7,048 research outputs found

    Learning Commonsense Knowledge Through Interactive Dialogue

    Get PDF
    One of the most difficult problems in Artificial Intelligence is related to acquiring commonsense knowledge - to create a collection of facts and information that an ordinary person should know. In this work, we present a system that, from a limited background knowledge, is able to learn to form simple concepts through interactive dialogue with a user. We approach the problem using a syntactic parser, along with a mechanism to check for synonymy, to translate sentences into logical formulas represented in Event Calculus using Answer Set Programming (ASP). Reasoning and learning tasks are then automatically generated for the translated text, with learning being initiated through question and answering. The system is capable of learning with no contextual knowledge prior to the dialogue. The system has been evaluated on stories inspired by the Facebook\u27s bAbI\u27s question-answering tasks, and through appropriate question and answering is able to respond accurately to these dialogues

    Conceptual spatial representations for indoor mobile robots

    Get PDF
    We present an approach for creating conceptual representations of human-made indoor environments using mobile robots. The concepts refer to spatial and functional properties of typical indoor environments. Following ļ¬ndings in cognitive psychology, our model is composed of layers representing maps at diļ¬€erent levels of abstraction. The complete system is integrated in a mobile robot endowed with laser and vision sensors for place and object recognition. The system also incorporates a linguistic framework that actively supports the map acquisition process, and which is used for situated dialogue. Finally, we discuss the capabilities of the integrated system

    Detecting Mismatches between a User's and an Expert's Conceptualisations

    No full text
    The work presented in this paper is part of our ongoing research on applying commonsense reasoning to elicit and maintain models that represent users' conceptualisations. Such user models will enable taking into account the users' perspective of the world and will empower personalisation algorithms for the Semantic Web. A formal approach for detecting mismatches between a user's and an expert's conceptual model is outlined. The formalisation is used as the basis to develop algorithms to compare two conceptualisations defined in OWL. The algorithms are illustrated in a geographical domain using a space ontology developed at NASA, and have been tested by simulating possible user misconceptions

    GECKA3D: A 3D Game Engine for Commonsense Knowledge Acquisition

    Get PDF
    Commonsense knowledge representation and reasoning is key for tasks such as artificial intelligence and natural language understanding. Since commonsense consists of information that humans take for granted, gathering it is an extremely difficult task. In this paper, we introduce a novel 3D game engine for commonsense knowledge acquisition (GECKA3D) which aims to collect commonsense from game designers through the development of serious games. GECKA3D integrates the potential of serious games and games with a purpose. This provides a platform for the acquisition of re-usable and multi-purpose knowledge, and also enables the development of games that can provide entertainment value and teach players something meaningful about the actual world they live in
    • ā€¦
    corecore