49 research outputs found

    Learning Motion Predictors for Smart Wheelchair using Autoregressive Sparse Gaussian Process

    Full text link
    Constructing a smart wheelchair on a commercially available powered wheelchair (PWC) platform avoids a host of seating, mechanical design and reliability issues but requires methods of predicting and controlling the motion of a device never intended for robotics. Analog joystick inputs are subject to black-box transformations which may produce intuitive and adaptable motion control for human operators, but complicate robotic control approaches; furthermore, installation of standard axle mounted odometers on a commercial PWC is difficult. In this work, we present an integrated hardware and software system for predicting the motion of a commercial PWC platform that does not require any physical or electronic modification of the chair beyond plugging into an industry standard auxiliary input port. This system uses an RGB-D camera and an Arduino interface board to capture motion data, including visual odometry and joystick signals, via ROS communication. Future motion is predicted using an autoregressive sparse Gaussian process model. We evaluate the proposed system on real-world short-term path prediction experiments. Experimental results demonstrate the system's efficacy when compared to a baseline neural network model.Comment: The paper has been accepted to the International Conference on Robotics and Automation (ICRA2018

    Explainable shared control in assistive robotics

    Get PDF
    Shared control plays a pivotal role in designing assistive robots to complement human capabilities during everyday tasks. However, traditional shared control relies on users forming an accurate mental model of expected robot behaviour. Without this accurate mental image, users may encounter confusion or frustration whenever their actions do not elicit the intended system response, forming a misalignment between the respective internal models of the robot and human. The Explainable Shared Control paradigm introduced in this thesis attempts to resolve such model misalignment by jointly considering assistance and transparency. There are two perspectives of transparency to Explainable Shared Control: the human's and the robot's. Augmented reality is presented as an integral component that addresses the human viewpoint by visually unveiling the robot's internal mechanisms. Whilst the robot perspective requires an awareness of human "intent", and so a clustering framework composed of a deep generative model is developed for human intention inference. Both transparency constructs are implemented atop a real assistive robotic wheelchair and tested with human users. An augmented reality headset is incorporated into the robotic wheelchair and different interface options are evaluated across two user studies to explore their influence on mental model accuracy. Experimental results indicate that this setup facilitates transparent assistance by improving recovery times from adverse events associated with model misalignment. As for human intention inference, the clustering framework is applied to a dataset collected from users operating the robotic wheelchair. Findings from this experiment demonstrate that the learnt clusters are interpretable and meaningful representations of human intent. This thesis serves as a first step in the interdisciplinary area of Explainable Shared Control. The contributions to shared control, augmented reality and representation learning contained within this thesis are likely to help future research advance the proposed paradigm, and thus bolster the prevalence of assistive robots.Open Acces

    EEG-based brain-computer interfaces using motor-imagery: techniques and challenges.

    Get PDF
    Electroencephalography (EEG)-based brain-computer interfaces (BCIs), particularly those using motor-imagery (MI) data, have the potential to become groundbreaking technologies in both clinical and entertainment settings. MI data is generated when a subject imagines the movement of a limb. This paper reviews state-of-the-art signal processing techniques for MI EEG-based BCIs, with a particular focus on the feature extraction, feature selection and classification techniques used. It also summarizes the main applications of EEG-based BCIs, particularly those based on MI data, and finally presents a detailed discussion of the most prevalent challenges impeding the development and commercialization of EEG-based BCIs

    Optimizing Common Spatial Pattern for a Motor Imagerybased BCI by Eigenvector Filteration

    Get PDF
    One of the fundamental criterion for the successful application of a brain-computer interface (BCI) system is to extract significant features that confine invariant characteristics specific to each brain state. Distinct features play an important role in enabling a computer to associate different electroencephalogram (EEG) signals to different brain states. To ease the workload on the feature extractor and enhance separability between different brain states, the data is often transformed or filtered to maximize separability before feature extraction. The common spatial patterns (CSP) approach can achieve this by linearly projecting the multichannel EEG data into a surrogate data space by the weighted summation of the appropriate channels. However, choosing the optimal spatial filters is very significant in the projection of the data and this has a direct impact on classification. This paper presents an optimized pattern selection method from the CSP filter for improved classification accuracy. Based on the hypothesis that values closer to zero in the CSP filter introduce noise rather than useful information, the CSP filter is modified by analyzing the CSP filter and removing/filtering the degradative or insignificant values from the filter. This hypothesis is tested by comparing the BCI results of eight subjects using the conventional CSP filters and the optimized CSP filter. In majority of the cases the latter produces better performance in terms of the overall classification accuracy

    Optimizing Common Spatial Pattern for a Motor Imagerybased BCI by Eigenvector Filteration

    Get PDF
    One of the fundamental criterion for the successful application of a brain-computer interface (BCI) system is to extract significant features that confine invariant characteristics specific to each brain state. Distinct features play an important role in enabling a computer to associate different electroencephalogram (EEG) signals to different brain states. To ease the workload on the feature extractor and enhance separability between different brain states, the data is often transformed or filtered to maximize separability before feature extraction. The common spatial patterns (CSP) approach can achieve this by linearly projecting the multichannel EEG data into a surrogate data space by the weighted summation of the appropriate channels. However, choosing the optimal spatial filters is very significant in the projection of the data and this has a direct impact on classification. This paper presents an optimized pattern selection method from the CSP filter for improved classification accuracy. Based on the hypothesis that values closer to zero in the CSP filter introduce noise rather than useful information, the CSP filter is modified by analyzing the CSP filter and removing/filtering the degradative or insignificant values from the filter. This hypothesis is tested by comparing the BCI results of eight subjects using the conventional CSP filters and the optimized CSP filter. In majority of the cases the latter produces better performance in terms of the overall classification accuracy

    Wearable Movement Sensors for Rehabilitation: From Technology to Clinical Practice

    Get PDF
    This Special Issue shows a range of potential opportunities for the application of wearable movement sensors in motor rehabilitation. However, the papers surely do not cover the whole field of physical behavior monitoring in motor rehabilitation. Most studies in this Special Issue focused on the technical validation of wearable sensors and the development of algorithms. Clinical validation studies, studies applying wearable sensors for the monitoring of physical behavior in daily life conditions, and papers about the implementation of wearable sensors in motor rehabilitation are under-represented in this Special Issue. Studies investigating the usability and feasibility of wearable movement sensors in clinical populations were lacking. We encourage researchers to investigate the usability, acceptance, feasibility, reliability, and clinical validity of wearable sensors in clinical populations to facilitate the application of wearable movement sensors in motor rehabilitation

    Smart Sensors for Healthcare and Medical Applications

    Get PDF
    This book focuses on new sensing technologies, measurement techniques, and their applications in medicine and healthcare. Specifically, the book briefly describes the potential of smart sensors in the aforementioned applications, collecting 24 articles selected and published in the Special Issue ā€œSmart Sensors for Healthcare and Medical Applicationsā€. We proposed this topic, being aware of the pivotal role that smart sensors can play in the improvement of healthcare services in both acute and chronic conditions as well as in prevention for a healthy life and active aging. The articles selected in this book cover a variety of topics related to the design, validation, and application of smart sensors to healthcare

    Changes in the EEG Spectrum of a Child with Severe Disabilities in Response to Power Mobility Training

    Get PDF
    Literature suggests that self-generated locomotion in infancy and early childhood enhances the development of various cognitive processes such as spatial awareness, social interaction, language development and differential attentiveness. Thus, having access to a power mobility device may play a crucial role for the overall development, mental health, and quality of life of children with multiple, severe disabilities who have limited motor control. This study investigates the feasibility of using electroencephalography (EEG) as an objective measure to detect changes in brain activity in a child due to power mobility training. EEG data was collected with a modified wireless neuroheadset using a single-subject A-B-A-B design consisting of two baseline phases (A) and two intervention phases (B). One trial consisted of three different activities during baseline phase; resting condition at the beginning (Resting 1) and at the end (Resting 2) of the trial, interaction with adults, and passive mobility. The intervention phase included a forth activity, the use of power mobility, while power mobility training was performed on another day within the same week of data collection. The EEG spectrum between 2.0 and 12.0 Hz was analyzed for Resting 1 and Resting 2 condition in each phase. We found significant increase of theta power and decrease in alpha power during all three phases following the first baseline. In respect of previous findings, these observations may be related to an increase in alertness and/or anticipation. Analysis of the percentage change from Resting 1 to Resting 2 condition revealed decrease in theta and increasing alpha power during the first intervention phase, which could be associated with increasing cognitive capacity immediately after the use of power mobility. Overall, no significant difference between baseline phase and intervention phase was observed. Thus, whether the observed changes may have been influenced or enhanced by power mobility training remains unclear and warrants further investigation
    corecore