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Abstract—To cope with the ever increasing data traffic 

demands in modern data centers, new approaches and 

technologies must be explored. Short range optical data links 

play a key role in this scenario, enabling very-high speed data 

rate links. Recently, great research efforts are being made to 

improve the performance of vertical-cavity surface-emitting 

lasers (VCSELs) based transmission links, which constitute a 

cost-effective solution desirable for massive deployments. In this 

paper, we experimentally demonstrate intensity-modulation 

direct-detection transmissions with a data rate of 107.5 Gb/s over 

10 m of OM4 multi-mode fiber (MMF) using a multi-mode 

VCSEL at 850 nm, and up to 100 m of OM4 MMF using a single-

mode VCSEL at 850 nm. Measured bit error rates were below 

7% overhead forward error correction limit of 3.8e-03, thus 

achieving an effective bit rate of 100.5 Gb/s. These successful 

transmissions were achieved by means of the multi-band 

approach of carrierless amplitude phase modulation. 

 
Index Terms—Multi-band carrierless amplitude phase 

modulation, Optical fiber communication, Vertical cavity surface 

emitting lasers. 

I. INTRODUCTION 

HE ever increasing amount of transmitted data does not 

only increase the data rates of the transmission in the 
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access, metro and core networks but also in the short 

connections, e.g. the optical data interconnects. The optical 

interconnects are applied to transmit data within information 

technology (IT) infrastructure, starting from in-rack 

communication to intra-data center connections. The key 

features requires for such applications are high throughput, 

limited footprint, reduced power consumption and reduced 

cost of the solution [1], [2]. 

An appealing transmission solution for optical interconnects 

is based on vertical-cavity surface-emitting lasers (VCSELs) 

and multi-mode fiber (MMF). VCSELs have key advantages 

of wide bandwidth, low energy consumption and low-cost 

manufacturing, while MMF can be easily coupled to VCSELs 

[3]. However, as optical link length increases, the modal and 

chromatic dispersion in MMFs deteriorate the transmission 

quality of traditional multi-mode (MM) VCSELs. The 

impairments imposed by both dispersions can be mitigated by 

reducing the number of modes of these VCSELs, ideally to 

achieve single-mode (SM) operation [4], [5]. VCSEL 

technology constitute a low-cost transmission solution, 

desirable for massive deployments, e.g. data center 

interconnects, which decreases costs by less than half 

compared with standard single-mode fiber (SSMF) solutions 

in data centers [6]. The VCSEL data interconnect cost 

advantage originates from low capital as well as operational, 

e.g. limited energy consumption, cost [7]. 

 Optical communication systems are evolving from classic 

spectral inefficient non-return to zero (NRZ) schemes to more 

advanced and flexible modulation schemes such as quadrature 

phase shift keying (QPSK) [8], [9], pulse amplitude 

modulation (PAM) [10], [11], discrete multi-tone (DMT) 

[12]–[14], multi-band approach of carrierless amplitude phase 

(MultiCAP) [15], [16], polybinary modulation [17], [18], 

among others. By combining VCSEL technology with these 

advanced modulation schemes, spectral efficiency can be 

boosted up, enabling low-cost 100G links at single 

wavelength, single polarization, and direct detection. 

A significant research effort is devoted to increase the 

transmission data rates and performance of VCSEL 

interconnects. The highest bit rates reported by some of these 

works including both the bit rates before and after forward 

error correction (FEC) decoding are: 115 Gb/s pre-FEC and 

95.8 Gb/s post-FEC for back-to-back (B2B) transmissions by 
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Fig. 1. The block diagram of MultiCAP transmitter and receiver. 
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means of DMT modulation at 1550 nm [12]; 71.88 Gb/s 

pre-FEC and 67.18 Gb/s post-FEC for B2B transmission using 

DMT modulation at 850 nm [13]; 84 Gb/s pre-FEC and 

78.51 Gb/s post-FEC for B2B transmissions with DMT 

modulation at 850 nm [14]; 54 Gb/s pre-FEC and 50.47 Gb/s 

post-FEC on-off keying (OOK) transmission up to 2.2 km of 

OM4 MMF at 850 nm [5], [19]; and 71 Gb/s NRZ modulation 

with no FEC codes with a BER <1e-12 over 7 m of OM3 

MMF at 850 nm [20]. 

In this paper, we demonstrate two record experiments 

utilizing 850 nm VCSEL and OM4 MMF with a post-FEC bit 

rate of 100.5 Gb/s (i.e. pre-FEC bit rate of 107.5 Gb/s with 7% 

overhead FEC) over the distances of 10 m for MM-VCSEL 

transmission and of 100 m for SM-VCSEL transmission [21]. 

Furthermore, for B2B transmissions with the SM-VCSEL, a 

pre-FEC and post-FEC bit rates up to 112.5 Gb/s and 

105.14 Gb/s were achieved, respectively. MultiCAP 

modulation, with advantages of adaptivity as well as feasible 

implementation and direct detection was applied. Bit error rate 

(BER) measurements were below 7% forward error correction 

(FEC) limit of 3.8e-03. Additionally, SM-VCSEL 

transmission experiments showed excellent performance up to 

1000 m MMF at data rates of 85 Gb/s. 

This paper is organized as follows: Section II gives a brief 

description of MultiCAP modulation scheme. In section III the 

experimental setup is described in detail and in section IV the 

experimental results are given. Finally, in section V 

conclusions are presented. 

II. MULTI-BAND CARRIERLESS AMPLITUDE PHASE 

MODULATION 

Carrierless amplitude phase modulation (CAP), similarly to 

quadrature amplitude (QAM) and high order phase shift 

keying (PSK) modulations, is a multilevel and 

multidimensional modulation scheme capable of transmitting 

two channels of data simultaneously [22], namely the in-phase 

(I) and quadrature (Q) channels. These two channels are 

generated by means of two orthogonal pass-band filters 

obtained from the time-domain multiplication between the 

root raised cosine (RRC) pulse shape function and a pure 

cosine and sine tones for I and Q components, respectively: 

 

pi(t) = g(t)cos(2πfct) (1) 

pq(t) = g(t)sin(2πfct) (2) 

where g(t) is a pulse shaping function that has a RRC 

spectral characteristic. CAP filters have three main 

parameters: i. the cosine and sine frequency determining the 

central frequency of the transmitted band; ii. the roll off factor 

 of the RRC, which determines the excess bandwidth 

required, i.e. with an RRC pulse shape the total pass-band 

bandwidth of a CAP band is 1+ times the baud rate; iii. the 

filter length in the number of samples which affects both 

performance and complexity of the system. For short lengths 

the overall system is simpler, but performance decreases 

significantly [16].  

To generate a CAP signal, the original binary sequence is 

first mapped using an M-ary QAM or PSK encoder, and then 

the mapped symbols are up-sampled to perform a time-domain 

convolution with the orthogonal filters. After filtering, the 

signals from the two channels are added and transmitted. At 

the receiver first two matched filters separate the I and Q 

channels. The optimum filters are the ones matched to the 

passband filters described in (1) and (2), respectively [23]. 

Finally, the retrieved I and Q signals are down-sampled and 

the data is decoded. The overall CAP architecture has been 

demonstrated to be less complex and with better performance 

than DMT architecture [24]. 

MultiCAP modulation relies on the simultaneous 

transmission of several CAP signals assigned to different 

frequency bands, ensuring that these bands do not overlap. 

This is achieved by using not only one pair of orthogonal 

filters, but several pairs with different cosine and sine 

frequencies assigned to each frequency band [16], [25]. Fig. 1 

shows the block diagrams of a MultiCAP transmitter and 

receiver.  

The flexibility offered by MultiCAP allows to 

independently choose the modulation scheme, order, and 

signal power, i.e. allows bit loading and power loading in each 

band [12], [13], [16]. Thanks to these extra degrees of 

freedom, is possible to overcome the need of a flat frequency 

response of the channel which is required for reliable 

transmission of conventional CAP signals. The combination of 

bit loading and power loading for each band makes MultiCAP 

an appealing candidate for optical fiber links, where frequency 

selectivity and uneven gain of the channel cause significant 

degradations of the transmitted signal. However, it is to be 

noted that the advantages of this multi-band approach requires 

higher digital signal processing (DSP) resources. Some studies 

[26], [27] demonstrate that CAP and DMT have similar DSP 

complexity (i.e. number of basic real-valued arithmetic 

operations), therefore when the number of bands used in 

MultiCAP modulation increases, the DSP complexity 

increases proportionally as well. 
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III. EXPERIMENTAL SETUP 

Figure 2 shows the block diagram of the experimental 

setup. The transmitter consisted of a 65 GSa/s arbitrary 

waveform generator (AWG), a bias-T, a current source and a 

VCSEL. Standard multiple oxide aperture VCSEL design was 

applied for MM-VCSEL [28], while the SM-VCSEL design 

allowed oxide aperture induced leakage effect to be applied 

for mode selection [29]. In order to achieve SM operation, 

thick multiple oxide apertures were used. For such design the 

optical field distribution of the tilted modes (in the oxidized 

area) becomes non-orthogonal to the VCSEL cavity mode 

enabling the optical leakage process. The VCSEL used in the 

experiments has 3 µm-diameter oxide apertures (total oxide 

thickness ~70 nm) with which SM operation was achieved.  

The packaged and pigtailed MM-VCSEL was biased with 

8 mA current and driven by a modulating signal of 0.7 Vpp. In 

Fig. 3 is shown the probe station with the SM-VCSEL wafer. 

The SM-VCSEL was biased with 2.8 mA and driven by a 

modulating signal of 1 Vpp. No thermal stabilization was 

applied to both VCSELs. After transmission over the MMF 

OM4 fiber, which has a bandwidth of 4700 MHz·km, the 

optical signal was converted to the electrical domain in a 

22 GHz bandwidth photoreceiver (PR) with an optional 

electrical amplifier. The electrical signal was captured in a 100 

GSa/s real time oscilloscope (OSC) for further offline DSP.  

IV. EXPERIMENTS 

A. MultiCAP Signal Generation and Signal Processing 

A MultiCAP signal with 10 frequency bands with a baud 

rate of 2.5 Gbaud each was utilized. For each band, 

decorrelated pseudo random binary sequences (PRBSs) of 

2
11

-1 bit length were independently generated (i.e. a PRBS 

with a different time shift for each band). Then, the PRBS of 

each band was repeated several times accordingly to the 

symbol constellation in which the sequences of each band 

were mapped, thus the resulting number of symbols of each 

band was the same. The obtained symbol sequences for each 

band were up-sampled and then filtered by the pair of 

orthogonal CAP filters corresponding to each band. Next, 

power loading was employed by assigning weights to each 

band in order to mitigate the channel gain unevenness. For all 

bands its corresponding pair of CAP filters were implemented 

as finite impulse response (FIR) filters with a length of 

45 symbols each and an  of 0.03. The separation between the 

central frequencies of the bands was 2.55 GHz, starting in 

1.3125 GHz as central frequency of the first band. The total 

bandwidth of all 10 bands was 25.5 GHz achieving a spectral 

efficiency of 4.21 bit/s/Hz. 

At the receiver, to have a sampling rate multiple integer of 

the baud rates of the signal at the transmitter, the signal stored 

by the OSC with a sampling rate of 100 GSa/s was resampled 

to 130 GSa/s. Subsequently, I and Q channels of each band 

were retrieved by filtering with the filters matched to the CAP 

filters at the transmitter. After filtering, each channel was 

down-sampled to construct the corresponding symbol 

constellations, from which the symbols were demodulated 

employing a decision-feedback equalizer (DFE) and the k-

means algorithm. The equalizer employed used the recursive 

least squares (RLS) adaptive algorithm, 30 feed-forward and 

feed-back taps, a forget-factor of 0.9999, and a value of 0.1 to 

initialize the diagonal elements of the inverse correlation 

matrix for Kalman gain computation. BERs and error vector 

magnitudes (EVMs) were computed offline, for each band 

separately, from the actual received data stored with the OSC. 

B. VCSEL characterization 

Figure 4 shows the light-current-voltage (LIV) curves and 

the optical spectra of the utilized SM- and MM-VCSELs. For 

the SM/MM-VCSEL operating wavelengths were 

853.1/860.5 nm, respectively. The MM-VCSEL had over 10 

modes and the SM-VCSEL suppression ratio of the strongest 

mode was 39 dB. The maximum optical power for SM/MM-

VCSEL was -1.4 dBm and 4.4 dBm, respectively. Fig. 5 

 
Fig 2. The block diagram of experimental setup. PRBS: pseudo-random binary sequence, AWG: arbitrary waveform generator, VCSEL: vertical cavity surface 

emitting laser, PR: photoreceiver, OSC: real time oscilloscope. 
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Fig. 3. The precision alignment probe station with SM-VCSEL chip wafer 

(inset). 
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shows the normalized (to the first trace measurement point) 

frequency response of the MM and SM-VCSELs based 

transmission link for various OM4 fiber lengths [5]. The 

frequency responses were measured with a 50 GHz network 

analyzer, which was connected to the VCSELs input and the 

PD output. The measurements were performed with the 

SM-VCSEL similar to the one used in the MultiCAP 

experiments. While the B2B curves are similar for both lasers 

(i.e. the 6 dB electrical bandwidth of about 26 GHz), a clear 

improvement of the SM laser is visible for lengths >100 m. 

For the MM-VCSEL the 6 dB electrical bandwidth does not 

exceed 5 GHz for the lengths >100 m, while for the SM-

VCSEL it is over 15 GHz for the lengths up to 1600 m 

(excluding 1000 m) and over 8 GHz for all lengths.  

It is to be noted that for all characterization tests and fiber 

optic transmissions in the experiments, the VCSELs did not 

have any kind of thermal stabilization and all tests were 

performed at ambient temperature within the laboratory.  

C. Transmission experiments 

First, transmission with MM-VCSEL was performed. A 

transmission of 107.5 Gb/s was achieved over 10 m of OM4 

MMF with a received optical power of 3.9 dBm. For low 

frequencies, the link had a fairly flat frequency response 

which allowed to employ 64-QAM modulation scheme in the 

first two bands. Contrary, at high frequencies, the link 

frequency response was uneven and had a lower gain. 

Consequently, it was necessary to decrease the modulation 

order of the high frequency bands to maintain a low BER, e.g. 

binary phase shift keying (BPSK) modulation scheme for the 

last band. In Table I the BER and main parameters of each 

band are presented. The BER of all bands was below 7% FEC 

threshold of 3.8e-03, thus achieving a total effective bit rate of 

100.5 Gb/s. Fig. 6 shows the received electrical spectrum of 

the MultiCAP signal together with the constellations and 

EVMs of all bands. Due the link frequency response, bands 9 

and 10 had considerable lower power than the other bands, 

which not even with power loading could be compensated 

enough to increase its modulation order. 

Next, transmission with SM-VCSEL was performed. An 

additional 25 dB gain electrical amplifier was placed after the 

PD to compensate for the limited optical signal power. A 

transmission of 107.5 Gb/s was achieved over 100 m of OM4 

MMF with a received optical power of -2.54 dBm. With a 

similar trend as in the MM-VCSEL transmission, the highest 

modulation order scheme used was 64-QAM for the bands at 

low frequencies and the lowest modulation order scheme used 

was quadrature phase shift keying (QPSK) for the last two 

bands. In Table II, the BER and main parameters of each band 

are presented, while Fig. 7 shows the received electrical 

spectrum of the MultiCAP signal together with the 

constellations and EVMs of all bands. The frequency response 

of the 10 m MM-VCSEL link and the 100 m SM-VCSEL link 

are quite similar to the extent that, with the proper power 

assignment of each band, only the modulation order scheme of 

bands 8 and 10 were changed. It is to be noted that, for both 

VCSELs, thanks to power loading technique bands with the 

same modulation order have practically the same EVM. 

Additionally, depending on the modulation order of each band 

(i.e. the spectral efficiency), the processed bits per band range 

from 362496 to 2174976 and from 483328 to 1449984, for the 

MM-VCSEL and SM-VCSEL transmissions, respectively, 

validating the reliability of the BER results presented.  

Finally, with the SM-VCSEL, the experiments towards 

maximum bit rate transmission at a given distance with 

adjustable as well as fixed (107.5 Gb/s) bit rate were 

performed. Fig. 8(a) shows the maximum bit rates achieved 

below 7% FEC limit as a function of the MMF length. The 

maximum bit rate achieved was 112.5 Gb/s in the B2B test, 

and the maximum length tested was 1 km achieving a bit rate 

of 85 Gb/s. Fig. 8(b) shows the average BER of all bands for 

107.5 Gb/s transmission in function of MMF length. For 

longer distances the higher order modulation schemes, such as 

64-QAM, degrade considerably increasing the BER as can be 

noted. For the maximum bit rate transmission experiment, 

Table III presents a summary of all MMF links lengths and the 

modulations schemes of all bands. As the link length 

increases, the link bandwidth and the received optical power 

decrease. Therefore, the EVMs of all bands worsen and the 

modulation order of some bands must be decreased 

accordingly in order to ensure a BER below 7% FEC limit.  

 
Fig 4. Light-current-voltage curves of (a) SM-VCSEL and (b) MM-VCSEL, and (c) optical spectra of SM and MM VCSELs. 
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Fig. 5. Frequency response of the MM and SM-VCSELs based link. 
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V. CONCLUSION 

To the best of our knowledge, for the first time an effective 

bit rate over 100 Gb/s is transmitted, at single wavelength, 

single polarization, and direct detection, with an 850 nm 

MM-VCSEL over 10 m of OM4 MMF and with an 850 nm 

SM-VCSEL over 100 m of OM4 MMF. These two records, 

with comparable hardware constraints and resources as 

previous works [12]–[14], [20], were achieved through the use 

of MultiCAP modulation. BERs below 7% FEC limit were 

measured. 

To be able to increase the length of optical links, work is 

dedicated to develop more advanced designs to increase the 

output power of VCSELs. Recently, with oxide apertures 

having a total thickness of 100 nm, the oxide apertures 

diameter for SM operation was increased to 5 µm at currents 

 
Fig 6. Received electrical spectrum and constellation diagrams after DFE for 107.5 Gb/s 10 m MM-VCSEL transmission. 

 
Fig 7. Received electrical spectrum and constellation diagrams after DFE for 107.5 Gb/s 100 m SM-VCSEL transmission. 

 

TABLE I 
BER AND MAIN PARAMETERS OF MM-VCSEL 107.5 GB/S TRANSMISSION OVER 10 M OF OM4 

Band 1 2 3 4 5 6 7 8 9 10 

Baud rate [Gbaud] 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 

Modulation 64-QAM 64-QAM 32-QAM 32-QAM 32-QAM 32-QAM 16-QAM 16-QAM QPSK BPSK 

Bit rate [Gb/s] 15 15 12.5 12.5 12.5 12.5 10 10 5 2.5 

Central Freq. [GHz] 1.3125 3.8625 6.4125 8.9625 11.5125 14.0625 16.6125 19.1625 21.7125 24.2625 

Power Loading [dB] 2 1 0.3 0.6 1 2.1 1.2 2.6 0.4 2 

Transmitted Bits 2174976 2174976 1812480 1812480 1812480 1812480 1449984 1449984 724992 362496 

BER 3.12e-03 2.58e-03 2.36e-03 2.53e-03 3.76e-03 3.33e-03 2.63e-03 2.77e-03 7.89e-04 3.56e-03 

 

TABLE II 

BER AND MAIN PARAMETERS OF SM-VCSEL 107.5 GB/S TRANSMISSION OVER 100 M OF OM4 

Band 1 2 3 4 5 6 7 8 9 10 
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Bit rate [Gb/s] 15 15 12.5 12.5 12.5 12.5 10 7.5 5 5 

Central Freq. [GHz] 1.3125 3.8625 6.4125 8.9625 11.5125 14.0625 16.6125 19.1625 21.7125 24.2625 

Power Loading [dB] 2 2.1 -0.2 0.7 1.7 2.6 2 1.1 -1 2.1 

Transmitted Bits 1449984 1449984 1208320 1208320 1208320 1208320 966656 724992 483328 483328 

BER 1.80e-03 2.94e-03 1.33e-03 1.58e-03 1.26e-03 1.89e-03 1.11e-03 1.66e-03 1.69e-03 2.08e-03 
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exceeding 5 mA with >15dB Side-Mode Suppression Ratio 

(SMSR) [30]. 

Due the high data rates of optical interconnects, signal 

integrity requirements in data centers are getting more 

stringent (e.g. a BER of 1e-15 is considered error free). With 

alternative low-density parity-check (LDPC) code schemes 

[31] is possible to reduce the post-FEC BER floor, however, 

the overhead required is larger. With the BERs achieved, our 

results are suitable for applications with bit rates over 50 Gb/s 

compliant with recent IEEE 802.3 and Fibre Channel 

standards (i.e. BER<1e-13). 

The presented results demonstrate that ultra-high speed 

links over 100 Gb/s with distances up to 100 m can be realized 

by using cost-effective MMF and 850 nm VCSELs, 

disruptingly opening a technology solution for the high 

capacity data interconnects that can be further increased by 

combination with short-WDM (SWDM). 
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