
Learning Commonsense Knowledge Through
Interactive Dialogue
Benjamin Wu
Imperial College London
Department of Computing, Imperial College London, SW7 2AZ, UK
benjamin.wu16@imperial.ac.uk

Alessandra Russo
Imperial College London
Department of Computing, Imperial College London, SW7 2AZ, UK
a.russo@imperial.ac.uk

Mark Law
Imperial College London
Department of Computing, Imperial College London, SW7 2AZ, UK
mark.law09@imperial.ac.uk

Katsumi Inoue
National Institute of Informatics
2 Chome-1-2 Hitotsubashi, Chiyoda, Tokyo
inoue@nii.ac.jp

Abstract
One of the most difficult problems in Artificial Intelligence is related to acquiring commonsense
knowledge – to create a collection of facts and information that an ordinary person should know.
In this work, we present a system that, from a limited background knowledge, is able to learn to
form simple concepts through interactive dialogue with a user. We approach the problem using
a syntactic parser, along with a mechanism to check for synonymy, to translate sentences into
logical formulas represented in Event Calculus using Answer Set Programming (ASP). Reasoning
and learning tasks are then automatically generated for the translated text, with learning being
initiated through question and answering. The system is capable of learning with no contextual
knowledge prior to the dialogue. The system has been evaluated on stories inspired by the
Facebook’s bAbI’s question-answering tasks, and through appropriate question and answering is
able to respond accurately to these dialogues.

2012 ACM Subject Classification Computing methodologies → Knowledge representation and
reasoning

Keywords and phrases Commonsense Reasoning, Answer Set Programming, Event Calculus,
Inductive Logic Programming

Digital Object Identifier 10.4230/OASIcs.ICLP.2018.12

1 Introduction

Learning commonsense knowledge is one of the major long-term goals in the research of
Artificial Intelligence [6]. In recent years, there have been major developments in the
area of Natural Language Processing, particularly in the automation of linguistic structure
analysis [10], however the challenge of disambiguation and learning commonsense still remains
[26]. Consider the sentence, “I pulled the pin out of the apple and there was a hole in it.”
Immediately we understand that the “it” in the sentence is referring to the apple and not

© Benjamin Wu, Alessandra Russo, Mark Law, and Katsumi Inoue;
licensed under Creative Commons License CC-BY

Technical Communications of the 34th International Conference on Logic Programming (ICLP 2018).
Editors: Alessandro Dal Palu’, Paul Tarau, Neda Saeedloei, and Paul Fodor; Article No. 12; pp. 12:1–12:19

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:benjamin.wu16@imperial.ac.uk
mailto:a.russo@imperial.ac.uk
mailto:mark.law09@imperial.ac.uk
mailto:inoue@nii.ac.jp
https://doi.org/10.4230/OASIcs.ICLP.2018.12
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

12:2 Learning Commonsense Knowledge Through Dialogue

the pin. Consider another example, “I saw a bird flying with binoculars.” This could be
interpreted in two different ways: either I used the binoculars to see the bird; or the bird
was in possession of the binoculars while flying. These are examples of some of the current
difficulties and challenges faced by computers in text comprehension and is what motivates
our research.

Research into the problem of Commonsense reasoning is divided mainly into knowledge-
based approaches and statistical machine learning approaches that use large corpora of
data. Some of these approaches include: Word Sense Disambiguation using Topic Models [4];
Learning Common Sense through Visual Abstraction [28]; Representation Learning for
Predicting Commonsense Ontologies [19]; and Commonsense Knowledge Base Completion [18]
amongst others. For humans, learning commonsense through dialogue is a very natural
thing to do. In fact, students who are placed in a learning environment may very well
need to interact with a teacher or some learning facilitator in order to receive feedback and
guidance [5]. Just as it is natural for humans to learn through dialogue, this paper presents
a system that is able to automatically acquire common-sense knowledge through dialogic
interaction.

There are two main aspects to the system: the knowledge representation, reasoning
and inductive learning; and understanding and conversion from text to logic. For the first
aspect, we use Answer Set Programming (ASP) in combination with a suitable form of Event
Calculus [14] to represent the knowledge, along with ILASP [15] [16] [17] and clingo [8] as
our main systems for reasoning and learning commonsense knowledge; and for the second,
we use spaCy [11] as the syntactic parser along with WordNet [23] to help with checking
synonymy for the translation from text to logic. The project uses stories as inspired by those
from the Facebook’s bAbI dataset [29] to see if the system can understand simple sentences
with little ambiguity and develop the system’s ability to gradually learn from and form valid
hypotheses about such stories.

In Section 2 of this paper we will first discuss some background knowledge required to
understand the tools used in our system. Following this in Section 3 we overview and explain
the approach taken towards solving the problem at hand. Section 4 then discusses how
we have evaluated the system and its capabilities and Section 5 touches briefly upon other
related works that have been done on machine learning from dialogues. The paper is then
concluded in Section 6 with remarks about potential areas for future work followed by the
Appendix which contains examples of interactive dialogues between a user and our system.

2 Background

2.1 Answer Set Programs
Answer Set Programming (ASP) is a form of declarative programming directed at complex
search problems [20]. ASP is based on stable model semantics of logic programming [9] and
the search problems in ASP are reduced to computing such stable models using solvers that
perform such search tasks. For the purposes of this paper, we will assume the following
subset of the ASP language:

A literal can be either an atom p or its default negation, not p. A normal rule is of
the form h← b1, ..., bn, not c1, ..., not cm where h is the head and b1, ..., bn, not c1, ..., not cm

collectively is the body of the rule, where bi and cj are atoms. A constraint is a rule with
an empty head and is of the form ← b1, ..., bn, not c1, ..., not cm. An expression of the form
l{h1, ..., hk}u is called an aggregate, where hi are atoms for 1 ≤ i ≤ k, and l and u are
integers such that 0 ≤ l ≤ u ≤ k. A variable V that occurs in a rule R is considered safe if it
occurs in at least one positive body literal of R.

B. Wu, A. Russo, M. Law, and K. Inoue 12:3

An Answer Set Program P is a finite set of normal rules and constraints. Given an
ASP program P , the Herbrand Base of P, denoted as HBP , is the set of all ground atoms
that can be formed from the predicates and constants that appear in P . When P includes
only normal rules, a set A ⊆ HBP is an Answer Set of P iff it is the minimal model of the
reduct PA. The reduct PA is constructed from the grounding of P by removing any rule
whose body contains a literal not ci where ci ∈ A, and removing any negative literals in the
remaining rules. Given an Answer Set Program P , we denote the set of all Answer Sets of P
as AS(P). A partial interpretation e is a pair e = 〈einc, eexc〉 of sets of ground atoms, called
the inclusions and exclusions respectively. An Answer Set A extends e = 〈einc, eexc〉 if and
only if (einc ⊆ A) ∧ (eexc ∩A = ∅).

2.2 ILASP
ILASP [15] is an ILP algorithm targeted at learning answer set programs. In this paper,
we consider a simplification of ILASP’s full learning framework presented in [17], called
Context-Dependent Learning from Answer Sets. In this framework, examples are context-
dependent partial interpretations, which each consist of a partial interpretation and an ASP
program called the context of the example. Contexts allow the expression of background
concepts that only apply to specific examples. They can also be used to further structure the
background knowledge in an example-specific manner, thus bringing about improvements in
the performance of the learning algorithm [17].

I Definition 1. A context-dependent partial interpretation is a tuple 〈e, C〉, where e =
〈einc, eexc〉 is a partial interpretation and C is an ASP program called the context.

The hypothesis space is defined by M = 〈Mh,Mb〉 called the language bias of the task
which is made up of a set of head mode declarations (Mh) and a set of body mode declarations
(Mb). A rule h← b1, ..., bn, not c1, ..., not cm is contained within the search space SM if and
only if it satisfies the following:
1. The head is empty; or h is an atom compatible with a mode declaration in Mh.
2. The atoms bi and cj are all compatible with mode declarations in Mb, ∀i ∈ [1, n] and
∀j ∈ [1,m].

3. All variables in the rule are safe.
Each rule R in SM is given a unique identifier Rid.

I Example 2. Consider the mode declarations M = 〈Mh,Mb〉 with Mh = {is_in(v, v),
is_holding(v, v)} and Mb = {went_to(v, v), picked_up(v, v)}, and where v denotes that the
arguments of the predicates are variables. Some of the possible rules that are contained in
the hypothesis space SM include:

is_in(V 0, V 1)← went_to(V 0, V 1)
is_holding(V 0, V 1)← picked_up(V 0, V 1)
← went_to(V 0, V 0)

Examples of rules that are not in SM are:

is_in(V 0, V 1)← is_holding(V 0, V 1)
went_to(V 0, V 1)← picked_up(V 0, V 1)

ICLP 2018

12:4 Learning Commonsense Knowledge Through Dialogue

I Definition 3. A Context-Dependent Learning from Answer Sets task is a tuple T =
〈B,SM , E+, E−〉 where B is the background knowledge, SM is the hypothesis space defined
by a language bias M , E+ is a set of context-dependent partial interpretations, called the
positive examples and E− is a set of context-dependent partial interpretations called the
negative examples. An hypothesis H is an inductive solution of T if and only if:
1. H ⊆ SM

2. ∀〈e, C〉 ∈ E+ ∃A ∈ AS(B ∪H ∪ C) such that A extends e
3. ∀〈e, C〉 ∈ E− @A ∈ AS(B ∪H ∪ C) such that A extends e
Such a solution is written as H ∈ ILP context

LAS (T).

I Example 4. An example of a Context-Dependent Learning from Answer Sets (ILP context
LAS)

task can be represented in the following manner:

% Background Knowledge
picked_up (john , football).

% Context dependent partial interpretations
% positive examples have the form:
% #pos(id , inclusions , exclusions , Context).
#pos(p1 , { is_in(mary , garden), is_holding (john , football) },

{ is_in(john , garden) },
{ went_to (mary , garden). }).

#pos(p2 , { is_in(john , garden), is_holding (john , football) },
{ is_holding (mary , football) },
{ went_to (john , garden). }).

% Mode declarations
#modeh(is_in(var(person),var(location))).
#modeh(is_holding (var(person),var(object))).
#modeb (1, went_to (var(person),var(location))).
#modeb (1, picked_up (var(person),var(object))).

In this example, the Context-Dependent Learning from Answer Sets task includes a single
fact in the Background Knowledge and two positive examples with no negative examples.
The mode head (#modeh) and mode body (#modeb) declarations here generate the same
hypothesis space as discussed in Example 2. Here both the positive examples share the
background knowledge that John picked up the football, however the contexts of each example
differs in that Mary went to the garden in the first positive example and John in the second.
The above learning task would produce as optimal solution the following hypothesis, H:

is_in(V0 ,V1) :- went_to (V0 ,V1).
is_holding (V0 ,V1) :- picked_up (V0 ,V1).

The Answer Set produced by AS(B ∪H ∪C1) extends the first example and AS(B ∪H ∪C2)
extends the second positive example. This illustrates how Context-Dependent Learning by
Answer Sets allows for consistent hypotheses to be learned even in the presence of conflicting
facts from different contexts. If both contexts were added directly to the background
knowledge, the learning task would have no solution for the given examples.

B. Wu, A. Russo, M. Law, and K. Inoue 12:5

2.3 Event Calculus
With the comprehension of stories involving agents and their actions, there needs to be some
logic-based formalism to represent actions and effects of actions. Such formalisms include
event calculus [14] and situation calculus [22] among others. Even among the formalisms of
Event Calculus there exists multiple variants but for the purposes of this paper, we will look
at a particular variant developed for the use in Inductive Logic Programming from [13].

For our use of Event Calculus in this paper, we introduce the following predicates.

initiatedAt(F ,T) terminatedAt(F ,T) holdsAt(F ,T) happensAt(E,T)

The variable F represents a fluent, E represents an event and T represents a time point.
Along with these predicates we add the following axioms.

holdsAt(F,T+1) :- initiatedAt(F,T).
holdsAt(F,T+1) :- holdsAt(F,T), not terminatedAt(F,T).

These axioms basically mean that if a fluent is initiated at a time point, then the fluent
will hold at the next time point, and if a fluent holds at a particular time point and is not
terminated at that time, it will continue to hold.

3 Learning Commonsense Knowledge

In this section, we present our system for learning commonsense rules by interacting with a
user through simple dialogue. The system starts with a very limited background knowledge
that includes only the domain-independent axioms of Event Calculus given in the previous
section. The user inputs a series of sentences and responses through the keyboard to
the system in a simulated conversation. Through a mixture of story telling and question-
answering, the system remembers facts about the narrative being told by the user and learns
to form rules and relations that are consistent with the responses given by the user about
the questions that have been asked.

An illustration of the overall structure and pipeline for the system can be seen in Figure 1.
There are two main components to this system: the translation module and the reasoning
module, which are described in detail in the following sections. The system was coded in
python 2.7 using spaCy [11] as the syntactic parser, WordNet [23] for the synonym database,
clingo5 [8] as the ASP solver, and ILASP [17] for the learning tasks.

3.1 Translation
Each sentence that passes through the translation module is parsed and its dependency tree
is generated. Each word is tokenised and tagged with their part-of-speech (POS) tag, their
dependency tag and their parent node in the tree.

After a sentence is parsed we need to generate the predicate symbol for the sentence.
Firstly, the “ROOT” of the sentence is taken and put through WordNet to find the closest
general synonym. We then append any adpositions (ADP), adjectives (ADJ) or auxiliary
verbs (aux / VERB) to the root verb to complete the predicate symbol. Then the sentence
is scanned through for nouns (NOUN), pronouns (PRON) and proper nouns (PROPN). The
lemmas of the n-number of nouns are then added to the predicate symbol to form an n-ary
predicate. This is illustrated in Figure 2. For the rest of this paper we will refer to this
translated predicate as the logical representation of the sentence.

ICLP 2018

12:6 Learning Commonsense Knowledge Through Dialogue

Figure 1 The general work pipeline of the system.

To complete the conversion of the sentence into its representation in ASP for the system,
the logical representation of the sentence is wrapped with the appropriate predicate of Event
Calculus. The system has an internal counter that begins at “1” for each story and increments
after each sentence/question that is input by the user. This counter is used to determine the
time stamp for each predicate of Event Calculus while the logical representations form the
events/fluents. With the exception of sentences that contain the root verb translating to “be”
and sentences that contain negation, all facts are wrapped with the “happensAt” predicate.
These sentences are all treated as events that happen at that particular time stamp. For
sentences with the root verb “be”, these are wrapped with the “holdsAt” predicate as they
are concerned with the state something is in rather than a particular event.

Some additional rules for translation have been added to deal with sentences that include
negation, conjunctions, disjunctions and coreferencing. These rules have been constructed
to be general in nature however they are only applicable to sentences of relatively simple
structures. If a negation modifier (neg) is found linked directly to the root verb, then
the resulting logical representation is wrapped in the “terminatedAt” predicate for Event
Calculus. This stops the fluent from holding from that time point onwards, regardless of if it
were true or not beforehand. For conjunctions and disjunctions, the noun that is tagged as
the conjunct (conj) is stored and a predicate is formed whilst disregarding the conjunct. A
second predicate is then formed by substituting in the conjunct in the place of the noun it
is linked to. In the case of conjunctions (sentences involving “and”) the extra predicate is
added on as an additional fact. In the case of disjunctions (sentences involving “or”) the two
predicates are combined into an aggregate where only one may be chosen, thus creating an
exclusive or.

B. Wu, A. Russo, M. Law, and K. Inoue 12:7

Figure 2 Illustration of how a sentence is generally translated into its logical representation.

For all inputs that are not questions, the sentences are translated, stored into the context
of the story, then the system waits for the next input. When the translation module notices
that the input sentence is a question, the reasoning module will be called.

3.2 Reasoning
The reasoning module deals with a variety of types of questions, however the most important
type of question for this system are “yes/no” questions. Questions that ask “who”, “what”,
“where” and “why” will only generate a response that the system can give using its current
knowledge, whereas asking “yes/no” questions may initiate learning tasks depending on the
user’s feedback.

“Yes/No” Questions
All of the learning that happens in the system is through the interactions that result from
“yes/no” questions. All our reasoning tasks are run using clingo5 with the files created
dynamically during the conversations. The system begins with only the axioms of Event
Calculus as described from Section 2.3 except with an added predicate for time.

holdsAt(F,T+1) :- initiatesAt(F,T), time(T).
holdsAt(F,T+1) :- holdsAt(F,T), not terminatedAt(F,T), time(T).

The type predicate for time is used here to limit the relevant grounding of the reasoning
tasks. Without specifying this type predicate, our ASP solver will continue to generate
“holdsAt” predicates indefinitely.

ICLP 2018

12:8 Learning Commonsense Knowledge Through Dialogue

All the sentences that are not questions pass through the translation module and are
stored directly into the context of the story without interacting with the reasoning module.
When a “yes/no” question is asked, the background knowldge axioms, the context up to that
time and the current hypothesis is written into a “.lp” file along with the translated query as
the goal. The ASP solver will try to satisfy the goal using the given context with the current
hypothesis. If the result of the reasoning task comes back as “UNSATISFIABLE” then the
system will respond “No” to the question; otherwise it will respond “Yes” or “Maybe” in
some exceptions. The user will then tell the system if its conclusion was correct or not.
After the user responds, the query is stored as a positive example if it is supposed to true, a
negative example if it is supposed to be false, and if the system is told that it was incorrect
a learning task will be initiated.

In the case where a disjunction was present in the context, a second reasoning task is run
alongside the original except with the negation of the query as the goal. If the results of
running both reasoning tasks returns “SATISFIABLE” (i.e. the query can be considered
both true or false with respect to the context), then the system responds with “Maybe”. If
the response of “Maybe” is deemed correct by the user, then the query is not stored in the
examples, however if “Maybe” is incorrect, then the query is added to the negative examples.
For example, if in the story we have “John went to either the hallway or the garden.” then
we ask “Is John in the hallway?”, two reasoning tasks will be run trying to satisfy John being
in the hallway and John not being in the hallway. In this case, both cases are satisfiable and
therefore the system would respond with “Maybe”.

Learning
When a learning task is triggered, the system will construct an ILP context

LAS task that contains
the background knowledge, bias constraints, the context-dependent partial interpretations
and the mode declarations. We use ILASP here to run the learning task from the generated
file. The background knowledge added to the task is the axioms of Event Calculus as it
is for the reasoning tasks. The context-dependent partial interpretations are generated by
using the positive and negative examples that were stored from the “yes/no” questions in
the dialogue, along with the context of the story thus far.

The mode declarations are automatically generated for each learning task. To generate
the mode declarations, for each logical representation that is seen throughout the story,
the original nouns in the arguments are replaced with variable types. With the current
implementation, variable types are given as inputs by the user; when the system encounters
a noun that it has not yet seen, it will prompt the user to enter the noun’s variable type. For
each type of predicate that occurs in the context, a corresponding mode body declaration is
created. For each type of logical representation that occurs as an example, additional mode
head declarations are made using both “initiatedAt” and “terminatedAt” wrappers, along
with a mode body declaration using the “holdsAt” wrapper if it is not already present.

Additional bias constraints are used to help decrease the size of the hypothesis search
space by restricting ILASP to only searching for hypotheses about a single time point rather
than multiple. As all of the hypotheses that we are currently aiming to learn consist of rules
that are each triggered by events that happen at one specific time point, this constraint does
not negatively impact our system’s ability to learn.

The ILP context
LAS task is solved with the maximum number of variables of possible hypo-

theses set to three. The resulting hypothesis is stored and added to subsequent reasoning
tasks as the current hypothesis. The current hypothesis is continually overwritten with each

B. Wu, A. Russo, M. Law, and K. Inoue 12:9

Table 1 List of special inputs and their functions.

Input Description
end ends the current session and exits the program

new story starts a new story with empty context
save hypothesis stores the current hypothesis into the Background Knowledge
check hypothesis prints the stored and current hypothesis

learning task. If ILASP is unable to find a suitable hypothesis, the maximum number of
variables is incremented and the task is run again. The system halts if it still fails to find an
inductive solution with the maximum number of variables set to five.

Other Questions

With questions starting with “What”, “Where” or “Who”, a slightly different reasoning task
to the one generated for “yes/no” questions is created. We create a file for the reasoning task
with the background knowledge axioms, the context of the story and the current hypothesis,
however we do not add in a goal to this ASP program. Rather than add the translation of
the query as the goal, we generate a pattern from the translation and see what positive atoms
match this pattern in the resulting answer set. From those atoms we extract the variables
that have been matched and output them to the screen. For questions that start with ‘How
many’, the same task as what has just been described is generated but rather than return
the strings that result from pattern matching, it returns the number of items matched.

For questions that ask “Why”, a different type of reasoning task is generated. The
background knowledge and learned hypothesis are written into the “.lp” file along with the
translated query as the goal, and the facts from the context of the story are written into an
aggregate. For each fact in the aggregate, a weight is applied so that when the ASP program
is then run, only the minimum number of facts from the story will be chosen to make the
goal “SATISFIABLE”. This in essence is an abductive task where we look for the causal
relationship between what events have happened and how the goal has been reached. This
differs to the type of “why” questions asked in Facebook bAbI’s task 20 where it asks for the
motivation of the agent in question, which is outside the scope of the story.

3.3 Special inputs

This system runs in a constant loop where it will keep waiting for the user’s next input.
Whenever a new sentence is expected by the system, there are a few specific inputs that are
recognised by the system as different function calls. These special inputs are described in
Table 1.

One thing to note is that when “new story” is called, the context and examples up until
that point all get stored as a context-dependent partial interpretation which is still used
for subsequent learning tasks so that what has been learned previously is not forgotten,
however the reasoning tasks will not be affected by facts from previous stories. By checking
and saving the hypothesis, the user can also choose to keep rules that they consider to be
desirable. The “save hypothesis” function also clears all mode head declarations up to that
point; this aids the systems scalability and helps when learning more difficult concepts.

ICLP 2018

12:10 Learning Commonsense Knowledge Through Dialogue

4 Evaluation

The system was tested with various stories that draw inspiration from the themes of those
seen in Facebook bAbI’s question-answering data set [29]. Many of these stories are to do with
a number of people moving to different locations and then asking about their whereabouts
or about objects that they are or were carrying. By the nature of our system, our results are
more qualitative than quantitative, and so it is easier for us to demonstrate the capabilities
of the system via an example.

I Example 5. For this example, consider Listings 1, 2 and 3 (the Listings are found in the
Appendix). This story is inspired by tasks 1, 2, 6, 7, 8, 11 and 12 of Facebook bAbI’s QA
dataset.

In Listing 1 it can be seen how initially when the system is asked about the location
of “Mary” from the story, it cannot answer correctly. It then forms a concept to initiate
the state of Mary being in the location due to travelling there. However with what it had
first learned, it did not understand that if Mary moved to a different location, she would no
longer be in the previous location. This is then corrected after making its second mistake,
which results in learning the correct hypothesis, which is displayed after the input ’check
hypothesis’.

Following the story from Listing 1 we look at the dialogue from Listing 2. Here we can
see that initially when asked about the items that Mary is carrying, the system responds
incorrectly as it has not learned anything about the concept of “carrying” yet. So then the
concept of carrying is then taught to the system as a result of picking up or dropping objects
through additional questioning and the system is then able to answer the questions correctly.
By further interactions with the system through dialogue, the system is able to learn more
interesting and complex concepts, such as what is displayed in Listing 3. Here the system is
able to answer questions that require two supporting facts, this being equivalent to questions
from task 2 of the bAbI dataset. More specifically, in Listing 3, it has learned that objects
will be in the locations they are picked up in or will move to new locations with the person
who is carrying them, and that they will no longer be in previous locations if the person
carrying them has moved.

Using Facebook bAbI’s QA dataset as a means for comparison, the presented system is
able to learn concepts that are able to deal with dialogues that are equivalent to eleven of
the bAbI tasks. The tasks that can be solved are shown in Table 2. However due to some
limitations in our system with translation, some of these tasks need to be slightly adapted for
our system. For questions such as “Where is the apple?”, our system needs the question to be
phrased using the same language as what was used to teach it. Since the concept determining
the location of an object or person would have been translated as something “being in” a
location, we would need to change the question to “Where is the apple in?” for the system
to be able to correctly understand and answer the question. Another translation limitation
that has been found during various tests is that some names are not always recognised as
proper nouns by the spaCy parser. Names such as Emily and Will are sometimes tagged as
adverbs or verbs by the parser. To deal with this problem, it is sufficient to replace these
names in the tasks with other less ambiguous names such as Emma and Brian. With these
minor changes to the eleven bAbI tasks, after appropriate questioning and answering, this
system is able to learn to solve them completely.

The number of questions required to learn each concept correctly is also difficult to
quantify as it can vary greatly depending on the complexity of the concept, the context of
the story, the types of questions you ask and the order in which you ask them. Some of these

B. Wu, A. Russo, M. Law, and K. Inoue 12:11

Table 2 The Facebook bAbI question-answering tasks that are able to be solved by the system.

Task Description Examples of sentences that feature in the task
1 single supporting fact Where is Mary? (see Listing 1)
2 two supporting facts Where is the apple? (see Listing 3)
6 yes/no questions Is Mary in the kitchen?
7 counting How many objects is Mary carrying?
8 lists / sets What is Mary carrying?
9 simple negation Sandra is no longer in the bedroom.
10 indefinite knowledge John is either in the office or the bathroom.
11 basic coreference Then he moved to the hallway.
12 conjunctions Mary and Sandra journeyed to the garden.
13 compound coreference After that they went back to the kitchen.
15 basic deduction What is gertrude afraid of? (see Listing 4)

concepts can be learned in as few as two or three questions as can be seen from Listings 1
and 2, however the same concepts can also take much longer to learn if not questioned
appropriately. To minimise the number of questions required to learn a concept, questions
should be directed towards the gaps of any incomplete learned hypothesis. Since learning is
only initiated when a “yes/no” question is answered incorrectly, actively trying to increase
the number of mistakes the system makes will allow the learning to progress much faster.

We have yet to implement a way for dialogue with the system to be automated and allow
for quantitative analyses to be generated. With the current interactive approach, to do a
quantitative analysis over a large dataset is impractical. Due to the size of these data sets, it
is likely that many examples will be covered by the same hypotheses. Since ILASP2i [16]
iteratively computes a subset of the examples which are relevant to the search, the size of
which generally being much smaller than the entire set of examples, we may be able to take
advantage of this capability when automating the process to scale on entire bAbI datasets.
This could potentially scale better compared to other batch learning systems, however this
has yet to be tested.

Limitations
For the majority of the other tasks in the bAbI dataset, the reason why the tasks are
unable to be completed is because of the limitations of the translation module. Some of
these troubles are to do with inconsistent parsing of sentences with similar structure and
some are to do with the challenges in representing sentences with multiple arguments. For
instance, take the sentences “Fred gave John the football.”, “Who gave the football to John?”
and “Who did Fred give the football to?”. By using the current method of translation, the
logical representation of the first sentence would be “give(Fred, John, football)”, and the two
questions would ideally translate to “give(?, John, football)” and “give(Fred, ?, football)”.
However, rules that determine the order in which the multiple arguments are put into the
predicate, and also the position of the missing argument that needs to be found, are very
hard to generalise without programming it for a specific sentence structure. Currently the
system is unable to translate these types of sentences well enough.

Another challenge this system faces is a problem with scalability. As stories get more
involved and new types of predicates get introduced, the hypothesis space gets exponentially
larger and can expand to the point where learning takes too long to be considered reasonable

ICLP 2018

12:12 Learning Commonsense Knowledge Through Dialogue

for dialogue. Although this problem arises from our choice of automating the generation of
mode declarations, we believe that this does not outweigh the benefits we gain from being
able to generalise with no prior knowledge of the contexts. An example of encountering
scalability problems can be seen when trying to solve task 2 (two supporting facts) of the
bAbI dataset. This task is currently solvable by using the “save hypothesis” functionality
that can be used to clear the old mode head declarations. By being a bit more strategic with
the order in which you ask questions and help the system learn, concepts that otherwise
would be too difficult for it to learn in one go can be broken down into manageable steps for
incremental learning.

5 Related Work

To our knowledge, the problem of learning commonsense knowledge through a dialogic
interaction is a novel task. However there has been significant research done on solving
Facebook bAbI’s question-answering tasks.

Mitra and Baral [24] developed a system to solve the toy tasks from Facebook’s bAbI
dataset. In their work, they describe an agent architecture that works with a formal reasoning
model together with a statistical inference based model in tandem, to face the task of question
answering. There are three layers to their implementation: the Statistical Inference Layer,
the Formal Reasoning Layer and the Translation Layer. The Statistical Inference Layer
contains the statistical NLP models which uses an Abstract Meaning Representation (AMR)
Parser [1] [7]. The Formal Reasoning Layer uses a modified version of the ILP algorithm
XHAIL [25] to learn the knowledge for reasoning in ASP. The Translation Layer encodes the
sentences from the text into the syntax of Event Calculus with the help of the AMR Parser.
This layer enables the communication between the two aforementioned layers and allows
information to be passed from one to the other. Their system achieved a mean accuracy of
99.68% over the entire bAbI dataset and shows that with the addition of a formal reasoning
layer, the reasoning capability of an agent increases significantly. With this approach, mode
declarations had to be manually defined for each task, and some tasks had hypotheses learned
from previous tasks added to the background knowledge of other more complex tasks. This
differs to our approach as mode declarations are automatically defined during the dialogue
and we do not augment our background knowledge.

An approach to the problem of machine comprehension of text has recently been developed
by Chabierski [3]. The approach here utilises Combinatory Categorial Grammar [27] and
Montague-style semantics [12] to perform a semantic analysis of text to derive Answer Set
Program representations expressed in the form of λ-ASP calculus [2]. These representations
are used to automatically derive the mode declarations for the generation of ILP tasks to be
computed by the ILASP algorithm. To evaluate the performance of this approach, the system
was tested using a subset of the bAbI question-answering tasks. Using only 25 training
examples for each task, the system is able to fully solve six of the twenty QA tasks from
the bAbI dataset, namely tasks 1, 6, 8, 9, 12 and 15. This approach also automatically
derives its mode declarations from the task context and background knowledge, however
the background knowledge is manually added for each task to increase the capability of the
learner.

B. Wu, A. Russo, M. Law, and K. Inoue 12:13

6 Conclusion and future work

What distinguishes our presented work from others is the interactive nature of our system and
its ability to be able to learn from dialogues without having any prior knowledge about the
contexts of their stories. More specifically, our system has the ability to automatically define
the mode declarations for each task without the need to manually augment the system’s
background knowledge. This allows our system to be more flexible and able to understand
contexts outside the scope of stories in the bAbI tasks. Although interactions with the system
are limited to relatively simple sentences, these sentences are not confined to a preset type of
contexts. Another strength of our system is that it is able to learn concepts with relatively
few questions; it does not require large datasets for it to be trained on.

To expand the scope of what the system is able to understand and learn from, the
translation module needs to be improved. It is very hard to define general rules that would
allow for accurate translations of all the complexities in the English language, therefore it
would probably be better to use statistical methods of machine learning to train the translation
module instead. Many measures have already been taken to improve the scalability of the
system but further improvements should be looked into as well. Allowing the user to define
the variable types is one such measure taken to improve the scalability. This is not a very
elegant implementation and ideally the system would be able to accurately define the variable
types itself in a way which is not too specific to the point where the system is unable
to generalise, yet not too general so that the scalability is affected. It may be possible
to introduce some way of using ontologies or by using other relational databases such as
ConceptNet [21] to map these variables to similar types.

References
1 Laura Banarescu, Claire Bonial, Shu Cai, Madalina Georgescu, Kira Griffitt, Ulf Herm-

jakob, Kevin Knight, Philipp Koehn, Martha Palmer, and Nathan Schneider. Abstract
Meaning Representation for Sembanking. In Proceedings of the 7th Linguistic Annotation
Workshop and Interoperability with Discourse, pages 178–186, Sofia, Bulgaria, August 2013.
Association for Computational Linguistics. URL: http://www.aclweb.org/anthology/
W13-2322.

2 Chita Baral, Juraj Dzifcak, and Tran Cao Son. Using Answer Set Programming and
Lambda Calculus to Characterize Natural Language Sentences with Normatives and Ex-
ceptions. In Proceedings of the 23rd National Conference on Artificial Intelligence - Volume
2, AAAI’08, pages 818–823. AAAI Press, 2008. URL: http://dl.acm.org/citation.cfm?
id=1620163.1620199.

3 Piotr Chabierski, Alessandra Russo, Mark Law, and Krysia Broda. Machine Compre-
hension of Text Using Combinatory Categorial Grammar and Answer Set Programs. In
COMMONSENSE, 2017.

4 Devendra Singh Chaplot and Ruslan Salakhutdinov. Knowledge-based Word Sense Disam-
biguation using Topic Models. CoRR, abs/1801.01900, 2018. arXiv:1801.01900.

5 John Cook. Dialogue in Learning: Implications for the Design of Computer-based Educa-
tional Systems. In ICCE, pages 987–991, 2002. doi:10.1109/CIE.2002.1186131.

6 Ernest Davis and Gary Marcus. Commonsense reasoning and commonsense knowledge in
artificial intelligence. Communications of the ACM, 58(9):92–103, September 2015. doi:
10.1145/2701413.

7 Jeffrey Flanigan, Sam Thomson, Jaime Carbonell, Chris Dyer, and Noah A. Smith. A Dis-
criminative Graph-Based Parser for the Abstract Meaning Representation. In Proceedings
of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1:

ICLP 2018

http://www.aclweb.org/anthology/W13-2322
http://www.aclweb.org/anthology/W13-2322
http://dl.acm.org/citation.cfm?id=1620163.1620199
http://dl.acm.org/citation.cfm?id=1620163.1620199
http://arxiv.org/abs/1801.01900
http://dx.doi.org/10.1109/CIE.2002.1186131
http://dx.doi.org/10.1145/2701413
http://dx.doi.org/10.1145/2701413

12:14 Learning Commonsense Knowledge Through Dialogue

Long Papers), pages 1426–1436, Baltimore, Maryland, June 2014. Association for Compu-
tational Linguistics. URL: http://www.aclweb.org/anthology/P14-1134.

8 M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub. Clingo = ASP + Control: Prelim-
inary Report. In M. Leuschel and T. Schrijvers, editors, Technical Communications of the
Thirtieth International Conference on Logic Programming (ICLP’14), volume 14 (4-5), 2014.
Theory and Practice of Logic Programming, Online Supplement. arXiv:1405.3694v1.

9 M. Gelfond and V. Lifschitz. The Stable Model Semantics for Logic Programming. In
ICLP ’88, pages 1070–1080, Cambridge, Massachusetts, 1988. MIT Press.

10 Julia Hirschberg and Christopher D. Manning. Advances in natural language processing.
Science, 349(6245):261–266, 2015. doi:10.1126/science.aaa8685.

11 Matthew Honnibal and Mark Johnson. An Improved Non-monotonic Transition System for
Dependency Parsing. In Proceedings of the 2015 Conference on Empirical Methods in Nat-
ural Language Processing, pages 1373–1378, Lisbon, Portugal, September 2015. Association
for Computational Linguistics. URL: https://aclweb.org/anthology/D/D15/D15-1162.

12 Theo M. V. Janssen. Montague Semantics. In Edward N. Zalta, editor, The Stanford
Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, spring 2017
edition, 2017.

13 Nikos Katzouris, Alexander Artikis, and Georgios Paliouras. Incremental learning of event
definitions with Inductive Logic Programming. Machine Learning, 100(2-3):555–585, 2015.
doi:10.1007/s10994-015-5512-1.

14 Robert Kowalski and Marek Sergot. A Logic-Based Calculus of Events. New Generation
Computing, 4:67–95, 1986.

15 Mark Law, Alessandra Russo, and Krysia Broda. Inductive Learning of Answer Set Pro-
grams. In Eduardo Fermé and João Leite, editors, JELIA, volume 8761 of Lecture Notes in
Computer Science, pages 311–325. Springer, 2014. doi:10.1007/978-3-319-11558-0_22.

16 Mark Law, Alessandra Russo, and Krysia Broda. Learning weak constraints in answer set
programming. TPLP, 15(4-5):511–525, 2015. doi:10.1017/S1471068415000198.

17 Mark Law, Alessandra Russo, and Krysia Broda. Iterative Learning of Answer Set Pro-
grams from Context Dependent Examples. TPLP, 16(5-6):834–848, 2016. doi:10.1017/
S1471068416000351.

18 Xiang Li, Aynaz Taheri, Lifu Tu, and Kevin Gimpel. Commonsense Knowledge Base
Completion. In ACL (1). The Association for Computer Linguistics, 2016. URL: http:
//aclweb.org/anthology/P/P16/P16-1137.pdf.

19 Xiang Li, Luke Vilnis, and Andrew McCallum. Improved Representation Learning for
Predicting Commonsense Ontologies. CoRR, abs/1708.00549, 2017. arXiv:1708.00549.

20 Vladimir Lifschitz. What is answer set programming? In 23rd AAAI Press Conference on
Artificial Intelligence (AAAI 2008), pages 1594–1597, Menlo Park, CA, USA, 2008. AAAI
Press. URL: http://www.cs.utexas.edu/~vl/papers/wiasp.pdf.

21 H. Liu and P. Singh. ConceptNet &Mdash; A Practical Commonsense Reasoning Tool-Kit.
BT Technology Journal, 22(4):211–226, October 2004. doi:10.1023/B:BTTJ.0000047600.
45421.6d.

22 J. McCarthy and P. Hayes. Some Philosophical Problems from the Standpoint of Artificial
Intelligence. Machine Intelligence, 4:463–502, 1969.

23 George Miller. WordNet A Lexical Database for English. Communications of ACM,
38(11):39–41, 1995.

24 Arindam Mitra and Chitta Baral. Addressing a Question Answering Challenge by Com-
bining Statistical Methods with Inductive Rule Learning and Reasoning. In Dale Schuur-
mans and Michael P. Wellman, editors, AAAI, pages 2779–2785. AAAI Press, 2016. URL:
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12345.

http://www.aclweb.org/anthology/P14-1134
http://arxiv.org/abs/1405.3694v1
http://dx.doi.org/10.1126/science.aaa8685
https://aclweb.org/anthology/D/D15/D15-1162
http://dx.doi.org/10.1007/s10994-015-5512-1
http://dx.doi.org/10.1007/978-3-319-11558-0_22
http://dx.doi.org/10.1017/S1471068415000198
http://dx.doi.org/10.1017/S1471068416000351
http://dx.doi.org/10.1017/S1471068416000351
http://aclweb.org/anthology/P/P16/P16-1137.pdf
http://aclweb.org/anthology/P/P16/P16-1137.pdf
http://arxiv.org/abs/1708.00549
http://www.cs.utexas.edu/~vl/papers/wiasp.pdf
http://dx.doi.org/10.1023/B:BTTJ.0000047600.45421.6d
http://dx.doi.org/10.1023/B:BTTJ.0000047600.45421.6d
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12345

B. Wu, A. Russo, M. Law, and K. Inoue 12:15

25 Oliver Ray. Nonmonotonic abductive inductive learning. Journal of Applied Logic, 7(3),
September 2009. Other identifier: 2001069. doi:10.1016/j.jal.2008.10.007.

26 D. Singh Chaplot and R. Salakhutdinov. Knowledge-based Word Sense Disambiguation
using Topic Models. ArXiv e-prints, January 2018. arXiv:1801.01900.

27 Mark Steedman. The Syntactic Process. MIT Press, Cambridge, MA, USA, 2000.
28 Ramakrishna Vedantam, Xiao Lin, Tanmay Batra, C. Lawrence Zitnick, and Devi Parikh.

Learning Common Sense through Visual Abstraction. In ICCV, pages 2542–2550. IEEE
Computer Society, 2015. doi:10.1109/ICCV.2015.292.

29 Jason Weston, Antoine Bordes, Sumit Chopra, and Tomas Mikolov. Towards AI-Complete
Question Answering: A Set of Prerequisite Toy Tasks. CoRR, abs/1502.05698, 2015. arXiv:
1502.05698.

A Demonstrations

The following listings here in the Appendix show examples of dialogue between a user and
the system during a session. For clarity, the dialogues have been annotated with “U:” for
what the user has input and “S:” to signify the system’s responses.

Listing 1 An example of a dialogue between the system and a user showing how the concept of
people being or not being in locations as a result of travelling is formed.
System : Tell me a story:
User: Mary went to the bathroom .
System : What is "mary" a type of? User: person
S: What is " bathroom " a type of? U: location

U: Is Mary in the bathroom ?
S: No.
S: Am I right? U: No.
S: Alright , please continue .

U: Mary moved to the kitchen .
S: What is " kitchen " a type of? U: location

U: John journeyed to the kitchen .
S: What is "john" a type of? U: person

U: Is Mary in the kitchen ?
S: Yes.
S: Am I right? U: Yes.
S: Alright , please continue .

U: Is Mary in the bathroom ?
S: Yes.
S: Am I right? U: No.
S: Alright , please continue .

U: check hypothesis

S: initiatedAt (be_in(V0 ,V1),V2) :- happensAt (travel_to (V0 ,V1),V2).
S: terminatedAt (be_in(V0 ,V1),V2) :- holdsAt (be_in(V0 ,V1),V2),

happensAt (travel_to (V0 ,V3),V2).

S: Please continue with the story:

ICLP 2018

http://dx.doi.org/10.1016/j.jal.2008.10.007
http://arxiv.org/abs/1801.01900
http://dx.doi.org/10.1109/ICCV.2015.292
http://arxiv.org/abs/1502.05698
http://arxiv.org/abs/1502.05698

12:16 Learning Commonsense Knowledge Through Dialogue

U: Mary and John travelled to the garden .
S: What is " garden " a type of? U: location

U: Where is John in?
S: garden

U: Who is in the garden ?
S: john
S: mary

Listing 2 A continuation of the dialogue from Listing 1, this time showing the concept of carrying
objects being learned.
User: Mary picked up the apple and the milk.
System : What is "apple" a type of? U: object
S: What is "milk" a type of? U: object

U: How many objects is Mary carrying ?
S: 0

U: Is Mary carrying the apple?
S: No.
S: Am I right? U: No.
S: Alright , please continue .

U: How many objects is Mary carrying ?
S: 2

U: What is Mary carrying ?
S: milk
S: apple

U: Mary dropped the milk.

U: Is Mary carrying the milk?
S: Yes.
S: Am I right? U: No.
S: Alright , please continue .

U: What is Mary carrying ?
S: apple

U: check hypothesis

S: initiatedAt (be_in(V0 ,V1),V2) :- happensAt (travel_to (V0 ,V1),V2).
S: terminatedAt (be_in(V0 ,V1),V2) :- holdsAt (be_in(V0 ,V1),V2),

happensAt (travel_to (V0 ,V3),V2).

S: initiatedAt (be_transport (V0 ,V1),V2) :- happensAt (pick(V0 ,V1),V2).
S: terminatedAt (be_transport (V0 ,V1),V2) :- happensAt (drop(V0 ,V1),V2).

S: Please continue with the story:

B. Wu, A. Russo, M. Law, and K. Inoue 12:17

Listing 3 A demonstration of further concepts that can be learned through more questioning
and answering (equivalent to task 2 - two-supporting facts from the bAbI dataset).
S: initiatedAt (be_in(V0 ,V1),V2) :- happensAt (travel_to (V0 ,V1),V2).
S: terminatedAt (be_in(V0 ,V1),V2) :- holdsAt (be_in(V0 ,V1),V2),

happensAt (travel_to (V0 ,V3),V2).

S: initiatedAt (be_transport (V0 ,V1),V2) :- happensAt (pick(V0 ,V1),V2).
S: terminatedAt (be_transport (V0 ,V1),V2) :- happensAt (drop(V0 ,V1),V2).

S: initiatedAt (be_in(V1 ,V3),V2) :- holdsAt (be_transport (V0 ,V1),V2),
happensAt (travel_to (V0 ,V3),V2).

S: initiatedAt (be_in(V1 ,V3),V2) :- happensAt (pick(V0 ,V1),V2),
holdsAt (be_in(V0 ,V3),V2).

S: terminatedAt (be_in(V1 ,V3),V2) :- holdsAt (be_transport (V0 ,V1),V2),
holdsAt (be_in(V0 ,V3),V2), happensAt (travel_to (V0 ,V4),V2).

S: Please continue with the story:
U: new story
S: Tell me a new story:
U: Mary went to the kitchen .

U: She picked up the apple and the milk.

U: John moved to the hallway .

U: He picked up the football .

U: What is in the kitchen ?
S: milk
S: mary
S: apple

U: Mary dropped the apple.

U: Then she travelled to the garden .

U: Where is the apple in?
S: kitchen

U: Where is the milk in?
S: garden

U: Where is the football in?
S: hallway

ICLP 2018

12:18 Learning Commonsense Knowledge Through Dialogue

Listing 4 Running example of a dialogue inspired by bAbI task 15 that learns an extended
concept.
System : Tell me a story:
User: Tom is a cat.
S: What is "tom" a type of? U: name
S: What is "cat" a type of? U: animal

U: Jerry is a mouse.
S: What is "jerry" a type of? U: name
S: What is "mouse" a type of? U: animal

U: Mice are afraid of cats.

U: Is Jerry afraid of cats?
S: No.
S: Am I right? U: No.
S: Alright , please continue .

U: Is Jerry afraid of Tom?
S: No.
S: Am I right? U: No.
S: Alright , please continue .

U: Is Tom afraid of mice?
S: No.
S: Am I right? U: Yes.
S: Alright , please continue .

U: Is Tom afraid of Jerry?
S: No.
S: Am I right? U: Yes.
S: Alright , please continue .

U: check hypothesis

S: initiatedAt (be_afraid_of (V3 ,V0),V2) :- holdsAt (be(V0 ,V1),V2),
holdsAt (be_afraid_of (V3 ,V1),V2).

S: initiatedAt (be_afraid_of (V0 ,V3),V2) :- holdsAt (be(V0 ,V1),V2),
holdsAt (be_afraid_of (V1 ,V3),V2).

B. Wu, A. Russo, M. Law, and K. Inoue 12:19

Listing 5 Continuation of the dialogue seen from Listing 4 that tests the learned hypothesis.
System : Please continue with the story:
User: Gertrude is a wolf.
S: What is " gertrude " a type of? U: name
S: What is "wolf" a type of? U: animal

U: Cats are afraid of wolves .

U: Is Tom afraid of wolves ?
S: Yes.
S: Am I right? U: Yes.
S: Alright , please continue .

U: Is Tom afraid of Gertrude ?
S: Yes.
S: Am I right? U: Yes.
S: Alright , please continue .

U: What is Gertrude afraid of?
S: Nothing

U: Mary is a sheep.
S: What is "mary" a type of? U: name
S: What is "sheep" a type of? U: animal

U: Sheep are afraid of mice.

U: Sheep are afraid of wolves .

U: What is Mary afraid of?
S: wolf
S: mouse
S: jerry
S: gertrude

ICLP 2018

	Introduction
	Background
	Answer Set Programs
	ILASP
	Event Calculus

	Learning Commonsense Knowledge
	Translation
	Reasoning
	Special inputs

	Evaluation
	Related Work
	Conclusion and future work
	Demonstrations

