research

Theory and simulation of subwavelength high contrast gratings and their applications in vertical-cavity surface-emitting laser devices

Abstract

This work intends to fully explore the qualities and applications of subwavelength gratings. Subwavelength gratings are diffraction gratings with physical dimensions less than the wavelength of incident light. It has been found that by tailoring specific dimension parameters, a number of different reflection profiles can be attained by these structures including high reflectivity or low reflectivity with broad and narrow spectral responses. In the course of this thesis the physical basis for this phenomenon will be presented as well as a mathematical derivation. After discussion of the mechanics of the reflection behavior, the methods used in modeling subwavelength gratings and designing them for specific functions will be explored. Following this, the fundamentals of vertical-cavity surface-emitting lasers (VCSELs) will be discussed, and the applications of subwavelength gratings when used with these lasers will follow. Several devices, both theoretical proposals and fabricated examples, will be presented in addition to the available performance measurements. Finally, the fabrication challenges that restrict subwavelength gratings from adoption as standard components in VCSEL design will be considered with regard to ongoing fabrication research

    Similar works