2,238 research outputs found

    Design of Automatically Adaptable Web Wrappers

    Get PDF
    Nowadays, the huge amount of information distributed through the Web motivates studying techniques to\ud be adopted in order to extract relevant data in an efficient and reliable way. Both academia and enterprises\ud developed several approaches of Web data extraction, for example using techniques of artificial intelligence or\ud machine learning. Some commonly adopted procedures, namely wrappers, ensure a high degree of precision\ud of information extracted from Web pages, and, at the same time, have to prove robustness in order not to\ud compromise quality and reliability of data themselves.\ud In this paper we focus on some experimental aspects related to the robustness of the data extraction process\ud and the possibility of automatically adapting wrappers. We discuss the implementation of algorithms for\ud finding similarities between two different version of a Web page, in order to handle modifications, avoiding\ud the failure of data extraction tasks and ensuring reliability of information extracted. Our purpose is to evaluate\ud performances, advantages and draw-backs of our novel system of automatic wrapper adaptation

    Web Data Extraction, Applications and Techniques: A Survey

    Full text link
    Web Data Extraction is an important problem that has been studied by means of different scientific tools and in a broad range of applications. Many approaches to extracting data from the Web have been designed to solve specific problems and operate in ad-hoc domains. Other approaches, instead, heavily reuse techniques and algorithms developed in the field of Information Extraction. This survey aims at providing a structured and comprehensive overview of the literature in the field of Web Data Extraction. We provided a simple classification framework in which existing Web Data Extraction applications are grouped into two main classes, namely applications at the Enterprise level and at the Social Web level. At the Enterprise level, Web Data Extraction techniques emerge as a key tool to perform data analysis in Business and Competitive Intelligence systems as well as for business process re-engineering. At the Social Web level, Web Data Extraction techniques allow to gather a large amount of structured data continuously generated and disseminated by Web 2.0, Social Media and Online Social Network users and this offers unprecedented opportunities to analyze human behavior at a very large scale. We discuss also the potential of cross-fertilization, i.e., on the possibility of re-using Web Data Extraction techniques originally designed to work in a given domain, in other domains.Comment: Knowledge-based System

    Automatic Wrapper Adaptation by Tree Edit Distance Matching

    Get PDF
    Information distributed through the Web keeps growing faster day by day,\ud and for this reason, several techniques for extracting Web data have been suggested\ud during last years. Often, extraction tasks are performed through so called wrappers,\ud procedures extracting information from Web pages, e.g. implementing logic-based\ud techniques. Many fields of application today require a strong degree of robustness\ud of wrappers, in order not to compromise assets of information or reliability of data\ud extracted.\ud Unfortunately, wrappers may fail in the task of extracting data from a Web page, if\ud its structure changes, sometimes even slightly, thus requiring the exploiting of new\ud techniques to be automatically held so as to adapt the wrapper to the new structure\ud of the page, in case of failure. In this work we present a novel approach of automatic wrapper adaptation based on the measurement of similarity of trees through\ud improved tree edit distance matching techniques

    Wrapper Maintenance: A Machine Learning Approach

    Full text link
    The proliferation of online information sources has led to an increased use of wrappers for extracting data from Web sources. While most of the previous research has focused on quick and efficient generation of wrappers, the development of tools for wrapper maintenance has received less attention. This is an important research problem because Web sources often change in ways that prevent the wrappers from extracting data correctly. We present an efficient algorithm that learns structural information about data from positive examples alone. We describe how this information can be used for two wrapper maintenance applications: wrapper verification and reinduction. The wrapper verification system detects when a wrapper is not extracting correct data, usually because the Web source has changed its format. The reinduction algorithm automatically recovers from changes in the Web source by identifying data on Web pages so that a new wrapper may be generated for this source. To validate our approach, we monitored 27 wrappers over a period of a year. The verification algorithm correctly discovered 35 of the 37 wrapper changes, and made 16 mistakes, resulting in precision of 0.73 and recall of 0.95. We validated the reinduction algorithm on ten Web sources. We were able to successfully reinduce the wrappers, obtaining precision and recall values of 0.90 and 0.80 on the data extraction task

    Intelligent Self-Repairable Web Wrappers

    Get PDF
    The amount of information available on the Web grows at an incredible high rate. Systems and procedures devised to extract these data from Web sources already exist, and different approaches and techniques have been investigated during the last years. On the one hand, reliable solutions should provide robust algorithms of Web data mining which could automatically face possible malfunctioning or failures. On the other, in literature there is a lack of solutions about the maintenance of these systems. Procedures that extract Web data may be strictly interconnected with the structure of the data source itself; thus, malfunctioning or acquisition of corrupted data could be caused, for example, by structural modifications of data sources brought by their owners. Nowadays, verification of data integrity and maintenance are mostly manually managed, in order to ensure that these systems work correctly and reliably. In this paper we propose a novel approach to create procedures able to extract data from Web sources -- the so called Web wrappers -- which can face possible malfunctioning caused by modifications of the structure of the data source, and can automatically repair themselves.\u

    Coping with Web Knowledge

    Get PDF
    The web seems to be the biggest existing information repository. The extraction of information from this repository has attracted the interest of many researchers, who have developed intelligent algorithms (wrappers) able to extract structured syntactic information automatically. In this article, we formalise a new solution in order to extract knowledge from today’s non-semantic web. It is novel in that it associates semantics with the information extracted, which improves agent interoperability; furthermore, it achieves to delegate the knowledge extraction procedure to specialist agents, easing software development and promoting software reuse and maintainability.Comisión Interministerial de Ciencia y Tecnología TIC 2000–1106–C02–01Comisión Interministerial de Ciencia y Tecnología FIT-150100-2001-7
    corecore