30 research outputs found

    CTprintNet: An Accurate and Stable Deep Unfolding Approach for Few-View CT Reconstruction

    Get PDF
    In this paper, we propose a new deep learning approach based on unfolded neural networks for the reconstruction of X-ray computed tomography images from few views. We start from a model-based approach in a compressed sensing framework, described by the minimization of a least squares function plus an edge-preserving prior on the solution. In particular, the proposed network automatically estimates the internal parameters of a proximal interior point method for the solution of the optimization problem. The numerical tests performed on both a synthetic and a real dataset show the effectiveness of the framework in terms of accuracy and robustness with respect to noise on the input sinogram when compared to other different data-driven approaches

    Image Deblurring : Comparing the Performance of Analytical and Learning Methods

    Get PDF
    Blurring is a common phenomenon during image formation due to various factors like motion between the camera and the object, or atmospheric turbulence, or when the camera fails to have the object in focus, which leads to degradation in the image formation process. This leads to the pixels interacting with the neighboring ones, and the captured image is blurry as a result. This interaction with the neighboring pixels, is the 'spread' which is represented by the Point Spread Function. Image deblurring has many applications, for example in Astronomy, medical imaging, where extracting the exact image required might not be possible due to various limiting factors, and what we get is a deformed image. In such cases, it is necessary to use an apt deblurring algorithm keeping all necessary factors like performance and time in mind. This thesis analyzes the performance of learning and analytical methods in Image deblurring Algorithm. Inverse problems would be discussed at first, and how ill posed inverse problems like image deblurring cannot be tackled by naive deconvolution. This is followed by looking at the need for regularization, and how it is necessary to control the fluctuations resulting from extreme sensitivity to noise. The Image reconstruction problem has the form of a convex variational problem, and its prior knowledge acting as the inequality constraints which creates a feasible region for the optimal solution. Interior point methods iterates over and over within this feasible region. This thesis uses the iRestNet Method, which uses the Forward Backward iterative approach for the Machine learning algorithm, and Total Variation approach implemented using the FlexBox tool for analytical method, which uses the Primal Dual approach. The performance is measured using SSIM indices for a range of kernels, the SSIM map is also analyzed for comparing the deblurring efficiency

    A Flexible Framework for Designing Trainable Priors with Adaptive Smoothing and Game Encoding

    Get PDF
    We introduce a general framework for designing and training neural network layers whose forward passes can be interpreted as solving non-smooth convex optimization problems, and whose architectures are derived from an optimization algorithm. We focus on convex games, solved by local agents represented by the nodes of a graph and interacting through regularization functions. This approach is appealing for solving imaging problems, as it allows the use of classical image priors within deep models that are trainable end to end. The priors used in this presentation include variants of total variation, Laplacian regularization, bilateral filtering, sparse coding on learned dictionaries, and non-local self similarities. Our models are fully interpretable as well as parameter and data efficient. Our experiments demonstrate their effectiveness on a large diversity of tasks ranging from image denoising and compressed sensing for fMRI to dense stereo matching.Comment: NeurIPS 202

    Learning Variational Models with Unrolling and Bilevel Optimization

    Full text link
    In this paper we consider the problem of learning variational models in the context of supervised learning via risk minimization. Our goal is to provide a deeper understanding of the two approaches of learning of variational models via bilevel optimization and via algorithm unrolling. The former considers the variational model as a lower level optimization problem below the risk minimization problem, while the latter replaces the lower level optimization problem by an algorithm that solves said problem approximately. Both approaches are used in practice, but unrolling is much simpler from a computational point of view. To analyze and compare the two approaches, we consider a simple toy model, and compute all risks and the respective estimators explicitly. We show that unrolling can be better than the bilevel optimization approach, but also that the performance of unrolling can depend significantly on further parameters, sometimes in unexpected ways: While the stepsize of the unrolled algorithm matters a lot (and learning the stepsize gives a significant improvement), the number of unrolled iterations plays a minor role

    Graph Signal Restoration Using Nested Deep Algorithm Unrolling

    Full text link
    Graph signal processing is a ubiquitous task in many applications such as sensor, social, transportation and brain networks, point cloud processing, and graph neural networks. Graph signals are often corrupted through sensing processes, and need to be restored for the above applications. In this paper, we propose two graph signal restoration methods based on deep algorithm unrolling (DAU). First, we present a graph signal denoiser by unrolling iterations of the alternating direction method of multiplier (ADMM). We then propose a general restoration method for linear degradation by unrolling iterations of Plug-and-Play ADMM (PnP-ADMM). In the second method, the unrolled ADMM-based denoiser is incorporated as a submodule. Therefore, our restoration method has a nested DAU structure. Thanks to DAU, parameters in the proposed denoising/restoration methods are trainable in an end-to-end manner. Since the proposed restoration methods are based on iterations of a (convex) optimization algorithm, the method is interpretable and keeps the number of parameters small because we only need to tune graph-independent regularization parameters. We solve two main problems in existing graph signal restoration methods: 1) limited performance of convex optimization algorithms due to fixed parameters which are often determined manually. 2) large number of parameters of graph neural networks that result in difficulty of training. Several experiments for graph signal denoising and interpolation are performed on synthetic and real-world data. The proposed methods show performance improvements to several existing methods in terms of root mean squared error in both tasks

    Equivariant Hypergraph Diffusion Neural Operators

    Full text link
    Hypergraph neural networks (HNNs) using neural networks to encode hypergraphs provide a promising way to model higher-order relations in data and further solve relevant prediction tasks built upon such higher-order relations. However, higher-order relations in practice contain complex patterns and are often highly irregular. So, it is often challenging to design an HNN that suffices to express those relations while keeping computational efficiency. Inspired by hypergraph diffusion algorithms, this work proposes a new HNN architecture named ED-HNN, which provably represents any continuous equivariant hypergraph diffusion operators that can model a wide range of higher-order relations. ED-HNN can be implemented efficiently by combining star expansions of hypergraphs with standard message passing neural networks. ED-HNN further shows great superiority in processing heterophilic hypergraphs and constructing deep models. We evaluate ED-HNN for node classification on nine real-world hypergraph datasets. ED-HNN uniformly outperforms the best baselines over these nine datasets and achieves more than 2\%↑\uparrow in prediction accuracy over four datasets therein.Comment: Code: https://github.com/Graph-COM/ED-HN
    corecore