85 research outputs found

    Theory and simulation of subwavelength high contrast gratings and their applications in vertical-cavity surface-emitting laser devices

    Get PDF
    This work intends to fully explore the qualities and applications of subwavelength gratings. Subwavelength gratings are diffraction gratings with physical dimensions less than the wavelength of incident light. It has been found that by tailoring specific dimension parameters, a number of different reflection profiles can be attained by these structures including high reflectivity or low reflectivity with broad and narrow spectral responses. In the course of this thesis the physical basis for this phenomenon will be presented as well as a mathematical derivation. After discussion of the mechanics of the reflection behavior, the methods used in modeling subwavelength gratings and designing them for specific functions will be explored. Following this, the fundamentals of vertical-cavity surface-emitting lasers (VCSELs) will be discussed, and the applications of subwavelength gratings when used with these lasers will follow. Several devices, both theoretical proposals and fabricated examples, will be presented in addition to the available performance measurements. Finally, the fabrication challenges that restrict subwavelength gratings from adoption as standard components in VCSEL design will be considered with regard to ongoing fabrication research

    Modulation of coherently coupled surface-emitting laser arrays: analysis and applications

    Get PDF
    Vertical-cavity surface-emitting lasers (VCSELs) have become the dominant source for optical data communication links in computer server, data center, and super computer applications. Driven by the exponential increase of performance in information technology, data centers, and computational power, data transmission bandwidth is required to increase exponentially as well. Furthermore, as data centers become physically larger, utilizing more interconnects and requiring longer rack-to-rack fiber transmission distance, low power consumption and narrow spectral width for reduced signal dispersion become increasingly important. This work discusses the development of phased, ion-implanted, PhC VCSEL arrays for coherently coupled operation and modulation bandwidth enhancement with narrow spectral width emission. In this dissertation, monolithic mutual optical injection locking induced laser dynamics in phased, coherently coupled implant-defined PhC VCSEL arrays are investigated in detail both theoretically and experimentally. A model based on the well-established injection-locking laser rate equations is used to intuitively explain the physics of various experimental phenomena. An operation procedure, in which current isolation and bias conditions are leveraged to control array index profile and coupling phase, is developed to achieve coherently coupled operation of the phased VCSEL arrays reproducibly with high yield. An experimental study on the modulation characteristics and locking range dynamics of coherently coupled VCSEL arrays is conducted, showing significant improvements in operational procedures, performance, and device manufacturing. A record VCSEL 3 dB bandwidth of 37 GHz (receiver limited) is obtained under highly single-mode coherent operation with narrow spectral width and increased output power while the laser array is biased at low current density. Additionally, this result has been duplicated by multiple devices, under coherently coupled operation in either the in-phase or out-of-phase mode. Bandwidth enhancement beyond 30 GHz has been shown to be reproducible for several different photonic crystal patterns, and bias conditions for bandwidth enhancement have been shown to be stable and reproducible for the same device design across the sample

    Effective 100 Gb/s IM/DD 850-nm Multi- and Single-Mode VCSEL Transmission Through OM4 MMF

    Get PDF
    To cope with the ever increasing data traffic demands in modern data centers, new approaches and technologies must be explored. Short range optical data links play a key role in this scenario, enabling very high speed data rate links. Recently, great research efforts are being made to improve the performance of vertical-cavity surface-emitting lasers (VCSELs) based transmission links, which constitute a cost-effective solution desirable for massive deployments. In this paper, we experimentally demonstrate intensity-modulation direct-detection transmissions with a data rate of 107.5 Gb/s over 10 m of OM4 multimode fiber (MMF) using a multimode VCSEL at 850 nm, and up to 100 m of OM4 MMF using a single-mode VCSEL at 850 nm. Measured bit error rates were below 7% overhead forward error correction limit of 3.8e−03, thus, achieving an effective bit rate of 100.5 Gb/s. These successful transmissions were achieved by means of the multiband approach of carrierless amplitude phase modulation. To cope with the ever increasing data traffic demands in modern data centers, new approaches and technologies must be explored. Short range optical data links play a key role in this scenario, enabling very high speed data rate links. Recently, great research efforts are being made to improve the performance of vertical-cavity surface-emitting lasers (VCSELs) based transmission links, which constitute a cost-effective solution desirable for massive deployments. In this paper, we experimentally demonstrate intensity-modulation direct-detection transmissions with a data rate of 107.5 Gb/s over 10 m of OM4 multimode fiber (MMF) using a multimode VCSEL at 850 nm, and up to 100 m of OM4 MMF using a single-mode VCSEL at 850 nm. Measured bit error rates were below 7% overhead forward error correction limit of 3.8e-03, thus, achieving an effective bit rate of 100.5 Gb/s. These successful transmissions were achieved by means of the multiband approach of carrierless amplitude phase modulation

    Vertical-cavity laser with a novel grating mirror

    Get PDF

    Neuromorphic nanophotonic systems for artificial intelligence

    Get PDF
    Over the last decade, we have witnessed an astonishing pace of development in the field of artificial intelligence (AI), followed by proliferation of AI algorithms into virtually every domain of our society. While modern AI models boast impressive performance, they also require massive amounts of energy and resources for operation. This is further fuelling the research into AI-specific, optimised computing hardware. At the same time, the remarkable energy efficiency of the brain brings an interesting question: Can we further borrow from the working principles of biological intelligence to realise a more efficient artificial intelligence? This can be considered as the main research question in the field of neuromorphic engineering. Thanks to the developments in AI and recent advancements in the field of photonics and photonic integration, research into light-powered implementations of neuromorphic hardware has recently experienced a significant uptick of interest. In such hardware, the aim is to seize some of the highly desirable properties of photonics not just for communication, but also to perform computation. Neurons in the brain frequently process information (compute) and communicate using action potentials, which are brief voltage spikes that encode information in the temporal domain. Similar dynamical behaviour can be elicited in some photonic devices, at speeds multiple orders of magnitude higher. Such devices with the capability of neuron-like spiking are of significant research interest for the field of neuromorphic photonics. Two distinct types of such excitable, spiking systems operating with optical signals are studied and investigated in this thesis. First, a vertical cavity surface emitting laser (VCSEL) can be operated under a specific set of conditions to realise a high-speed, all-optical excitable photonic neuron that operates at standard telecom wavelengths. The photonic VCSEL-neuron was dynamically characterised and various information encoding mechanisms were studied in this device. In particular, a spiking rate-coding regime of operation was experimentally demonstrated, and its viability for performing spiking domain conversion of digital images was explored. Furthermore, for the first time, a joint architecture utilising a VCSEL-neuron coupled to a photonic integrated circuit (PIC) silicon microring weight bank was experimentally demonstrated in two different functional layouts. Second, an optoelectronic (O/E/O) circuit based upon a resonant tunnelling diode (RTD) was introduced. Two different types of RTD devices were studied experimentally: a higher output power, ”-scale RTD that was RF coupled to an active photodetector and a VCSEL (this layout is referred to as a PRL node); and a simplified, photosensitive RTD with nanoscale injector that was RF coupled to a VCSEL (referred to as a nanopRL node). Hallmark excitable behaviours were studied in both devices, including excitability thresholding and refractory periods. Furthermore, a more exotic resonate and-fire dynamical behaviour was also reported in the nano-pRL device. Finally, a modular numerical model of the RTD was introduced, and various information processing methods were demonstrated using both a single RTD spiking node, as well as a perceptron-type spiking neural network with physical models of optoelectronic RTD nodes serving as artificial spiking neurons.Over the last decade, we have witnessed an astonishing pace of development in the field of artificial intelligence (AI), followed by proliferation of AI algorithms into virtually every domain of our society. While modern AI models boast impressive performance, they also require massive amounts of energy and resources for operation. This is further fuelling the research into AI-specific, optimised computing hardware. At the same time, the remarkable energy efficiency of the brain brings an interesting question: Can we further borrow from the working principles of biological intelligence to realise a more efficient artificial intelligence? This can be considered as the main research question in the field of neuromorphic engineering. Thanks to the developments in AI and recent advancements in the field of photonics and photonic integration, research into light-powered implementations of neuromorphic hardware has recently experienced a significant uptick of interest. In such hardware, the aim is to seize some of the highly desirable properties of photonics not just for communication, but also to perform computation. Neurons in the brain frequently process information (compute) and communicate using action potentials, which are brief voltage spikes that encode information in the temporal domain. Similar dynamical behaviour can be elicited in some photonic devices, at speeds multiple orders of magnitude higher. Such devices with the capability of neuron-like spiking are of significant research interest for the field of neuromorphic photonics. Two distinct types of such excitable, spiking systems operating with optical signals are studied and investigated in this thesis. First, a vertical cavity surface emitting laser (VCSEL) can be operated under a specific set of conditions to realise a high-speed, all-optical excitable photonic neuron that operates at standard telecom wavelengths. The photonic VCSEL-neuron was dynamically characterised and various information encoding mechanisms were studied in this device. In particular, a spiking rate-coding regime of operation was experimentally demonstrated, and its viability for performing spiking domain conversion of digital images was explored. Furthermore, for the first time, a joint architecture utilising a VCSEL-neuron coupled to a photonic integrated circuit (PIC) silicon microring weight bank was experimentally demonstrated in two different functional layouts. Second, an optoelectronic (O/E/O) circuit based upon a resonant tunnelling diode (RTD) was introduced. Two different types of RTD devices were studied experimentally: a higher output power, ”-scale RTD that was RF coupled to an active photodetector and a VCSEL (this layout is referred to as a PRL node); and a simplified, photosensitive RTD with nanoscale injector that was RF coupled to a VCSEL (referred to as a nanopRL node). Hallmark excitable behaviours were studied in both devices, including excitability thresholding and refractory periods. Furthermore, a more exotic resonate and-fire dynamical behaviour was also reported in the nano-pRL device. Finally, a modular numerical model of the RTD was introduced, and various information processing methods were demonstrated using both a single RTD spiking node, as well as a perceptron-type spiking neural network with physical models of optoelectronic RTD nodes serving as artificial spiking neurons
    • 

    corecore