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Abstract

We introduce a general framework for designing and training neural network
layers whose forward passes can be interpreted as solving non-smooth convex
optimization problems, and whose architectures are derived from an optimization
algorithm. We focus on convex games, solved by local agents represented by the
nodes of a graph and interacting through regularization functions. This approach
is appealing for solving imaging problems, as it allows the use of classical image
priors within deep models that are trainable end to end. The priors used in this
presentation include variants of total variation, Laplacian regularization, bilateral
filtering, sparse coding on learned dictionaries, and non-local self similarities.
Our models are fully interpretable as well as parameter and data efficient. Our
experiments demonstrate their effectiveness on a large diversity of tasks ranging
from image denoising and compressed sensing for fMRI to dense stereo matching.

1 Introduction

Despite the undeniable successes of deep learning in domains as varied as image processing [63]
and recognition [21], natural language processing [10], speech [43] or bioinformatics [1], feed-
forward neural networks are often maligned as being “black boxes” that, except perhaps for their top
classification or regression layers, are difficult or even impossible to interpret. In imaging applications,
for example, the elementary operations typically consist of convolutions and pointwise nonlinearities,
with many parameters adjusted by backpropagation, and no obvious functional interpretation.

In this paper, we consider instead network architectures explicitly derived from an optimization
algorithm, and thus interpretable from a functional point of view. The first instance of this approach
we are aware of is LISTA [20], which provides a fast approximation of sparse coding. Yet, we are not
content to design an architecture that provides a fast approximation to a given optimization problem,
but we also want to learn a data representation pertinent for the corresponding task. This yields
an unusual machine learning paradigm, where one learns the parameters of a parametric objective
function used to represent data, while designing an optimization algorithm to minimize it efficiently.

Even though interpretability is not always necessary to achieve good prediction, this point of view,
sometimes called algorithm unrolling [17, 40], has proven successful for solving inverse imaging
problems, providing effective and parameter-efficient models. This approach allows the use of
domain-specific priors within trainable deep models, leading to a large number of applications such as
compressive imaging [53, 62], demosaicking [26], denoising [26, 50, 52], and super-resolution [56] .

However, existing approaches are often limited to simple image priors such as sparsity induced by the
`1-norm [52], or differentiable regularization functions [27], and a general algorithmic framework
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for combining complex, possibly non-smooth, regularization functions is still missing. Our paper
addresses this issue and is able to leverage a large class of image priors such as total variation [49],
the `1-norm, structured sparse coding [34], or Laplacian regularization, where local optimization
problems interact with each others. The interaction can be local among direct neighbors on an image
grid, or non-local, capturing for instance similarities between spatially distant image patches [5, 12].

In this context, we adopt a more general and flexible point of view than the standard convex opti-
mization paradigm, and consider formulations to represent data based on non-cooperative games [42]
potentially involving non-smooth terms, which are tackled by using the Moreau-Yosida regularization
technique [22, 61]. Unrolling the resulting optimization algorithm results in a network architecture
that can be trained end-to-end and capture any combination of the domain-specific priors mentioned
above. This approach includes and improves upon specific trainable sparse coding models based
on the `1-norm for example [52, 56]. More importantly perhaps, it can be used to construct several
interesting new image priors: In particular, we show that a trainable variant of total variation and its
non-local variant based on self similarities is competitive with the state of the art in imaging tasks,
despite using up to 50 times fewer parameters, with corresponding gains in speed. We demonstrate
the effectivness and the flexibility of our approach on several imaging tasks, namely denoising,
compressed fMRI reconstruction, and stereo matching.

Summary of our contributions. First, we provide a new framework for building trainable variants
of a large class of domain-specific image priors . Second, we show that several of these priors match
or even outperform existing techniques that use a much larger number of parameters and training
data. Finally, we present a set of practical tricks to make optimization-driven layers easy to train.

2 Background and Related Work

Classical image priors. Inverse imaging problems are often solved by minimizing a data fitting
term with respect to model parameters, regularized with a penalty that encourages solutions with a
particular structure. In image processing, the community long focused on designing handcrafted priors
such as sparse coding on learned dictionaries [14, 33], diffusion operators [45], total variation [49],
and non-local self similarities [5], which is a key ingredient of successful restoration algorithms
such as BM3D [12]. However these methods are now often outperformed by deep learning models
[29, 63, 64], which leverage pairs of corrupted/clean training images in a supervised fashion.

Bilevel optimization. A simple method for mixing data representation learning with optimization
is to use a bi-level formulation [32]. For instance, assuming that one is given pairs (xi,yi)i=1...n of
corrupted/clean signals with xi and yi in Rm, one may consider the following bi-level objective

min
θ∈Θ,W∈Rm×p

1

n

n∑
i=1

L(yi,Wz?θ(xi)) where z?θ(xi) ∈ arg min
z∈Rp

hθ(xi, z), (1)

where θ is a set of model parameters, Wz?θ(xi) is a prediction which is compared to yi through a loss
function L : Rm × Rm → R+, and the data representation z?θ(xi) in Rp is obtained by minimizing
some function hθ . Note that for simplicity, we have considered here a multivariate regression problem,
where given a signal x in Rm, we want to predict another signal y in Rm, but this formulation also
applies to classification problems. It was first introduced for sparse coding in [32, 58] and it has
recently been extended to the case when z?θ(xi) is replaced by an approximate minimizer of hθ.

Unrolled algorithms. A common approach to solving (1) consists in choosing an iterative method
for minimizing hθ and then define z?θ(xi) as the output of the optimization method after K iterations.
The sequence of operations performed by the optimization method can be seen as a computational
graph and∇θz

?
θ can be computed by automatic differentiation. This often yields neural-network-like

computational graphs, which we call optimization-driven layers. Such architectures have found
multiple applications such as training of conditional random fields [65], stabilization of generative
adversarial networks [38], structured prediction [3], or hyper-parameters tuning [31]. For image
restoration, various optimization problems have been explored including for example sparse coding
[26, 52, 62], non linear diffusion [9] and differential operator regularization [27]. Many inference
algorithms have been investigated including proximal gradient descent [27, 52], ADMM [17], half
quadratic spliting [66], or augmented Lagrangian [48].
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3 A General Framework for Learning Optimization-Driven Layers

3.1 Proposed Approach
We adopt a more general point of view than (1),
where we assume that input signals admit a lo-
cal “patch” structure (e.g., rectangular image re-
gions) and the data representation encodes individ-
ual patches. Assuming that there are m patches
in x, we denote by Z?(x) = [z?1(x), . . . , z?m(x)]
in Rp×m the representation of x and by z?j (x) the
representation of patch j (we omit the dependency
on the model parameters θ for simplicity). In imag-
ing applications and as in previous models [52],
Z?(x) can be seen as a feature map akin to that of
a convolutional neural network with p channels.

Pix

z?i

Z?

x

Figure 1: Our models encode locally an input
feature vector. The local optimal solutions z?j in-
teract trough the regularization function ψjθ(Z).

Encoding with non-cooperative convex games. Concretely, given a signal x, we denote by Pjx
the patch of x centered at position j, where Pj is a linear patch extraction operator, and we define
the optimal encoding Z?(x) of x as a Nash equilibrium of the set of problems

min
zj∈Z

hθ(Pjx, zj) + ψjθ(Z) for j = 1, . . . ,m, (2)

where hθ is a a convex reconstruction objective for each patch, parametrized by θ, ψjθ is a convex
regularization function encoding interactions between the variable zj and the remaining ones zl for
l 6= j, and Z is a convex subset of Rp. When Z is compact, the problem is a specific instance of a
non-cooperative convex game [42], which is known to admit at least one Nash equilibrium—that is, a
solution such that one of the objectives in (2) is optimal with respect to its variable zj when the other
variables zl for l 6= j are fixed. The conditions under which an optimization algorithm is guaranteed
to return such an equilibrium point are well studied, see Section 3.3, and in many situations the
compactness of Z is not required, as also observed in our experiments where we choose Z = Rp.
For instance, in several practical cases, (2) can be solved by minimizing the sum of m convex terms,
a setting called a potential game, which boils down to a classical convex optimization problem.

3.2 Application of our Framework to Inverse Imaging Problems

In this section, we show how to leverage our optimization-driven layers for imaging. For the sake of
clarity we choose to narrow down the scope of this presentation to imaging, even though our method
is not limited to this single application: different modalities including for example genomic/graph
data could benefit from our methodology.

Examples of models hθ. We consider two cases in the rest of this presentation:

• Pixel reconstruction: hθ(Pjx, zj) = (xj − zj)
2, where xj is the pixel j of x and zj is a scalar,

corresponding to patches of size q = 1× 1 and p = 1.
• Patch encoding on a dictionary: hθ(Pjx, zj) = ‖Pjxj −Dzj‖2, where D in Rq×p is a dictio-

nary, q is the patch size, and p is the number of dictionary elements. This is a classical model
where patch j is approximated by a linear, often sparse, combination of dictionary elements [14].

Only the second choice involves model parameters D (represented by θ). These two loss functions
are common in image processing [14], but other losses may be used for other modalities.

Linear reconstruction with a dictionary. Assuming that y and x have the same size m for
simplicity, predicting y from a feature map Z?(x) is typically achieved by using a learned dictionary
matrix W in Rq×p where q is the patch size. Then, Wz?j (x)3 can be interpreted as a reconstruction
of the j-patch of y . Since the patches overlap, we obtain q estimators for every pixel, which can be
combined by averaging (neglecting border effects below for simplicity), yielding the prediction

ŷ(x, θ,W) =
1

q

m∑
j=1

P>j Wz?j (x), (3)

3We employ a debiasing dictionary W 6= D to improve the quality of the reconstructions. Debiaising is
commonly used when dealing with `1 penalty which is known to shrink the coefficients Z too much.
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Figure 2: Architecture of our trainable models for image restoration.

where P>j is the linear operator that places a patch of size q at position j in a signal of dimension m.
Patch averaging is a classical operation in patch-based image restoration algorithms, see [14], which
can be interpreted in terms of transposed convolution4 and admits fast implementations on GPUs.

Learning problem. For image restoration, given training pairs of corrupted/clean
images {xi,yi}i=1,...,n, we consider the regression problem minθ∈Θ,W∈Rq×p ‖yi −
ŷ(xi, θ,W)‖2 where ŷ(xi) is defined in (3).

Examples of regularization functions ψjθ. Our framework allows the use of several regularization
functions, which are presented in the table 1 below. We assume that the patches are nodes in a
graph, and denote by Nj the set of neighbors of the patch j. For natural images, the graph may be a
two-dimensional grid with edge weights aj,k that depend on the relative position of the patches j
and k, which we denote by aj–k, but it may also be a non-local graph based on some similarity
function as in [26, 29]. Concretely, we can consider:

• the distance dj,kNL = ‖ diag(κ)(Pjx−Pkx)‖2 between patches j and k of the image x, where κ
in Rq is a set of parameters to learn, and q is the patch size, and we define normalized weights
aj,kNL = e−d

j,k
NL/
∑
l∈Nj

e−d
j,k
NL .

• or a distance inspired from the bilateral filter [54]. In that case we define the distance dj,kBL =
‖xi−xj‖2

2σ2
d

+ ‖i−j‖2
2σ2

r
between pixels on a local window Nj centered around pixel j, and we define

again normalized weights aj,kBL = e−d
j,k
BL/
∑
l∈Nj

e−d
j,k
BL .

Table 1: A non-exhaustive list of regularization functions ψθ covered by our framework.

ψjθ(Z) Model parameters

Laplacian
∑
k∈Nj

aj–k‖zj − zk‖2 weights in R|N |

Non-local Laplacian
∑
k∈Nj

aj,kNL‖zj − zk‖2 κ in Rq

Bilateral filter (BF)
∑
k∈Nj

aj,kBL‖zj − zk‖2 σd ∈ R and σr ∈ R

Total variation (TV)
∑
k∈Nj

aj–k‖zj − zk‖1 weights in R|N |

Non-local total variation (NLTV)
∑
k∈Nj

aj,kNL‖zj − zk‖1 κ in Rq

Bilateral TV (BLTV)
∑
k∈Nj

aj,kBL‖zj − zk‖1 σd ∈ R and σr ∈ R

Weighted `1-norm (sparse coding)
∑p
l=1 λl|zj [l]| λ in Rp

Non-local group regularization
∑p
l=1 λl

√∑
k∈Nj

aj,kzk[l]2 λ in Rp and κ in Rq

Variance reduction ‖Wzj −Pjŷ‖2 with ŷ from (3) W from (3)

s

Novelty of the proposed formulation and relation to previous work.
• Total variation: to the best of our knowledge, the basic anisotropic TV penalty [6] does not seem

to appear in the literature on unrolled algorithms with end-to-end training. Note also that our TV
variant allows learning non-symmetric weights aj,k 6= ak,j , leading to a non-cooperative game
that goes beyond the classical convex optimization framework typically used with the TV penalty.

• Non-local TV: the non-local TV penalty presented above is based on a classical formulation [19],
but can be incorporated within a trainable deep network with non-symmetric weights.

• Bilateral filtering: the bilateral filter and its TV variant implemented in this paper are based on
classical formulations [54, 16]. But they have not, to the best of our knowledge, been implemented
as trainable priors.

4torch.nn.functionnal.conv2D_transpose on PyTorch [44].
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• Sparse coding and variance reduction: the weighted `1-norm combined with the patch encoding
loss hθ yields a sparse coding formulation (SC) that has been well studied within optimization-
driven layers [50, 52]. Yet, the codes zj in the SC setup are obtained by solving independent
optimization problems, which has motivated by Simon and Elad [52] to propose instead a Convolu-
tional Sparse Coding model (CSC), where the full image is approximated by a linear combination
of small dictionary elements. Unfortunately, as noted in [52], CSC leads to ill-conditioned opti-
mization problems, making a hybrid approach between SC and CSC more effective. Our paper
proposes an alternative solution combining the weighted `1-norm regularization with a variance
reduction penalty, which forces the codes zj to reach a consensus when reconstructing the image ŷ.
Our experiments show that this approach outperforms [52] for image denoising.

• Non-local group regularization: This regularization function corresponds to a soft variant of the
Group Lasso penalty [55], which encourages similar patches to share similar sparsity patterns (set
of non-zero elements of the codes zj). It was originally used in [34] and was recently revisited
within optimization-driven layers with an heuristic algorithm [26]. Our paper provides a better
justified algorithmic framework as well as the ability to combine this penalty with other ones.

Algorithm 1 Pseudocode of the general training procedure for image restoration

1: Sample a minibatch of pairs of corrupted/clean images {(x0,y0), · · · , (xK ,yK)};
2: Extract overlapping patches of corrupted images to form tensors Xi = [P1xi, · · · ,Pnxi];
3: for t = 1, 2, . . . ,K do . Compute an approximate Nash equilibrium Z? of the convex games
4: Zt+1 ← Zt − ηtHθ(Zt,X);
5: end for
6: Approximate clean images by linear reconstruction ŷ = 1

q

∑m
j=1 P

>
j Wz?j (X, θ);

7: Compute the `2 reconstruction loss ‖y − ŷ(x, θ,W)‖22 on the minibatch;
8: Compute an estimate of the gradients wrt. (θ,W) with auto-diff;
9: Update trainable parameters (θ,W) with Adam;

3.3 Differentiability and End-to-end Training
In this section we adress end-to-end training of the optimization-driven layers. Given pairs of training
data {xi,yi}i=1,...,n, we consider the learning problem

min
θ∈Θ

1

n

n∑
i=1

L (yi, gθ (z?θ(xi))) , (4)

where gθ is a differentiable function. We consider the approximation where the codes z?j (x) are
obtained as the K-th step of an optimization algorithm for solving the problem (2). To obtain these
codes, we leverage (i) iterative gradient and extra-gradient methods, which are classical for solving
game problems [4, 15], and (ii) a smoothing technique for dealing with the regularization functions ψjθ
above when they are non-smooth. Refer to Algorithm 1 for an overview of the training procedure.
We start with the first point when dealing with smooth objectives.
Unrolled optimization for convex games. Consider a set of m objective functions of the form

min
zj∈Rp

hj(Z) with Z = [z1, . . . , zm], (5)

where the functions hj are convex and differentiable and may depend on other parameters than zj .
Our objective is to find a zero of the simultaneous gradient

H(Z) = [∇z1
h1(Z), · · · ,∇zm

hm(Z)], (6)

which corresponds to a Nash equilibrium of the game (5). In the rest of this presentation, we
consider both the general setting and the simpler case of so-called potential games, for which the
equilibrium can be found as the optimum of a single convex objective. This is the case for several of
our regularizers, for example the TV penalty with symmetric weights. More details are provided in
Appendix A on the nature of the non-cooperative games corresponding to our penalties.
Two standard methods studied in the variational inequality litterature [4, 15, 23, 37] are the gradient
and the extra-gradient [25] methods. The iterates of the basic gradient method are given by

Zt+1 = Zt − ηtH(Zt), (7)
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Table 2: Gradient descent (GD) vs. Extra-gradient. Denoising results in avg. PSNR with σ = 25 on BSD68 [35].

Method GD (24 iters) GD (48 iters) Extra-gradient (24 iters)

Trainable TV symmetric 27.58 27.50 27.82
Trainable TV assymetric 27.99 27.89 28.24

where ηt > 0 is a step-size. These iterates are known to converge under a condition called strong
monotonicity of the operator H , which is related to the concept of strong convexity in optimization,
see [4]. Because this condition is relatively stringent, the extra-gradient method is often prefered [25],
as it is known to converge under weaker conditions, see [23, 37]. The intuition of the method is to
compute a look ahead step in order to compute more stable directions of descent:

Extrapolation step Zt+1/2 = Zt − ηtH(Zt)

Update step Zt+1 = Zt − ηtH(Zt+1/2).
(8)

In this paper, our strategy is to unroll iterates of one of these two algorithms, and then to use
auto differentiation for learning the model parameters θ. Furthermore, parameters that control the
optimization process (e.g., step size ηt) can also be learnt with this approach. It should be noted that
optimization-driven layers have never been used before in the context of non-cooperative games,
to the best of our knowledge, and therefore an empirical study is needed to choose between the
strategies (7) or (8). In our experiments, extra-gradient descent has always performed at least as well,
and sometimes significantly better, than plain gradient descent for comparable computational budgets.
See for example Table 2 for a smoothed variant of the TV penalty.

Moreau-Yosida smoothing. The non-smooth regularization functions we consider can be written
as a sum of simple terms. Omitting the dependency on θ for simplicity, we may indeed write

ψj(Z) =
∑r
k=1 φk(Lk,j(Z)) for some r ≥ 1,

whereLk,j is a linear mapping and φk is either the `1- or `2-norm. For instance, φk is the `1-norm with
Lk,j(Z) = ak,j(zj − zk) in Rp for the TV penalty, and Lk,j(Z) = [

√
a1,jz1(k), . . . ,

√
a1,jzq(k)]>

in Rq with φk being the `2-norm for the non-local group regularization. Handling such non-smooth
convex terms may be achieved by leveraging the so-called Moreau-Yosida regularization [28, 41, 60]

Φk(u) = min
v

{
φk(v) +

α

2
‖v − u‖2

}
,

which defines an optimization problem whose solution is called the proximal operator Proxφk/α[u].
As shown in [28], Φk is always differentiable and ∇Φk(u) = α(u − Proxφk/α[u]), which can be
computed in closed form when φk = `1 or `2. The positive parameter α controls the trade-off
between smoothness (the gradient of Φk is α-Lipschitz) and the quality of approximation. It is thus
natural to define a smoothed approximation Ψj of ψj as Ψj(Z) =

∑r
k=1 Φk(Lk,j(Z)).

Note that when the proximal operator of ψj can be computed efficiently, as is the case for the `1-norm,
gradient descent algorithms can typically be adapted to handle the non-smooth penalty without extra
computational cost [33], and there is no need for Moreau-Yosida smoothing. However, the proximal
operator of the TV penalty and the non-local group regularization do not admit fast implementations.
For the first one, computing the proximal operator requires solving a network flow problem [7],
whereas the second one is essentially easy to solve when the weights aj,k form non-overlapping
groups of variables, leading to a penalty called group Lasso [55].
We are now ready to present our unrolled algorithm as we have previously discussed gradient-based
algorithms for solving convex smooth games and a smoothing technique for handling non-smooth
terms. Generally, at iteration t, the gradient algorithm (7) performs the following simultaneous
updates for all problems j

u
(t)
k,j ← Proxφk/αk,t

[Lk,j(Z
(t))] for k = 1, . . . , r

z
(t+1)
j ← z

(t)
j − ηt

(
∇zjhθ

(
Pjx, z

(t)
j

)
+

r∑
k=1

αk,t

[
L∗k,j

(
Lk,j(Z

(t))− u
(t)
k,j

)]
j

)
,

where L∗k,j is the adjoint of the linear mapping Lk,j . The computation of the gradients can be
implemented with simple operations allowing auto-differentiation in deep learning frameworks.
Interestingly, the smoothing parameter α can be made iteration-dependent, and learned along with
other model parameters such that the amount of smoothing is chosen automatically.
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3.4 Tricks of the Trade for Unrolled Optimization
Our strategy is to unroll iterates of our algorithms, and then compute ∇θz

?
θ by automatic differentia-

tion. We present here a set of practical rules, some old and some new, facilitating training when hθ is
a patch encoding function on a dictionary D.

Initialization. To help the algorithm converge, we choose an initial stepsize ηt ≤ 1
L , where L is

the Lipschitz constant of ∇zhθ , which is the classical step-size used by ISTA [2]. To do so, inspired
by [52] we normalize the initial dictionary by its largest singular value and take η0 = 1. Note that
we can go one step further and normalize the dictionary throughout the training phase. This is in
fact equivalent to the spectral normalization that has received some attention recently, notably for
generative adversarial networks [39].

Untied parameters. In our framework, ∇zj
hθ(Pjx, zj) = D> (Dzj −Pjx). It has been sug-

gested in previous work [20, 26, 52] to introduce an additional parameter C of the same size as D,
and consider instead the parametrization C> (Dzj −Pjx), C acting as a learned preconditioner.
Even though the theoretical effect of this modification is not fully understood, it has been observed to
accelerate convergence and boost performance for denoising tasks [26]. In our experiments, we will
indicate in which cases we use this heuristic.

Backtracking. A simple way for handling the potential instability of the unrolled algorithm is to
use a backtracking scheme which automatically decreases the stepsize when the training loss diverges.
This heuristic was used for instance in [26]. More details are provided in Appendix B.

Barzilai-Borwein method for choosing the stepsize. A different, perhaps more principled, ap-
proach to improved stability consists in adaptively choosing an adaptive stepsize ηt. The literature
on convex optimization proposes a set of effective rules, known as Barzilai-Borwein (BB) step size
rules [57]. Even though these rules were not designed for convex games, they appear to be very
effective in practice in the context of our optimization-driven layers. Concretely, they lead to step
sizes ηt,j = ‖D>Dsj‖2/‖Dsj‖2 with sj = z

(t)
j − z

(t−1)
j for problem j at iteration t.

Table 3: Study of stabilization techniques for
learnt sparse coding. Denoising results in aver-
age PSNR with σ = 25 on BSD68.

Method Psnr (dB)
D C,D

BM3D [11] 28.57
Sparse Coding (SC) 7 7
SC + Backtracking 28.71 28.83
SC + Spectral norm 28.69 28.82
SC + Barzilai-Borwein 28.82 28.86

In our experiments, we observed that spectral normal-
ization, backtracking, and Barzilai-Borwein step size
were all effective to stabilize training. We have noticed
that the spectral normalization impacts negatively the
reconstruction accuracy, while the BB method tend to
improve it by using larger stepsizes, at the expense of
a larger computational cost. This is illustrated in Table
3 for a smoothed variant of sparse coding (we indicate
with a crossmark when the algorithm diverges). In
addition, we observe that the untied models brings a
small boost in reconstruction accuracy.

4 Experiments
We consider three different tasks, illustrated with various combinations of regularization functions in
order to demonstrate the wide applicability of our approach and its flexibility. A software package
and additional details are provided in the supplementary material for reproducibility purposes.

Image denoising. For image denoising experiments, we use the standard setting of [63] with
BSD400 [35] as a training set and on BSD68 as a test set. We optimize the parameters of our models
using Adam [24] and also use the backtracking strategy described in Section 3.4 that automatically
decreases the learning rate by a factor 0.5 when the training loss diverges. For the non-local models,
we follow [26] and update the similarity matrices three times during the inference step. We use the
parametrization with the C matrix for our patch-based experiments. We also combine our variance
regularization with [26]. Additional training details and hyperparameters choices can be found in
Appendix B. We report performance in terms of averaged PSNR in Table 4, and more detailed tables
with additional results are available in Appendix C for pixel-level models, and for the patch-based
models involving a dictionary D. Our models based on non-local sparse approximations perform
better than the competing deep learning models with the exception of [29] for σ ≥ 15 with much
fewer parameters. In addition, we also observed that our assymetric TV models are almost on par
with BM3D while being significantly faster (see Appendix C for more details) with only a very small
amount of parameters.
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Table 4: Grayscale denoising on BSD68, training on BSD400 for all methods. Performance in terms of average
PSNR. Tiny CNN is a CNN baseline with few parameters. See Appendix C for qualitative results.

Method Params Noise Level (σ)
5 15 25 50

Tiny CNN (ours) 326 35.17 29.42 26.90 24.06
Tiny CNN (ours) 1200 36.47 30.36 27.70 24.60
BM3D [11] - 37.57 31.07 28.57 25.62
LSCC [34] - 37.70 31.28 28.71 25.72
CSCnet [52] 62k 37.69 31.40 28.93 26.04
GroupSC [26] 68k 37.95 31.71 29.20 26.17
FFDNet [64] 486k N/A 31.63 29.19 26.29
DnCNN [63] 556k 37.68 31.73 29.22 26.23
NLRN [29] 330k 37.92 31.88 29.41 26.47

Pixel-reconstruction
TV symmetric 288 36.91 30.27 27.66 24.51
TV assymetric - extra-grad 480 37.30 30.76 28.24 25.32
Laplacian symmetric 288 35.17 28.42 26.14 23.70
Laplacian assymetric - extra-grad 480 35.20 28.46 26.39 23.77
Bilateral - extra-grad 146 36.75 29.89 27.20 23.72
Bilateral TV - extra-grad 146 36.94 30.46 27.78 24.52
Non-local TV - extra-grad 307 37.53 31.03 28.50 25.26
Non-local Laplacian - extra-grad 307 37.54 31.00 28.47 25.46

Patch-reconstruction
Sparse Coding (SC) 68k 37.84 31.46 28.90 25.84
Sparse Coding + Variance 68k 37.83 31.49 29.00 26.08
Sparse Coding + TV 68k 37.84 31.50 29.02 26.10
Sparse Coding + TV + Variance 68k 37.84 31.51 29.03 26.09
Non-local group 68k 37.95 31.69 29.19 26.19
Non-local group + Variance 68k 37.96 31.70 29.22 26.28
GroupSC + Variance 68k 37.96 31.75 29.24 26.34

Compressed Sensing for fMRI. Compressed Sensing for functional magnetic resonance imaging
(fMRI) aims at reconstructing functional MR images from a small number of samples in the Fourier
space. The corresponding inverse problem is

min
y∈Rn

‖Ay − x‖22 + λΨ(y), (9)

where the degradation matrix is A = PF , P is a diagonal binary sampling matrix for a given
sub-sampling pattern, F is the discrete Fourier transform such that the observed corrupted signal x is
in the Fourier domain, and Ψ is a regularization function. This problem highlights the ability of our
framework to handle both localized and non localized constraints. In our paper, we implemented two
models revisiting some well studied priors for compressed sensing in an end-to-end fashion:
• Pixel reconstruction with total variation: we aim at solving the optimization for each node

minyi∈R ‖Ay − x‖22 + TVi(y). In the past, total variation has been widely used for MRI [30],
often in combination with sparse regularization in the wavelet domain.

• Patch encoding on a dictionary with sparse coding: we solve a collection of optimization problems
of the form minzi∈Rn ‖Aŷ(z)− x ‖22 + λ‖zi‖1, with y = 1

n

∑
jR
>
j Dzj the average of the

overlapping patches. Some previous methods have explored dictionary-based reconstruction [47],
but they were not investigated from a task-driven manner with end-to-end training.

In our experiments, we use the same setting as [53] for fair comparison: we train and test our models
on the brain MRI dataset studied in that paper. Our models are trained separately for each sampling
rate. We used the pseudo radial sampling for the matrix P similarly to the other methods. The
reconstruction accuracy are reported in term of PSNR over the test set in Table 5. Our trainable model
relying on a trainable TV prior performs surprisingly well given the conceptual simplicity of the prior.
Also importantly, it runs significantly faster than all competing methods with a very small number of
parameters. Furthermore, our trainable sparse coding method for fMRI gives strong performance
and exceeds the state of the art for sampling rates larger than 30%. Note that architecture choices
(patch and dictionary size) of our models are the same as for the denoising task, and we did not try to
optimize them for the considered task, thus demonstrating the robustness of our approach.
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Table 5: Compressed sensing for fMRI on the MR brain dataset using a pseudo radial sampling pattern.
Performance comparisons in terms of PSNR (dB).

Method Params 20 % 30 % 40% 50% Test time

TV [30] - 35.20 37.99 40.00 41.69 0.731s (cpu)
RecPF [59] - 35.32 38.06 40.03 41.71 0.315s (cpu)
SIDWT - 35.66 38.72 40.88 42.67 7.867s (cpu)
PANO [46] - 36.52 39.13 40.31 41.81 35.33s (cpu)
BM3D-MRI [13] - 37.98 40.33 41.99 43.47 40.91s (cpu)
ADMM-net [53] - 37.17 39.84 41.56 43.00 0.791s (cpu)
ISTA-net [62] 337k 38.73 40.89 42.52 44.09 0.143s (gpu)

CS-TV (ours) 140 36.80 39.63 41.58 43.46 0.015s (gpu)
CS-Sparse coding (ours) 68k 37.80 40.50 42.46 44.16 0.213s (gpu)
CS-Sparse coding + Variance (ours) 68k 37.79 40.67 42.54 44.17 0.213s (gpu)

Table 6: Denoising with less data. Results in terms of aver-
age PSNR(dB) on BSD68 with σ = 15. All the models are
trained on a similar subset of BSD400 for fair comparaison.

Method Params
Training images

400 200 100 50

DnCNN [63] 556k 31.73 31.65 31.47 31.23

TV extra-grad 480 30.75 30.72 30.67 30.66
SC+Var 68k 31.49 31.49 31.47 31.40
GroupSC+Var 68k 31.75 31.66 31.62 31.54

Table 7: Dense stereo matching fine-tuning
on kitti2015 train set, performance reported
on the kitti2015 validation set.

Model 3-px error (%)

PSMNet [8] 2.14 ± 0.04

PSMNet+TV 12 2.11 ± 0.03
PSMNet+TV 24 2.11 ± 0.04
PSMNet+TV extra 2.10 ± 0.03

Dense Stereo Matching. Our approach can be used to provide a generic regularization module
that can easily be integrated into various neural architectures. We showcase its versatility by using
it for deep stereo matching [51]. Given aligned image pairs, the goal is to compute disparity d
for each pixel. Traditionally stereo matching is formulated as minimization of an energy function
Edata(d) + λEsmooth(d) where the data term, Edata measures how well d agrees with the input image
pairs, Esmooth enforces consistency among neighboring pixels’ disparities: TV is a commonly chosen
regularizer. Recent deep learning methods tackle the problem as a supervised regression to estimate
continuous disparity map given pairs of stereo views and ground truth disparity maps [8]. We propose
to combine our smoothing TV block with a state-of-the-art deep learning model [8]. In practice,
we combine our block with a pretrained model on the SceneFlow [36] dataset, and fine-tune the
pretrained model on the kitti2015 [18] train set, following the training procedure described in [8]. We
used the original implementation of [8] available online and did not change any hyperparameters.
We report in Table 7 the performance on the validation set in term of 3 pixels error which counts
predicted pixel as correct if the disparity deviates from the ground truth from 3 pixels or less. We ran
the experiment 10 times for each model (with and without the TV regularization). We observed that
our TV block introduces very few additional parameters and consistently boosts performances.
Training with few examples. We conducted denoising experiments with less training data and
report corresponding results in Table 6. We use the code released by the authors for training DnCNN
with less data. Very interestingly the gap between our best model and CNN-based models increases
when decreasing the size of the training set. We believe that this is an appealing feature, particularly
relevant for applications in medical imaging or microscopy where the amount of training data can be
very limited.

5 Discussion
We have presented a general framework based on non-cooperative games to train end-to-end imaging
priors. Our experiments demonstrate the flexibility and the effectiveness of our approach on diverse
tasks ranging from image denoising to fMRI reconstruction and dense stereo matching. Beyond
image processing, we believe that the issue of interpretability is important. We consider models
with a clear mathematical description of the decision function they produce. As a by-product, our
models are also more parameter efficient than classical deep learning models. We believe that these
are important steps to build systems that should not be seen as black boxes anymore, that produce
explanable decisions, and that do not require training a system for days on a huge corpus of annotated
data. These are important questions, which we are planning to address explicitly in the future.
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Broader Impact
Our main field of application is in image processing, with a focus on image restoration and re-
construction, whose benefits for society are clear and well established, even though a misuse of
such a technology is of course possible; for instance, the same total variation penalty may be used
in medical imaging, for personal photography, in astronomical imaging, or for restoring images
produced by military devices. More specifically, our paper is addressing the issue of interpretability
of neural networks, by considering models admitting a functional (mathematical) description of their
decision functions, and with less parameters than classical deep learning models. As we mentioned
in the discussion section, we believe that these are first steps to build systems producing explanable
decisions, and that are more data and energy efficient. These are important issues going beyond
image processing, which we would like to address in future work.
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Appendix
This supplementary material is organized as follows: In Section A, we discuss additional priors that
were not presented in the main paper, but which are in principle compatible with our framework, and
we provide more details about potential games. In Section B, we provide implementation details that
are useful to reproduce the results of our paper (note that the code is also provided). In Section C,
we present additional quantitative results and additional results regarding inference speed of our
models that were not included in the main paper for space limitation reasons. Finally, in Section D,
we present additional qualitative results (which require zooming on a computer screen).

A Discussion on Models and Priors
A.1 Additional Priors
Our framework makes it possible to handle models of the form:

hj(Z) = hθ(Pjxj , zj) + λ

r∑
k=1

φk(Lk,j(Z)), (10)

where φk is a simple convex function that admits a proximal operator in closed form, and Lk,j is a
linear operator. In the main paper, several regularization functions have been considered, including
the total variation, variance reduction, or non-local group regularization penalties. Here, we would
like to mention a few additional ones, which are in principle compatible with our framework, but
which we did not investigate experimentally. In particular, two of them may be of particular interest,
and may be the topic of future work:
• the regularization λ‖H>zj‖1, where H is a matrix, may correspond to several settings. The matrix
H may be for instance a wavelet basis, or may by learned, corresponding then to the penalty
used in the analysis dictionary learning model from the paper “The cosparse analysis model and
algorithms” of Nam et al., 2013.

• the regularization λφ(H>zj) where φ is a smooth function is closely related to the model intro-
duced in [27], and to the Field of experts model of Roth and Black from the 2005 paper “Fields of
Experts: A Framework for Learning Image Priors”, even though the functions used in these other
works are not convex.

A.2 Potential Games
A potential game is a non-cooperative convex game whose Nash equilibria correspond to the solutions
of a convex optimization problem. We will now consider problems of the form (10), and show that
all penalties that admit some symmetry are in fact potential games. Assuming the functions φk to be
smooth for simplicity, optimality conditions for the convex problems (10) are, for all j = 1, . . . ,m:

∇zj
hθ(Pjxj , zj) + λ

r∑
k=1

∇zj
φ̃k,j(Z) = 0, with φ̃k,j(Z) = φk(Lk,j(Z)). (11)

Let us now assume the following symmetry condition such that if problem l involves a variable zj
through a function φ̃k,l(Z), then problem j also involves the same term. Based on this assumption,
we may define the potential function

V (Z) :=

m∑
j=1

(
hθ(Pjxj , zj) +

λ

2

r∑
k=1

φ̃k,j(Z)

)
.

The partial derivative of this potential function with respect to zj is then

∇zjhθ(Pjxj , zj) +
λ

2

m∑
l=1

r∑
k=1

∇zj φ̃k,l(Z) = ∇zjhθ(Pjxj , zj) +
λ

2

m∑
l=1

∑
k∈Nj,l

∇zj φ̃k,l(Z),

where Nj,l is the set of functions φ̃k,l involving variable zj . The previous gradient can then be
simplified into

∇zj
hθ(Pjxj , zj) +

λ

2

r∑
j=1

∇zj
φ̃k,l(Z) +

λ

2

∑
l 6=j

∑
k∈Nj,l

∇zj
φ̃k,l(Z).
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Since the symmetry condition can be expressed as
∑r
j=1 φ̃k,l(Z) =

∑
l 6=j
∑
k∈Nj,l

φ̃k,l(Z), the
condition ∇V (Z) = 0 is then equivalent to (11). Note that we have assumed the functions φk to be
smooth for simplicity, but a similar reasoning can be conducted for non-smooth functions, by using
the concept of subgradients.

Examples of potential games.
• the `1-norm: with r = 1 and φ̃1,j = ‖zj‖1, since problem j does not involve any variable zl for
l 6= j;

• Symmetric TV / Laplacian: problem j may involve a variable zl through a term aj,l‖zj − zl‖1.
Then, problem l involves the same term al,j‖zj − zl‖1 under the condition aj,l = al,j .
• Symmetric non local group with r = p and φ̃k,j = λk‖[

√
aj,1z1(k), . . . ,

√
aj,mzm(k)]>‖2. Under

the condition of symmetric weights aj,l = al,j , we obtain again a potential game.
Potential games are appealing as they provide guarantees about the existence of Nash equilibria
without requiring optimizing over a compact set. Yet, we have found that allowing non-symmetric
weights often performs better. This is illustrated in Table A1 for a simple denoising experiment.

Table A1: Symmetric vs assymmetric grayscale denoising on BSD68, training on BSD400 for all methods.
Performance is measured in terms of average PSNR.

Method Params Noise Level (σ)
5 15 25 50

TV symmetric 72 36.08 30.21 27.58 24.74
TV assymetric - extra-grad 480 37.30 30.76 28.24 25.32
Laplacian symmetric 72 34.88 28.14 25.90 23.45
Laplacian assymetric - extra-grad 480 35.20 28.46 26.39 23.77
Non-local group - symmetric 68k 37.94 31.67 29.17 26.16
Non-local group - assymetric 68k 37.95 31.69 29.20 26.19

B Implementation Details and Reproducibility
B.1 Training Details
For the training of patch-based models for denoising, we randomly extract patches of size 56× 56
whose size equals the window size used for computing non-local self-similarities; whereas we train
pixel level models on the full size images. For fMRI experiments we also trained the models on the
full sized images. We apply a mild data augmentation (random rotation by 90◦ and horizontal flips).
We optimize the parameters of our models using ADAM [24].
The learning rate is set to 6× 10−4 at initialization and is sequentially lowered during training by
a factor of 0.35 every 80 training steps, in the same way for all experiments. Similar to [52], we
normalize the initial dictionary D0 by its largest singular value as explained in the main paper in
Section 3.4. We initialize the dictionary C,D and W with the same dictionary obtained with an
unsupervised dictionary learning algorithm (using SPAMS library).
We have implemented the backtracking strategy described in Section 3.4 of the main paper for all our
algorithms, which automatically decreases the learning rate by a factor 0.8 when the loss function
increases too much on the training set, and restore a previous snapshot of the model. Divergence
is monitored by computing the loss on the training set every 10 epochs. Training the non-local
models for denoising are the longer models to train and takes about 2 days on a Titan RTX GPU. We
summarize the chosen hyperparameters for the experiments in Table A2.

C Additional Quantitative Results
C.1 Inference speed
In Table A3 we provide a comparison of our TV models in terms of speed with BM3D for grayscale
denoising on the BSD68 dataset. For fair comparison, we reported computation time both on gpu and
cpu.

C.2 Image denoising
We provide additional results for grayscale denoising with different variations of the prior introduced
in the main paper, as well as combination of different priors. We reported performances for gray
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Table A2: Hyper-parameters chosen for every task.

Experiment Gray denoising (patch) Gray denoising (pixel) fMRI

Patch size 9 - 9
Dictionary size 256 - 256
Nr epochs 300 300 150
Batch size 32 32 1
K iterations 24 24 24
Middle averaging 3 3 -
Correlation update
frequency f 1/6 1/12 -

Table A3: Inference speed for image denoising.

Params Psnr Speed

BM3D [11] - 25.62 7.28s (cpu)
TV assymetric 240 24.93 0.014s (gpu) / 0.18s (cpu)
TV assymetric (extra) 480 25.32 0.021s (gpu) / 0.28s (cpu)

denoising in Table A4 for the pixel based models, and in Table A5 for the patch based models. In
Table A4 untied κ denotes when we used a different set of learned parameters κ at each stage of the
refinement step of the similarity matrix for the non-local models.

Table A4: Pixel level grayscale denoising on BSD68, training on BSD400 for all models. Performance is
measured in terms of average PSNR.

Method Params Noise Level (σ)
5 15 25 50

BM3D [11] - 37.57 31.07 28.57 25.62
Tiny CNN 326 35.17 29.42 26.90 24.06
Tiny CNN 1200 36.47 30.36 27.70 24.60

TV symmetric 288 36.08 30.21 27.58 24.74
TV symmetric - extra-grad 144 37.02 30.33 27.82 24.81
TV assymetric- 240 36.83 30.49 27.99 24.93
TV assymetric - extra-grad 480 37.30 30.76 28.24 25.32

Laplacian symmetric 288 34.88 28.14 25.90 23.45
Laplacian symmetric - extra-grad 144 33.87 28.14 25.91 23.45
Laplacian assymetric 240 35.20 28.48 26.17 23.78
Laplacian assymetric - extra-grad 480 35.20 28.46 26.39 23.77

Non-local TV assymmetric 154 37.25 30.86 28.28 25.42
Non-local TV assymmetric (untied κ) 235 37.12 31.01 28.37 25.24
Non-local TV assymmetric - extra-grad 226 37.83 30.98 28.34 25.31
Non-local TV assymmetric - extra-grad (untied κ) 307 37.53 31.03 28.50 25.26

Non-local Laplacian assymmetric 154 37.31 30.75 28.33 25.15
Non-local Laplacian assymmetric (untied κ) 235 37.53 31.01 28.37 25.47
Non-local Laplacian assymmetric - extra-grad 226 37.51 30.99 28.34 25.13
Non-local Laplacian assymmetric - extra-grad (untied κ) 307 37.54 31.00 28.47 25.46

Bilateral 74 36.76 29.89 27.16 23.97
Bilateral TV 74 36.60 29.82 27.23 24.00
Bilateral - extra-grad 146 36.75 29.89 27.20 23.72
Bilateral TV - extra-grad 146 36.94 30.46 27.78 24.52

D Additional Qualitative Results
Finaly, we show qualitative results for grayscale denoising in Figures A3, A4.
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Table A5: Patch level grayscale denoising on BSD68, training on BSD400 for all methods. Performance is
measured in terms of average PSNR.

Method Params Noise Level (σ)
5 15 25 50

BM3D [11] - 37.57 31.07 28.57 25.62
LSCC [34] - 37.70 31.28 28.71 25.72
CSCnet [52] 62k 37.69 31.40 28.93 26.04
FFDNet [64] 486k N/A 31.63 29.19 26.29
DnCNN [63] 556k 37.68 31.73 29.22 26.23
NLRN [29] 330k 37.92 31.88 29.41 26.47
GroupSC [26] 68k 37.95 31.71 29.20 26.17

Sparse Coding + Barzilai-Borwein 68k 37.85 31.46 28.91 25.84
Sparse Coding + Variance 68k 37.83 31.49 29.00 26.08
Sparse Coding + TV 68k 37.84 31.50 29.02 26.10
Sparse Coding + TV + Variance 68k 37.84 31.51 29.03 26.09
Sparse Coding + TV + Variance + Barzilai-Borwein 68k 37.86 31.52 29.04 26.04

Non-local group - symmetric 68k 37.94 31.67 29.17 26.16
Non-local group - assymetric 68k 37.95 31.69 29.20 26.19
Non-local group - assymetric + TV 68k 37.96 31.71 29.22 26.26
Non-local group - assymetric + Variance 68k 37.96 31.70 29.23 26.28
Non-local group - assymetric + Variance + TV 68k 37.95 31.71 29.24 26.30
GroupSC + Variance 68k 37.96 31.75 29.24 26.34
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ground truth noisy BM3D

TV (ours) NLTV (ours) NL-Lap (ours)

ground truth noisy BM3D

TV NLTV (ours) NL-Lap (ours)

ground truth noisy BM3D

TV (ours) NLTV (ours) NL-Lap (ours)

ground truth noisy BM3D

TV(ours) NLTV (ours) NL-Lap local (ours)

Figure A3: Grayscale denoising for 4 images from the BSD68 dataset. Best seen by zooming on a computer
screen.
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ground truth noisy BM3D

DnCNN SC (ours) Non local (ours)

ground truth noisy BM3D

DnCNN SC (ours) Non local (ours)

ground truth noisy BM3D

DnCNN SC (ours) Non local (ours)

ground truth noisy BM3D

DnCNN SC (ours) Non local (ours)

Figure A4: Results of our patch level models for grayscale denoising for 4 images from the BSD68 dataset. Best
seen by zooming on a computer screen.
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