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Abstract

This thesis deals with theoretical investigations of a newly proposed grating structure,
referred to as hybrid grating (HG) as well as vertical cavity lasers based on the
grating reflectors. The HG consists of a near-subwavelength grating layer and an un-
patterned high-refractive-index cap layer. Though both sides of the grating layer are
not surrounded by low refractive-index materials as in high-index-contrast gratings
(HCGs), the HG can provide a near-unity reflectivity over a broader wavelength
range than HCGs, or work as a resonator with a quality (Q) factor as high as 109.
The physics behind these reflector and resonator properties are studied thoroughly.
A HG structure comprising a III-V cap layer with a gain material and a Si grating
layer enables the realization of a compact vertical cavity laser integrated on Si
platform, which has a superior thermal property and fabrication feasibility than the
HCG-based ones. Furthermore, the concept of cavity dispersion in vertical cavities
is introduced and its importance in the modal properties is numerically investigated.
The dispersion curvature of a cavity mode is interpreted as the effective photon
mass of the cavity mode. In a vertical cavity based on a HCG or HG reflector, this
effective photon mass can be engineered by changing the grating parameters, which
is not the case in a vertical cavity based on distributed Bragg reflectors (DBRs). This
engineering capability enables us to form various photonic heterostructures in lateral
directions, which is analogous to electronic quantum wells in conduction or valence
bands. Several interesting configurations of heterostructures have been investigated
and their potential in fundamental physics study and applications are discussed.

For numerical and theoretical studies, a three-dimensional (3D) optical simulator
has been implemented, based on the Fourier modal method (FMM). A method to
simplify 3D simulations to lower dimensional simulations is suggested, which enables
us to perform fast simulations before doing a thorough 3D simulation. Moreover,
three different techniques for determining the resonance frequency and Q-factor of
a cavity mode are compared. Based on that, the quasi-normal mode approach with
real frequency has been chosen due to its numerical efficiency. In this comparison,
the associated computational uncertainty for the resonance frequency and Q-factor
is investigated, which shows that the uncertainty in the Q-factor can be several
orders of magnitude larger than the uncertainty in the resonance frequency.

Next, the HG is shown to possess a near-unity reflectivity in a broad wavelength
range, which can be broader than the HCG, since the cap layer introduces more



guided mode resonances (GMRs) in the reflectivity spectrum. The fabrication
tolerance of the HG is investigated numerically, which shows that the broadband
near-unity reflectivity characteristic is prone to common fabrication errors. An
experimental demonstration of the HG reflector confirms its broadband reflection
characteristics. Furthermore, the physics study of HG as high Q-factor resonator
illustrates that the resonance mechanism is similar to the resonances appearing
in HCG resonators, and it is quite different from the conventional GMR filters.
The effect of fabrication errors and finite size of the structure is investigated to
understand the feasibility of fabricating the proposed resonator.

Finally, the significance of the cavity dispersion in vertical cavity structure is
illustrated. An analytic expression is derived for the dispersion, which shows that
the cavity dispersion has contributions from both top and bottom mirrors through
their reflectivity phase response as well as the nominal cavity through its thickness.
For conventional DBRs, the mirror contribution in dispersion curvature is always
positive and negligible, compared to the nominal cavity contribution. However, the
HCG or HG contributions can be a specific positive or negative value in different
transverse directions, significantly modifying the entire dispersion curvature. The
influences of the photon effective mass on the mode confinement, mode spacing and
transverse modes are investigated. Particularly, it is shown that the anisotropic
dispersion curvature in in-plane heterostructure is responsible for the phenomenon
of mode grouping, which is also confirmed by experimental results. Furthermore, in
Si-integrated photonics, a laser source that can output light into a Si waveguide
is essential, and it is shown that in HGG-based vertical cavity laser the light can
be coupled to an in-plane output waveguide. The design rules for achieving a high
out-coupling efficiency into the in-plane waveguide are discussed and the in-plane
out-coupling efficiency as high as 68% is achieved in design. Based on this platform,
a system of two laterally coupled cavities is proposed and investigated, which
exhibits the breaking of parity-time (PT) symmetry in vertical cavity structures.
Compared to other types of platform for studying this phenomenon such as ring/disk
resonators and photonic crystal cavities, the HCG/HG-based vertical cavities appear
to be more feasible for realizing an electrically pumped device, which may pave the
way for finding device applications for PT-symmetry breaking phenomenon.
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The subject of this Ph.D. dissertation belongs to the field of nanophotonics,
which is the science of employing photonics for nanometer-scale objects. What
is photonics? Photonics is the science and technology of generating, detecting
and manipulating light or more precisely photon. Photonics has come into use
due to the analogy to electronics, which involves the control of electrons [1]. Due
to the importance of this science for humans and their future developments, the
United Nations proclaimed 2015 as the International Year of Light and Light-
based Technologies (IYL 2015) [2]. This work is performed on the subject of laser,
which is one of the most important photonic devices which revolutionized the 20th
century after its invention, particularly the communications industry. After the
development of optical fibers, the idea of optical interconnect, i.e. replacing electrical
interconnects by their optical counterparts, changed this industry entirely. In this
chapter, the main motivation of this Ph.D. thesis, which is about employing novel
vertical cavity laser structures for optical interconnects in chip-level applications, is
presented. The importance of modeling and numerical simulations for novel laser

1
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structures is also explained. Finally, a short summary of the main thesis highlights
and an overview of the dissertation are provided.

1.1 Chip-Level Optical Interconnects and Silicon
Photonics

Vertical-cavity surface-emitting laser (VCSEL) was first proposed and fabricated
by K. Iga and his colleagues at the Tokyo Institute of Technology, Japan in 1977
and 1979, respectively [3], [4]. A VCSEL consists of a thin semiconductor active
region which is sandwiched between two highly-reflective mirrors. Conventionally,
the mirrors were formed as distributed Bragg reflectors (DBRs). In the VCSEL, the
light is propagating vertically between the mirrors and it is emitted in the normal-
direction to the surface. Initially, VCSELs were working at low temperature and in
pulsed-operation regime [4]. However, after several years of research, continuous-
wave room-temperature GaAs VCSELs at 850 nm wavelength were demonstrated
successfully [5]. Due to their various suitable characteristics such as narrow beam
divergence, low power consumption and high modulation bandwidth, VCSELs are
used widely for optical communications [6].

Over the last several decades, the daily amount of data being transferred globally
is increasing by an exponential trend. Optical communications were the major
reason which makes this huge growth possible, since large amount of data can
be transmitted with high speed and low power consumption over long distance
through the optical fibers. Initially, semiconductor diode lasers and optical fibers
were used to make a global area network (GAN) between different continents, in
which the transmission distance could be thousands of kilometers [7]. Later, optical
interconnects were employed for shorter-distance networks of wide area network
(WAN), metropolitan area network (MAN) and local area network (LAN) [7].

The idea of optical interconnect, seems naturally to be pushed toward the shorter-
distance communications such as rack-to-rack, board-to-board, module-to-module,
chip-to-chip and finally on-chip communications as shown in Fig. 1.1, particularly
for internet data servers and high-performance computing (HPC) applications,
where huge amount of data should be transmitted with high speed. However, for
short-distance communications, low power consumption is as important as high
modulation speed, since the density of the optical interconnect becomes larger for
shorter-distance communications. Furthermore, there are other motivations for
employing optical interconnects at chip-level; power consumption restrictions and
cross-talk problem of electrical interconnects. It is well-known that more than half
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Figure 1.1: Time-evolution of optical interconnect employment in various network levels
[7].

of the total power consumed inside a central processing unit (CPU), is lost in its
electrical interconnects [8]. The power consumption of the electrical interconnects
is mainly due to the capacitance and resistance of the electrical wires, and it is
increasing for higher-speed devices. This makes a big challenge for developing
high speed electronic devices for future computers [9]. Furthermore, for high
signal-density and high speed applications, the cross-talk between nearby electrical
interconnects through capacitive or inductive coupling is a major issue [9]. These
problems may be efficiently eliminated by using optical interconnects at chip-level [9].

The main candidate for realizing chip-level optical interconnect is silicon photon-
ics [9], [10]. Silicon has a number of important properties which makes it a suitable
material and platform, such as fabrication possibility of silicon devices using CMOS
technology which reduces the device cost, large refractive-index of silicon which
makes the photonic devices compact, and good material properties such as low-defect
wafer, and high thermal conductivity [11]. For realizing optical interconnects in
silicon photonics, we may think of two general approaches [10]; using an integrated
optical modulator with an off-chip light source, or a direct-modulation of an on-chip
light source which is our chosen approach. On-chip light source provide better
performance in terms of energy efficiency and can be a much cheaper solution [10],
[12], [13]. Unfortunately, since silicon is an indirect band-gap material, it is very
inefficient as a light source. Therefore, there are several approaches for making a
light source in silicon platform, such as silicon Raman lasers, epitaxial lasers on
silicon, and hybrid silicon lasers [11], [13]. Among them, hybrid silicon platform,
which heterogeneously integrates III-V functionality on the silicon-on-insulator (SOI)
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platform by using molecular wafer-bonding process, seems very attractive, since it
has the best performance and the most potential for future on-chip light sources
[13]. In the last decade, various types of hybrid silicon lasers are demonstrated
[14]–[19]. For future chip-level and module-level optical interconnects, it is also
required that energy consumption becomes less than 100 fJ/bit [9]. For this purpose,
few power-efficient lasers are proposed and experimentally demonstrated such as a
photonic crystal laser employing nano-size cavity with power consumption of a few
fJ/bit and possibility of integration using wafer bonding process [20], [21]. VCSEL is
also suggested as a potential candidate for future chip-level optical interconnects [9].

1.2 Novel Vertical Cavity Lasers

State-of-the-art VCSELs, can be made power-efficient (e.g. the energy consumption
can be as low as 59 fJ/bit) [22], [23] and also integrated to silicon [17]. However,
using the conventional VCSELs for chip-level optical interconnects is not feasible,
since coupling output light from the VCSEL into an in-plane silicon waveguide is
not straightforward, requiring extra efforts such as a grating coupler [19]. Recently,
a hybrid laser structure was proposed using silicon high-index-contrast grating
(HCG) as shown schematically in Fig. 1.2(a), which seems a promising candidate
for silicon-integrated light source applications [24]. Introducing the HCG as bottom
reflector can maintain the desirable properties of the VCSEL and increases the laser
speed considerably, since it can reduce the modal volume (or equivalently increase
the optical confinement factor) compared to the conventional VCSEL [18]. This
laser structure, which is referred to as HCG-based vertical cavity laser structure, is
also power-efficient and it shows low threshold current as low as state-of-the-art
VCSELs [18]. Moreover, employing the HCG in vertical cavity laser results in novel
properties such as exotic modal behavior [25], MEMS-based wavelength tunability
[26], [27], and strong single-transverse-mode operation [28].

HCG is a special class of subwavelength grating, in which the grating period is
close to the incident light wavelength and there is a large refractive-index contrast
between the grating bars and materials surround it. Due to the large refractive-index
contrast in the grating layer, HCG can provide extraordinary properties that have
not been reported for conventional guided-mode resonance (GMR) filters with similar
periodicity, including high reflectivity (> 99%) over a broad bandwidth [29]–[31],
or high quality factor resonances (Q > 107) [32], [33]. Compared to the diffraction
gratings, only the 0-th diffraction order is propagating after being reflected or
transmitted by HCG, since the grating is near-subwavelength. Even though, the



1. Introduction 5

Figure 1.2: Schematic of a (a) HCG-based vertical cavity laser structure, (b) HG-based
vertical cavity laser structure.

HCG structure is similar to a photonic crystal (PhC) structure, it operates above
the light line compared to the PhC, which is employed below the light-line [34].

Based on the HCG, our group has suggested a new type of reflector, referred to
as hybrid grating (HG), which consists of a grating layer covered by an un-patterned
high refractive-index cap layer [35], [36]. This new reflector shows large reflectivity
in a broad wavelength range, even broader than the HCG does [35]. An interesting
possibility with the HG is that the cap layer may include an active material. Using
this active HG, one may implement a new type of vertical cavity laser structure which
is referred to as HG-based vertical cavity laser structure as illustrated in Fig. 1.2(b).
This novel structure has more feasible fabrication process and more importantly, it
possesses superior thermal properties compared to its HCG-based counterpart, since
the active region is in the direct contact with the grating layer. Therefore, HCG/HG-
based vertical cavity laser seem to be an interesting candidate for Si-integrated light
source applications and they are investigated theoretically in this thesis.

1.3 Numerical Simulations

Laser diode physics are affected by a number of different physical processes which
take place inside the laser, such as optical, electrical and thermal phenomena as
shown in Fig. 1.3. The interaction between these phenomena is complex and in many
cases non-linear effects are important [7]. Therefore, it is almost impossible to design
accurately and predict the exact behavior of a laser without numerical simulations.
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Figure 1.3: Physical phenomena and their interaction in a laser diode [7].

Extensive and accurate numerical simulations should be done to analyze the laser
performance before its fabrication, since the fabrication and characterization of a
novel laser structure is a difficult, time-consuming and expensive task.

Simulating a complete laser, including all the above mentioned physical phe-
nomena and their complex interactions, is a difficult task. Even though, there are
several commercial software tools available to perform multi-physics simulations
[37]–[39], usually a complete simulation is not feasible, since extensive computing
and memory resources are required. Furthermore, the complex nature of the system
makes the interpretation of the simulation results very difficult. Therefore, since the
beginning of laser history, there have been huge attempts to make the laser modeling
as simple as possible and at the same time rigorous and accurate. Fortunately, by
understanding the main physical mechanisms in a laser, it is possible to simplify the
problem considerably. Particularly, it is possible to perform the optical, electrical
and thermal simulations separately and then introduce a set of rate equations to
connect these phenomena together [7], which is the approach used in this thesis.
Particularly, modeling the optical phenomena in a HCG/HG-based vertical cavity
laser is a challenging task, since, 1) there is high refractive-index contrast in the
structure, 2) the smallest structural size is close to the working wavelength, and
3) there is no cylindrical symmetry in the structure which makes it impossible
to simplify the modeling similar to conventional VCSELs. Therefore, Maxwell’s
equations should be solved in their vectorial form.

There are many different numerical techniques for rigorously solving Maxwell’s
equations such as finite-difference time-domain (FDTD) [40], finite-difference
frequency-domain (FDFD) [41], finite element method (FEM) [42], method of
lines (MoL) [43], Fourier modal method (FMM) [44], etc. Each method has its
own advantages and drawbacks, or may be suitable for a particular sort of problem.
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Among these methods, the FMM which is also referred to as rigorous coupled wave
analysis (RCWA), is particularly efficient for solving the Maxwell’s equations in
periodic structures. The FMM was first introduced for rigorously solving grating
problems in early 80s [45]. Due to its simplicity and robustness, it was used later
for simulating other type of structures such as corrugated waveguides [46], [47],
optical couplers [47], plasmonics structures [48], and PhC structures [49]–[53]. It is
a special class of mode expansion techniques (or modal methods). In these methods,
the structure is discretized into layers, the eigenmodes of each layer are determined,
and the eigenmodes of the adjacent layers are connected using mode matching at
the interface. Modal methods, provides valuable insight about the physics of the
simulated structure by giving direct access to interesting physical parameters such
as mode profiles, effective-indices and scattering coefficients in the structure [41].
Due to its simple implementation and robustness, the FMM is now considered as
one of the most-employed type of modal methods.

The HCG/HG-based vertical cavity structure is a layered structure and also
consists of a periodic grating layer as shown in Fig. 1.2, which makes it suitable
for simulating with the FMM. Furthermore, the FMM is a fast and strong tool
to study this structure, since several important parameters of interest such as
reflectivity/transmissivity and cavity quality-factor (Q-factor) are obtained directly
in this method, without requiring any post-processing of simulation data. Although,
there are a few available software tools employing FMM, usually they do not
provide full-access to all the intermediate calculations and parameters, which are
required for understanding the detailed physics of a simulated structure. Therefore,
we decided to develop an in-house three-dimensional FMM software tool to have
the maximum flexibility. Different numerical tweaks are implemented to improve
the performance of the method such as Li’s factorization rule [54], [55], adaptive
spatial resolution (ASR) technique [56], [57] and application of the structural mirror-
reflection symmetries [58]. Absorbing boundary layers or perfectly matched layers
(PMLs) are also implemented as non-linear stretched-coordinate technique to reduce
the effect of finite computational domain [59].

1.4 Thesis Highlights

The focus of this work is on the theoretical investigation of subwavelength gratings
and vertical cavity lasers employing them as the reflectors. The main novel results
of this thesis can be summarized as:
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• Several numerically-different techniques for computing the resonance wave-
length and Q-factor of a cavity mode are introduced and compared quantita-
tively, which show good quantitative agreement with each others. The pros
and cons of these methods are explained and the uncertainty of the calculation
results is also discussed.

• The expressions for spatially-dependent rate equations employing a general
expansion technique are derived. Particularly, they are solved numerically for
a HCG-based vertical cavity laser using a set of Fourier basis, which can be
more efficient numerically when it is combined with the FMM.

• Hybrid grating, which consists of a grating layer covered by a high refractive-
index cap layer, is proposed. The physics behind its operation as a broadband
reflector and high Q-factor resonator are discussed and confirmed with
numerical simulations. Since, the cap layer may include active region, a
new type of vertical cavity laser structure based on an active HG is proposed
and investigated numerically, which displays superior thermal properties
compared to the one based on the HCG.

• The cavity dispersion concept for vertical cavity structures is introduced
and interpreted. An analytic expression for the dispersion is derived and its
validity is confirmed by numerical simulations. In vertical cavity in-plane
heterostructures, the significance of the cavity dispersion curvature and its
influences on the modal properties are illustrated by extensive numerical
simulations.

• The basic design rules for achieving high out-coupling efficiency into an in-
plane silicon waveguide in a HCG-based vertical cavity laser, are discussed
with an example which shows more than 68% out-coupling efficiency.

• A system of two laterally-coupled vertical cavities is proposed, which exhibits
spontaneous breaking of the parity-time symmetry for the first time in vertical
cavity platform.
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1.5 Structure of the Dissertation

The thesis is organized as follows:
Chapter 1, Introduction: The main motivations of the work are reviewed.
Chapter 2, Laser Physics and Numerical Simulations: The fundamental

of the laser physics is briefly explained. The details of implemented optical simulator,
including all required mathematical expressions, are provided with several examples.

Chapter 3, Subwavelength Gratings: The physics behind the working
mechanism of HCG and HG is explained by two different physical pictures and
their applications as broadband reflectors or standalone resonators are discussed.

Chapter 4, Vertical Cavity Structures: Cavity dispersion is introduced as
an important characteristic of the vertical cavity structures with novel reflectors
such as HCG and HG. Several novel vertical cavity lasers are designed with
interesting properties.

Chapter 5, Conclusion and Outlook: The major results of this dissertation
are summarized and the possible future extension of the work are also discussed.

Appendix A, Homogeneous Layer Eigenmodes: The derivation of layer
eigenmodes in a homogeneous layer with constant permittivity is presented.

Appendix B, Redheffer Star Product Variants: Tow other forms of
Redheffer star product are provided in this Appendix.

Appendix C, Simulation Parameters: The structure dimensions and refractive-
indices used for some of the numerical examples in dissertation are gathered in
this Appendix.
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One scientific epoch ended and another began with
James Clerk Maxwell.

— Albert Einstein
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In this chapter, the fundamental of laser physics and its numerical simulations
are introduced. Firstly, the laser theory is discussed briefly by explaining the various
electronic transitions in semiconductors. In section 2.2, the Fourier modal method
(FMM), which is implemented for computing the optical properties of the laser
structures in this work, is introduced and its numerical performance is improved
by employing adaptive spatial resolution and absorbing boundary conditions.
Scattering matrices are employed for modeling the interaction between fields in
the neighboring layers. Several different numerical techniques for determining the
resonance wavelength and quality-factor (Q-factor) of a cavity mode are implemented

15
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Figure 2.1: (a) A laser composed of a gain medium in a resonant optical cavity. (b)
Schematic view of a Fabry-Perot cavity, consists of two mirrors and a nominal cavity
between them with tc thickness. ri and φi are the reflectivity amplitudes and phases from
the mirrors, respectively.

and compared in the FMM formalism. The convergence rate of resonance wavelength
and Q-factor is also investigated. Furthermore, the expressions for threshold gain
and optical confinement factor of a laser are shown with an example. Finally,
the rate equations are introduced, which can simply connect various optical,
electrical and thermal phenomena together in a complex laser structure. The
last section deals with spatially-dependent rate equations by adding the carrier
diffusion term to the standard rate equations. These rate equations are solved
by the expansion techniques.

2.1 Introduction to Laser Theory

In the most general definition, a laser is a combination of a gain medium in a resonant
optical cavity as shown schematically in Fig. 2.1(a). These two components are
coupled together and form a system to convert the electrical energy to its optical
counterpart. The first component of a laser is a resonant optical cavity. The cavity
provides optical feedback, which is required to increase the photon density in the
gain medium and consequently make a positive net gain [1]. There are various
types of optical cavities for laser diodes such as Fabry-Perot cavities, photonic
crystal cavities, ring and disk cavities, etc. A Fabry-Perot cavity consists of two
mirrors separated by a distance tc as shown schematically in Fig. 2.1(b). The
lasing condition for a mode in the Fabry-Perot cavity is defined when the mode
reproduce itself after a round-trip inside the cavity [1]:

r1 exp (jφ1) exp (−jβ̄ctc)r2 exp (jφ2) exp (−jβ̄ctc) = 1, (2.1)

in which β̄c is the complex propagation constant of the mode, r1 and r2 are modal
reflectivity amplitude from the mirrors, and φ1 and φ2 are the reflectivity phases
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Figure 2.2: Various electronic transitions between conduction and valance bands in a
semiconductor. Transitions are separated into non-radiative and radiative groups.

from the mirrors. Assuming a mode with frequency of ωm, propagating with group
refractive-index of nc,g and experiencing gain of gc,t, results in β̄c = nc,gωm/c+jgc,t/2.

By separating the real and imaginary parts of Eq. (2.2), the complete lasing
condition becomes:

r1r2 exp (gc,ttc) = 1, (2.2a)

φ1 + φ2 − 2nc,gtc
c

ωm = 2mπ, (2.2b)

where m is the longitudinal mode order. The first equation defines the threshold
condition for lasing of a mode, while the second one determines the resonance
frequency of it. For a vertical-cavity surface-emitting laser (VCSEL), the value of
tc is relatively small and close to the laser working wavelength [1]. Therefore, a
VCSEL requires highly-reflective mirrors (r1 and r2 should be very close to unity)
to undergo a transition to lasing, i.e. satisfying Eq. (2.2a). Distributed Bragg
reflectors (DBRs) are used in conventional VCSELs. However, VCSELs with novel
mirror structures are the main topic of this dissertation.

Another ingredient of a laser is the gain medium. To obtain insight about
the gain medium, the energy diagram of electrons should be known. In a bulk
semiconductor, the energy levels make two isolated bands referred to as conduction
and valance bands which are separated by the bandgap energy Eg. There are various
types of mechanisms responsible for electron transitions between the conduction
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and valance bands as shown in Fig. 2.2. These mechanisms are divided into two
major groups, non-radiative and radiative processes, depending on whether they
generate useful photons in the process. Generating light in semiconductors mainly
occurs due to the radiative recombination processes, i.e. spontaneous recombination
(or spontaneous emission) as in LEDs or stimulated recombination (or stimulated
emission) as in laser diodes. The two processes of stimulated emission and stimulated
absorption compete with each other, one consumes the photons, which makes the
optical loss, and the other one generates photons, which makes the optical gain.
The net optical gain in semiconductor is achieved when the stimulated emission
rate is larger than the stimulated absorption term, a criteria called population
inversion in laser physics [1]. Carriers are injected electrically to compensate the
depleted ones in the conduction band.

2.2 Optical Simulations

Optical phenomena in a laser are modeled by solving vectorial Maxwell’s equations
in a three-dimensional (3D) space with appropriate boundary conditions for a given
refractive-index profile. Among various methods for solving Maxwell’s equations,
we chose the FMM due to the reasons discussed in chapter 1. In this approach,
assuming a distinct propagation direction such as the z-direction, the structure is
discretized into layers. For each layer, the eigenmodes (guided and radiated modes)
are calculated by solving an eigenvalue problem which is obtained by expanding
the eigenmodes on a basis set of exponential functions. Due to the linearity of
Maxwell’s equations, the total field in the layer is a summation over all of these
eigenmodes. Continuity of transverse electric and magnetic field components at
the layer interfaces, results in a linear relationship between the mode coefficients
in adjacent layers. Solving these equations for the mode coefficients, the field is
determined for the whole structure. In this thesis, since we are mostly interested
the vertical cavity structures employing a high-index-contrast grating (HCG) as
shown schematically in Fig. 2.3, and hereafter referred to as HCG-based vertical
cavities, most of the numerical simulations in this chapter are conducted on this
structure. The calculations are performed on either a complete 3D structure [shown
in Fig. 2.3(a)] or its two-dimensional (2D) cross-section [shown in Fig. 2.3(b)].
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Figure 2.3: (a) Schematic view of a HCG-based vertical cavity structure used in 3D
simulations. (b) The 2D cross-sectional view of the structure in (a).

2.2.1 Definitions and Conventions

Here, the main physical and mathematical conventions employed in this work
are reviewed. If not stated otherwise, international system of units (SI units)
with the Cartesian coordinate system is used. The main propagation direction is
denoted by the z-direction and is referred to as the longitudinal direction, while
the x-, y-directions are referred to as the transverse (or in-plane) directions. For
transverse electric (TE) or transverse magnetic (TM) polarization, the electric
field is assumed to be parallel or perpendicular to the grating bars, respectively.
All vectors and matrices are indicated by bold letters. Table 2.1 shows a list of
main conventions employed in this thesis.

2.2.2 Eigenmodes of a Layer

The first step in the FMM is to determine the eigenmodes and their propagation
constants for each layer. Our starting point is Maxwell’s equations for a source-free
medium in frequency domain, assuming exp(+jωt) as the time harmonic dependency.
Only linear materials are considered here, i.e. ~D = ε0εr~E and ~B = µ0µr ~H. It is
easier to work with normalized magnetic field, i.e. ~̃H = −j

√
µ0/ε0 ~H and normalized

coordinate system, i.e. ~̃r = k0~r (or equivalently ∇̃× = k−1
0 ∇×), since two similar

equations are then obtained for the electric and magnetic fields as:

∇̃ × ~E = µr
~̃H, (2.3a)

∇̃ × ~̃H = εr~E. (2.3b)

From now on, the ’ ˜ ’ notation is omitted from the equations, and normalized
variables are used. However, we should keep in mind that to obtain the real value,
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Symbol Name Value
x, y, z Cartesian coordinate system
~x, ~y,~z Cartesian unit vectors
~r Position vector x~x + y~y + z~z

∂α Derivative operator ∂

∂α
∇ Del (or nabla) operator ∂x~x + ∂y~y + ∂z~z
∇2 Laplace operator ∂2

x + ∂2
y + ∂2

z

I Identity matrix
O Zero matrix
ε0 Vacuum permittivity 8.8542e-12 F/m
µ0 Vacuum permeability 1.2566e-6 A.m

c Speed of light in vacuum
1

√
ε0µ0

≈ 3e8 m/s

ω Frequency
ω̃ Complex frequency
λ0 Wavelength in vacuum
λ Wavelength in medium

k0 Wavenumber in vacuum
ω

c
= 2π
λ0

ng Group refractive-index

vg Group velocity
c

ng
εr Relative permittivity
µr Relative permeability
~E Electric field vector
~H Magnetic field vector
Γ Optical confinement factor
gth Threshold gain
λr Resonance wavelength
Q Quality factor

Table 2.1: The list of main conventions employed in this work with their corresponding
meaning.
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all normalized length scales should be divided by k0, all normalized wavevectors
should be multiplied by k0, and all normalized magnetic fields should be multiplied
by j

√
ε0/µ0. By eliminating the z-component of the ~E and ~H fields, the following

equations are obtained for the transverse electric and magnetic field components:

∂z

Ex
Ey

 = £EH

Hx

Hy

 =
 −∂xε−1

r ∂y µr + ∂xε
−1
r ∂x

−µr − ∂yε−1
r ∂y ∂yε

−1
r ∂x

Hx

Hy

 , (2.4a)

∂z

Hx

Hy

 = £HE

Ex
Ey

 =
 −∂xµ−1

r ∂y εr + ∂xµ
−1
r ∂x

−εr − ∂yµ−1
r ∂y ∂yµ

−1
r ∂x

Ex
Ey

 . (2.4b)

Here £HE and £EH are the differential field operators.
In the optical frequency range and for most practical materials, µr is unity

[2]. For each layer, the permittivity function is invariant in the z-direction, i.e.
εr(x, y, z) = εr(x, y). In the FMM, it is assumed that the permittivity function is
periodic in the both x- and y-directions with periodicities of Λx and Λy, respectively,
i.e. εr(x + mΛx, y + nΛy) = εr(x, y) for any integer m and n. Therefore, the
permittivity function εr can be expanded into a 2D Fourier series where each term
corresponds to a spatial harmonic:

εr(x, y) =
∑
m,n

εmn exp [j(gxmx+ gyny)], (2.5a)

εmn = 1
ΛxΛy

∫∫
Λx,Λy

εr(x, y) exp [−j(gxmx+ gyny)]dxdy, (2.5b)

in which gxm = 2mπ/Λx and gyn = 2nπ/Λy are the reciprocal lattice vectors of
the rectangular unit cell. For an infinite Fourier series, m and n are the Fourier
series indices, vary from −∞ to +∞. However, for a truncated case in numerical
calculations, m = −mx, ...,−1, 0, 1, ...mx and n = −ny, ...,−1, 0, 1, ...ny, and the
total number of Fourier terms are Mx = 2mx + 1, Ny = 2ny + 1 and Nt = MxNy

in the x-direction, y-direction and both directions, respectively. By increasing the
number of Fourier terms, the computational accuracy can be increased. Due to
Bloch’s theorem [3], a pseudo-periodic Fourier series can be used for expanding
~E and ~H fields:

~E(x, y, z) =
∑
m,n

[Sx,mn(z)~x + Sy,mn(z)~y + Sz,mn(z)~z] exp [j(kxmx+ kyny)], (2.6a)

~H(x, y, z) =
∑
m,n

[Ux,mn(z)~x + Uy,mn(z)~y + Uz,mn(z)~z] exp [j(kxmx+ kyny)], (2.6b)

where kxm = kx0 + gxm and kyn = ky0 + gyn are the spatial wavevector components
in the transverse directions, and kx0 and ky0 are incident wavevector components
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in the x- and y-directions, respectively. The sets {Sx,mn(z), Sy,mn(z), Sz,mn(z)}
and {Ux,mn(z), Uy,mn(z), Uz,mn(z)} are z-dependent coefficients for the electric and
magnetic fields, respectively.

These Fourier series expansions transform Maxwell’s differential equations to
their matrix representations [4]:

∂z

Sx
Sy

 = P

Ux

Uy

 =
 KxE−1Ky I−KxE−1Kx

KyE−1Ky − I −KyE−1Kx

Ux

Uy

 , (2.7a)

∂z

Ux

Uy

 = Q

Sx
Sy

 =
 KxKy E −K2

x

K2
y − E −KyKx

Sx
Sy

 , (2.7b)

where Kx and Ky are diagonal matrices containing the spatial wavevector com-
ponents kxm and kyn, respectively, and matrix E is a Toeplitz matrix made from
the Fourier coefficients εmn. A Toeplitz matrix A with Aij element is obtained
from a vector a with elements ai as Aij = ai−j. Vector sets {Sx,Sy} and {Ux,Uy}
consist of Fourier series coefficients of the transverse components of ~E and ~H
fields, respectively. By combining these two equations, an expression is obtained
in terms of {Sx,Sy} variables, and matrix Ω is defined as Ω = PQ. Assuming a
z-dependency in the form of exp (γz) for field components, the differential equation
sets are transformed to an eigenvalue problem for matrix Ω, which is solved easily
by a standard eigenvalue software package (MATLAB in the present case):

∂2
z

Sx
Sy

 = Ω

Sx
Sy

 ⇒ γ2

Sx
Sy

 = Ω

Sx
Sy

 . (2.8)

After solving the eigenvalue problem, eigenvalues bi, i = 1, 2, ..., 2Nt are found,
where bi = γ2

i . There are two possibilities to choose either sign of ±
√
b for γi, i.e.

there are two eigenvalues which share a single eigenvector, and the appropriate sign
is chosen as it is discussed in Refs. [5], [6]. Each γi is referred to as an eigenmode
propagation constant and its corresponding eigenvector (wx,i,wy,i) as a electric
field eigenmode. All the eigenvectors together make a matrix W, where eigenvector
(wx,i,wy,i) is its ith column. A diagonal matrix Γ is also defined based on γi, and
consequently ΩW = WΓ2. Furthermore, using Eqs. (2.7), the magnetic field
eigenmode (vx,i,vy,i) is the ith column of the matrix V = QWΓ−1.

After determining the layer eigenmodes, the total field in the layer will be a
summation of all eigenmodes with their corresponding propagation constants, being
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accompanied with a set of appropriate coefficients:Sx
Sy

 = W exp [−Γ(z − z1)]cp + W exp [Γ(z − z2)]cn, (2.9a)
Ux

Uy

 = −V exp [−Γ(z − z1)]cp + V exp [Γ(z − z2)]cn. (2.9b)

where cp and cn are the coefficient vectors of the propagating waves in positive
and negative directions, respectively, and the layer starts at z = z1 and ends at
z = z2. The phase factors, exp [−Γz1] and exp [−Γz2], are introduced to prevent
numerical overflow [5]. For a given excitation field, cp and cn can be found using
appropriate boundary conditions as it will be discussed in section 2.2.3.

Li’s Factorization Rule

It is known from Fourier theory that if a function is expressed as a multiplication of
two other functions, e.g. f(x) = g(x)h(x), in Fourier space, its Fourier coefficients
will be obtained as the convolution of the Fourier coefficients:

fn =
∞∑

m=−∞
gn−mhm, (2.10)

where fi, gi and hi are the corresponding Fourier coefficients. In matrix notation,
[f ] = [[g]][h], where [[g]] is the Toelptiz matrix composed of the Fourier coefficients
of the g function. If g and h are discontinuous functions at a jump point with
concurrent jumps, i.e. f is continuous, then the Fourier coefficients of the f
function obtained from Eq. (2.10) will not converge smoothly at the jump point
[7]. In this case, Li [7] showed that for fast convergence the inverse rule should
be applied, which is expressed as:

[f ] = [[g−1]]−1[h]. (2.11)

Applying this rule solved the well-known convergence problem of the FMM
in the TM polarization [5], [8]. For a 2D Fourier series, this rule can be applied
using fast Fourier-factorization rule [9], [10] or Normal-vector technique in the
most general case [11], [12]. However, if the permittivity function has only surfaces
parallel to the coordinate planes, the Li’s factorization rule can be applied with
simple modification of the eigenmode equations [13]. Firstly, several new matrices
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are defined for a 2D periodic function a(x, y) with Λx and Λy periodicity as [13]:

amn = 1
ΛxΛy

∫∫
Λx,Λy

a(x, y) exp [−jmkxx− jnkyy]dxdy, (2.12a)

daemn = 1
Λx

∫
Λx

a(x, y) exp [−j(m− n)kxx]dx, (2.12b)

bacmn = 1
Λy

∫
Λy

a(x, y) exp [−j(m− n)kyy]dy, (2.12c)

Ax : bdaecmn,pq = b{dae}mpcnq, (2.12d)

Ay : dbacemn,pq = d{bac}nqemp, (2.12e)

Az : [[a]]mn,pq = am−p,n−q, (2.12f)

where ki = 2π/Λi for i = x, y.
Using Li’s factorization rule in Maxwell’s matrix equations, (2.7), results in

a modification of matrices P and Q as:

P =
 KxE−1

z Ky I−KxE−1
z Kx

KyE−1
z Ky − I −KyE−1

z Kx

 , (2.13a)

Q =
 KxKy Ey −K2

x

K2
y − Ex −KyKx

 , (2.13b)

where Eα, α = x, y, z are found from the permittivity function using Eqs. (2.12),
Ex = bdεrec, Ey = dbεrce and Ez = [[εr]]. It should be mentioned that if the
permittivity function has interfaces, which are not parallel to the coordinate planes
such as circular holes, we may discretize the permittivity function into several slices
and make a staircase approximation of it [14], [15]. With a sufficient number of
slices, this approximation results in the correct evaluation for most problems [14].
However, it may provide slow convergence for some problems [10].

Adaptive Spatial Resolution

If there is a large refractive-index contrast in a layer cross-section permittivity, it
will make the Fourier series expansion less effective due to the well-known Gibbs
phenomena [16]. However, the efficiency of Fourier series expansion was shown to
be improved dramatically by introducing the concept of adaptive spatial resolution
(ASR). This method was first introduced for 1D single grating layer problem [17],
later it was expanded to multilayer structures [18] and 2D structures [19]. In
this technique, a new coordinate system is introduced, which increases the spatial
resolution around the discontinuities of the permittivity function [16], [17]. The
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coordinate transformation function is an analytic smooth function such as the
one defined in Ref. [16]–[18].

Starting from Maxwell’s equations for the electric field components (Ex, Ey, Ez)
and the magnetic field components (Hx, Hy, Hz) in the original coordinate system
(x, y, z), they will be rewritten for a transformed coordinate system (x̄, ȳ, z̄), where
x = fx(x̄), y = fy(ȳ) and z = z̄. The functions gx and gy are defined as gx = ∂fx/∂x̄

and gy = ∂fy/∂ȳ, respectively. Maxwell’s equations for the transformed transverse
field components (Eī = Eigi, Hī = Higi; i = x, y) then become:

∂z̄

Ex̄
Eȳ

 = £EH

Hx̄

Hȳ

 =
 −∂x̄ε−1

z̄ ∂ȳ µȳ + ∂x̄ε
−1
z̄ ∂x̄

−µx̄ − ∂ȳε−1
z̄ ∂ȳ ∂ȳε

−1
z̄ ∂x̄

Hx̄

Hȳ

 , (2.14a)

∂z̄

Hx̄

Hȳ

 = £HE

Ex̄
Eȳ

 =
 −∂x̄µ−1

z̄ ∂ȳ εȳ + ∂x̄µ
−1
z̄ ∂x̄

−εx̄ − ∂ȳµ−1
z̄ ∂ȳ ∂ȳµ

−1
z̄ ∂x̄

Ex̄
Eȳ

 , (2.14b)

where αx̄ = αrgy/gx, αȳ = αrgx/gy and αz̄ = αrgxgy, α = µ, ε. Using Fourier
series expansions for all the quantities in these equations, similar to the previous
section, and employing Li’s factorization rule as explained in Ref. [19], the following
equations are derived for the layer eigenmodes in the transformed coordinate system:

∂z̄

Sx̄
Sȳ

 = P

Ux̄

Uȳ

 =
 Kx̄E−1

z̄ Kȳ Mȳ −Kx̄E−1
z̄ Kx̄

KȳE−1
z̄ Kȳ −Mx̄ −KȳE−1

z̄ Kx̄

Ux̄

Uȳ

 , (2.15a)

∂z̄

Ux̄

Uȳ

 = Q

Sx̄
Sȳ

 =
 Kx̄M−1

z̄ Kȳ Eȳ −Kx̄M−1
z̄ Kx̄

KȳM−1
z̄ Kȳ − Ex̄ −KȳM−1

z̄ Kx̄

Sx̄
Sȳ

 , (2.15b)

where Ki, i = x̄, ȳ are diagonal matrices made of spatial wavevectors in the
transformed coordinate system. Ei and Mi, i = x̄, ȳ, z̄ are the matrices defined
based on the definitions in the previous sections for εr and µr but in the transformed
coordinate system.

If the number of Fourier terms tends to infinity, the eigenvalues obtained from
the transformed coordinate system will be the same as the original system. However,
since only limited number of Fourier terms are used in numerical simulations, in
general the eigenvalues will be different in the two coordinate systems [20]. By
increasing the number of harmonics, the eigenmodes in the original and transformed
coordinate systems will converge toward the same solution, but their convergence
path in complex eigenvalue plane can be different [20]. Figure 2.4 illustrates
the largest eigenmode propagation constant for TE polarization (γ1,TE) or TM
polarization (γ1,TM) as a function of Mx (Ny=1 and Nt = Mx), for three cases;
using the simple eigenvalue, Eqs. (2.7), using Li’s factorization, Eqs. (2.13), and
using ASR technique, Eqs. (2.15). For the TE polarization, both the simple case
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Figure 2.4: The largest eigenmode propagation constant of a grating layer for the (a)
TE polarization n1,TE , and (c) TM polarization n1,TM , as a function of number of Fourier
terms Mx. The insets show a zoomed-view of the graph. The relative errors for the (b)
TE polarization, and (d) TM polarization are also illustrated. They are calculated with
respect to the exact values, which are found for a very large number of Fourier terms, e.g.
301, and calculated as, γ1,TE = 2.93258522122416 and nγ1,TM = 2.93258522122416 for
the TE and TM polarization, respectively. The dashed-lines specify a relative error of
10−7. Refractive-indices in the grating layer are 3.48 and 1.48, and grating periodicity
and duty cycle are 640 nm, 62%, respectively.

and the Li’s case provide the same results, since Li’s factorization rule is only
employed in the TM polarization. The relative errors are calculated with respect to
the exact values, which are found for a very large number of Fourier terms. The
convergence rate is dramatically increased by employing the ASR technique in the
both polarization (and particularly in the TM polarization) as shown in Fig. 2.4.
For instance, for a relative error less than 10−7, the number of Fourier terms Mx,
should be at least 37 and 109 with or without employing the ASR technique in TE
polarization, respectively. Similarly for the TM polarization, Mx should be larger
than 45 or 220 with or without employing the ASR technique.

For a multilayer structure, there are two approaches to apply a coordinate
transformation [21]. In the first method, for each layer a separate coordinate
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transformation is used to find the eigenmodes of that layer. To match the boundary
conditions between layer interfaces, a universal coordinate system should be used
as the basis and all the eigenvectors should be projected to that basis [21]. This
method can provide a good convergence for the eigenvalues of each layer, since each
layer has its own transformation. Unfortunately, it was shown that this method is
not efficient numerically and also the matrices involved are ill-conditioned when
the back transformation is done [21]. In the second method, a common coordinate
system is used for all the layers, and the jump points are composed of all jump points
in all layers. As long as the number of distinct jump points is not large, this method
can be used with sufficient accuracy and without any numerical problem [21], [22].

For a homogeneous layer in the structure, as it will be shown later, an exact
analytic solution can be obtained for eigenvalues and eigenvectors in the origi-
nal coordinate system. However, the eigenvalues in the transformed coordinate
system will be different and represent an approximation of the exact analytic
solutions. Therefore, in problems containing homogeneous layers, introducing the
ASR may bring about less accurate results, since the improved accuracy obtained
by the ASR for non-homogeneous layers, may be lost by the loss of accuracy
in homogeneous ones [20].

In summary, the ASR technique provide a huge numerical advantage, in the
cases where either a very accurate calculations are required or a layer permittivity
possesses a large refractive-index contrast, e.g. contains both metal and dielectric
materials [23], [24]. However, since we are interested in simulating vertical cavity
structures with no metal in this thesis and accuracy on the order of 1%, the ASR
does not bring any advantages for our computational problems. Although, the
ASR technique is implemented, if not stated otherwise, it is not employed for the
numerical calculations in this dissertation.

Absorbing Boundary Conditions

Similar to other numerical techniques for solving Maxwell’s equations, such as
finite-difference time-domain (FDTD) or finite element method (FEM), in order
to prevent numerical artifacts coming from finite simulation domain, some sort of
absorbing boundary conditions are required for the FMM. In the FMM, the first
and last media are infinitely long and the field is incident to the structure. Thus,
outgoing boundary condition is automatically satisfied in the z-direction. In the x-
and y-directions, periodic boundary conditions are implemented naturally, since a
periodic basis set is utilized in Fourier series. Therefore, if a structure is simulated
in the FMM, in reality it corresponds to a simulation of an array of structures as
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Figure 2.5: (a) Example of layer cross-section permittivity with artificial periodicity,
due to the use of periodic boundary conditions in the FMM. The interactions between
the neighboring unit cells are indicated by the green arrows. (b) The PML reduces the
interactions between the neighboring unit cells.

shown schematically in Fig. 2.5(a) [25]. In order to reduce the neighboring cell effect,
we may use a very large unit cell, which is referred to as the super-cell technique
[26]. However, it results in increasing the required number of Fourier terms and
reducing the numerical efficiency of the FMM [26]. A more effective approach is
possible by utilizing absorbing boundary condition, which is implemented as a region
surrounding the structure as illustrated in Fig. 2.5(b). Initially, a simple gradient-
index absorber was used for this region [27]. Later, more sophisticated absorbers
called perfectly matched layer (PML) composed of magnetic and isotropic materials
were used, which could absorb the outgoing waves more efficiently [28]. The concept
of PML also may also be implemented as a complex coordinate stretching (which is
a kind of coordinate transformation) similar to the implementation in the FDTD
technique [29]. A complex coordinate stretching was implemented in the FMM,
which demonstrates promising results [30], and it is also employed in this section.

Using coordinate stretching functions gx and gy for the x- and y-directions,
respectively, modifies the differential field operators of Eqs. (2.4) [25], [26]:

£EH =
 −fx∂xε−1

r fy∂y µr + fx∂xε
−1
r fx∂x

−µr − fy∂yε−1
r fy∂y fy∂yε

−1
r fx∂x

 , (2.16a)

£HE =
 −fx∂xµ−1

r fy∂y εr + fx∂xµ
−1
r fx∂x

−εr − fy∂yµ−1
r fy∂y fy∂yµ

−1
r fx∂x

 , (2.16b)

where fx = (∂gx/∂x)−1 and fy = (∂gy/∂y)−1. The coordinate stretching functions
should possess several properties. They are unity transformations outside the
PMLs, i.e. gx = x and gy = y, respectively. Inside the PMLs, the coordinate
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stretching functions are complex-value functions, since the imaginary part of the
transformation damps the propagating waves inside the PMLs. In the FMM, the
following coordinate stretching function is suggested [30]:

gx(x) =


x if |x| < dx
x

|x|

(
dx + ta,x

π(1− γ)

[
bx −

γ√
1− γ arctan

(√
1− γbx

)])
if |x| > dx,

(2.17)
where ta,x is the PML thickness, bx = tan (αx), αx = π(|x|−dx)/ta,x, dx = Λx/2−ta,x
and γ is a complex constant, and equals to (1 + j)/2 [30]. A similar expression
is used for the coordinate stretching function gy. If not stated otherwise, ta,x =
ta,y are chosen to be 0.5 µm.

The differential equations (2.16) can be represented in matrix form by using the
Fourier expansion techniques. This will result in similar expressions as Eqs. (2.13),
except replacing Kx and Ky with FxKx and FyKy, respectively, where Fx and Fy

are the Toeplitz matrices defined from the Fourier series coefficient of the functions
fx and fy, respectively [25]. As an example, to illustrate the importance of the PML
implementation, a slab waveguide which is simply terminated with air is considered
and the modal reflectivity of the fundamental TE mode (RTE,0) is calculated with
or without PML implementation. Figure 2.6(a) illustrates the value of the modal
reflectivity versus the total number of Fourier terms for two different computational
domain width Λx, with or without the PML implementation. Without the PML
implementation, the value of the modal reflectivity is totally different for the two Λx.
The value of the modal reflectivity as a function of Λx is shown in Fig. 2.6(b), with
or without the PML implementation for a sufficiently large number of Fourier terms.
Without the PML implementation, the value of RTE,0 oscillates around the correct
value, while with the PML implementation, there is no oscillation. This oscillation
behavior is a sign of interference between nearby cells and can be observed clearly
in the field profile of Fig. 2.6(c). Figure 2.6(d) demonstrates clearly that the PML
effectively eliminates unwanted interference from the neighboring cells.

It is possible to combine the coordinate transformation of the ASR technique
and the complex coordinate stretching of the PML technique. Considering both
of these techniques, the expressions for matrices P and Q become:

P =
 Fx̄Kx̄E−1

z̄ FȳKȳ Mȳ − Fx̄Kx̄E−1
z̄ Fx̄Kx̄

FȳKȳE−1
z̄ FȳKȳ −Mx̄ −FȳKȳE−1

z̄ Fx̄Kx̄

 , (2.18a)

Q =
 Fx̄Kx̄M−1

z̄ FȳKȳ Eȳ − Fx̄Kx̄M−1
z̄ Fx̄Kx̄

FȳKȳM−1
z̄ FȳKȳ − Ex̄ −FȳKȳM−1

z̄ Fx̄Kx̄

 . (2.18b)
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Figure 2.6: The modal reflectivity of the fundamental TE mode RTE,0 of a 0.6µm-width
silicon slab waveguide at 1550 nm wavelength, terminated with air as a function of (a)
total number of Fourier terms Mx, or (b) domain width Λx. The value of RTE,0 varies
by changing the Λx when there is no PML. (c), (d) Normalized field profile Ey of the
slab waveguide at 9.6 µm domain width [which is shown in (a) with green line] and for
Mx=301, (c) without the PML, or (d) with the PML. The boundaries of the waveguide
layer and PMLs are shown in white solid-lines and red dashed-lines, respectively. The
PML effectively eliminates unwanted interference from the neighboring cells in (d).

Structural Symmetries

Similar to other numerical techniques, solving Maxwell’s equations for a 3D
structure is numerically cumbersome and a time-consuming problem. Therefore,
any attempt to reduce the computational effort is important and well-appreciated
such as considering the symmetries of the problem. In Maxwell’s equations, if the
permittivity function is an even function of the coordinate system, the solution will
be either even or odd [2]. Considering only the mirror symmetries for the permittivity
function in the transverse directions, four cases are possible; no symmetry, x-axis
mirror-reflection symmetry, y-axis mirror-reflection symmetry and simultaneous x-
and y-axis mirror-reflection symmetries. In the FMM, the mirror symmetries in
the real space can be transferred to the Fourier space [31]. If the total number of
Fourier terms are Mx and Ny in the x- and y-directions, respectively, the size of
eigenvalue problem will be 2MxNy and the total number of elements for each matrix
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(such as Sij, P and Q) will be (2MxNy)2. If the structure has a mirror-reflection
symmetry in the both transverse directions, the matrix size will be reduced to
one-fourth. Since, the eigenvalue calculation time is roughly proportional to the
third power of the matrix size, using two mirror structural symmetries results in
a factor of 43 = 64 reduction of the calculation time. Moreover, the total number
of matrix elements will be reduced by a factor of 42 = 16. The method, which is
explained thoroughly in Refs. [31], [32], is implemented here to take advantage
of the mirror-reflection symmetries.

Two-Dimensional Limit

If the structure is invariant in one direction, for instance in the y-direction and
the incident wavevector is in the coordinate plane, i.e. ky0 = 0, the 3D problem
can be simplified to two individual 2D problems for the TE and TM polarizations.
For the TE polarization, the non-zero field components are (Ey, Hx, Hz), while
for the TM polarization only (Ex, Ez, Hy) are the non-zero terms. The matrix
size for a 2D problem is reduced to half, which results in an eight-times and four-
times reduction of computational time and required memory, respectively. The
expressions for the P and Q matrices for the two polarizations can be obtained
simply by letting Kȳ = O and Mȳ = I:

Ω = PQ =
Ω11 O

O Ω22

 , (2.19a)

TM : Ω11 = (Fx̄Kx̄E−1
z̄ Fx̄Kx̄ − I)Ex̄, (2.19b)

TE : Ω22 =Mx̄(Fx̄Kx̄M−1
z̄ Fx̄Kx̄ − Eȳ). (2.19c)

Since Ω is a block diagonal matrix, its eigenvalues are a combination of the
eigenvalues of its block matrices Ω11 and Ω22, which correspond to the TM and
TE polarization problems, respectively. Without the PML implementation and
any coordinate transformation for the ASR technique, these expressions will be
similar to the expressions derived in Refs. [8], [33]. However, the eigenvalue
problem for the TM polarization is found based on the electric field Ex here
(instead of the magnetic field Hy).

Homogeneous Layer Eigenmodes

For a homogeneous layer, i.e. a layer with no spatial variation of the relative
permittivity function, the eigenmodes of the layer may be obtained analytically.
Without the PML implementation and ASR technique, the eigenmodes correspond
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to the Rayleigh expansions for diffraction orders [13]. For a homogeneous layer with
a permittivity value of εr, it is easy to show that Ex = Ey = Ez = εrI and as a result
P = 1/εrQ using Eqs. 2.13, the eigenvalue problem will be for matrix Ω

Ω =
K2

x + K2
y − εrI O

O K2
x + K2

y − εrI

 =
−K2

z O
O −K2

z

 . (2.20)

where Kz is a matrix with elements kz,mn =
(√

εr − k2
xm − k2

yn

)∗
. Since it is a

diagonal matrix, its eigenvalues are equal to the diagonal elements γmn = jkz,mn

and its eigenvectors form an identity matrix W = I.
If the PML is implemented or the ASR technique is used (or both of them), the

eigenmodes can not be found analytically anymore. However, if there are several
homogeneous layers, a simple relationship can be found between their eigenmodes
[34]. Assume the eigenvalue problem is solved for free-space and its matrices for the
eigenmode electric field and propagation constant are W0 and Γ0, respectively. As
it is derived in Appendix A, the eigenvalue problem for determining the eigenmodes
of layer with permittivity of εr has a solution of (W, Γ), where:

W = W0, (2.21a)
Γ2 = Γ2

0 + (1− εr)I. (2.21b)

2.2.3 Scattering Matrices

In order to connect the field in the neighboring layers, the continuity of traverse
field components, i.e. Ex, Ey, Hx and Ey, at the layer interfaces should be applied.
It results in a linear relationship between the field coefficients, cp and cn in two
neighboring layers. In a multilayer structure, various algorithms can be used
to connect the coefficients, such as transfer matrices [35], hybrid matrices [36],
admittance matrices [37], and scattering matrices [4], [7], [38]. Among them, the
scattering matrices (S-matrices) method is a powerful tool which is used widely in
the literature, due to various advantages such as elegant physical interpretations,
unconditional stability and memory efficiency [4].

There are several variants of S-matrix implementation for the FMM [4], [7].
In the variant implemented in this thesis, all the layers are separated by a gap
composed of free-space [4], [38]. As long as the free-space gap thickness is zero, it
has no influence on the performance of the structure. The advantage of using the
artificial free-space regions, is that the S-matrices of each layer only depends on the
layer itself, not on its adjacent layers [4], [38]. It reduces the numerical effort for the
cases where only one layer is changing, since only the S-matrices of that layer should
be updated instead of all adjacent layers. Here, the expressions used for each layer
S-matrices and also a mulitilayer structure in this variant of S-matrices are reviewed.
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Scattering Matrices of a Single Layer

As it was explained in the previous section, the field in layer q is:S(q)
x

S(q)
y

 = +Wq exp [−Γq(z − z(q)
1 )]c(q)

p + Wq exp [+Γq(z − z(q)
2 )]c(q)

n , (2.22a)
U(q)

x

U(q)
y

 = −Vq exp [−Γq(z − z(q)
1 )]c(q)

p + Vq exp [+Γq(z − z(q)
2 )]c(q)

n , (2.22b)

where c(q)
p and c(q)

n are defined at the left and right interfaces of layer q, respectively.
If the layer q is sandwiched between two layers, denoted by layer 1 and 2, the
continuity of the transverse field components at the interfaces will be written as: Ŵ1 Ŵ1

−V̂1 V̂1

ĉ(1)
p

ĉ(1)
n

 =
Wq Wq

−Vq Vq

 I O
O Xq

c(q)
p

c(q)
n

 , (2.23a)
Wq Wq

−Vq Vq

Xq O
O I

c(q)
p

c(q)
n

 =
 Ŵ2 Ŵ2

−V̂2 V̂2

ĉ(2)
p

ĉ(2)
n

 , (2.23b)

where ĉ(1)
p , ĉ(1)

n , ĉ(2)
p , ĉ(2)

n are free-space eigemode coefficients in the layer 1 and 2.
Xq = exp[−Γqdq] is the propagation matrix, and W and V are the eigenmodes
matrices for the electric and magnetic fields, respectively, in the corresponding
media. As mentioned earlier, each layer is sandwiched between two free-space
regions of zero thickness, i.e. Ŵ1 = Ŵ2 = W0 and V̂1 = V̂2 = V0.

The S-matrices of layer q, S(q)
ij , are determined by connecting the coefficients

in the left and right media as:ĉ(1)
n

ĉ(2)
p

 =
S(q)

11 S(q)
12

S(q)
21 S(q)

22

ĉ(1)
p

ĉ(2)
n

 . (2.24)

In this form of definition, S(q)
11 and S(q)

22 represent the reflection from the left and
right sides, respectively and S(q)

12 and S(q)
21 correspond to the transmission from left-

to-right and right-to-left, respectively. After some algebra, the following expressions
can be derived for the S-matrices [4]:

S(q)
11 = S(q)

22 = (Aq −TBq)−1(TAq −Bq), (2.25a)
S(q)

12 = S(q)
21 = (Aq −TBq)−1Xq(Aq −BqA−1

q Bq), (2.25b)

where Aq = W−1
q W0 + V−1

q V0, Bq = W−1
q W0−V−1

q V0 and T = XqBqA−1
q Xq are

auxiliary matrices. Since the layer is sandwiched between two similar free-space
regions and the permittivity function does not vary in the z-direction, it has a
mirror-reflection symmetry in the z-direction and its S-matrices are also symmetric.
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There are two special layers in the FMM formulation, the first and the last layer
which are infinitely long layers. For these layers, the S-matrices can be obtained
by assuming a zero-thickness layer q. For the first layer (reflection region), the
following expressions are obtained for the S-matrices [4]:

S(ref)
11 = −A−1

refBref , (2.26a)
S(ref)

12 = 2A−1
ref , (2.26b)

S(ref)
21 = 0.5(Aref −BrefA−1

refBref ), (2.26c)
S(ref)

22 = BrefA−1
ref , (2.26d)

where Aref = W−1
0 Wref +V−1

0 Vref and Bref = W−1
0 Wref−V−1

0 Vref are auxiliary
matrices. Similarly, for the last layer (transmission region), the S-matrices can be
obtained by replacing (ref) → (trn), 1 → 2 and 2 → 1 in Eqs. (2.26).

Scattering Matrices of a Multilayer Structure

For a multilayer structure, the S-matrices of all layers should be combined using the
well-known Redheffer star product [7]. Assuming two sets of S-matrices denoted by
SA and SB, their Redheffer star product, denoted by SAB = SA ⊗ SB, becomes:

S(AB)
11 = S(A)

11 + S(A)
12

[
I− S(B)

11 S(A)
22

]−1
S(B)

11 S(A)
21 , (2.27a)

S(AB)
12 = S(A)

12

[
I− S(B)

11 S(A)
22

]−1
S(B)

12 , (2.27b)

S(AB)
21 = S(B)

21

[
I− S(A)

22 S(B)
11

]−1
S(A)

21 , (2.27c)

S(AB)
22 = S(B)

22 + S(B)
21

[
I− S(A)

22 S(B)
11

]−1
S(A)

22 S(B)
12 . (2.27d)

There are other variants of these expressions which may be more efficient in the
cases where only some of the S-matrices are required as provided in Appendix B.

To determine the S-matrices of a multilayer structure, beginning from the last
layer, the S-matrices will be updated by adding layers one by one to the first layer [7].
The S-matrices of the structure seen from free-space region between layers toward
the last layer is denoted as S(q)

t , as shown in Fig. 2.7. Using a recursive algorithm
toward the first layer, all S-matrices seen from free-space regions are determined as:

S(0)
t = S(trn), (2.28a)

S(q)
t = S(N−q+1) ⊗ S(q−1)

t , (2.28b)
S(N+1)
t = S(ref) ⊗ S(N)

t , (2.28c)

where the index q changes from 1 to N . For periodic structures in the z-direction,
there is a fast algorithm for computing S-matrices, which is referred to as the
doubling algorithm [4], [39].
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Figure 2.7: Schematic of a multilayer structure and the S-matrix definitions.

2.2.4 Dispersion Calculation

For a periodic structure, the dispersion graph, which is the relation between the
mode frequency ω and wavevector k̃, provides valuable information about the
electromagnetic properties of the structure. In the FMM, for the longitudinal
direction z, it is possible to compute the dispersion using the S-matrices [4], [40],
[41]. The S-matrices of a unit cell of the periodic structure is denoted by S(uc):ĉ(1)

n

ĉ(2)
p

 =
S(uc)

11 S(uc)
12

S(uc)
21 S(uc)

22

ĉ(1)
p

ĉ(2)
n

 , (2.29)

where the ĉ(i)
p and ĉ(i)

n i =1,2 are the eigenmodes coefficients in the neighboring
free-space regions. By rearranging this equation in the form of transfer matrix,
and using Bloch’s theory for a mode propagating through a unit cell, the following
equation is obtained [4]:O −S(uc)

12

I −S(uc)
22

ĉ(1)
p

ĉ(1)
n

 = exp (jβΛz)
S(uc)

11 −I
S(uc)

21 O

ĉ(1)
p

ĉ(1)
n

 , (2.30)

where β is the Bloch’s mode propagation constant and the structure is periodic
in the z-direction with periodicity of Λz.

Equation 2.30 is a generalized eigenvalue problem in the form of Ax = λBx,
where the eigenvalues λ are the Bloch’s mode propagation constants. Due to
the two possible propagation directions for the Bloch’s modes, λ can be divided
into two groups of λ+ and λ− with the relationship of λ− = 1/λ+ [42]. In the
numerical implementation, when the number of Fourier terms is increased, this
equation is not satisfied for some of the non-propagating Bloch’s modes due to
the numerical overflow [42]. To handle this problem, the equivalent eigenvalue
problem of Bx = (λ + 1)−1(A + B)x is solved [42].
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2.2.5 Field Calculation

The eigenmode coefficients in all layers, i.e. c(q)
p and c(q)

n , are required for computing
the field profile. It is assumed that cinc and ĉinc are given, all the layer S-matrices S(q)

and the total S-matrices S(q)
t are available. Determining c(q)

p and c(q)
n consists of two

steps. Firstly, the eigenmode coefficients in free-space regions surrounding the layers,
i.e. ĉ(q)

p and ĉ(q)
n , are determined by a recursive algorithm. Secondly, using the free-

space region coefficients, the eignemode coefficients in each layer will be obtained.

For the first free-space region, the following expressions are obtained for ĉ(0)
p and

ĉ(0)
n :

ĉ(0)
p =

[
I− S(ref)

22 S(N)
t,11

]−1[
S(ref)

21 cinc + S(ref)
22 S(N)

t,12ĉinc
]
, (2.31a)

ĉ(0)
n = S(N)

t,11ĉ(0)
p + S(N)

t,12ĉinc. (2.31b)

Similarly, if the eigenmode coefficients are known for free-space region q − 1, the
coefficients for the next free-space region q, become:

ĉ(q)
p =

[
I− S(q)

22 S(N−q)
t,11

]−1[
S(q)

21 ĉ(q−1)
p + S(q)

22 S(N−q)
t,12 ĉinc

]
(2.32a)

ĉ(q)
n = S(N−q)

t,11 ĉ(q)
p + S(N−q)

t,12 ĉinc (2.32b)

Therefore, by applying a recursive algorithm and starting from q = 1, the eigenmode
coefficients are determined for all free-space regions. It should be mentioned that
usually, the excitation is performed from one direction (e.g. from the left side in
Fig. 2.7), i.e. ĉinc = O and these expression are simplified.

If the eigenmode coefficients for free-space regions surrounding the layer q
are known, the eigemode coefficients in the layer q are determined easily using
Eqs. (2.23) as:

c(q)
p = 1

2Aqĉ(q−1)
p + 1

2Bqĉ(q−1)
n , (2.33a)

c(q)
n = 1

2Aqĉ(q)
p + 1

2Bqĉ(q)
n , (2.33b)

in which Aq and Bq matrices are defined previously. After determining the mode
coefficients, the electric and magnetic fields in the layer will be computed by
using Eqs. (2.6).
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2.2.6 Resonance Wavelength and Quality-Factor

The most important characteristics of a resonant optical cavity, are the resonance
wavelengths λr of the modes and their quality-factor (Q-factor) Q. In this section,
several methods, used for finding the resonance wavelengths and Q-factor of a
resonant optical cavity in the FMM, are explained and compared. The advantages
and disadvantages of these methods are also discussed briefly. A 2D HCG-based
vertical cavity [illustrated in Fig. 2.3(b)] is used as a test structure to compare
the numerical results obtained from these methods. However, these approaches are
also applicable to the other types of resonant optical cavity.

Method I: Quasi-Normal Mode with Complex Frequency

Since optical cavities are open systems, which means they are leaky, the Maxwell’s
equation eigenmodes have complex frequencies [43]. These eigenmodes are referred
to as quasi-normal modes (QNMs). Using the concept of QNM provides a convenient
framework for working with optical cavities, since the complex QNM eigenvalues cor-
respond to the position and Q-factor of the resonances in the spectral transmissivity
[44]. In the QNM picture, the optical cavity is viewed as a passive open system
with only emission out of the cavity and no waves incident to the cavity. Therefore,
outgoing boundary conditions should be satisfied for the QNM. In the FMM, the
outgoing boundary condition is satisfied in the z-direction as already discussed in
the previous sections. Using the scattering matrices concept, a QNM can be found
as the non-trivial solution of the following equation by letting cin go to zero [45]:

cout = Stcin → S−1
t cout = 0, (2.34)

which corresponds to the poles of St matrix. In other word, the QNM complex
frequencies are those which make the determinant of the St matrix zero. There
is an equivalent method, referred to as the round-trip matrix method, which is
easier and more efficient to implement in the FMM compared to the first method
[46]. In this approach, the QNMs are eigenmodes of a round-trip matrix U inside
the cavity with an eigenvalue of 1. They are found for a complex frequency ω̃,
and the QNM frequency will be the real part of ω̃, and its Q-factor is obtained by
Q = <(ω̃)/[2=(ω̃)] [46], [47]. The round-trip matrix U is obtained at an arbitrary
plane inside the cavity by determining the S-matrices seen to the left S(left)

t,11 and
right S(right)

t,11 as shown in Fig. 2.8:

U = S(right)
t,11 S(left)

t,11 . (2.35)
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Figure 2.8: Definitions of the left and right S-matrices used for the cavity round-trip
matrix U.

Therefore, the QNM in this method is found by iterating the frequency in
the complex plane until the eigenvalue of matrix U becomes unity. Although,
it usually finds the resonance wavelength in less than 10 iterations, depending
on the initial guess for resonance wavelength and the cavity structure, it may
require much more iterations. From our experience, the main advantage of this
method is that it can be successful for finding the QNM in most cases, even with
inaccurate initial guess for the resonance wavelength. However, it can only find
single QNM for each function call.

Method II: Quasi-Normal Mode with Real Frequency

In this approach, the QNM with round-trip method is employed in real frequency
domain instead of complex frequency plane of ’Method I’, but the phase of U
eigenvalue is considered [48]. If Rr is the eigenvalue of matrix U, the resonance
wavelength λr is found as the wavelength, which makes the phase of Rr zero,
i.e. arg(Rr)=0. This is equivalent to a constructive interference condition for a
round-trip inside the cavity. The Q-factor is then obtained by [48]:

Q = −λr
2(1−Rr)

∂

∂λ
arg(Rr) (2.36)

where the derivative is evaluated at λr and arg(Rr)=0. For the implementation
of this method, the eigenvalues Rr are computed for several wavelengths close to
the guessed resonance wavelength. The resonance wavelength can be found by
interpolation or extrapolation of the eigenvalue phase, where arg(Rr) becomes
zero. If there are several close resonances, this method is very efficient numerically,
since it can find all the resonance wavelengths and their Q-factor in one function
call. For instance, Fig. 2.9 shows the amplitude and phase of several eigenvalues
of matrix U in an exemplary HG-based vertical cavity structure. Each graph
corresponds to a transverse mode.
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Figure 2.9: Evolution of eigenvalue (a) amplitude, and (b) phase of the round-trip matrix
U as a function of wavelength close to a resonance wavelength for a test 2D HCG-based
cavity. Each graph corresponds to a transverse mode. The Structure dimensions and
refractive-indices can be found in Appendix C, section C.1.1.

Method III: Reflectivity Dip or Transmissivity Peak

The most straightforward method for determining the cavity resonances is to
consider reflectivity (or transmissivity) spectrum of an optical cavity, i.e. consider
the response to an incident wave. In this method, a notch in the reflectivity spectrum
(or a peak in transmissivity spectrum) corresponds to a resonance wavelength. The
Q-factor is estimated as the ratio of the resonance wavelength λr and the full-
width half-maximum (FWHM) bandwidth of the notch (or peak), Q = λr/∆λ.
Regarding the incident wave, we should be sure that the incident wave can excite
the cavity mode, e.g. the incident wave is required to have the same parity as
the cavity mode profile. Here, the fundamental mode of the test HCG-based
cavity is excited by a Gaussian wave from the superstrate. The reflectivity and
transmissivity spectra are shown in Fig. 2.10(a) and the field profile at the resonance
wavelength is shown in Fig. 2.10(b).

Table 2.2 compares the simulation results from the three methods, obtained for
the fundamental mode resonance wavelength and Q-factor of the test HCG-based
vertical cavity of Figs. 2.9 and 2.10. The two methods in the QNM picture, result

Case Method I Method II Method III
λr (nm) 1549.9549 1549.9548 1549.955

Q 7812 7815 7750

Table 2.2: Comparison between simulation results of different methods for resonance
wavelength λr and Q-factor Q of the fundamental mode in a test HCG-based cavity. The
simulated structure is the one used for Fig. 2.9.
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Figure 2.10: (a) Reflectivity spectrum in linear scale (blue solid-line) and transmissivity
spectrum in log scale (red dashed-line) of a 2D HCG-based cavity as shown in Fig. 2.3(b)
to an incident Gaussian beam with 6 µm beam waist width. The resonance wavelength
and FWHM are also specified. (b) Normalized field profile |Hy| of the structure (in dB
scale) at the resonance wavelength of λr=1549.955. The simulated structure is the one
used for Fig. 2.9.

in almost similar values for both the resonance wavelength and Q-factor (their
relative difference is less than 10−7 for the resonance wavelength and 10−3 for the
Q-factor). These negligible differences can be attributed to the round-off errors in
the calculations and is less than the accuracy of the computations. ’Method III’
results is a little bit different values compare to other methods, especially for the
Q-factor, since the exact value of FWHM bandwidth is difficult to be defined for
a large Q-factor mode. It should be mentioned that from the numerical point of
view, the calculation time can be very different for these methods. The ’Method II’
is the fastest method because there is no need to calculate reflectivity spectrum
and several resonances can be found in a simple function call. The ’Method III’
is the most time-consuming method, since it requires fine wavelength resolution
scan, particularly for large Q-factor modes.

2.2.7 Threshold Gain and Confinement Factor

For each mode of a laser, there are two important parameters which can be calculated
with optical simulation of the laser cavity; optical confinement factor of the mode
Γm, which shows the overlap between the active region and the optical mode profile,
and the threshold gain gth,m, which shows the required gain in the active region to
compensate the total loss of the optical mode. The product of these two quantities
is referred to as modal threshold gain ḡth,m, and should be equal to the total loss
of the optical mode at the threshold [1]:

ḡth,m = Γmgth,m = αt,m (2.37)
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where αt,m is the total loss of the optical mode m including the absorption material
loss, the scattering loss and the mirror loss. If the absorption loss is negligible, αt,m
is related to the Q-factor of optical mode Qm; vgαt,m = 1/τm = ωm/Qm, where
τm is the optical mode photon life-time and ωm is the optical mode resonance
frequency. Using Eq. (2.37), results in ḡth,m = Γmgth,m = 2πna,g/(λmQm), in
which na,g is the group refractive-index (group velocity) in the active region. In
the optical simulation of the cavity, all of these three quantities can be calculated
separately and the modal threshold gain ḡth,m calculated from the two expressions,
agrees relatively well as shown below.

The optical confinement factor is calculated for each mode using the field profile
of the mode. The mode is calculated as a QNM, which is obtained by employing one
of the methods explained in section 2.2.6. There are several different expressions
for calculating the optical confinement factor [49]. Here, the expression derived
rigorously for the confinement factor in Ref. [49] is used:

Γm =

∫∫∫
active

na,g
na

ε0εr|~Em|2dV

1
2

∫∫∫
(ε0εr|~Em|2 + µ0µr|~Hm|2)dV

(2.38)

where ~Em and ~Hm are the electric and magnetic fields of the optical mode m,
respectively, and na,g is the group velocity inside the active region. The integral in
the nominator is calculated over the active region and the one in the denominator
is calculated all over the simulation domain.

In the QNM picture, the threshold gain can be calculated in a straightforward
manner as it is explained in Ref. [50]. The gain g is introduced in the structure
by an imaginary refractive-index value ni in the active region, ni = gλ0/4π. By
increasing the gain value, the absolute value of eigenvalue of the round-trip matrix
|Rr| is increased [50]. Threshold material gain is defined as the gain value which

Mode No. λr,m (nm) Qm gth,m Γm (%) ḡth,m(1) ḡth,m(2)
1 1549.5155 6177.7 1024.7 2.03 20.801 20.781
2 1548.3202 1622.5 3967.3 1.97 78.156 79.185
3 1546.7190 628.4 10576.7 1.87 197.784 204.665

Table 2.3: Calculated modal properties of several transverse modes of a 2D HCG-
based vertical cavity. All gain values are in cm−1 unit. ḡth,m(1)=Γmgth,m and
ḡth,m(2)=2πna,g/(λmQm) which shows a relatively good agreement between two methods
of threshold modal gain calculation, particularly for the higher Q-factor modes. The
Structure dimensions and refractive-indices can be found in Appendix C, section C.1.2.
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results in an exact eigenvalue of one, i.e. |Rr|=1, for the round-trip matrix U. By
incorporating the gain, the resonance wavelength will also shift and the eigenvalue
should be made one, by searching in a two-dimensional space of wavelength and
gain. However, in practice the resonance wavelength and threshold gain can be
determined in a two-step calculations [50]. First, the resonance wavelength of the
passive structure (with zero gain) is calculated, in which arg(Rr) becomes zero and
|Rr| is smaller than one. Then, at the resonance wavelength, the gain is increased
from zero to make |Rr| one (even though the arg(Rr) will not be zero anymore
but it will be relatively small), which defines the threshold gain. If the Q-factor of
the optical mode is large enough, e.g. above several hundreds, at the end of step
two, arg(Rr) will be very small (e.g. less than 10−5) and Rr will be approximately
one. For instance, the optical confinement factors, resonance wavelengths and
threshold gains of the three highest order modes of a 2D HCG-based cavity are
shown in Table 2.3. The modal threshold gain values, obtained from either Γmgth,m
or 2πna,g/λmQm, are approximately the same, particularly for the optical modes
with higher Q-factor. The small difference can be attributed to the round-off error
in the results and is less than the calculation tolerance. The modal stability of the
laser can easily be determined by the threshold gains as [51]:

Modal stability = gth,1 − gth,0
gth,0

(2.39)

where gth,0 and gth,1 are the threshold gain values for the fundamental and first
order mode, respectively.

2.2.8 Convergence of Simulation Results

Similar to other numerical techniques, we should study the convergence behavior
of the computations to confirm their validity. In the FMM, it is done by plotting
the desired parameter as a function of number of Fourier terms Nt = MxNy.
Numerically, if the relative error of the desired parameter is within the acceptable
error for large Nt, we say that the simulation is converged. In this work, the
relative error of a desired parameter is defined with respect to, either its final value,
which is determined for a large Nt, or its previous value, which is obtained for the
nearest and smaller Nt. Simulations in chapter 3, are mostly performed on a grating
structure to obtain its reflectivity amplitude and phase. In chapter 4, vertical
cavity structures consist of gratings are investigated, and parameters of interest
are the resonance wavelengths and Q-factors of cavity modes. Therefore, here the
value of these parameters for a 2D test structure are computed as a function of
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Figure 2.11: Relative error of (a) the largest eigenmode propagation constant γ1, and (b)
reflectivity amplitude R to a normally-incident plane-wave of a HCG for TM polarization,
versus the number of Fourier terms Mx. The relative error is obtained with respect to
the final value, which is determined for a large Mx, e.g. 301. The solid-lines correspond
to Mx=31 and dashed-lines specify a relative error of 10−4 and 10−6 in (a) and (b),
respectively. The simulated HCG is the one used for Fig. 2.9.

number of Fourier terms in the x-direction Mx, and the minimum required Mx

for a specific relative error is determined.
For a periodic structure, whether it is a simple grating or a cavity consists of

the grating, the PML and ASR techniques are not employed. Figures 2.11(a) and
2.11(b) illustrate the relative error in the largest eigenmode propagation constant
γ1 and reflectivity amplitude R, respectively, of an exemplary HCG versus Mx.
Even though the value of R is a little bit more accurate compared to β, but this
is a coincidence and it can occur oppositely by changing the grating parameters
or light wavelength. Therefore, both β and R show relatively similar convergence
rate, and from our experience, other desired parameters behave analogously. In this
dissertation, Mx is chosen to be 31 for simulation of grating structures, and the
computation uncertainty is less than 0.01% for the reflectivity amplitude or phase.

If the grating is used as a reflector in a vertical cavity, the parameters of
interest are the resonance wavelength and Q-factor of cavity modes. Figures 2.12(a)
and 2.12(b) show the resonance wavelength λr and Q-factor, respectively, of the
fundamental cavity mode as a function Mx for infinitely periodic grating (just one
period of the structure in Fig. 2.3). λr shows a convergence rate similar to Fig.
2.11, since it depends linearly on the reflectivity phase from mirrors [c.f. Eq. (2.2)].
However, the convergence rate for Q-factor is reduced by approximately three to four
orders of magnitude, which has been also reported for other numerical techniques
such as FDFD [52]. This can be explained by using the analytic expression of
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Figure 2.12: (a) Resonance frequency, and (b) Q-factor of the fundamental mode in a
HCG-based vertical cavity versus the number of Fourier terms Mx, assuming infinitely
periodic grating. The insets show the relative error of calculations, which is obtained
for each point with respect to the previous point, i.e. it is calculated as RE(n) =
[a(n) − a(n − 1)]/a(n). The solid-lines correspond to Mx=31 and dashed-lines shows
relative error of 10−4 and 10−2 in (a) and (b), respectively. The simulated structure is
the one used for Fig. 2.9.

Figure 2.13: (a) Resonance wavelength, and (b) Q-factor of the fundamental mode in a
2D HCG-based vertical cavity structure versus Mx. The insets show the relative error of
calculations, which is obtained with respect to the value. The solid-lines correspond to
Mx=31*14=434 and dashed-lines show a relative error of 10−4 and 10−2 in (a) and (b),
respectively. Simulation parameters are the same as Fig. 2.10.

the mode Q-factor in Fabry-Perot cavities [1]:

Q = 4πnc,gteff
λr

1
ln(R1R2) (2.40)

where teff is the effective cavity length considering the mirror penetration depths,
nc,g is the group refractive-index of the cavity, and R1 and R2 are the power
reflectivity amplitude from the two cavity mirrors. If the only uncertainties are in
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the value of R1 and R2, the uncertainty in mode Q-factor will be:

∆Q
Q

= −Q
(∆R1

R1
+ ∆R2

R2

)
(2.41)

Therefore, the relative error in the Q-factor is approximately Q-times more than that
of the corresponding value for the reflectivity amplitude, which is also confirmed
here, in Fig. 2.12(b).

For a 2D HCG-based cavity structure consists of finite number of grating periods
as shown in Fig. 1.2(b), the PML technique is employed in the x-direction. If
Mx,1period is the number of Fourier terms for simulating one grating period, in order
to obtain a specific relative error in calculations, we can guess at least NgMx,1period

Fourier terms are required for the same level of accuracy, where Ng is the number
of grating periods. Figure 2.13 illustrates the convergence test of the resonance
wavelength and Q-factor of cavity mode in the exemplary HCG-based cavity with
Ng=14 grating periods. The relative error may be a little bit larger than what
is obtained from the infinite case of Fig. 2.12, which can be attributed to the
larger simulation domain due to an extra space employed beside the grating region
area. Therefore, for vertical cavity simulations in chapter 4, the number of Fourier
terms is chosen depending on the number of grating periods as Mx = Ng ∗ 31,
and the calculation errors should be less than 1% and 0.01% for the Q-factor and
resonance wavelength of cavity mode, respectively.

2.3 Rate Equations

As mentioned in chapter 1, laser is a complex multi-physics system. However, a
simple phenomenological approach based on the rate equations is explained in this
section, which can predict the major properties of the laser diode behavior. It is
assumed that the active region is where the carriers recombine, contribute to the
gain and make the output photons [1]. The dynamics of the carriers and photons
in the active region can be investigated by modeling them as two coupled reservoir
as shown schematically in Fig. 2.14. The rate equations for the carrier density
N and photon density Np (both in cm−3 unit), respectively in the active volume
V and modal volume Vp (in cm3 unit), are written as [1]:

dN

dt
= ηiI

qV
− (Rnrl +Rsp)− vggNp, (2.42a)

dNp

dt
= −Np

τp
+ ΓβspRsp + ΓvggNp (2.42b)
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Figure 2.14: Reservoir model used for phenomenological dynamic analysis of the laser
diode [1].

where Γ = V/Vp is the optical confinement factor, ηi is injection current efficiency,
vg is the group velocity in the active region, Rsp and βsp are the spontaneous
recombination term and spontaneous emission factor, respectively. All the non-
radiative recombination rates with carrier leakage are summed together and denoted
by Rnrl = Rl + RSRH + Raug. Furthermore, the laser output power will be Po =
ηohνNpVp/τp, where τp and ηo are photon lifetime and output efficiency, respectively.
These two rate equations can be used to predict steady-state performance and
also dynamics response of a laser diode [1].

These equations can be expanded for a laser with several optical modes, where
each mode m has its own photon density, denoted by Sm, and its own confinement
factor Γm, gain gm, lifetime τsm and spontaneous emission factor βm [1]:

dN

dt
= ηiI

qV
− (Rsp +Rnrl)−

∑
m

vggmSm, (2.43a)

dSm
dt

= −Sm
τsm

+ βmΓmRsp + ΓmgmSm. (2.43b)

2.3.1 Spatially-Dependent Rate Equations

Usually rate equations are written for the total carrier and photon densities as
Eqs. (2.43), and are solved assuming N and Sm are spatially-independent variables.
However, it is well-known that the carrier density varies across the active region,
since the field amplitude, gain value and injection current change across the active
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region. Therefore, a diffusion current term should be added to the rate equations due
to carrier density variation, which results in the spatially-dependent rate equations
[53], [54]. Various phenomena in the VCSELs such as transverse mode competition,
spatial hole burning [55]–[57] or turn-off transient effect can be understood by the
spatially-dependent carrier density [55], [58].

Since in a typical VCSEL, the active region is usually a thin layer, the carrier
variation in the z-direction can be neglected and the spatially-dependent terms
are considered only in the plane (x1, x2), where x1 and x2 can be any coordinate
variable in the plane such as (x, y) or (r, θ). Furthermore, it is assumed that
the photon density at each position is proportional to the electric field intensity
|~Em(x1, x2)|2 = ψ̂m(x1, x2) at that position and the field profile does not change
with time, i.e. Sm(x1, x2, t) = Sm(t)ψm(x1, x2) [56], [59]. In other words, the photon
spatial distribution will not change for each mode but the the number of the photons
in the mode may change with time. If the carrier leakage and the non-radiative
recombinations are negligible, i.e. Rnrl = 0 and the spontaneous recombination at
each position is proportional to the carrier density at that position with a constant
carrier lifetime τN , after integrating the second equation over the active region,
the following equations are derived [56]:

∂N(x1, x2, t)
∂t

= ηiI(x1, x2, t)
qV

− N(x1, x2, t)
τN

+DN∇2N(x1, x2, t)

− vg
∑
m

Gm(x1, x2, t)Sm(t), (2.44a)

∂Sm(t)
∂t

= −Sm(t)
τsm

+ βmΓm
τNAm

∫∫
N(x1, x2, t)dA

+ vg
Γm
Am

Sm(t)
∫∫

Gm(x1, x2, t)dA (2.44b)

where DN is carrier diffusion coefficient (in cm2/s unit), ∇2 = ∂2/∂x2 + ∂2/∂y2 is
transverse Laplacian operator, Gm(x1, x2, t) = gm(x1, x2, t)ψm(x1, x2) is the gain
feels by mode m, and Am =

∫∫
ψm(x1, x2)dA is the mode cross-section (in cm unit).

For the quantum well active region, the gain is proportional to the logarithmic
of the carrier density [1]. However, in this thesis, in order to use the expansion
techniques, a linear relationship between the gain and carrier density is assumed
[56], [59], [60]. The gain dependency on the photon density is through the gain
compression coefficients εm for each mode. Therefore, the gain felt by the optical
mode m becomes:

Gm(x1, x2, t) = g0
N(x1, x2, t)−Ntr

1 + εmSm(t) ψm(x1, x2) (2.45)
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where g0 and Ntr are the small signal gain coefficient and transparency carrier

density, respectively. If the current density j is used instead of current I and its

time and spatial variation becomes separated [56]:

I(x1, x2, t)
V

= j(t)js(x1, x2)
dw

, (2.46)

where dw is the active layer thickness, j(t) is the current density function in time (in

A/cm2 unit) and js(x1, x2) is the current density spatial profile (with no dimension).

If there are several closely packed active region, e.g. several thin quantum wells,

it will be replaced by nwdw.

Even though, the spatially-dependent rate equations in Eqs. (2.44) may be

solved by finite-difference techniques [55], [60], [61], it is numerically cumbersome

to solve them using these methods and expansion techniques can be applied [56],

[62]. The carrier density N(x1, x2, t) can be expanded on a set of orthogonal basis

functions fkl(x1, x2) with time-dependent coefficients Nkl(t):

N(x1, x2, t) =
∑
k,l

Nkl(t)fkl(x1, x2), (2.47a)
∫∫

fkl(x1, x2)fpq(x1, x2)dA = αklδkp, δlq (2.47b)

where δkp and δlq are delta Kronecker, and αkl is normalization constants. The basis

set of functions {fkl(x1, x2)} can be any set of orthogonal functions such as Fourier

basis or Bessel functions, and the number of terms in the expansion is Nt.

Using these equations in Eqs. (2.44), after some algebra, the following equations

are derived for Nkl(t) and Sm(t):

∂Npq(t)
∂t

= ηij(t)
dwq

ζpq −
Nkl(t)
τN

+DN

∑
k,l

βkl,pqNkl(t)

− vgg0
∑
m

Sm(t)
1 + εmSm(t)

[∑
k,l

Ψkl,m,pqNkl(t)− γm,pqNtr

]
(2.48a)

∂Sm(t)
∂t

= −Sm(t)
τsm

+ βm
AmτN

∑
k,l

bm,klNkl(t)

+ vgg0Sm(t)
Am(1 + εmSm(t))

[∑
k,l

λm,klNkl(t)−Ntrcm

]
(2.48b)
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Figure 2.15: (a) The current density profile and three highest-order transverse modes of
the HCG-based cavity of table 2.3 are shown in dashed-line and solid-lines, respectively.
(b) The carrier spatial profile at I=2.5 mA current with a 7-µm square current aperture,
for different number of Fourier terms in the expansion Nt. We chose Nt=15, since it
results in relatively accurate result (less than 1 % change by increasing Nt to 35). Rate
equation parameters are: ηi=0.8, DN=5 cm−2/s, τN=2.63 ps, Ntr=1e18 cm−3, εm=1e-17
cm3, vg=3e10/4.2 cm/s, g0=5.1e-16 cm2 (obtained from Ref. [1]).

where the coefficients are defined as:

ζpq = 1
αpq

∫∫
js(x1, x2)f ∗pq(x1, x2)dA, (2.49a)

βkl,pq = 1
αpq

∫∫
∇2
[
fkl(x1, x2)

]
f ∗pq(x1, x2)dA, (2.49b)

Ψkl,m,pq = 1
αpq

∫∫
fkl(x1, x2)ψm(x1, x2)f ∗pq(x1, x2)dA, (2.49c)

γm,pq = 1
αpq

∫∫
ψm(x1, x2)f ∗pq(x1, x2)dA, (2.49d)

λm,kl = Γm
∫∫

ψm(x1, x2)fkl(x1, x2)dA, (2.49e)

bm,kl = Γm
∫∫

fkl(x1, x2)dA, (2.49f)

cm = Γm
∫∫

ψm(x1, x2)dA = ΓmAm. (2.49g)

These integrals are calculated just once for a given current dentistry and optical mode
profile. Eqs (2.48) are ordinary differential equations (ODEs) for Nkl(t) and Sm(t),
which can be solved with any of the well-known methods with an initial condition.

As an example, Eqs. (2.48) are numerically solved for the 2D HCG-based cavity
of Table 2.3. For conventional VCSELs, usually Bessel functions are employed
as the basis set, due to the rotational symmetry of the structure [56], [57], [59].
However, a basis set of Fourier functions, i.e. cos and sin functions, are employed
for HCG-based cavity, since it does not possess the rotational symmetry and
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Figure 2.16: (a) The I-P curve for the HCG-based laser of Fig. 2.15. The inset shows
the I-P curve in log-log scale. (b) The carrier density profile at several current values.
Particularly, for high current values, the spatial hole-burning phenomena is observed.

also it is in-line with the FMM formulation which can simplify the evaluation of
some of integrals in Eqs. (2.49). Three transverse modes of the cavity are shown
in Fig. 2.15(a), and their optical properties are reported in table 2.3. Firstly,
the convergence of the static carrier profile as a function of Fourier terms in the
expansion Nt for a constant current is investigated and shown in Fig. 2.15(b). The
convergence of the carrier profile is observed qualitatively form this graph. We chose
Nt=15 as the sufficient number of terms for expansion, since it results in relatively
accurate result (less than 1% change in carrier density by increasing Nt to 35).
Figure 2.16(a) shows the I-P curve of the laser for a 7-µm square current aperture.
Since higher order transverse modes have relatively small Q-factor compare to
the fundamental modes, they are suppressed completely and the laser is a single
mode laser. The carrier density profile is plotted in Fig. 2.16(b) for several current
values, which shows spatial hole-burning phenomena especially in higher current
values. Therefore, spatially-dependent rate equations, with Fourier functions as
the basis set can be a strong tool for investigating the second order effects such
as spatial hole burning in HCG-based lasers.

2.4 Summary

In this chapter, the numerical techniques for simulating the laser structures in this
thesis are explained. For optical simulations, the Fourier modal method (FMM)
is reviewed and the importance of absorbing boundary conditions implemented as
perfectly-matched layer (PML) on an exemplary calculation is shown. Adaptive
spatial resolution (ASR) technique is introduced and implemented, which is a
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necessary tool for problems in which either high-level of accuracy is required, or
metallic structures are included. However, for level of accuracy required in our
computational problem, ASR does not provide considerable benefit. Several different
numerical techniques for calculating the resonance wavelength and Q-factor of the
cavity mode have been compared. Even though, they show good quantitative
agreement with each other, quasi-normal mode method with real frequency is
fast and accurate and is used in for calculations in chapter 4. We have shown
and explained that the convergence rate of Q-factor is reduced by the value of Q
compared to the resonance frequency or reflectivity amplitude convergence rate.
Therefore, for the vertical cavity with Ng-periods of grating as the reflector in this
thesis, employing 31*Ng Fourier terms in the expansion provides accuracy of 1 % in
the Q-factor and 0.01% for resonance wavelength of the mode, which is more than
enough for our applications. We believe that the FMM is a robust and strong tool for
investigating the physics of vertical cavity structures. Finally, spatially-dependent
rate equations have been solved numerically with Fourier basis for a laser structure,
which is compatible with the FMM and can be integrated with it easily.

References
[1] S. W. M. M. L. Coldren L.A. Corzine, Diode Lasers and Photonic Integrated

Circuits, 2nd Ed. 2012 (cit. on pp. 16–18, 40, 44–47, 49).
[2] J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic

Crystals: Molding the Flow of Light, 2nd Ed. Princeton University Press, 2008
(cit. on pp. 21, 30).

[3] H. Kim, J. Park, and B. Lee, Fourier Modal Method and Its Applications in
Computational Nanophotonics. CRC Press, 2012 (cit. on p. 21).

[4] R. C. Rumpf, “Improved formulation of scattering matrices for semi-analytical
methods that is consistent with convention”, Progress In Electromagnetics Research
B, vol. 35, no. August, pp. 241–261, 2011 (cit. on pp. 22, 32–35).

[5] G. Granet and B. Guizal, “Efficient implementation of the coupled-wave method
for metallic lamellar gratings in TM polarization”, Journal of the Optical Society of
America A, vol. 13, no. 5, pp. 1019–1023, 1996 (cit. on pp. 22, 23).

[6] J. J. Hench and Z. Strakos, “The RCWA method - a case study with open
questions and perspectives of algebraic computations”, Electronic Transactions on
Numerical Analysis, vol. 31, pp. 331–357, 2008 (cit. on p. 22).

[7] L. Li, “Use of Fourier series in the analysis of discontinuous periodic structures”,
Journal of the Optical Society of America A, vol. 13, no. 9, pp. 1870–1876, 1996
(cit. on pp. 23, 32, 34).

[8] P. Lalanne and G. M. Morris, “Highly improved convergence of the coupled-wave
method for TM polarization”, Journal of the Optical Society of America A, vol. 13,
no. 4, pp. 779–784, 1996 (cit. on pp. 23, 31).

http://dx.doi.org/10.1117/1.601191
http://dx.doi.org/10.1117/1.601191
http://dx.doi.org/10.2528/PIERB11083107
http://dx.doi.org/10.2528/PIERB11083107
http://dx.doi.org/10.1364/JOSAA.13.001019
http://dx.doi.org/10.1364/JOSAA.13.001019
http://dx.doi.org/10.1364/JOSAA.13.001870
http://dx.doi.org/10.1364/JOSAA.13.000779
http://dx.doi.org/10.1364/JOSAA.13.000779


52 REFERENCES

[9] E. Popov and M. Neviere, “Maxwell equations in Fourier space: fast-converging
formulation for diffraction by arbitrary shaped, periodic, anisotropic media”,
Journal of the Optical Society of America A, vol. 18, no. 11, pp. 2886–2894, 2001
(cit. on p. 23).

[10] A. David, H. Benisty, and C. Weisbuch, “Fast factorization rule and plane-wave
expansion method for two-dimensional photonic crystals with arbitrary
hole-shape”, Physical Review B, vol. 73, no. 7, p. 075 107, 2006 (cit. on pp. 23, 24).

[11] T. Schuster, J. Ruoff, N. Kerwien, S. Rafler, and W. Osten, “Normal vector method
for convergence improvement using the RCWA for crossed gratings”, Journal of the
Optical Society of America A, vol. 24, no. 9, pp. 2880–2890, 2007 (cit. on p. 23).

[12] P. Gotz, T. Schuster, K. Frenner, S. Rafler, and W. Osten, “Normal vector method
for the rcwa with automated vector field generation”, Optics Express, vol. 16, no.
22, pp. 17 295–17 301, 2008 (cit. on p. 23).

[13] L. Li, “New formulation of the Fourier modal method for crossed surface-relief
gratings”, Journal of the Optical Society of America A, vol. 14, no. 10,
pp. 2758–2767, 1997 (cit. on pp. 23, 24, 32).

[14] P. Lalanne and H. Benisty, “Out-of-plane losses of two-dimensional photonic
crystals waveguides: electromagnetic analysis”, Journal of Applied Physics, vol. 89,
no. 2, pp. 1512–1514, 2001 (cit. on p. 24).

[15] G. Lecamp, J. P. Hugonin, and P. Lalanne, “Theoretical and computational
concepts for periodic optical waveguides”, Optics Express, vol. 15, no. 18,
pp. 11 042–11 060, 2007 (cit. on p. 24).

[16] T. Weiss, N. A. Gippius, S. G. Tikhodeev, G. Granet, and H. Giessen, “Efficient
calculation of the optical properties of stacked metamaterials with a Fourier modal
method”, Journal of Optics A: Pure and Applied Optics, vol. 11, no. 11, p. 114 019,
2009 (cit. on pp. 24, 25).

[17] G. Granet, “Reformulation of the lamellar grating problem through the concept of
adaptive spatial resolution”, Journal of the Optical Society of America A, vol. 16,
no. 10, pp. 2510–2516, 1999 (cit. on pp. 24, 25).

[18] T. Vallius and M. Honkanen, “Reformulation of the Fourier modal method with
adaptive spatial resolution: application to multilevel profiles”, Optics Express, vol.
10, no. 1, pp. 24–34, 2002 (cit. on pp. 24, 25).

[19] G. Granet and J.-P. Plumey, “Parametric formulation of the Fourier modal
method for crossed surface-relief gratings”, Journal of Optics A: Pure and Applied
Optics, vol. 4, no. 5, S145–S149, 2002 (cit. on pp. 24, 25).

[20] T. Weiss, “Advanced numerical and semi-analytical scattering matrix calculations
for modern nano-optics”, PhD thesis, University of Stuttgart, 2011 (cit. on pp. 25,
27).

[21] A. Khavasi and K. Mehrany, “Adaptive spatial resolution in fast, efficient, and
stable analysis of metallic lamellar gratings at microwave frequencies”, IEEE
Transactions on Antennas and Propagation, vol. 57, no. 4, pp. 1115–1121, 2009
(cit. on pp. 26, 27).

http://dx.doi.org/10.1364/JOSAA.18.002886
http://dx.doi.org/10.1364/JOSAA.18.002886
http://dx.doi.org/10.1103/PhysRevB.73.075107
http://dx.doi.org/10.1103/PhysRevB.73.075107
http://dx.doi.org/10.1103/PhysRevB.73.075107
http://dx.doi.org/10.1364/JOSAA.24.002880
http://dx.doi.org/10.1364/JOSAA.24.002880
http://dx.doi.org/10.1364/OE.16.017295
http://dx.doi.org/10.1364/OE.16.017295
http://dx.doi.org/10.1364/JOSAA.14.002758
http://dx.doi.org/10.1364/JOSAA.14.002758
http://dx.doi.org/10.1063/1.1331331
http://dx.doi.org/10.1063/1.1331331
http://dx.doi.org/10.1364/OE.15.011042
http://dx.doi.org/10.1364/OE.15.011042
http://dx.doi.org/10.1088/1464-4258/11/11/114019
http://dx.doi.org/10.1088/1464-4258/11/11/114019
http://dx.doi.org/10.1088/1464-4258/11/11/114019
http://dx.doi.org/10.1364/JOSAA.16.002510
http://dx.doi.org/10.1364/JOSAA.16.002510
http://dx.doi.org/10.1364/OE.10.000024
http://dx.doi.org/10.1364/OE.10.000024
http://dx.doi.org/10.1088/1464-4258/4/5/362
http://dx.doi.org/10.1088/1464-4258/4/5/362
http://dx.doi.org/10.1109/TAP.2009.2015829
http://dx.doi.org/10.1109/TAP.2009.2015829


2. Laser Physics and Numerical Simulations 53

[22] J. Ctyroky, P. Kwiecien, and I. Richter, “Fourier series-based bidirectional
propagation algorithm with adaptive spatial resolution”, Journal of Lightwave
Technology, vol. 28, no. 20, pp. 2969–2976, 2010 (cit. on p. 27).

[23] P. Debackere, P. Bienstman, and R. Baets, “Adaptive spatial resolution:
application to surface plasmon waveguide modes”, Optical and Quantum
Electronics, vol. 38, no. 9-11, pp. 857–867, 2006 (cit. on p. 27).

[24] G. Granet and L. Li, “Convincingly converged results for highly conducting
periodically perforated thin films with square symmetry”, Journal of Optics A:
Pure and Applied Optics, vol. 8, no. 6, pp. 546–549, 2006 (cit. on p. 27).

[25] J. P. Hugonin, P. Lalanne, I. D. Villar, and I. R. Matias, “Fourier modal methods
for modeling optical dielectric waveguides”, Optical and Quantum Electronics, vol.
37, no. 1-3, pp. 107–119, 2005 (cit. on pp. 28, 29).

[26] M. Pisarenco, J. Maubach, I. Setija, and R. Mattheij, “Aperiodic Fourier modal
method in contrast-field formulation for simulation of scattering from finite
structures”, Journal of the Optical Society of America A, vol. 27, no. 11,
pp. 2423–2431, 2010 (cit. on p. 28).

[27] P. Lalanne and E. Silberstein, “Fourier-modal methods applied to waveguide
computational problems”, Optics Letters, vol. 25, no. 15, pp. 1092–1094, 2000
(cit. on p. 28).

[28] E. Silberstein, P. Lalanne, J.-P. Hugonin, and Q. Cao, “Use of grating theories in
integrated optics”, Journal of the Optical Society of America A, vol. 18, no. 11,
pp. 2865–2875, 2001 (cit. on p. 28).

[29] W. Chew, J. Jin, and E. Michielssen, “Complex coordinate system as a generalized
absorbing boundary condition”, IEEE Antennas and Propagation Society
International Symposium 1997. Digest, vol. 3, no. 6, pp. 2060–2063, 1997 (cit. on
p. 28).

[30] J. P. Hugonin and P. Lalanne, “Perfectly matched layers as nonlinear coordinate
transforms: a generalized formalization”, Journal of the Optical Society of America
A, vol. 22, no. 9, pp. 1844–1849, 2005 (cit. on pp. 28, 29).

[31] Z.-Y. Li and K.-M. Ho, “Application of structural symmetries in the
plane-wave-based transfer-matrix method for three-dimensional photonic crystal
waveguides”, Physical Review B, vol. 68, no. 24, p. 245 117, 2003 (cit. on pp. 30,
31).

[32] C. Zhou and L. Li, “Formulation of the Fourier modal method for symmetric
crossed gratings in symmetric mountings”, Journal of Optics A: Pure and Applied
Optics, vol. 6, no. 1, pp. 43–50, 2004 (cit. on p. 31).

[33] M. G. Moharam, T. K. Gaylord, E. B. Grann, and D. A. Pommet, “Formulation
for stable and efficient implementation of the rigorous coupled-wave analysis of
binary gratings”, Journal of the Optical Society of America A, vol. 12, no. 5,
pp. 1068–1076, 1995 (cit. on p. 31).

[34] H. Yala, B. Guizal, and D. Felbacq, “Fourier modal method with spatial adaptive
resolution for structures comprising homogeneous layers”, Journal of the Optical
Society of America A, vol. 26, no. 12, pp. 2567–2570, 2009 (cit. on p. 32).

http://dx.doi.org/10.1109/JLT.2010.2072983
http://dx.doi.org/10.1109/JLT.2010.2072983
http://dx.doi.org/10.1007/s11082-006-9010-3
http://dx.doi.org/10.1007/s11082-006-9010-3
http://dx.doi.org/10.1088/1464-4258/8/6/009
http://dx.doi.org/10.1088/1464-4258/8/6/009
http://dx.doi.org/10.1007/s11082-005-1127-2
http://dx.doi.org/10.1007/s11082-005-1127-2
http://dx.doi.org/10.1364/JOSAA.27.002423
http://dx.doi.org/10.1364/JOSAA.27.002423
http://dx.doi.org/10.1364/JOSAA.27.002423
http://dx.doi.org/10.1364/OL.25.001092
http://dx.doi.org/10.1364/OL.25.001092
http://dx.doi.org/10.1364/JOSAA.18.002865
http://dx.doi.org/10.1364/JOSAA.18.002865
http://dx.doi.org/10.1109/APS.1997.631834
http://dx.doi.org/10.1109/APS.1997.631834
http://dx.doi.org/10.1364/JOSAA.22.001844
http://dx.doi.org/10.1364/JOSAA.22.001844
http://dx.doi.org/10.1103/PhysRevB.68.245117
http://dx.doi.org/10.1103/PhysRevB.68.245117
http://dx.doi.org/10.1103/PhysRevB.68.245117
http://dx.doi.org/10.1088/1464-4258/6/1/009
http://dx.doi.org/10.1088/1464-4258/6/1/009
http://dx.doi.org/10.1364/JOSAA.12.001068
http://dx.doi.org/10.1364/JOSAA.12.001068
http://dx.doi.org/10.1364/JOSAA.12.001068
http://dx.doi.org/10.1364/JOSAA.26.002567
http://dx.doi.org/10.1364/JOSAA.26.002567


54 REFERENCES

[35] M. G. Moharam, T. K. Gaylord, D. A. Pommet, and E. B. Grann, “Stable
implementation of the rigorous coupled-wave analysis for surface-relief gratings:
enhanced transmittance matrix approach”, Journal of the Optical Society of
America A, vol. 12, no. 5, pp. 1077–1086, 1995 (cit. on p. 32).

[36] E. L. Tan, “Hybrid-matrix algorithm for rigorous coupled-wave analysis of
multilayered diffraction gratings”, Journal of Modern Optics, vol. 53, no. 4,
pp. 417–428, 2006 (cit. on p. 32).

[37] M. Dems, T. Czyszanowski, and K. Panajotov, “Numerical analysis of high
Q-factor photonic-crystal VCSELs with plane-wave admittance method”, Optical
and Quantum Electronics, vol. 39, no. 4-6, pp. 419–426, 2007 (cit. on p. 32).

[38] M. G. Moharam and A. B. Greenwell, “Efficient rigorous calculations of power flow
in grating coupled surface-emitting devices”, in Proceedings of SPIE, vol. 5456,
2004, pp. 57–67 (cit. on p. 32).

[39] P. Bienstman, “Rigorous and efficieent modelling of waveguide scale photonic
components”, PhD thesis, Gent University, 2001 (cit. on p. 34).

[40] Q. Cao, P. Lalanne, and J.-P. Hugonin, “Stable and efficient Bloch-mode
computational method for one-dimensional grating waveguides”, Journal of the
Optical Society of America A, vol. 19, no. 2, pp. 335–338, 2002 (cit. on p. 35).

[41] Z.-Y. Li and L.-L. Lin, “Photonic band structures solved by a plane-wave-based
transfer-matrix method”, Physical Review E, vol. 67, no. 4, p. 046 607, 2003 (cit. on
p. 35).

[42] Z.-Y. Li and K.-M. Ho, “Light propagation in semi-infinite photonic crystals and
related waveguide structures”, Physical Review B, vol. 68, no. 15, p. 155 101, 2003
(cit. on p. 35).

[43] A. Settimi and S. Severini, “Linking quasi-normal and natural modes of an open
cavity”, Journal of Modern Optics, vol. 57, no. 16, pp. 1513–1525, 2010 (cit. on
p. 37).

[44] S. Severini, A. Settimi, C. Sibilia, M. Bertolotti, A. Napoli, and A. Messina,
“Quasi-normal frequencies in open cavities: an application to photonic crystals”,
Acta Physica Hungarica B: Quantum Electronics, vol. 23, no. 3-4, pp. 135–142,
2005 (cit. on p. 37).

[45] T. Weiss, N. a. Gippius, S. G. Tikhodeev, G. Granet, and H. Giessen, “Derivation
of plasmonic resonances in the Fourier modal method with adaptive spatial
resolution and matched coordinates”, Journal of the Optical Society of America A,
vol. 28, no. 2, pp. 238–244, 2011 (cit. on p. 37).

[46] J. R. de Lasson, P. T. Kristensen, J. Mork, and N. Gregersen, “Roundtrip matrix
method for calculating the leaky resonant modes of open nanophotonic structures”,
Journal of the Optical Society of America A, vol. 31, no. 10, pp. 2142–2151, 2014
(cit. on p. 37).

[47] G. Lecamp, P. Lalanne, J. Hugonin, and J. Gerard, “Energy transfer through
laterally confined bragg mirrors and its impact on pillar microcavities”, IEEE
Journal of Quantum Electronics, vol. 41, no. 10, pp. 1323–1329, 2005 (cit. on p. 37).

http://dx.doi.org/10.1364/JOSAA.12.001077
http://dx.doi.org/10.1364/JOSAA.12.001077
http://dx.doi.org/10.1364/JOSAA.12.001077
http://dx.doi.org/10.1080/09500340500407701
http://dx.doi.org/10.1080/09500340500407701
http://dx.doi.org/10.1007/s11082-007-9090-8
http://dx.doi.org/10.1007/s11082-007-9090-8
http://dx.doi.org/10.1364/JOSAA.19.000335
http://dx.doi.org/10.1364/JOSAA.19.000335
http://dx.doi.org/10.1103/PhysRevE.67.046607
http://dx.doi.org/10.1103/PhysRevE.67.046607
http://dx.doi.org/10.1103/PhysRevB.68.155101
http://dx.doi.org/10.1103/PhysRevB.68.155101
http://dx.doi.org/10.1080/09500340.2010.504917
http://dx.doi.org/10.1080/09500340.2010.504917
http://dx.doi.org/10.1556/APH.23.2005.3-4.3
http://dx.doi.org/10.1364/JOSAA.28.000238
http://dx.doi.org/10.1364/JOSAA.28.000238
http://dx.doi.org/10.1364/JOSAA.28.000238
http://dx.doi.org/10.1364/JOSAA.31.002142
http://dx.doi.org/10.1364/JOSAA.31.002142
http://dx.doi.org/10.1109/JQE.2005.855026
http://dx.doi.org/10.1109/JQE.2005.855026


2. Laser Physics and Numerical Simulations 55

[48] N. Gregersen, S. Reitzenstein, C. Kistner, M. Strauss, C. Schneider, S. Hofling,
L. Worschech, A. Forchel, T. R. Nielsen, J. Mork, and J.-M. Gerard, “Numerical
and experimental study of the Q factor of high-Q micropillar cavities”, IEEE
Journal of Quantum Electronics, vol. 46, no. 10, pp. 1470–1483, 2010 (cit. on p. 38).

[49] A. Mock, “First principles derivation of microcavity semiconductor laser threshold
condition and its application to FDTD active cavity modeling”, Journal of the
Optical Society of America B, vol. 27, no. 11, pp. 2262–2272, 2010 (cit. on p. 41).

[50] B. Demeulenaere, P. Bienstman, B. Dhoedt, and R. Baets, “Detailed study of
AlAs-oxidized apertures in VCSEL cavities for optimized modal performance”,
IEEE Journal of Quantum Electronics, vol. 35, no. 3, pp. 358–367, 1999 (cit. on
pp. 41, 42).

[51] P. Bienstman, R. Baets, J. Vukusic, A. Larsson, M. Noble, M. Brunner, K. Gulden,
P. Debernardi, L. Fratta, G. Bava, et al., “Comparison of optical VCSEL models
on the simulation of oxide-confined devices”, Quantum Electronics, IEEE Journal
of, vol. 37, no. 12, pp. 1618–1631, 2001 (cit. on p. 42).

[52] A. M. Ivinskaya, A. V. Lavrinenko, and D. M. Shyroki, “Modeling of nanophotonic
resonators with the finite-difference frequency-domain method”, IEEE Transactions
on Antennas and Propagation, vol. 59, no. 11, pp. 4155–4161, 2011 (cit. on p. 43).

[53] P. Debernardi, “HOT-VELM: a comprehensive and efficient code for fully vectorial
and 3-D hot-cavity VCSEL simulation”, IEEE Journal of Quantum Electronics, vol.
45, no. 8, pp. 979–992, 2009 (cit. on p. 47).

[54] P. Debernardi, A. Kroner, F. Rinaldi, and R. Michalzik, “Surface relief versus
standard VCSELs: a comparison between experimental and hot-cavity model
results”, IEEE Journal of Selected Topics in Quantum Electronics, vol. 15, no. 3,
pp. 828–837, 2009 (cit. on p. 47).

[55] A. Valle, J. Sarma, and K. A. Shorey, “Secondary pulsations driven by spatial hole
burning in modulated vertical-cavity surface-emitting laser diodes”, Journal of the
Optical Society of America B, vol. 12, no. 9, pp. 1741–1746, 1995 (cit. on pp. 47,
48).

[56] M. Jungo, D. Erni, and W. Bachtold, “VISTAS: a comprehensive system-oriented
spatiotemporal VCSEL model”, IEEE Journal of Selected Topics in Quantum
Electronics, vol. 9, no. 3, pp. 939–948, 2003 (cit. on pp. 47–49).

[57] H. Zhang, G. Mrozynski, A. Wallrabenstein, and J. Schrage, “Analysis of transverse
mode competition of VCSELs based on a spatially independent model”, IEEE
Journal of Quantum Electronics, vol. 40, no. 1, pp. 18–24, 2004 (cit. on pp. 47, 49).

[58] J. Morikuni, P. Mena, A. Harton, K. Wyatt, and S.-M. Kang, “Spatially
independent VCSEL models for the simulation of diffusive turn-off transients”,
Journal of Lightwave Technology, vol. 17, no. 1, pp. 95–102, 1999 (cit. on p. 47).

[59] X. Li, W. Pan, B. Luo, and D. Ma, “Multi-transverse-mode dynamics of
vertical-cavity surface-emitting lasers with external optical injection”, Journal of
the Optical Society of America B, vol. 23, no. 7, pp. 1292–1301, 2006 (cit. on
pp. 47, 49).

[60] M. S. Torre, A. Valle, and L. Pesquera, “Transverse mode selection in
vertical-cavity surface-emitting lasers with optical injected signal”, IEEE Journal
of Quantum Electronics, vol. 46, no. 1, pp. 105–111, 2010 (cit. on pp. 47, 48).

http://dx.doi.org/10.1109/JQE.2010.2052095
http://dx.doi.org/10.1109/JQE.2010.2052095
http://dx.doi.org/10.1364/JOSAB.27.002262
http://dx.doi.org/10.1364/JOSAB.27.002262
http://dx.doi.org/10.1109/3.748841
http://dx.doi.org/10.1109/3.748841
http://dx.doi.org/10.1109/3.970909
http://dx.doi.org/10.1109/3.970909
http://dx.doi.org/10.1109/TAP.2011.2164215
http://dx.doi.org/10.1109/TAP.2011.2164215
http://dx.doi.org/10.1109/JQE.2009.2016762
http://dx.doi.org/10.1109/JQE.2009.2016762
http://dx.doi.org/10.1109/JSTQE.2009.2015152
http://dx.doi.org/10.1109/JSTQE.2009.2015152
http://dx.doi.org/10.1109/JSTQE.2009.2015152
http://dx.doi.org/10.1364/JOSAB.12.001741
http://dx.doi.org/10.1364/JOSAB.12.001741
http://dx.doi.org/10.1109/JSTQE.2003.818851
http://dx.doi.org/10.1109/JSTQE.2003.818851
http://dx.doi.org/10.1109/JQE.2003.820842
http://dx.doi.org/10.1109/JQE.2003.820842
http://dx.doi.org/10.1109/50.737427
http://dx.doi.org/10.1109/50.737427
http://dx.doi.org/10.1364/JOSAB.23.001292
http://dx.doi.org/10.1364/JOSAB.23.001292
http://dx.doi.org/10.1109/JQE.2009.2023925
http://dx.doi.org/10.1109/JQE.2009.2023925


56 REFERENCES

[61] A. Valle, “Selection and modulation of high-order transverse modes in
vertical-cavity surface-emitting lasers”, IEEE Journal of Quantum Electronics, vol.
34, no. 10, pp. 1924–1932, 1998 (cit. on p. 48).

[62] M. Jungo, D. Erni, and W. Baechtold, “Quasi-analytic steady-state solution of
VCSEL rate equations including spatial hole burning and carrier diffusion losses”,
International Journal of Numerical Modelling: Electronic Networks, Devices and
Fields, vol. 16, no. 2, pp. 143–159, 2003 (cit. on p. 48).

http://dx.doi.org/10.1109/3.720228
http://dx.doi.org/10.1109/3.720228
http://dx.doi.org/10.1002/jnm.490
http://dx.doi.org/10.1002/jnm.490


We men who serve science serve only a reflection in a
mirror.

— Richard Byrd

3
Subwavelength Gratings

Contents

3.1 Two Equivalent Physical Pictures . . . . . . . . . . . . . 59
3.1.1 Guided-Mode Resonance Picture . . . . . . . . . . . . . 60
3.1.2 Waveguide-Array Mode Picture . . . . . . . . . . . . . . 61

3.2 High-Index-Contrast Grating . . . . . . . . . . . . . . . 62
3.2.1 HCG as a Broadband Reflector . . . . . . . . . . . . . . 62
3.2.2 HCG as a High Q-Factor Resonator . . . . . . . . . . . 65

3.3 Hybrid Grating . . . . . . . . . . . . . . . . . . . . . . . . 66
3.3.1 Hybrid Grating as a Broadband Reflector . . . . . . . . 66
3.3.2 Experimental Results . . . . . . . . . . . . . . . . . . . 71
3.3.3 Hybrid Grating as a High Q-Factor Resonator . . . . . 73

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Gratings are periodic structures with many interesting properties and appli-
cations. They were first discovered by James Gregory in 16th century due to
their diffraction properties, since they can split a light beam into several beams,
propagating in different directions. Afterwards, diffraction gratings found many
applications such as monochromators and spectrometers, optical filters and spectral
beam combiners. They also are used widely as a dispersive element, since their
optical properties change with the frequency. Recently, due to the fabrication
possibility of grating structures with a periodicity value on the order of light
wavelength, gratings become interesting again and find new applications. Gratings
in general can be one-, two- or three-dimensional, depending on the available
spatial periodicity. In this thesis, our concentration is on the one-dimensional (1D)
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Figure 3.1: (a) Schematic view of a 1D grating structure. (b) Schematic cross-sectional
view of the grating structure in (a) with its parameter definitions.

gratings, which are made of periodic array of bars surrounded by other material
as shown schematically in Fig. 3.1. The grating equation, which is a relationship
between grating period and angle of incident and diffracted beams, is employed
to understand the fundamental properties of grating. If a monochromatic light
beam with a wavelength of λ0 and wavenumber of k0 = 2π/λ0 is incident on the
grating at angle θinc, the grating equation is written as:

kx,m = kx,inc −mK, m = 0,±1,±2, ..., (3.1)

where m is the diffracted wave order, K = 2π/Λg is the grating wavenumber,
kx,iinc = n1k0 sin (θinc) is the x-component of incident wavevector and kx,m is the
x-component of the diffracted beam wavevector in either reflection or transmission
media. Using kx,m = n1k0 sin (θm,ref ) and kx,m = n2k0 sin (θm,trn) for the reflected
and transmitted beams, respectively, result in:

n1 sin (θm,ref ) = n1 sin (θinc)−m
λ0

Λg

, m = 0,±1,±2, ..., (3.2a)

n2 sin (θm,trn) = n1 sin (θinc)−m
λ0

Λg

, m = 0,±1,±2, .... (3.2b)

For a diffracted beam, if sin (θm,ref ) or sin (θm,trn) obtained from Eqs. (3.2) becomes
larger than one; the beam will be evanescent in the reflection or transmission media.
In other words, it can not propagate in the z-direction outside the grating region
and far from the grating, it will be zero.

For a diffraction grating Λg > λ0/n1 or Λg > λ0/n2, and there are several
diffracted beams in the reflection or transmission media, respectively [1]. The
number of diffracted beams is increased for a larger grating period. In the opposite
direction, a subwavelength grating is a grating with periodicity shorter than the
wavelength Λg < λ0/max(n1, n2). Therefore, at the normal incident θinc = 0, all
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the diffracted beams with m 6=0 are evanescent in the reflection and transmission
media for a subwavelength grating structure, and only 0-th order diffracted beams
are propagating inside the reflection and transmission regions. In the extreme
case, for a deep-subwavelength grating with Λg << λ0, the grating appears as
an homogeneous medium to the incident light, with an effective refractive-index
which depends on the light polarization [2].

High-index-contrast grating (HCG) is a special class of near-subwavelength
grating, in which the grating period is close to the incident light wavelength and
there is a large refractive-index contrast between the grating bars and materials
surround it. HCGs can provide extraordinary properties that have not been
reported for conventional diffraction gratings with similar periodicity, including
high reflectivity (> 99%) over a broad bandwidth [3], [4] or high quality (Q) factor
resonances (Q > 107) [5], [6]. Extensive theoretical studies of HCGs have revealed
that the high index-contrast between the grating and surrounding materials is
essential for achieving the extraordinary properties [7]. However, we have found
that the combination of a near-subwavelength grating and a cap layer, both made
of high-refractive-index materials and surrounded by low-refractive-index materials,
can achieve a high reflectivity over a broader wavelength range than the HCG
[8], and also make resonances with ultra-high Q-factor [9]. We refereed to this
novel grating structure as hybrid grating (HG).

In this chapter, two different physical pictures are introduced for understanding
the working mechanism of grating structures. Using these two equivalent pictures,
the working mechanism of the HCG as a broadband reflector or high Q-factor
resonator is explained. Then, our novel proposed HG structure is investigated
in details. Experimental characteristic of a fabricated HG reflector is provided
which shows relatively good agreement with the theory. All the numerical results
in this chapter are obtained by the implemented FMM as explained in chapter
2. Non-dispersive materials are assumed for ease of simulation, but dispersion
can be easily introduced to the calculations.

3.1 Two Equivalent Physical Pictures

There are two equivalent pictures to understand the physics of a grating; guided-
mode resonance (or leaky mode) picture and waveguide-array mode (or Bloch mode)
picture. In the first picture, the grating layer is considered as a waveguide with a
periodic refractive-index modulation in the x-direction which supports the so-called
leaky modes [10]. This picture was first developed for low-index-contrast grating
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Figure 3.2: (a) Schematic of the cross section of a slab waveguide with several waveguide
modes. (b) Schematic cross-sectional view of a grating with its diffracted beams. (c) A
guided-mode resonance is obtained by an interaction between a waveguide mode and a
grating mode. Dashed-lines show the leaky nature of the guided-mode.

structures [10], [11], but later, it was employed also for high-index-contrast grating
structures [8], [12]. In the second picture, the grating is seen as a periodic array of
short slab waveguides along the z-direction [2], [13]. This approach is introduced
recently and provides a clear picture about the HCG and HG working mechanism [2],
[8], [13]. In the following sections these two pictures are explained in more details.

3.1.1 Guided-Mode Resonance Picture

Guided-mode resonance (GMR) is a well-known phenomenon in the structures
includes gratings, which has found many applications such as in optical filters and
grating couplers [14], [15]. To understand the concept of GMR, first a simple slab
waveguide is considered as shown schematically in Fig. 3.2(a). This waveguide can
support one or several guided-modes with propagating constants of βn = neff,nk0,
n=1,2,3, depending on the frequency and waveguide width. On the other hand,
a grating can split the incident beam into several diffracted beams as shown
schematically in Fig. 3.2(b), each one with a specific x-component wavevector,
denoted by kx,m. If the grating is placed in close proximity to the slab waveguide as
shown in Fig. 3.2(c), and at a specific frequency, kx,m = βn holds for a particular
diffracted mode and a slab waveguide mode, the two modes can couple to each
other [16]. This phase-matched condition, results in a sharp resonance in the
reflectivity or transmissivity spectrum, since the electromagnetic power can be
transferred between the grating diffracted beams and waveguide guided-modes. The
guided-mode is sometimes referred to as the leaky mode, since it can transfer its
power back to the diffracted beam, i.e. it is leaky.
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Figure 3.3: Dispersion curves for several waveguide-array modes (blue solid-lines) in
(a) TE polarization, (b) TM polarization. The grating duty cycle is fg = 0.58 and
its refractive-indices are nh = 3.48 and nl = 1.0. Two light lines (green dashed-lines)
corresponds to nh and nl. The cut-off frequencies (and corresponding wavelengths) are
denoted by ωci (λci), where i is the mode number.

It is not necessary to couple a separate waveguide and grating in order to
observe GMRs. Similarly, a single grating layer can be seen as a waveguide
with a periodic refractive-index modulation, which may support one or several
guided-modes. Whenever, there is a phase-matched condition between grating
guided-modes and its diffracted beams, a GMR appears in the reflectivity spectrum.
If the refractive-index contrast is small in the grating layer, i.e. nh − nl << 1,
the grating layer can be modeled as an effective homogeneous layer. In this
case, the reflectivity spectrum consists of a slowly varying spectrum, due to the
of the effective homogeneous layer, with sharp resonances, due to the GMRs
[14]. This simple and elegant idea is used widely nowadays for designing optical
filters based on GMR [11], [14].

3.1.2 Waveguide-Array Mode Picture

A grating can also be considered as a periodic array of short slab waveguides
along the z-direction, which can support one or several waveguide-array modes
[2], [13]. An incident wave on the grating excites one or several of these modes.
The waveguide-array modes propagate along the z-direction inside the grating with
different propagation constants, until they reach at the boundary of the grating
layer, where they will be partially reflected back and partially transmitted to the
propagating modes in the transmission region. The grating properties can be well-
understood through the investigation of these modes and their interaction at the
two interfaces. First, the dispersion of these waveguide modes should be studied.
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The dispersion curves of the waveguide-array modes of a HCG are plotted in
Fig. 3.3. In the FMM, these modes correspond to the grating layer eigenmodes
with real propagation constants. In low-frequency regime, just the fundamental
mode (TE0 or TM0) is propagating and all higher order modes are cut-off. In this
single-mode regime, i.e. ω < ωc1 for TE polarization or ω < ωc2 for TM polarization,
the grating can be seen as a homogeneous medium with an effective refractive-index.
By increasing the frequency, the number of propagating modes is increased. Many
interesting properties of the HCG and also the HG occurs in a region, where only two
waveguide-array modes are propagating inside the grating layer, which is referred
to as dual-mode (or two-mode) regime. For a normally-incident wave, it is the
frequency range between ωc2 to ωc4, since the odd waveguide-array modes cannot
be excited by the normally-incident plane-wave [13].

3.2 High-Index-Contrast Grating

HCGs were first introduced and experimentally fabricated in 2004 [3], [4]. Due to
their capability of providing high reflectivity over a broad wavelength range, they
became an attractive alternative to DBRs in vertical cavity devices, particularly
in VCSELs. Huang et al.[17] and Boutami et al.[18] independently demonstrated
VCSELs with a HCG as a reflector. Since then, various novel vertical cavity
laser structures employing the HCG have been reported, demonstrating MEMS-
based wavelength tunability [19], [20], strong single-transverse-mode operation [21],
and integration with an SOI wafer [22], [23]. Another interesting feature that
might be integrated to VCSELs is the possibility of beam steering or focusing [24],
[25]. There are many other interesting applications for HCGs besides replacing
DBRs. Since HCGs can provide ultra-high Q-factor resonances [5], [26], standalone
HCG-resonator lasers with surface normal emission have been demonstrated, with
properties of interest for sensing, communication, or display applications [5], [6].
Moreover, hallow-core waveguides using HCGs are also proposed and fabricated
[27], [28], where speed of propagating light can be controlled [29]. In this thesis,
the properties and physics of HCG as a broadband reflector or a high Q-factor
resonator are mainly discussed.

3.2.1 HCG as a Broadband Reflector

A HCG structure with a periodicity of Λg, thickness of tg and duty cycle of fg is
shown in Fig. 3.1. Since Maxwell equations are scalable with respect to dimensions,
without loss of generality, all the length scales are normalized with respect to
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Figure 3.4: HCG contour maps of the reflectivity (color scale) versus normalized
wavelength λ0/Λg and grating thickness tg/Λg for a normally-incident (a) TE-polarized,
and (b) TM-polarized plane-wave. HCG parameters are defined in Fig. 3.1 and their
values are nh=3.48, nl=1, n1=1, n2=1.48, and fg=0.58. λc2 and λc4 are the (normalized)
cut-off frequencies of waveguide-array modes and are defined in Fig. 3.3, and n1 and n2
are the refractive-indices of reflection and transmission regions, respectively, and define
the wavelength boundaries for which higher-order diffracted beams appear. Dual-mode
regime is also illustrated. The circle shows an example anti-crossing point.

Λg. Figures 3.4(a) and 3.4(b) show HCG reflectivity contour maps as a function
of normalized grating thickness tg/Λg and normalized wavelength λ0/Λg for a
normally-incident TE-polarized and TM-polarized plane-wave, respectively. Several
distinct wavelength regions with different reflectivity patterns are clear from these
contour maps as discussed below.

For very long wavelengths (i.e. λ0 > λc2), the reflectivity contour maps remind
us of the ones for a single dielectric slab. In this regime, the grating behaves like a
homogeneous layer with an effective refractive-index, which is n2

TE = fgn
2
h+(1−fg)n2

l

for the TE polarization and n−2
TM = fgn

−2
h + (1− fg)n−2

l for the TM polarization.
This pattern is due to a constructive or destructive interference between the light
beams which are reflected from the interface planes 1 and 2. For short wavelengths
(i.e. λ0/Λg < n2), higher-order diffracted beams begin to appear in the reflection
and transmission media. On top of that, there are three or more waveguide-array
modes above the cut-off condition. Complex interaction between the diffracted
beams and waveguide-array modes results in a interference pattern which makes the
contour map less-ordered. Between the two regions, in which only two waveguide-
array modes are propagating inside the grating and 0-th order diffracted beam is
propagating outside the grating, a checker-board pattern with very high reflectivity
areas (close to unity) is observed. The broadband high-reflectivity phenomenon
in HCG occurs in this wavelength region.
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Figure 3.5: (a) Signal flow graph of HCG in dual-mode regime. The black dots represent
the propagating modes in different layers; the red arrows show the interactions between
modes at each interface; the circular red arrows bring self-couplings; the green arrows
illustrate the propagations in each layer. (b) Reflectivity spectrum in linear scale (blue
solid-line) and transmissivity spectrum in log-scale (red dashed-line) for a TM-polarized
plane-wave, normally-incident to a HCG structure. The HCG is the one simulated in Fig.
3.4(b) at tg/Λg=0.67.

The broadband reflection properties can be understood as a combined result of
propagations of the two waveguide-array modes within the grating layer and their
reflection at the interfaces [13]. Outside the grating region, there is one propagating
mode, i.e. the 0-th order diffracted mode. A signal flow graph (SFG) in Fig. 3.5(a)
illustrates how these modes interact with one another at interfaces [30]. Each dot,
which is called a node, corresponds to a propagating mode. Interaction between
modes are shown by arrows, and called branches, which take place at interfaces.
The circular arrow represents reflection of a mode back to itself at the interface.
If a plane-wave is normally incident to the grating layer, two waveguide-array
modes are excited at the interface plane 1. These two modes propagate until they
reach to the interface plane 2, where they are reflected back to themselves and
also each other. Furthermore, they partially couple to the 0-th order diffracted
mode in the transmission region. If the coupling occurs with opposite phase, i.e.
a destructive interference of two waveguide-array modes at the interface plane 2,
no power is transmitted to the transmission region. Consequently, all incident
power is reflected back which makes unity reflectivity value. If two such unity-
reflectivity points are located at close spectral vicinity, a broadband high reflectivity
is achieved as shown in Fig. 3.5(b).

The HCG broadband high-reflectivity phenomenon can be understood using
the GMR concept. As mentioned before, whenever a phase-matching condition
between a grating diffracted beam and a guided-mode of the slab waveguide is
satisfied, a GMR appears in the reflectivity spectrum. GMRs can also be viewed
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as Fano resonances between the discrete grating modes and the continuous modes
in surrounding homogeneous media. If multiple GMRs combined together, i.e.
they locate at close spectral vicinity and they have good coupling with each
others, high reflectivity can be achieved in broad wavelength range [12]. The GMR
wavelengths correspond to the transmissivity dips, where the transmissivity becomes
zero [12]. For instance, Fig. 3.5(b) shows reflectivity spectrum in linear-scale and
transmissivity spectrum in log-scale of an HCG. Usually, there are two dips in
the transmissivity spectrum inside the high-reflectivity bandwidth of HCG; each
one corresponds to a GMR. The two GMRs provide two Fano-shape resonances
with opposite parity which can make a broadband reflectivity spectrum in the
wavelength range between them [31]. It should be noted that by breaking the
reflection-symmetry in the grating unit-cell, it is possible to introduce more GMRs
and increase the bandwidth [32], [33].

3.2.2 HCG as a High Q-Factor Resonator

Besides being used as a highly-reflective mirror in Fabry-Perot resonators, a
standalone HCG can be employed as an optical resonator with ultra-high Q-factor
and surface-normal emission [5], [6]. In this case, the HCG has a high Q-factor
resonance which manifests itself by very sharp change in the reflectivity spectrum.
As it was explained in Ref. [2], the resonance occurs around an anti-crossing point
in the dual-mode regime, as one of them is indicated by a circle in Fig. 3.4(b).
Figure 3.6(a) shows the reflectivity spectrum of the HCG of Fig. 3.4(b) close to the
anti-crossing point. The Q-factor of this mode is approximately 10000, which results
in a relatively strong field buildup in the grating region as illustrated in Fig. 3.6(b).
This strong field buildup is a sign of constructive interference of the modes inside
the grating, as discussed below. It should also be noted that the selected example is
only for illustrating the physics of a high Q-factor resonance in the HCG, and it is
possible to find ultra-high Q-factor resonances (as high as 109) simply by applying
the systematic method, which is described for the HG structure in section 3.3.3.

The mechanism of HCG high Q-factor resonances is similar to the resonance
mechanism in a conventional Fabry-Perot cavity. However, for the HCG, two
waveguide-array modes simultaneously are contributing to the resonance instead
of one mode in a conventional Fabry-Perot cavity [26]. If the propagation of the
two modes in the grating layer and their reflectivity at interface planes 1 and 2
are denoted by matrix Ψ and Ri, i =1,2 for each interface, respectively, a round-
trip matrix can be defined as U = ΨR1ΨR2. Therefore, a resonance occurs
whenever the constructive interference condition is satisfied for a combination of two
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Figure 3.6: (a) Reflectivity spectrum of a HCG structure with a high Q-factor resonance
in the spectrum. A TM-polarized light is normally-incident to the grating. The HCG
structure dimensions and refractive indices are defined in Fig. 3.4 at thickness of
tg/Λg=1.33. (b) Normalized magnetic field profile |Hy| at the resonance wavelength
of (a).

waveguide-array modes, which corresponds to a unity eigenvalue for the round-trip
matrix U [26]. It should be mentioned that by increasing the HCG thickness, the
high Q-factor resonances occur periodically [26].

3.3 Hybrid Grating

A hybrid grating (HG) consists of a subwavelength grating layer and an un-patterned
high refractive-index cap layer, being surrounded by low refractive-index materials.
It can be seen as a HCG with an additional high refractive-index layer as shown
schematically in Fig. 3.7. The name hybrid grating is chosen, since it may comprise
two different materials, e.g. Si for the grating and InP for the cap layer. It should
be mentioned that Magnusson has independently reported similar structure in Ref.
[34], and referred to it as zero-contrast grating. In this section, the physics of HG
as a bordabnd reflector and high Q-factor resonator is investigated. Since we are
interested in employing HG in a hybrid III-V on SOI laser, it is assumed that the
cap layer is made of InP and a silicon grating is patterned on the SiO2 substrate,
and the HG is excited from superstrate made of air with a TM-polarized light.

3.3.1 Hybrid Grating as a Broadband Reflector

Figures 3.8(a) and 3.8(b) show simulated transmissivity contour maps as a function
of normalized wavelength λ0/Λg and grating layer thickness tg/Λg for a HCG, or
cap layer thickness tc/Λg for a HG, respectively. Here, bright lines which are
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Figure 3.7: (a) Schematic view of a hybrid grating structure. (b) Schematic cross-
sectional view of the hybrid grating with its parameter definitions. Refractive-indices used
for simulations of this section are based on an InP cap layer with a silicon grating on SiO2
substrate excited from air superstrate; nh=3.48, nl=1, n1=1, n2=1.48, and nc=3.166.

transmissivity dips, correspond to GMRs. In the HCG case, i.e. Fig. 3.8(a), more
guided-modes are introduced as the grating layer thickness is increased, which result
in a larger number of GMRs. The same trend is observed for the HG case, i.e. Fig.
3.8(b), as the cap layer thickness is increased while the grating layer thickness is
fixed. A difference between the HG and the HCG structure is that for the HG
structure good overlaps between different modes can be provided due to cap layer:
In the HCG structure, only two nearby band-edge modes overlap while others are
well separated. As a result, a broader high-reflectivity is obtained in the HG case
than in the HCG case as shown in Figs. 3.8(c) and 3.8(d).

Similar to the HCG case, the HG can be seen as a coupled waveguide-array
and only propagating modes in the layers participate in the reflection process [8].
The SFG of HG in the dual-mode regime is shown in Fig. 3.9. There are two
propagating modes in the grating, several (three or five) propagating modes in the
cap layer, and a propagating mode outside the HG structure. In homogeneous layers,
e.g. cap layer, each mode corresponds to a single spatial harmonic (or diffracted
beam), as it was explained previously. So in the input and output media, the only
propagating mode corresponds to 0-th harmonic (0-th order diffracted beam) and
for the cap layer due to the higher refractive-index the three propagating modes
correspond to 0-th and ±1-st harmonics. Note that the ±1-st harmonics interact
with the two waveguide-array modes in the grating layer, but not with the 0-th
harmonic in the air. Thus, it is expected that most of the power coupled from the
waveguide-array modes in the grating layer to the ±1-st harmonics is returned to
the waveguide-array modes with some phase change, not escaping from the HG
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Figure 3.8: Contour plot of transmissivity (color scale) in dB as a function of normalized
wavelength λ0/Λg and (a) normalized grating thickness tg/Λg with no cap layer (tc=0), (b)
normalized cap layer thickness tc/Λg with constant grating thickness of tg/Λg=0.62. The
white dashed line shows the selected grating thickness and selected cap layer thickness for
reflectivity and transmissivity spectra considered in (c) and (d), respectively. Reflectivity
in linear scale (blue solid-lines) and transmissivity in dB scale (red dashed-lines) spectra
of (c) HCG structure with fg=0.45 and tg/Λg=0.68, and (d) HG structure with fg=0.45,
tg/Λg=0.62 and tc/Λg=0.37. All refractive indices are defined in Fig. 3.7 caption.

structure. From this arguing, it is qualitatively understandable that adding the cap
layer introduces change in GMR wavelengths but not in peak reflectivity [8].

Considering only the propagating modes in the different layers, the reflectivity
spectrum of the HG can be reconstructed with a good approximation to rigorous
FMM result. Firstly, as illustrated in Fig. 3.10(a), all evanescent modes with
an imaginary propagation constant are discarded in all layers. This simplifies
the scattering matrices r1 and r2 at the interfaces and the propagation matrix
exp(−j2βtc). Using these simplified matrices, the reflectivity, req from the HG
can be found from a matrix version of the well-known reflectivity formula for two
interfaces, as illustrated in Fig. 3.10(b).

req =
[
r1 + r2 exp(−j2βtc)

][
I + r1r2 exp(−j2βtc)

]−1
(3.3)
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Figure 3.9: Signal flow graph of an HG in dual-mode regime. More explanation about
this graph is provided in the caption of Fig. 3.5.

Figure 3.10: (a) Schematic cross-sectional view of the HG with considered modes in
each layer. (b) The equivalent reflectivity from the two interface of the cap layer and
grating. (c) Calculated reflectivity spectrum of an HG structure using full solution (red
solid-line) and with discarding non-propagating modes (blue dashed-line). It shows a very
good agreement especially in the wavelength region with high reflectivity.

where I represents a unity matrix. In Fig. 3.10(c), the reflectivity spectrum

obtained by this semi-analytic approach is compared with the rigorous solution,

showing a good agreement, especially in the high-reflectivity region. This supports

the explanation that high reflectivity value and its broadband nature depends

mainly on propagating modes.
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Figure 3.11: Monte Carlo analysis of fabrication tolerance in an example HG structure.
The designed parameters are Λg=720 nm, tg=497 nm, fg=0.45, tc=370 nm nh=3.48,
nl=1.0, n1=1.0, n2=1.0 and nc=3.166. Distributions of (a) grating thickness, (b) duty
cycle, (c) cap layer thickness. and (d) resulting Q-factor distribution.

Fabrication Tolerances

The HG reflector has good tolerance to fabrication errors. During fabrication steps
including epitaxy growth, cap layer thickness, tc, grating thickness, tg, and grating
width, Wg = fgΛg may have ± 10 nm variations from designed values. Grating
period, Λg can be relatively accurately defined. To estimate the effect of fabrication
variations in tc, tg, and fgΛg on reflectivity, Monte Carlo analysis is performed. In
this analysis, 100 samples each with different tc, tg, and Wg values are chosen. Each
parameter value is chosen to un-correlated to each other and to have a normal
distribution with a probability density function of f(x) = 1

σ
√

2π exp(− (x−x0)2

2σ2 ), where
x0 is the value of designed parameter and 3σ is the fabrication error. I have assumed
σ = 4 nm which corresponds to ±12 nm error. Figures 3.11(a), 3.11(b), and 3.11(c)
show the histogram distribution of each parameter in the 100 samples chosen for
a designed HG structure. Monte Carlo analysis result presented in Fig. 3.11(d)
shows that all HG samples have reflectivity above 99.7%, indicating the HG is
tolerable to most of probable fabrication errors.
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Figure 3.12: Schematic of the designed hybrid grating structure made of a Si grating
with III-V epitaxial layer as a cap layer. The III-V epitaxy contains 7 quantum wells with
barriers (layer thicknesses are provided in the table), since it was planned to use as the
bottom reflector in a VCSEL structure. Si grating parameters are Λg=720 nm, tg=492
nm and fg=0.5.

3.3.2 Experimental Results

To verify the capability of hybrid grating as a broadband reflector, it was fabricated
by my colleague using DTU Danchip facility and its reflectivity spectrum was
measured. Since we had a plan to use this structure as the bottom mirror in
a VCSEL structure (it will be explained with details in the next chapter), the
designed structure has a epitaxial-grown structure which contains several quantum
wells as active region. The grating is formed on a SOI wafer using electron-beam
lithography. Then a direct wafer bonding process is used for hybridizing the III-
V active layer onto the SOI wafer and make the structure [35]. Since the III-V
epitaxial structure contains several additional layers which are not required for the
optimized HG reflector design, they are removed using wet-etching process [36].
Figure 3.12 shows the cross-sectional view of the III-V epitaxy with detailed layer
thicknesses after it was processed for the HG. It should be noted that for using
this HG in the VCSEL, the light is incident from SiO2 medium. However, here
air is used as the superstrate medium which results in a drop in the reflectivity
value compared to the designed case.

A scanning electron microscope (SEM) image of the fabricated device is illus-
trated in the Fig. 3.13(a). A supercontinuum laser source (SuperK EXTREME
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Figure 3.13: (a) SEM image of the fabricated hybrid grating structure. (b) Simulated
reflectivity spectrum of the designed HG structure for TM-polarized light at 3.5 degree
angle. (c) Measured reflectivity spectrum of the fabricated HG for TM-polarized light
at 3.5 degree angle of incidence [36]. The measured data are not exact reflectivity, since
they require calibration. There is a good agreement in the spectrum shape and position
of the dips.

supercontinuum laser) is used for illuminating the fabricated device and the reflected
light is gathered and analyzed by an optical spectrum analyzer (OSA) (AQ6375
Yokogawa). A polarizer is used to make the TM-polarized light and photonic crystal
fibers are used for connections due to their capability to maintain the polarization
state. Due to the measurement set-up limitations, it was not possible to measure
the reflectivity at the normal incident angle and it was measured at 3.5 degree
angle. The reflectivity spectrum predicted by theory and the measured one are
shown in Figs. 3.13(b) and 3.13(c), respectively. In our measurement set-up, it is
difficult to measure the exact reflectivity value, and it was measured compared to a
reference gold mirror. Therefore, when the reflectivity is higher than 1, it means
hybrid grating reflectivity value is larger than the gold mirror. By comparing the
simulation and measured results, we can conclude that there is a good agreement
in the shape of reflectivity spectrum and also the position of reflectivity dips. This
illustrates the feasibility of the hybrid grating as a broadband reflector.
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3.3.3 Hybrid Grating as a High Q-Factor Resonator

Similar to the HCG case, we may expect that HG also has high Q-factor resonances
which can be found close to the anti-crossing point in the reflectivity contour
maps [9]. Therefore, the reflectivity contour maps of a HG as a function of λ0/Λg

and tg/Λg are plotted in Figs. 3.14(a) and 3.14(b) for two different cap layer
thicknesses. Results look similar to the simulation results obtained for HCGs.
The checker-board pattern seen in these contour maps reflects the interference
between several waveguide-array modes and is similar to the HCG case as it was
explained in the previous section. The single- and dual-mode regimes in Fig. 3.14(a)
denote the wavelength ranges with one and two propagating modes in the grating
layer, respectively. Some of the candidate points for high Q-factor resonances are
indicated by magenta circles in Fig. 3.14.

Figure 3.14: Contour maps of the reflectivity (color scale) versus normalized wavelength
and grating thickness (a,b) or normalized wavelength and cap thickness (c,d) at fg=0.50
for TM-polarized light. (a) tc/Λg=0.4, (b) tc/Λg=0.6, (c) tg/Λg=0.6, (d) tg/Λg=1.35.
Only three color levels are used. Dimensions are defined in Fig. 3.7 caption and refractive
indices are also provided there.
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In order to discuss the influence of the cap layer thickness tc, two reflectivity
contour maps as a function of λ0/Λg and tc/Λg for two values of tg are plotted in
Figs. 3.14(c) and 3.14(d). High reflectivity lines extend into the single-mode regime,
while they are found only within the dual-mode regime in Figs. 3.14(a) and 3.14(b).
Candidate points for resonances are found in both regimes. Note that the resonances
found in different regimes have different origins and properties. The resonances
observed in the single mode regime, henceforth referred to as type-I resonances, have
the same physical origin as the resonances found in conventional GMR-based filters
[11]. This type-I resonance is due to the constructive interference of the diffraction
orders +1 and -1 in the cap layer with total internal reflection at the (air)-(cap
layer) interface. Its characteristic feature is that at normal incidence, the diffraction
orders +1 and -1 result in two resonance peaks degenerate at the same wavelength
in the reflectivity spectrum, but for a finite angle of incidence the peaks will
separate spectrally [11]. This resonance type is also found in conventional shallow
etched grating structures. It typically has a low Q-factor because the diffraction
orders +1 and -1 inside the cap layer result in the appearance of diffraction order
0 when reflected again from the grating and the 0-th order component is lossy
at the (air)-(cap layer) interface.

The resonances found only in the dual mode regime, are the main focus of
this section, are referred to as type-II resonances, and have a different origin
and different properties. As explained below in detail, they originate from the
constructive interference of two waveguide-array modes in the grating layer. Since
this constructive interference condition requires a certain grating thickness, the
type-II resonance is sensitive to the grating thickness while the type-I resonance is
not. Type-II resonances may have much higher Q-factor than type-I. Furthermore,
a type-II resonance peak in the reflection spectrum at normal incidence does not
separate into two peaks but shifts with a small incidence angle. Type-II resonances
are not observed in conventional GMR-based grating filters.

As shown in Fig. 3.15(a), the Q-factor of a type-II resonance is very sensitive
to small changes in HG parameters, while its resonance wavelength is relatively
insensitive and just linearly increases with the grating layer thickness. Thus, after
finding several high Q-factor candidate parameter sets from a coarse scanning of
parameters, several runs using particle swarm optimization (PSO) technique [37]
were performed around each candidate set to find the local solution that gives
the highest possible Q-factor. Without resorting to the use of PSO, very fine-
resolution scan are required due to the sensitiveness of the Q-factor, demanding
significant computational efforts.
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Figure 3.15: (a) Resonance wavelength λr (dashed lines) and Q-factor (solid lines) as
a function of grating thickness around a candidate point for resonance at two values of
the duty cycle, fg=60 % (blue lines) and fg=62 % (red lines). The Q-factor depends
sensitively on the structure parameters. (b) Reflectivity spectrum for TM-polarized light
of an HG structure with ultrahigh Q-factor found by PSO with Λg=853.5 nm, tg=742.3
nm, fg=0.616, tc=830.5 nm.

Using PSO, several designs are identified that result in ultra-high Q-factors.
Figure 3.15(b) shows an example of the reflectivity spectrum for an optimal structure
with a Q-factor of 1.12× 109. The structure dimensions are specified in the caption
and scaled to have a resonance at telecommunication wavelength of 1550 nm. This
type-II resonance is of the Fano type [38], which means that the resonance occurs as
a result of the interference of discrete modes in the HG structure with continuous
modes outside the structure. Note that as shown in the inset of Fig. 3.15(b),
this resonance reaches 100% reflectivity but not 100% transmissivity. The reason
is that the HG structure inherently does not possess mirror symmetry along the
z-direction, which results in different decay rates of the electromagnetic energy
stored in the HG structure into input and output regions [38]. In contrast, HCG
resonators suspended in air have mirror symmetry and the reflectivity varies from
100% to 0% around a resonance peak [5], [26].

Figure 3.16(a) shows the field profile of this high Q-factor resonance excited
by a TM-polarized plane wave incident from the air side. The field is strongly
enhanced in the cap layer as well as in the grating layer. To get insight into the field
confinement properties of the structure, I have plotted the field strength of different
spatial harmonics in Fig. 3.16(b). As described in the previous section, these spatial
harmonics are the Bloch modes in the cap layer. But for the grating layer, the
harmonics contributions from waveguide-array modes are added together to plot
this figure. It is noteworthy in Fig. 3.16(b) that the field in the cap layer mainly
contains the 1-st spatial harmonic component, while the grating layer contains the
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Figure 3.16: (a) Normalized magnetic field profile |Hy| for the HG structure of Fig. 3.7,
excited by an incident plane wave with the same wavelength as the resonance wavelength
found in Fig. 3.15(b). (b) Amplitudes of the magnetic modal fields in dB scale for
0-th, 1-st and 2-nd spatial harmonic inside all the layers at the resonance wavelength.
TM-polarized light is incident from the left.

0-th and 2-nd spatial harmonics as well. This observation is a clue to understanding
how such a high Q-factor resonance appears in the HG structure.

As it was mentioned in the previous section, SFG shows how the propagating
waves interact with each other. For a high Q-factor Type-II resonance, the SFG is
similar to the HG as a broadband reflector case and is shown in Fig. 3.9. At the (cap
layer)-(grating layer) interface, the excitation of H0 is very small since the coupling
from E1 and E2 to H0, and the self-coupling to H0 cancel each another at the
interface. As a result, the loss at the (air)-(cap layer) interface H0 is very small as it
is clear from Fig. 3.16(b). However, the couplings to H±1 do not cancel efficiently,
resulting in strong excitation of the first harmonic component in the cap layer. At the
(grating layer)-(SiO2) interface, the 0-th harmonic components of E1 and E2 cancel
each other, resulting in very small coupling to H0 in the SiO2 layer. As shown in the
(air)-(cap layer) and (grating layer)-(SiO2) interfaces, the only loss channel from the
HG resonator to the input and output media is through H0, since other higher-order
harmonics become evanescent due to the subwavelength periodicity. Thus, the overall
loss becomes very small, which explains the observation of very high Q-factors.

Fabrication Tolerances and Finite Size Effect

We are interested in applications of HG resonator structure as a laser with a
moderate Q-factor and a size of 10 to 15 µm and would estimate the effect of
fabrication-related deviations of geometrical parameters from the designed values,
on the Q-factor. For this estimation, Monte Carlo analysis is employed, assuming
that within this length scale of 10 to 15 µm, the fabrication-related deviations of the
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Figure 3.17: Monte Carlo analysis of fabrication tolerance for a hybrid grating.
Distributions of (a) grating thickness, (b) duty cycle, (c) cap layer thickness. and
(d) resulting Q-factor distribution.

grating period and bar width are not completely random, rather locally synchronized.
In this analysis method, simulations are performed for a large number of parameters,
which are chosen from a Gaussian probability distribution and the results are
aggregated. As shown in Figs. 3.17(a) to 3.17(c), variations in grating thickness,
duty cycle, and cap layer thickness are analyzed. The variations are assumed to
be ±10 nm for the cap layer and grating layer thickness and ±1% for the duty
cycle, i.e., ±8 nm for the grating bar width. These fabrication errors often occur in
epitaxial growth and e-beam lithography with an image transfer to a hard mask
followed by dry etching. A total of 1000 simulations is performed, each one being
referred to as a sample. The Q-factor distribution in Fig. 3.17(d) shows that all
simulated structures have Q-factors higher than 6000 and 98% of the samples have
Q-factors above 104, which is sufficiently high for laser applications of our interest.

In a real HG resonator with a finite number of periods and finite length of grating
bars, the lateral loss from the end of the grating bars will reduce the Q-factor. This
reduction is estimated by performing a 3D simulation. The simulated structure has
21 grating bars in the x-direction, is 12 µm long in the y-direction and is truncated
with air outside. The field profile is shown in Fig. 3.18 and the measured Q-factor
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Figure 3.18: Normalized mode profiles |Hy| in dB of an HG resonance in (a) x-y plane
in the cap layer, (b) x-z plane, and (c) y-z plane.

is 12000. It is observed in plots with finer details that the scattering loss causing
the reduction in Q-factor occurs mostly downwards into SiO2 layer. The observed
Q-factor is acceptable for most laser diode designs. It is also similar to the value
obtained for HCG-based resonators [5]. This Q-factor can be considerably increased
by simply increasing the size of the structure or introducing heterostructures in
the grating in both x- and y-directions. Also, we expect that similar to photonic
crystal surface-emitting lasers [39], it should be possible to design the resonator
with enhanced radiation power in specific direction.

3.4 Summary

In summary, this chapter has discussed the physics of subwavelength grating
structures with high refractive-index contrast between the grating bar and materials
surround it. Two equivalent physical pictures have been employed to understand
the working mechanism of these structures; guided-mode resonance picture and
waveguide-array picture. Firstly, these two pictures have been used to explain the
properties of high-index-contrast grating (HCG) as a broadband reflector and also
standalone high Q-factor resonator. Next the proposed hybrid grating (HG), that
consists of a subwavelength grating layer and an unpatterned high refractive-index
cap layer, is investigated thoroughly. Numerical simulations show that the HG
reflector has a near-unity reflectivity in a broad bandwidth, surpassing that of a
conventional HCG. It has been revealed that the cap layer introduces more GMRs
without loss of peak reflectivity leading to this broader high-reflectivity bandwidth.
We have also shown that this broadband reflection properties originate mainly from
propagating modes within the structure. The fabrication and characterization of
a HG sample shows the feasibility of this structure. Furthermore, we have shown
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that HG structure can work also as a high Q-factor resonator and analyzed the
origin of the high-Q resonances. We have found that the cancellation of the 0-th
spatial harmonic of two propagating modes of the grating layer at the interfaces to
surrounding layers leads to high-Q resonances, which is similar to the resonances
appearing in HCG resonators. Given typical fabrication errors and finite extension
of 10 to 15 µm, the Q-factor of a HG resonator drops from a ultrahigh value to
a moderate value that is still sufficient for laser diode applications.
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I believe that in every person is a kind of circuit which
resonates to intellectual discovery—and the idea is
to make that resonance work.

— Carl Sagan
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The vertical cavity is a rich platform for fundamental physics studies of light-
matter interaction such as cavity quantum electrodynamics (QED) [1], [2] and
cavity polaritons [3], [4], as well as various applications including vertical-cavity
surface-emitting lasers (VCSELs) [5]–[7], single-photon light sources [8], and silicon
integrated on-chip lasers [9]. A vertical cavity is formed by two mirrors arranged
vertically as shown schematically in Fig. 4.1. In conventional vertical cavities,
distributed Brag reflectors (DBRs) are used as the top and bottom mirrors, which
hereafter are referred to as DBR-based vertical cavities. Recently, other types

83
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Figure 4.1: Schematic view of a vertical cavity, consists of two mirrors, separated by
a nominal cavity with thickness of tc. The reflectivity phase of two mirrors, φ1 and φ2,
depends on the frequency ω and in-plane wavevector components kx and ky.

of reflectors using photonic crystal (PhC) structures such as high-index-contrast
gratings (HCGs) or hybrid gratings (HGs), are replacing one or even both DBRs,
which result in novel functionality and properties for the vertical cavities [9]–[16].
In particular, the dispersion of a vertical cavity, i.e., the relation between the
frequency ω and wavevector k of a cavity mode, can be engineered by using the
HCG as reflector and designing the dispersion of the HCG [17]–[19]. The dispersion
curvature is the second-order derivative of the frequency of a propagating mode with
respect to the in-plane wavevector, and its inverse can be interpreted as an effective
photon mass along the wavevector direction. As discussed below, the dispersion
curvatures along transverse directions can be engineered in vertical cavities with the
HCG or HG mirrors to have a specific positive, zero, or negative value. The control
of the dispersion characteristics in the cavity may result in various well-known
effects such as enhancing the spontaneous emission through the Purcell factor [20]
or controlling the properties of polariton lasers [21].

In this chapter, vertical cavity structures with bottom HCG or HG reflector
and top DBR as shown schematically in Figs. 4.2(a) and 4.2(b) are investigated
numerically. They are referred to as HCG-based or HG-based vertical cavities,
respectively. Firstly, the concept of dispersion in vertical cavity is introduced, and
several numerical methods for rigorously computing the dispersion are explained
with examples. Then, an analytic expression for the cavity dispersion is derived and
its accuracy is confirmed by comparing its results with the exact numerics. The
dispersion has contributions from the both mirrors and nominal cavity, and it can
be engineered by designing the mirror phase response, using HCG or HG reflectors.
The effects of dispersion curvature on the mode confinement, mode spacing, and
order of transverse modes are investigated. Moreover, the importance of anisotropic
dispersion curvatures of the HCG-based cavities along the x- and y-directions
is illustrated. The concept of vertical cavity in-plane (VCI) heterostructure is
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Figure 4.2: Schematic view of a (a) HCG-based, (b) HG-based vertical cavity structure
with top DBR and bottom HCG or HG reflector, respectively.

introduced and investigated by numerical simulations. Finally, several interesting
HCG/HG-based vertical cavities are designed and simulated such as a HCG-based
cavity with very large in-plane emission into a silicon waveguide, an electrically-
pumped HG-based cavity with superior thermal properties and a system of two
laterally-coupled HCG-based vertical cavities exhibiting parity-time symmetry
breaking phenomenon.

4.1 Cavity Dispersion

4.1.1 Calculation Methods

For rigorous calculation of the cavity dispersion in the HCG/HG-based vertical
cavities, several different approaches in the Fourier modal method (FMM) are
employed and discussed in this section. For all approaches, one period of a HCG/HG-
based vertical cavity in Fig. 4.2 is considered for simulations, i.e. it is assumed
that there are an infinite number of grating periods in the x-direction and the
grating bars are infinity long in the y-direction.

Method I

In ‘Method I’, the reflectivity or transmissivity spectrum of the cavity is investigated
with a plane-wave that is illuminated from the top with a non-zero in-plane
wavevector component kx or ky, i.e. the plane-wave has an incident angle θ with
respect to the normal direction to the grating surface. Figures 4.3(a) and 4.3(b)
illustrate the transmissivity contour maps of an exemplary HCG-based cavity versus
the wavelength and incident angle in the x- and y-directions, respectively. As it
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Figure 4.3: Contour maps of the transmissivity (color scale) versus incident angle θ
and wavelength λ0 for a HCG-based vertical cavity to a TM-polarized plane-wave. The
incident angle is defined with respect to the normal direction to the grating surface in the
(a) x-direction, or (b) y-direction. The cavity is designed to have a resonance at 1550 nm
wavelength (shown in white dashed-lines). Structure dimensions and refractive-indices
are: HCG Λg=640 nm, fg=0.58, tg=430 nm, nh=3.48, nl=1; DBR th=111.4 nm, tl=261.8
nm, nh=3.48, nl=1.48, Ndbr=4.5 pairs; nominal cavity tc=725.1 nm, nc=1.0; superstrate
nsup=1; substrate nsub=1.48.

was explained in chapter 2, the resonance frequency ω corresponds to the peak in
the transmissivity spectrum, and a dispersion curve is obtained by plotting ω as a
function of in-plane wavevector components kx or ky as shown in Fig. 4.4(a). The
curvature of the dispersion curve, which is the second derivative of frequency with
respect to the in-plane wavevector ∂2ω/∂k2

x,y, is an important characteristic of the
cavity and referred to as cavity dispersion curvature. It can be in general positive,
negative or even zero, as discussed in the following sections.

Method II

Similar to the discussion in section 2.2.6, the resonance wavelength of a cavity mode
can be found in quasi-normal mode (QNM) picture. In the FMM formalism without
any PML implementation, it is possible to introduce an in-plane incident wavevector
in the equations as it was explained in chapter 2. The dispersion curves obtained
from this method are in a very good quantitative agreement with ‘Method I’. In the
FMM, this method is the more efficient compared to the other two approaches, since
it requires only several iterations for determining the resonance compared to the
‘Method I’ [c.f. section 2.2.6], and the computation domain size in the transverse
direction is much smaller compared to the ‘Method III’.
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Figure 4.4: (a) Cavity dispersion in the x-direction (red) or y-direction (blue), for the
HCG-based cavity in Fig. 4.3. The calculated dispersion curvatures, ∂2ω/∂k2

x,y are 7.82
and 39.53 m2/s for the x- and y-directions, respectively. (b) Schematic of the structure
used for calculating cavity dispersion in ’Method III’. A unit cell in the propagation
direction, which is used for calculating the Bloch modes, is shown by white dashed-lines.
The PMLs are implemented and their boundaries are shown in red dotted-lines.

Method III

‘Method III’ can be used only for evaluating the cavity dispersion along the x-
direction. For implementing this method, the structure should be rotated 90 degrees
[22], i.e. the x-direction and z-direction in the Fig. 4.2 will switch their roles as
it is illustrated in Fig. 4.4(b). The PMLs are implemented at the boundaries of
computation domain in the x-direction. Using the scattering matrices, the Bloch
modes can be calculated as it is already explained in section 2.2.4. The cavity
mode is a Bloch mode with low loss, since it is confined by two highly-reflective
mirrors. This method also produces the same value for cavity dispersion curvature
along the x-direction, as the two previous approaches do. ’Method III’ is the
most time-consuming method among the three approaches, since it requires a large
number of Fourier terms for expanding the Bloch mode accurately due to the larger
computation domain in the x-direction compared to the others.

4.1.2 Physical Interpretation

All possible cavity dispersion curves for a vertical cavity are shown schematically in
Fig. 4.5(a). By analogy with electron bandstructure, the positively and negatively
curved dispersion curvatures are referred to as electron-like and hole-like, respectively.
The dispersion curvature can be interpreted simply by a geometrical optic picture,
assuming an oblique ray with an in-plane wavevector inside the cavity as illustrated
in Fig. 4.5(b). In this picture, positive dispersion curvature corresponds to a
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Figure 4.5: (a) All possible cavity dispersion for a vertical cavity structure. They
are denoted by analogy to electron bandstructure in the conduction and valance bands,
as electron-like (green) or hole-like (red). (b) The geometrical optic interpretations
correspond to three cases in (a). Top mirror is assumed to have no dispersion and
depending on the dispersion properties of the bottom mirror, three cases are plotted
schematically.

forward beam propagation after a round-trip, while negative dispersion curvature
corresponds to backward propagation [14]. As it will be shown in the next section,
always the nominal cavity has positive dispersion contribution and for simplification,
here the top mirror is assumed to be a mirror with negligible dispersion (such as a
DBR). Depending on bottom mirror dispersion properties, the corresponding ray
pictures for the three cases are possible and shown in Fig. 4.5(b). This phenomena
can also viewed as slowing down or speeding up the light in the in-plane direction, for
an electron-like or hole-like case, respectively, which is similar to the slow or fast light
effect in the PhC waveguide structures [23]–[25]. However, in the vertical cavities
the light propagation speed is controlled in the transverse directions compared to the
PhC waveguides, in which the light speed is varied in the longitudinal direction [24].

4.1.3 Analytic Expression

In this section, a general expression for the dispersion of a vertical cavity structure
is derived [18]. In a vertical cavity, the mode frequency ω is found by solving
the oscillation condition, which is the constructive interference condition after a
round-trip for a propagating mode:

φ1(ω, kx, ky) + φ2(ω, kx, ky)− 2kztc = 2mπ,

kz =
√(

ncω

c

)2
− k2

x − k2
y.

(4.1)

Here, kx, ky, and kz are wavevector components of a mode in the nominal cavity
layer with a refractive index of nc, and a thickness of tc, and c is the speed of
light in vacuum. Note that the reflectivity phases from the two mirrors, φ1 and
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φ2, depend on the in-plane wavevectors, kx and ky. The resonance frequency at
normal incidence, ω0 is determined by setting the in-plane wavevectors zero: 2kz,0tc
= −2mπ + φ1,0 + φ2,0, where kz,0 = ω0nc/c and φi,0 = φi(ω0, 0, 0) for i=1,2.

In a vertical cavity, the modes of our interest have a lateral extension of several
times of wavelength [18]. Thus, kx and ky distributions are close to the Γ-point
where (kx, ky) = (0, 0) [26]. This validates the following Taylor expansion, keeping
the first non-zero derivatives with respect to kj and ω:

φi(ω, kx, ky) ' φi,0 + 1
2
∑
j=x,y

∂2φi
∂k2

j

∣∣∣∣∣∣
0

k2
j + ∂φi

∂ω

∣∣∣∣∣∣
0

∆ω, (4.2)

where ∆ω = ω − ω0 and the derivatives are evaluated at (ω, kx, ky) = (ω0, 0, 0).
Inserting Eq. (4.2) into Eq. (4.1) leads to:

ω = ω0 +
∑
j=x,y

βjk
2
j ,

βj = c2

2n2
cω0

tc
teff

+ c

4nc
1
teff

(a1,j + a2,j) ,
(4.3)

where teff (= tc + t1 + tc) is the effective cavity thickness, ti (= − c
2nc
∂φi/∂ω) is the

phase penetration into the i-th mirror, and ai,j = ∂2φi/∂k
2
j is the phase curvature

of the mirror. The parameter βj represents the cavity dispersion curvature along
the j-direction. The first term of βj results from the round-trip propagation in
the nominal cavity, and is always positive. The second term of βj accounts for
the dispersion curvature from the mirrors. This mirror contribution can be either
positive, negative, or even zero for novel mirror structures such as HCG or HG as
shown below. Furthermore, it is polarization sensitive and anisotropic.

4.1.4 Discussion

Firstly, to validate Eq. (4.3), the dispersion curvature obtained from this expression
is compared with the rigorous calculations. For the exemplary HCG-based cavity of
Figs. 4.3 and 4.4, the value of the parameters used in the Eq. (4.3) are obtained as:
t1=193.6 nm, t2=1014.4 nm, a1,x=-0.2754, a2,x=0.0185, a1,y=0.1331, a2,y=0.0185
all in rad/µm−2. These parameters result in a cavity dispersion curvatures of 7.82
m2/s and 39.53 m2/s for the x- and y-directions, respectively, which are exactly
equal to the values found from the rigorous calculations. Therefore, there is a
very good quantitative agreement between the rigorous computations and derived
analytic expression. The derived expression provides valuable insight about the
important factors in cavity dispersion.
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Using the derived expression Eq. (4.3), we can explain the quantitative differences
between different types of cavities. For instance, at a wavelength of 1550 nm, the
contributions of a 0.5λ-long nominal air cavity to the cavity dispersion curvature
is approximately 30 m2/s. As seen in Eq. (4.3), this nominal cavity contribution
increases linearly with the cavity thickness, tc. The mirror contribution of a typical
DBR is on the order of 1 m2/s and gets smaller for larger refractive index contrast of
the DBR layers. This mirror contribution is isotropic due to the rotational symmetry
of DBR structures (i.e ai,x = ai,y). Therefore, in DBR-based cavities, the cavity
dispersion curvature is dominated by the nominal cavity contribution and is always
positive and isotropic. Its shape resembles the conduction band of semiconductors.
However, in the case of HCGs/HGs, the mirror contribution can be on the order
of ±100 m2/s or even larger. If the cavity thickness tc is small, e.g., less than 2λ,
the cavity dispersion curvature of HCG/HG-based cavities can be positive, zero or
negative, being dominated by the HCG/HG dispersion curvature. Also, the cavity
dispersion is anisotropic along the x- and y-directions, and depends on the incident
light polarization, as does the HCG/HG mirror dispersion. In HCG/HG-based
vertical cavities, it is possible to engineer the cavity dispersion by designing the
phase response of the HCG/HG while keeping its reflectivity high as discussed below.

Here, the possibility of varying mirror dispersion of a HCG reflector (i.e. the
value of ai,x and ai,y), while keeping its reflectivity high, is illustrated with an
example. Figure 4.6(a) shows the reflectivity phase contour map as a function of
grating bar width Wg and gating period Λg for a constant grating thicknesses of
tg=450 nm. This contour demonstrates how the reflectivity phase can be changed,
while reflectivity amplitude is kept high, by changing the grating period and bar
width [27], [28]. By changing the reflectivity phase of the reflector, we can engineer
the resonance frequency of the cavity mode. Thus, as it will be explained in section
4.2, an in-plane heterostructure in the HCG-based cavities can be designed simply
by varying the grating parameters.

Figures 4.6(c) and 4.6(d) illustrate the transverse phase curvature contour maps,
which are defined as ∂2φ/∂k2

x and ∂2φ/∂k2
y in the x- and y-directions, respectively,

The value of the phase curvature is controlled in the both transverse directions just
by varying the grating parameters, and its value can be positive, negative or zero.
In comparison, for a DBR structure made of Si/SiO2, the phase curvature value
is always positive and relatively small, e.g. on the order of 0.01 rad/µm−2. The
phase curvature can be large for the HCG or HG reflectors, since in oblique incident
angle odd waveguide modes contribute to the reflection process considerably [17].
In Fig. 4.6(b), the reflectivity phase contour map is plotted for a small incident
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Figure 4.6: HCG contour maps (color scale) of (a) reflectivity phase at normal incident
(π unit), (b) reflectivity phase at 5 degree incident angle (π unit), (c) phase curvature in the
x-direction ∂2φ/∂k2

x (µm−2 unit), (d) phase curvature in the y-direction ∂2φ/∂k2
y (µm−2

unit), versus grating period Λg and grating bar width Wg = fgΛg for a TM-polarized
plane-wave at 1550 nm wavelength with grating thickness of tg=450 nm. Black solid-lines
correspond to reflectivity amplitude of 99.5 % at normal incident angle, and in the region
between them, the reflectivity amplitude is above 99.5. Green dashed-lines correspond to
th zero values in the contours. These contours illustrate the flexibility of designing a HCG
with very high reflectivity amplitude and at the same time various dispersion curvatures,
for both in-plane directions. In Figs. (c) and (d) the color bars are only limited to ±5
range which is usually interesting from laser application point of view.

angle in the x-direction, i.e. small kx value. Compared to the normal incident
angle case [Fig. 4.6(a)], a region of rapidly-changed phase appears in the contour,
which is due to the resonance excitation of an odd waveguide mode in grating layer.
Therefore, in the vicinity of this region, a large phase curvature ai,j is possible for
the reflector [17]. Similar results can be obtained for a HG reflector. It should be
mentioned that if the phase curvature becomes very large, i.e. the reflectivity phase
vary rapidly with incident angle, usually the reflectivity amplitude will also drop
considerably, which results in an increase for the threshold gain in laser applications
[29]. Thus, for the HCG/HG-based laser applications, usually the phase curvature
value in the range of ±5 seems useful from our experience.
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Figure 4.7: Schematic of a vertical cavity structure with transverse variation of the
cavity parameters (tc, φ1 and φ2) in the core and cladding sections to form transverse
confinement.

4.2 Vertical Cavity In-Plane Heterostructure

In designing a VCSEL, arranging vertical cavity sections as shown in Fig. 4.7 to
obtain an ideal transverse confinement profile is a key step, since the transverse
confinement profile significantly influences important properties, such as threshold
current, modulation speed, single-mode property, and output beam profile. Various
VCSEL structures have been reported for controlling the transverse confinement,
including ones with an oxide aperture [30], a tunnel junction [31], an anti-guiding
geometry [32], a shallow surface relief [33], inverted-surface relief [34], photonic
crystals [35], or a HCG heterostructure [36]. The transverse confinement mechanisms
in many of these different VCSEL structures can be understood by the concept
of in-plane heterostructure, as discussed in this section.

In vertical cavities, an in-plane heterostructure is formed by changing the cavity
parameters in different sections of the cavity as shown in Fig. 4.7, which results
in transverse mode confinement. In early studies on VCSELs employing DBRs
as mirrors, the transverse confinement was explained as resulting from a lower
resonance frequency of the core section compared to that of the cladding section [37].
However, with new types of reflectors such as the HCG or HG, cavity dispersion
curvature can determine the transverse confinement properties [18]. When the
curvature is positive, i.e., electron-like, the frequency of the core section needs
to be lower than that of the cladding to achieve field confinement in the core
section. This is analogous to a quantum well (QW) in the conduction-band of
semiconductors, with the frequencies of the confined mode being allowed in the
well (core) section and forbidden in the barrier (cladding). On the contrary, when
the curvature is negative, the frequency of the core section needs to be higher than
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Figure 4.8: (a) Cross-sectional schematic of a HCG-based vertical cavity structure
consisting of a DBR and a HCG mirror and a low-refractive-index cavity layer. (b) Top
view of the HCG layer. The grating bar width Wg is varied along the x- and y-directions
to make a heterostructure with the well sizes of Lx and Ly.

the cladding, which is analogous to a valence-band QW. For quantitative analysis
of heterostructure, the envelope approximation can be used.

The envelope approximation derived for photonic crystal heterostructures [38],
[39], can be applied to analyze VCI heterostructures [18], [40]. In this section, HCG-
based cavities with in-plane heterostructure such as those shown in Fig. 4.8 are
investigated mainly. The effective mass mj defined for the envelope approximation,
is related to the dispersion curvature, βj: 1/mj = ∂2ω2/∂k2

j = 4ω0βj. By changing
the vertical cavity parameters in the core and cladding sections, a photonic well can
be formed for in-plane directions. This can be obtained by any geometrical change
in the device dimensions such as cavity thickness or any carrier-induced change
such as carrier-induced refractive-index changes. For instance, in a VCSEL with
an oxide aperture, the oxide aperture region works as the photonic well section.
Therefore, in the transverse directions, the cavity acts as a two-dimensional (2D)
photonic well structure. Using the envelope approximation, the resonance frequency
of a rectangular VCI photonic well ωp,q is found as [18], [40]:

ω2
p,q ' ω2

0 + αx(pπ)2

2mxL2
x

+ αy(qπ)2

2myL2
y

, (4.4)

where p and q are mode numbers in the x and y directions, respectively, Lx and Ly
are the lengths of the heterostructure as defined in Fig. 4.8(b), and the rational
factors αx and αx account for the effect of finite barrier heights. This expression
can be used to interpret the simulation results for HCG/HG-based vertical cavities.
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4.2.1 Dispersion Curvature Effects

In this section, the influences of dispersion curvature on VCI heterostructures
are investigated with numerical simulations of several characteristic photonic well
structures. All structures have a 0.5λ-long air cavity, which can be formed by
sacrificial etching in a similar way as in Ref. [40], and a HCG that is designed to
be highly reflective for a TM-polarized light. Although, most of the simulations are
performed for a 2D cross-section of the structure, similar results will be obtained
for three-dimensional (3D) simulations of the structure.

Transverse Mode Order

It is well known in the VCSEL literature that higher order transverse modes have
higher frequencies, i.e., shorter wavelengths, due to their higher in-plane wavevectors.
However, the dispersion of HCG or HG reflectors in HCG/HG-based cavities can
significantly modify this characteristics [18], [19]. For the photonic wells with
positive dispersion curvatures, we have the usual situation of VCSELs, as shown in
Fig. 4.9(a): the fundamental mode has the longest wavelength. However, for the
negative dispersion curvature case, the fundamental mode has a shorter wavelength
than the higher order mode, as shown in Fig. 4.9(b). Referring to Eq. (4.4), this
observation can be interpreted like this: the higher order mode with more spatial
modulation adds a larger negative kinetic energy due to a negative mass, lowering
the total energy. The positive dispersion curvature (electron-like) and negative
dispersion curvature (hole-like) cases are analogous to the electronic QWs in the
conduction band and valence band, respectively.

Transverse Mode Wavelength Spacing

Figure 4.10(a) plots the wavelength spacing of the two lowest transverse modes as a
function of the x-direction dispersion curvature βx, in the well region. It shows that
the wavelength spacing increases with the dispersion curvature. This observation
can be understood also by referring to Eq. (4.4): with a smaller dispersion curvature,
corresponding to a larger effective mass, the kinetic energy contribution to the
total energy becomes smaller, leading to a smaller energy difference between two
transverse modes. Therefore, the transverse mode spacing can be controlled by
engineering the dispersion of the HCG or HG, without changing the transverse
mode size. This results in interesting phenomena such as mode grouping and mode
degeneracy, with several possible applications, as discussed below.
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Figure 4.9: Band edge profiles in red color for (a) positive and (b) negative dispersion
curvatures, respectively. The first two transverse mode profiles are shown with their
resonance wavelengths. Blue curves in (a) and (b) represent dispersion curves. Structure
dimensions and refractive-indices are provided in Appendix C, section C.2.1.

Transverse Mode Grouping and Degeneracy

For a VCI heterostructure, if mx and my largely differ, the transverse modes are
grouped as shown schematically in Fig. 4.10(b). In Fig. 4.10(b), the effective mass
along the y-direction is ∼10 times smaller than that along the x-direction. As a
result, the second mode number for the y-direction determines the larger wavelength
spacing between groups, while the first one for the x-direction determines the smaller
wavelength spacing within a group. This mode grouping is experimentally observed
in a HCG-based cavity laser [40]. The wavelengths and mode profiles in Figs. 4.10(b)
and 4.10(c) are obtained by 3D simulations. Furthermore, the fundamental mode
frequency ω0,0 and higher order mode frequencies, ωp,p can be made degenerate, by
designing the effective mass so that mx = −my and αx/L2

x = αy/L
2
y [c.f., Eq. (4.4)].

This transverse mode-degeneracy is also confirmed by 3D simulations.
This control over transverse mode spacings can be used to boost the speed

of a laser diode. Recently, the bandwidth boost of laser diodes has attracted a
lot of attention [41], [42]. The boost mechanism is based on the introduction of
a photon-photon resonance at a frequency higher than the relaxation oscillation
frequency by exploiting external optical feedback or cross-gain modulation. In
HCG/HG-based vertical cavities, multiple transverse modes can be designed to
have specific wavelength spacings, e.g., 0.15 nm, which determines the photon-
photon resonance frequency. In this way, multiple photon-photon resonances can be
introduced at designed frequencies through cross-gain modulation. For this, all the



96 4.2. Vertical Cavity In-Plane Heterostructure

Figure 4.10: (a) Transverse-mode wavelength spacing between the two lowest modes as
a function of dispersion curvature for a HCG-based cavity. (b) Band edge profile of a 2D
photonic well, and (c) mode profiles therein, obtained by 3D simulations. This explains
the mode grouping effect in a 2D photonic well due to different effective mass in x- and
y-directions. Structure dimensions and refractive-indices are provided in Appendix C,
section C.2.2.

involved transverse modes need to be lasing, which is feasible in the HCG/HG-based
cavities, since we can separately control the mode profile and the gain profile.

Heterostructure with Mixed Effective Masses

The unique possibility to design various effective masses in well and barrier regions
enables exotic photonic well configurations. An interesting example is a photonic
well where the sign of effective mass in the barrier region is opposite to that of
the well region, e.g. hole-like barrier with electron-like well. In order to obtain
transverse mode confinement, the band edge of the barrier should be lower than
that of the well. This band edge alignment is opposite to the case of the Fig.
4.10(a), where both barrier and well are electron-like cavities. To compare these
two cases, a VCI heterostructure with positive effective masses in the well and right
barrier and a negative effective mass for the left barrier is investigated, as illustrated
in Fig. 4.11(a). The mode is well confined within the well section, as shown in
Fig. 4.11(b). If the band edge of the left barrier is moved above the band edge
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Figure 4.11: (a) Band edge profile of a photonic well structure with opposite effective
masses in left and right barriers. (b) Normalized field profile (|Hy|) of the structure in
(a) (dB scale). Structure dimensions and refractive-indices are provided in Appendix C,
section C.2.3.

of the well, the field is no longer confined in the well. This example shows that
HCG/HG-based VCI heterostructures allow more freedom for designing photonic
wells by controlling the effective mass as well as the band edge.

Penetration Depth into the Barrier

It is well-known from the quantum mechanics that a confined mode in the well
has a finite penetration into the barrier. Similarly, in a photonic well structure,
the optical mode penetrates spatially into the barrier section. The penetration
is quantified by penetration depth or equivalently its inverse, decay rate into the
barrier. By using a simple 1D photonic well model, it can be easily shown that
the decay rate into the barrier γx is obtained as [38]:

γx =
√

2mx(ω2
b − ω2

w) ≈
√

4mxωw∆ω (4.5)

where mx is the effective mass in the barrier section and ωw and ωb are the frequency
of band edge in the well and barrier sections, respectively, and ∆ω = ωb − ωw is
the barrier height. Figure 4.12 compares the envelope approximation results using
Eq. (4.5) with the rigorous calculations found by curve fitting of field in numerical
simulation for electron-like or hole-like cavities. There is good quantitative agreement
between the two, particularly for small barrier heights. By increasing the barrier
height, the penetration depth into the barrier decreases, since it is more difficult
for the photons to penetrate into a larger barrier. In a HCG/HG-based VCI
heterostructure, the barrier decay rate is an important characteristic, which affects
the design of heterostructure as discussed in the section 4.2.3.
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Figure 4.12: Spatial decay rate into the barrier for the fundamental mode in a VCI
heterostructure with (a) positive dispersion curvature (b) negative dispersion curvature,
versus the barrier height ∆ω = ωb − ωw. The results from rigorous numerical simulations
(red) are compared with envelope approximation using Eq. (4.5) (blue), which show
relatively good agreement. Structure dimensions and refractive-indices can be found in
Appendix C, section C.2.4.

4.2.2 Simulation

For a HCG/HG-based VCI heterostructure, it is possible to simplify the simulation
of in-plane heterostructure by using low-dimensional simulations of structure, as
shown schematically in Fig. 4.13 for the HCG case. Furthermore, by performing
low-dimensional simulations, one can estimate the cavity loss in the transverse
directions separately. This approach is particularly useful for optimizing the in-
plane heterostructures design in a enormously faster way, compared to cumbersome
3D simulations. In the lowest dimensional simulation, referred to as one-half-
dimensional (1.5D) simulation, a structure with one period of the HCG or HG is
used, and it is assumed that the structure is uniform in the y-direction. Actually,
it is a 2D simulation for a structure with infinite number of grating periods due
to periodic boundary conditions in the x-direction. This kind of simulation has
been already employed for computing the cavity dispersion. For a 2D simulation, a
finite number of grating periods is considered as illustrated in Fig. 4.13(b), and
the structure is assumed to be uniform in the y-direction, similar to the 1.5D case.
Absorbing boundary conditions should be implemented in the x-direction (red
dot line in the figure). A 2D simulation can be employed to estimate the loss in
x-direction, and also to design an optimized VCI heterostructure in this direction.
Many simulations in this dissertation are performed on these type structures. Figure
4.13(c), shows a 2.5D structure used for 2.5D simulations, in which only a single
grating period is used, similar to the 1.5D structure. However, the structure is
not uniform in the y-direction any more, and absorbing boundary conditions are
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Figure 4.13: Schematic view of a HCG-based vertical cavity structure used for (a) 1.5D
simulations, (b) 2D simulations, (c) 2.5D simulations, and (d) 3D simulations.

employed in the y-direction. A two-half-dimensional (2.5D) simulation is used
to design an appropriate in-plane heterostructure in the y-direction. Finally, the
complete structure consists of finite number of grating periods with variation in
the y-direction is shown in Fig. 4.13(d). This is the most numerically cumbersome
simulation in which absorbing boundary conditions are required in both x- and
y-directions. This technique can be used for designing and optimizing the in-plane
heterostructure, and for final validation a rigorous 3D simulation is performed.

4.2.3 Design

VCI heterostructure can easily be formed in the HCG/HG-based cavities as it
is already discussed in the previous section and shown also in Fig. 4.8. These
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Figure 4.14: (a) Cross-sectional schematic of a grating bar in the x-z plane (top), and x-y
plane (middle) for HCG-based VCI heterostructure with (a) Abrupt-type barrier, and (b)
Adiabatic-type barrier. The grating bar widthWg is varied along the x- and y-directions to
make a heterostructure with the well sizes of Lx and Ly as shown schematically (bottom).

heterostructures are easy to be fabricated, since they are defined simply by changing
the grating bar width in the e-beam lithography process. We are particularly
interested in the photonic well structures to make an efficient transverse mode
confinement for VCSEL applications. In this section, important considerations
for designing an effective barrier are reviewed, and numerical examples for the
barrier in the x-direction are provided. Similar conclusions are valid for the y-
direction. The barriers can be formed adiabatically or abruptly as it is shown
in Figs. 4.14(a) and 4.14(b), respectively.

In the VCI heterostructure, three different loss mechanisms can be defined;
vertical out-coupling loss through the both mirrors, lateral out-coupling loss through
the in-plane barriers, and scattering loss due to the refractive-index perturbation
of the cavity by heterostructure [36]. In this section, both mirrors are designed to
be highly-reflective (reflectivity amplitude above 99.99%), which result in a low
vertical out-coupling loss. Figure 4.15(a) shows the Q-factor of the two highest-
order transverse modes of an exemplary 2D HCG-based VCI heterostructure versus
the barrier length for several different barrier heights. The barrier length in the
transverse directions should be at least several times of the barrier penetration
depth, in order to have an effective barrier. Otherwise, the optical mode tail will not
be attenuated enough, when it reaches the boundary of the barrier region, which
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Figure 4.15: (a) Q-factor of the fundamental and 1st-order transverse mode in a 2D
HCG-based cavity as a function of barrier length Lbx, for a abrupt-barrier with height
of 1.37 meV (in blue), 2.77 meV (in red), and 4.22 meV (in green). As long as the
barrier length is large enough the Q-factor saturates. Shorter barrier requires longer
barrier length, and result in higher Q-factor, since the scattering loss becomes smaller.
(b) Q-factor of the fundamental transverse mode of structure in (a) versus its mode size
for several different barrier cases. The mode size is defined as the width, where the field
amplitude drops to 1/e of its maximum value. Adiabatic-barrier results in higher Q-factor
compared to abrupt-barrier cases. Structure dimensions and refractive-indices can be
found in Appendix C, section C.2.5.

results in additional lateral loss. For a large-enough barrier length, shorter barrier
height is advantageous, since it results in smaller perturbation and consequently
less scattering loss. However, it should be noted that the optical mode will also
be larger for shorter barrier, since it will penetrate longer into the barrier region.
Therefore, to compare different types of barrier, the comparison should be made
for a constant mode size including the penetration depth into barrier. Here, the
fundamental mode size is defined as the width, where the field amplitude drops
to 1/e of its maximum value.

We may improve the performance of the barrier by using an adiabatic-type
heterostructure. The adiabatic-type barrier reduces the scattering loss considerably,
since the perturbation in the cavity is less in the region where the field amplitude
is large, and it increases for the region with smaller field amplitude. Figure
4.15(b) compares the Q-factor of the fundamental transverse mode versus its size
for three different barriers for the same barrier length. ‘Case 1’, in which the
barrier is adiabatic-type shows higher Q-factor and less lateral loss compared
to the other cases.
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4.3 Vertical Cavity Examples

In this section, several HCG/HG-based vertical cavity structures are designed and
simulated to show the capability of this platform. Firstly, a HG-based vertical cavity
structure is designed and simulated for using as an electrically-pumped laser, which
possesses a more feasible fabrication process and superior thermal characteristics
compared to its HCG-based laser counterpart. Secondly, a HCG-based vertical
cavity with very efficient power emission into an in-plane waveguide is designed
and investigated numerically, which shows promising results for being used as a
Si-integrated light source. Finally, a system of two laterally-coupled vertical cavities
is introduced and the parity-time breaking phenomena is illustrated in this structure,
which can be interesting for the fundamental physics study in this platform.

4.3.1 Electrically-Pumped HG-Based Vertical Cavity

As it is already mentioned, an interesting possibility with HG is that the cap layer
may include an active material such as QWs or quantum dots (QDs). Using this
active HG, one may implement a HG-based vertical cavity laser, where light is
generated inside the mirror, rather than in the middle of the cavity. Thus, the
HG-based vertical cavity laser consists of a passive DBR, a very thin passive cavity
made of low refractive-index materials, e.g., air or SiO2, and an active HG reflector
as shown schematically in Fig. 4.2(b). Since we are interested in Si-integrated light
source applications, the cap layer is a III-V epitaxial structure contains QWs, which
can directly be wafer-bonded to the Si grating layer [43]. The grating is formed
by electron-beam lithography and dry etching processes on a silicon-on-insulator
(SOI) wafer [40]. The HG-based laser is advantageous compared to the HCG-based
one proposed in Ref. [40]. For instance, it possesses a more feasible fabrication
process, since the sacrificial layer etching step can be removed. Furthermore, in
the HG-based laser the heat generated inside the active region can be dissipated
more easily, through the silicon grating layer, since it is in a direct contact with
it. Contrastingly, for the HCG-based structure, the active region is above the air
cavity [40], [43], which makes the heat dissipation less efficient.

Here, an electrically-pumped laser is designed with a HG-based vertical cavity
using a InP cap layer, which includes seven InGaAlAs QWs. A tunnel junction
is employed to reduce the series resistance, since both contact regions can be
made of n-doped semiconductor materials with lower resistance compared to the
p-doped counterparts. Free-carrier absorption is modeled by introducing loss in
the doped regions, through an imaginary refractive-index value. The DBR is made



4. Vertical Cavity Structures 103

Figure 4.16: (a) Reflectivity amplitude in percentage (blue curves) and reflectivity phase
in radians (red curves) for the designed HG reflector (solid-lines) and DBR (dashed-lines).
The green line indicates the designed wavelength which is 1554.2 nm. (b) Normalized field
profile |Hy| in dB of the fundamental mode in the designed 2D HG-based cavity. The
mode resonance wavelength and Q-factor are 1554.3 nm and 4138, respectively. Structure
dimensions and refractive-indices can be found in Appendix C, section C.2.6.

of amorphous Si and SiO2, and due to large refractive-index contrast only a few
pairs are required. Figure 4.16(a) shows the reflectivity phase and amplitude for the
active HG reflector and passive DBR. It should be noted that the QWs were placed
at the electric field maximum to maximize the optical confinement factor and the
tunnel junction layers were positioned at the minimum of the field to reduce the
free carrier absorption. The normalized field profile of the fundamental mode in 2D
simulated structure is also shown in Fig. 4.16(b). The nominal cavity thickness
is designed for a resonance at wavelength of 1554.2 nm, since the gain peak is
estimated to be at this wavelength for laser working temperature. The Q-factor of
the fundamental mode is 4138, considering all the absorption losses in the contact
and tunnel junction regions, which is sufficient for laser applications.

4.3.2 HCG-Based Vertical Cavity with In-Plane Emission

An important requirement for a monolithic light source in silicon photonic appli-
cations is the possibility to emit light into a silicon waveguide. The HCG-based
vertical cavity is a promising candidate for this possibility [9]. So far, the properties
of the HCG-based cavities considering vertical emission through the top or bottom
mirrors have been investigated. However, for HCG-based vertical cavities, it is also
possible to emit the light into an in-plane silicon waveguide, which is placed where
the grating modulation is terminated as shown schematically in Fig. 4.17(a). In
this case, the light is propagating and amplified in the vertical direction but small
portion of it, can be coupled to the in-plane waveguide due to the coupling between
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Figure 4.17: (a) Schematic view of a HCG-based hybrid laser with in-plane silicon
waveguide. (b) Scanning electron microscope (SEM) image from the top of the fabricated
device. (c) In-plane light emission from the silicon waveguide as a function of absorbed
input light. (d) Intensity profile of the in-plane emission from the waveguide. The position
zero corresponds to the waveguide center position [40].

the tail of optical mode and the waveguide [9], [44]. In our group, based on this
structure, a hybrid laser was designed, fabricated and experimentally characterized
recently as shown in Fig. 4.17 [40]. Figure 4.17(c) illustrates the laser output from
the in-plane silicon waveguide graph versus input light, which clearly shows the
laser characteristic. Also, the far-field intensity from the in-plane waveguide is
shown in Fig. 4.17(d) [40]. Therefore, these experimental results demonstrate the
feasibility of emitting the light into an in-plane waveguide. The design rules for
maximizing the out-coupling efficiency ηin−plane, which is defined as the ratio of
the power emitted to in-plane waveguide to the total power emitted out of cavity,
are reviewed below with a numerical example.

In order to maximized the out-coupling efficiency ηin−plane, all light emission
in the vertical directions should be minimized. Thus, the DBR is deigned to be
6.5 pairs of Si/SiO2 which results in a very high reflectivity amplitude (above
99.997 % at 1550 nm wavelength). Similarly, the HCG should be designed to show
high reflectivity amplitude. Beside the HCG reflectivity, several other important
characteristics for the bottom HCG reflector should be considered. Firstly, the HCG
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reflectivity should not drop dramatically with incident angle, since it can increase the
threshold gain. Secondly, the in-plane phase response, which determines the cavity
dispersion curvature, should be designed carefully. The cavity dispersion curvature
defines the lateral penetration into the barrier, mode size and also the light lateral
velocity. Finally, the position of the waveguide with respect to the optical mode
position is very important. Figure 4.18 shows the field profile of a HCG reflector
illuminated by a TM-polarized Gaussian beam at two different beam position, while
keeping all the other parameters unchanged. By moving the center of the beam
toward to waveguide starting position, the coupling efficiency to the waveguide
is increased dramatically. Therefore, for an efficient in-plane light coupling, the
cavity mode tail should have a good overlap with the in-plane waveguide [9]. In
the HCG-based cavity, the optical mode waist (size) and its position depend on the
transverse mode confinement scheme and cavity dispersion curvature.

When there is no separate transverse mode confinement scheme in the HCG-based
vertical cavity, the mode is mainly defined by the grating region area, i.e. the optical
mode size is roughly defined where grating is terminated. By introducing in-plane
heterostructure as explained before, it is possible to make the appropriate lateral
confinement. The penetration depth into the barrier depends on the cavity dispersion
curvature in the barrier region. To maximize the emission to the waveguide, no
in-plane heterostructure is introduced for the right side. However, an adiabatic
in-plane heterostructure is designed for the left side to prevent the light from
escaping from that side. Furthermore, a relatively large cavity dispersion curvature
is required in order for light to have the enough momentum while escaping from
the cavity from right side. Considering all of the above consideration, a HCG-based
vertical cavity structure with an InP active region is designed with high in-plane
light emission into a silicon waveguide. Figures 4.19(a) and 4.19(b) show the
schematic of simulated structure and its field profile, respectively. The large field
value in the silicon waveguide is observed, which results in a large out-coupling
efficiency of approximately 68%.

4.3.3 Laterally-Coupled HCG-Based Vertical Cavities

Coupled micro-cavity structures have displayed many interesting phenomena, such
as miniband formation [45], heavy photons [46], coupled-cavity QED [47], and
recently parity-time (PT) symmetry breaking [48], [49]. For the implementation of
them, various structures have been suggested, including PhC coupled cavities [45],
microring resonators [48], [49], and vertically-coupled VCSELs [50]. Here, a system
of two laterally-coupled vertical cavities is proposed, as shown schematically in Fig.
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Figure 4.18: Normalized profiles |Hy| in dB of a HCG illuminated by a TM-polarized
Gaussian beam with beam waist of 7 µm with beam center at (a) x0=0 , (b) x0=1.5
µm. By moving the beam toward right, i.e. making it closer to the waveguide starting
position, the lateral emitted power is increased considerably. Structure dimensions and
refractive-indices can be found in Appendix C, section C.2.7.

Figure 4.19: A HCG-based vertical cavity with an InP active region designed for large
in-plane light emission into a waveguide. (a) Schematic view of the simulated structure.
(b) Normalized mode profile |Hy| in dB scale of the fundamental cavity mode. The out-
coupling efficiency to the silicon waveguide is more than 68%. The resonance wavelength
and Q-factor of the fundamental cavity mode are λr=1549.3 and Q=6590, respectively.
Structure dimensions and refractive-indices can be found in Appendix C, section C.2.8.

4.20(a). In this structure, the directions of the light propagation (vertical) and
coupling (lateral) are separated from each other, while they are in the same directions
in other coupled cavities. This makes access to the properties of the individual
cavities easier. As shown in Fig. 4.20(b), the coupling of two identical cavities leads
to two coupled states with even and odd parities. The coupling strength can be tuned
by changing the barrier width, height, or effective mass. Here, the barrier width
Wc is chosen. As shown in Fig. 4.20(c), the separation between the wavelengths of
the two resulting states becomes larger for a larger coupling, i.e., smaller Wc.

Recently, there is a great interest for understanding and utilizing the unusual
properties of PT-symmetric structures, in which there are gain and loss sections
in a mirror symmetrical form. Particularly, two coupled cavities in PT-symmetric
arrangement exhibit exotic behaviors close to the exceptional point such as en-
hancement of laser bandwidth [51], pump-induced lasing death [52] and suppressing
higher order modes [53]. The exceptional point is a characteristic signature of
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Figure 4.20: (a) Schematic view of a system of two laterally coupled HCG-based
vertical cavities. A III-V active region is introduced below the DBR to introduce required
gain and loss into the cavities. The corresponding band-edge profile of the structure
is plotted below of the schematic with the specified even and odd modes. (b) Mode
profiles (real value of Hy) of even and odd modes. (c) Wavelengths of even and odd modes
versus lateral spacing between two cavities. (d) Wavelengths of even and odd modes as
function of gain/loss parameters, which are the imaginary part of refractive-indices of
QWs. The exceptional point, as indicated by a green dotted circle, shows the breaking
of PT-symmetry in the structure by increasing the gain/loss parameter. The Structure
dimensions and refractive-indices can be found in Appendix C, section C.2.9.

PT-symmetry breaking [48], [49], [54], [55]. As shown in Fig. 4.20(d), the PT

symmetry of this coupled cavities can be broken by introducing a gain region in

one cavity and a loss region in the other cavity, which reduces the wavelength

separation. The exceptional point, as indicated by a green dotted circle, does not

show very steep (perpendicular) bifurcation observed in the ideal PT-symmetry

broken case [48], [54], [56]. This is due to the unbalanced total gain/loss in the

system as explained in Ref. [54], [57].
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4.4 Summary

In this chapter, numerical investigation of the HCG/HG-based vertical cavity is
conducted. It is shown that the in-plane dispersion is a an important characteristics
of the vertical cavities, The dispersion curvature, which is also interpreted as the
photon effective mass, influences the optical properties of cavity such as mode
confinement and mode spacing. We show that by varying the structural parameters
of the grating, it is possible to control the effective mass of the photons, both in terms
of sign and absolute value. In this way, it is possible to create a heterostructure,
where the photons, in some regions, behave analogous to the conduction band
electrons in a solid, while in others, display the properties of valence band holes.
This allows the realization of structures with novel types of potential barriers, for
instance being realized by a change of photon mass, leading to new types of photon
confinement and coupling. Beside numerical simulation, an analytic expression for
the cavity dispersion has been derived, which provides considerable insight. The full
control over the dispersion characteristics in different directions may be exploited
for various applications, e.g., the control of the optical mode and the enhancement
of the modulation bandwidth of vertical cavity lasers. It has been shown that the
adiabatic heterostructure is advantageous compared to abrupt heterostructure for
minimizing the cavity scattering loss. Furthermore, a new laser structure based
on an active HG reflector is designed and simulated, which seems advantageous
to the HCG-based lasers, due to its more feasible fabrication process and better
thermal properties. Finally, a novel system of two coupled cavity is proposed and
based on that for the first time, the phenomena of parity-time symmetry breaking
in vertical cavities is shown. We believe that the vertical cavity platform, with
novel types of reflectors such as HCG and HG, is promising for fundamental physics
study, as well as device applications with novel functionalities.
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Mathematics is the most exact science, and its con-
clusions are capable of absolute proof. But this is so
only because mathematics does not attempt to draw
absolute conclusions. All mathematical truths are
relative, conditional.

— Charles Proteus Steinmetz
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5.1 Summary

The main goal of this work was to understand the physics of novel subwavelength
gratings, as well as vertical cavity lasers incorporating them. This understanding
guides us to design vertical cavity lasers with either performances beyond the
conventional vertical-cavity surface-emitting lasers (VCSELs) with distributed Brag
reflectors (DBRs) such as very small modal volume, high optical confinement factor
or very long photon life-time, or new functionalities such as in-plane light emission
into a silicon waveguide with very high out-coupling efficiency. Particularly, this
capability of in-plane light emission is very attractive for integrated light sources
in future optical interconnect applications.

For modeling optical properties of vertical cavity lasers, an optical software tool
based on the Fourier modal method (FMM), which solves fully-vectorial Maxwell’s
equations in three-dimensional (3D) space, has been implemented. Several different
techniques for computing the resonance frequency and quality-factor (Q-factor) of
a cavity mode have been compared, and their pros and cons have been discussed.
Particularly, the quasi-normal mode approach with real frequency is considerably
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more efficient numerically compared to other methods, due to its capability of
determining the resonance frequency and Q-factor of several transverse modes at
once. Furthermore, it is shown that the uncertainty in the Q-factor is several orders
of magnitude larger than the uncertainty in the resonance frequency. On top of that,
a method to simplify 3D simulations to lower dimensional simulations is suggested,
which enables us to perform fast simulations for designing heterostructure before
doing a thorough 3D simulation.

We have suggested a novel grating structure, referred to as hybrid grating
(HG), which consists of a sub-wavelength grating layer and an unpatterned high-
refractive-index cap layer. It has been shown numerically and experimentally that
the HG reflector can provide a near-unity reflectivity in a broad wavelength range,
which surpasses that of the well-known high-index-contrast grating (HCG). The
cap layer introduces more guided-mode resonances (GMRs) without loss of peak
reflectivity, which leads to this broader high-reflectivity bandwidth [1]. Furthermore,
the reflection process is shown to originate mainly from the propagating modes in
the structure. A Monte Carlo analysis illustrates that the HG high reflectivity is
prone to the common fabrication errors, which is also validated by the experiments
on the fabricated structure [2]. On top of that, it is shown that the HG can
be employed as an ultrahigh Q-factor resonator [3]. The physics study of the
resonances show that two propagating modes in the grating layer are contributed
simultaneously in the resonance process and the cancellation of the 0th harmonic
component of these two modes at the interfaces to surrounding layers leads to
high-Q resonances. These types of resonances of an HG structure differ from
those of grating filters, highlighting that HG resonators may achieve Q-factors
that are several orders of magnitude higher than conventional GMR filters. From
application point of view, the structures based on the HG can be advantageous
compared to the ones using conventional HCG.

The HG can be employed as a broadband reflector in a vertical cavity laser,
since it can provide high-reflectivity value, which is relatively insensitive to the
fabrication imperfections. If an active material is included as part of the cap layer,
a novel vertical cavity laser structure can be formed with a more feasible fabrication
process and better heat dissipation compared to the HCG-based ones. Moreover,
an standalone HG can be used as a resonator and a very compact laser structure is
possible by incorporating a gain material in the cap layer which appears promising,
featuring a smaller series resistance, less surface recombination loss, and a better
heat dissipation capability than the HCG resonator-based laser structures. Even
though, for the typical fabrication errors and finite extension of 10 to 15 µm, the
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Q-factor of a HG resonator drops from an ultrahigh value to a moderate value,
it is still sufficient for laser applications.

Finally, the cavity dispersion is shown to be a very important characteristics
of the vertical cavities with HCG or HG reflectors [4]. An analytic expression is
derived which indicates that the dispersion has contributions from both mirrors
through their reflectivity phase response as well as nominal cavity through its
thickness [5]. The HCG and HG reflectors can be designed to be the dominant
contributor to the dispersion, which is not the case for the conventional DBRs.
Therefore, the dispersion curvatures of the HCG/HG-based vertical cavities can be
engineered to achieve different values in different directions, simply by changing the
grating parameters. Since the dispersion curvature can be interpreted as a photon
effective mass, depending on the curvature sign the photons behave analogous to
the conduction band electrons or valence band holes in a solid. The design freedom,
obtained by engineering the photon effective mass, enables exotic configurations of
heterostructure that may be of interest for various applications such as a photonic
well with conduction band like well and a valence band like barrier. Engineering
the cavity dispersion can be used for enhancing the Purcell factor or making a
polariton-based laser due to increasing the density of states or equivalently the
photon effective mass [6]. Furthermore, in Si-integrated photonics, a laser source
that can output light into a Si waveguide is essential [7], and it is shown that in
HGG-based vertical cavity laser the light can be coupled to an in-plane output
waveguide [8]. The design rules for achieving a high out-coupling efficiency into
the in-plane waveguide are discussed and the in-plane out-coupling efficiency as
high as 68% is achieved in design. At the end, a system of two laterally coupled
vertical cavities has been proposed and investigated, which exhibits the spontaneous
breaking of parity-time (PT) symmetry [5]. Since this coupled cavity system can
be realized as an electrically pumped device, it can result in device applications
for PT-symmetry breaking phenomenon.

5.2 Future Works

In this section, we list several possible extensions and outlooks of this work, and
we believe this list can be extended.

• For accurate simulation of a laser diode, all optical, electrical and thermal
phenomena should be modeled [9]. In this dissertation, the FMM has
been implemented for modeling the optical phenomena. However, modeling
electrical and thermal effects and the interaction of all three phenomena
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is highly required. Therefore, efficient and accurate implementation and
integration of the electrical and thermal simulators with the optical simulator
is seen as the next step for developing a complete laser simulator.

• The FMM is an accurate and physically-attractive approach for simulating
nanophotonics devices, and particularly it is advantageous compared to finite-
difference time-domain and finite element methods, for simulating periodic
structures such as the ones include the HCG or HG. In addition, the concepts
of adaptive spatial resolution (ASR) [10] and perfectly matched layer (PML)
[11] improve the performance of this method considerably, and also broaden
its applications. Although, we have implemented these two techniques, a
systematic study on the performance improvement caused by both the ASR
and PML techniques is missed in the literature and seems necessary.

• The FMM has some limitations, which restricts its applications for simulating
optical phenomena in large 3D devices. For instance, although the convergence
of the calculation results can be tested for 2D problems, it is practically impos-
sible to check the convergence in 3D cases due to the enormous time required.
Furthermore, the matrices involved in the FMM are not sparse, which requires
huge amount of memory to store them. Thus, for 3D problems any attempt
for simplifying the modeling is extremely useful and well-appreciated. The
proposed method for HCG/HG-based cavities by employing lower dimensional
structures for designing and optimizing the in-plane heterostructure, is an
example of such a simplified approach. In addition, cavity dispersion concept
with the well-known envelope approximation technique is a fast approximate
and also physically-intuitive method for modeling the complex 3D vertical
cavity heterostructures.

• All the numerical studies in this thesis are performed on the 1D grating
structures. However, similar studies can be conducted on the 2D gratings. For
instance, the concept of cavity dispersion can be applied to vertical cavities
with 2D grating reflectors. We believe that for 2D gratings, the possibility
for designing anisotropic dispersion in different directions is increased and
new functionalities can be expected due to this possibility. Furthermore,
our concentration was only on vertical cavities, which consist of a HCG/HG
reflector with a conventional DBR, i.e. DBR-HCG or DBR-HG structures.
However, vertical cavities in which both reflectors are formed by HCG or HG
or a combination of them are also attractive such as HCG-HCG [12], HG-HG,
and HCG-HG structures. Theoretical investigation of vertical cavity structures
with double grating reflectors is a formal extension of this work.
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• From experimental point of view, only a few vertical cavity devices were
fabricated, mainly for demonstrating the in-plane light emission capability.
However, many of the interesting phenomena introduced in this thesis have not
been observed experimentally yet. Therefore, fabrication and measurement
of the proposed devices is essential for validating the theory provided here,
such as illustrating parity-time symmetry breaking or boosting laser speed by
photon-photon resonances.

• For Si-integrated light source applications, the HCG/HG-based vertical cavity
lasers seem promising. In our group, we have demonstrated a proof-of-
concept optically pumped HCG-based laser with in-plane emission to a silicon
waveguide recently [8], [13], and an electrically-pumped HG-based laser with
in-plane light emission is planned to be fabricated soon, which has a more
feasible fabrication process compared to the HCG-based one. Even though,
we have shown the possibility of in-plane emission in this structure, there are
still rooms for understanding the mechanism of in-plane coupling and also
engineering the out-coupling efficiency for the maximum achievable value.
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The heart of animals is the foundation of their life,
the sovereign of everything within them, the sun of
their microcosm, that upon which all growth depends,
from which all power proceeds.

— William Harvey

A
Homogeneous Layer Eigenmodes

For a constant permittivity εr, it is easy to show that Ei = εrMi, i = x̄, ȳ, z̄.
Therefore, P and Q in Eqs. (2.18) will simplify considerably as:

P = 1
εr

Q =
 Fx̄Kx̄M−1

z̄ FȳKȳ εrMy − Fx̄Kx̄M−1
z̄ Fx̄Kx̄

FȳKȳM−1
z̄ FȳKȳ − εrMx −FȳKȳM−1

z̄ Fx̄Kx̄

 (A.1a)

After some algebra, the eigenvalue matrix Ω = PQ becomes:

Ω =
Ω11 Ω12

Ω21 Ω22

 = Y − εrI, (A.2a)

Y11 = Fx̄Kx̄M−1
z̄ Fx̄Kx̄Mx̄ +MȳFȳKȳM−1

z̄ FȳKȳ, (A.2b)

Y22 =Mx̄Fx̄Kx̄M−1
z̄ Fx̄Kx̄ + FȳKȳM−1

z̄ FȳKȳMȳ, (A.2c)

Y12 = Y21 = O, (A.2d)

where Y is an auxiliary matrix. For free-space, εr = 1, the eigenvalue problem is (Y−
I)W0 = Γ2

0W0. We can easily show that W0 also diagonalizes the matrix Y− εrI:

(Y − εrI)W0 = (Y − I)W0 + (1− εr)W0 =
[
Γ2

0 + (1− εr)
]
W0 (A.3)

which shows an eigenvalue problem with eigenvalue of γ2
0 + (1 − εr). Therefore,

if the eigenvalue problem is solved for free-space, Eq. (A.3) can be employed for
determining the eigenmodes of all other homogeneous layers.
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Everything should be made as simple as possible, but
no simpler.

— Albert Einstein

B
Redheffer Star Product Variants

There are other variants of Redheffer star product, which are more efficient
numerically in the cases where only some of the S-matrices are required. The
following equations just need one matrix inversion compared to Eqs. 2.27, but at
the same time require one additional matrix multiplication:

S(AB)
11 = S(A)

11 + S(A)
12

[
I− S(B)

11 S(A)
22

]−1
S(B)

11 S(A)
21 , (B.1a)

S(AB)
12 = S(A)

12

[
I− S(B)

11 S(A)
22

]−1
S(B)

12 , (B.1b)

S(AB)
21 = S(B)

21 S(A)
21 + S(B)

21 S(A)
22

[
I− S(B)

11 S(A)
22

]−1
S(B)

11 S(A)
21 , (B.1c)

S(AB)
22 = S(B)

22 + S(B)
21 S(A)

22

[
I− S(B)

11 S(A)
22

]−1
S(B)

12 . (B.1d)

If only S22 is required (to update it, S12 should also be calculated), these expressions
are more efficient numerically, since they require one matrix inversion and six
distinct matrix multiplications compare to the Eqs. (2.27), which require two
matrix inversions and six distinct matrix multiplications. Similarly, the following
expressions are more efficient numerically when only S11 is needed:

S(AB)
11 = S(A)

11 + S(A)
12 S(B)

11

[
I− S(A)

22 S(B)
11

]−1
S(A)

21 , (B.2a)

S(AB)
12 = S(A)

12 S(B)
12 + S(A)

12 S(B)
11

[
I− S(A)

22 S(B)
11

]−1
S(A)

22 S(B)
12 , (B.2b)

S(AB)
21 = S(B)

21

[
I− S(A)

22 S(B)
11

]−1
S(A)

21 , (B.2c)

S(AB)
22 = S(B)

22 + S(B)
21

[
I− S(A)

22 S(B)
11

]−1
S(A)

22 S(B)
12 . (B.2d)
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It is going to be necessary that everything that
happens in a finite volume of space and time would
have to be analyzable with a finite number of logical
operations. The present theory of physics is not that
way, apparently.

— Richard Phillips Feynman
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In this appendix, the structural dimensions and refractive-indices for some of

the simulated structures in the thesis are reported. If not stated otherwise, a 0.5µm-

thick perfectly matched layer (PML) is employed in the x-direction boundaries

for two-dimensional (2D) and three-dimensional (3D) simulations, and similar

one in the y-direction boundaries for 2.5D and 3D simulations. Also, for vertical

cavity in-plane (VCI) heterostructures, the grating bar width is varied while its

period is kept constant. The number of Fourier terms is chosen according to

the discussion in chapter 2.
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No. Layer Refractive
index Thickness Comment

1 Superstrate nsup=1 tsup =∞ Infinite half space

2, 3 DBR-h nh=3.48 th=111.4 nm 4.5-pairs DBR
DBR-l nl=1.48 tl=261.8 nm

4 Cavity nc=1.0 tc=704.4 nm Nominal cavity

5 Grating nh=3.48,
nl=1.0 tg=430 nm Λg=640 nm, Wg=396.8

nm, Ng=14
6 Substrate nsub=1.48 tsub =∞ Infinite half space

Table C.1: Structure dimensions and refractive-indices related to Fig. 2.9.

C.1 Chapter 2

C.1.1 Figure 2.9

Table C.1 is related to Fig. 2.9. The simulated structure is a 2D HCG-based vertical
cavity with 0.5λ-long air cavity. The HCG is designed to be highly reflective for a
TM-polarized light at 1550 nm wavelength and it is terminated simply by stopping
the periodic modulation without any specific transverse confinement scheme.

C.1.2 Table 2.3

The simulated structure is a 2D HCG-based vertical cavity with an extra active
region made of InP above the cavity, and related to the Table 2.3. There is a gain
region at the peak of field profile, where an imaginary value is introduced in the
refractive-index of that section. The HCG is designed to be highly reflective for a
TM-polarized light at 1550 nm wavelength and it is terminated simply by stopping
the periodic modulation without any specific transverse confinement scheme.

C.2 Chapter 4

C.2.1 Figure 4.9

Tables C.3 and C.4 are related to Figs. 4.9(a) and 4.9(b), respectively. The
simulated structure is a 2D HCG-based vertical cavity with 0.5λ-long air cavity.
The HCG is designed to be highly reflective for a TM-polarized light at 1550 nm
wavelength. A VCI heterostructure (a photonic well) is formed by changing the
grating bar width while keeping the grating period constant.
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No. Layer Refractive
index Thickness Comment

1 Superstrate nsup=1 tsup =∞ Infinite half space

2, 3 DBR-h nh=3.48 th=111.4 nm 4 pairs DBR
DBR-l nl=1.48 tl=261.8 nm

4 Active na1=3.1661 ta1=191.7 nm Top contact

5 Active na2=3.1661
ta2=30.0 nm Gain region

3.1661+jni 12 µm in the middle
6 Active na3=3.1661 ta3=384.1 nm Bottom contact
7 Cavity nc=1.0 tc=725.1 nm Nominal cavity

8 Grating nh=3.48,
nl=1.0 tg=430 nm Λg=640 nm, Wg=371.2

nm, Ng=14
9 Substrate nsub=1.48 tsub =∞ Infinite half space

Table C.2: Structure dimensions and refractive-indices related to Table 2.3.

No. Layer Refractive
index Thickness Comment

1 Superstrate nsup=1 tsup =∞ Infinite half space

2, 3 DBR-h nh=3.48 th=111.4 nm 6.5 pairs DBR
DBR-l nl=1.48 tl=261.8 nm

4 Cavity nc=1.0 tc=725.1 nm Nominal cavity

5 Grating
nh=3.48,
nl=1.0 tg=430 nm

Barrier: Λg=640 nm,
Wg=361.9 nm, Ng=6
Well: Λg=640 nm,

Wg=371.2 nm, Ng=16
6 Substrate nsub=1.48 tsub =∞ Infinite half space

Table C.3: Structure dimensions and refractive-indices related to Fig. 4.9(a). The
photon effective mass in x-direction is calculated to be 1/mx=0.212c2.

C.2.2 Figure 4.10

The simulated structure is a HCG-based vertical cavity with 0.5λ-long air cavity.
Tables C.5 is related to Fig. 4.10(a), and it is based on 2D simulation. To vary
the photon effective mass, the design wavelength λd varies from 1450 nm to 1580
nm, while the grating parameters in the well are kept constant. In this wavelength
range, the reflectivity amplitude of the HCG mirror is above 99.88%. By changing
the wavelength, the central design wavelength of the DBR (consequently its layer
thicknesses) are varied to have the same reflectivity amplitude from top mirror
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No. Layer Refractive
index Thickness Comment

1 Superstrate nsup=1 tsup =∞ Infinite half space

2, 3 DBR-h nh=3.48 th=111.4 nm 6.5 pairs DBR
DBR-l nl=1.48 tl=261.8 nm

4 Cavity nc=1.0 tc=692.1 nm Nominal cavity

5 Grating
nh=3.48,
nl=1.0 tg=420 nm

Barrier: Λg=640 nm,
Wg=435.2 nm, Ng=6
Well: Λg=640 nm,

Wg=459.1 nm, Ng=16
6 Substrate nsub=1.48 tsub =∞ Infinite half space

Table C.4: Structure dimensions and refractive-indices related to Fig. 4.9(b). The
photon effective mass in x-direction is calculated to be 1/mx=-0.402c2.

No. Layer Refractive
index Thickness Comment

1 Superstrate nsup=1 tsup =∞ Infinite half space

2, 3 DBR-h nh=3.48 th = λd/4nh 6.5 pairs DBR
DBR-l nl=1.48 tl = λd/4nl

4 Cavity nc=1.0 tc from Eq.
(4.1) Nominal cavity

Barrier(+): Λg=640 nm,
Wg=361.9 nm, Ng=6

5 Grating nh=3.48,
nl=1.0 tg=430 nm Barrier(–): Λg=640 nm,

Wg=389.8 nm, Ng=6
Well: Λg=640 nm,

Wg=371.2 nm, Ng=16
6 Substrate nsub=1.48 tsub =∞ Infinite half space

Table C.5: Structure dimensions and refractive-indices related to Fig. 4.10(a). For
plotting the graph the design wavelength is changed from 1450 nm to 1580 nm range in
the high reflection bandwidth of the HCG. Barrier(±) shows the grating parameters in
barrier section for positive/negative effective mass, respectively.

across the graph. Due to the HCG mirror phase change and also design wavelength,
the nominal cavity thickness should be modified using Eq. (4.1). For grating
parameters in the barrier region, Wg is increased or decreased by 5% depending
on the sign of photon effective mass to form a relatively large barrier.

Figure 4.10(b) shows 3D simulation results for a HCG-based vertical cavity
structure. All layer thicknesses and refractive-indices are shown in Table C.6. All
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layers, except grating layer, are assumed to be homogeneous layers, i.e. they are
extended in x- and y-directions to the end of simulation domain. The grating
bar widths in x- and y-directions are changed in the barrier region as shown
schematically in Fig. 4.8(b). The Ly is 6 µm.

No. Layer Refractive
index Thickness Comment

1 Superstrate nsup=1 tsup =∞ Infinite half space

2, 3 DBR-h nh=3.48 th=111.4 nm 6.5 pairs DBR
DBR-l nl=1.48 tl=261.8 nm

4 Cavity nc=1.0 tc=709.3 nm Nominal cavity

5 Grating nh=3.48
tg=430 nm

Barrier: Λg=640 nm,
Wg=374.8 nm, Ng=6

nl=1.0 Well: Λg=640 nm,
Wg=390.4 nm, Ng=12

6 Substrate nsub=1.48 tsub =∞ Infinite half space

Table C.6: Structure dimensions and refractive-indices related to Fig. 2(d). The photon
effective mass in x- and y-directions are calculated to be 1/mx=0.08c2 and 1/my=1.0c2,
receptively.

C.2.3 Figure 4.11

Table C.7 is related to Fig. 4.11. The simulated structure is a 2D HCG-based
vertical cavity with 0.5λ-long air cavity. The HCG is designed to be highly reflective
for a TM-polarized light at 1550 nm wavelength. A photonic well with different
left and right barrier is formed by changing the grating bar width while keeping
the grating period constant.

C.2.4 Figure 4.12

The structure dimensions and refractive-indices are the same as those in tables
C.3 and C.4, respectively. The only difference is that the number of grating
periods are Ng=14 and Ng=8, in the well and barrier regions, respectively. To
vary ∆ω, the grating bar width Wg in the barrier region is changed compared
to the well section, from 371.2 nm to 352.6 nm for Fig. 4.12(a) and from 459.1
nm to 491.2 nm for Fig. 4.12(b).
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No. Layer Refractive
index Thickness Comment

1 Superstrate nsup=1 tsup =∞ Infinite half space

2, 3 DBR-h nh=3.48 th=111.4 nm 6 pairs DBR
DBR-l nl=1.48 tl=261.8 nm

4 Cavity nc=1.0 tc=725.1 nm Cavity thickness in left
barrier is tc=698 nm

5 Grating ng=3.48 tg=430 nm

Barrier(left): Λg=640 nm,
Wg=345.6 nm, Ng=8
Barrier(right): Λg=650
nm, Wg=429 nm, Ng=8

Well: Λg=640 nm,
Wg=371.2 nm, Ng=12

6 Substrate nsub=1.48 tsub =∞ Infinite half space

Table C.7: Structure dimensions and refractive-indices related to Fig. 4.11.

C.2.5 Figure 4.15

Table C.8 is related to Fig. 4.15. The simulated structure is a 2D HG-based
VCI heterostructure with 0.5λ-long air cavity. The HCG is designed to be highly
reflective for a TM-polarized light at 1550 nm wavelength. For Fig. 4.15(a), the
well size is kept constant at 8 grating periods (Ng,well=8) and the barrier length
is varied from 2 to 16 periods (Ng,barrier=2-14) for three different barrier height;
blue graph Wg,barrier=367.5 nm, red graph Wg,barrier=363.8 nm, and green graph
Wg,barrier=360.1 nm. For Fig. 4.15(b), the barrier length is kept fixed at 8 grating
periods (Ng,barrier=8), and the well length is varied from from 4 to 16 periods
(Ng,barrier=4-16) for three different barrier type; blue graph is adiabatic-type barrier
Wg,barrier=371.2-363.8 nm, red graph is abrupt-type barrier Wg,barrier=367.5 nm,
and green graph is adiabatic-type barrier Wg,barrier=363.8 nm.

C.2.6 Figure 4.16

Table C.9 is related to Fig. 4.16. The simulated structure is a 2D HG-based vertical
cavity which is designed for an electrically-pumped laser. The HG is designed to be
highly reflective for a TM-polarized light at 1554.2 nm wavelength, since the gain
peak occurs at this wavelength at laser working temperature. A 0.5λ-long SiO2

cavity and a DBR stack made of amorphous Si and SiO2 is used. It is assumed
that the cap layer is extended for 3 µm beyond the grating region.
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No. Layer Refractive
index Thickness Comment

1 Superstrate nsup=1 tsup =∞ Infinite half space

2, 3 DBR-h nh=3.48 th=111.4 nm 6.5 pairs DBR
DBR-l nl=1.48 tl=261.8 nm

4 Cavity nc=1.0 tc=725.1 nm Nominal cavity

5 Grating
nh=3.48,
nl=1.0 tg=430 nm

Barrier: Λg=640 nm,
Wg=c.f. text, Ng=c.f. text

Well: Λg=640 nm,
Wg=371.2 nm, Ng=c.f.

text
6 Substrate nsub=1.48 tsub =∞ Infinite half space

Table C.8: Structure dimensions and refractive-indices related to Fig. 4.15.

No. Layer Refractive
index Thickness Comment

1 Superstrate nsup=1 tsup =∞ Infinite half space

2, 3 DBR-h nh=2.923 th=132.9 nm 4.5 pairs DBR
DBR-l nl=1.48 tl=262.5 nm

4 Cavity nc=1.48 tc=559.7 nm Nominal cavity

5 Top contact ntc=3.1661-
j1.3e-4 ttc=260 nm N-doped 1.5e18

6 Wells and
barriers nnc=3.1661 twb=105.5 nm Undoped, 7 6.5nm-QWs

with 7.5nm-barriers

7 Cladding nclad=3.35-
j3.7e-5 tclad=43 nm P-doped 1.0e18

8 TJ (P++) npTJ=3.53-
j7.4e-4 tpTJ=20 nm P-doped 2.0e18

9 TJ (N++) nnTJ=3.53-
j1.7e-3 tnTJ=15 nm N-doped 2.0e18

10 Bottom
contact

nbc=3.1661-
j1.3e-4 tbc=380 nm N-doped 1.5e18

11 Grating
nh=3.48,
nl=1.0 tg=500 nm

Barrier: Λg=845 nm,
Wg=354.9-390.4 nm, Ng=8

Well: Λg=845 nm,
Wg=390.4 nm, Ng=8

12 Substrate nsub=1.48 tsub =∞ Infinite half space

Table C.9: Structure dimensions and refractive-indices related to Fig. 4.16.
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No. Layer Refractive
index Thickness Comment

1 Superstrate nsup=1.48 tsup =∞ Infinite half space

2 Grating nh=3.48,
nl=1.0 tg=510 nm Λg=750 nm, Wg=495 nm,

Ng=18
3 Substrate nsub=1.48 tsub =∞ Infinite half space

Table C.10: Structure dimensions and refractive-indices related to Fig. 4.18.

No. Layer Refractive
index Thickness Comment

1 Superstrate nsup=1 tsup =∞ Infinite half space

2, 3 DBR-h nh=3.48 th=111.4 nm 6 pairs DBR
DBR-l nl=1.48 tl=261.8 nm

4 Active nc=3.1661 tc=734.3 nm III-V active region
5 Cavity nc=1.48 tc=465.6 nm Nominal cavity

6 Grating
nh=3.48,
nl=1.0 tg=430 nm

Left barrier: Λg=750 nm,
Wg=470.3-495 nm, Ng=14

Well: Λg=750 nm,
Wg=495 nm, Ng=16

7 Substrate nsub=1.48 tsub =∞ Infinite half space

Table C.11: Structure dimensions and refractive-indices related to Fig. 4.19.

C.2.7 Figure 4.18

Table C.10 is related to Fig. 4.18. The simulated structure is a 2D HCG illuminated
by a TM-polarized Gaussian beam with beam waist of 7 µm at 1550 nm wavelength.
There is no in-plane heterostructure for the grating layer and it is simply terminated
by a silicon waveguide. For Fig. 4.18(a) the beam center is at x=0, while for Fig.
4.18(b) the beam is moved 1.5 µm toward right and its center is at x=1.5 µm.

C.2.8 Figure 4.19

Table C.11 is related to Fig. 4.19. The simulated structure is a 2D HCG-
based vertical cavity with 0.5λ-long SiO2 cavity. The HCG is designed to be
highly reflective for a TM-polarized light at 1550 nm wavelength. An in-plane
heterostructure is formed at the left side by changing the grating bar width gradually
from 470.3 to 495 nm while keeping the grating period constant.
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C.2.9 Figure 4.20

Table C.12 is related to Fig. 4.20. In HCG-based vertical cavity structure, an
additional active layer made of InP is introduced below the DBR structure in order
to add gain or loss to the cavities. The total InP thickness is ta = λd/2na and
it is assumed to have a core region where the gain or loss is introduced and two
passive cladding layers. The core region is placed at the maximum of the field
profile to be more effective which is approximately in the middle of the InP layer.
In the case of Fig. 4.20(c), there is no gain or loss in the structure, i.e. ng,l=0.
Furthermore, Wc is varied to change coupling strength between two cavities through
the distance between them. In the case of Fig. 4.20(d), the distance between two
cavities is kept constant at Wc=1.28 µm (so do their coupling strength), and an
equal gain and loss ng,l is introduced in each cavity.

No. Layer Refractive
index Thickness Comment

1 Superstrate nsup=1 tsup =∞ Infinite half space

2, 3 DBR-h nh=3.48 th=111.4 nm 6 pairs DBR
DBR-l nl=1.48 tl=261.8 nm

4
Cladding-t ncl=3.166 tcl=97.4 nm

Gain-Loss na=3.166
±ing,l

ta=50 nm
Left cavity with gain (+
sign), right cavity with

loss (– sign)
Cladding-b ncl=3.166 tcl=97.4 nm

5 Cavity nc=1.0 tc=725.1 nm Nominal cavity

6 Grating
nh=3.48,
nl=3.48 tg=430 nm

Barriers: Λg=640 nm,
Wg=363.8 nm, Ng=8 for
Left/Right, Ng = Wc/Lg

for Middle
Wells: Λg=640 nm,
Wg=371.2 nm, Ng=8

7 Substrate nsub=1.48 tsub =∞ Infinite half space

Table C.12: Structure dimensions and refractive-indices related to Fig. 4.20. For Fig.
4.20(c), ng,l=0, while the Wc is changed. However, in the case of Fig. 4.20(d), Wc is kept
constant at 1.28 µm and ng,l is varied in both cavities.
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