches, developed to optimize per-
formance on static data sets, restrict their flexibility to solve sequence pre-
diction tasks in real-world applications. This means that, as traditional ap-
proaches are trained off-line, the profitable conditions of the trained models
may disappear when they are tested in on-line environments;

2. Higher Order Statistics. The goal of dynamic modelling is to identify
the dynamical system that produced a given input-output mapping. The
mean square error (MSE), which is a second-order statistical measure, have
been traditionally used as cost function when training adaptive systems.
However, financial markets are complex and chaotic systems, meaning that
second-order measures may be poor descriptors of optimality;

16

3. Distributed Learning. The movement of stock markets may affect the
behaviour of stocks in other regions or countries. Traditional approaches do
not directly consider inter-dependencies of the financial system, discarding
interconnections and correlations that may represent important internal
forces of the market.

To address these issues, this work proposes a variety of kernel adaptive filtering
approaches, which are data-driven methods for sequence learning that combine
the convex optimization of linear adaptive filters and the universal approximation
property of neural networks (NNs). The proposed approaches consider intercon-
nections between stock markets, which reduces volatility and maximizes returns
while the robustness and simplicity of kernel adaptive filters are maintained. In
particular, this thesis proposes: (1) a kernel adaptive filtering approach to sup-
port sequence prediction tasks in financial time-series; (2) an entropy-based cost
function for kernel adaptive filtering to capture higher-order statistics of financial
time-series; (3) a kernel adaptive filtering approach that captures internal forces
of the market to improve profitability in real-time applications.

The results show relatively low MSE values and higher Sharpe ratio when
compared with recurrent NNs and autoregressive-based models. The proposed
approaches, unlike NNs, do not need the whole training set to start learning the
model, meaning that predictions are generated while the model is sequentially
updated at the same time. In addition, when compared with kernel adaptive
filtering methods, there is an improvement between 0.5% and 54% in terms of
MSE, showing high tolerance to noisy and non-stationary conditions. The results
of this thesis are in line with previous studies, suggesting that the United States
market is more influenced by the European and not vice versa.

17

Declaration

No portion of the work referred to in this thesis has been

submitted in support of an application for another degree

or qualification of this or any other university or other

institute of learning.

18

Copyright

i. The author of this thesis (including any appendices and/or schedules to

this thesis) owns certain copyright or related rights in it (the “Copyright”)

and s/he has given The University of Manchester certain rights to use such

Copyright, including for administrative purposes.

ii. Copies of this thesis, either in full or in extracts and whether in hard or elec-

tronic copy, may be made only in accordance with the Copyright, Designs

and Patents Act 1988 (as amended) and regulations issued under it or,

where appropriate, in accordance with licensing agreements which the Uni-

versity has from time to time. This page must form part of any such copies

made.

iii. The ownership of certain Copyright, patents, designs, trademarks and other

intellectual property (the “Intellectual Property”) and any reproductions of

copyright works in the thesis, for example graphs and tables (“Reproduc-

tions”), which may be described in this thesis, may not be owned by the

author and may be owned by third parties. Such Intellectual Property and

Reproductions cannot and must not be made available for use without the

prior written permission of the owner(s) of the relevant Intellectual Property

and/or Reproductions.

iv. Further information on the conditions under which disclosure, publication

and commercialisation of this thesis, the Copyright and any Intellectual

Property and/or Reproductions described in it may take place is available

in the University IP Policy (see http://documents.manchester.ac.uk/

DocuInfo.aspx?DocID=24420), in any relevant Thesis restriction declara-

tions deposited in the University Library, The University Library’s regula-

tions (see http://www.library.manchester.ac.uk/about/regulations/)

and in The University’s policy on presentation of Theses

19

http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=24420
http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=24420
http://www.library.manchester.ac.uk/about/regulations/

Journal Publications

• Garcia-Vega, S., Zeng, X.-J., and Keane, J. (2019). Learning from data

streams using kernel least-mean-square with multiple kernel-sizes and ad-

aptive step-size. Neurocomputing, 339:105-115.

• Garcia-Vega, S., Zeng, X.-J., and Keane, J. (2020). Stock returns predic-

tion using kernel adaptive filtering within a stock market interdependence

approach. Expert Systems with Applications, 160:113668.

20

Paper Under Review

• Garcia-Vega, S., Zeng, X.-J., and Keane, J. An entropy-based prediction

framework for stock returns using kernel adaptive filtering and a neural

network architecture. Pattern Recognition Letters.

21

Acknowledgements

To the memory of my Dad...

I look up to the sky and I talk to you... what I wouldn’t give to hear you talk back

I would like to express my gratitude to my supervisor Prof. John Keane

and co-supervisor Prof. Xiao-Jun Zeng for their valuable guidance and constant

support during this research. Thanks to the BigDataFinance project for giving

me the financial support during my PhD. Many thanks to Rytis for sharing

interesting scientific discussions with me during our stay in Manchester.

I also owe thanks to my friend Kestutis and his wife Margarita for allowing

me to be part of their families and showing me their beautiful Lithuanian culture.

I would also like to thank my very good friend Mauricio Orbes who always gives

me a different point of view about life and science, allowing me to constantly

improve in my professional career during more than 10 years of friendship.

Finally, I would like to express my deepest thanks to my family, thank you

for all your love. To my mum Magdalena for her unconditional support and

encouraging me to do my best every day. To the love of my life Rafaella for

making me happy and being with me during the difficult times. To my heavenly

father, ‘Porque Jehová da la sabiduŕıa, y de su boca viene el conocimiento y la

inteligencia’ Proverbs 2:6.

This project has received funding from the European Union’s Horizon 2020 re-

search and innovation programme under the Marie Sk lodowska-Curie grant agree-

ment No 675044.

22

Chapter 1

Introduction

This chapter introduces the research problem under investigations and the struc-

ture of the thesis. Firstly, the research problem is motivated and its main chal-

lenges are introduced. Secondly, the aims and objectives of the investigation are

presented. Finally, the main contributions made by this thesis are summarized.

1.1 Context and Motivation

Financial markets operate through a global network of banks, corporations, and

individuals (Rejeb and Arfaoui, 2016). This system is composed of a large number

of highly interconnected dynamical units, which presents a challenge to identify,

model and extrapolate patterns. The financial time-series are ordered sequences

of data records that become available over time. Sequence learning, on complex

and noisy data records, requires consideration of properties in addition to predic-

tion accuracy (Cao et al., 2019). That is, traditional regression approaches are

developed to optimize performance on static data sets, restricting their flexibility

to solve sequence prediction tasks in real-world applications (Cui et al., 2016).

In contrast, sequence prediction models have memory, can learn temporal de-

pendence between observations, and do not have prior information about future

sequence of data records (Ahmad et al., 2017). This means that the sequence

imposes an order on the samples, which must be preserved when training models

and making predictions (Gueniche et al., 2015). Thus, unlike traditional regres-

sion, predicting financial time-series requires consideration of their sequential and

interdependent nature (Rejeb and Arfaoui, 2016).

23

Traders and researchers have developed a variety of methods to predict future

market behaviour (Han et al., 2013; Patel et al., 2015). For example, technical

analysis aims to combine financial market patterns to improve predictions, while

fundamental analysis evaluates securities in an attempt to measure its intrinsic

value (Nazário et al., 2017). However, these methods do not provide a con-

sistent investment strategy as their configurations are subject to analyst/trader

preference (Olsen et al., 2018). In contrast to technical and fundamental ana-

lysis, algorithmic trading aims to provide consistent approaches and solid ana-

lysis frameworks by removing emotion (Hu et al., 2015). This kind of investment

strategy has become popular in asset management and trading as it minimizes

cost, market impact, and risk (Aldridge, 2013). Although, algorithmic trading

provides advantages (Kissell, 2013), it is difficult for investment managers and

hedge funds to earn consistent annual returns - even if the profit potential is big

– on a systematic basis (Olsen et al., 2018). In addition to the strategies men-

tioned above, several prediction methods use statistical models and variants of

regressive approaches (Kovács et al., 2017; Li et al., 2017c). However, their linear

models may not work under non-stationary conditions and the stochastic nature

of financial time-series (Khashei and Hajirahimi, 2019; Suhermi et al., 2018).

A variety of data-driven approaches based on Feed-forward Neural Networks

(FNN) and Recurrent Neural Networks (RNN) have been used to predict finan-

cial time-series (Li et al., 2017c; Liu et al., 2015; Doucoure et al., 2016; Hosaka,

2019). However, their training strategies are difficult to interpret, as it is not clear

how learning from input data is done or how performance can be consistently en-

sured, limiting their utility and acceptance in many real-world applications (Svozil

et al., 1997; Olden and Jackson, 2002; Ghasemi et al., 2018; Zhang et al., 2018b).

In contrast, Kernel Adaptive Filtering (KAF) methods, another data-driven ap-

proach based on sequence learning, have proven useful in identifying non-linear

systems (Liu et al., 2010; Li and Pŕıncipe, 2017). They combine the universal

approximation property of NNs and the convex optimization of linear adaptive

filters (Chen et al., 2016a). Their training scheme uses a combination of error-

correction and memory-based learning, resulting in a simple convex optimization

problem with a unique global optimum (Principe, 2010). However, when working

with kernel adaptive filtering, additional challenges arise, for example, selection

of kernel-size and step-size parameters (Liu et al., 2010).

24

The kernel-size parameter is used to define similarity between data points.

That is, if the kernel-size is too large, all data will look similar; in contrast, if

the kernel-size is too small, all data will look distinct (see Appendix B.3). The

kernel-size in KAF only affects the dynamics of learning, i.e., this parameter

affects the accuracy in off-line learning (the entire training data set are used at

once to generate the best predictor), while the convergence is affected in online

learning (ordered sequences of data records become available over time and are

used to update the model at each step). The kernel-size is usually calculated using

cross-validation (An et al., 2007), penalizing functions (Härdle, 1990), Silverman’s

rule of thumb (Silverman, 1986), or manual selection. The cross-validation and

penalizing functions are not suitable for online kernel learning and have shown

to be computationally intensive, while the Silverman’s rule assumes a Gaussian

distribution and is usually not appropriate for multi-modal distributions (Chen

et al., 2016a). The previous methods are unsuitable for determining an optimal

kernel-size in KAF, as they are either off-line mode methods or originate from a

different problem, such as kernel density estimation.

Multiple-kernel-learning methods have been proposed to address the problem

of kernel-size in KAF. For example, mixture KLMS employs a Gaussian kernel

with multiple kernel-sizes (Pokharel et al., 2013). However, a pool of predefined

kernel-sizes is needed in advance, meaning that the algorithm cannot create new

kernel-sizes in an online way. Hence, the algorithm may be unable to adjust to

abrupt changes in the system. Despite this, the idea of switching the models at

different instances of time may be useful to identify non-stationary systems. The

step-size parameter is the compromise between convergence time and misadjust-

ment (Liu et al., 2010). Although many KAF methods use this parameter to

compute predictions, they do not optimize step-size within the context of adapt-

ive filtering with kernels (Liu et al., 2008; Chen et al., 2012; Zhao et al., 2013;

Zheng et al., 2016); for example, recent work has proposed kernel-size optimiz-

ation (Chen et al., 2016a), however, that work does not optimize the step-size

parameter (though it is noted as “future work”). In practice (Liu et al., 2010;

Zhao et al., 2020), this parameter is calculated off-line, hence it remains un-

changed through iterations.

In addition, the goal of dynamic modelling is to identify the dynamical system

that produced the given input-output mapping. This is usually done with cost

functions based on second-order statistical measures, such as mean square error

25

(MSE) (Erdogmus and Principe, 2002a). The MSE, a criterion that measures the

average squared difference between the desired and estimated values, is a widely

used criterion when training adaptive systems, such as NNs and KAF (Zhao

et al., 2011). The MSE describes real-life random phenomena using second-order

statistics, providing analytical tractability, computational simplicity, and under

Gaussian assumption is an optimal criterion for linear filters (Erdogmus and Prin-

cipe, 2002b). However, under non-linear and non-Gaussian conditions, the MSE

may be a poor descriptor of optimality (Singh and Pŕıncipe, 2011). Thus, a more

appropriate adaptation criterion requires consideration of information content of

signals rather than simply their energy (a quantity related to second order stat-

istics) (Xu, 1999; Principe, 2010). Information theoretic learning (ITL), which

uses the general framework of information theory in the design of cost functions,

has proven useful in training adaptive systems (Giraldo and Principe, 2013). In

particular, unlike MSE, ITL uses probability density functions as the adaptation

criterion, improving performance in various applications where the signals are

non-Gaussian (Deng et al., 2016).

Information theory provides an effective alternative to analyze complex sys-

tems by using statistical descriptors such as: entropy, which is a scalar quantity

that measures the average information contained in a given probability distribu-

tion function (Erdogmus and Principe, 2002a); divergence, which measures the

dissimilarity between two different probability densities (Moreno et al., 2004);

mutual information, which measures the total decrease in uncertainty between

two random variables (Gray, 2011). These statistical descriptors have been used

within the context of financial data analysis. For example, a previous study

suggested that entropy has a predictive ability with respect to stock market dy-

namics (Caraiani, 2014). Another work found that entropy has predictive power

on the Shenzhen stock market (Gu et al., 2015). Recently, when compared with

MSE, mutual information has shown to be a more effective approach to meas-

ure the non-linear dynamic relationship between stock prices (Guo et al., 2018).

However, estimation of the above statistical descriptors requires knowledge of

the data probability density function, which in practice means either assumes

an analytical model or use of a non-parametric estimator such as Parzen density

estimation (Deng et al., 2016). This, usually leads to poor performance in large

dimensional spaces (Principe et al., 2000).

26

The entropy of Renyi uses any entropy order and kernel function, providing

a computationally efficient alternative (Erdogmus and Principe, 2002b). In prac-

tice, Renyi’s entropy does not need to estimate the probability density function.

Instead, non-parametric estimators based on kernels are used. This provides a

framework to non-parametrically adapt systems based on entropy, divergence and

mutual information (Chen et al., 2011). The Renyi’s estimators have been used

in a variety of applications such as image segmentation (Nobre et al., 2016), epi-

leptic seizure detection (Mammone et al., 2011; Gao and Hu, 2013), identification

of sleep stages (Fraiwan et al., 2012), diagnosis of depression (Faust et al., 2014),

and motor imagery systems (Kee et al., 2017). In finance, Renyi’s entropy ap-

plications are portfolio selection (Rödder et al., 2010; Xu et al., 2011; Zhou et al.,

2013), asset pricing (Neri and Schneider, 2012; Ormos and Zibriczky, 2014), and

information transfer between financial time-series (Dimpfl and Peter, 2014; Jizba

et al., 2012; Korbel et al., 2019). However, the previous works do not aim to use

statistical descriptors such as entropy and mutual information within the context

of adaptive filtering, restricting their application to sequence prediction tasks.

The generalized stochastic information gradient algorithms in kernel space aim

to combine the advantages of adaptive systems and information theoretic quant-

ities, e.g., kernel maximum correntropy criterion (Zhao et al., 2011) and kernel

minimum error entropy algorithm (Chen et al., 2013a). They implement the con-

ventional linear adaptive filters in Reproducing Kernel Hilbert Space (RKHS) and

obtains the non-linear adaptive filters in original input space (Principe, 2010).

Then, statistical descriptors such as entropy and correntropy (a measure that

estimates the similarity between two random variables) are used as adaptation

criterion to minimize the difference between the desired and estimated values,

making them suitable for sequence prediction tasks and providing robustness in

the presence of noisy and non-stationary conditions at the same time. However,

there remain two main challenges in these approaches: although they have shown

superior performance on synthetic data, there is no evidence of such competitive

performance in real-world applications such as financial data analysis (thought

it is noted as “future research”); and their computational complexity increases

with the estimation of the error (or data) distribution in online scenarios.

27

In addition to the sequence learning limitations mentioned above, most cur-

rent implementations do not consider cross-dependency of the financial system,

meaning that information coming from multiple distributed sources – decentral-

ized models – has been discarded (Tkáč and Verner, 2016). That is, the move-

ment of a stock market in a country is likely to be affected by movement of other

stocks in both that country and in other regions (Masih and Masih, 2001). Many

strategies have been proposed to analyse the distributed data of complex net-

works. The names for these strategies vary depending on the research field, e.g.,

functional and effective connectivity are well-known terms in neuroscience (Cheng

et al., 2018; Park et al., 2018; Parker et al., 2018), while co-movement, interde-

pendence, and connectivity analysis are commonly found in finance (Reboredo,

2018; Caraiani, 2018; Jiang et al., 2017a). Regardless of the term used, the main

interest is to identify and quantify interactions on these complex systems. This is

done using connectivity measures such as correlation (Samuel and Okey, 2015),

coherence (Lipping et al., 2017), and Pearson correlation coefficient (Hauke and

Kossowski, 2011). However, how to incorporate these inter-dependencies into an

analytical model, such as sequential learning, to predict financial markets remains

an open issue. In summary, many modelling attempts fail because:

1. The models are trained off-line; when going online the profitable conditions

for which the model was optimized disappear (Olsen et al., 2018);

2. Financial markets are complex, non-stationary, non-linear, and chaotic sys-

tems (Ince and Trafalis, 2007);

3. Traditional approaches do not consider inter-dependencies of the financial

system, that is, financial data arrives every second – even millisecond – from

various sources (Fan et al., 2014a; Wu et al., 2013a).

Hence, this research aims to address the weakness of data-centralized and

off-line machine learning methods (Fan et al., 2014a), which fail to consider fast

time-varying characteristics from data resources in other regions, sectors, and

markets.

28

1.2 Research Aim and Objectives

The overall aims of this thesis are: (1) To develop regression approaches that

consider the sequential nature of financial time-series, while improving conver-

gence time; (2) To design adaptive filter models considering non-linear and non-

Gaussian conditions of financial time-series, aiming to enhance accuracy in se-

quence prediction tasks; (3) To identify interdependencies between financial mar-

kets and incorporate them into sequence prediction approaches, aiming to im-

prove profitability and accuracy in regression tasks. In more detail, the research

objectives of this thesis are:

1. Propose a sequence prediction approach based on kernel adaptive

filtering for financial time-series.

The sequential nature of financial time-series imposes an order on the

samples, which must be preserved when training models and making pre-

dictions. The prediction approach must learn from a continuous sequence of

data records and be robust to non-stationary conditions, aiming to improve

convergence and prediction accuracy.

2. Develop a cost function for kernel adaptive filtering using higher

order statistics of financial time-series.

Second-order statistic measures have been traditionally used as cost func-

tions when training adaptive systems. However, under non-Gaussian con-

ditions, these measures may be poor descriptors of optimality. The cost

function must capture higher order statistics of financial time-series rather

than simply their energy, aiming to enhance prediction accuracy under non-

stationary conditions in sequence learning tasks.

3. Propose a kernel adaptive filtering approach within a distributed

learning paradigm to predict financial time-series.

The approach must consider both the sequential and interdependent nature

of financial time-series, which is critical for big data analysis and real-time

applications. The distributed learning paradigm must incorporate the in-

terdependencies between financial markets into an analytical model, aiming

to improve prediction accuracy and profitability.

29

1.3 Thesis Contributions

Approaches based on kernel adaptive filtering have been proposed to support se-

quence prediction tasks for financial data analysis. This section overviews the

research contributions made by this thesis: 1. Sequence Learning, we in-

vestigate and develop a kernel adaptive filtering approach to support sequence

prediction tasks in financial time-series, improving both prediction accuracy and

convergence in real-world applications; 2. Higher Order Statistics, we in-

vestigate and develop an entropy-based cost function for kernel adaptive filtering

to capture higher order statistics of financial time-series, enhancing prediction

accuracy under non-Gaussian and non-stationary conditions; 3. Distributed

Learning, we propose a kernel adaptive filtering approach that considers the in-

terdependent nature of financial systems, capturing internal forces of the market

and improving profitability in real-time applications. The following list provides

a more detailed description of the research contributions:

1. A kernel adaptive filtering approach to support sequence predic-

tion tasks in financial time-series. The approach addresses two main

challenges in kernel adaptive filtering, i.e., kernel parameter selection and

tuning of the step-size. In this work, the kernel-sizes, unlike traditional

kernel adaptive filtering formulations, are both created and updated in an

online sequential way. Further, to improve convergence time, we introduce

an adaptive step-size strategy that minimizes MSE using a stochastic gradi-

ent algorithm. The approach is validated using two publicly available data

sets, i.e., the mid-prices of two major currencies in the foreign exchange

market and Tesla stock prices from its initial public offering. Results show

both faster convergence to relatively low values of MSE and better accuracy

when compared with kernel adaptive filtering methods, LSTM, and RNN.

2. An entropy-based cost function for financial time-series prediction

using kernel adaptive filtering. The cost function uses instantaneous

entropy as the adaptation criterion within a stochastic gradient descent

optimization approach. Unlike traditional approaches, this minimizes the

error entropy between the model output and the desired response, captur-

ing higher-order statistics and information content of financial time-series

rather than simply their energy. Further, to enhance predictions we extend

30

the architecture of NNs to incorporate kernel adaptive filtering by allow-

ing any neuron to be replaced by a kernel machine, which better captures

complex patterns behind the data. The approach is evaluated on 10 stocks

from different economies over 12 years. Results show that, when compared

with kernel adaptive filtering methods, there is an improvement between

0.5% and 54% in terms of MSE.

3. A kernel adaptive filtering approach within a distributed learning

paradigm for financial time-series prediction. Unlike traditional ker-

nel adaptive filtering formulations, the approach predicts using both local

models and the individual local models learned from other markets, enhan-

cing prediction accuracy. The proposal uses a distributed learning paradigm

rather than a centralized one in the sense that individual prediction models

are learned based solely on a local data store, avoiding expensive and time-

consuming data transportation into an integrated, central data store. The

approach is validated on 24 different stocks from three major economies,

showing higher Sharpe ratio when compared with kernel adaptive filtering

methods, LSTM, and autoregressive-based models.

Figure 1.1 depicts the inter-relations of the contributions made by this thesis,

which are represented by the green rectangles. Here, the term streaming data

refers to an ordered sequence of data records that become available over time,

e.g., financial transactions (Cui et al., 2016). Contributions 1, 2, and 3 are

described in Chapters 3, 4, and 5, respectively.

Financial Time Series(Streaming Data)
Sequence Learning

Higher Order Statistics
Distributed Learning

Prediction Models Sequence PredictionsContribution 1
Contribution 2
Contribution 3

Kernel Adaptive Filtering

Figure 1.1: Summary of contributions.

31

1.4 Thesis Structure

The rest of this thesis is organized as follows:

Chapter 2. The related work used throughout this thesis is introduced

in this chapter. The basic concepts of financial markets such as assets,

stock prices, and market value are presented. Then, a literature review of

financial data analysis approaches is provided. Finally, the research gaps

and challenges are identified, summarised and discussed.

Chapter 3. This chapter develops a sequence prediction approach based

on kernel adaptive filtering for financial time-series. The approach addresses

two main challenges of kernel adaptive filtering, i.e., determination of kernel-

size and tuning of the step-size parameter. The approach is validated on

two real-world data sets, i.e., the mid-prices of two major currencies in the

foreign exchange market and Tesla stock prices.

Chapter 4. A three-stage approach for stock returns prediction is pro-

posed: (1) an entropy-based cost function is developed; (2) the bandwidth

for density estimation is optimized using the quadratic information poten-

tial criterion; (3) the architecture and functionality of NNs are extended

to include kernel adaptive filtering. The approach is tested on 10 different

stocks over a 12 year interval.

Chapter 5. This chapter develops a two-phase approach for stock returns

prediction using sequential learning within a stock market interdependence

approach. Thus, the underlying models of each stock are learned separately

using a kernel-based adaptive filter that encodes different patterns of the

input space. The approach is validated on 24 different stocks from three

major economies over 12 years.

Chapter 6. The thesis summary is given in this chapter; the three proposed

approaches are critically evaluated, and suggestions for future work are

included.

32

Chapter 2

Background and Related Work

Financial markets are influenced by political and economical factors (Bezerra and

Albuquerque, 2017; Göçken et al., 2016), making their prediction one of the most

challenging problems involving time-series (Chen et al., 2017). The literature

shows that financial time-series are predicted using a variety of statistical and

machine learning methods, which are mainly evaluated in terms of prediction

accuracy, and profitability. The classic financial market prediction techniques

are moving averages and autoregressive models (Wang et al., 2012; Kumar and

Thenmozhi, 2014). More recently, machine learning techniques have been widely

used in financial applications, as they are designed to address non-linearity, ran-

domness, and chaotic data (Chen et al., 2017).

This chapter summarizes the background and related work used throughout

this thesis. Firstly, financial applications are introduced in Section 2.1. Then, a

literature review of financial data analysis approaches is provided in Section 2.2.

Finally, the research gaps and challenges are discussed in Section 2.3.

2.1 Financial Applications

This section highlights the main financial applications of machine learning tech-

niques. Note that, as some studies addressed multiple problems, there may be

some overlaps between different implementation areas.

33

2.1.1 Algorithmic Trading

Algorithmic trading, which is defined as buy-sell decisions made solely by al-

gorithmic models, aims to develop consistent approaches and methods that provide

a solid analysis framework (Hu et al., 2015). The decisions made by algorithmic

trading can be simple rules, optimized processes, mathematical models, or com-

plex approximation techniques (Ozbayoglu et al., 2020). This kind of investment

strategy has become popular in asset management and trading as it minimizes

cost, market impact, and risk (Aldridge, 2013). For example, Karaoglu et al.

(2017) proposed to predict stock prices using an algorithmic trading strategy

based on RNN and Long Short Term Memory (LSTM).

Similarly, Bao et al. (2017) implemented a stock price prediction strategy using

technical indicators, Wavelet Transforms (WT), Stacked Autoencoders (SAEs),

and LSTM. Zhang et al. (2017a) proposed to predict stock prices using frequency

trading pattern and RNN. Tran et al. (2017) developed a deep learning model

for mid-price prediction using high frequency limit order book data with tensor

representation. Fischer and Krauss (2018) implemented an LSTM-based strategy

to predict S&P 500 index. Mourelatos et al. (2018) proposed to analyse the Greek

Stock Exchange Index using an LSTM-based model. Si et al. (2017) implemented

a trading model using LSTM to predict the Chinese market, while Yong et al.

(2017) used a FNN model to predict Singapore Stock Market index.

The focus of other studies have been FX rates (see Appendix A.2) or crypto-

currency. For example, Lu (2017) proposed to trade the currency pair GBP/USD

using reinforcement learning and LSTM models. Dixon et al. (2017) implemented

a FNN-based model to predict commodities and FX trading prices. Korczak and

Hemes (2017) used different input parameters on a multi-agent-based trading en-

vironment such as Convolutional Neural Network (CNN) to predict the currency

pair GBP/PLN. Spilak (2018) constructed a dynamic portfolio using a variety

of methods and cryptocurrencies such as LSTM, RNN, Multilayer Perceptron

(MLP), Namecoin, Dogecoin, Litecoin, Monero, Nxt, Ripple, Dash, and Bitcoin.

Jeong and Kim (2019) proposed a deep NN model aiming to solve overfitting,

market profit, and predicting number of trading shares. In Sezer et al. (2017)

the buy & sell limits on the Relative Strength Index (RSI) were optimized using

genetic algorithms. Navon and Keller (2017) proposed to predict the next price

using FNN and a trading strategy. Troiano et al. (2018) used the Moving Average

Convergence and Divergence (MACD) to predict trending prices on the DOW 30.

34

Sirignano and Cont (2019) proposed to predict stock price movements using an

LSTM-based model and limit order book data, which is similar to the strategy

proposed by Tsantekidis et al. (2017). Table 2.1 summarizes algorithmic trading

approaches, showing relevant information of each study, such as the employed

data set, main methods and performance measures.

Table 2.1: Summary of literature on algorithmic trading approaches.
Reference Data Set

Main
Methods

Performance
Measures

Karaoglu et al. (2017) Stock of Garanti Bank
RNN,
LSTM

MSE,
RMSE,
MAE

Bao et al. (2017)
Nifty,

S&P500 Index,
DJIA

WT,
SAE,
LSTM

MAPE,
Correlation Coefficient

Zhang et al. (2017a) 50 Stocks from NYSE RNN MSE

Tran et al. (2017) 5 Stocks from Finnish Stock Market
WMTR,

MDA

Accuracy,
Precision,

Recall,
F1-Score

Si et al. (2017) Chinese Stock Market LSTM
Profit and Loss,

SR

Yong et al. (2017) Singapore Stock Market Index FNN
RMSE,
MAPE,

SR

Lu (2017) FX LSTM SR

Dixon et al. (2017)
Commodity,

FX
FNN SR

Korczak and Hemes (2017) FX CNN SR

Sezer et al. (2017) Stocks from Dow30 GA Annualized Return

Navon and Keller (2017) Stocks from S&P500 FNN Cumulative Gain

Tsantekidis et al. (2017) Nasdaq Nordic LSTM
Precision,

Recall,
F1-Score

Fischer and Krauss (2018) S&P500 Index LSTM
Return,

SR,
Accuracy

Mourelatos et al. (2018) Stock of National Bank of Greece LSTM

Return,
Volatility,

SR,
Accuracy

Spilak (2018)

Bitcoin,
Namecoin,
Dogecoin,
Litecoin,

Dash

LSTM,
RNN,
MLP

Accuracy,
F1-Score

Troiano et al. (2018) Stocks from Dow30
LSTM,
MACD

Accuracy

Jeong and Kim (2019) S&P500 Index DNN
Profit,

Correlation

Sirignano and Cont (2019) High-frequency records LSTM Accuracy

2.1.2 Risk Assessment

This financial application identifies the risk of any given asset and aims to help

eliminate any potential risk-related consequences, e.g., credit scoring, consumer

35

credit determination, and bankruptcy prediction (Zio, 2018). Kirkos and Man-

olopoulos (2004); Ravi et al. (2008); Fethi and Pasiouras (2010) used machine

learning models to analyse bank performance assessment studies. Lahsasna et al.

(2010); Chen et al. (2016b) summarised credit scoring and risk assessment studies

that are based on soft computing techniques, while Marques et al. (2013) focused

on evolutionary models within a credit scoring context. Kumar and Ravi (2007);

Verikas et al. (2010) reviewed bankruptcy studies that used machine learning

implementations.

In the same way, Sun et al. (2014) provided a survey with a focus on corporate

failures and financial distress. Luo et al. (2017) used Credit Default Swaps (CDS)

for credit classification and corporate credit rating, finding that a model based

Restricted Boltzmann Machine (RBM) achieved the best performance among the

compared methods. Yu et al. (2018a) implemented a Support Vector Machine

(SVM) model for credit classification, achieving an accuracy above 80%. Li et al.

(2017e) proposed to use MLP and k-means for credit risk classification. Tran et al.

(2016) proposed to use Stacked Auto-Encoder (SAE) and Genetic Programming

(GP) for credit scoring applications. In another example, Neagoe et al. (2018)

used CNN-based models to classify credit scores. Niimi (2015) compared models

based on SVM and Random Forest (RF) to provide information about credit

fraud and credit approval classification.

There are also some applications in financial distress predictions for banks

and corporates. For example, Lanbouri and Achchab (2015) used a Deep Be-

lief Network (DBN) with SVM to identify whether a firm was in trouble or not,

while Rawte et al. (2018) studied bank risk classification. Rönnqvist and Sarlin

(2015) proposed to determine the bank stress by using semantic vector represent-

ations. Rönnqvist and Sarlin (2017) used text mining to identify bank distress

by using financial news and deep FNN, which is similar to the strategy proposed

by Cerchiello et al. (2017). Malik et al. (2018) predicted the performance of

banks using an LSTM network to evaluate the bank stress levels. In addition,

some studies focused on bankruptcy or corporate default prediction. Yeh et al.

(2015) used RBM and DBN to predict is a company was solvent or default, out-

performing SVM-based models. Sirignano et al. (2016) proposed to identify the

mortgage risk within 20 years by analysing different factors that affected the mort-

gage payment structure. Finally, Chatzis et al. (2018) developed several machine

learning models to detect events that caused stock market crashes. Table 2.2

36

summarizes risk assessment approaches in terms of the employed data set, main

methods and performance measures.

Table 2.2: Summary of literature on risk assessment approaches.

Reference Data Set
Main

Methods
Performance

Measures

Lanbouri and Achchab (2015) French Companies SVM
Precision,

Recall

Rönnqvist and Sarlin (2015)
European Banks,

News Articles
DNN F1-Score

Yeh et al. (2015) Stock Returns DBN Accuracy

Tran et al. (2016) Credit Database
GP,
SAE

FP

Sirignano et al. (2016) Mortgate Dataset NN NALL

Luo et al. (2017) Credit Default Swaps RBM
Accuracy,

FN,
FP

Li et al. (2017e) Kaggle Credit Data MLP
Accuracy,

TP,
TN

Rönnqvist and Sarlin (2017)
European Banks,

News Articles
FNN F1-Score

Cerchiello et al. (2017) News Articles NN Relative Usefulness

Yu et al. (2018a) Credit Database SVM
Accuracy,

TN,
TP

Neagoe et al. (2018) Credit Database CNN Accuracy

Rawte et al. (2018) Bank Holding Companies
CNN,

LSTM,
SVM

Accuracy,
F1-Score

Malik et al. (2018) Bank Holding Companies LSTM RMSE

Chatzis et al. (2018) Exchange Rates
SVM,
DNN,

RF

LR,
BA,

WBA

2.1.3 Fraud Detection

There are a variety of financial fraud cases such as tax evasion, money laundering,

credit card, and insurance claim fraud, which is why this application is one of the

most extensively studied areas of finance for machine learning (Ozbayoglu et al.,

2020). For example, Wang (2010); Phua et al. (2010); Ngai et al. (2011); Sharma

and Panigrahi (2013); West and Bhattacharya (2016) reviewed financial fraud

37

detection studies that focused on soft computing and data mining techniques.

Heryadi and Warnars (2017) proposed a variety of deep learning models to identify

credit card fraud detection in Indonesian banks. They also considered the effects

of data imbalance between non-fraud and fraud data.

There are also some studies mainly focused on RNN approaches. For example,

Roy et al. (2018) proposed to predict credit card fraud using LSTM models.

Jurgovsky et al. (2018) proposed to detect credit card fraud using LSTM and

transaction sequences. In addition, Paula et al. (2016) used auto-encoders to

identify money laundering and financial fraud on Brazilian companies. Gomes

et al. (2017) proposed an anomaly detection model based on auto-encoders to

identify anomalies in the Brazilian parliamentary expenditure spending. Wang

and Xu (2018) and Li et al. (2017b) used deep neural network models to detect

auto-mobile insurance fraud and online payment transaction fraud, respectively.

Goumagias et al. (2018) proposed to predict the risk-averse firms’ tax evasion

behaviours using reinforcement learning. Table 2.3 summarizes fraud detection

approaches, showing relevant information of each study.

Table 2.3: Summary of literature on fraud detection approaches.

Reference Data Set
Main

Methods
Performance

Measures
Paula et al. (2016) Federal Revenue of Brazil AE MSE

Heryadi and Warnars (2017) Credit Card Transactions LSTM AUROC

Gomes et al. (2017) Federal Revenue of Brazil Deep AE MSE, RMSE

Li et al. (2017b) Payment Transactions DNN AUROC

Roy et al. (2018) Credit Card Transactions LSTM Accuracy

Jurgovsky et al. (2018) Credit Card Transactions LSTM AUROC

Wang and Xu (2018) Automobile Insurance Company LDA F1-Score

Goumagias et al. (2018) Greek Firms DQL Revenue

2.1.4 Portfolio Management

This financial application, which aims to identify the best possible course of action

for selecting the best performing assets for a given period, is closely related to

areas such as portfolio optimization, selection, and allocation (Ozbayoglu et al.,

2020). For example, Takeuchi and Lee (2013) proposed to classify the stocks as

low and high momentum. Their implementation used an RBM encoder-classifier

38

network, achieving high returns on the considered stocks. Grace (2017) used a

deep MLPs network to adjust the portfolio allocation weights for the considered

stocks, while Fu et al. (2018) proposed a machine learning framework based on

deep MLPs to address the stock selection problem.

More recently, Jiang and Liang (2017) implemented a portfolio strategy us-

ing CNN and DRL on selected cryptocurrencies. Similarly, Jiang et al. (2017b)

implemented cryptocurrency portfolio management strategy using RNN, LSTM,

and CNN models. Finally, Lee and Yoo (2018) compared RNN-based models to

construct a threshold-based portfolio using stock prices, while Iwasaki and Chen

(2018) used deep FNN models, sentiment analysis, text mining, and word em-

beddings to predict stock prices. Liang et al. (2018) used Deep Reinforcement

Learning (DRL) for portfolio allocation, while Zhou (2019) proposed to predict

the next month’s return using MLPs, LSTM and deep learning models. Table 2.4

summarizes portfolio management approaches and their relevant methods.

Table 2.4: Summary of literature on portfolio management approaches.

Reference Data Set
Main

Methods
Performance

Measures
Takeuchi and Lee (2013) Stock Prices RBM Accuracy

Grace (2017) Stock Prices MLP Accuracy

Jiang and Liang (2017) Cryptocurrencies CNN, RL SR

Jiang et al. (2017b) Cryptocurrencies CNN, RNN SR

Fu et al. (2018) Stock Prices RF, DNN Accuracy, Recall

Lee and Yoo (2018) Stock Prices RNN Accuracy

Iwasaki and Chen (2018) Tokyo Stock Exchange CNN, LSTM Accuracy

Liang et al. (2018) China Stock Data DRL SR

Zhou (2019) Stock Prices LSTM, MLP SR

2.1.5 Asset Pricing and Derivatives Market

This application aims to provide an accurate pricing or valuation of an asset,

which is a relevant study area in finance (Cochrane, 2009). The main focus of

asset pricing studies in machine learning is the development of hedging strategies,

options pricing, futures, and forward contracts (Ozbayoglu et al., 2020). In this

sense, Iwasaki and Chen (2018) proposed to predict stock prices using reports for

sentiment analysis and deep FNN models. Then, the predicted stock prices were

39

used to implement different portfolio selection strategies. Culkin and Das (2017)

used deep FNN models to predict option prices and compared their results with

Black & Scholes option pricing formula. Hsu et al. (2018) proposed to predict

Taiwan Capitalization Weighted Stock Index (TAIEX) option prices using bid-

ask spreads and Black & Scholes option price model. Feng et al. (2018) proposed

to use characteristic features, such as Industry momentum and asset growth, as

the inputs of a deep learning model to predict US equity returns in American

Stock Exchange (AMEX), National Association of Securities Dealers Automated

Quotation (NASDAQ), and NYSE indices. Table 2.5 summarizes asset pricing

approaches, showing relevant information of each study, such as the employed

data set, main methods and performance measures.

Table 2.5: Summary of literature on asset pricing approaches.

Reference Data Set
Main

Methods
Performance

Measures
Culkin and Das (2017) Options DNN RMSE

Iwasaki and Chen (2018) Stock Prices
LSTM,
CNN

Accuracy

Hsu et al. (2018) Options MLP
RMSE,
MAE,
MAPE

Feng et al. (2018) Equity Returns DL RMSE

2.1.6 Cryptocurrency and Blockchain Studies

The price prediction and trading systems are some of the main applications in

cryptocurrency studies. Chen (2018) proposed a blockchain transaction traceab-

ility algorithm using Bitcoin data such as Hash value, public/private key, and

digital signature. Nan and Tao (2018) proposed a three-stage bitcoin mixing

detection method within an auto-encoder approach. Lopes (2018) proposed to

combine technical indicators, sentiment analysis, CNN, and LSTM-based models

for cryptocurrency trading. Similarly, Jiang et al. (2017b) proposed a framework

based on RNN, LSTM, and CNN for Cryptocurrency portfolio management. Ji-

ang and Liang (2017) implemented a portfolio management using DRL and CNN

on Ethereum, Bitcoin, and Digital Cash. Spilak (2018) proposed a dynamic port-

folio using MLP, RNN, and LSTM models. The proposal was tested in cryptocur-

rencies such as Namecoin, Litecoin, Dash, Monero, Dogecoin, Ripple, Nxt, and

40

Bitcoin. Finally, McNally et al. (2018) proposed to predict the Bitcoin price dir-

ection using Auto Regressive Integrated Moving Average (ARIMA), LSTM, and

RNN. Their models were compared in terms of Root Mean Square Error (RMSE),

precision, specificity, and sensitivity. Table 2.6 summarizes cryptocurrency ap-

proaches and their relevant data sets, methods, and performance measures.

Table 2.6: Summary of literature on cryptocurrencies and block chain studies.

Reference Data Set
Main

Methods
Performance

Measures

Jiang et al. (2017b) Cryptocurrencies
CNN,
RNN

SR

Jiang and Liang (2017) Crytptocurrencies CNN SR

Nan and Tao (2018) Bitcoin
LE,

Deep AE
F1-Score

Chen (2018) Bitcoin
Fuzzy Cognitive

Maps
Analytical Hierarchy

Process

Lopes (2018)
Bitcoin,
Litecoin

CNN,
LSTM

MSE

Spilak (2018) Cryptocurrencies
LSTM,
RNN,
MLP

Accuracy,
F1-Score

McNally et al. (2018) Bitcoin
LSTM,
RNN

Accuracy,
RMSE

2.1.7 Financial Sentiment Analysis

There is a growing interest in financial sentiment analysis applications such as

algorithmic trading and trend prediction. For example, Wang et al. (2018b)

combined technical strategies and sentiment analysis techniques to predict stock

prices. Shi et al. (2018) proposed a text-based deep learning model to predict

stock price movements using financial news from Bloomberg and Reuters. Sim-

ilarly, Peng and Jiang (2015) used word embeddings, text mining, and financial

news from Reuters and Bloomberg to predict stock price movements. Zhuge et al.

(2017) proposed to predict the next day opening prices of stocks using emotional

data from text posts and prices of index data. Das et al. (2018) developed a

framework to predict Apple, Microsoft, and Google stock prices using Twitter

sentiment data. Prosky et al. (2017) proposed to predict stock prices using news

from Reuters and sentiment analysis. Li et al. (2017a) used three different sen-

timent classification (positive, neutral, and negative) to predict open and close

41

prices within and LSTM approach. Their results, when compared with SVM-

based models, achieved higher overall performance. Iwasaki and Chen (2018)

applied text mining and word embeddings on analyst reports to predict stock

price using deep FNN models. In addition, they implemented a variety of portfo-

lio selection strategies based on the projected stock returns. Huang et al. (2016)

proposed to predict price directions using Hidden Markov Model (HMM) and

CNN. Their models were tested on Twitter and financial price data, where CNN

achieved the best performance. Table 2.7 summarizes financial sentiment analysis

approaches and their relevant methods.

Table 2.7: Summary of literature on financial sentiment analysis approaches.

Reference Data Set
Main

Methods
Performance

Measures
Peng and Jiang (2015) Financial News DNN Accuracy

Huang et al. (2016) Twitter Moods
DNN,
CNN

Error Rate

Zhuge et al. (2017) SSE Composite Index LSTM MSE

Prosky et al. (2017) Financial News
LSTM,
CNN

Accuracy

Li et al. (2017a) Sentiment Posts LSTM
Accuracy,
F1-Score

Shi et al. (2018) Financial News DeepClue Accuracy

Das et al. (2018) Twitter Sentiment RNN Correlation

Wang et al. (2018b) Stocks DRSE F1-Score

Iwasaki and Chen (2018) Analyst Reports
LSTM,
CNN

Accuracy

2.1.8 Other Financial Applications

Finally, some studies did not fit into any of the previously covered financial applic-

ations, e.g., success prediction, bank telemarketing, and payment classification.

Dixon et al. (2015) used deep FNN to speed-up the price movement direction pre-

diction problem, which is their main contribution. Kim et al. (2015) proposed to

predict the success of bank telemarketing using CNN-based models. Their study

considered finance-related attributes and phone calls of the bank marketing data.

Lee et al. (2017) proposed to estimate the revenue and profit for the corporates

using technical indicators, RBM, FNN, and DBN models. Ying et al. (2017)

predicted social security payment types (such as transferred, unpaid, paid, and

42

repaid) using SVM, HMM, and LSTM. Lastly, Jeong and Kim (2019) combined

deep learning strategies to increase profit in the market, predict the number of

shares to trade, and prevent over-fitting with insufficient data. Table 2.8 sum-

marizes financial application approaches and their relevant data sets, methods,

and performance measures.

Table 2.8: Summary of literature on financial application approaches.

Reference Data Set
Main

Methods
Performance

Measures
Dixon et al. (2015) Foreign Exchange DNN Convergence

Kim et al. (2015) Bank Telemarketing CNN Accuracy

Lee et al. (2017) Stock Prices
RBM,
DBN

RMSE,
Profit

Ying et al. (2017) Payment Records
DNN,
RNN

Accuracy

Jeong and Kim (2019) S&P500 Index DNN
Profit,

Correlation

2.2 Financial Data Analysis Approaches

A variety of widely accepted empirical studies have shown that financial variables

such as stock prices and market index values are predictable (Zhong and Enke,

2017; Chong et al., 2017). These empirical studies combine technical analysis

indicators with approaches based on econometrics, statistics, data mining, and

artificial intelligence (Arévalo et al., 2017). In this section, we highlight the

advances in stock market analysis and prediction, classifying them into four main

categories, i.e., statistical techniques, pattern recognition, machine learning, and

hybrid approaches.

2.2.1 Statistical Techniques

Statistical techniques, when analysing stock markets, usually assume linearity

and stationarity of financial time-series. The statistical approaches are mainly

represented by ARIMA-based models, which are well-known techniques to ana-

lyse stock markets. They combine auto regressive models and mean reversion of

trading markets to capture the shock effects observed in financial time-series (Hir-

ansha et al., 2018). For example, De Faria et al. (2009) predicted Brazilian stock

indices by comparing NNs and exponential smoothing models. Their results

43

show that the used NN slightly outperformed the adaptive exponential smooth-

ing model in terms of the RMSE. Dutta et al. (2012) used financial ratios in

a logistic regression model to analyse the relationship between these ratios and

the stock performance. Their results show that the companies are classified into

good and poor classes with a 74.6% accuracy, which highlights the importance of

company health in stock analysis and prediction.

Later, Devi et al. (2013) trained an ARIMA-based model using historical data

of Indian companies. Their results suggest that, because of low error and volatil-

ity, the Nifty Index is more suitable for näıve investors. Ariyo et al. (2014) used

standard error of regression, adjusted R-square, and Bayesian information criteria

to choose an optimal ARIMA-based model. The chosen ARIMA model success-

fully predicted stock prices of Nokia and Zenith Bank. Bhuriya et al. (2017)

proposed to predict stock prices of Tata Consultancy Services using variants of

regression models such as linear, polynomial, and radial basis function. Their

results suggest that the linear regression model outperformed compared tech-

niques by achieving a confidence value of 0.97. In general, statistical techniques

assume a linear correlation in time-series data, which limits their application in

real-life scenarios. These limitations are addressed by emerging techniques such

as machine learning and hybrid approaches (Zhu et al., 2019).

2.2.2 Pattern Recognition

Pattern Recognition techniques try to identify future trends using pattern match-

ing and historical templates. Their main focus is the detection of patterns and

trends in data (Parracho et al., 2010). These patterns are identified by using

charts that aim to capture variations in derived indicators such as price, volume,

and price momentum (Nesbitt and Barrass, 2004). In general, pattern recognition

techniques try to predict future market behaviour based on the degree of charts

matching (Leigh et al., 2002). Traditional chart patterns are gaps, flags, wedges,

spikes, pennants, triangles, saucers, and head-and-shoulders, among others (Park

and Irwin, 2007). These patterns, according to some studies (Parracho et al.,

2010), provide useful information about the future behaviour of stock prices.

For example, Leigh et al. (2007) used a bull flag pattern to capture price

movements. Then, this information was incorporated into a template matching.

The technique was tested in 9000 trading days of NYSE, beating the average

market profit most of the times. Parracho et al. (2010) proposed an algorithmic

44

trading system using genetic algorithms and template matching. The proposed

strategy is trained on S&P 500 stock data between 1998 and 2004, while the

testing is carried out from 2005 to 2010. The authors claim that their results

outperform the buy and hold strategy on an index. Phetchanchai et al. (2010)

analysed financial time-series using the zigzag movement in the data, showing a

performance improvement when compared with binary trees.

Later, Cervelló-Royo et al. (2015) proposed a chart pattern based trading rule

using a flag pattern to model the closing operations. That is, they considered

both the opening and closing prices to decide whether or not to start an operation.

The authors claim to achieve a positive performance on the Dow Jones Industrial

Average (DJIA) index. Their proposal was also tested on European indexes such

as Deutscher Aktienindex (DAX) and Financial Times Stock Exchange (FTSE).

Chen and Chen (2016) proposed an approach to identify patterns on TAIEX and

NASDAQ indices. Their proposal obtains higher index returns when compared

with rough set theory, genetic algorithms, and hybrid approaches. Arévalo et al.

(2017) proposed to trade DJIA based on filtered flag pattern recognition using

template matching, obtaining higher profit and lower risk when compared with

the approach proposed in Cervelló-Royo et al. (2015). Recently, Kim et al. (2018)

proposed a pattern matching trading system using dynamic time warping (DTW)

to trade index futures, resulting in higher annualized returns and showing that

most patterns tend to be more profitable near to the clearing time.

2.2.3 Machine Learning

A variety of machine learning techniques have been used to analyse financial

markets (Shen et al., 2012). They can be broadly classified into unsupervised

and supervised learning approaches (Ballings et al., 2015).

In unsupervised learning, the task is to transform and reduce the data such

that their specific characteristics are highlighted. This learning strategy, unlike

supervised learning, tries to find previously undetected patterns in a data set

without a desired output value or label, e.g., clustering and dimensionality re-

duction (Van Der Maaten et al., 2009; Xu and Wunsch, 2008; Lei et al., 2017).

In supervised learning, the task is to learn a function that maps an input to

an output based on example input-output pairs (Lei et al., 2017). The function

is inferred from labelled training examples, where each example is a pair of an

input and a desired output value. The training stops when the model achieves

45

a desired level of accuracy on the training data. Traditional examples of this

learning strategy are classification and regression problems (Ahmed et al., 2010).

Unsupervised Learning

Clustering Algorithms. Clustering is a common technique with applications

in fields such as pattern recognition and image analysis, which involves grouping

data points that share similar characteristics (Xu and Wunsch, 2008). That is,

data points that are in the same group (cluster) should have similar properties

(features), while data points in different groups should have highly dissimilar

properties. Traditional clustering methods include k-means (Yu et al., 2018b)

and hierarchical clustering (Liu et al., 2016).

Powell et al. (2008) compared the performance of supervised and unsupervised

machine learning techniques in financial markets. Their results show similar

performance when tested on S&P 500 data, i.e., SVM achieved 89.1%, while k-

means achieves 85.6%. Babu et al. (2012) proposed a clustering method to predict

short-term impact on stocks after the release of financial reports. Firstly, they

use text analysis to convert each financial report into a feature vector. Then, for

each cluster, a clustering method was applied to identify the centroids. Lastly,

the stock price movements were predicted using the centroids information. Their

results suggest that the proposed method outperforms SVM-based models in

terms of accuracy.

Wu et al. (2014) proposed a model based on k-means to predict stock trends

by identifying chart patterns from data. Their model outperforms previous works

such as Wang and Chan (2007) and Chen (2011) in terms of mutual funds and

average returns. Peachavanish (2016) proposed a clustering method to identify

stocks by their trends and momentum characteristics. Their proposal was tested

using historical price data of stocks listed on the Stock Exchange of Thailand

(SET), outperforming compared methods in long-term prediction tasks.

Topic Models. These techniques aim to explain the behavioural drivers of

different market participants. They can be classified into natural language pro-

cessing and textual analysis (Buchanan, 2019). For example, Antweiler and Frank

(2004) found that internet stock message boards help to predict market volatil-

ity. Although the effect on stock returns is statistically significant, the economic

significance is small. Tetlock (2007) used a daily Wall Street Journal column to

46

examine interactions between stock prices and the media. The results show that

there is a correlation between downward pressure on market prices and high media

pessimism. Tetlock et al. (2008) proposed a dictionary-based approach to predict

accounting earnings of individual firms and stock returns. Their results show that

media content captures hard-to-quantify aspects of firms’ fundamentals, which is

incorporated into stock prices by investors.

Guo et al. (2016); Loughran and McDonald (2016) provided surveys of tex-

tual analysis applications in accounting and finance. They found that the main

challenges of tonal classification are sarcasm, slang, and the changing vocabulary

on social media. Manela and Moreira (2017) constructed a text-based measure

of uncertainty using front-page articles of Wall Street Journal. They measured

news implied volatility peaks during financial crises, stock market crashes, and

world wars. Their results suggest that high news implied volatility predicts high

future returns during normal times. Renault (2017) provided empirical evidence

that online investor sentiment helps to predict intra-day stock index returns.

Supervised Learning

Random Forest. The Random Forest approach is based on decision tree mod-

els, which is useful for forecasting and classification tasks (Breiman, 2001). This

ensemble method constructs many decision trees that are used to classify a new

instance by the majority vote. In Random Forest, each decision tree node uses

a subset of attributes randomly selected from the whole original set of attrib-

utes (Oshiro et al., 2012).

Ballings et al. (2015) predicted long term stock price directions in 5,767

European companies, finding that random forest provided the best performance

in terms of area under the curve. Milosevic (2016) proposed a long term predic-

tion approach for stock market prices. The study performed a feature selection

strategy in several machine learning algorithms. Results show that, when com-

pared with Näıve Bayes and SVM, Random Forest achieved the best performance

with 0.751 F-Score.

Zhang et al. (2018a) proposed a stock price trend prediction strategy based on

Random Forest. Their model was trained using the Shenzhen Growth Enterprise

Market to classify multiple clips of stocks into four main classes, i.e., up, down,

flat, and unknown. Their results show that the proposed strategy is robust to

market volatility and achieves competitive performance in terms of return per

47

trade. In Medeiros et al. (2019), sixteen machine learning methods were compared

with statistical models, finding that Random Forest was the most suitable model

to indicate a degree of non-linearity in the inflation dynamics.

Neural Networks (NNs) NNs are computational structures that aim to re-

cognize underlying relationships in a set of data through a process inspired by

the biological central nervous system (Yegnanarayana, 2009). NNs have proven

useful in a wide variety of real-world problems related to sequence prediction and

finance (Bahrammirzaee, 2010; Mohammed et al., 2017; Bouallegue, 2017), where

classification, decision support, financial analysis, and credit scoring are the main

fields of applications (Tkáč and Verner, 2016). Jasic and Wood (2004) proposed

to predict daily stock market index returns using an NN model. Their study uses

daily closing values of DAX, S&P 500, TOPIX, and FTSE indices between 1965

and 1999. Their results show an improvement in prediction when compared with

linear autoregressive models.

Enke and Thawornwong (2005) used NN-based model to predict future values

on S&P 500 from 1976 to 1999. Their results show that trading strategies guided

by classification models achieve higher risk-adjusted profits when compared with

the buy-and-hold strategy. Yümlü et al. (2005) provided a comparative study

to predict financial time-series using NN-based models. The compared methods

were tested on the Istanbul Stock Exchange National 100 Index (XU100) over

12 years. Their results suggest that the smoothed-piecewise model outperforms

the other ones in terms of hit rate, positive hit rate, negative hit rate, MSE,

Mean Absolute Error (MAE), and correlation. Bernal et al. (2012) implemented

a RNN to predict S&P 500 stock prices, outperforming a Kalman filter with a

0.0027 test error. Their approach was tested in 50 stocks, reporting competitive

performance when compared with state of the art techniques. Chen et al. (2015)

proposed a model based on LSTM to predict the return of Chinese shares. The

authors claim that LSTM outperforms random forecasting when predicting stock

returns.

Hafezi et al. (2015) proposed a NN-based model to predict eight years of DAX

index. The authors claim to achieve competitive performance in the long-term

when compared with genetic algorithms and NN models. Di Persio and Honchar

(2017) used three different RNN models to predict Google stock prices. Their

results show that LSTM outperforms compared methods with 72% accuracy using

48

a five-day prediction horizon. Selvin et al. (2017) predicted stock prices of the

National Stock Exchange of India (NSE) using LSTM, RNN, and CNN. Their

proposal was tested using sliding windows on equally spaced data. Their results

show that CNN captures dynamical changes on the data, outperforming compared

techniques in terms of prediction accuracy.

Samarawickrama and Fernando (2017) predicted future prices of companies

listed in the Colombo Stock Exchange (CSE) using RNN-based models. Their res-

ults show that LSTM outperforms FNN in terms of prediction accuracy. Hossain

et al. (2018) proposed a hybrid model based on deep learning to predict S&P 500

time-series over 66 years. Their proposal achieves 0.00098 MSE, outperforming

similar NN approaches. Fischer and Krauss (2018) proposed an LSTM model

to predict financial time-series using stock records of S&P 500 between 1992 and

2015, finding that common patterns of securities show high volatility and a short-

term inversion return profile. Siami-Namini et al. (2018) conducted a comparative

study of machine learning methods using historical monthly financial time-series

from 1985 to 2018. The authors reported that LSTM, when compared with

ARIMA-based models, provided the best overall performance in terms of RMSE.

Rundo et al. (2019) proposed an LSTM-based framework to predict stock prices

and trends in financial time-series. Their results show that the proposed frame-

work outperforms statistical models in terms of prediction accuracy. Recently, Lv

et al. (2019) observed the daily trading performance of stocks using a variety of

machine learning algorithms such as SVM, Random Forest, Logistic Regression,

and deep NN architectures, among others. Their results suggest that deep NN

algorithms have better performance when transaction costs are considered.

Support Vector Machines (SVMs). SVMs are a supervised machine learn-

ing technique mainly used for data classification. This technique represents the

samples as points in a space, aiming to create gap between different categor-

ies. Then, the new samples are classified considering the category in which they

most likely belong (Scardapane et al., 2016), e.g., classifying a future stock price

direction into rise or drop (Chiu and Chen, 2009).

Fan and Palaniswami (2001) proposed an SVM-based model to increase profits

in stock markets. The authors report a total return of 208% over a five years

period in the selected stocks. Cao and Tay (2003) compared the performance of

models based on SVM, multilayer NN, and regularized radial base function in

49

financial time-series prediction. The models were evaluated using data from the

Chicago Mercantile Market. Their results show that SVM achieves competitive

performance considering the convergence speed and number of hyper parameters.

Lee (2009) proposed to predict the trend of stock markets using an SVM model.

The task was to predict the NASDAQ index direction over 6 years, i.e., from

2001 to 2007. Their results show that the proposed SVM-based model has the

highest level of prediction accuracy and generalization when compared with in-

formation gain, symmetrical uncertainty, correlation-based feature selection, and

back-propagation NNs.

Later, Schumaker and Chen (2009) combined textual analysis with SVM to

analyse the impact of news articles on stock prices. They analysed a large number

of news articles and stocks between October 26, 2005 and November 28, 2005.

Their proposal estimated the closest value to the actual future stock price, direc-

tion of price movement, and the highest return using a simulated trading engine.

Yeh et al. (2011) proposed an SVM-based model with kernel functions to predict

stock market values. They developed a multi-kernel learning algorithm using

sequential minimal optimization and a gradient projection approach. Their pro-

posal, when trying to predict TAIEX index, outperforms similar methods between

October 2002 and March 2005. Nayak et al. (2015) proposed to predict Indian

stock indices (Bombay Stock Exchange and CNX Nifty) using SVM-based models.

The authors claim that their proposal achieves relatively competitive perform-

ance in terms of MSE. Zhang et al. (2016) proposed a classification method that

combines SVM, AdaBoost, and genetic algorithms. Their proposal was tested

in shares of the Shenzhen Stock Exchange and NASDAQ, achieving competitive

results when compared with NN models.

2.2.4 Hybrid Analysis

Hybrid Analysis methods combine different techniques such as statistical, pattern

recognition, and machine learning. For example, Tiwari et al. (2010) proposed to

predict trends of the Bombay Stock Exchange (BSE) Sensex using Hierarchical

Hidden Markov Model (HHMM) and decision trees. Their proposal used a classi-

fier to perform predictions, while the HHMM evaluated prediction performance,

yielding an accuracy of 92.1%. Guresen et al. (2011) used a hybrid NN model

within an Generalized Autoregressive Conditional Heteroskedasticity (GARCH)

50

approach to extract input variables. Their proposal was tested on NASDAQ in-

dex values between October 7, 2008 and June 26, 2009, finding that MLP provides

a simple and efficient alternative when compared with NN-based models.

Shen et al. (2012) proposed to predict daily stock prices combining statistical

and SVM approaches. Their proposal achieves 77.6% prediction accuracy on the

DJIA and around 85% for long term predictions. Dai et al. (2012) proposed to

combine Non-linear Independent Component Analysis (NLICA) and NN to pre-

dict Asian stock markets. Firstly, with the aim of representing the underlying

data information, they used NLICA to transform the input space into a feature

space of independent components. Then, the model is built by feeding the NN

with those independent components. The authors claim to improve prediction

accuracy of NN-based models when using data from the Nikkei 225 and Shang-

hai B-share closing index. Wang et al. (2012) proposed to predict weekly stock

prices by combining ARIMA and Back-propagation NN (BPNN), outperforming

compared approaches when tested on the Shenzhen Integrated Index and DJIA

with a 70.16% directional accuracy.

Yoshihara et al. (2014) considered long term effects of news events using a

combination of Restricted Boltzmann Machine (RBM) and DBN to predict bin-

ary stock trends, i.e., up or down. The authors claim that their proposal achieved

the lowest error rates when compared with SVM and DBN. Ding et al. (2015)

proposed to predict S&P 500 index combining sentiment analysis and NN-based

models. Their study considered more than 10 million events over seven years,

achieving of 64.21% on the S&P 500 index. Rather et al. (2015) proposed to

predict stock prices using ARIMA, genetic algorithms, ESN, and RNN models,

achieving the lowest MAE and MSE when compared with RNN. Patel et al.

(2015) compared four prediction models (NN, SVM, Random Forest, and Na-

ive Bayes) using two different approaches. The first approach computes technical

parameters on open, high, low, and closing prices, while the second one represents

these technical parameters as trend deterministic data. Their approaches were

tested on the NSE and S&P BSE Sensex, covering the period between January

2003 and December 2012. Their results suggest that Random Forest outperforms

compared methods using the first approach. In addition, they found that pre-

diction performance improves when the technical parameters are represented as

trend deterministic data.

51

More recently, Dash and Dash (2016) proposed a decision support system us-

ing NN and trading strategies, which are seen as a classification problem with

three possible values, i.e., buy, hold, and sell. Their model is compared with SVM,

k-nearest neighbour, and decision tree algorithms using stock prices from BSE

SENSEX and S&P 500. The authors claim that combining technical indicators

with computational intelligence tools produce more profitable trading decisions.

Li et al. (2016) proposed to predict stock prices using Extreme Learning Machine

(ELM) and trading strategies. Their results show that ELM and SVM achieve

higher prediction accuracy and convergence speed when compared with BPNN

models. Creighton and Zulkernine (2017) extended the work of Wang et al. (2012)

by applying a hybrid approach to daily stock price on the S&P 400 and S&P 500.

Their results show that the proposed hybrid approach did not outperform its con-

stituent models. Pierdzioch and Risse (2018) implemented an orthogonality test

of the rationality of aggregate stock market forecasts using Boosted Regression

Trees (BRT). The proposed implementation was tested on S&P 500 index from

1992 to 2014. Their results suggest that the rational expectations hypothesis

cannot be rejected for short term forecasts. Zhong and Enke (2019) proposed to

predict stock return directions using a NN-based model and Principal Component

Analysis (PCA). The method was tested using closing prices of the SPDR S&P

500 ETF over 2518 trading days between 2003 and 2013. Their proposal achieves

significantly higher classification accuracy than other hybrid machine learning

algorithms. Finally, Alhnaity and Abbod (2020) proposed to predict financial

time-series using intelligent model techniques and a feature extraction algorithm.

Their study considered the FTSE 100, S&P 500 and Nikkei 225 next day clos-

ing prices, outperforming compared methods in terms of MSE, RMSE, and MAE.

Figure 2.1 summarizes the main financial data analysis approaches and their

financial applications. This figure shows that algorithmic trading (see Section 2.1.1)

and risk assessment (see Section 2.1.2) are popular financial applications and their

models are mainly based on NNs, e.g., RNN, LSTM, and CNN.

52

Figure 2.1: Financial data analysis approaches and their financial applications.

2.3 Research Gaps and Challenges

A variety of statistical and machine learning approaches for analysing financial

data have been summarized in Sections 2.1 and 2.2. Although the existing stud-

ies have made significant contributions to the development of regression models

within the context of financial markets, there still exist some limitations for those

approaches. Thus, in order to highlight the research motivation of this thesis, the

following summarises the identified research limitations:

1. Statistical Models. Several prediction methods that consider the sequen-

tial nature of financial time-series have been proposed. Statistical models,

such as ARIMA (Liang and Schienle, 2019; Durbin and Koopman, 2012;

Ramos et al., 2015), vector autoregression approaches (Jang, 2020), vec-

tor error correction models (Liang and Schienle, 2019), and HMM (Hassan,

2009; Dias et al., 2015; Zhang et al., 2019b) were developed for prediction

and temporal pattern recognition tasks. However, their models may not

be well suited for characterizing the stochastic nature, uncertain dynam-

ics, and non-stationary conditions of real-world applications (Khashei and

Hajirahimi, 2019; Suhermi et al., 2018).

2. Feed-forward Neural Networks (FNN). These are powerful predic-

tion tools compared to more conventional models, e.g., MLP (Ravi et al.,

53

2017; Abedin et al., 2019), time-delay neural networks (Tai et al., 2019),

differential evolution training (Ilonen et al., 2003), hybrid particle swarm

optimization (Mirjalili et al., 2012), multi verse optimizer (Faris et al.,

2016), logistic regression with a single hidden layer (Belciug, 2020), fitting

based early stopping (Chi et al., 2019), modular networks (Eshaghzadeh

and Hajian, 2018), biogeography based optimization (Rodan et al., 2016),

among others (Ojha et al., 2017). However, the processes occurring dur-

ing their training are difficult to interpret, meaning that is not clear how

learning from input data is done or how performance can be consistently

ensured (Svozil et al., 1997; Olden and Jackson, 2002; Ghasemi et al., 2018).

This limits their utility and acceptance in many real-world applications, as

it is desirable to use techniques based on analytical functions that can be

understood and validated (Zhang et al., 2018b). In addition, even when

performing similar tasks, the proper choice of network parameters can vary

widely and are often chosen using a trial-and-error process (Erkaymaz et al.,

2017; Dutta et al., 2018).

3. Recurrent Neural Networks (RNN). These methods model sequence

structure with recurrent lateral connections and process the data sequen-

tially one record at a time (Pascanu et al., 2013), e.g., LSTM (Li et al.,

2017d; Fischer and Krauss, 2018; Liu et al., 2018), Bayesian scheme (For-

tunato et al., 2017), hierarchical (Chung et al., 2016; Yu et al., 2016), con-

volutional approaches (Choi et al., 2017; Cakır et al., 2017), unitary evol-

ution (Arjovsky et al., 2016), dilated recurrent skip connections (Chang

et al., 2017), bidirectional networks (Schuster and Paliwal, 1997; Fan et al.,

2014b; Ogawa and Hori, 2017), gated feedback (Chung et al., 2015), mul-

timodal (Mao et al., 2014), Lyapunov components (Güler et al., 2005), com-

plex valued networks (Hu and Wang, 2012), among others (Qin et al., 2020).

However, these strategies may fail when predicting financial time-series, as

they can become stuck in local minima during the training stage (Principe,

2010). In addition, as NN-based models are retrained at regular intervals

in sequence prediction tasks, they require both significant computing and

storage resources (Gu et al., 2014; Cui et al., 2016).

4. Kernel Adaptive Filtering (KAF). These are data-driven approaches

that have proven useful in identifying non-linear systems (Liu et al., 2010;

54

Li and Pŕıncipe, 2017). Such non-parametric methods combine the con-

vex optimization of linear adaptive filters and the universal approximation

property of NNs (Chen et al., 2016a). Their training scheme uses a com-

bination of error-correction and memory-based learning, meaning that the

whole training set is not required to start learning the model. Thus, as the

samples arrive, the model is sequentially updated while predictions are being

made, which is useful in online applications. That is, the model is learned

using a single pass through the entire training set in KAF algorithms. The

main advantage of these methods, when compared with NNs, is their abil-

ity to represent non-linear functions linearly and universally in Reproducing

Kernel Hilbert Space (RKHS), which is isometric-isomorphic to a high di-

mensional feature space (Schölkopf et al., 2018). This results in a simple

convex optimization problem with a unique global optimum (Schölkopf and

Smola, 2001). Traditional KAF methods include the kernel least mean

square (KLMS) (Liu et al., 2008), kernel affine projection (KAPA) (Liu

and Pŕıncipe, 2008), and kernel recursive least squares (Engel et al., 2004),

among others (Chen et al., 2013b; Zhang et al., 2019a). However, there re-

main two main challenges in KAF algorithms: determination of kernel-size

and tuning of the step-size parameters (Chen et al., 2016a).

5. Market Interdependence Approach. In addition to the sequential

nature of financial time-series, stock markets are themselves highly com-

plex systems depending on various factors such as financial policies, na-

tional economic growth and sector performance (Zhang et al., 2019b). It

has became clear that all agents involved in a given stock market may

exhibit interconnections and correlations, representing important internal

forces of the market (Collins and Biekpe, 2003; Jizba et al., 2012). That

is, the movement of a stock market in a country is likely to be affected by

movement of other stocks in both that country and in other regions (Masih

and Masih, 2001). The following strategies have been proposed to identify

and quantify interactions on this type of complex system (Greenblatt et al.,

2012): (1) Space-time, such as covariance that measures the joint variability

of two random variables (Wang and Ye, 2016; De Ketelaere et al., 2018),

correlation that measures statistical relationships between two random vari-

ables (Kenett et al., 2015), Granger causality that determines whether one

time-series is useful in predicting another one (Papana et al., 2017), and

55

Shannon entropy that measures the uncertainty of random variables (Sul-

than et al., 2016); (2) Space-frequency and Space-time-frequency, such as

Fourier transform that decomposes a function into its constituent frequen-

cies (Fang and Chang, 2017; Saia et al., 2017), phase synchronization which

is the process where cyclic signals tend to oscillate with a repeating sequence

of relative phase angles (Radhakrishnan et al., 2016), directed transfer func-

tion that determines the directional influences between any given pair of

channels in a multivariate data set (Kamiński et al., 2001), wavelet trans-

form where basis functions are scaled and shifted versions of one function

called a mother wavelet (Joo and Kim, 2015; Saia, 2017). The previous work

studies how the price of one stock is influenced by the economic factors of

other markets. However, their models do not consider changes in network

structure over time, meaning that the conditions for which the models were

optimized may disappear (Olsen et al., 2018). Hence, how to incorporate

these interdependencies into an analytical model, such as sequential learn-

ing, to predict financial time-series in real-time remains an open issue.

The next chapter, aiming to address the first objective of this thesis, intro-

duces a kernel-based approach to support sequence prediction tasks in financial

markets. The proposed approach learns from continuous sequence of data records

and addresses two well-known problems of KAF, i.e., selection of kernel-size and

step-size parameters.

56

Chapter 3

A Kernel-based Sequence

Prediction Approach

In this chapter, with the aim to address the first objective of this thesis, we pro-

pose a kernel-based sequence prediction approach for financial time-series1. The

approach addresses two main challenges of kernel adaptive filtering (KAF): (1)

the lack of an effective method to determine kernel-sizes in an online learning

context; (2) how to tune the step-size parameter. The kernel-sizes, unlike tradi-

tional KAF formulations, are both created and updated in an online sequential

way. Further, to improve convergence time, we propose an adaptive step-size

strategy that minimizes the mean square error (MSE) using a stochastic gradi-

ent algorithm. The proposed approach is validated on two real-world data sets;

results show both faster convergence to relatively low values of MSE and better

accuracy when compared with KAF-based methods, long short-term memory,

and recurrent neural networks.

This chapter is structured as follows: Section 3.1 introduces the proposed

approach; Section 3.2 presents the experiment settings of this work; Sections 3.3

and 3.4 provides simulation results and summarizes the chapter, respectively.

1The outcomes of this chapter were published in Neurocomputing under the title “Learning
from data streams using kernel least-mean-square with multiple kernel-sizes and adaptive step-
size” (Garcia-Vega et al., 2019).

57

3.1 An Approach for Sequence Prediction

We develop an approach for sequence prediction that addresses two main chal-

lenges of KAF algorithms: (1) an algorithm that uses multiple kernel-sizes in

sequence learning to address the kernel-size problem (Section 3.1.1); (2) an on-

line technique to optimize the step-size (Section 3.1.2).

3.1.1 Multiple Kernel-Sizes in Online Sequential Learning

Suppose the goal is to learn a continuous input-output mapping f : U→ R based

on a sequence of input-output examples T = {ut, yt : t ∈ [1, N]}, where U ⊂ RM

is the input domain, ut ∈ RM is an input vector, and yt ∈ R is the desired

output. The kernel least mean square (KLMS) algorithm (see Appendix B.3.2),

the simplest in the KAF family, is a sequential estimator of f such that ft is

updated using the last estimate ft−1 and the current example {ut, yt}, yielding

the following sequential rule in the original input space (Liu et al., 2008):
f0 = 0

et = yt − ft−1(ut)

ft = ft−1 + ηetκσ(ut, ·)

(3.1)

where et ∈ R is the prediction error, ft denotes the learned mapping at iteration

t, η ∈ R+ is the step-size parameter, and κσ(·, ·) ∈ R+ is a Mercer kernel with a

kernel-size σ ∈ R+ that controls the mapping smoothness (Schölkopf and Smola,

2001). This sequential rule produces a growing radial-basis function network

(RBFN) by allocating a new kernel unit for each new example with ut as the

centre and ηet as its coefficient, which poses time-space complexity issues for

continuous adaptation scenarios2.

We propose an online algorithm to address the kernel-size problem in the

KLMS algorithm. This proposal, unlike traditional multiple-kernel-learning for-

mulations, does not need a predefined set of kernel-sizes. Here, the algorithm

creates a pool of kernel-sizes in an online sequential way. In addition, the appro-

priate kernel-size is selected for every new input sample. This allows the algorithm

to adjust to abrupt changes in the system, which is useful in non-stationary con-

ditions. More formally, the kernel-size can be computed as follows (Chen et al.,

2The set of centres and coefficients are also known as dictionary and weights, respectively.

58

2016a):

σt = σt−1 +
ρet−1et‖ut−1 − ut‖2κσt−1 (ut−1,ut)

σ3
t−1

, (3.2)

where: (1) the kernel-size at iteration t− 1 is σt−1; (2) the free parameter for the

kernel-size adaptation is ρ; (3) the prediction errors at time t− 1 and t are et−1

and et, respectively; (4) the input samples at time t − 1 and t are ut−1 and ut,

respectively; (5) ‖·‖ denotes the `2 norm; (6) κσ (·, ·) is a Mercer kernel. Thus,

the following observations can be made from Equation (3.2): (1) the gradient

direction depends on the signs of the prediction errors et−1 and et. If there is little

sign change, the desired mapping is likely a “smoothing function”; in contrast, if

the sign changes frequently, the desired mapping is likely a “zig zag function”; (2)

the magnitude of the gradient depends on σt−1 through κσt−1 (ut−1,ut) /σ
3
t−1. For

the case ut 6= ut−1, this term will approach zero when σt−1 is very small or very

large. Although the gradient goes to zero, it does not imply that σt is bounded,

however with a proper initial value, the kernel-size will be adjusted within a

reasonable range; (3) if the initial kernel-size σ1 is inappropriately chosen, initial

convergence speed can be very slow. In this case, the suitable initial kernel-size

can be selected using a method such as Silverman’s rule of thumb (Kang and

Noh, 2019).

Equation (3.2) allows the kernel-size to be computed in an online sequential

way. However, when the environment changes back to a previous mode, the online

technique to optimize the kernel-size has no inherent mechanism for recall and

thus must relearn the structure from scratch. In other words, as the kernel-size is

updated sequentially, the prediction ft (see Equation (3.1)) for the input sample

ut is calculated using σt, but the appropriate kernel-size for ut — viewed from

multiple-kernel-learning — may have been learned previously, i.e., σ1, . . . , σt−2,

σt−1. Rather than discarding previously learned kernel-sizes, we use them to

build a pool of kernel-sizes in an online sequential way. Then, for each new input

sample, the appropriate kernel-size is selected from this pool. In practice, once

the algorithm selects the appropriate kernel-size for the current sample ut, the

next step is to apply a KLMS-based algorithm to perform the prediction task.

Note that the KLMS-based algorithm provides a dictionary and its weights, which

are used in a linear combination to obtain the predictions (see Equation (3.1),

Algorithm 1, and Remark 2). We provide a step-by-step description of how we

create the kernel-sizes in an online sequential way (Lines refer to Algorithm 1):

59

1. Start with an initial kernel-size σ1, which is provided in advance (Line 1).

2. The centroid of the initial kernel-size c1 ∈ RM is created using the first

input sample u1 (Line 4).

3. The first input sample is stored in the dictionary of the initial kernel-size

C1 (Line 5).

4. The new sample ut and the centroids are projected into a high-dimensional

feature space via a reproducing kernel (Line 12). This is also known as

coherence (a fundamental parameter that characterizes a dictionary in lin-

ear sparse approximation problems) within the context of adaptive filtering

with kernels (Richard et al., 2009). The coherence criterion suggests insert-

ing the candidate input ut as a new centre if its coherence max
1≤i≤|K|

κσi (ut, ci)

remains below a given threshold δ ∈ [0, 1]. The main rationale behind the

previous strategy is to provide both the level of sparsity and the coherence

of the kernel-sizes created during learning (Gao et al., 2014).

5. The centroid threshold δ determines whether or not a new kernel-size should

be created:

• max
1≤i≤|K|

κσi (ut, ci) ≥ δ: This means that one of the current kernel-sizes

is appropriate for the new sample; thus, there is no need to create

a new kernel-size and the most similar kernel-size i∗ is selected for

the new sample ut (Line 11). Next, the centroid of the most similar

kernel-size ci∗ is updated (Lines 13-14).

• max
1≤i≤|K|

κσi (ut, ci) < δ: A new kernel-size is created (Line 17). Then,

the current sample ut is used to create the centroid of the new kernel-

size c|K|+1 (Lines 18-19). After that, the dictionary and the pool of

kernel-sizes are updated (Lines 21-26).

6. Following selection of the appropriate kernel-size for the current sample,

the next step applies a KLMS-based algorithm to perform the prediction

task (Line 29). Lastly, the kernel-size and the step-size are updated before

the next sample ut+1 arrives (Lines 32-36).

60

Algorithm 1: Multiple kernel-sizes in online sequential learning.
input : T – training data

1 Parameter setting: η1-initial step size, σ1-initial kernel size, δ-centroid threshold
2 K = {σ1}: Pool of kernel-sizes
3 l1 = 1: Effective size of σ1 for centroid update
4 c1 = u1: Centroid of σ1
5 C1 = {u1}: Initial dictionary of σ1
6 C = {C1}: Set of dictionaries
7 ω1 = η1y1: Initial weights of σ1
8 W = {ω1}: Set of weights
9 Computation:

10 while {ut, yt} available do
11 Select the most similar kernel-size: i∗ = arg max

1≤i≤|K|
κσi (ut, ci)

12 if max
1≤i≤|K|

κσi (ut, ci) ≥ δ then

13 Update centroid of the most similar kernel-size: ci∗ = li∗ci∗+ut
li∗+1

14 Update effective size of the most similar kernel-size: li∗ = li∗ + 1

15 else
16 The kernel-size σ|K| reaches its final value: σ|K| = σ|K|,t−1
17 Start updating a new kernel-size: σ|K|+1 = σi∗,t−1 (similar to Line 1)
18 Create centroid for new kernel-size: c|K|+1 = ut
19 Effective size of new kernel-size: l|K|+1 = 1
20 Knowledge transfer

21 Create dictionary of new kernel-size: C|K|+1 = Ci∗ (see Line 11)

22 Update set of dictionaries: C =
{
C, C|K|+1

}
23 Create weights of new kernel-size: ω|K|+1 = ωi∗ (see Line 11)

24 Update set of weights: W =
{
W , ω|K|+1

}
25 Update most similar kernel-size: i∗ = |K|+ 1

26 Update pool of kernel-sizes: K =
{
K, σ|K|+1

}
27 Kernel-based adaptive filter

28 input : Ci∗ , ωi∗ , σi∗ , ut, yt, ηt
29 → [Here: KLMS-based algorithm] ←
30 output: Ci∗ , ωi∗ (updated)
31

32 if i∗ = |K| then
33 Update kernel-size in i∗ using Equation (3.2):

σi∗,t = σi∗,t−1 +
ρet−1et‖ui∗,t−1−ut‖2κσi∗,t−1(ui∗,t−1,ut)

σ3
i∗,t−1

34 else
35 The kernel-size σi∗ reaches its final value: σi∗,t = σi∗,t−1

36 Update the step-size ηt [To be explained in Section 3.1.2]

output: K, C, W , {ci : i ∈ [1, |K|]}

Remark 1 (Centroid) In Algorithm 1, unlike the original formulation (Li and

Pŕıncipe, 2017), we use the centroids to determine the appropriate kernel-size

61

for each new input sample ut. The new input sample is projected in a high-

dimensional feature space. This is done using the centroids ci and their kernel-

sizes σi, i.e., here, the centroid is a single representative of each kernel-size.

Remark 2 (Kernel-size optimization) In Algorithm 1, optimization of the

kernel-size is performed only on the most recently created kernel-size (Line 33),

which means that all other kernel-sizes have a fixed value (Line 35). Once a new

kernel-size is created |K|+ 1, optimization of the kernel-size |K| stops (Line 16).

Consequently, the pool of kernel-sizes K is created and updated in an online se-

quential way.

Remark 3 (Knowledge-transfer) When a new σ is added to the pool of kernel-

sizes, its dictionary and weights start with the dictionary of the most similar

kernel-size i∗ at time t (Lines 21-24); thus, it is possible to have overlaps in the

dictionaries of the kernel-sizes. This strategy can be viewed as a smoothing pro-

cedure (also known as knowledge-transfer). In the worse case, the dictionary of

the new σ will retain a dictionary size equivalent to KLMS. Note, if we allow the

dictionary of the new σ to be initialized from scratch, as in traditional adaptive

filtering, this will result in a discontinuity of performance in time. In practice,

the kernel-sizes are automatically created in the early stages of training, mean-

ing that overlaps are small. Our proposal uses previously learned knowledge with

the appropriate kernel-size to enhance prediction. The knowledge-transfer scheme

has similarities to a previously proposed method (Li and Pŕıncipe, 2017); the key

difference in the two strategies is that our proposal copies not only the weights

but also the dictionary of the most similar kernel-size. This better utilizes the

kernel-sizes, avoids large discontinuities in learning time, provides more efficient

training in non-stationary conditions, and in some circumstances may yield a

more compact network (Chen et al., 2012).

Remark 4 (Computational and memory issues) In our proposal, the ap-

propriate kernel-size is selected when a new sample arrives. Then, the prediction

task is performed using this kernel-size together with its dictionary and weights.

Therefore, as mentioned in Remark 3, the selected dictionary will retain a dic-

tionary size equivalent to KLMS in the worst case (see Figure 3.2).

62

The general scheme of the proposed approach for sequence prediction at iter-

ation t is summarized in Figure 3.1.

k (, c)ut 1

ut
arg max

1

k (, c)ut 22

k (,c)ut i-1i-1

k (,c)ut ii

k (,c)ut ii

"i

i* k (,c)ut i*i*
³

Update
centroid i*

Create a new
kernel-size

KLMS-based
algorithm

Yes

No

i*=| |+1K

i i* *=

i*=| |K

Update
kernel-size in i*

Yes

Kernel-size reaches
its final value

No

i*

Update the
step-size

Training
samples

Figure 3.1: Proposed approach for sequence prediction at iteration t.

Figure 3.2 shows how Algorithm 1 works in practice when the input samples

are ut ∈ R3. The first step is to start a kernel-size with its dictionary, where

the syntax σ1,t=1 stands for the first kernel-size at time t = 1 (see Figure 3.2(a)).

At that moment, the update procedure (see Equation (3.2)) on the first kernel-

size creates a new kernel-size. Then, at time t = 4, the similarity between u4

and the centroid of the first kernel-size c1 is calculated. However, κσ1,t=3 (u4, c1)

is not greater than δ, indicating the presence of a new dynamic in the system.

Consequently, a new kernel-size is created and u4 is its initial centroid. Note,

when the second kernel-size is created at time t = 4: (1) optimization of the

first kernel-size stops, and, from this point on, its kernel-size will be σ1,t=3; (2)

the second kernel-size starts with the last known σ; (3) optimization on the

second kernel-size stops when a new kernel-size is again created; (4) to avoid

discontinuities in learning, the samples in the dictionary of the first kernel-size

(u1, u2, and u3) are copied to the dictionary of the new kernel-size (knowledge

transfer); (5) the three clusters inside the dictionaries of the kernel-sizes are

generated by the KLMS-based algorithm (see Figure 3.2(b)). Finally, at time

t = 7, a new kernel-size is again created and the process is repeated in a similar

way as at time t = 4 (see Figure 3.2(c)). Note that, at time t = 24: (1) kernel-size

optimization is performed only on the last created kernel-size; (2) the first and

second kernel-size already have a fixed value, i.e., σ1,t=3 and σ2,t=6, respectively

(see Figure 3.2(d)).

63

Lastly, a major advantage of Algorithm 1 is that the prediction is performed

based on a relatively low number of samples. This is because for each new sample

we select its best possible kernel-size as well as its closest dictionary (from the

point of view of data distribution). For example, when u24 arrives, the prediction

task is performed using only the 5 samples of cluster 3 in the dictionary of the

third kernel-size, i.e., u3, u6, u8, u16, and u24 (see Figure 3.2(d)). In comparison

to the traditional KLMS algorithm, the same prediction is calculated using 24

samples, i.e., u1, u2, u3, · · ·, u24. As a result, Algorithm 1 runs much faster

than KLMS and variants.

t = 1

u
1

c
1=

cluster 1
dictionary 1
centroid 1

K={ }σ1, =1t

(a) Initialization.

u
1

u
3

u
2

u
4

c
1

u
1

u
3

u
2

c
2=

t = 4

cluster 1
cluster 2
cluster 3

dictionary 1

dictionary 2

centroid 1

centroid 2

K={ }σ1, =3t ,σ2, =3t

(b) Sample u4 arrives.

t = 7

u
1

u
3

u
2

u
5

u
6

u
4

c
1

u
1

u
3

u
2

u
1

u
2

u
3

u
4

u
5

u
6

c
2

u
7

c
3= cluster 1

cluster 2
cluster 3

dictionary 1

dictionary 2

dictionary 3

centroid 1

centroid 2

centroid 3

K={ }σ1, =3t ,σ2, =6t ,σ3, =6t

(c) Sample u7 arrives.

u
1

u
3 u

10

u
2

u
17

u
11 u

18

u
9

u
19

u
21

u
5

u
20

u
12

u
6

u
13

u
4

u
14

u
16

u
23

u
15

u
7

u
24

u
8

u
22

c
1

u
1

u
3

u
2

u
1

u
2

u
3

u
4

u
5

u
6

c
2

c
3

dictionary 1

dictionary 2

dictionary 3

t = 24

cluster 1centroid 1

centroid 2

cluster 2
cluster 3

centroid 3

K={ }σ1, =3t ,σ2, =6t ,σ3, =24t

(d) Sample u24 arrives.

Figure 3.2: Multiple kernel-sizes in online sequential learning.

3.1.2 An Online Technique to Optimize Step-Size

In this section, we propose an adaptive step-size strategy, another well-known

challenge in KAFs. Thus, at each iteration, the step-size of the KLMS is optim-

ized using the previous step-size and the current prediction error. More formally,

at iteration t, when prediction error et is available, we propose to optimize the

64

step-size ηt by minimizing the instantaneous square error as follows:

ηt = ηt−1 − µ
∂

∂ηt−1

[
e2
t

]
where ηt−1 is the step-size at iteration t− 1 and et = yt − ft−1(ut),

ηt = ηt−1 − µ
∂

∂ηt−1

[(
yt − ft−1

(
ut

))2
]

ηt = ηt−1 − µ
∂

∂ηt−1

[
y2
t − 2ytft−1

(
ut

)
+ f 2

t−1

(
ut

)]

from Equation (3.1), we have that ft−1(ut) = ft−2(ut) + ηt−1et−1κσ(ut−1,ut),

ηt = ηt−1 − µ
∂

∂ηt−1

[
y2
t − 2yt

(
ft−2

(
ut

)
+ ηt−1et−1κσ

(
ut−1,ut

))
+

(
ft−2

(
ut

)
+ ηt−1et−1κσ

(
ut−1,ut

))2
]

ηt = ηt−1 − µ

(
∂

∂ηt−1

[
y2
t

]
− ∂

∂ηt−1

[
2ytft−2

(
ut

)]
− ∂

∂ηt−1

[
2ytηt−1et−1κσ

(
ut−1,ut

)]
+

∂

∂ηt−1

[
f 2
t−2

(
ut

)]
+

∂

∂ηt−1

[
2ft−2

(
ut

)
ηt−1et−1κσ

(
ut−1,ut

)]
+

∂

∂ηt−1

[(
ηt−1et−1κσ

(
ut−1,ut

))2
])

since ft−2 does not depend on ηt−1,

ηt = ηt−1 − µ

(
− 2

[
yt −

(
ft−2

(
ut

)
+ ηt−1et−1κσ

(
ut−1,ut

))]
et−1κσ

(
ut−1,ut

))

65

note that, ft−2(ut) + ηt−1et−1κσ(ut−1,ut) is actually ft−1(ut),

ηt = ηt−1 − µ

(
− 2

[
yt − ft−1

(
ut

)]
et−1κσ

(
ut−1,ut

))

ηt = ηt−1 − µ

(
− 2etet−1κσ

(
ut−1,ut

))
ηt = ηt−1 + 2µetet−1κσ

(
ut−1,ut

)
ηt = ηt−1 + βetet−1κσ

(
ut−1,ut

)
Thus, at iteration t, the step-size η can be calculated using the following

sequential update algorithm,

ηt = ηt−1 + βetet−1κσ(ut−1,ut) (3.3)

where β = 2µ is a free parameter for the step-size adaptation. Finally, combin-

ing Equation (3.1), Algorithm 1, and Equation (3.3), we propose the following

sequential rule for sequence prediction:

f0 = 0

et = yt − ft−1(ut)

ft = ft−1 + ηt−1etκσi∗,t(ut, ·)

ηt = ηt−1 + βetet−1κσi∗,t
(
u|Ci∗ |,ut

) (3.4)

being σi∗,t the appropriate kernel-size for the sample ut and u|Ci∗ | the last sample

stored in the dictionary i∗ (see Algorithm 1).

66

3.2 Experimental Design

We validate the proposed approach for sequence prediction using MSE. The

learned filter, at the final iteration, is used to compute the MSE values on each

test set, as in Liu et al. (2010). The task is to predict the current value of the

sample using the previous ten consecutive samples.

3.2.1 Data Sets

Testing is carried out on the following two publicly available data sets: (1) the

mid-prices of two major currencies in the foreign exchange market3; (2) Tesla

stock prices from its initial public offering4.

Foreign exchange prices (FX). This collection has mid-prices (a reference

price calculated by taking the average of the current quoted bid and ask prices) for

currency pairs EUR/USD and GBP/USD with daily resolution over 12 years. In

the simulations: (1) the data set is normalized for the computation convenience;

(2) the training set covers January 3, 2005, to December 17, 2015, while the test

set covers January 4, 2016, to May 18, 2017.

Tesla stock price (TSLA). This data set shows Tesla’s stock price from its

initial public offering. The data are normalized for the computation convenience,

and predictions are carried out on the stock’s closing price. The training set

covers June 29, 2010, to June 13, 2016, while the test set covers July 5, 2016, to

November 23, 2016.

3.2.2 Comparative Methods

For comparison purposes, the approach is contrasted with the following sequence

prediction methods (see Appendix B):

1. Kernel least-mean-square (KLMS), which is the simplest and the starting

point of many algorithms in the KAF family (Liu et al., 2010);

2. Kernel least-mean-square with variable step-size (KLMS-VSS-1), that uses

a variable step-size algorithm in KLMS (Li and Hamamura, 2015);

3The data set is publicly available at https://www.dukascopy.com
4The data set is publicly available at https://www.kaggle.com/rpaguirre/tesla-stock-price

67

3. Kernel least-mean-square with variable step-size (KLMS-VSS-2), where the

KLMS is tested with a recently proposed variable step-size strategy (Niu

and Chen, 2018);

4. Nearest Instance Centroid-Estimation (NICE), which is a recently proposed

method that out-performs traditional KAF-based algorithms in the predic-

tion of chaotic time-series (Li and Pŕıncipe, 2017);

5. Long short-term memory (LSTM), a type of recurrent neural network (RNN)

used to learn sequences of observations. We use the implementation known

as vanilla LSTM (Hochreiter and Schmidhuber, 1997), as it has shown stable

performance when compared with other LSTM variants (Greff et al., 2017);

6. A regularized RNN proposed in Zaremba et al. (2015).

3.2.3 Parameter Settings

Tables 3.1 and 3.2 summarize the set-up of our proposal in the tested data sets.

To ensure consistency in the results, both step-sizes η and η1 remain the same

for all KAF methods. Thus, as long as this condition is met, different step-size

values from those shown in Tables 3.2 and 3.3 will not offer an advantage to any

particular algorithm. In the simulations, the Mercer kernel is assumed to be the

Gaussian kernel, i.e., κσ(ut−1,ut) = exp (−‖ut−1 − ut‖2/2σ2). The initial kernel-

size σ1 was adjusted using the strategy proposed in Liu et al. (2010), where the

best kernel-size is the one with the lowest MSE value (see Table 3.1).

Performance is sensitive to the selection of ρ, β, and δ. However, the appro-

priate values for these parameters can be selected as follows: (1) ρ-kernel size ad-

aptation, this parameter reflects a trade-off between mis-adjustment and speed of

adaptation in Equation (3.2). An appropriate ρ value, based on our experiment-

ation, is in the interval [0, 1]; (2) β-step size adaptation, where a value of 0.0001

has shown stable performance on all tested data sets; (3) δ-centroid threshold,

which is a value between 0 and 1 that controls the number of kernel-sizes formed

during training. Thus, the greater the value of δ, the more kernel-sizes will be

formed.

68

Table 3.1: Testing MSE for proposal in considered data sets using different values

of initial kernel-sizes σ1. FX -foreign exchange; TSLA-Tesla stock price.

FX TSLA

σ1

MSE MSE
σ1 MSE

EUR/USD GBP/USD

0.005 0.00021 0.04530 0.005 0.00458

0.1 0.00022 0.00046 0.1 0.00409

0.25 0.00028 0.00047 0.25 0.00446

0.35 0.00036 0.00032 0.35 0.00073

0.45 0.00042 0.00041 0.45 0.00041

0.5 0.00045 0.00055 0.5 0.00048

Table 3.2: Parameter setting of proposed approach in considered data sets. FX -

foreign exchange; TSLA-Tesla stock price; M -input vector size; η1-initial step size;

σ1-initial kernel size; ρ-kernel size adaptation; β-step size adaptation; δ-centroid

threshold.

Data Set
Parameter

M η1 σ1 ρ β δ

FX
EUR/USD 10 0.05 0.005 0.25 0.0001 0.95

GBP/USD 10 0.05 0.35 0.35 0.0001 0.95

TSLA 10 0.05 0.45 0.05 0.0001 0.05

The parameter settings of comparative methods is summarized in Table 3.3.

The parameters η and η1 were adjusted following the analysis described above.

As previously, the kernel-sizes σ were selected using the strategy proposed in Liu

et al. (2010) (see Table 3.4). The centroid distance λ of NICE is set at 2σ (Li

and Pŕıncipe, 2017). The number of neurons N and epochs E have been adjusted

heuristically using a single hidden layer in LSTM (see Table 3.5). Note, for better

performance, a common neural network (NN) approach is to add more layers to

learn high-level features. However, when depth increases, errors between layers

will be accumulated and gradients will vanish, meaning that the network degrades

and becomes more difficult to train (Wang et al., 2018a). Additionally, there is

no rule of thumb to select the number of hidden layers in LSTM networks (Bao

et al., 2017; Palangi et al., 2016a,b). Thus, here we train the LSTM method

using a single hidden layer with the following features: (1) the sigmoid activation

69

function is used for the LSTM blocks; (2) the Adam algorithm is employed for

optimization (Kingma and Ba, 2014), as suggested in Tian et al. (2018); (3) the

MSE is used as a loss function. Lastly, we implement the medium RNN proposed

in Zaremba et al. (2015), which has 650 neurons per layer. The NN methods were

implemented using TensorFlow (version 1.4.0) 5 and Keras (version 2.1.2) 6.

Table 3.3: Parameter setting of comparative methods in considered data sets.

FX -foreign exchange. TSLA-Tesla stock price. M -input vector size, η-step size,

η1-initial step size, σ-kernel size, λ-centroid distance, L-layers, N -neurons per

layer, E-epochs.

Data Set Method
Parameter

M η η1 σ λ L N E

FX

EUR/USD

KLMS 10 0.05 - 0.1 - - - -

KLMS-VSS-1 10 - 0.05 0.1 - - - -

KLMS-VSS-2 10 - 0.05 0.1 - - - -

NICE 10 0.05 - 0.1 2σ - - -

LSTM 10 - - - - 1 8 900

RNN 10 - - - - 2 650 200

GBP/USD

KLMS 10 0.05 - 0.45 - - - -

KLMS-VSS-1 10 - 0.05 0.45 - - - -

KLMS-VSS-2 10 - 0.05 0.45 - - - -

NICE 10 0.05 - 0.45 2σ - - -

LSTM 10 - - - - 1 8 4000

RNN 10 - - - - 2 650 4000

TSLA

KLMS 10 0.05 - 0.5 - - - -

KLMS-VSS-1 10 - 0.05 0.5 - - - -

KLMS-VSS-2 10 - 0.05 0.5 - - - -

NICE 10 0.05 - 0.5 2σ - - -

LSTM 10 - - - - 1 8 400

RNN 10 - - - - 2 650 400

5https://www.tensorflow.org/
6https://keras.io/

70

Table 3.4: Testing MSE for KAF methods in considered data sets using different

kernel-sizes σ. FX -foreign exchange. TSLA-Tesla stock price.

Data Set σ
Method

KLMS NICE

EUR/USD GBP/USD EUR/USD GBP/USD

FX

0.005 0.01340 0.02621 0.01340 0.02621

0.1 0.00025 0.00433 0.00034 0.00438

0.25 0.00045 0.00192 0.00045 0.00192

0.35 0.00045 0.00070 0.00045 0.00069

0.45 0.00046 0.00035 0.00045 0.00035

0.5 0.00048 0.00062 0.00048 0.00062

TSLA

0.005 0.49561 0.49561

0.1 0.00937 0.02213

0.25 0.00170 0.00181

0.35 0.00082 0.00131

0.45 0.00045 0.00043

0.5 0.00045 0.00042

Table 3.5: Testing MSE for NN methods in considered data sets using different

epochs E . FX -foreign exchange prices. TSLA-Tesla stock price. N -neurons.

Data Set E
LSTM

RNNN
1 2 4 8

FX

EUR/USD

100 0.00671 0.00373 0.00441 0.00643 0.00029

200 0.01770 0.01892 0.01969 0.01268 0.00028

400 0.00130 0.00232 0.00893 0.00317 0.00116

800 0.00635 0.00218 0.00768 0.00074 0.00475

900 0.01455 0.00109 0.00146 0.00031 0.00508

1000 0.01162 0.00057 0.00059 0.00137 0.00314

GBP/USD

1000 0.00238 0.00624 0.00091 0.00071 0.00265

2000 0.00105 0.00299 0.00395 0.00205 0.00380

3000 0.00612 0.00649 0.00192 0.00438 0.00482

4000 0.00373 0.00089 0.00304 0.00058 0.00069

5000 0.00235 0.00084 0.00142 0.00088 0.03535

TSLA

200 0.00119 0.03434 0.00138 0.00062 0.04477

400 0.00088 0.00063 0.00072 0.00046 0.00344

600 0.00111 0.00104 0.00077 0.00058 0.00477

800 0.00104 0.00090 0.00087 0.00047 0.02308

1000 0.00074 0.00080 0.00055 0.00048 0.02391

71

3.3 Simulation Results and Analysis

We present quantitative and visual results of the approach for online prediction

along with the comparative methods. The results give performance of the cor-

responding model on each test set (see Section 3.2.1). Table 3.6 summarizes the

results found in Section 3.2.3. We see that our proposal out performs the other

algorithms on all considered data sets, converging to smaller values of MSE, which

suggests that the proposed adaptive step-size helps to improve convergence time.

Note that NN models must be retrained regularly in sequence prediction tasks,

which requires both significant computing and storage resources (Cui et al., 2016).

That is, both algorithms (LSTM and RNN) need to pass the entire training set

both forward and backward through the NN, which is also known as an epoch.

This process is usually repeated several times during the learning stage. Thus, in

online prediction tasks, the training set will be updated with every new sample

that arrives in the system, meaning that several epochs have to be re-performed

to find the best possible performance each time the training set is updated.

Table 3.6: Testing MSE in considered data sets. MSE -mean squared error.

Samples-average number of samples used to predict test set. FX -foreign ex-

change prices. TSLA-Tesla stock price. For every compared method we conduc-

ted a paired t-test against our proposal. Highlighted values indicate statistical

significance at 5%.
Data set Method Testing MSE Samples

EUR/USD GBP/USD EUR/USD GBP/USD

FX

KLMS 0.00025 0.00035 4000 ± 0 4000 ± 0

KLMS-VSS-1 0.00056 0.00036 4000 ± 0 4000 ± 0

KLMS-VSS-2 0.00355 0.00050 4000 ± 0 4000 ± 0

NICE 0.00034 0.00035 607.9 ± 6.5 4000 ± 0

LSTM 0.00031 0.00058 4000 ± 0 4000 ± 0

RNN 0.00028 0.00069 4000 ± 0 4000 ± 0

Proposal 0.00021 0.00032 347.2 ± 25.2 440.3 ± 5.4

TSLA

KLMS 0.00045 1500 ± 0

KLMS-VSS-1 0.00223 1500 ± 0

KLMS-VSS-2 0.00652 1500 ± 0

NICE 0.00042 1363.3 ± 216.7

LSTM 0.00046 1500 ± 0

RNN 0.00343 1500 ± 0

Proposal 0.00041 1369 ± 214

72

The learning scheme of KAF-based methods, unlike LSTM and RNN, allows

to make predictions while the model is updated sequentially at the same time,

which is useful in online applications. Thus, although the concept of epoch is not

used in KAF methods (Liu et al., 2010), this can be seen as an attempt to learn

the network topology in a single epoch, i.e., the model is learned using a single

pass through the entire training set in KAF algorithms.

The column “Samples” in Table 3.6 gives the average number of samples

used to predict the test sets. These samples come from the learned filter at

the final iteration. It is clear that KLMS, KLMS-VSS-1, KLMS-VSS-2, LSTM,

and RNN use all the samples from the training sets to derive predictions on the

test sets. These algorithms do not have a sparsification technique (selection of

an important subset of data to train the model), which is a major drawback in

online applications (Liu et al., 2010). For example, from the point of view of

KLMS, the current dynamic of the system does not matter. Consequently, each

sample in the test set of the FX data set is predicted using all 4000 samples

that were learned during training. This results in high computational complexity

in real-world applications, i.e., the KLMS dictionary grows linearly with each

new sample. In contrast, our proposal uses a moderate number of samples to

obtain each prediction in the test set, suggesting that the proposed multiple

kernel-sizes strategy retains the most relevant samples to perform later prediction

tasks effectively. Additionally, the knowledge-transfer strategy of our approach,

compared to that used by the NICE algorithm, reduces the required number of

samples without significant loss of accuracy (see Table 3.6).

Figures 3.3 and 3.4 show the predicted stock prices in the test sets. Figure 3.3

shows the predictions for Tesla stock prices, while Figures 3.4(a) and 3.4(b) dis-

plays the results for FX. The multiple kernel-sizes strategy and the adaptive

step-size, incorporated in our approach, enable the kernel-based adaptive filter to

converge more quickly while competitive performance is maintained on all tested

data sets. However, if the initial kernel-size σ1 is inappropriately chosen, the

prediction accuracy may be adversely affected (see Table 3.1). In this case, the

suitable initial value of σ1 can be selected using a method such as Silverman’s

rule (Kang and Noh, 2019). The predictions of our proposal, as seen in Figure 3.4,

are very close to the desired signals. This is a visual interpretation of the lowest

MSE values obtained by the proposed approach in Table 3.6, proving its stable

performance in real-world applications.

73

05/07/2016 02/08/2016 30/08/2016 28/09/2016 26/10/2016 24/11/2016
Test Samples [dd/mm/yy]

0.60

0.65

0.70

0.75

0.80

Cl
os
in
g
Pr
ice

Desired
KLMS
KLMS-VSS-1
KLMS-VSS-2
NICE
LSTM
RNN
Proposal

Figure 3.3: Performed predictions in Tesla stock prices.

04/01/2016 13/04/2016 22/07/2016 30/10/2016 07/02/2017 18/05/2017
Test Samples [dd/mm/yy]

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

M
id

-P
ric

e

Desired
KLMS
KLMS-VSS-1
KLMS-VSS-2
NICE
LSTM
RNN
Proposal

(a) EUR/USD

04/01/2016 13/04/2016 22/07/2016 30/10/2016 07/02/2017 18/05/2017
Test Samples [dd/mm/yy]

−0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

M
 d

-P
ric

e

Desired
KLMS
KLMS-VSS-1
KLMS-VSS-2
NICE
LSTM
RNN
Proposal

(b) GBP/USD

Figure 3.4: Performed predictions in foreign exchange rates.

74

3.4 Chapter Summary

This chapter introduced a sequence prediction approach for financial time-series

that addresses two main challenges of KAF-based methods: selection of appropri-

ate kernel-size and step-size. The proposed multiple kernel-sizes and the adaptive

step-size strategies are combined, improving convergence time while competitive

performance is maintained. However, we must clarify that our approach may

be adversely affected in the case of relatively few training samples, as it is more

difficult to identify hidden patterns from data under this scenario. The min-

imum number of samples, based on our experiments, required to train highly

non-stationary signals is 1500. Results demonstrate that our proposal learns

from a continuous sequence of data records, adapts to changing statistics in the

data, exhibits high tolerance to noisy conditions and provides stable performance

in real-world applications.

The following chapter, with the aim to address the second objective of this

thesis, will introduce an entropy-based cost function for KAF using higher order

statistics of financial time-series. This will allow us to capture complex patterns

behind the data and use that information within the context of sequence predic-

tion. The cost function uses instantaneous entropy as the adaptation criterion,

which is useful in online applications.

75

Chapter 4

An Entropy-based Cost Function

for Sequence Prediction

Having looked at sequence prediction using a kernel-based approach, we now

move to address the second objective of this thesis. The prediction of financial

time-series such as stock returns (changes in price on an asset or investment

over time) requires consideration of their stochastic nature and non-stationary

conditions. Thus, higher order statistics and information content of financial

time-series should be captured in addition to their energy. In this chapter, we

propose a three-stage approach for stock returns prediction 1: (1) an entropy-

based adaptation criterion is developed; (2) the bandwidth for density estimation

is optimized using the quadratic information potential criterion; (3) the architec-

ture and functionality of neural networks (NNs) are extended to include kernel

adaptive filtering (KAF). The main rationale behind the approach is to minimize

the error entropy between the model output and the desired response using KAF.

The approach has been tested on 10 different stocks over a 12 year interval; the

results give relatively low values of mean square error (MSE) when compared

with autoregressive-based methods, data-driven approaches based on NNs, and

traditional kernel-based adaptive filters. In particular, unlike NNs, our proposal

sequentially updates the model, in real-time, while predictions are being made,

which is critical in streaming data applications.

This chapter is structured as follows: Section 4.1 introduces the proposed

approach; Section 4.2 describes the experimental design of this work; Section 4.3

presents simulation results; and Section 4.4 summarizes the chapter.

1The outcomes of this chapter are under review.

76

4.1 An Entropy-based Prediction approach

We develop a three-stage approach for stock returns prediction: (1) adaptation

criterion (Section 4.1.1); (2) bandwidth for density estimation (Section 4.1.2); (3)

neural network architecture using kernel machines (Section 4.1.3).

4.1.1 Adaptation Criterion based on Entropy

Given a set of input-output samples T = {ut, yt : t ∈ [1, N]}, being ut an M -

dimensional input vector that belongs to the input set U ⊂ RM , while yt ∈ R
is the output over time domain t ∈ N . The goal is to learn the underlying

function y = f(u) from the given input-output samples T . In KAFs, the under-

lying function f will be a Reproducing Kernel Hilbert Space (RKHS) H (see Ap-

pendix B.3.1). In addition, according to Mercer’s theorem (Schölkopf and Smola,

2001), a Mercer kernel κσ : U × U → R induces a mapping ϕ : U → F . This

allows the inner products to be calculated in the feature space, using the kernel

trick ϕ (ut)
> ϕ (u∗) = κσ (ut,u

∗), being u∗ a new input vector. Thus, the func-

tion f ∈ H and a high-dimensional weight vector Ω ∈ F can be computed in the

hypothesis and feature spaces as follows (Liu et al., 2008):

min
f∈H

N∑
t=1

(yt − f(ut))
2 + λ||f ||2H (4.1a)

min
Ω∈F

N∑
t=1

(
yt −Ω>ϕ(ut)

)2
+ λ||Ω||2F (4.1b)

where λ ≥ 0 is the regularization factor that controls the solution smoothness

and ||·||H denotes the norm in H. The solution of the above equations in a batch

approach is computationally expensive, as the dimension of the Gram matrix

equals the number of input patterns. In this sense, KAFs provide an efficient

alternative that finds the solution in an online sequential way (Chen et al., 2016a).

We find the high-dimensional weight vector Ω based on a KAF strategy, us-

ing stochastic gradient descent as the optimization criterion and instantaneous

entropy as the adaptation cost,

Ωt = Ωt−1 − η
∂

∂Ωt−1

ψ
(
κ̂σ̂t(et,t − et,j)

)
κ̂σ̂t(et,t − et,j)

 (4.2)

77

where η ∈ R
+ is the step-size parameter, ψ denotes the instantaneous en-

tropy (Principe, 2010), et,j = yj − Ω>t−1ϕ (uj) is the prediction error with hy-

pothesis Ωt−1 and input-output sample (uj, yj), while κ̂σ̂t is the kernel function

for density estimation and σ̂t > 0 its bandwidth at iteration t (Chen et al.,

2018a). The main rationale behind the suggested strategy in Equation (4.2) is to

minimize the error entropy between the model output and the desired response,

meaning that higher order statistics and information content are captured rather

than only the signal energy (Erdogmus and Principe, 2002b; Chen et al., 2007).

Note that the definition of entropy can be very flexible (see Appendix C); for

example, Shannon and information potential are special cases of ψ, which is a

continuous concave real function over [0,∞] (Principe, 2010). Here the entropy is

assumed to be the quadratic information potential criterion (see Equation (4.3))

due to its low computational complexity in practical applications (Chen et al.,

2013a).

ψ
(
κ̂σ̂t(et,t − et,j)

)
= −

(
κ̂σ̂t

(
et,t − et,j

))2

(4.3)

The error distribution, which is usually unknown in practice, can be approx-

imated by using kernel density estimation on the L most recent errors as follows:

κ̂σ̂t

(
et,t − et,j

)
=

1

Lσ̂t
√

2π

t∑
j=t−L+1

exp

(
−
(
et,t − et,j

)2

/2σ̂2
t

)
(4.4)

Thus, combining Equations (4.3) and (4.4), the following gradient update rule is

obtained,

Ωt = Ωt−1 +
η

Lσ̂t
√

2π

∂

∂Ωt−1

[t∑
j=t−L+1

exp
(
− (et,t − et,j)2/2σ̂2

t

)](
− ∂et,t
∂Ωt−1

+
∂et,j
∂Ωt−1

)

which can be unfolded as below,

Ωt = Ωt−1 +
η

Lσ̂3
t

√
2π

[
t∑

j=t−L+1

exp
(
− (et,t − et,j)2/2σ̂2

t

)
(
et,t − et,j

)(
ϕ (ut)− ϕ (uj)

)]
(
ϕ (ut)− ϕ (uj)

)
78

The previous expression can be written as follows,

Ωt = Ωt−1 + ηΦtΨ(et) (4.5a)

ft = ft−1 + ηKtΨ(et) (4.5b)

where:

• Φt = [ϕ(ut−L+1), ϕ(ut−L+2), . . . , ϕ(ut)];

• Kt = [κσ(ut−L+1, ·), κσ(ut−L+2, ·), . . . , κσ(ut, ·)];

• Ψ(et) = β
∑t

j=t−L+1 exp(−(et,t − et,j)2/2σ̂2
t)(et,t − et,j)(ϕ (ut)− ϕ (uj)),

being β = 1/(Lσ̂3
t

√
2π). Lastly, the coefficients α will be updated as:

αt,j =


ηΨ(et), j = t

αt−1,j − ηΨ(et), t− L < j < t

αt−1,j, 1 ≤ j ≤ t− L

(4.6)

4.1.2 Entropy-based Bandwidth for Density Estimation

We propose to optimize the bandwidth for density estimation σ̂t using the quad-

ratic information potential criterion expressed over time as follows:

σ̂t = σ̂t−1 − η̂
∂

∂σ̂t−1

ψ
(
κ̂σ̂t−1(et,t − et,j)

)
κ̂σ̂t−1(et,t − et,j)

 (4.7)

where η̂ ∈ R+ is the step-size parameter for density estimation. Therefore, con-

sidering Equations (4.3) and (4.4), the bandwidth can be computed through the

gradient descent method as,

σ̂t = σ̂t−1 + η̂
∂

∂σ̂t−1

(
1

Lσ̂t−1

√
2π

t∑
j=t−L+1

exp
(
− (et,t − et,j)2/2σ̂t−1

))
(4.8)

79

which results in the following update rule:

σ̂t = σ̂t−1 + β̂

t∑
j=t−L+1

exp
(
− (et,t − et,j)2/2σ̂t−1

)
(et,t − et,j)2 (4.9)

where β̂ = η̂/(Lσ̂4
t−1

√
2π).

4.1.3 Neural Network Architecture using Kernel Machines

With the aim of improving stock returns prediction, we extend the architecture

of NNs to include KAF. This is mathematically viable as in a NN, any neuron

can be directly replaced by a kernel machine without altering the architecture

and functionality of the network (Vapnik, 2013; Suykens and Vandewalle, 1999;

Cho and Saul, 2009; Duan et al., 2019). We propose to obtain a new represent-

ation of every input vector ut using kernel machines instead of neurons under a

NN architecture, which may be useful to capture complex patterns behind the

data (Suykens, 2017). Here, as seen in Figure 4.1, we use a single hidden layer

with m kernel machines.

t

1,t

j=1

t-1

k ,()
1,t 1, j

j=1

t-1

k ,()
2,t 2, j

j=1

t-1

k ,()
2,t 2, j

j=1

t-1

k ,()
m,t m j,

j=1

t-1

k ,()

2,t

m t,

t
U

1,t

2,t

m t,

Figure 4.1: Proposed neural network architecture using kernel machines.

Thus, when a new input vector ut arrives, its elements u1,t, u2,t, . . . , u1,m are

represented as a linear combination of kernel machines. The new representation

of ut is simply the union of all kernel machine outputs, where the mappings are

obtained by using the Mercer kernel κσ. Finally, the proposed entropy-based

prediction approach for stock returns is shown in Algorithm 2.

80

Algorithm 2: Proposed stock returns prediction approach.

input : T – training data
1 Parameter setting:

2 κσ- kernel function;
3 σ- kernel parameter;
4 η- step size;
5 σ̂1- initial bandwidth density;
6 η̂- step size density;
7 L- error samples length
8 α1 = [ηy1]- initialize coefficient vector
9 Computation:

10 while {ut, yt} available do

1. Get a new representation of ut (see Figure 4.1)

2. Allocate a new unit
αt =

[
α>t−1, 0

]>
3. Compute the errors

For max{1, t− L+ 1} ≤ j ≤ t, do
et,j = yt −

∑t−1
l=1 αt−1,lκσ (ul,uj)

4. Update the coefficient vector αt (see Equation (4.6))

5. Update the bandwidth σ̂t (see Equation (4.9))

output: α

4.2 Experimental Design

The proposed approach is validated based on prediction of stock returns using

MSE (Hacine-Gharbi and Ravier, 2018) and MAE (Wang and Lu, 2018). The

learned filter, as suggested in Chen et al. (2016a), is used to compute the MSE

and MAE values on each test set. The task is to predict the current day price

change using the last ten stock returns.

81

4.2.1 Data Sets

We collected daily closing prices data from Yahoo Finance to calculate the log

returns (see Appendix A.3). Then, as suggested in Siikanen et al. (2018), these

returns are calculated by using the adjusted closing prices of each day. The

testing has been carried out on 10 stocks from different economies over 12 years

(see Table 4.1). The training set covers the period 17 January 2006 to 30 Novem-

ber 2016, while the test set ranges from 3 January 2017 to 28 February 2018. The

data set, as suggested in Chen (2019), is standardized so all stocks have a mean

estimation of zero and a standard deviation of one.

Table 4.1: Stocks in the experimental design.
Ticker Stock
ADS Adidas AG
DPW Deutsche Post AG
HEI Heidelberg Cement AG
MRK Merck KGaA
ADM Admiral Group PLC
CCL Carnival PLC
IAG International Consolidated Airlines Group
SKY SKY PLC
VOD Vodafone Group PLC
C Citigroup Inc

4.2.2 Comparative Methods

The following online prediction methods are used for comparison purposes2:

1. Kernel Affine Projection (KAPA), a stochastic gradient methodology to

solve the least squares problem in RKHS (Liu and Pŕıncipe, 2008);

2. Kernel Least Mean Square (KLMS), which is the simplest and the starting

point of many kernel adaptive filtering algorithms (Liu et al., 2008);

3. Kernel Minimum Error Entropy (KMEE), a generalized stochastic inform-

ation gradient algorithm in RKHS (Chen et al., 2013a);

4. Long Short-Term Memory (LSTM), representing the state-of-the-art recur-

rent neural network model for sequence learning tasks (Araya et al., 2019);

2https://github.com/segarciave/PRL-2020

82

https://github.com/segarciave/PRL-2020

5. Vector Error Correction Model (VECM), which is considered the standard

tool to handle multivariate time-series under non-stationary conditions (Li-

ang and Schienle, 2019).

4.2.3 Parameter Settings

The parameters of compared methods, as seen in Table 4.2, were heuristically

adjusted to achieve the best MSE on tested stocks. In particular, to ensure con-

sistency in the results, L, η, and σ are the same for all KAF-based methods.

The implementation known as vanilla LSTM, as in the previous chapter, is used

due to its competitive performance on prediction tasks (Greff et al., 2017). The

LSTM, as suggested in Cui et al. (2016); Tian et al. (2018); Kingma and Ba

(2014), is trained using a single hidden layer with 20 neurons, the sigmoid activa-

tion function, and Adam optimization algorithm. The free parameters of VECM

were selected using heuristic approaches and following strategies as proposed in

the literature (Kuo, 2016).

Table 4.2: Parameter setting of compared methods. m-input vector size, L-error
samples length, η-step size, η̂-step size density, σ-kernel parameter, σ̂1-initial
bandwidth density, L-layers, N -neurons per layer, A-number of lagged differences
in the model, I-cointegration rank.

Parameter
Method

KAPA KLMS KMEE LSTM Proposal VECM
m 10 10 10 10 10 10
L 15 - 15 - 15 -
η 0.05 0.05 0.05 - 0.05 -
η̂ - - - - 1.81 -
σ 0.5 0.5 0.5 - 0.5 -
σ̂1 - - - - 0.1 -
L - - - 1 - -
N - - - 20 - -
A - - - - - 3
I - - - - - 0

The step size for density estimation η̂ was adjusted using the strategy proposed

in Liu et al. (2010), where the value with the lowest MSE is chosen (see Table 4.3).

In addition, based on our experimentation, an initial bandwidth for density es-

timation σ̂1 = 0.1 has shown stable performance on all tested stocks.

83

Table 4.3: Testing MSE using different values of step-size for density estimation.
η̂ 0.8 1.0 1.5 1.81 2.0

MSE 0.00215 0.00212 0.00186 0.00182 0.00183

4.3 Simulation Results and Analysis

The simulation results for MSE and MAE are shown in Tables 4.4 and 4.5, re-

spectively. The last row on each table displays the average performance per

algorithm, while the bold notation annotate by an asterisk indicates the best

overall method. In the simulations, the Mercer kernel is assumed to be the Gaus-

sian kernel due to its universal approximating capability, desirable smoothness

and numeric stability (Chen et al., 2012). The MSE measures the average of

the squares of the errors, where values closer to zero indicates better prediction

performance.

The LSTM and our proposal, as seen in Table 4.4, outperform other algorithms

on all considered stocks. However, in practice, these two methods use different

learning strategies, that is, the former requires the entire training set in advance to

start learning the model, while the later sequentially updates the model and per-

forms predictions simultaneously (see Section 4.1). The proposed method, has the

ability to represent non-linear functions linearly and universally in RKHS. This

results in a simple convex optimization problem with a unique global optimum,

which prevents the algorithm to get stuck in local minima during the training

stage. In addition, the process occurring during the training of LSTM is difficult

to interpret, meaning that is not clear how learning from input data is done. This

is also known as the black box problem in NNs (Azodi et al., 2020). The MAE

values of each method in the considered stocks are summarized in Table 4.5. This

metric is a negatively-oriented score that measures the average of absolute errors.

We see that our proposal, as on the previous metric, outperforms the KAF al-

gorithms used for comparison. In particular, the first two compared methods

(KAPA and KLMS) use MSE as the adaptation criterion, which may be a poor

descriptor of optimality for non-linear and non-Gaussian conditions (Liu et al.,

2010). In contrast, the proposed method uses information theoretic criteria to ob-

tain a sample-based methodology that learns arbitrary non-linear systems. This

allows the algorithm to capture higher order statistics of stock returns rather than

simply their energy, i.e., the entropy-based cost function used by our approach

helps to capture complex patterns behind the data, resulting in better accuracy.

84

Table 4.4: Testing MSE at final iteration on stock returns prediction. SD–
Standard Deviation. For every compared method we conducted a paired t-test
against our proposal. Highlighted values indicate statistical significance at 5%.

Stock
Method

KAPA KLMS KMEE LSTM Proposal VECM
ADS 0.00027 0.00026 0.00027 0.00027 0.00026 0.00036
DPW 0.01441 0.0135 0.028 0.01339 0.01342 0.01716
HEI 0.00022 0.00018 0.00019 0.00018 0.00018 0.00024
MRK 0.00014 0.00012 0.00015 0.00012 0.00012 0.00016
ADM 0.00018 0.00015 0.00015 0.00015 0.00015 0.00021
CCL 0.00017 0.00012 0.00012 0.00012 0.00012 0.00019
IAG 0.0009 0.00088 0.00267 0.00087 0.00088 0.00108
SKY 0.00314 0.00283 0.00292 0.00281 0.00281 0.00368
VOD 0.00021 0.00014 0.00012 0.00012 0.00012 0.00015
C 0.0002 0.00015 0.00525 0.00014 0.00014 0.00024
Mean 0.00198 0.00183 0.00398 0.00182 0.00182 0.00235

SD 0.00423 0.00397 0.00818 0.00394 0.00395 0.00504

Table 4.5: Testing MAE at final iteration in stock returns prediction. SD–
Standard Deviation. For every compared method we conducted a paired t-test
against our proposal. Highlighted values indicate statistical significance at 5%.

Stock
Method

KAPA KLMS KMEE LSTM Proposal VECM
ADS 0.01126 0.01091 0.01151 0.01116 0.01095 0.01356
DPW 0.06575 0.06083 0.14325 0.06071 0.06058 0.07111
HEI 0.01139 0.00974 0.01024 0.00969 0.00954 0.01147
MRK 0.0078 0.00709 0.00881 0.00716 0.00729 0.00873
ADM 0.00968 0.00831 0.00828 0.00841 0.00845 0.0105
CCL 0.00985 0.00817 0.00798 0.0081 0.00819 0.01057
IAG 0.02178 0.02128 0.04483 0.02105 0.02133 0.02462
SKY 0.03539 0.03229 0.03375 0.0321 0.03236 0.03979
VOD 0.01133 0.00828 0.00711 0.00711 0.00716 0.00878
C 0.01094 0.00941 0.07152 0.00865 0.00854 0.01228
Mean 0.0195 0.0176 0.0347 0.0174 0.0174 0.0211

SD 0.0173 0.0163 0.0415 0.0163 0.0163 0.0190

Finally, Figures 4.2 and 4.3 show the true and predicted stock returns for two

representative stocks. The proposed approach, unlike the KAF algorithms used

for comparison, does not have second-order statistics as the adaptation criterion.

This avoids the Gaussian assumption limitation of similar methods and enhances

prediction performance in realistic scenarios.

85

03/01/2017 17/04/2017 24/07/2017 01/11/2017 28/02/2018
Test Samples [dd/mm/yy]

−0.10

−0.08

−0.06

−0.04

−0.02

0.00

Lo
g
Re

tu
r

Desired
KAPA
KLMS
KMEE
LSTM
VECM
Proposal

Figure 4.2: Stock returns prediction in the test set of HEI.

03/01/2017 17/04/2017 24/07/2017 01/11/2017 28/02/2018
Test Samples [dd/mm/yy]

−0.05

−0.04

−0.03

−0.02

−0.01

0.00

0.01

0.02

0.03

Lo
g
Re

tu
r

Desired
KAPA
KLMS
KMEE
LSTM
VECM
Proposal

Figure 4.3: Stock returns prediction in the test set of CCL.

86

4.4 Chapter Summary

This chapter introduced an approach for predicting stock returns that minimizes

the error entropy using KAF. The entropy-based adaptation criterion within a

stochastic gradient descent optimization approach allows the capture of higher

order statistics of financial time-series. This avoids the limitation of Gaussian

assumption, improving performance in streaming data applications related to

financial markets. Additionally, our proposal has O(t+ L2) computational com-

plexity, which is still competitive when compared to conventional algorithms.

However, we must clarify that when the parameter L (which indicates the win-

dow length for the most recent errors) is higher than 15, convergence time is

adversely affected. The approach has been tested on 10 stocks over a 12 year

interval. Simulations demonstrate that, when compared with KAF methods, the

entropy-based cost function enhances prediction accuracy3.

In the next chapter we address the last objective of this thesis by proposing

a sequence prediction approach within a distributed learning paradigm. This

incorporates the inter-dependences between financial markets into an analytical

model, aiming to improve prediction accuracy and profitability.

3The Python implementation of the previous methods can be downloaded at https://

github.com/segarciave/PRL-2020.

87

https://github.com/segarciave/PRL-2020
https://github.com/segarciave/PRL-2020

Chapter 5

A Kernel-based Stock Market

Interdependence Approach

The last two chapters addressed two weaknesses of machine learning methods in

the context of financial markets, i.e., sequence learning and higher order statistics.

In this chapter, with the aim to address the last objective of this thesis, we propose

a sequence prediction approach within a distributed learning paradigm.

The prediction of financial time-series, unlike traditional regression, requires

consideration of both the sequential and interdependent nature of financial mar-

kets. Thus, we introduce a two-phase approach for stock returns prediction using

sequential learning within a stock market interdependence approach 1. The un-

derlying models of each stock are learned separately using a kernel-based adaptive

filter that encodes different patterns of the input space. Further, stock returns

are predicted using not only their local models, but also the individual local

models learned from other stocks, providing a natural way to incorporate these

interdependencies. The approach is a distributed learning paradigm rather than

a centralized one in the sense that individual prediction models are learned based

solely on a local data store, thus avoiding expensive and time-consuming data

transportation into an integrated, central data store. Such a distributed learning

paradigm is critical for big data analysis and real-time learning. The proposal is

validated on 24 stocks from three major economies; results show higher Sharpe

ratio when compared with KAFs, LSTM, and autoregressive-based models.

1The outcomes of the work described in this chapter have been published in Expert Systems
with Applications under the title “Stock returns prediction using kernel adaptive filtering within
a stock market interdependence approach” (Garcia-Vega et al., 2020).

88

5.1 Sequential and Interdependent Nature of Fin-

ancial Time-Series

We develop a two-stage approach for stock returns prediction: (1) sequential

learning, where the underlying models of each stock are learned separately us-

ing KAF (Section 5.1.1); (2) interdependence between stocks, where local mod-

els learned from different stock markets are used to improve prediction (Sec-

tion 5.1.2).

5.1.1 Sequential Learning based on Adaptive Filtering

Given a set of training data T = {ut, yt : t ∈ [1, N]}, where ut ∈ RM is an input

vector and yt ∈ R is the desired output (see Figure 5.1). The task is to infer the

underlying function y = f(u) from the given data T and, for a new input vector

u∗ ∈ RM , to predict the value of a new observation y∗ ∈ R.

y
1

y
2

y
3

y
4

u

{ y
0

y
-1

y
-2 y

N
y

N-1
y

N-2
y

N-3

y
1

y
2

y
3

y
4

u2

{y
0

y
-1

y
-2 y

N
y

N-1
y

N-2
y

N-3

y
1

y
2

y
3

y
4

uN

{y
0

y
-1

y
-2 y

N
y

N-1
y

N-2
y

N-3

First training sample

Second training sample

Last training sample

1

Figure 5.1: Three representative samples of the training set T when M = 3. The
blue line represents stock returns of a given stock from which the training samples
are selected. The upper, middle and lower graphs show the first, second, and last
training samples, respectively.

89

In practice, KAF sequentially estimates f by using the current input-output

pair {ut, yt} and updating the previous estimate ft−1 as follows (see Appendix B.3):
f0 = 0

et = yt − ft−1 (ut)

ft = ft−1 + ηetκσ(ut, ·)

(5.1)

being η ∈ R+ the step-size, ft the learned mapping, et ∈ R the prediction error,

while κσ(·, ·) ∈ R+ is a Mercer kernel with a bandwidth σ ∈ R+ that controls the

mapping smoothness (Schölkopf et al., 2018). Note that Equation (5.1) creates

a kernel unit for every new sample, where ut is the center and ηet its coefficient,

posing additional issues for continuous adaptation scenarios. A challenge is to

curb the network growth by either eliminating redundant information or minim-

izing information loss, i.e., only using input data with high information content

as the new centers.

We propose to reduce the network size by partitioning the centers into distinct

regions that encode different patterns of the input space. Thus, these patterns

are identified using the change point detection method proposed by Yamanishi

and Takeuchi (2002), as it has shown stable performance in non-stationary envir-

onments. This method, at each iteration t, determines whether a change in the

distribution has occurred within the sequence y1, . . . , yt. This is done by meas-

uring how large the probability density function pt has moved from pt−1 after

learning from yt. Particularly, it is stated that a change point has taken place at

iteration t when the following inequality holds:

ε(yt, pt−1) ≥ δ (5.2)

where ε(yt, pt−1) = − log pt−1(yt) denotes a prediction loss for yt relative to a

probability density function pt−1, while δ ∈ R+ is a predefined threshold. Thus,

when a change-point is detected within the sequence y1, . . . , yt, we form a new set

of centres or dictionary. Additionally, to avoid large discontinuities in learning (Li

and Pŕıncipe, 2017), all the centres and coefficients of the closest dictionary are

copied or transferred to the newly formed dictionaries as follows:

90

1. Change in data distribution ε(yt, pt−1) ≥ δ: This indicates a change in

data distribution; hence, the following three dictionaries are formed,

• C|C|+1 = {Ci∗ ,ut}, with C = {Ci : i ∈ [1, |C|]};

• Y|Y|+1 = {Yi∗ , yt−1}, with Y = {Yi : i ∈ [1, |Y |]};

• W|W|+1 = {Wi∗ , ηet}, with W = {Wi : i ∈ [1, |W |]};

where |C|= |Y |= |W | denotes the number of elements in each dictionary.

In addition, Ci∗ = {uj : j ∈ [1, L]}, Yi∗ = {yj : j ∈ [1, L]}, and Wi∗ =

{ηej : j ∈ [1, L]} are the closest dictionaries to yt−1. Note, Ci∗ , Yi∗ , and

Wi∗ are found using yt−1 rather than yt. This is because, during real-time

prediction tasks, only the input vectors ut are known and the desired output

yt is the value to be predicted. As seen in Figure 5.1, yt−1 is always the last

element of the input vector ut. We find the closest dictionary i∗ using the

Kullback-Leibler divergence as:

i∗ = arg min
∀i

pYit−1 ln
(
pYit−1/p

Yi
t

)
(5.3)

where pYit−1 and pYit are the probability density functions of Yi before and

after learning yt−1, respectively. The primary rationale behind the sug-

gested strategy in Equation (5.3) is to quantify the information content

that yt−1 will provide to each dictionary Yi. That is, when yt−1 does not

provides high information content to a dictionary Yi, the Kullback-Leibler

divergence will tend to zero, meaning that the two distributions pYit−1 and

pYit are identical. Thus, the dictionary Yi that minimizes Equation (5.3)

will be the closest dictionary to yt−1.

2. No change in data distribution ε(yt, pt−1) < δ: This means that the data

distribution has not changed and, therefore, it is unnecessary to divide the

centres into a new region. In addition, to curb the growth of the radial-basis-

function structure, we incorporate an online vector quantization technique

as follows,

91

• min
∀i

pYit−1 ln
(
pYit−1/p

Yi
t

)
≤ ε: The dictionary sizes remain the same and

only the closest coefficient to ut is updated using the following expres-

sion,

W(j∗)
i∗ =W(j∗)

i∗ + ηet, (5.4)

where the closest coefficient j∗ is computed as follows,

j∗ = arg min
∀j

∥∥∥ut − C(j)
i∗

∥∥∥
2
, (5.5)

being ‖·‖2 the `2 norm and ε ∈ R+ a predefined threshold. The pre-

viously imposed restraint assigns a new center ut into the dictionary

Ci∗ only when yt−1 provides high information content to the dictionary

Yi∗ .

• min
∀i

pYit−1 ln
(
pYit−1/p

Yi
t

)
> ε: The sample ut is assigned as a new center

to the closest dictionary Ci∗ , the previous desired output yt−1 is stored

in the dictionary Yi∗ , while the set of coefficientsWi∗ is updated using

et, i.e., Ci∗ = {Ci∗ ,ut}, Yi∗ = {Yi∗ , yt−1}, Wi∗ = {Wi∗ , ηet}.

The above quantization technique has similarities to the method in Chen

et al. (2012). The key difference between the two strategies is that our

proposal is not based on the distance measure in the input space. Rather,

we use the data distribution as the criterion to update the network. This

enhances utilization efficiency of the closest centre, which may yield better

prediction accuracy and produce a more compact network. The proposed

strategy for sequential learning, when applied to a single stock, is summar-

ized in Algorithm 3.

92

Algorithm 3: Proposed sequential learning strategy.

input : T – training data
1 Parameter setting:

2 η- step-size;
3 σ- kernel parameter;
4 δ- change point threshold;
5 ε- quantization threshold
6 Initial dictionaries: C1 = {u1}, Y1 = y0, W1 = ηy1

7 Sets of initial dictionaries: C = {C1}, Y = {Y1}, W = {W1}
8 Computation:

9 while {ut, yt} available do

10 Select the closest dictionary: i∗ = arg min
∀i

pYit−1 ln
(
pYit−1/p

Yi
t

)
11 Compute the filter output: ŷt =

∑L
j=1W

(j)
i∗ κσ

(
C(j)
i∗ ,ut

)
12 Compute the error: et = yt − ŷt
13 if ε(yt, pt−1) ≥ δ then
14 Form new dictionaries:
15 C|C|+1 = {Ci∗ ,ut}, Y|Y|+1 = {Yi∗ , yt−1}, W|W|+1 = {Wi∗ , ηet}
16 Update set of dictionaries:
17 C = {C, C|C|+1}, Y = {Y ,Y|Y|+1}, W = {W ,W|W|+1}
18 else

19 if min
∀i

pYit−1 ln
(
pYit−1/p

Yi
t

)
≤ ε then

20 Select the closest center: j∗ = arg min
∀j

∥∥∥ut − C(j)
i∗

∥∥∥
21 Update coefficient of closest center: W(j∗)

i∗ =W(j∗)
i∗ + ηet

22 else
23 Assign a new center: Ci∗ = {Ci∗ ,ut}
24 Assign a new desired output: Yi∗ = {Yi∗ , yt−1}
25 Assign a new coefficient: Wi∗ = {Wi∗ , ηet}

output: C, Y , W

5.1.2 A Stock Market Interdependence Approach

With the aim of enhancing stock returns prediction, we consider interdependen-

cies between stock markets. More formally, let D = {Tr : r ∈ [1, S]} be the set

of training samples of S stocks, where Tr = {ut,r, yt,r : t ∈ [1, N]}. The under-

lying models of each Tr, as seen in Figure 5.2, are learned separately using Al-

gorithm 3, giving three sets of dictionaries per stock, i.e., Cr = {Ci,r : i ∈ [1, |Cr|]},
Yr = {Yi,r : i ∈ [1, |Yr|]}, and Wr = {Wi,r : i ∈ [1, |Wr|]}.

93

3

3

3

Figure 5.2: Sequential learning within a stock market interdependence approach.

Then, when a new input vector u∗ ∈ RM arrives, the task is to predict a value

y∗ ∈ R. Thus, the first step is to find the closest dictionary i∗, as in Section 5.1.1,

using the following expression:

i∗ = arg min
i,r

p
Yi,r
t−1 ln

(
p
Yi,r
t−1/p

Yi,r
t

)
, (5.6)

from Equation (5.6), it can be seen that several stocks are considered in the

selection of the closest dictionaries Ci∗ = {uj : j ∈ [1, L]} and Wi∗ = {ηej : j ∈
[1, L]}. In practice, these dictionaries are used to predict y∗ as follows:

y∗ =
L∑
j=1

W(j)
i∗ κσ

(
C(j)
i∗ ,ut

)
(5.7)

Note that, when a new sample u∗ comes from the r-th stock, its prediction

is usually calculated using the model learned on that stock. Here, we predict

u∗ using both the local model and individual local models learned from other

stocks (see Equations (5.6) and (5.7)). This strategy has similarities to pre-

viously proposed methods such as ensemble learning (Dietterich et al., 2002;

Krawczyk et al., 2017) and forecast combination (Newbold and Harvey, 2002;

Baumeister and Kilian, 2015). The ensemble learning framework is constructed

in two steps (Zhou, 2015): (1) a number of base learners are produced, which

can be generated in a parallel or sequentially; (2) the base learners are combined

using majority voting for classification or weighted averaging for regression.

94

However, the combination of multiple classifiers does not always outperform

the best individual classifier (Polikar, 2009). In addition, better results may be ob-

tained when some base learners are selected instead of an ensemble of them (Zhou

et al., 2002). In contrast to ensemble learning methods, our approach does not

combine the base learners; rather, here, the prediction tasks are performed only

by the best learner. This better utilizes the internal forces of the market, provid-

ing a natural way to incorporate interdependencies between stock markets, and

may enhance accuracy in real-time prediction tasks (Zhou and Tang, 2003). The

proposed sequence prediction approach for stock returns is shown in Algorithm 4.

Algorithm 4: Predicting stock returns within a stock market interde-
pendence approach.

input : u∗; C1,. . . ,CS ; Y1,. . . , YS ; W1,. . . ,WS

1 Parameter setting:
2 σ- kernel parameter
3 Computation:

4 Select the closest dictionary

5 i∗ = arg min
∀i,r

p
Yi,r
t−1 ln

(
p
Yi,r
t−1/p

Yi,r
t

)
6 Compute the output of the filter

7 y∗ =
∑L

j=1W
(j)
i∗ κσ

(
C(j)
i∗ ,ut

)
output: y∗

5.2 Experimental Design

The aim is to use the last ten stock returns to predict the current day price change.

The learned filter, as in Liu et al. (2010), is used to compute the performance

values on each test set. We validate the proposed approach for stock returns

prediction using MAE, MSE, and Sharpe Ratio (SR). The SR quantifies the

average return earned in excess of the risk-free rate per unit of volatility or total

risk (Wang et al., 2020). Here, as suggested in Almahdi and Yang (2019), the SR

does not consider any risk-free rate. The previous metrics have been widely used

to measure models’ predictive power and their trading performance (France and

Ghose, 2019; Portugal et al., 2018; Kalayci et al., 2019). The first two performance

measures are regression-oriented metrics, while the last one is considered the

industry standard for measuring risk-adjusted return (Jalota et al., 2017).

95

5.2.1 Data Sets

The daily closing prices data used to calculate the returns have been collected

from Yahoo Finance2. Here, as suggested in Siikanen et al. (2018), we calculate

daily log returns using the adjusted closing prices of each day. The publicly

available data set can be downloaded using Python libraries such as yfinance3.

Testing has been carried out on 24 different stocks from three major economies

over 12 years (see Table 5.1). The considered training set ranges from January

17, 2006, to November 30, 2016, while the test set covers January 3, 2017, to

February 28, 2018. In the simulations, as suggested in Chen (2019), the data

set is standardized so all stocks have a mean estimation of zero and a standard

deviation of one.

Table 5.1: Stocks in the experimental design.
Market Ticker Stock

DE

ADS Adidas AG
ALV Allianz SE
DPW Deutsche Post AG
DTE Deutsche Telekom AG
HEI Heidelberg Cement AG
LIN Linde AG
MRK Merck KGaA
SAP SAP AG

UK

ADM Admiral Group PLC
AHT Ashtead Group PLC
BA BAE Systems PLC
BP BP PLC
CCL Carnival PLC
IAG International Consolidated Airlines Group
SKY SKY PLC
VOD Vodafone Group PLC

US

AAL American Airlines Group Inc
AAPL Apple Inc
AMZN Amazon Inc
C Citigroup Inc
GOOGL Alphabet In-CL A
MSFT Microsoft Corp
SPY SPDR S&P 500 Etf
T AT&T

2https://finance.yahoo.com/
3https://segarciave.github.io/stock returns prediction

96

5.2.2 Comparative Methods

For comparison purposes, the approach is contrasted with the following sequence

prediction methods 4 (see Appendix B):

1. Long Short-Term Memory (LSTM), representing the state-of-the-art RNN

model for sequence learning tasks (Nweke et al., 2018). Here, as it has shown

competitive performance, the implementation known as vanilla LSTM is

used (Greff et al., 2017);

2. Nearest Instance Centroid-Estimation (NICE), a recently proposed method

that outperforms traditional KAF-based algorithms in prediction of chaotic

time-series (Li and Pŕıncipe, 2017);

3. Quantized Kernel Least-Mean-Square (QKLMS), a well-known method that

uses an online vector quantization strategy (Chen et al., 2012);

4. Vector Autoregression (VAR), a forecasting method used to identify rela-

tionships among multiple time-series, being widely used in finance and eco-

nometrics. This method is a generalisation of the univariate autoregressive

model (see Section 2.2.1) for forecasting a vector of time-series (Jang, 2020);

5. Vector Error Correction Model (VECM), the standard tool to handle mul-

tivariate non-stationary time-series. This method can be seen as a restricted

VAR designed for use with non-stationary series that are known to be co-

integrated (Liang and Schienle, 2019).

5.2.3 Parameter Settings

Table 5.2 summarizes the set-up of compared methods in the tested stocks. The

parameters were heuristically adjusted to provide the best possible accuracy on

this dataset. In particular, to ensure consistency in the results, both η and σ

remain the same for all KAF methods. Thus, as long as this condition is met,

different η and σ values from those shown in Table 5.2 will not offer an advantage

to any particular algorithm.

We train the LSTM method using a single hidden layer with 20 neurons,

as suggested in Cui et al. (2016). The LSTM activation function, as suggested

4The Python codes can be downloaded from https://github.com/segarciave/ESwA-2020

97

 https://github.com/segarciave/ESwA-2020

in Tian et al. (2018), is the sigmoid, while the optimization is performed by the

Adam algorithm with MSE as the loss function (Kingma and Ba, 2014). The

LSTM method was implemented using TensorFlow (version 1.4.0) 5 and Keras

(version 2.1.2) 6. The free parameters of autoregressive-based methods (VAR

and VECM) were selected using heuristic approaches and following strategies

proposed in the literature (Lütkepohl, 2013; Kuo, 2016). These parameters were

chosen to achieve the best MSE on each tested data set. The performance of

our proposal is sensitive to the selection of δ and ε; however, values for these

parameters are selected as follows: (1) δ-threshold, based on our experimentation,

an appropriate value is in the interval [5, 15]; (2) ε-quantization value, where a

value of 0.0001 has shown stable performance on all tested stocks.

Table 5.2: Parameter setting of compared methods. M -input vector size, η-
step size, σ-bandwidth, λ-quantization value, β-centroid distance, δ-threshold,
ε-quantization value, L-layers, N -neurons per layer, G-maximum number of lags,
A-number of lagged differences in the model, I-cointegration rank.

Method
Parameter

M η σ λ β δ ε L N G A I
LSTM 10 - - - - - - 1 20 - - -
NICE 10 0.05 0.5 0.06 2σ - - - - - - -
Proposal 10 0.05 0.5 - - 10 0.0001 - - - - -
QKLMS 10 0.05 0.5 0.4 - - - - - - - -
VAR 10 - - - - - - - - 15 - -
VECM 10 - - - - - - - - - 3 0

5.3 Simulation Results and Analysis

The simulation results for the compared methods are shown in Tables 5.3 to 5.5,

where the last row displays the average performance of each algorithm. The

best overall method is in bold notation and marked with an asterisk. Table 5.3

shows the MAE values of each method in the considered stocks. The LSTM

method outperforms the other algorithms, converging to the lowest average MAE

value. This means that an error no greater than 0.012 can be expected during

the prediction task on average. Although LSTM shows the best performance, the

compared methods also converge to relatively low values of MAE. Note, a method

5https://www.tensorflow.org/
6https://keras.io/

98

that minimizes MAE will lead to forecasts of the median (Chai and Draxler,

2014), meaning that this scale-dependent metric may be unable to quantify the

prediction of abrupt changes in stock returns.

Table 5.3: Testing MAE at final iteration in stock returns prediction. SD–
Standard Deviation. For every compared method we conducted a paired t-test
against our proposal. Highlighted values indicate statistical significance at 5%.

Stock
Method

LSTM NICE Proposal QKLMS VAR VECM

DE

ADS 0.0109 0.0109 0.0137 0.0109 0.0115 0.0136
ALV 0.01 0.0101 0.0122 0.01 0.0101 0.0122
DPW 0.0611 0.0608 0.0645 0.0609 0.0601 0.0711
DTE 0.0063 0.0063 0.0142 0.0063 0.0065 0.0073
HEI 0.0099 0.0097 0.0161 0.0098 0.0102 0.0115
LIN 0.0077 0.0075 0.01 0.0075 0.0077 0.0093
MRK 0.0071 0.0071 0.0112 0.0071 0.0073 0.0087
SAP 0.007 0.0078 0.013 0.0078 0.0072 0.0086

UK

ADM 0.0084 0.0083 0.0154 0.0083 0.0087 0.0105
AHT 0.0153 0.0153 0.0215 0.0152 0.0162 0.0196
BA 0.0089 0.0087 0.0134 0.0088 0.0093 0.0106
BP 0.0076 0.0077 0.0194 0.0077 0.0076 0.009
CCL 0.0081 0.0082 0.0156 0.0082 0.0085 0.0106
IAG 0.021 0.0213 0.0322 0.0212 0.0214 0.0246
SKY 0.0323 0.0323 0.039 0.0322 0.0325 0.0398
VOD 0.0072 0.0083 0.0166 0.0081 0.0074 0.0088

US

AAL 0.0139 0.0149 0.0228 0.0148 0.0155 0.0181
AAPL 0.0086 0.0086 0.0224 0.0085 0.0088 0.0095
AMZN 0.0095 0.0102 0.0232 0.01 0.0101 0.0115
C 0.0087 0.0094 0.0417 0.0094 0.0097 0.0123
GOOGL 0.008 0.0082 0.0098 0.0081 0.0082 0.0091
MSFT 0.0077 0.0074 0.01 0.0075 0.0078 0.009
SPY 0.0039 0.0038 0.0057 0.0038 0.0041 0.005
T 0.0083 0.0081 0.0105 0.0082 0.0081 0.0096

Mean 0.012 0.013 0.02 0.013 0.013 0.015
SD 0.012 0.012 0.013 0.012 0.011 0.014

Table 5.4 summarizes the MSE prediction performance, where lower values are

better. The compared methods show similar MSE values, suggesting a relatively

good prediction performance on all considered stocks under this metric. How-

ever, LSTM requires significant computing resources, as it needs to be retrained

regularly on sequence prediction tasks (Cui et al., 2016). This means that several

epochs have to be re-performed each time a new sample arrives in the system,

which allows the best possible performance to be found when the training set is

updated. The learning scheme of our proposal, unlike LSTM and autoregressive-

based methods, does not require the entire training set in advance to begin learn-

ing of the model. In contrast, the model is updated sequentially while predictions

99

are obtained at the same time, providing an alternative to sequence prediction

tasks. Additionally, the proposed interdependence strategy allows prediction of

each stock using not only the local model but also the models learned from other

stock markets, supporting the learning of long-term dependencies.

Table 5.4: Testing MSE at final iteration in stock returns prediction. SD–
Standard Deviation. For every compared method we conducted a paired t-test
against our proposal. Highlighted values indicate statistical significance at 5%.

Stock
Method

LSTM NICE Proposal QKLMS VAR VECM

DE

ADS 0.0003 0.0003 0.0004 0.0003 0.0003 0.0004
ALV 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003
DPW 0.0135 0.0135 0.014 0.0134 0.0132 0.0172
DTE 0.0001 0.0001 0.0003 0.0001 0.0001 0.0001
HEI 0.0002 0.0002 0.0004 0.0002 0.0002 0.0002
LIN 0.0001 0.0001 0.0002 0.0001 0.0001 0.0001
MRK 0.0001 0.0001 0.0002 0.0001 0.0001 0.0002
SAP 0.0001 0.0001 0.0003 0.0001 0.0001 0.0001

UK

ADM 0.0002 0.0002 0.0004 0.0002 0.0002 0.0002
AHT 0.0005 0.0005 0.0008 0.0005 0.0005 0.0007
BA 0.0002 0.0002 0.0003 0.0002 0.0002 0.0002
BP 0.0001 0.0001 0.0005 0.0001 0.0001 0.0001
CCL 0.0001 0.0001 0.0004 0.0001 0.0001 0.0002
IAG 0.0009 0.0009 0.0016 0.0009 0.0009 0.0011
SKY 0.0028 0.0028 0.0034 0.0028 0.0028 0.0037
VOD 0.0001 0.0001 0.0004 0.0001 0.0001 0.0002

US

AAL 0.0004 0.0004 0.0008 0.0004 0.0004 0.0005
AAPL 0.0001 0.0002 0.0006 0.0002 0.0002 0.0002
AMZN 0.0002 0.0002 0.0007 0.0002 0.0002 0.0003
C 0.0001 0.0002 0.0019 0.0002 0.0002 0.0002
GOOGL 0.0001 0.0001 0.0002 0.0001 0.0001 0.0002
MSFT 0.0001 0.0001 0.0002 0.0001 0.0001 0.0002
SPY 0.000 0.000 0.0001 0.000 0.000 0.0001
T 0.0001 0.0001 0.0002 0.0001 0.0001 0.0002

Mean 0.001 0.001 0.001 0.001 0.001 0.001
SD 0.003 0.003 0.003 0.003 0.003 0.003

The previous metrics attempt to measure the predictive power of models.

However, they do not provide insights into the performance of the compared

methods from a trading point of view. Table 5.5 shows the SR values of each

method in the considered stocks, where a higher value means greater returns

for the portfolio relative to the inherent risk (Kaplanski et al., 2016). We see

that our proposal outperforms the other algorithms, converging to higher values

of SR, which suggests that the proposed interdependence strategy helps max-

imize returns while reducing volatility. This strategy selects a model based on

each new data point that arrives. For example, it may be possible to obtain

100

some predictions on ADS (a stock traded in Germany) using the model learned

from VOD (a stock traded in the UK). However, the convergence speed may be

adversely affected if the kernel bandwidth parameter is inappropriately chosen.

Consequently, a suitable value can be selected using a method such as Silverman’s

rule of thumb (Liu et al., 2010).

Table 5.5: Testing SR at final iteration in stock returns prediction. SD–Standard
Deviation. For every compared method we conducted a paired t-test against our
proposal. Highlighted values indicate statistical significance at 5%.

Stock
Method

LSTM NICE Proposal QKLMS VAR VECM

DE

ADS 0.9017 0.2162 3.6583 0.0051 2.2682 0.9369
ALV 1.2965 0.2089 3.3982 0.0729 1.0817 0.0021
DPW -0.7522 -1.0027 2.13 -1.1187 -0.8717 0.7948
DTE 0.2688 -0.0372 1.9498 -0.1236 0.7665 1.2571
HEI 0.8574 0.2089 2.0087 -0.0287 1.3908 2.0077
LIN 0.5044 0.1126 3.1285 0.0646 1.2623 2.5074
MRK 0.7296 0.0983 3.627 -0.0257 1.4655 0.6756
SAP 0.4705 0.0497 4.39 -0.0371 1.8604 2.4806

UK

ADM 0.4663 0.334 5.9617 0.0065 2.4326 1.0164
AHT 2.2794 0.936 5.3711 -1.2048 -1.3246 -0.3778
BA 0.7246 0.0998 2.1991 -0.0579 1.2097 1.2656
BP 1.0361 1.5645 6.549 0.1094 -0.0275 -1.3034
CCL 1.2433 0.5456 5.9871 0.0216 -0.7435 -0.5154
IAG 1.9193 -1.123 4.5652 1.5662 0.3662 -1.3497
SKY -0.2469 0.3637 1.4274 0.318 -1.2898 -1.3334
VOD 0.6955 0.222 5.2585 0.1688 0.3891 1.4227

US

AAL 1.1319 -0.5774 5.8926 0.4946 -1.144 -1.1616
AAPL 0.6432 0.1279 2.6692 -0.1274 1.0422 1.648
AMZN 0.5934 0.1681 1.5527 -0.0205 1.0327 1.7307
C 0.975 0.2737 3.6621 0.0879 1.1656 -0.3031
GOOGL 0.5118 0.1185 2.9763 0.0459 1.3334 1.2835
MSFT 0.5291 0.1301 2.8933 0.0355 1.2268 2.1107
SPY 0.4121 0.0827 1.7878 -0.0977 1.0711 1.7259
T 1.2947 0.1438 3.3456 -0.0684 1.3681 1.1828

Mean 0.77 0.136 3.6 0.004 0.722 0.738
SD 0.606 0.517 1.532 0.484 1.061 1.207

Figure 5.3 shows the models used by the approach to predict the considered

stocks, where each color represents a different stock market. Figure 5.3(a) displays

the percentage of models from Germany, the UK and the US that were used to

predict stock returns. For example, 18% of the models used to predict the 8 stocks

traded in Germany are from the UK, while 60% of the models used to predict

the 8 stocks traded in the US are from Germany. The models from Germany,

such as SAP AG (SAP) (see Figure 5.3(b)), are widely used to predict stock

returns in the UK and the US (see Figure 5.3(a)), suggesting that the patterns

101

encoded by German stocks are more appropriate to predict other stock markets.

Figure 5.3(b) also shows that there are some stocks with 0% such as ADS, DTE,

LIN, SKY, AAL, etc. This means that their models were not used to obtain

their own predictions, nor were they used to predict other stocks. However, their

performance is still competitive (see Tables 5.3 to 5.5).

The true and predicted stock returns are shown in Figures 5.4 to 5.6 for three

representative stocks, namely Allianz SE (ALV), Ashtead Group PLC (AHT),

and Alphabet In-CL A (GOOGL), respectively. The top graphs (Figures 5.4(a),

5.5(a) and 5.6(a)) display predictions for all tested methods. The bottom graphs

(Figures 5.4(b), 5.5(b) and 5.6(b)) show the predictions of our proposal, where

each color represents a different stock market. Note that, unlike the other meth-

ods, the approach obtains more accurate predictions when predicting abrupt stock

return changes. Figure 5.4(b) provides an explanation for this behavior, where

it can be seen that predictions were calculated using models learned from stocks

in the US and UK. Thus, the interdependence strategy of our proposal provides

an advantage over competing algorithms, as they do not consider the intercon-

nections between stock markets. Figure 5.5(b) shows a similar situation, where

predictions are improved using models learned from the US. Figure 5.6(b) further

suggests that the predictions of a particular stock can be enhanced by incorpor-

ating models learned from other stock markets.

102

DE Stocks UK Stocks US Stocks
0

10

20

30

40

50
Pe

rc
en

ta
ge

 [%
]

DE Models
UK Models
US Models

(a) Markets

AD
S

AL
V

DP
W

DT
E

HE
I

LI
N

M
RK SA
P

AD
M

AH
T BA BP CC
L

IA
G

SK
Y

VO
D

AA
L

AA
PL

AM
ZN C

GO
OG

L
M
SF

T
SP

Y T

0

5

10

15

20

25

30

Pe
rc
en

ta
ge

 [%
]

(b) Stocks

Figure 5.3: Models used by the proposed approach to predict the 24 stocks.

103

03/01/2017 17/04/2017 24/07/2017 01/11/2017 28/02/2018
Test Samples [dd/mm/yy]

−0.100

−0.075

−0.050

−0.025

0.000

0.025

0.050

0.075

0.100

Lo
g

Re
tu

rn

Des red
LSTM
NICE
QKLMS
VAR
VECM
Proposal

(a) ALV (compared methods)

03/01/2017 17/04/2017 24/07/2017 01/11/2017 28/02/2018
Test Sample [dd/mm/yy]

−0.100

−0.075

−0.050

−0.025

0.000

0.025

0.050

0.075

0.100

Lo
g
Re

tu
rn

De ired
DE
UK
US

(b) ALV (only proposal)

Figure 5.4: Stock return predictions in the test sets of Allianz SE.

104

03/01/2017 17/04/2017 24/07/2017 01/11/2017 28/02/2018
Test Samples [dd/mm/yy]

−0.15

−0.10

−0.05

0.00

0.05

0.10

Lo
g

Re
tu

rn

Des red
LSTM
NICE
QKLMS
VAR
VECM
Proposal

(a) AHT (compared methods)

03/01/2017 17/04/2017 24/07/2017 01/11/2017 28/02/2018
Test Sample [dd/mm/yy]

−0.15

−0.10

−0.05

0.00

0.05

0.10

Lo
g
Re

tu
rn

De ired
DE
UK
US

(b) AHT (only proposal)

Figure 5.5: Stock return predictions in the test sets of Ashtead Group PLC.

105

03/01/2017 17/04/2017 24/07/2017 01/11/2017 28/02/2018
Test Samples [dd/mm/yy]

−0.08

−0.06

−0.04

−0.02

0.00

0.02

Lo
g

Re
tu

rn

Des red
LSTM
NICE
QKLMS
VAR
VECM
Proposal

(a) GOOGL (compared methods)

03/01/2017 17/04/2017 24/07/2017 01/11/2017 28/02/2018
Test Sample [dd/mm/yy]

−0.08

−0.06

−0.04

−0.02

0.00

0.02

Lo
g
Re

tu
rn

De ired
DE
UK
US

(b) GOOGL (only proposal)

Figure 5.6: Stock return predictions in the test sets of Alphabet In-CL A.

106

5.4 Chapter Summary

This chapter introduced an approach for stock returns prediction using kernel

adaptive filtering within a stock market interdependence approach. The approach

sequentially predicts stock returns by considering interconnections between stock

markets. The approach has been tested on 24 different stocks from three major

economies, i.e., United States, United Kingdom, and Germany. Simulation results

demonstrate that the interdependence strategy used by our proposal enhances

prediction accuracy, representing an advantage over compared methods. Finally,

in the following chapter, the three proposed approaches will be critically evaluated

and suggestions for future work will be included.

107

Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this thesis, a variety of kernel-based approaches to support sequence predic-

tion tasks in financial time-series have been developed. The approaches learn

from continuous sequence of data records and exhibit high tolerance to noisy

and non-stationary conditions. This thesis aims to address the weakness of data-

centralized and off-line machine learning methods, which fail to consider fast time-

varying characteristics from data resources in other regions, sectors, and markets.

Thus, when designing the proposed kernel-based approaches, both the sequential

and interdependent nature of financial time-series have been considered. The

learning scheme of the proposed methods, unlike that of neural networks, is a

combination of error-correction and memory-based learning, meaning that the

whole training set is not required to start learning the model. In contrast, as the

samples arrive, predictions are obtained while the model is updated sequentially

at the same time, which is useful in online applications. Results show faster

convergence to low MSE values and higher Sharpe ratio when compared with

auto-regressive based models, recurrent neural networks, and KAF methods. In

addition, regarding the distributed learning approach, results suggests that the

United States market is more influenced by the European and not vice versa,

which is in line with previous empirical findings.

The approach in Chapter 3, using stochastic gradient algorithms that min-

imize the mean square error, sequentially updates the kernel-size and step-size

parameters of a kernel adaptive filtering approach. The kernel-size problem is

addressed from a practical application focus; to the best of our knowledge, such

108

an approach has not been previously proposed. Further, the results show a gen-

eral improvement in prediction accuracy in online sequential learning environ-

ments. In comparison to similar methods, our proposal converges more quickly

and achieve better accuracy. Overall, relatively lower values of MSE are obtained

in all tested data sets. Neural network methods such as LSTM give competitive

performance; however, the LSTM model must be retrained regularly in sequence

prediction tasks. The proposed approach, unlike LSTM, does not need the whole

training set to start learning the model. In contrast, as samples arrive, predictions

are generated and the model is updated sequentially at the same time.

The approach in Chapter 4 provides an alternative adaptation criterion when

training kernel-based adaptive systems. The proposal uses instantaneous entropy

as the adaptation criterion within a stochastic gradient descent optimization ap-

proach. This aims to minimize the error entropy between the model output and

the desired response, capturing higher order statistics and information content

of financial time-series rather than simply their energy. Further, with the aim of

enhancing stock returns prediction, the architecture of neural networks is exten-

ded to incorporate kernel adaptive filtering by allowing any neuron to be replaced

by a kernel machine, capturing complex patterns behind the data. The proposed

approach has O(t + L2) computational complexity, which is competitive with

similar prediction methods. In particular, the average performance of KLMS is

improved by 0.5%, while there is an improvement of 54% compared with KMEE.

This demonstrate that approach exhibits high tolerance to noisy conditions and

provides stable performance in real-world applications.

The approach in Chapter 5 sequentially predicts stock returns within a stock

market interdependence approach. This means that predictions were performed

using not only local models, but also from the individual local models learned

from other stocks, providing a natural way to incorporate inter-dependencies

between financial markets. The approach uses the data distribution as the cri-

terion to encode different patterns of the input space, producing a more compact

network. This strategy helped maximize returns while maintaining the robust-

ness and simplicity of kernel-based adaptive filters. In addition, as simulation

results show, the models learned from the German market are more suitable for

making predictions in other stock markets. This suggests that the United States

market is more influenced by the European and not vice versa, which is in line

with previous empirical findings (Jizba et al., 2012; Rezayat and Yavas, 2006).

109

6.2 Future Work

We have proposed kernel-based approaches to sequentially predict financial time-

series. However, considering the theoretical and experimental results, there re-

main a number of areas of interest to improve learning performance and enhance

data interpretability. The following proposes ideas for future work plans.

6.2.1 Predicting Several Steps Ahead

Proposed methodologies in Chapters 3 to 5 were effective when sequentially pre-

dicting financial time-series. They were designed within a one step ahead strategy

using ordered sequences of data records. The proposed methodologies aimed to

predict the next value, rather than predicting values of several steps ahead. The

development of methodologies to sequentially predict financial time-series several

steps ahead may enhance long-term investment strategies, practitioners decision-

making, and portfolio allocation (Chen et al., 2018b).

Predicting several steps ahead may incur additional challenges such as ac-

cumulation of errors, model complexity, and increased uncertainty (Du et al.,

2018). There are three main strategies for addressing these challenges (Taieb and

Atiya, 2015): (1) recursive, where previously predicted values are taken as inputs

by a one step ahead predictor; (2) direct, where different prediction models are

trained to directly predict each step ahead; (3) joint, where a multi-output model

is designed to return a vector of future values in a single step.

An interesting line of work involves the extension of this research to sequen-

tially predict financial time-series several steps ahead, i.e., weekly or monthly pre-

dictions using historical data of stock markets. However, the following limitations

must be considered: (1) recursive strategy methods suffer from the accumulated

problem, meaning that errors are propagated through iterations, which affects

prediction accuracy; (2) the cost of training direct strategy methods is high when

the prediction horizon increases, restricting their flexibility in real-world applica-

tions; (3) joint strategy methods have to train new models from scratch once the

prediction horizon is changed.

Thus, a possible direction to follow is extending the sequence prediction meth-

odologies developed in Chapters 3 to 5 to several steps ahead using a joint

strategy. This may avoid the error accumulation and conditional independent

assumption of recursive and direct methods, respectively. In addition, the joint

110

strategy opens the door to formulate kernel adaptive filter models within a mul-

tiple input approach, which may enhance prediction accuracy in streaming data

applications. In this sense, with the aim to deal with multi-modal analysis,

kernel tensor representations may be incorporated into the sequence prediction

approaches.

6.2.2 Automated Machine Learning

The kernel-size and adaptive step-size strategies proposed in Chapter 3, when

predicting financial time-series, proved to improve convergence time while main-

taining competitive performance. A limitation of our proposal is the need to

choose initial values for those parameters. In this thesis, this limitation was ad-

dressed using a grid-search strategy minimizing the mean squared error. However,

when working with larger databases, finding the optimal initial parameters may

be too complex in terms of memory constraints or huge computational complexity.

In large scale applications, defining a default search space is critical to achieve

good predictive performance. Thus, potential directions for future work include

applying automated machine learning approaches to our methodologies. In par-

ticular, one direction to follow is the implementation of Bayesian optimization

strategies, as they have proven useful to search for the best parameter configur-

ations in large scale applications (Salinas et al., 2020). Another alternative is to

use maximum marginal likelihood (Liu et al., 2010), which has been shown to be

effective in determining the parameters in kernel-based methods such as kernel

adaptive filters.

The automated selection of a Mercer kernel for the methodologies proposed in

Chapters 4 and 5 is another interesting line of research. This parameter defines

similarity between data points in any kernel method. Thus, techniques such as

multiple kernel learning may provide different notions of similarity to address the

kernel selection problem. The study of additional Mercer kernels with universal

approximation capability may provide alternatives to better capture complex pat-

terns in noisy and non-stationary conditions, maximizing returns and improving

prediction performance.

Then, with the aim of enhancing data representation, dimensional reduc-

tion techniques and additional information theoretic quantities (such as mu-

tual information) may be extended to incorporate the methodologies proposed

in Chapters 3 to 5. The dimensional reduction approaches aim to preserve the

111

significant structure of high-dimensional data in a low-dimensional space. This

may provide a way to measure and visualize complex non-linear dynamic rela-

tionship between stock markets.

6.2.3 Transfer Learning

The knowledge transfer strategy used in Chapter 3 proved to be an efficient

alternative when training in non-stationary conditions. That is, the transfer

learning strategy aimed to use previously learned knowledge to enhance sequence

prediction tasks in univariate financial time-series. Thus, another direction for

future work is to extend the transfer learning strategy to different data sets,

rather than simply using stock or foreign exchange prices (see Chapters 3 to 5).

These sources may include heterogeneous and unstructured data from textual

news reports, well-structured high frequency limit order book data, tick-by-tick

quotes on different asset classes, commodity prices, economic indicators, and

inflation rates. This may help financial institutions to prevent losses on portfolios

of financial assets that are traded in the financial markets. Then, such a learning

strategy may be combined with the automated machine learning work described

in the previous section. This would allow an extension of our research to big data

applications, and perform transfer learning across different regions, markets, or

sectors. For example, in addition to analysing stock returns, the models may

consider topics that appear in the media, giving them additional information

that may be useful to perform prediction tasks.

Another interesting line of work is to integrate sentiment analysis (news data

information) into the distributed learning paradigm proposed in Chapter 5. The

extraction of information from news data may be done using Natural Language

Processing techniques such as word2vec (Mikolov et al., 2013), which provides

word associations from a large structured set of texts (also known as corpus). The

news data may be obtained from the Global Database of Events, Language, and

Tone (GDELT), which provides free access to news media reports in more than

100 languages around the world (Leetaru and Schrodt, 2013). This information

may provide insights to understand future trends in stock markets. In this sense,

hybrid models based on deep learning and kernel principles may encode better

temporal and spatial relationships, providing robust models under highly non-

stationary conditions.

112

Appendix A

Financial Data

Financial data are continuously generated by different and separate data sources,

such as banks, corporations, and individuals (Rejeb and Arfaoui, 2016). These

data usually provide information on stock prices, transaction costs, quoted rates,

reported earning, among others (Giudici, 2018). In this section, we introduce the

definitions of financial time-series, assets, markets, returns, and stock prices.

A.1 Financial Time-Series

Financial time-series are ordered sequence of data records that become available

over time (Taylor, 2008). The sequence imposes an order on the samples that

must be preserved when training models and making predictions (Gueniche et al.,

2015). Financial institutions aim to predict these time-series, such that investors

could hedge their assets or take appropriate actions given their investment object-

ives and risk tolerance (Laitinen and Suvas, 2016). In practice, large numbers of

orders are placed to buy or sell stocks within weeks, days, minutes, and seconds.

This may be done by using algorithmic trading, which is a method that executes

orders using automated trading instructions (see Section 2.1.1). High-frequency

trading executes orders thousands of times a day without holding positions at the

end of the day (Aitken et al., 2015). Thus, from a high-frequency point of view,

the time intervals are the lengths of time between successive trades of the same

stock. In this thesis, we focus on equally spaced data rather than high-frequency

and its micro-structure characteristics.

113

A.2 Financial Assets and Markets

An asset is any resource, owned by a business or an economic entity, that can be

traded (Diehl, 2016). The following are the most common types of financial assets:

cash (Yilmaz, 2020), representing paper currency; bonds (Dey and Gibbon, 2018),

which are contracts representing a loan; stock shares (Ameriks et al., 2020), these

are documents representing ownership and the rights of that ownership; master

limited partnerships (Massey, 2016), which is a publicly traded entity taxed as

a partnership; real estate investment trusts (Waldron, 2018), which owns assets

based on real estate.

Markets and Exchanges. The term market refers to an organization that

allows trading financial instruments, where the most popular is the exchange

market (Gentle, 2020), e.g., London Stock Exchange (LSE), New York Stock Ex-

change (NYSE), and Tokyo Stock Exchange (TSE).

Foreign Exchange. The foreign exchange (FX) market is the largest and most

liquid of financial markets (Gau and Wu, 2017). The FX is a non-stop cash

market where it is possible to speculate on changes in exchange rates of foreign

currencies (Wang and Xie, 2016). This market operates through a global network

of banks, corporations and individuals trading one currency for another but has

no physical location and no central exchange (Stosic et al., 2016).

Types of Owners. The owners of financial assets are individuals or institu-

tions. The institutional investors are hedge funds, commercial banks, and in-

surance companies. The financial decisions are made by institutional investors,

while the assets may be owned by individuals (Kidwell et al., 2016).

Returns. Financial returns are the incomes produced by the changes in value

of the asset itself over a given period of time (Wacker et al., 2016). The total

return of an asset is the relative change in price plus the income in the form of

interest or dividends (Gentle, 2020).

Risk. The variation in the value (or return) of an asset is known as risk. The

following are the main types of risk: market risk (Dowd, 2007), which is the

risk of losses because of movements in market prices; model risk (Tunaru, 2015),

114

this risk is associated with the use of inaccurate models to make decisions; credit

risk (Bielecki and Rutkowski, 2013), describing the loss due to a failure to make

payments; liquidity risk (Hassan et al., 2019), which is the risk associated with

a security that cannot be traded quickly in the market; operational risk (Jarrow,

2008), this risk is related to inadequate or failed internal processes.

A.3 Returns on Assets

Given a financial time-series T = {xt : t ∈ [1, N]}, where xt ∈ R is the value of an

asset at time t, while N ∈ R indicates the number of samples in the time-series.

The simple return and log return are computed as follows (Siikanen et al., 2018):

R =
xt − xt−1

xt−1

(A.1a)

R̃ = ln

(
xt
xt−1

)
(A.1b)

where ln(·) is the natural logarithm. Log return is normally used when analys-

ing volatility (Chaim and Laurini, 2018), while simple return is preferred when

analysing portfolios (Zhou and Xu, 2018). In addition, the annualized log re-

turn assumes a yearly resolution t (Beshears et al., 2009). Similarly, in the daily

log return, xt−1 and xt are the closing prices of consecutive days (Ardia et al.,

2019). The same analysis can be done for weekly log return and monthly log

return (Novak, 2007; Chan et al., 2008).

Aggregating Log Returns. Let x1, . . . , x5 be a sequence of prices. The se-

quence of log returns are R̃2 = log(x2)− log(x1),. . . ,R̃5 = log(x5)− log(x4). Then,

the log return from time t = 1 to t = 5 is given by (Alexeev et al., 2014),

log(x5)− log(x1) = R̃2 + R̃3 + R̃4 + R̃5 (A.2)

Thus, the log return from t = 1 to t = N can be expressed as:

R̃ =
N∑
i=2

R̃i (A.3)

115

Aggregating Simple Returns. Given two asset values x1,1 and x2,1 at time

t = 1. The simple return, at time t = 2, can be computed as (see Equa-

tion (A.1a)):

R1 =
x1,2 − x1,1

x1,1

(A.4a)

R2 =
x2,2 − x2,1

x2,1

(A.4b)

The combined return considers the relative total values in the two time periods.

Thus, the combined simple return can be computed as (Gentle, 2020):

R =
x1,1

x1,1 + x2,1

(
x1,2

x1,1

− 1

)
+

x2,1

x1,1 + x2,1

(
x2,2

x2,1

− 1

)
R =

x1,1

x1,1 + x2,1

R1 +
x2,1

x1,1 + x2,1

R2 (A.5)

A.4 Stock Prices

A stock price represents the value, current situation, and future perspectives of a

company in the market (Kumar, 2019). The price of a given asset can be measured

using indexes that are associated with economic variables such as production,

employment, and interest rates (Peiro, 2016). The most reliable indicator of the

present value of a security (financial instrument that holds some monetary value)

is called current price (or market value), which is the most recent price that is

traded on an exchange (Hart and Zingales, 2017). In practice, the current price

indicates how much a buyer (or a seller) would be willing to accept to make a

transaction.

Market Value. The market value is the stock price times the number of shares

that the company has issued, where these shares are not owned by the company

itself (Kucharska-Stasiak, 2018). The enterprise value, which measures the total

value of a company, considers the market value, debts, and cash on the balance

sheet of the company (Liu and Zhang, 2017).

Stock Price Fluctuations and Trading Volume. The trading volume is the

amount of shares traded during a given period of time (Oliveira et al., 2017). The

price fluctuations are usually represented in a candlestick chart, which contains

information about the open, high, low, and closing prices.

116

Fundamental and Technical Analysis. Fundamental analysis studies gen-

eral considerations about the company such as overall value, earnings, and debts.

Technical analysis aims to predict future price movements studying patterns of

price changes and trading volumes (Gentle, 2020).

National Best Bid and Offer. This a regulation that requires brokers to

trade at the best available ask price (lowest) and the best available bid price

(highest) when buying and selling securities for customers. The mid-price is a

reference price calculated by taking the average of the current quoted bid and

ask prices (Battalio et al., 2004).

Pricing Gaps. The abrupt changes in the stock price depend on various factors

such as the revelation of a large holding in the stock by a large institution,

major shareholder selling, the propagation of statements through media sources,

financial policies, among others (Maskawa, 2016).

Initial Public Offering. The initial public offering, also known as stock market

launch, is the process of selling the stocks of a company on a public stock exchange

for the first time (Khatri, 2017).

117

Appendix B

Machine Learning Models

Learning approaches are usually performed in three different ways (Alpaydin,

2020): (1) supervised learning, which requires a collection of desired or target

responses; (2) unsupervised learning, where no desired outputs are given to the

learning algorithm; (3) reinforcement learning, which learns using a sequence

of state–action–reward without an explicit input–output available.

B.1 Neural Networks

The basic neural network (NN) model can be described as follows (Bishop, 2006):

aj =
M∑
i=0

w
(1)
ji ui (B.1)

where the idea is to construct N linear combinations of the input variables

u0, u1, . . . , uM , being j = 0, 1, . . . , D and the superscript indicates that the cor-

responding parameters are in the first layer of the network. The parameters aj

and w
(1)
ji are usually known as activations and weights, respectively. Then, each

parameter aj is transformed using the following differentiable and non-linear ac-

tivation function (Sibi et al., 2013):

zj = h(aj) (B.2)

The non-linear function h(·) is usually a sigmoidal function such as the logistic

and tanh functions. The previous values are linearly combined to provide the

118

following output unit activations in the second layer of the network

ak =
D∑
j=0

w
(2)
kj zj

where k ∈ [1, K], being K the total number of outputs. Then, with the aim of

providing a set of network outputs yk, the outputs ak are transformed using an

appropriate activation function, which depends on the nature of the data and the

assumed distribution of target variables (Sharma, 2017). Thus, each output unit

activation is transformed using a logistic sigmoid function as

ŷk = ς(ak) (B.3)

where ς(a) = 1/(1 + exp(−a)). Finally, the overall network function takes the

following form

ŷk(u,w) = ς

(
D∑
j=0

w
(2)
kj h

(M∑
i=0

w
(1)
ji ui

))
(B.4)

Thus, the neural network model is a non-linear function from a set of input

variables {ui} to a set of output variables {ŷk} controlled by a vector of ad-

justable parameters w (see Figure B.1). Note that the NN uses continuous

sigmoidal non-linearities in the hidden units. This means that the NN is dif-

ferentiable with respect to the network parameters, which is useful during the

training stage (Da Silva et al., 2017).

u
^1

u
2

u
M

y
1

y
2

y
K

z1

z2

zD
wDM

(1)
wKD

(2)

Input Layer Hidden Units Output Layer

Direction of Information Flow

^

^

Figure B.1: Neural Network diagram with two layers.

119

The previous network architecture is the most commonly used in practice,

which can be generalized by considering additional layers (Bishop, 2006). In

addition, NNs are considered universal approximators, meaning that they can

uniformly approximate any continuous function on a compact input domain to

a desired accuracy (Sonoda and Murata, 2017). However, even when performing

similar tasks, the proper choice of network parameters can vary widely and are

often chosen in a trial-and-error process (Tzeng and Ma, 2005; Erkaymaz et al.,

2017; Dutta et al., 2018).

Network Training. Given a sequence of input-output examples T = {ut, yt :

t ∈ [1, N]}, where ut ∈ RM is an input vector and yt ∈ R is the desired output.

The goal is to minimize the sum-of-squares error function given by

J(w) =
1

2

N∑
t=1

‖ŷ(ut,w)− yt‖2 (B.5)

where ‖·‖ denotes the `2 norm. In practice, the non-linearity of the network

function y(ut,w) causes the error J(w) to be non-convex and local maxima

of the likelihood may be found, corresponding to a local minima of the error

function (Bishop, 2006). The choice of the output unit activation and matching

error functions depends on the type of problem being solved as (Yegnanarayana,

2009): (1) Regression problems: linear outputs and sum-of-squares error; (2)

Binary classification: logistic sigmoid outputs and cross-entropy error; (3) Multi-

class classification: soft-max outputs with the corresponding multi-class cross-

entropy error function. The Equation (B.5) can be solved by finding a weight

vector w that minimizes the chosen function J(w) as follows

wτ+1 = wτ + ∆wτ (B.6)

The previous expression can be solved by using gradient information, meaning

that ∇J(w) is evaluated with a new weight vector wτ+1 at each iteration step

τ . The training of neural networks is usually done by using gradient information

forms (Hughes et al., 2018). Thus, the weight vector w can be updated with the

following rule

wτ+1 = wτ − η∇J(wτ) (B.7)

where η > 0 is the learning rate or step-size parameter. Thus, at each step, the

120

weight vector is moved in the direction of the greatest rate of decrease of the error

function, which is why this approach is also known as gradient or steepest descent.

In addition, as the whole training set is required to evaluate ∇J , these techniques

are called batch methods (Wilson and Martinez, 2003). In practice, with the

aim of finding a solution, it may be necessary to run a gradient-based algorithm

multiple times by using a different randomly chosen starting point (Nielsen, 2015).

There is an online version of gradient descent that has proven useful when training

neural networks on large data sets (Li and Liang, 2018). These methods, also

known as sequential gradient descent or stochastic gradient descent, make an

update to the weight vector based on one data point at a time (see Equation (B.8))

wτ+1 = wτ − η∇Jt(wτ) (B.8)

The previous expression, unlike batch methods, handles redundancy in the data

more efficiently (Duchi and Singer, 2009). In general, the training algorithms

of neural networks involve an iterative procedure to minimize an error function,

where the weights of the network are adjusted sequentially. There are two differ-

ent stages at each iteration (Lee et al., 2016): (1) first stage, where the derivatives

of the error function with respect to the weights are computed; (2) second stage,

where the weights are adjusted using the derivatives of the previous stage.

B.1.1 Multilayer Feed-forward Neural Networks

The feed-forward neural network is an artificial NN where the connections between

the nodes do not form a cycle (Fine, 2006). That is, the information moves in

only one direction (forward) from the input layer to the output layer. This class of

networks have multiple layers of neurons that are interconnected in a feed-forward

way. For example, as seen in Figure B.2, there is an input layer of source neurons,

multiple hidden layers, and an output layer of neurons. The hidden layers are

useful to extract relevant features contained in the input data. The training of

an multi-layer perceptron network is usually done by using a back-propagation

algorithm that consists of two stages (Sandberg et al., 2001): (1) Forward phase.

The free parameters of the network are fixed and the input signal is propagated

through the network from one layer to the next one. This stage finishes with

the computation of the following error signal et = yt − ŷt, where yt is the desired

output and ŷt is the actual output produced by the network in response to the

121

input vector ut; (2) Backward phase. Here, the error et is propagated through

the network in a backward direction, which is used to adjust the free parameters

of the network.

The back-propagation learning may be implemented as follows: (1) Sequential

mode, where the parameter adjustments are made on an example-by-example

basis (Jin et al., 2019). (2) Batch mode, where the parameter adjustments are

made on an epoch-by-epoch basis, meaning that the parameters are updated once

the entire set of training examples have been considered (Sim et al., 2019).

Input Layer Hidden Layers Output Layer

Figure B.2: Multilayer Feed-forward Neural Network architecture.

B.1.2 Convolutional Neural Networks

The convolutional neural network (CNN) is an artificial NN for image recog-

nition (Krizhevsky et al., 2012), where each image is divided into topological

portions to find particular patterns during learning (see Figure B.3). In practice,

each image is represented as a three-dimensional matrix, containing information

about its width, height, and color. Then, this information is putted on convo-

lution with the filter set, meaning that the inner product of each filter and the

input is computed along the image. This produces a set of activation maps for

each filter that are superposed to get an output volume, which is also known as

convolutional layer (Klein et al., 2015).

122

Hidden Layers Output LayerInput Layer Convolutional Layer

Figure B.3: Convolutional Neural Network architecture.

B.1.3 Recurrent Neural Networks

The recurrent neural network (RNN) is an artificial NN that contains at least one

feedback connection (see Figure B.4), allowing information to flow in a loop (Gao

et al., 2019). This enables the networks to do temporal processing and learn

sequences, e.g., sequence recognition or temporal prediction. There are three main

RNN architectures (Zaccone et al., 2017): (1) standard multilayer perceptron

with added loops, which uses the non-linear mapping capabilities of multilayer

perceptron and also have some form of memory; (2) uniform structures, where

every neuron is connected to all the others and may also have stochastic activation

functions; (3) simple architectures, where learning can be performed using similar

gradient descent procedures to those used in the back-propagation algorithm for

feed-forward neural networks.

Input Layer Hidden Layers Output Layer

Figure B.4: Recurrent Neural Network architecture.

123

B.2 Linear Adaptive Filters

Suppose the goal is to learn a continuous input-output mapping f : U → R based

on a sequence of input-output examples T = {ut, yt : t ∈ [1, N]}, where U ⊂ RM

is the input domain, ut ∈ RM is an input vector, and yt ∈ R is the desired output.

The linear adaptive filers adjust their free parameters automatically in response

to statistical variations in the environment. These filters, as seen in Figure B.5,

have an input signal vector ut that is applied to the filter at time t. This produces

the actual response ŷt, which is compared with a desired output yt to compute

the error signal et. Then, the error et is used to adjust the weights wt−1 by

an incremental amount ∆wt. The new weight of the filter can be computed

as wt = wt−1 + ∆wt. The previous adaptive filtering process is continuously

repeated until the filter reaches a condition.

Transversal Filter

Adaptive Weight
Control Mechanism

ut

y
t

y
t

^

et

-
+

wt

Figure B.5: Linear adaptive filter structure.

B.2.1 Least Mean Square Algorithm

The simplest and most commonly used form of an adaptive filtering algorithm is

least mean square (LMS). The LMS algorithm operates by minimizing the instant-

aneous cost function Jt = 1
2
e2
t , where the prediction error is et = yt − w>t−1ut.

Then, following the instantaneous version of gradient descent, the adjustment

∆wt is computed as follows

∆wt = ηetut (B.9)

124

where η ∈ R+ is the step-size parameter and wt = wt−1 + ηetut. Thus, the LMS

algorithm assumes a linear model and uses the following procedure:
w0 = 0

et = yt −w>t−1ut

wt = wt−1 + ηetut

(B.10)

where wt is the estimate of the optimal weight at iteration t. However, if the

mapping between y and u is highly nonlinear, then LMS is likely to perform

poorly (Zhang et al., 2017b).

B.2.2 Recursive Least Squares Algorithm

The recursive least squares (RLS), like the least mean square (LMS) algorithm,

uses an error-correction learning strategy; the key difference in the two algorithms

is that RLS aims to minimize the sum of squared estimation errors up to and

including the time t. Thus, given the sequence of training data T = {ut, yt : t ∈
[1, N]}, the RLS algorithm estimates the weight wt−1 by minimizing the following

cost function

Jt =
t∑

j=1

(
yj −w>uj

)2
(B.11)

The state of the adaptive filter, which is represented by the estimation of wt−1,

provides a summary of all data processed by the RLS algorithm. The adjustment

of w at time t can be computed as

∆wt = ktet (B.12)

where kt = Ptut is the gain vector of the RLS algorithm, et = yt −w>t−1ut is the

prediction error, and Pt is defined as

Pt = R−1
t (B.13)

being Rt =
∑t

j=1 uju
>
j the time-averaged correlation matrix. Thus, wt is up-

dated using the following sequential rule

wt = wt−1 + ktet (B.14)

125

Finally, the RLS algorithm uses the following procedure

w0 = 0

P0 = 0

rt = 1 + u>t Pt−1ut

kt = Pt−1ut/rt

et = yt − u>t wt−1

wt = wt−1 + ktet

Pt =
[
Pt−1 − ktk

>
t rt
]

(B.15)

where Pt ∈ RM×M is the state-error-correlation matrix and M is the dimension-

ality of the input vector u.

B.2.3 Affine Projection Algorithm

The affine projection algorithm (APA) uses the online nature of least mean square

(LMS), while reduces the gradient noise by using multiple samples. The APA

algorithm aims to minimize the following cost function:

min
w

J(w) = E
{
|y −w>u|2

}
(B.16)

being E {·} the expectation operator. Then, when the gradient descent is applied

to w, the following sequential rule is obtained

wt = wt−1 + ηUt

[
yt −U>t wt−1

]
(B.17)

where Ut = [ut−K+1, . . . ,ut]M×K , yt = [yt−K+1, . . . , yt]
>, and K denotes the most

recent inputs and observations.

126

B.3 Kernel Adaptive Filtering

These filters are non-linear approximators that combine the universal approxim-

ation property of neural networks and the convex optimization of linear adaptive

filters (Liu et al., 2010). The goal, as seen in Figure B.6, is to learn the underlying

function y = f(u) from the given input-output samples T = {ut, yt : t ∈ [1, N]}.

Universal Function
Approximator

Adaptive Weight
Control Mechanism

ut

y
t

y
t

^

et

-
+

f
t

Figure B.6: Non-linear adaptive filter structure.

In kernel adaptive filtering (KAF), the underlying function f will be a Re-

producing Kernel Hilbert Space (RKHS) H, which is isometric-isomorphic to a

high dimensional feature space (Schölkopf et al., 2018). In addition, according

to Mercer’s theorem (Sun, 2005), a Mercer kernel κσ : U × U → R induces a

mapping ϕ : U → F as follows:

φ()

u φ()u

Figure B.7: Non-linear mapping from the input space to the feature space.

This allows the inner products to be calculated in the feature space, using the

kernel trick ϕ (ut)
> ϕ (u∗) = κσ (ut,u

∗), being u∗ a new input vector. The most

127

widely used Mercer kernel is the Gaussian function,

κσ (ut,u
∗) =

1√
2πσ

exp

(
−‖ut − u

∗‖2

2σ2

)
(B.18)

where ‖·‖ denotes the `2 norm and σ ∈ R+ is the kernel-size (or bandwidth) that

controls the mapping smoothness (Chen et al., 2013b). The function f ∈ H and

a high-dimensional weight vector Ω ∈ F can be computed in the hypothesis and

feature spaces as (Liu et al., 2008):

min
f∈H

N∑
t=1

(yt − f(ut))
2 + λ ‖f‖2

H (B.19a)

min
Ω∈F

N∑
t=1

(
yt −Ω>ϕ(ut)

)2
+ λ ‖Ω‖2

F (B.19b)

where λ ≥ 0 is the regularization factor that controls the solution smoothness

and ‖·‖H denotes the norm in H. The solution of the above equations in a batch

approach is computationally expensive, as the dimension of the Gram matrix

equals the number of input patterns. In this sense, KAFs provide an efficient

alternative that finds the solution in an online sequential way (Chen et al., 2016a).

B.3.1 Reproducing Kernel Hilbert Spaces

A Hilbert space is a linear, complete, and normed space endowed with an in-

ner product (Halmos, 2012). This can be seen as a generalization of the two-

dimensional (or three-dimensional) Euclidean plane to spaces with infinite num-

ber of dimensions. The reproducing kernel Hilbert space (RKHS) is a special Hil-

bert space associated with a kernel κσ (Berlinet and Thomas-Agnan, 2011). More

formally, given the Hilbert spaceH of real-valued functions defined on a set U with

an inner product 〈·, ·〉 and a real-valued bivariate function κσ (u,u∗) on U × U .

The function κσ (u,u∗) is non-negative definite if for any {u1,u2, . . . ,uN} ⊂ U
and for any not all zero corresponding real numbers {α1, α2, . . . , αN} ⊂ R the

following condition is met,

N∑
i=1

N∑
j=1

αiαjκσ(ui,uj) ≥ 0 (B.20)

128

The previous non-negative function κσ (u,u∗) is considered a reproducing

kernel if there exists a uniquely determined (possibly infinite-dimensional) Hilbert

space H consisting of functions on U such that (Principe, 2010): i) ∀u ∈ U ,

κσ(·,u) ∈ H; ii) ∀u ∈ U , ∀f ∈ H, f(u) = 〈f, κσ(·,u)〉H. The first property

maps each point of the input space into a function in the RKHS, while the second

property is also known as the reproducing property of κσ (u,u∗) inH. Thus, when

using kernel-based learning algorithms, the linear algorithm is implicitly executed

in kernel feature space, while the data and operations are done in the input space.

B.3.2 Kernel Least Mean Square Algorithm

The kernel least mean square (KLMS) algorithm, with the aim of overcoming

the limitation of linearity in least mean square (see Appendix B.2.1), employs

a kernel-induced mapping ϕ : U → F to transform the input ut into a high-

dimensional feature space F . Thus, when the LMS algorithm is applied to the

new example sequence {ϕ(ut), yt}, the following expression is obtained in the

feature space F ,


Ω0 = 0

et = yt −Ω>t−1ϕ(ut)

Ωt = Ωt−1 + ηetϕ(ut)

(B.21)

where et is the prediction error, Ωt denotes the estimation of the weight vector

in F , and η ∈ R+ is the step-size parameter. The weight Ωt can be expressed as

a linear combination of all previous inputs weighted by the prediction errors as

follows (Chen et al., 2012),

Ωt = Ωt−1 + ηetϕ(ut)

Ωt = [Ωt−2 + ηet−1ϕ(ut−1)] + ηetϕ(ut)

Ωt = Ωt−2 + η [et−1ϕ(ut−1) + etϕ(ut)]

Ωt = Ω0 + η
t∑

j=1

ejϕ(uj)

Ωt = η
t∑

j=1

ejϕ(uj)

129

Thus, when a new input vector u∗ ∈ RM arrives in the system, the output can

be computed as

Ω>t ϕ(u∗) =

[
η

t∑
j=1

ejϕ(uj)
>

]
ϕ(u∗)

Ω>t ϕ(u∗) = η
t∑

j=1

ej
[
ϕ(uj)

>ϕ(u∗)
]

Ω>t ϕ(u∗) = η

t∑
j=1

ejκσ (uj,u
∗)

Finally, the KLMS algorithm estimates the input-output mapping f using the

following sequential learning rule in the original space (Li and Pŕıncipe, 2017):
f0 = 0

et = yt − ft−1(ut)

ft = ft−1 + ηetκσ(ut, ·)

(B.22)

where ft denotes the learned mapping at iteration t and κσ(·, ·) ∈ R+ is a Mercer

kernel with a kernel-size σ ∈ R+ that controls the mapping smoothness (Chen

et al., 2013b). This sequential rule produces a growing radial-basis function

network by allocating a new kernel unit for every new example with ut as the

center and ηet as its coefficient, which poses time-space complexity issues for

continuous adaptation scenarios (Liu et al., 2010). In addition, there remain

three main challenges in KAF algorithms: selection an appropriate Mercer kernel,

determination of kernel parameter and tuning of the step-size (Chen et al., 2016a).

B.3.3 Kernel Recursive Least Squares Algorithm

The kernel recursive least squares (KRLS) is the recursive least squares (RLS) al-

gorithm (see Appendix B.2.2) applied to the example sequence {ϕ(ut), yt}, where

the aim is to minimize the following expression (Engel et al., 2004)

min
Ω∈F

t∑
j=1

(
yt −Ω>ϕ(uj)

)2
+ λ ‖Ω‖2

F (B.23)

130

The KRLS algorithm, which assumes a radial basis function network struc-

ture at each iteration, sequentially estimates the input-output mapping f as fol-

lows (Zhou et al., 2017):



Q1 = (λ+ κσ(u1,u1))−1

α1 = Q1y1

ht = [κσ(ut,u1), . . . , κσ(ut,ut−1)]>

zt = Qt−1ht

rt = λ+ κσ(ut,ut)− z>t ht

Qt = r−1
t

[
Qt−1rt + ztz

>
t −zt

−z>t 1

]
et = yt − h>t αt−1

αt =

[
αt−1 − ztr

−1
t et

r−1
t et

]

(B.24)

Thus, given a new input u∗ ∈ RM , the following expression is used to compute

the output of the system

f(u∗) =
t∑

j=1

αt,jκσ(uj,u
∗) (B.25)

B.3.4 Kernel Affine Projection Algorithm

The kernel affine projection (KAPA) is an affine projection (APA) algorithm

(see Appendix B.2.3) in feature space. The KAPA algorithm, unlike KLMS,

does not uses the instantaneous values for approximating the mean squared error

(MSE) criterion. In particular, KAPA replaces the MSE by an approximation

from the L most recent errors. More formally, let et = [et,t−L+1, et,t−L+2, . . . , et,t]
>,

where et,j is the prediction error with hypothesis ft−1 and input-output pair

(uj, yj), i.e., et,j = yj − ft−1(uj). The KAPA algorithm estimates the weight

131

vector Ω as follows:

Ωt = Ωt−1 − η
∂

∂Ωt−1

(
1

2

∥∥e2
t

∥∥)
Ωt = Ωt−1 − η

[
∂

∂Ωt−1

e>t

]
et

Ωt = Ωt−1 − η
[

∂

∂Ωt−1

(
yt −Φ>t Ω>t−1

)]
et

Ωt = Ωt−1 + ηΦ>t et

such that yt = [yt−L+1, yt−L+2, . . . , yt]
> and Φt = [ϕ(ut−L+1), ϕ(ut−L+2), . . . , ϕ(ut)].

The KAPA algorithm estimates the input-output mapping f as

ft = ft−1 + ηKtet (B.26)

where Kt = [κσ(ut−L+1, ·), κσ(ut−L+2, ·), . . . , κσ(ut, ·)]. The learned mapping by

KAPA is computed using the following expression

ft(·) =
t∑

j=1

αt,jκσ(uj, ·) (B.27)

being αt = [αt,1,αt,2, . . . ,αt,t]
> a coefficient vector, which is related to the errors

at each sample. The KAPA algorithm, unlike KLMS, updates the most recent

coefficients.

132

Appendix C

Information Theory

Information theory, which has proven useful when analyzing data of complex

systems (Guo et al., 2018), studies how to optimally quantify and transmit mes-

sages through noisy channels (Pierce, 2012). This theory plays a central role

in the design of communication systems, signal processing, and data compres-

sion (Csiszar and Körner, 2011). In a communication system, the information

is exchanged between two stations called transmitter and receiver (Lin et al.,

2010). First, the information is generated, processed, shaped, and encoded on

the transmitter side. Then, the information is transmitted over a channel, which

usually adds noise and distortion to the original message. Finally, the receiver

gets a distorted or corrupted version of the information sent by the transmit-

ter. The problem is how to recover the original information from the corrupted

message, which is normally modeled as stationary additive Gaussian noise with

a given variance (Zhang and Chan, 2015). Information theory addresses the pre-

vious problem by studying the statistical structure of messages and analyzing

the noise levels in the channel. This is done by using statistical descriptors such

as entropy and mutual information. However, knowledge of the data probabil-

ity density function (PDF) is a necessary first step to estimate these statistical

descriptors, which in practice means either assume an analytical model or to use a

non-parametric estimator (Deng et al., 2016). In this section, we briefly introduce

the definitions of entropy, mutual information, and divergence.

133

C.1 Entropy

Given a random variable x with a set of possible outcomes SX = {s1, . . . , sN}
having probabilities pX = {p1, . . . , pN}, where p(x = sk) = pk, pk ≥ 0, and∑

x∈Sx
p(x) = 1. The uncertainty of the random variable X, as seen in Equa-

tion (C.1), can be computed as the sum of the uncertainty in each message

weighted by the probability of each message (Wu et al., 2013b),

H(X) = −
∑
k

p(xk) log p(xk) (C.1)

The previous expression, which is also known as Shannon or information en-

tropy, measures the uncertainty and assumes that for p(xk) = 0 the condition

p(xk) log p(xk) = 0 is met. The information entropy, as seen in Equation (C.1),

has the same form of physical entropy. However, the former is a property of

the probability mass function (PMF) (Baratpour and Bami, 2012), while the lat-

ter is a property of the state of the physical system. The following are some

of the properties of Shannon entropy (Principe, 2010): i) H(p, 1 − p) is a con-

tinuous function of p; ii) H(p1, p2, . . . , pN) is a symmetric function of pk; iii)

H(p1 · p2) = H(p1) +H(p2) for independent events.

C.2 Mutual Information

Let us consider the transmitted message X = {xk}Nk=1 and the received message

Y = {yk}Nk=1 with a probability distribution p(X, Y) over the product space. The

mutual information between X and Y , which can be seen as the total decrease in

uncertainty in X by observing Y (Haghighat et al., 2011), is computed as follows:

I(X, Y) =
∑
i

∑
k

p(xk, yi) log
p(xk|yi)
p(xk)

(C.2a)

I(X, Y) =
∑
i

∑
k

p(xk, yi) log
p(xk, yi)

p(xk)p(yi)
(C.2b)

where p(X, Y) is the joint mass function of X and Y . In addition, the joint

entropy H(X, Y) of a pair of random variables (X, Y) and the conditional entropy

134

H(Y |X) of Y given X are computed using the following expressions:

H(X, Y) = −
∑
x

∑
y

p(x, y) log p(x, y) (C.3)

H(Y |X) = −
∑
x

∑
y

p(x, y) log p(x|y) (C.4)

The mutual information, which is always greater than zero, quantifies the

intersection of H(X) and H(Y). That is, this statistical descriptor quantifies

the reduction of uncertainty in X after observing Y . Thus, combining Equa-

tions (C.2) to (C.4), the mutual information can also be expressed as,

I(X, Y) = H(X) +H(Y)−H(X, Y) (C.5a)

I(X, Y) = H(X)−H(X|Y) (C.5b)

I(X, Y) = H(Y)−H(Y |X) (C.5c)

The mutual information I(X, Y), as seen in Figure C.1, quantifies the inter-

section of the marginal entropies H(X) and H(Y),

H(X)

H(Y)

H(X,Y)

H(X|Y) I(X,Y) H(Y|X)

Figure C.1: Relationships between entropy and mutual information.

C.3 Divergence and Mutual Information

The Kullback–Leibler (KL) divergence, which measures the dissimilarity between

two different probability densities p(x) and q(x), can be computed using the

following expression,

D(p||q) =
∑
x

p(x) log
p(x)

q(x)
(C.6)

135

The KL divergence is not considered a distance measure, as it is not symmetric

and does not meet the triangular inequality criteria (Moreno et al., 2004). Thus,

the mutual information can be seen as a special case of the KL divergence. This

is obtained when p(x) is the joint probability density function of x and y, while

q(x) is the product of the marginals as follows:

D
(
p(X, Y)||p(X)q(Y)

)
= I(X, Y) (C.7)

136

Appendix D

Information-Theoretic Learning

Information-theoretic learning (ITL) uses the general framework of information

theory in the design of cost functions for adaptive systems (Giraldo and Principe,

2013). However, the main issue in ITL is how to estimate entropy and divergence

directly from samples. In this section, using ITL approaches, we will introduce

non-parametric estimators of entropy and divergence that can be derived directly

from data.

D.1 Renyi Entropy

Let us assume a discrete probability distribution P = {p1, p2, . . . , pN} fulfilling

the conditions of
∑

k pk = 1 and pk ≥ 0. The Renyi information of order α, which

is also known as Renyi α entropy can be computed as

Hα(X) =
1

1− α
log

(∑
k

pαk

)
(D.1)

where the information potential α allows to compute several measurements of

uncertainty within a given distribution (Kapur, 1994). In Renyi entropy, unlike

Shannon entropy, the logarithm appears outside the sum. This allows the use

of ITL in machine learning problems where the probability density function of

experimental data is not known (Principe, 2010). The following are some of the

properties of Renyi entropy (Aczél and Daróczy, 1975; Xu, 1999):

• H(p1, . . . , pN) is a continuous function of all the probabilities pk, meaning

that small changes in the probability distribution produce small changes in

137

the entropy.

• H(p1, . . . , pN) is permutationally symmetric, indicating that the entropy

will not change with the permutation of any pk in the distribution.

• H(1/n, . . . , 1/n) is a monotonic increasing function of n, meaning that the

uncertainty and entropy increase as the number of choices in an equiprob-

able distribution increases.

• Given two independent probability distributions p = (p1, p2, . . . , pN) and

q = (q1, q2, . . . , qN), then H(p · q) = H(p) + H(q), where p · q the joint

probability distribution.

• Hα(X) is non-negative.

• Hα(0, 1) = Hα(1, 0) = 0. The Renyi entropy is concave when α ≤ 1, while

it is neither pure convex nor pure concave when α > 1.

• (α− 1)Hα(X) is a concave function of pk.

• Hα(X) is a bounded, continuous and non-increasing function of α.

• Hα(A ∩B) = Hα(A)−Hα(B|A), where α ∈ R.

D.2 Quadratic Renyi Entropy

The quadratic Renyi entropy H2 is obtained when α = 2, which allows to impli-

citly use an Euclidean distance from the point p(x) in the simplex to the origin

of the space (Principe, 2010). This has proven useful to quantify diversity in

econometric applications, as H2 may be more suitable than Shannon entropy for

entropy maximization (Hart, 1975; Huang and Kou, 2014). The quadratic Renyi

entropy can be computed as follows:

H2(X) = − log

(∑
k

p2
k

)
(D.2a)

H2(X) = − log

∫
p2(x)dx (D.2b)

where p(x) is the continuous probability density function defined in [0, 1]. In

practice, traditional approaches first estimate the probability density function

138

and then compute its entropy. In contrast, H2 estimates entropy directly from

samples rather than explicitly calculating the probability density function. The

probability density function of N independent and identically distributed samples

{x1, x2, . . . , xN} can be computed using the kernel (Parzen) estimation as,

p̂X(x) =
1

Nσ

N∑
i=1

κσ

(
x− xi
σ

)
(D.3)

being κσ(·) a symmetric, continuous, and differentiable kernel function (Schölkopf

et al., 2018). Thus, combining Equations (B.18), (D.2b) and (D.3), the following

approximation of the quadratic Renyi entropy is obtained,

Ĥ2(X) = − log

∫ ∞
−∞

(
1

N

N∑
i=1

κσ(x− xi)

)2

dx

Ĥ2(X) = − log
1

N2

∫ ∞
−∞

(
N∑
i=1

N∑
j=1

κσ(x− xj) · κσ(x− xi)

)
dx

Ĥ2(X) = − log
1

N2

N∑
i=1

N∑
j=1

∫ ∞
−∞

κσ(x− xj) · κσ(x− xi)dx

Ĥ2(X) = − log

(
1

N2

N∑
i=1

N∑
j=1

κσ
√

2(xj − xi)

)
(D.4)

Equation (D.4) is a major contribution of information-theoretic learning, as it

estimates entropy directly from samples without explicitly computing the prob-

ability density function (Han et al., 2011).

D.3 Renyi Divergence and Mutual Information

Given the independent and identically distributed samples {xp(1), . . . , xp(N)}
and {xq(1), . . . , xq(N)} drawn from p(x) and q(x), respectively. The Renyi diver-

gence can be computed as follows (Principe, 2010):

D̂α(p||q) =
1

α− 1
log

1

N

N∑
j=1

∑N
i=1 κσ

(
xp(j)− xp(i)

)
∑N

i=1 κσ

(
xq(j)− xq(i)

)
α−1

(D.5)

139

The previous expression has the following properties: i) D̂α(p||q) ≥ 0, ∀ p, q,
α > 0; ii) D̂α(p||q) = 0 if p(x) = q(x) ∀x ∈ R; iii) limα→1 D̂α(p||q) = D(p||q),
where D(p||q) is the Kullback-Leibler divergence (see Equation (C.6)). Similarly,

as proposed in Rényi (1976), the non-parametric estimator for Renyi mutual

information is given as,

Îα(X) =
1

α− 1
log

1

N

N∑
j=1


(

1
N

∑N
i=1

∏n
o=1 κσo

(
x(j)− x(i)

))
∏n

o=1

(
1
N

∑N
i=1 κσo

(
xo(j)− xo(i)

))

α−1

(D.6)

140

Bibliography

Abedin, M. Z., Guotai, C., Moula, F.-E., Azad, A. S., and Khan, M. S. U. (2019).

Topological applications of multilayer perceptrons and support vector machines

in financial decision support systems. International Journal of Finance & Eco-

nomics, 24(1):474–507.

Aczél, J. and Daróczy, Z. (1975). On measures of information and their charac-

terizations. New York, 168.

Ahmad, S., Lavin, A., Purdy, S., and Agha, Z. (2017). Unsupervised real-time

anomaly detection for streaming data. Neurocomputing, 262:134–147.

Ahmed, N. K., Atiya, A. F., Gayar, N. E., and El-Shishiny, H. (2010). An

empirical comparison of machine learning models for time series forecasting.

Econometric Reviews, 29(5-6):594–621.

Aitken, M., Cumming, D., and Zhan, F. (2015). High frequency trading and

end-of-day price dislocation. Journal of Banking & Finance, 59:330–349.

Aldridge, I. (2013). High-frequency trading: a practical guide to algorithmic

strategies and trading systems, volume 604. John Wiley & Sons.

Alexeev, V., Tapon, F., et al. (2014). The number of stocks in your portfolio

should be larger than you think: Diversification evidence from five developed

markets. Journal of Investment Strategies, 4:43–82.

Alhnaity, B. and Abbod, M. (2020). A new hybrid financial time series prediction

model. Engineering Applications of Artificial Intelligence, 95:103873.

Almahdi, S. and Yang, S. Y. (2019). A constrained portfolio trading system using

particle swarm algorithm and recurrent reinforcement learning. Expert Systems

with Applications, 130:145–156.

141

Alpaydin, E. (2020). Introduction to Machine Learning. MIT Press.

Ameriks, J., Kézdi, G., Lee, M., and Shapiro, M. D. (2020). Heterogeneity

in expectations, risk tolerance, and household stock shares: The attenuation

puzzle. Journal of Business & Economic Statistics, 38(3):633–646.

An, S., Liu, W., and Venkatesh, S. (2007). Fast cross-validation algorithms for

least squares support vector machine and kernel ridge regression. Pattern Re-

cognition, 40(8):2154 – 2162. Part Special Issue on Visual Information Pro-

cessing.

Antweiler, W. and Frank, M. Z. (2004). Is all that talk just noise? the information

content of internet stock message boards. The Journal of Finance, 59(3):1259–

1294.

Araya, I. A., Valle, C., and Allende, H. (2019). A multi-scale model based on the

long short-term memory for day ahead hourly wind speed forecasting. Pattern

Recognition Letters.

Ardia, D., Bluteau, K., and Rüede, M. (2019). Regime changes in bitcoin garch

volatility dynamics. Finance Research Letters, 29:266–271.

Arévalo, R., Garćıa, J., Guijarro, F., and Peris, A. (2017). A dynamic trading

rule based on filtered flag pattern recognition for stock market price forecasting.

Expert Systems with Applications, 81:177–192.

Ariyo, A. A., Adewumi, A. O., and Ayo, C. K. (2014). Stock price prediction

using the ARIMA model. In 2014 UKSim-AMSS 16th International Conference

on Computer Modelling and Simulation, pages 106–112. IEEE.

Arjovsky, M., Shah, A., and Bengio, Y. (2016). Unitary evolution recurrent neural

networks. In International Conference on Machine Learning, pages 1120–1128.

Azodi, C. B., Tang, J., and Shiu, S.-H. (2020). Opening the black box: Inter-

pretable machine learning for geneticists. Trends in Genetics.

Babu, M. S., Geethanjali, N., and Satyanarayana, B. (2012). Clustering approach

to stock market prediction. International Journal of Advanced Networking and

Applications, 3(4):1281.

142

Bahrammirzaee, A. (2010). A comparative survey of artificial intelligence applica-

tions in finance: artificial neural networks, expert system and hybrid intelligent

systems. Neural Computing and Applications, 19(8):1165–1195.

Ballings, M., Van den Poel, D., Hespeels, N., and Gryp, R. (2015). Evaluating

multiple classifiers for stock price direction prediction. Expert Systems with

Applications, 42(20):7046–7056.

Bao, W., Yue, J., and Rao, Y. (2017). A deep learning framework for financial

time series using stacked autoencoders and long-short term memory. PloS One,

12(7):e0180944.

Baratpour, S. and Bami, Z. (2012). On the discrete cumulative residual entropy.

Battalio, R., Hatch, B., and Jennings, R. (2004). Toward a national market sys-

tem for us exchange–listed equity options. The Journal of Finance, 59(2):933–

962.

Baumeister, C. and Kilian, L. (2015). Forecasting the real price of oil in a changing

world: a forecast combination approach. Journal of Business & Economic

Statistics, 33(3):338–351.

Belciug, S. (2020). Logistic regression paradigm for training a single-hidden layer

feedforward neural network. application to gene expression datasets for cancer

research. Journal of Biomedical Informatics, 102:103373.

Berlinet, A. and Thomas-Agnan, C. (2011). Reproducing kernel Hilbert spaces in

probability and statistics. Springer Science & Business Media.

Bernal, A., Fok, S., and Pidaparthi, R. (2012). Financial market time series

prediction with recurrent neural networks. State College: Citeseer.[Google

Scholar].

Beshears, J., Choi, J. J., Laibson, D., and Madrian, B. C. (2009). How does

simplified disclosure affect individuals’ mutual fund choices? Technical report,

National Bureau of Economic Research.

Bezerra, P. C. S. and Albuquerque, P. H. M. (2017). Volatility forecasting via svr–

garch with mixture of gaussian kernels. Computational Management Science,

14(2):179–196.

143

Bhuriya, D., Kaushal, G., Sharma, A., and Singh, U. (2017). Stock market predic-

ation using a linear regression. In 2017 International Conference of Electronics,

Communication and Aerospace Technology (ICECA), volume 2, pages 510–513.

IEEE.

Bielecki, T. R. and Rutkowski, M. (2013). Credit risk: modeling, valuation and

hedging. Springer Science & Business Media.

Bishop, C. M. (2006). Pattern recognition and machine learning. Springer.

Bouallegue, K. (2017). A new class of neural networks and its applications.

Neurocomputing, 249:28–47.

Breiman, L. (2001). Random forests. Machine Learning, 45(1):5–32.

Buchanan, B. (2019). Artificial intelligence in finance. London: The Alan Turing

Institute.

Cakır, E., Parascandolo, G., Heittola, T., Huttunen, H., and Virtanen, T. (2017).

Convolutional recurrent neural networks for polyphonic sound event detec-

tion. IEEE/ACM Transactions on Audio, Speech, and Language Processing,

25(6):1291–1303.

Cao, J., Li, Z., and Li, J. (2019). Financial time series forecasting model based on

CEEMDAN and LSTM. Physica A: Statistical Mechanics and its Applications,

519:127–139.

Cao, L.-J. and Tay, F. E. H. (2003). Support vector machine with adaptive

parameters in financial time series forecasting. IEEE Transactions on Neural

Networks, 14(6):1506–1518.

Caraiani, P. (2014). The predictive power of singular value decomposition en-

tropy for stock market dynamics. Physica A: Statistical Mechanics and its

Applications, 393:571–578.

Caraiani, P. (2018). Modeling the comovement of entropy between financial mar-

kets. Entropy, 20(6):417.

Cerchiello, P., Nicola, G., Ronnqvist, S., and Sarlin, P. (2017). Deep learn-

ing bank distress from news and numerical financial data. ArXiv Preprint

ArXiv:1706.09627.

144

Cervelló-Royo, R., Guijarro, F., and Michniuk, K. (2015). Stock market trading

rule based on pattern recognition and technical analysis: Forecasting the DJIA

index with intraday data. Expert Systems with Applications, 42(14):5963–5975.

Chai, T. and Draxler, R. R. (2014). Root mean square error (RMSE) or mean

absolute error (MAE)?–arguments against avoiding RMSE in the literature.

Geoscientific Model Development, 7(3):1247–1250.

Chaim, P. and Laurini, M. P. (2018). Volatility and return jumps in bitcoin.

Economics Letters, 173:158–163.

Chan, W., Cheung, S. H., Zhang, L.-X., and Wu, K. (2008). Temporal aggregation

of equity return time-series models. Mathematics and Computers in Simulation,

78(2-3):172–180.

Chang, S., Zhang, Y., Han, W., Yu, M., Guo, X., Tan, W., Cui, X., Witbrock, M.,

Hasegawa-Johnson, M. A., and Huang, T. S. (2017). Dilated recurrent neural

networks. In Advances in Neural Information Processing Systems, pages 77–87.

Chatzis, S. P., Siakoulis, V., Petropoulos, A., Stavroulakis, E., and Vlachogianna-

kis, N. (2018). Forecasting stock market crisis events using deep and statistical

machine learning techniques. Expert Systems with Applications, 112:353–371.

Chen, B., Hu, J., Pu, L., and Sun, Z. (2007). Stochastic gradient algorithm under

(h, ϕ)-entropy criterion. Circuits, Systems & Signal Processing, 26(6):941–960.

Chen, B., Liang, J., Zheng, N., and Pŕıncipe, J. C. (2016a). Kernel least mean

square with adaptive kernel size. Neurocomputing, 191:95–106.

Chen, B., Xing, L., Zheng, N., and Pŕıncipe, J. C. (2018a). Quantized minimum

error entropy criterion. IEEE Transactions on Neural Networks and Learning

Systems, 30(5):1370–1380.

Chen, B., Yuan, Z., Zheng, N., and Pŕıncipe, J. C. (2013a). Kernel minimum

error entropy algorithm. Neurocomputing, 121:160–169.

Chen, B., Zhao, S., Zhu, P., and Pŕıncipe, J. C. (2012). Quantized kernel least

mean square algorithm. IEEE Transactions on Neural Networks and Learning

Systems, 23(1):22–32.

145

Chen, B., Zhao, S., Zhu, P., and Principe, J. C. (2013b). Quantized kernel

recursive least squares algorithm. IEEE Transactions on Neural Networks and

Learning Systems, 24(9):1484–1491.

Chen, B., Zhu, P., and Principe, J. C. (2011). Survival information potential:

A new criterion for adaptive system training. IEEE Transactions on Signal

Processing, 60(3):1184–1194.

Chen, H., Xiao, K., Sun, J., and Wu, S. (2017). A double-layer neural network

framework for high-frequency forecasting. ACM Transactions on Management

Information Systems (TMIS), 7(4):1–17.

Chen, J. (2019). Text-classification methods and the mathematical theory of Prin-

cipal Components. PhD thesis, Georgia Institute of Technology.

Chen, K., Zhou, Y., and Dai, F. (2015). A LSTM-based method for stock returns

prediction: A case study of China stock market. In 2015 IEEE International

Conference on Big Data (Big Data), pages 2823–2824. IEEE.

Chen, N., Ribeiro, B., and Chen, A. (2016b). Financial credit risk assessment: a

recent review. Artificial Intelligence Review, 45(1):1–23.

Chen, R.-Y. (2018). A traceability chain algorithm for artificial neural networks

using T–S Fuzzy cognitive maps in blockchain. Future Generation Computer

Systems, 80:198–210.

Chen, T.-L. (2011). Forecasting the taiwan stock market with a stock trend

recognition model based on the characteristic matrix of a bull market. African

Journal of Business Management, 5(23):9947–9960.

Chen, T.-l. and Chen, F.-y. (2016). An intelligent pattern recognition model

for supporting investment decisions in stock market. Information Sciences,

346:261–274.

Chen, Y., Zhang, C., He, K., and Zheng, A. (2018b). Multi-step-ahead crude

oil price forecasting using a hybrid grey wave model. Physica A: Statistical

Mechanics and its Applications, 501:98–110.

Cheng, W., Rolls, E. T., Qiu, J., Yang, D., Ruan, H., Wei, D., Zhao, L., Meng,

J., Xie, P., and Feng, J. (2018). Functional connectivity of the precuneus in

146

unmedicated patients with depression. Biological Psychiatry: Cognitive Neur-

oscience and Neuroimaging, 3(12):1040–1049.

Chi, J., Li, X., Wang, H., Gao, D., and Gerstoft, P. (2019). Sound source ranging

using a feed-forward neural network trained with fitting-based early stopping.

The Journal of the Acoustical Society of America, 146(3):EL258–EL264.

Chiu, D.-Y. and Chen, P.-J. (2009). Dynamically exploring internal mechan-

ism of stock market by fuzzy-based support vector machines with high dimen-

sion input space and genetic algorithm. Expert Systems with Applications,

36(2):1240–1248.

Cho, Y. and Saul, L. K. (2009). Kernel methods for deep learning. In Advances

in Neural Information Processing Systems, pages 342–350.

Choi, K., Fazekas, G., Sandler, M., and Cho, K. (2017). Convolutional recurrent

neural networks for music classification. In 2017 IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP), pages 2392–2396. IEEE.

Chong, E., Han, C., and Park, F. C. (2017). Deep learning networks for stock

market analysis and prediction: Methodology, data representations, and case

studies. Expert Systems with Applications, 83:187–205.

Chung, J., Ahn, S., and Bengio, Y. (2016). Hierarchical multiscale recurrent

neural networks. ArXiv Preprint ArXiv:1609.01704.

Chung, J., Gulcehre, C., Cho, K., and Bengio, Y. (2015). Gated feedback recur-

rent neural networks. In International Conference on Machine Learning, pages

2067–2075.

Cochrane, J. H. (2009). Asset pricing: Revised edition. Princeton University

Press.

Collins, D. and Biekpe, N. (2003). Contagion and interdependence in african

stock markets. South African Journal of Economics, 71(1):181–194.

Creighton, J. and Zulkernine, F. H. (2017). Towards building a hybrid model for

predicting stock indexes. In 2017 IEEE International Conference on Big Data

(Big Data), pages 4128–4133. IEEE.

147

Csiszar, I. and Körner, J. (2011). Information theory: coding theorems for discrete

memoryless systems. Cambridge University Press.

Cui, Y., Ahmad, S., and Hawkins, J. (2016). Continuous online sequence learning

with an unsupervised neural network model. Neural Computation, 28(11):2474–

2504.

Culkin, R. and Das, S. R. (2017). Machine learning in finance: The case of deep

learning for option pricing. Journal of Investment Management, 15(4):92–100.

Da Silva, I. N., Spatti, D. H., Flauzino, R. A., Liboni, L. H. B., and dos Reis Alves,

S. F. (2017). Artificial neural network architectures and training processes. In

Artificial Neural Networks, pages 21–28. Springer.

Dai, W., Wu, J.-Y., and Lu, C.-J. (2012). Combining nonlinear independent

component analysis and neural network for the prediction of asian stock market

indexes. Expert Systems with Applications, 39(4):4444–4452.

Das, S., Behera, R. K., Rath, S. K., et al. (2018). Real-time sentiment analysis

of twitter streaming data for stock prediction. Procedia Computer Science,

132:956–964.

Dash, R. and Dash, P. K. (2016). A hybrid stock trading framework integrating

technical analysis with machine learning techniques. The Journal of Finance

and Data Science, 2(1):42–57.

De Faria, E., Albuquerque, M. P., Gonzalez, J., Cavalcante, J., and Albuquerque,

M. P. (2009). Predicting the brazilian stock market through neural networks

and adaptive exponential smoothing methods. Expert Systems with Applica-

tions, 36(10):12506–12509.

De Ketelaere, B., Hubert, M., Rousseeuw, P., and Vranckx, I. (2018). Real-time

outlier detection based on DetMCD. In Book of Abstracts, page 99.

Deng, Y., Bao, F., Deng, X., Wang, R., Kong, Y., and Dai, Q. (2016). Deep

and structured robust information theoretic learning for image analysis. IEEE

Transactions on Image Processing, 25(9):4209–4221.

Devi, B. U., Sundar, D., and Alli, P. (2013). An effective time series analysis for

stock trend prediction using ARIMA model for nifty midcap-50. International

Journal of Data Mining & Knowledge Management Process, 3(1):65.

148

Dey, C. and Gibbon, J. (2018). New development: Private finance over public

good? questioning the value of impact bonds. Public Money & Management,

38(5):375–378.

Di Persio, L. and Honchar, O. (2017). Recurrent neural networks approach to

the financial forecast of Google assets. International Journal of Mathematics

and Computers in Simulation, 11:7–13.

Dias, J. G., Vermunt, J. K., and Ramos, S. (2015). Clustering financial time

series: New insights from an extended hidden Markov model. European Journal

of Operational Research, 243(3):852–864.

Diehl, E. (2016). Law 2: Know the assets to protect. In Ten Laws for Security,

pages 45–66. Springer.

Dietterich, T. G. et al. (2002). Ensemble learning. The Handbook of Brain Theory

and Neural Networks, 2:110–125.

Dimpfl, T. and Peter, F. J. (2014). The impact of the financial crisis on transat-

lantic information flows: An intraday analysis. Journal of International Fin-

ancial Markets, Institutions and Money, 31:1–13.

Ding, X., Zhang, Y., Liu, T., and Duan, J. (2015). Deep learning for event-

driven stock prediction. In Twenty-Fourth International Joint Conference on

Artificial Intelligence.

Dixon, M., Klabjan, D., and Bang, J. H. (2015). Implementing deep neural

networks for financial market prediction on the Intel Xeon Phi. In Proceedings

of the 8th Workshop on High Performance Computational Finance, pages 1–6.

Dixon, M., Klabjan, D., and Bang, J. H. (2017). Classification-based financial

markets prediction using deep neural networks. Algorithmic Finance, 6(3-4):67–

77.

Doucoure, B., Agbossou, K., and Cardenas, A. (2016). Time series prediction us-

ing artificial wavelet neural network and multi-resolution analysis: Application

to wind speed data. Renewable Energy, 92:202–211.

Dowd, K. (2007). Measuring market risk. John Wiley & Sons.

149

Du, Z., Qin, M., Zhang, F., and Liu, R. (2018). Multistep-ahead forecasting of

chlorophyll a using a wavelet nonlinear autoregressive network. Knowledge-

Based Systems, 160:61–70.

Duan, S., Yu, S., Chen, Y., and Principe, J. C. (2019). On kernel method–based

connectionist models and supervised deep learning without backpropagation.

Neural Computation, 32(1):97–135.

Duchi, J. and Singer, Y. (2009). Efficient online and batch learning using forward

backward splitting. The Journal of Machine Learning Research, 10:2899–2934.

Durbin, J. and Koopman, S. J. (2012). Time series analysis by state space meth-

ods. Oxford University Press.

Dutta, A., Bandopadhyay, G., and Sengupta, S. (2012). Prediction of stock

performance in indian stock market using logistic regression. International

Journal of Business and Information, 7(1).

Dutta, S., Jha, S., Sankaranarayanan, S., and Tiwari, A. (2018). Output range

analysis for deep feedforward neural networks. In NASA Formal Methods Sym-

posium, pages 121–138. Springer.

Engel, Y., Mannor, S., and Meir, R. (2004). The kernel recursive least-squares

algorithm. IEEE Transactions on Signal Processing, 52(8):2275–2285.

Enke, D. and Thawornwong, S. (2005). The use of data mining and neural net-

works for forecasting stock market returns. Expert Systems with Applications,

29(4):927–940.

Erdogmus, D. and Principe, J. C. (2002a). An error-entropy minimization al-

gorithm for supervised training of nonlinear adaptive systems. IEEE Transac-

tions on Signal Processing, 50(7):1780–1786.

Erdogmus, D. and Principe, J. C. (2002b). Generalized information potential

criterion for adaptive system training. IEEE Transactions on Neural Networks,

13(5):1035–1044.

Erkaymaz, O., Ozer, M., and Perc, M. (2017). Performance of small-world feed-

forward neural networks for the diagnosis of diabetes. Applied Mathematics

and Computation, 311:22–28.

150

Eshaghzadeh, A. and Hajian, A. (2018). 2d inverse modeling of residual gravity

anomalies from simple geometric shapes using modular feed-forward neural

network. Annals of Geophysics, 61(1):115.

Fan, A. and Palaniswami, M. (2001). Stock selection using support vector ma-

chines. In IJCNN’01. International Joint Conference on Neural Networks. Pro-

ceedings (Cat. No. 01CH37222), volume 3, pages 1793–1798. IEEE.

Fan, J., Han, F., and Liu, H. (2014a). Challenges of big data analysis. National

Science Review, 1(2):293–314.

Fan, Y., Qian, Y., Xie, F.-L., and Soong, F. K. (2014b). TTS synthesis with

bidirectional LSTM based recurrent neural networks. In Fifteenth Annual Con-

ference of the International Speech Communication Association.

Fang, M. and Chang, C.-L. (2017). Options pricing efficiency with fractional fast

fourier transform. DEStech Transactions on Environment, Energy and Earth

Sciences, (apeesd).

Faris, H., Aljarah, I., and Mirjalili, S. (2016). Training feedforward neural net-

works using multi-verse optimizer for binary classification problems. Applied

Intelligence, 45(2):322–332.

Faust, O., Ang, P. C. A., Puthankattil, S. D., and Joseph, P. K. (2014). De-

pression diagnosis support system based on eeg signal entropies. Journal of

Mechanics in Medicine and Biology, 14(03):1450035.

Feng, G., Polson, N. G., and Xu, J. (2018). Deep factor alpha. ArXiv Preprint

ArXiv:1805.01104, 2.

Fethi, M. D. and Pasiouras, F. (2010). Assessing bank efficiency and perform-

ance with operational research and artificial intelligence techniques: A survey.

European Journal of Operational Research, 204(2):189–198.

Fine, T. L. (2006). Feedforward neural network methodology. Springer Science &

Business Media.

Fischer, T. and Krauss, C. (2018). Deep learning with long short-term memory

networks for financial market predictions. European Journal of Operational

Research, 270(2):654–669.

151

Fortunato, M., Blundell, C., and Vinyals, O. (2017). Bayesian recurrent neural

networks. ArXiv Preprint ArXiv:1704.02798.

Fraiwan, L., Lweesy, K., Khasawneh, N., Wenz, H., and Dickhaus, H. (2012).

Automated sleep stage identification system based on time–frequency analysis

of a single EEG channel and random forest classifier. Computer Methods and

Programs in Biomedicine, 108(1):10–19.

France, S. L. and Ghose, S. (2019). Marketing analytics: Methods, practice,

implementation, and links to other fields. Expert Systems with Applications,

119:456–475.

Fu, X., Du, J., Guo, Y., Liu, M., Dong, T., and Duan, X. (2018). A machine

learning framework for stock selection. ArXiv Preprint ArXiv:1806.01743.

Gao, J. and Hu, J. (2013). Fast monitoring of epileptic seizures using recurrence

time statistics of electroencephalography. Frontiers in Computational Neuros-

cience, 7:122.

Gao, W., Chen, J., Richard, C., and Huang, J. (2014). Online dictionary learning

for kernel LMS. IEEE Transactions on Signal Processing, 62(11):2765–2777.

Gao, X., Shi, M., Song, X., Zhang, C., and Zhang, H. (2019). Recurrent neural

networks for real-time prediction of TBM operating parameters. Automation

in Construction, 98:225–235.

Garcia-Vega, S., Zeng, X.-J., and Keane, J. (2019). Learning from data streams

using kernel least-mean-square with multiple kernel-sizes and adaptive step-

size. Neurocomputing, 339:105–115.

Garcia-Vega, S., Zeng, X.-J., and Keane, J. (2020). Stock returns prediction

using kernel adaptive filtering within a stock market interdependence approach.

Expert Systems with Applications, 160:113668.

Gau, Y.-F. and Wu, Z.-X. (2017). Macroeconomic announcements and price

discovery in the foreign exchange market. Journal of International Money and

Finance, 79:232–254.

Gentle, J. (2020). Statistical Analysis of Financial Data: With Examples in R.

CRC Press.

152

Ghasemi, F., Mehridehnavi, A., Perez-Garrido, A., and Perez-Sanchez, H. (2018).

Neural network and deep-learning algorithms used in QSAR studies: merits and

drawbacks. Drug Discovery Today, 23(10):1784–1790.

Giraldo, L. G. S. and Principe, J. C. (2013). Information theoretic learning with

infinitely divisible kernels. ArXiv Preprint ArXiv:1301.3551.

Giudici, P. (2018). Financial data science. Statistics & Probability Letters,

136:160–164.

Göçken, M., Özçalıcı, M., Boru, A., and Dosdoğru, A. T. (2016). Integrating me-

taheuristics and artificial neural networks for improved stock price prediction.

Expert Systems with Applications, 44:320–331.

Gomes, T. A., Carvalho, R. N., and Carvalho, R. S. (2017). Identifying anomalies

in parliamentary expenditures of brazilian chamber of deputies with deep au-

toencoders. In 2017 16th IEEE International Conference on Machine Learning

and Applications (ICMLA), pages 940–943. IEEE.

Goumagias, N. D., Hristu-Varsakelis, D., and Assael, Y. M. (2018). Using deep

Q-learning to understand the tax evasion behavior of risk-averse firms. Expert

Systems with Applications, 101:258–270.

Grace, A. (2017). Can deep learning techniques improve the risk adjusted returns

from enhanced indexing investment strategies.

Gray, R. M. (2011). Entropy and information theory. Springer Science & Business

Media.

Greenblatt, R. E., Pflieger, M., and Ossadtchi, A. (2012). Connectivity measures

applied to human brain electrophysiological data. Journal of Neuroscience

Methods, 207(1):1–16.

Greff, K., Srivastava, R. K., Koutńık, J., Steunebrink, B. R., and Schmidhuber, J.

(2017). LSTM: A search space odyssey. IEEE Transactions on Neural Networks

and Learning Systems, 28(10):2222–2232.

Gu, R., Xiong, W., and Li, X. (2015). Does the singular value decomposition

entropy have predictive power for stock market?—evidence from the shenzhen

stock market. Physica A: Statistical Mechanics and its Applications, 439:103–

113.

153

Gu, Y., Liu, J., Chen, Y., Jiang, X., and Yu, H. (2014). TOSELM: timeliness

online sequential extreme learning machine. Neurocomputing, 128:119–127.

Gueniche, T., Fournier-Viger, P., Raman, R., and Tseng, V. S. (2015). CPT+:

Decreasing the time/space complexity of the compact prediction tree. In

Pacific-Asia Conference on Knowledge Discovery and Data Mining, pages 625–

636. Springer.

Güler, N. F., Übeyli, E. D., and Güler, I. (2005). Recurrent neural networks

employing Lyapunov exponents for EEG signals classification. Expert Systems

with Applications, 29(3):506–514.

Guo, L., Shi, F., and Tu, J. (2016). Textual analysis and machine leaning: Crack

unstructured data in finance and accounting. The Journal of Finance and Data

Science, 2(3):153–170.

Guo, X., Zhang, H., and Tian, T. (2018). Development of stock correla-

tion networks using mutual information and financial big data. PloS One,

13(4):e0195941.

Guresen, E., Kayakutlu, G., and Daim, T. U. (2011). Using artificial neural

network models in stock market index prediction. Expert Systems with Applic-

ations, 38(8):10389–10397.

Hacine-Gharbi, A. and Ravier, P. (2018). A binning formula of bi-histogram

for joint entropy estimation using mean square error minimization. Pattern

Recognition Letters, 101:21–28.

Hafezi, R., Shahrabi, J., and Hadavandi, E. (2015). A bat-neural network multi-

agent system (BNNMAS) for stock price prediction: Case study of DAX stock

price. Applied Soft Computing, 29:196–210.

Haghighat, M. B. A., Aghagolzadeh, A., and Seyedarabi, H. (2011). A non-

reference image fusion metric based on mutual information of image features.

Computers & Electrical Engineering, 37(5):744–756.

Halmos, P. R. (2012). A Hilbert space problem book, volume 19. Springer Science

& Business Media.

154

Han, M., Liang, Z., and Li, D. (2011). Sparse kernel density estimations and its

application in variable selection based on quadratic Renyi entropy. Neurocom-

puting, 74(10):1664–1672.

Han, Y., Yang, K., and Zhou, G. (2013). A new anomaly: The cross-sectional

profitability of technical analysis. Journal of Financial and Quantitative Ana-

lysis, pages 1433–1461.

Härdle, W. (1990). Applied nonparametric regression. Number 19. Cambridge

University Press.

Hart, O. and Zingales, L. (2017). Companies should maximize shareholder welfare

not market value. ECGI-Finance Working Paper, (521).

Hart, P. E. (1975). Moment distributions in economics: an exposition. Journal

of the Royal Statistical Society: Series A (General), 138(3):423–434.

Hassan, M. K., Khan, A., and Paltrinieri, A. (2019). Liquidity risk, credit risk and

stability in Islamic and conventional banks. Research in International Business

and Finance, 48:17–31.

Hassan, M. R. (2009). A combination of hidden Markov model and fuzzy model

for stock market forecasting. Neurocomputing, 72(16-18):3439–3446.

Hauke, J. and Kossowski, T. (2011). Comparison of values of Pearson’s and

Spearman’s correlation coefficients on the same sets of data. Quaestiones Geo-

graphicae, 30(2):87–93.

Heryadi, Y. and Warnars, H. L. H. S. (2017). Learning temporal representa-

tion of transaction amount for fraudulent transaction recognition using CNN,

stacked LSTM, and CNN-LSTM. In 2017 IEEE International Conference on

Cybernetics and Computational Intelligence (CyberneticsCom), pages 84–89.

IEEE.

Hiransha, M., Gopalakrishnan, E. A., Menon, V. K., and Soman, K. (2018).

NSE stock market prediction using deep-learning models. Procedia Computer

Science, 132:1351–1362.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural

Computation, 9(8):1735–1780.

155

Hosaka, T. (2019). Bankruptcy prediction using imaged financial ratios and con-

volutional neural networks. Expert Systems with Applications, 117:287–299.

Hossain, M. A., Karim, R., THulasiram, R., Bruce, N. D., and Wang, Y. (2018).

Hybrid deep learning model for stock price prediction. In 2018 IEEE Sym-

posium Series on Computational Intelligence (SSCI), pages 1837–1844. IEEE.

Hsu, P.-Y., Chou, C., Huang, S.-H., and Chen, A.-P. (2018). A market making

quotation strategy based on dual deep learning agents for option pricing and

bid-ask spread estimation. In 2018 IEEE International Conference on Agents

(ICA), pages 99–104. IEEE.

Hu, J. and Wang, J. (2012). Global stability of complex-valued recurrent neural

networks with time-delays. IEEE Transactions on Neural Networks and Learn-

ing Systems, 23(6):853–865.

Hu, Y., Liu, K., Zhang, X., Su, L., Ngai, E., and Liu, M. (2015). Application

of evolutionary computation for rule discovery in stock algorithmic trading: A

literature review. Applied Soft Computing, 36:534–551.

Huang, Y., Huang, K., Wang, Y., Zhang, H., Guan, J., and Zhou, S. (2016).

Exploiting twitter moods to boost financial trend prediction based on deep

network models. In International Conference on Intelligent Computing, pages

449–460. Springer.

Huang, Y. and Kou, G. (2014). A kernel entropy manifold learning approach for

financial data analysis. Decision Support Systems, 64:31–42.

Hughes, T. W., Minkov, M., Shi, Y., and Fan, S. (2018). Training of photonic

neural networks through in situ backpropagation and gradient measurement.

Optica, 5(7):864–871.

Ilonen, J., Kamarainen, J.-K., and Lampinen, J. (2003). Differential evolution

training algorithm for feed-forward neural networks. Neural Processing Letters,

17(1):93–105.

Ince, H. and Trafalis, T. B. (2007). Kernel principal component analysis and sup-

port vector machines for stock price prediction. IIE Transactions, 39(6):629–

637.

156

Iwasaki, H. and Chen, Y. (2018). Topic sentiment asset pricing with DNN super-

vised learning. Available at SSRN 3228485.

Jalota, H., Thakur, M., and Mittal, G. (2017). Modelling and constructing mem-

bership function for uncertain portfolio parameters: A credibilistic framework.

Expert Systems with Applications, 71:40–56.

Jang, W. W. (2020). Risk aversion, uncertainty, and monetary policy: Struc-

tural vector autoregressions identified with high-frequency external instru-

ments. Economics Letters, 186:108675.

Jarrow, R. A. (2008). Operational risk. Journal of Banking & Finance, 32(5):870–

879.

Jasic, T. and Wood, D. (2004). The profitability of daily stock market indices

trades based on neural network predictions: Case study for the S&P 500, the

DAX, the TOPIX and the FTSE in the period 1965–1999. Applied Financial

Economics, 14(4):285–297.

Jeong, G. and Kim, H. Y. (2019). Improving financial trading decisions using deep

Q-learning: Predicting the number of shares, action strategies, and transfer

learning. Expert Systems with Applications, 117:125–138.

Jiang, Y., Yu, M., and Hashmi, S. M. (2017a). The financial crisis and co-

movement of global stock markets—a case of six major economies. Sustainab-

ility, 9(2):260.

Jiang, Z. and Liang, J. (2017). Cryptocurrency portfolio management with deep

reinforcement learning. In 2017 Intelligent Systems Conference (IntelliSys),

pages 905–913. IEEE.

Jiang, Z., Xu, D., and Liang, J. (2017b). A deep reinforcement learning

framework for the financial portfolio management problem. ArXiv Preprint

ArXiv:1706.10059.

Jin, L., Huang, Z., Chen, L., Liu, M., Li, Y., Chou, Y., and Yi, C. (2019). Mod-

ified single-output Chebyshev-polynomial feedforward neural network aided

with subset method for classification of breast cancer. Neurocomputing,

350:128–135.

157

Jizba, P., Kleinert, H., and Shefaat, M. (2012). Rényi’s information transfer

between financial time series. Physica A: Statistical Mechanics and its Applic-

ations, 391(10):2971–2989.

Joo, T. W. and Kim, S. B. (2015). Time series forecasting based on wavelet

filtering. Expert Systems with Applications, 42(8):3868–3874.

Jurgovsky, J., Granitzer, M., Ziegler, K., Calabretto, S., Portier, P.-E., He-

Guelton, L., and Caelen, O. (2018). Sequence classification for credit-card

fraud detection. Expert Systems with Applications, 100:234–245.

Kalayci, C. B., Ertenlice, O., and Akbay, M. A. (2019). A comprehensive review of

deterministic models and applications for mean-variance portfolio optimization.

Expert Systems with Applications.

Kamiński, M., Ding, M., Truccolo, W. A., and Bressler, S. L. (2001). Evaluating

causal relations in neural systems: Granger causality, directed transfer function

and statistical assessment of significance. Biological Cybernetics, 85(2):145–157.

Kang, Y.-J. and Noh, Y. (2019). Comparison study of kernel density estima-

tion according to various bandwidth selectors. Journal of the Computational

Structural Engineering Institute of Korea, 32(3):173–181.

Kaplanski, G., Levy, H., Veld, C., and Veld-Merkoulova, Y. (2016). Past returns

and the perceived Sharpe ratio. Journal of Economic Behavior & Organization,

123:149–167.

Kapur, J. N. (1994). Measures of information and their applications. Wiley-

Interscience.

Karaoglu, S., Arpaci, U., and Ayvaz, S. (2017). A deep learning approach for

optimization of systematic signal detection in financial trading systems with

big data. International Journal of Intelligent Systems and Applications in

Engineering, SpecialIssue (SpecialIssue), pages 31–36.

Kee, C.-Y., Ponnambalam, S., and Loo, C.-K. (2017). Binary and multi-class

motor imagery using renyi entropy for feature extraction. Neural Computing

and Applications, 28(8):2051–2062.

158

Kenett, D. Y., Huang, X., Vodenska, I., Havlin, S., and Stanley, H. E. (2015).

Partial correlation analysis: Applications for financial markets. Quantitative

Finance, 15(4):569–578.

Khashei, M. and Hajirahimi, Z. (2019). A comparative study of series AR-

IMA/MLP hybrid models for stock price forecasting. Communications in

Statistics-Simulation and Computation, 48(9):2625–2640.

Khatri, N. N. (2017). Factors influencing investors investment in initial public

offering. International Journal of Management and Applied Science, 3(7).

Kidwell, D. S., Blackwell, D. W., Sias, R. W., and Whidbee, D. A. (2016). Fin-

ancial institutions, markets, and money. John Wiley & Sons.

Kim, K.-H., Lee, C.-S., Jo, S.-M., and Cho, S.-B. (2015). Predicting the success

of bank telemarketing using deep convolutional neural network. In 2015 7th In-

ternational Conference of Soft Computing and Pattern Recognition (SoCPaR),

pages 314–317. IEEE.

Kim, S. H., Lee, H. S., Ko, H. J., Jeong, S. H., Byun, H. W., and Oh, K. J.

(2018). Pattern matching trading system based on the dynamic time warping

algorithm. Sustainability, 10(12):4641.

Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization.

ArXiv Preprint ArXiv:1412.6980.

Kirkos, E. and Manolopoulos, Y. (2004). Data mining in finance and accounting:

a review of current research trends. In Proceedings of the 1st International

Conference on Enterprise Systems and Accounting (ICESAcc), pages 63–78.

Kissell, R. L. (2013). The science of algorithmic trading and portfolio manage-

ment. Academic Press.

Klein, B., Wolf, L., and Afek, Y. (2015). A dynamic convolutional layer for short

range weather prediction. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 4840–4848.

Korbel, J., Jiang, X., and Zheng, B. (2019). Transfer entropy between communit-

ies in complex financial networks. Entropy, 21(11):1124.

159

Korczak, J. and Hemes, M. (2017). Deep learning for financial time series fore-

casting in a-trader system. In 2017 Federated Conference on Computer Science

and Information Systems (FedCSIS), pages 905–912. IEEE.

Kovács, G., Tóth, L., Van Compernolle, D., and Ganapathy, S. (2017). Increas-

ing the robustness of CNN acoustic models using autoregressive moving aver-

age spectrogram features and channel dropout. Pattern Recognition Letters,

100:44–50.

Krawczyk, B., Minku, L. L., Gama, J., Stefanowski, J., and Woźniak, M. (2017).

Ensemble learning for data stream analysis: A survey. Information Fusion,

37:132–156.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification

with deep convolutional neural networks. In Advances in Neural Information

Processing Systems, pages 1097–1105.

Kucharska-Stasiak, E. (2018). 15 myths about market value. Real Estate Man-

agement and Valuation, 26(3):113–121.

Kumar, M. and Thenmozhi, M. (2014). Forecasting stock index returns using

ARIMA-SVM, ARIMA-ANN, and ARIMA-random forest hybrid models. In-

ternational Journal of Banking, Accounting and Finance, 5(3):284–308.

Kumar, P. R. and Ravi, V. (2007). Bankruptcy prediction in banks and firms via

statistical and intelligent techniques–a review. European Journal of Operational

Research, 180(1):1–28.

Kumar, S. (2019). Asymmetric impact of oil prices on exchange rate and stock

prices. The Quarterly Review of Economics and Finance, 72:41–51.

Kuo, C.-Y. (2016). Does the vector error correction model perform better than

others in forecasting stock price? an application of residual income valuation

theory. Economic Modelling, 52:772–789.

Lahsasna, A., Ainon, R. N., and Teh, Y. W. (2010). Credit scoring models

using soft computing methods: A survey. The International Arab Journal of

Information Technology, 7(2):115–123.

160

Laitinen, E. K. and Suvas, A. (2016). Financial distress prediction in an interna-

tional context: Moderating effects of Hofstede’s original cultural dimensions.

Journal of Behavioral and Experimental Finance, 9:98–118.

Lanbouri, Z. and Achchab, S. (2015). A hybrid deep belief network approach

for financial distress prediction. In 2015 10th International Conference on

Intelligent Systems: Theories and Applications (SITA), pages 1–6. IEEE.

Lee, J., Jang, D., and Park, S. (2017). Deep learning-based corporate performance

prediction model considering technical capability. Sustainability, 9(6):899.

Lee, J. H., Delbruck, T., and Pfeiffer, M. (2016). Training deep spiking neural

networks using backpropagation. Frontiers in Neuroscience, 10:508.

Lee, M.-C. (2009). Using support vector machine with a hybrid feature selec-

tion method to the stock trend prediction. Expert Systems with Applications,

36(8):10896–10904.

Lee, S. I. and Yoo, S. J. (2018). Threshold-based portfolio: the role of the

threshold and its applications. The Journal of Supercomputing, pages 1–18.

Leetaru, K. and Schrodt, P. A. (2013). GDELT: Global data on events, loca-

tion, and tone, 1979–2012. In International Studies Association (ISA) Annual

Convention, volume 2, pages 1–49. Citeseer.

Lei, B., Xu, G., Feng, M., Zou, Y., Van der Heijden, F., De Ridder, D., and Tax,

D. (2017). Classification, Parameter Estimation and State Estimation. Wiley

Online Library.

Leigh, W., Frohlich, C. J., Hornik, S., Purvis, R. L., and Roberts, T. L. (2007).

Trading with a stock chart heuristic. IEEE Transactions on Systems, Man,

and Cybernetics-Part A: Systems and Humans, 38(1):93–104.

Leigh, W., Modani, N., Purvis, R., and Roberts, T. (2002). Stock market trading

rule discovery using technical charting heuristics. Expert Systems with Applic-

ations, 23(2):155–159.

Li, J., Bu, H., and Wu, J. (2017a). Sentiment-aware stock market prediction: A

deep learning method. In 2017 International Conference on Service Systems

and Service Management, pages 1–6. IEEE.

161

Li, K. and Pŕıncipe, J. C. (2017). Transfer learning in adaptive filters: The

nearest instance centroid-estimation kernel least-mean-square algorithm. IEEE

Transactions on Signal Processing, 65(24):6520–6535.

Li, L., Zhou, J., Li, X., and Chen, T. (2017b). Poster: Practical fraud transaction

prediction. In Proceedings of the 2017 ACM SIGSAC Conference on Computer

and Communications Security, pages 2535–2537.

Li, M., Liu, X., and Ding, F. (2017c). The maximum likelihood least squares

based iterative estimation algorithm for bilinear systems with autoregressive

moving average noise. Journal of the Franklin Institute, 354(12):4861–4881.

Li, X., Peng, L., Yao, X., Cui, S., Hu, Y., You, C., and Chi, T. (2017d). Long

short-term memory neural network for air pollutant concentration predictions:

Method development and evaluation. Environmental Pollution, 231:997–1004.

Li, X., Xie, H., Wang, R., Cai, Y., Cao, J., Wang, F., Min, H., and Deng,

X. (2016). Empirical analysis: stock market prediction via extreme learning

machine. Neural Computing and Applications, 27(1):67–78.

Li, Y. and Hamamura, M. (2015). Zero-attracting variable-step-size least mean

square algorithms for adaptive sparse channel estimation. International Journal

of Adaptive Control and Signal Processing, 29(9):1189–1206.

Li, Y. and Liang, Y. (2018). Learning overparameterized neural networks via

stochastic gradient descent on structured data. In Advances in Neural Inform-

ation Processing Systems, pages 8157–8166.

Li, Y., Lin, X., Wang, X., Shen, F., and Gong, Z. (2017e). Credit risk assessment

algorithm using deep neural networks with clustering and merging. In 2017 13th

International Conference on Computational Intelligence and Security (CIS),

pages 173–176. IEEE.

Liang, C. and Schienle, M. (2019). Determination of vector error correction

models in high dimensions. Journal of Econometrics, 208(2):418–441.

Liang, Z., Chen, H., Zhu, J., Jiang, K., and Li, Y. (2018). Adversarial

deep reinforcement learning in portfolio management. ArXiv Preprint

ArXiv:1808.09940.

162

Lin, J.-S., Huang, C.-F., Liao, T.-L., and Yan, J.-J. (2010). Design and im-

plementation of digital secure communication based on synchronized chaotic

systems. Digital Signal Processing, 20(1):229–237.

Lipping, T., Erkintalo, N., Särkelä, M., Takala, R. S., Katila, A., Frantzén, J.,

Posti, J. P., Müller, M., and Tenovuo, O. (2017). Connectivity analysis of full

montage EEG in traumatic brain injury patients in the ICU. In European Med-

ical and Biological Engineering Conference (EMBEC) and the Nordic-Baltic

Conference on Biomedical Engineering and Medical Physics (NBC) 2017, pages

97–100. Springer.

Liu, A.-A., Su, Y.-T., Nie, W.-Z., and Kankanhalli, M. (2016). Hierarchical

clustering multi-task learning for joint human action grouping and recognition.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(1):102–

114.

Liu, H., Mi, X.-w., and Li, Y.-f. (2018). Wind speed forecasting method based

on deep learning strategy using empirical wavelet transform, long short term

memory neural network and Elman neural network. Energy Conversion and

Management, 156:498–514.

Liu, W., Pokharel, P. P., and Principe, J. C. (2008). The kernel least-mean-square

algorithm. IEEE Transactions on Signal Processing, 56(2):543–554.

Liu, W. and Pŕıncipe, J. C. (2008). Kernel affine projection algorithms. EURASIP

Journal on Advances in Signal Processing, 2008(1):784292.

Liu, W., Principe, J. C., and Haykin, S. (2010). Kernel Adaptive Filtering: A

Comprehensive Introduction. Wiley Publishing, 1st edition.

Liu, X. and Zhang, C. (2017). Corporate governance, social responsibility inform-

ation disclosure, and enterprise value in China. Journal of Cleaner Production,

142:1075–1084.

Liu, Y.-k., Xie, F., Xie, C.-l., Peng, M.-j., Wu, G.-h., and Xia, H. (2015). Predic-

tion of time series of NPP operating parameters using dynamic model based

on BP neural network. Annals of Nuclear Energy, 85:566–575.

Lopes, G. D. L. F. (2018). Deep learning for market forecasts.

163

Loughran, T. and McDonald, B. (2016). Textual analysis in accounting and

finance: A survey. Journal of Accounting Research, 54(4):1187–1230.

Lu, D. W. (2017). Agent inspired trading using recurrent reinforcement learning

and LSTM neural networks. ArXiv Preprint ArXiv:1707.07338.

Luo, C., Wu, D., and Wu, D. (2017). A deep learning approach for credit scoring

using credit default swaps. Engineering Applications of Artificial Intelligence,

65:465–470.

Lütkepohl, H. (2013). Vector autoregressive models. In Handbook of Research

Methods and Applications in Empirical Macroeconomics. Edward Elgar Pub-

lishing.

Lv, D., Yuan, S., Li, M., and Xiang, Y. (2019). An empirical study of machine

learning algorithms for stock daily trading strategy. Mathematical Problems in

Engineering, 2019.

Malik, N., Singh, P. V., and Khan, U. (2018). Can banks survive the next

financial crisis? an adversarial deep learning model for bank stress testing. An

Adversarial Deep Learning Model for Bank Stress Testing (June 30, 2018).

Mammone, N., Inuso, G., La Foresta, F., Versaci, M., and Morabito, F. C. (2011).

Clustering of entropy topography in epileptic electroencephalography. Neural

Computing and Applications, 20(6):825–833.

Manela, A. and Moreira, A. (2017). News implied volatility and disaster concerns.

Journal of Financial Economics, 123(1):137–162.

Mao, J., Xu, W., Yang, Y., Wang, J., Huang, Z., and Yuille, A. (2014). Deep cap-

tioning with multimodal recurrent neural networks (M-RNN). ArXiv Preprint

ArXiv:1412.6632.

Marques, A., Garćıa, V., and Sánchez, J. S. (2013). A literature review on

the application of evolutionary computing to credit scoring. Journal of the

Operational Research Society, 64(9):1384–1399.

Masih, A. M. and Masih, R. (2001). Dynamic modeling of stock market interde-

pendencies: an empirical investigation of australia and the Asian NICs. Review

of Pacific Basin Financial Markets and Policies, 4(02):235–264.

164

Maskawa, J.-i. (2016). Collective behavior of market participants during abrupt

stock price changes. PloS One, 11(8):e0160152.

Massey, E. C. (2016). Master limited partnerships: A pipeline to renewable

energy development. University of Colorado, 87:1009.

McNally, S., Roche, J., and Caton, S. (2018). Predicting the price of bitcoin using

machine learning. In 2018 26th Euromicro International Conference on Paral-

lel, Distributed and Network-based Processing (PDP), pages 339–343. IEEE.

Medeiros, M. C., Vasconcelos, G. F., Veiga, A., and Zilberman, E. (2019). Fore-

casting inflation in a data-rich environment: the benefits of machine learning

methods. Journal of Business & Economic Statistics, pages 1–22.

Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013). Efficient estimation of

word representations in vector space. ArXiv Preprint ArXiv:1301.3781.

Milosevic, N. (2016). Equity forecast: Predicting long term stock price movement

using machine learning. ArXiv Preprint ArXiv:1603.00751.

Mirjalili, S., Hashim, S. Z. M., and Sardroudi, H. M. (2012). Training feedforward

neural networks using hybrid particle swarm optimization and gravitational

search algorithm. Applied Mathematics and Computation, 218(22):11125–

11137.

Mohammed, M. A., Ghani, M. K. A., Hamed, R. I., Ibrahim, D. A., and Abdul-

lah, M. K. (2017). Artificial neural networks for automatic segmentation and

identification of nasopharyngeal carcinoma. Journal of Computational Science,

21:263 – 274.

Moreno, P. J., Ho, P. P., and Vasconcelos, N. (2004). A Kullback-Leibler di-

vergence based kernel for SVM classification in multimedia applications. In

Advances in Neural Information Processing Systems (NIPS), pages 1385–1392.

Mourelatos, M., Alexakos, C., Amorgianiotis, T., and Likothanassis, S. (2018).

Financial indices modelling and trading utilizing deep learning techniques: The

Athens SE FTSE/ASE large cap use case. In 2018 Innovations in Intelligent

Systems and Applications (INISTA), pages 1–7. IEEE.

165

Nan, L. and Tao, D. (2018). Bitcoin mixing detection using deep autoencoder.

In 2018 IEEE Third International Conference on Data Science in Cyberspace

(DSC), pages 280–287. IEEE.

Navon, A. and Keller, Y. (2017). Financial time series prediction using deep

learning. ArXiv Preprint ArXiv:1711.04174.

Nayak, R. K., Mishra, D., and Rath, A. K. (2015). A Näıve SVM-KNN based

stock market trend reversal analysis for indian benchmark indices. Applied Soft

Computing, 35:670–680.

Nazário, R. T. F., e Silva, J. L., Sobreiro, V. A., and Kimura, H. (2017). A

literature review of technical analysis on stock markets. The Quarterly Review

of Economics and Finance, 66:115–126.

Neagoe, V.-E., Ciotec, A.-D., and Cucu, G.-S. (2018). Deep convolutional neural

networks versus multilayer perceptron for financial prediction. In 2018 Inter-

national Conference on Communications (COMM), pages 201–206. IEEE.

Neri, C. and Schneider, L. (2012). Maximum entropy distributions inferred from

option portfolios on an asset. Finance and Stochastics, 16(2):293–318.

Nesbitt, K. V. and Barrass, S. (2004). Finding trading patterns in stock market

data. IEEE Computer Graphics and Applications, 24(5):45–55.

Newbold, P. and Harvey, D. I. (2002). Forecast combination and encompassing.

A Companion to Economic Forecasting, pages 268–283.

Ngai, E. W., Hu, Y., Wong, Y. H., Chen, Y., and Sun, X. (2011). The applic-

ation of data mining techniques in financial fraud detection: A classification

framework and an academic review of literature. Decision Support Systems,

50(3):559–569.

Nielsen, M. A. (2015). Neural networks and deep learning, volume 2018. Determ-

ination Press San Francisco, CA.

Niimi, A. (2015). Deep learning for credit card data analysis. In 2015 World

Congress on Internet Security (WorldCIS), pages 73–77. IEEE.

Niu, Q. and Chen, T. (2018). A new variable step size LMS adaptive algorithm.

In 2018 Chinese Control And Decision Conference (CCDC). IEEE.

166

Nobre, R. H., Rodrigues, F. A., Marques, R. C., Nobre, J. S., Neto, J. F., and

Medeiros, F. N. (2016). SAR image segmentation with Renyi’s entropy. IEEE

Signal Processing Letters, 23(11):1551–1555.

Novak, S. Y. (2007). Measures of financial risks and market crashes.

Nweke, H. F., Teh, Y. W., Al-Garadi, M. A., and Alo, U. R. (2018). Deep

learning algorithms for human activity recognition using mobile and wearable

sensor networks: State of the art and research challenges. Expert Systems with

Applications, 105:233–261.

Ogawa, A. and Hori, T. (2017). Error detection and accuracy estimation in auto-

matic speech recognition using deep bidirectional recurrent neural networks.

Speech Communication, 89:70–83.

Ojha, V. K., Abraham, A., and Snášel, V. (2017). Metaheuristic design of feed-

forward neural networks: A review of two decades of research. Engineering

Applications of Artificial Intelligence, 60:97–116.

Olden, J. D. and Jackson, D. A. (2002). Illuminating the “black box”: a random-

ization approach for understanding variable contributions in artificial neural

networks. Ecological Modelling, 154(1-2):135–150.

Oliveira, N., Cortez, P., and Areal, N. (2017). The impact of microblogging

data for stock market prediction: Using twitter to predict returns, volatility,

trading volume and survey sentiment indices. Expert Systems with Applications,

73:125–144.

Olsen, R. B., Glattfelder, J. B., and Golub, A. (2018). The alpha engine: Design-

ing an automated trading algorithm. In High-Performance Computing in Fin-

ance, pages 49–76. Chapman and Hall/CRC.

Ormos, M. and Zibriczky, D. (2014). Entropy-based financial asset pricing. PloS

One, 9(12):e115742.

Oshiro, T. M., Perez, P. S., and Baranauskas, J. A. (2012). How many trees in

a random forest? In International Workshop on Machine Learning and Data

Mining in Pattern Recognition, pages 154–168. Springer.

167

Ozbayoglu, A. M., Gudelek, M. U., and Sezer, O. B. (2020). Deep learning for

financial applications: A survey. Applied Soft Computing, page 106384.

Palangi, H., Deng, L., Shen, Y., Gao, J., He, X., Chen, J., Song, X., and Ward,

R. (2016a). Deep sentence embedding using long short-term memory networks:

Analysis and application to information retrieval. IEEE/ACM Transactions on

Audio, Speech and Language Processing (TASLP), 24(4):694–707.

Palangi, H., Ward, R. K., and Deng, L. (2016b). Distributed compressive sens-

ing: A deep learning approach. IEEE Transactions on Signal Processing,

64(17):4504–4518.

Papana, A., Kyrtsou, C., Kugiumtzis, D., and Diks, C. (2017). Financial networks

based on Granger causality: A case study. Physica A: Statistical Mechanics

and its Applications, 482:65–73.

Park, C.-H. and Irwin, S. H. (2007). What do we know about the profitability of

technical analysis? Journal of Economic Surveys, 21(4):786–826.

Park, H.-J., Friston, K. J., Pae, C., Park, B., and Razi, A. (2018). Dynamic

effective connectivity in resting state FMRI. Neuroimage, 180:594–608.

Parker, C. S., Clayden, J. D., Cardoso, M. J., Rodionov, R., Duncan, J. S., Scott,

C., Diehl, B., and Ourselin, S. (2018). Structural and effective connectivity in

focal epilepsy. NeuroImage: Clinical, 17:943–952.

Parracho, P., Neves, R., and Horta, N. (2010). Trading in financial markets us-

ing pattern recognition optimized by genetic algorithms. In Proceedings of the

12th Annual Conference Companion on Genetic and Evolutionary Computa-

tion, pages 2105–2106.

Pascanu, R., Mikolov, T., and Bengio, Y. (2013). On the difficulty of training

recurrent neural networks. In International Conference on Machine Learning,

pages 1310–1318.

Patel, J., Shah, S., Thakkar, P., and Kotecha, K. (2015). Predicting stock and

stock price index movement using trend deterministic data preparation and

machine learning techniques. Expert Systems with Applications, 42(1):259–268.

168

Paula, E. L., Ladeira, M., Carvalho, R. N., and Marzagao, T. (2016). Deep

learning anomaly detection as support fraud investigation in brazilian exports

and anti-money laundering. In 2016 15th IEEE International Conference on

Machine Learning and Applications (ICMLA), pages 954–960. IEEE.

Peachavanish, R. (2016). Stock selection and trading based on cluster analysis

of trend and momentum indicators. In Proceedings of the International Mul-

tiConference of Engineers and Computer Scientists, volume 1, pages 317–321.

Peiro, A. (2016). Stock prices and macroeconomic factors: Some european evid-

ence. International Review of Economics & Finance, 41:287–294.

Peng, Y. and Jiang, H. (2015). Leverage financial news to predict stock price

movements using word embeddings and deep neural networks. ArXiv Preprint

ArXiv:1506.07220.

Phetchanchai, C., Selamat, A., Rehman, A., and Saba, T. (2010). Index finan-

cial time series based on zigzag-perceptually important points. In Journal of

Computer Science. Citeseer.

Phua, C., Lee, V., Smith, K., and Gayler, R. (2010). A comprehensive survey of

data mining-based fraud detection research. ArXiv Preprint ArXiv:1009.6119.

Pierce, J. R. (2012). An introduction to information theory: symbols, signals and

noise. Courier Corporation.

Pierdzioch, C. and Risse, M. (2018). A machine-learning analysis of the ration-

ality of aggregate stock market forecasts. International Journal of Finance &

Economics, 23(4):642–654.

Pokharel, R., Seth, S., and Principe, J. C. (2013). Mixture kernel least mean

square. In The 2013 International Joint Conference on Neural Networks

(IJCNN), pages 1–7. IEEE.

Polikar, R. (2009). Ensemble learning. Scholarpedia, 4(1):2776. revision #186077.

Portugal, I., Alencar, P., and Cowan, D. (2018). The use of machine learning

algorithms in recommender systems: A systematic review. Expert Systems

with Applications, 97:205–227.

169

Powell, N., Foo, S. Y., and Weatherspoon, M. (2008). Supervised and unsuper-

vised methods for stock trend forecasting. In 2008 40th Southeastern Sym-

posium on System Theory (SSST), pages 203–205. IEEE.

Principe, J. C. (2010). Information theoretic learning: Renyi’s entropy and kernel

perspectives. Springer Science & Business Media.

Principe, J. C., Xu, D., Zhao, Q., and Fisher, J. W. (2000). Learning from

examples with information theoretic criteria. Journal of VLSI Signal Processing

Systems for Signal, Image and Video Technology, 26(1-2):61–77.

Prosky, J., Song, X., Tan, A., and Zhao, M. (2017). Sentiment predictability for

stocks. ArXiv Preprint ArXiv:1712.05785.

Qin, H., Gong, R., Liu, X., Bai, X., Song, J., and Sebe, N. (2020). Binary neural

networks: A survey. Pattern Recognition, page 107281.

Radhakrishnan, S., Duvvuru, A., Sultornsanee, S., and Kamarthi, S. (2016).

Phase synchronization based minimum spanning trees for analysis of financial

time series with nonlinear correlations. Physica A: Statistical Mechanics and

its Applications, 444:259–270.

Ramos, P., Santos, N., and Rebelo, R. (2015). Performance of state space and

arima models for consumer retail sales forecasting. Robotics and Computer-

Integrated Manufacturing, 34:151–163.

Rather, A. M., Agarwal, A., and Sastry, V. (2015). Recurrent neural network

and a hybrid model for prediction of stock returns. Expert Systems with Ap-

plications, 42(6):3234–3241.

Ravi, V., Kurniawan, H., Thai, P. N. K., and Kumar, P. R. (2008). Soft computing

system for bank performance prediction. Applied Soft Computing, 8(1):305–315.

Ravi, V., Pradeepkumar, D., and Deb, K. (2017). Financial time series predic-

tion using hybrids of chaos theory, multi-layer perceptron and multi-objective

evolutionary algorithms. Swarm and Evolutionary Computation, 36:136–149.

Rawte, V., Gupta, A., and Zaki, M. J. (2018). Analysis of year-over-year changes

in risk factors disclosure in 10-K filings. In Proceedings of the Fourth Inter-

national Workshop on Data Science for Macro-Modeling with Financial and

Economic Datasets, pages 1–4.

170

Reboredo, J. C. (2018). Green bond and financial markets: Co-movement, diver-

sification and price spillover effects. Energy Economics, 74:38–50.

Rejeb, A. B. and Arfaoui, M. (2016). Financial market interdependencies: A

quantile regression analysis of volatility spillover. Research in International

Business and Finance, 36:140–157.

Renault, T. (2017). Intraday online investor sentiment and return patterns in the

us stock market. Journal of Banking & Finance, 84:25–40.

Rényi, A. (1976). Some fundamental questions of information theory. Selected

Papers of Alfred Renyi, 2(174):526–552.

Rezayat, F. and Yavas, B. F. (2006). International portfolio diversification:

A study of linkages among the US, European and Japanese equity markets.

Journal of Multinational Financial Management, 16(4):440–458.

Richard, C., Bermudez, J. C. M., and Honeine, P. (2009). Online prediction

of time series data with kernels. IEEE Transactions on Signal Processing,

57(3):1058–1067.

Rodan, A., Faris, H., Alqatawna, J., et al. (2016). Optimizing feedforward neural

networks using biogeography based optimization for e-mail spam identifica-

tion. International Journal of Communications, Network and System Sciences,

9(01):19.

Rödder, W., Gartner, I. R., and Rudolph, S. (2010). An entropy-driven expert

system shell applied to portfolio selection. Expert Systems with Applications,

37(12):7509–7520.

Rönnqvist, S. and Sarlin, P. (2015). Detect & describe: Deep learning of bank

stress in the news. In 2015 IEEE Symposium Series on Computational Intelli-

gence, pages 890–897. IEEE.

Rönnqvist, S. and Sarlin, P. (2017). Bank distress in the news: Describing events

through deep learning. Neurocomputing, 264:57–70.

Roy, A., Sun, J., Mahoney, R., Alonzi, L., Adams, S., and Beling, P. (2018).

Deep learning detecting fraud in credit card transactions. In 2018 Systems and

Information Engineering Design Symposium (SIEDS), pages 129–134. IEEE.

171

Rundo, F., Trenta, F., Di Stallo, A. L., and Battiato, S. (2019). Advanced

markov-based machine learning framework for making adaptive trading system.

Computation, 7(1):4.

Saia, R. (2017). A discrete wavelet transform approach to fraud detection. In

International Conference on Network and System Security, pages 464–474.

Springer.

Saia, R., Carta, S., et al. (2017). A frequency-domain-based pattern mining for

credit card fraud detection. In IoTBDS, pages 386–391.

Salinas, D., Shen, H., and Perrone, V. (2020). A quantile-based approach for

hyperparameter transfer learning. In International Conference on Machine

Learning, pages 8438–8448. PMLR.

Samarawickrama, A. and Fernando, T. (2017). A recurrent neural network ap-

proach in predicting daily stock prices an application to the Sri Lankan stock

market. In 2017 IEEE International Conference on Industrial and Information

Systems (ICIIS), pages 1–6. IEEE.

Samuel, M. and Okey, L. E. (2015). The relevance and significance of correlation

in social science research. International Journal of Sociology and Anthropology

Research, 1(3):22–28.

Sandberg, I. W., Lo, J. T., Fancourt, C. L., Principe, J. C., Katagiri, S., and

Haykin, S. (2001). Nonlinear dynamical systems: feedforward neural network

perspectives, volume 21. John Wiley & Sons.

Scardapane, S., Fierimonte, R., Di Lorenzo, P., Panella, M., and Uncini, A.

(2016). Distributed semi-supervised support vector machines. Neural Networks,

80:43–52.

Schölkopf, B. and Smola, A. J. (2001). Learning with Kernels: Support Vector

Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge,

MA, USA.

Schölkopf, B., Smola, A. J., and Bach, F. (2018). Learning with kernels: support

vector machines, regularization, optimization, and beyond. The MIT Press.

172

Schumaker, R. P. and Chen, H. (2009). Textual analysis of stock market predic-

tion using breaking financial news: The AZFin text system. ACM Transactions

on Information Systems (TOIS), 27(2):1–19.

Schuster, M. and Paliwal, K. K. (1997). Bidirectional recurrent neural networks.

IEEE Transactions on Signal Processing, 45(11):2673–2681.

Selvin, S., Vinayakumar, R., Gopalakrishnan, E., Menon, V. K., and Soman, K.

(2017). Stock price prediction using LSTM, RNN and CNN-sliding window

model. In 2017 International Conference on Advances in Computing, Commu-

nications and Informatics (ICACCI), pages 1643–1647. IEEE.

Sezer, O. B., Ozbayoglu, M., and Dogdu, E. (2017). A deep neural-network

based stock trading system based on evolutionary optimized technical analysis

parameters. Procedia Computer Science, 114:473–480.

Sharma, A. and Panigrahi, P. K. (2013). A review of financial accounting fraud

detection based on data mining techniques. ArXiv Preprint ArXiv:1309.3944.

Sharma, S. (2017). Activation functions in neural networks. Towards Data Sci-

ence, 6.

Shen, S., Jiang, H., and Zhang, T. (2012). Stock market forecasting using machine

learning algorithms. Department of Electrical Engineering, Stanford University,

Stanford, CA, pages 1–5.

Shi, L., Teng, Z., Wang, L., Zhang, Y., and Binder, A. (2018). DEEPCLUE:

Visual interpretation of text-based deep stock prediction. IEEE Transactions

on Knowledge and Data Engineering, 31(6):1094–1108.

Si, W., Li, J., Ding, P., and Rao, R. (2017). A multi-objective deep reinforce-

ment learning approach for stock index future’s intraday trading. In 2017 10th

International Symposium on Computational Intelligence and Design (ISCID),

volume 2, pages 431–436. IEEE.

Siami-Namini, S., Tavakoli, N., and Namin, A. S. (2018). A comparison of AR-

IMA and LSTM in forecasting time series. In 2018 17th IEEE International

Conference on Machine Learning and Applications (ICMLA), pages 1394–1401.

IEEE.

173

Sibi, P., Jones, S. A., and Siddarth, P. (2013). Analysis of different activation

functions using back propagation neural networks. Journal of Theoretical and

Applied Information Technology, 47(3):1264–1268.

Siikanen, M., Baltakys, K., Kanniainen, J., Vatrapu, R., Mukkamala, R., and

Hussain, A. (2018). Facebook drives behavior of passive households in stock

markets. Finance Research Letters, 27:208–213.

Silverman, B. W. (1986). Density estimation for statistics and data analysis,

volume 26. CRC Press.

Sim, H. S., Kim, H. I., and Ahn, J. J. (2019). Is deep learning for image recog-

nition applicable to stock market prediction? Complexity, 2019.

Singh, A. and Pŕıncipe, J. C. (2011). Information theoretic learning with adaptive

kernels. Signal Processing, 91(2):203–213.

Sirignano, J. and Cont, R. (2019). Universal features of price formation in

financial markets: perspectives from deep learning. Quantitative Finance,

19(9):1449–1459.

Sirignano, J., Sadhwani, A., and Giesecke, K. (2016). Deep learning for mortgage

risk. ArXiv Preprint ArXiv:1607.02470.

Sonoda, S. and Murata, N. (2017). Neural network with unbounded activation

functions is universal approximator. Applied and Computational Harmonic

Analysis, 43(2):233–268.

Spilak, B. (2018). Deep neural networks for cryptocurrencies price prediction.

Master’s thesis, Humboldt-Universität zu Berlin.

Stosic, D., Stosic, D., Ludermir, T., de Oliveira, W., and Stosic, T. (2016).

Foreign exchange rate entropy evolution during financial crises. Physica A:

Statistical Mechanics and its Applications, 449:233–239.

Suhermi, N., Prastyo, D. D., Ali, B., et al. (2018). Roll motion prediction using

a hybrid deep learning and arima model. Procedia Computer Science, 144:251–

258.

174

Sulthan, A., Jayakumar, S., and David, G. (2016). On the review and application

of entropy in finance. International Journal of Business Insights & Transform-

ation, 10(1).

Sun, H. (2005). Mercer theorem for RKHS on noncompact sets. Journal of

Complexity, 21(3):337–349.

Sun, J., Li, H., Huang, Q.-H., and He, K.-Y. (2014). Predicting financial distress

and corporate failure: A review from the state-of-the-art definitions, modeling,

sampling, and featuring approaches. Knowledge-Based Systems, 57:41–56.

Suykens, J. A. (2017). Deep restricted kernel machines using conjugate feature

duality. Neural Computation, 29(8):2123–2163.

Suykens, J. A. and Vandewalle, J. (1999). Training multilayer perceptron classifi-

ers based on a modified support vector method. IEEE Transactions on Neural

Networks, 10(4):907–911.

Svozil, D., Kvasnicka, V., and Pospichal, J. (1997). Introduction to multi-layer

feed-forward neural networks. Chemometrics and Intelligent Laboratory Sys-

tems, 39(1):43–62.

Tai, W., Teng, Q., Zhou, Y., Zhou, J., and Wang, Z. (2019). Chaos synchroniza-

tion of stochastic reaction-diffusion time-delay neural networks via non-fragile

output-feedback control. Applied Mathematics and Computation, 354:115–127.

Taieb, S. B. and Atiya, A. F. (2015). A bias and variance analysis for multistep-

ahead time series forecasting. IEEE Transactions on Neural Networks and

Learning Systems, 27(1):62–76.

Takeuchi, L. and Lee, Y.-Y. A. (2013). Applying deep learning to enhance mo-

mentum trading strategies in stocks. In Technical Report. Stanford University.

Taylor, S. J. (2008). Modelling financial time series. World Scientific.

Tetlock, P. C. (2007). Giving content to investor sentiment: The role of media in

the stock market. The Journal of Finance, 62(3):1139–1168.

Tetlock, P. C., Saar-Tsechansky, M., and Macskassy, S. (2008). More than words:

Quantifying language to measure firms’ fundamentals. The Journal of Finance,

63(3):1437–1467.

175

Tian, Y., Zhang, K., Li, J., Lin, X., and Yang, B. (2018). LSTM-based traffic

flow prediction with missing data. Neurocomputing, 318:297–305.

Tiwari, S., Pandit, R., and Richhariya, V. (2010). Predicting future trends in

stock market by decision tree rough-set based hybrid system with HHMM.

International Journal of Electronics and Computer Science Engineering, 1(3).

Tkáč, M. and Verner, R. (2016). Artificial neural networks in business: Two

decades of research. Applied Soft Computing, 38:788–804.

Tran, D. T., Magris, M., Kanniainen, J., Gabbouj, M., and Iosifidis, A. (2017).

Tensor representation in high-frequency financial data for price change predic-

tion. In 2017 IEEE Symposium Series on Computational Intelligence (SSCI),

pages 1–7. IEEE.

Tran, K., Duong, T., and Ho, Q. (2016). Credit scoring model: A combina-

tion of genetic programming and deep learning. In 2016 Future Technologies

Conference (FTC), pages 145–149. IEEE.

Troiano, L., Villa, E. M., and Loia, V. (2018). Replicating a trading strategy

by means of LSTM for financial industry applications. IEEE Transactions on

Industrial Informatics, 14(7):3226–3234.

Tsantekidis, A., Passalis, N., Tefas, A., Kanniainen, J., Gabbouj, M., and Ios-

ifidis, A. (2017). Using deep learning to detect price change indications in

financial markets. In 2017 25th European Signal Processing Conference (EU-

SIPCO), pages 2511–2515. IEEE.

Tunaru, R. S. (2015). Model risk in financial markets: From financial engineering

to risk management. World Scientific.

Tzeng, F.-Y. and Ma, K.-L. (2005). Opening the black box-data driven visualiza-

tion of neural networks. IEEE.

Van Der Maaten, L., Postma, E., and Van den Herik, J. (2009). Dimensionality

reduction: a comparative. Journal of Machine Learning Research, 10(66-71):13.

Vapnik, V. (2013). The nature of statistical learning theory. Springer Science &

Business Media.

176

Verikas, A., Kalsyte, Z., Bacauskiene, M., and Gelzinis, A. (2010). Hybrid and

ensemble-based soft computing techniques in bankruptcy prediction: a survey.

Soft Computing, 14(9):995–1010.

Wacker, J. G., Yang, C., and Sheu, C. (2016). A transaction cost economics

model for estimating performance effectiveness of relational and contractual

governance. International Journal of Operations & Production Management.

Waldron, R. (2018). Capitalizing on the state: The political economy of real

estate investment trusts and the ‘resolution’of the crisis. Geoforum, 90:206–

218.

Wang, G.-J. and Xie, C. (2016). Tail dependence structure of the foreign exchange

market: A network view. Expert Systems with Applications, 46:164–179.

Wang, J., Peng, B., and Zhang, X. (2018a). Using a stacked residual LSTM

model for sentiment intensity prediction. Neurocomputing, 322:93–101.

Wang, J.-J., Wang, J.-Z., Zhang, Z.-G., and Guo, S.-P. (2012). Stock index

forecasting based on a hybrid model. Omega, 40(6):758–766.

Wang, J.-L. and Chan, S.-H. (2007). Stock market trading rule discovery using

pattern recognition and technical analysis. Expert Systems with Applications,

33(2):304–315.

Wang, M.-C. and Ye, J.-K. (2016). The relationship between covariance risk and

size effects in emerging equity markets. Managerial Finance, 42(3):174–190.

Wang, Q., Xu, W., and Zheng, H. (2018b). Combining the wisdom of crowds and

technical analysis for financial market prediction using deep random subspace

ensembles. Neurocomputing, 299:51–61.

Wang, S. (2010). A comprehensive survey of data mining-based accounting-fraud

detection research. In 2010 International Conference on Intelligent Computa-

tion Technology and Automation, volume 1, pages 50–53. IEEE.

Wang, W., Li, W., Zhang, N., and Liu, K. (2020). Portfolio formation with

preselection using deep learning from long-term financial data. Expert Systems

with Applications, 143:113042.

177

Wang, W. and Lu, Y. (2018). Analysis of the mean absolute error (MAE) and

the root mean square error (RMSE) in assessing rounding model. In IOP Con-

ference Series: Materials Science and Engineering, volume 324, page 012049.

IOP Publishing.

Wang, Y. and Xu, W. (2018). Leveraging deep learning with LDA-based text

analytics to detect automobile insurance fraud. Decision Support Systems,

105:87–95.

West, J. and Bhattacharya, M. (2016). Intelligent financial fraud detection: a

comprehensive review. Computers & Security, 57:47–66.

Wilson, D. R. and Martinez, T. R. (2003). The general inefficiency of batch

training for gradient descent learning. Neural Networks, 16(10):1429–1451.

Wu, K., Bethel, E., Gu, M., Leinweber, D., and Rübel, O. (2013a). A big data

approach to analyzing market volatility. Algorithmic Finance, 2(3-4):241–267.

Wu, K.-P., Wu, Y. P., and Lee, H.-M. (2014). Stock trend prediction by using

a-means and aprioriall algorithm for sequential chart pattern mining. Journal

of Information Science & Engineering, 30(3).

Wu, Y., Zhou, Y., Saveriades, G., Agaian, S., Noonan, J. P., and Natarajan,

P. (2013b). Local Shannon entropy measure with statistical tests for image

randomness. Information Sciences, 222:323–342.

Xu, D. (1999). Energy, entropy and information potential for neural computation.

PhD thesis, Citeseer.

Xu, J., Zhou, X., and Wu, D. D. (2011). Portfolio selection using λ mean and

hybrid entropy. Annals of Operations Research, 185(1):213–229.

Xu, R. and Wunsch, D. (2008). Clustering, volume 10. John Wiley & Sons.

Yamanishi, K. and Takeuchi, J.-i. (2002). A unifying framework for detecting

outliers and change points from non-stationary time series data. In Proceedings

of the Eighth ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining, pages 676–681. ACM.

Yegnanarayana, B. (2009). Artificial neural networks. PHI Learning Pvt. Ltd.

178

Yeh, C.-Y., Huang, C.-W., and Lee, S.-J. (2011). A multiple-kernel support

vector regression approach for stock market price forecasting. Expert Systems

with Applications, 38(3):2177–2186.

Yeh, S.-H., Wang, C.-J., and Tsai, M.-F. (2015). Deep belief networks for pre-

dicting corporate defaults. In 2015 24th Wireless and Optical Communication

Conference (WOCC), pages 159–163. IEEE.

Yilmaz, H. (2020). WAS “yilmaz cash management model” accepted by the

theory of finance. American Journal of Finance, 5(1):16–23.

Ying, J. J.-C., Huang, P.-Y., Chang, C.-K., and Yang, D.-L. (2017). A preliminary

study on deep learning for predicting social insurance payment behavior. In

2017 IEEE International Conference on Big Data (Big Data), pages 1866–1875.

IEEE.

Yong, B. X., Rahim, M. R. A., and Abdullah, A. S. (2017). A stock market

trading system using deep neural network. In Asian Simulation Conference,

pages 356–364. Springer.

Yoshihara, A., Fujikawa, K., Seki, K., and Uehara, K. (2014). Predicting stock

market trends by recurrent deep neural networks. In Pacific rim International

Conference on Artificial Intelligence, pages 759–769. Springer.

Yu, H., Wang, J., Huang, Z., Yang, Y., and Xu, W. (2016). Video paragraph

captioning using hierarchical recurrent neural networks. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, pages 4584–

4593.

Yu, L., Zhou, R., Tang, L., and Chen, R. (2018a). A DBN-based resampling

SVM ensemble learning paradigm for credit classification with imbalanced data.

Applied Soft Computing, 69:192–202.

Yu, S.-S., Chu, S.-W., Wang, C.-M., Chan, Y.-K., and Chang, T.-C. (2018b).

Two improved k-means algorithms. Applied Soft Computing, 68:747–755.

Yümlü, S., Gürgen, F. S., and Okay, N. (2005). A comparison of global, recur-

rent and smoothed-piecewise neural models for Istanbul stock exchange (ISE)

prediction. Pattern Recognition Letters, 26(13):2093–2103.

179

Zaccone, G., Karim, M. R., and Menshawy, A. (2017). Deep Learning with

TensorFlow. Packt Publishing Ltd.

Zaremba, W., Sutskever, I., and Vinyals, O. (2015). Recurrent neural network reg-

ularization. In International Conference on Learning Representations (ICLR).

Zhang, H., Wang, L., Zhang, T., and Wang, S. (2019a). The nearest-instance-

centroid-estimation kernel recursive least squares algorithms. IEEE Transac-

tions on Circuits and Systems II: Express Briefs.

Zhang, J., Cui, S., Xu, Y., Li, Q., and Li, T. (2018a). A novel data-driven stock

price trend prediction system. Expert Systems with Applications, 97:60–69.

Zhang, L., Aggarwal, C., and Qi, G.-J. (2017a). Stock price prediction via dis-

covering multi-frequency trading patterns. In Proceedings of the 23rd ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining,

pages 2141–2149.

Zhang, M., Jiang, X., Fang, Z., Zeng, Y., and Xu, K. (2019b). High-order hidden

Markov model for trend prediction in financial time series. Physica A: Statistical

Mechanics and its Applications, 517:1–12.

Zhang, Q. and Chan, T. H. (2015). A Gaussian noise model of spectral amplitudes

in soliton communication systems. In 2015 IEEE 16th International Workshop

on Signal Processing Advances in Wireless Communications (SPAWC), pages

455–459. IEEE.

Zhang, S., Zheng, W. X., and Zhang, J. (2017b). A new combined-step-size nor-

malized least mean square algorithm for cyclostationary inputs. Signal Pro-

cessing, 141:261–272.

Zhang, X.-d., Li, A., and Pan, R. (2016). Stock trend prediction based on a

new status box method and AdaBoost probabilistic support vector machine.

Applied Soft Computing, 49:385–398.

Zhang, Z., Beck, M. W., Winkler, D. A., Huang, B., Sibanda, W., Goyal, H.,

et al. (2018b). Opening the black box of neural networks: methods for inter-

preting neural network models in clinical applications. Annals of Translational

Medicine, 6(11).

180

Zhao, J., Zhang, H., and Zhang, J. A. (2020). Gaussian kernel adaptive filters

with adaptive kernel bandwidth. Signal Processing, 166:107270.

Zhao, S., Chen, B., and Principe, J. C. (2011). Kernel adaptive filtering with

maximum correntropy criterion. In The 2011 International Joint Conference

on Neural Networks, pages 2012–2017. IEEE.

Zhao, S., Chen, B., Zhu, P., and Pŕıncipe, J. C. (2013). Fixed budget quantized

kernel least-mean-square algorithm. Signal Processing, 93(9):2759–2770.

Zheng, Y., Wang, S., Feng, J., and Chi, K. T. (2016). A modified quantized

kernel least mean square algorithm for prediction of chaotic time series. Digital

Signal Processing, 48:130–136.

Zhong, X. and Enke, D. (2017). Forecasting daily stock market return using

dimensionality reduction. Expert Systems with Applications, 67:126–139.

Zhong, X. and Enke, D. (2019). Predicting the daily return direction of the stock

market using hybrid machine learning algorithms. Financial Innovation, 5(1):4.

Zhou, B. (2019). Deep learning and the cross-section of stock returns: Neural

networks combining price and fundamental information. Available at SSRN

3179281.

Zhou, H., Huang, J., and Lu, F. (2017). Reduced kernel recursive least squares al-

gorithm for aero-engine degradation prediction. Mechanical Systems and Signal

Processing, 95:446–467.

Zhou, R., Wang, X., Dong, X., and Zong, Z. (2013). Portfolio selection model with

the measures of information entropy-incremental entropy-skewness. Advances

in Information Sciences and Service Sciences, 5(8):833.

Zhou, W. and Xu, Z. (2018). Portfolio selection and risk investment under the

hesitant fuzzy environment. Knowledge-Based Systems, 144:21–31.

Zhou, Z.-H. (2015). Ensemble learning. Encyclopedia of Biometrics, pages 411–

416.

Zhou, Z.-H. and Tang, W. (2003). Selective ensemble of decision trees. In Interna-

tional Workshop on Rough Sets, Fuzzy Sets, Data Mining, and Granular-Soft

Computing, pages 476–483. Springer.

181

Zhou, Z.-H., Wu, J., and Tang, W. (2002). Ensembling neural networks: many

could be better than all. Artificial Intelligence, 137(1-2):239–263.

Zhu, Y., Zhou, L., Xie, C., Wang, G.-J., and Nguyen, T. V. (2019). Forecasting

SMEs’ credit risk in supply chain finance with an enhanced hybrid ensemble

machine learning approach. International Journal of Production Economics,

211:22–33.

Zhuge, Q., Xu, L., and Zhang, G. (2017). LSTM neural network with emotional

analysis for prediction of stock price. Engineering Letters, 25(2).

Zio, E. (2018). The future of risk assessment. Reliability Engineering & System

Safety, 177:176–190.

182

	Abbreviations
	Nomenclature
	Notations
	Abstract
	Declaration
	Copyright
	Journal Publications
	Paper Under Review
	Acknowledgements
	Introduction
	Context and Motivation
	Research Aim and Objectives
	Thesis Contributions
	Thesis Structure

	Background and Related Work
	Financial Applications
	Algorithmic Trading
	Risk Assessment
	Fraud Detection
	Portfolio Management
	Asset Pricing and Derivatives Market
	Cryptocurrency and Blockchain Studies
	Financial Sentiment Analysis
	Other Financial Applications

	Financial Data Analysis Approaches
	Statistical Techniques
	Pattern Recognition
	Machine Learning
	Hybrid Analysis

	Research Gaps and Challenges

	A Kernel-based Sequence Prediction Approach
	An Approach for Sequence Prediction
	Multiple Kernel-Sizes in Online Sequential Learning
	An Online Technique to Optimize Step-Size

	Experimental Design
	Data Sets
	Comparative Methods
	Parameter Settings

	Simulation Results and Analysis
	Chapter Summary

	An Entropy-based Cost Function for Sequence Prediction
	An Entropy-based Prediction approach
	Adaptation Criterion based on Entropy
	Entropy-based Bandwidth for Density Estimation
	Neural Network Architecture using Kernel Machines

	Experimental Design
	Data Sets
	Comparative Methods
	Parameter Settings

	Simulation Results and Analysis
	Chapter Summary

	A Kernel-based Stock Market Interdependence Approach
	Sequential and Interdependent Nature of Financial Time-Series
	Sequential Learning based on Adaptive Filtering
	A Stock Market Interdependence Approach

	Experimental Design
	Data Sets
	Comparative Methods
	Parameter Settings

	Simulation Results and Analysis
	Chapter Summary

	Conclusions and Future Work
	Conclusions
	Future Work
	Predicting Several Steps Ahead
	Automated Machine Learning
	Transfer Learning

	Financial Data
	Financial Time-Series
	Financial Assets and Markets
	Returns on Assets
	Stock Prices

	Machine Learning Models
	Neural Networks
	Multilayer Feed-forward Neural Networks
	Convolutional Neural Networks
	Recurrent Neural Networks

	Linear Adaptive Filters
	Least Mean Square Algorithm
	Recursive Least Squares Algorithm
	Affine Projection Algorithm

	Kernel Adaptive Filtering
	Reproducing Kernel Hilbert Spaces
	Kernel Least Mean Square Algorithm
	Kernel Recursive Least Squares Algorithm
	Kernel Affine Projection Algorithm

	Information Theory
	Entropy
	Mutual Information
	Divergence and Mutual Information

	Information-Theoretic Learning
	Renyi Entropy
	Quadratic Renyi Entropy
	Renyi Divergence and Mutual Information

